Optimal Sorting with Persistent Comparison
Errors

Barbara Geissmann
Department of Computer Science, ETH Ziirich, Switzerland
barbara.geissmann@inf.ethz.ch

Stefano Leucci

Department of Algorithms and Complexity, Max Planck Institute for Informatics, Germany™
https://www.stefanoleucci.com

stefano.leucci@mpi-inf.mpg.de

Chih-Hung Liu
Department of Computer Science, ETH Ziirich, Switzerland
chih-hung.liu@inf.ethz.ch

Paolo Penna
Department of Computer Science, ETH Ziirich, Switzerland
paolo.penna@inf.ethz.ch

—— Abstract

We consider the problem of sorting n elements in the case of persistent comparison errors. In this
problem, each comparison between two elements can be wrong with some fixed (small) probability p,
and comparisons cannot be repeated (Braverman and Mossel, SODA’08). Sorting perfectly in this
model is impossible, and the objective is to minimize the dislocation of each element in the output
sequence, that is, the difference between its true rank and its position. Existing lower bounds for
this problem show that no algorithm can guarantee, with high probability, maximum dislocation
and total dislocation better than Q(logn) and Q(n), respectively, regardless of its running time.

In this paper, we present the first O(nlogn)-time sorting algorithm that guarantees both
O(log n) mazimum dislocation and O(n) total dislocation with high probability. This settles the
time complexity of this problem and shows that comparison errors do not increase its computational
difficulty: a sequence with the best possible dislocation can be obtained in O(nlogn) time and, even
without comparison errors, Q(nlogn) time is necessary to guarantee such dislocation bounds.

In order to achieve this optimality result, we solve two sub-problems in the persistent error
comparisons model, and the respective methods have their own merits for further application. One
is how to locate a position in which to insert an element in an almost-sorted sequence having
O(log n) maximum dislocation in such a way that the dislocation of the resulting sequence will still
be O(logn). The other is how to simultaneously insert m elements into an almost sorted sequence
of m different elements, such that the resulting sequence of 2m elements remains almost sorted.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases approximate sorting, comparison errors, persistent errors

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.49

Related Version A full version of the paper is available at https://arxiv.org/abs/1804.07575.
Funding Research supported by SNF (project number 200021__165524).

Acknowledgements The authors wish to thank Peter Widmayer for many insightful discussions.

* Part of this work was completed while the author was affiliated with ETH Ziirich.

© Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna;
37 licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).

Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 49; pp.49:1-49:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9236-8798
mailto:barbara.geissmann@inf.ethz.ch
https://orcid.org/0000-0002-8848-7006
https://www.stefanoleucci.com
mailto:stefano.leucci@mpi-inf.mpg.de
https://orcid.org/0000-0001-9683-5982
mailto:chih-hung.liu@inf.ethz.ch
https://orcid.org/0000-0002-5959-2421
mailto:paolo.penna@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ESA.2019.49
https://arxiv.org/abs/1804.07575
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2

Optimal Sorting with Persistent Comparison Errors

1 Introduction

We study the problem of sorting n distinct elements under persistent random comparison
errors, where each comparison is wrong with some fixed (small) probability p, and the errors
are independent over all possible pairs of elements. There are two types of comparison errors,
persistent and non-persistent. For non-persistent errors, it is possible to repeat the same
comparison several times and each result is wrong with probability p independently of the
others. In the 80s and 90s, non-persistent errors have received considerable attention, and it
has been shown that the perfectly sorted sequence can be computed in O(nlogn) time with
high probability. For persistent errors the repetition of a single comparison always yields the
same outcome and this makes impossible to consistently recover the perfectly sorted sequence,
as we explain below. The goal is therefore that of computing an almost sorted sequence.
This seems a challenging task as all known algorithms have rather high running time and
only recently a sub-quadratic running time has been achieved (see below for details). In
particular, whether an optimal O(nlogn) running time is sufficient for sorting with persistent
comparison errors is a fundamental open question.

The above persistent-errors model is a well-studied theoretical abstraction of the errors
that arise in hardware architectures. Here, avoiding these errors requires involved fault-
tolerant mechanisms that reduce performances and increase manufacturing costs and energy
consumption. Recently, a contrasting trend of simplifying hardware architectures has
emerged: errors are traded for cheaper manufacturing costs, lower energy consumption, or
better performances. The study of sorting algorithms with persistent comparison errors has
been also motivated in [5,13] by experts comparing items according to their importance,
by ranking in sports where comparisons correspond to matches between teams, and —more
generally— by situations where one wants to aggregate noisy comparisons into a global ranking
and repeating a comparison is impossible or too expensive.

A common way to measure the quality of an output sequence in terms of sortedness, is
to consider the dislocation of an element, which is the difference between its position in the
output and its position in the correctly sorted sequence. In particular, a reasonable measure
is the mazimum dislocation of any element in the sequence or the total dislocation of the
sequence, i.e., the sum of the dislocations of all n elements.

To see why sorting with persistent errors is much more difficult than the case in which
comparisons can be repeated, note that in the latter case there is a trivial O(nlog2 n) time
solution to sort perfectly with high probability (simply repeat each comparison O(logn)
times and take the majority of the results). Instead, in the model with persistent errors, it
is impossible to sort perfectly as, for any constant p, no algorithm can achieve a maximum
dislocation that is smaller than Q(logn) w.h.p., or total dislocation smaller than Q(n) in
expectation [10]. This problem has been extensively studied in the literature, and several
algorithms have been devised with the goal of sorting quickly with small dislocation (see
Table 1). Unfortunately, even though all the algorithms achieve the best possible maximum
dislocation of ©(logn), they use a truly superlinear number of comparisons (specifically,
Q(n€) with ¢ > 1.5), and/or require significant amount of time (namely, O(n3*¢) where c,
is a big constant that depends on p). This naturally suggests the following question:

What is the time complezity of sorting optimally with persistent errors?
In this work, we answer this basic question by showing the following result:

There exists an algorithm with optimal running time O(nlogn) which achieves
simultaneously optimal maximum dislocation O(logn) and optimal total
dislocation O(n), both with high probability.

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

Table 1 The existing approximate sorting algorithms and our result. The constant ¢, in the
exponent of the running time of [5] depends on the error probability p and it is typically quite large.
We write Q(f(n)) w.h.p. (resp. exp.) to mean that no algorithm can achieve dislocation o(f(n))
with high probability (resp. in expectation).

Upper bounds

Running Time | Max Dislocation Tot Dislocation | Reference

O(n®ter) O(logn) w.h.p. O(n) w.h.p. [5]
O(n?) O(logn) w.h.p O(nlogn) w.h.p. [13]
O(n?) O(logn) w.h.p O(n) expected [10]
O(n*?) O(logn) w.h.p O(n) expected [11]

O(nlogn) ‘ O(logn) w.h.p O(n) w.h.p. ‘ this work ‘

Lower bounds
Any | Qlogn) w.h.p. Q(n) expected | [10] |

The dislocation guarantees of our algorithm are optimal, due to the lower bound of [10],
while the existence of an algorithm achieving a maximum dislocation of d = O(logn) in
time T'(n) = o(nlogn) would immediately imply the existence of an algorithm that sorts n
elements in T'(n) + O(nloglogn) = o(nlogn) time, even in the absence of comparison errors,
thus contradicting the classical Q(nlogn) lower bound for comparison-based algorithms.*
Along the way to our result, we consider the problem of searching with persistent errors,
defined as follows:

We are given an approximately sorted sequence S, and an additional element x & S.
The goal is to compute, under persistent comparison errors, an approximate rank
(position) of x which differs from the true rank of x in S by a small additive error.

For this problem, we show an algorithm that requires O(logn) time to compute, w.h.p.,
an approximate rank that differs from the true rank of 2 by at most O(max{d,logn}), where
d is the maximum dislocation of S. For d = Q(logn) this allows to insert z into S without
any asymptotic increase of the maximum (and total) dislocation in the resulting sequence.
Notice that, if d is also in O(n!=¢) for any constant e > 0, this is essentially the best we
can hope for, as an easy decision-tree lower bound shows that any algorithm must require
Q(logn) time. Finally, we remark that [13] considered the variant in which the original
sequence is sorted, and the algorithm must compute the correct rank. For this problem,
they present an algorithm that runs in O(logn -loglogn) time and succeeds with probability
1 — f(p), with f(p) vanishing as p goes to 0. As by-product of our result, we can obtain the
optimal O(logn) running time with essentially the same success probability. Similarly to
other prior related works, all our results apply when p is below a sufficiently small constant,
e.g., p < 1/20 in [13]. For technical simplicity, throughout this work we assume p < 1/32,
though the results hold for p < 1/16 as in [10].?

Indeed, the smallest d elements of a sequence S having dislocation d = 2°0°8™ can be found in time
O(dlogd) using any O(nlogn)-time sorting algorithm on the first 2d elements of S. Removing those
elements and repeating the above procedure O(%) times, would allow to sort in T'(n) + O(% - dlogd) =
o(nlogn) time.

Except for the derandomization technique of Section 5, all our results also hold for the case in which
each comparison is wrong with an adversarially chosen and unknown probability in [0, p].

49:3

ESA 2019

49:4

Optimal Sorting with Persistent Comparison Errors

1.1 Main Intuition and Techniques
Approximate Sorting

In order to convey the main intuitions behind our O(nlogn)-time optimal-dislocation
approximate sorting algorithm, we consider the following ideal scenario: we already have a
perfectly sorted sequence A containing a random half of the elements in our input sequence S
and we, somehow, also know the position in which each element x € S\ A should be inserted
into A so that the resulting sequence is also sorted (i.e, the rank of in A). If these positions
alternate with the elements of A, then, to obtain a sorted version of S, it suffices to merge
S and S\ 4, i.e., to simultaneously insert all the elements of S\ A into their respective
positions of A. Unfortunately, we are far from this ideal scenario for several reasons: first of
all, multiple elements in S\ A, say ¢ of them, might have the same rank in A. Since we do
not know the order in which those elements should appear, this will already increase the
dislocation of the merged sequence to (). Moreover, due to the lower bound of [10], we
are not actually able to obtain a perfectly sorted version of A and we are forced to work
with a permutation of A having dislocation d = (logn), implying that the natural bound
on the resulting dislocation can be as large as d - §. This is bad news, as one can show that
d = Q(logn). However, it turns out that the number of elements in S\ A whose positions lie
in a O(logn)-wide interval of A is still O(logn), w.h.p., implying that the final dislocation of
A is just O(logn).

But how do we obtain the approximately sorted sequence A in the first place? We
could just recursively apply the above strategy on the (unsorted) elements of A, except that
this would cause a blow-up in the resulting dislocation due to the constant hidden by the
big-O notation. We therefore interleave merge steps with invocations of (a modified version
of) the sorting algorithm of [10], which essentially reduces the dislocation by a constant
factor, so that the increase in the worst-case dislocation will be only an additive constant
per recursive step.

An additional complication is due to the fact that we are not able to compute the
exact ranks in A of the elements in S\ A. We therefore have to deal, once again, with
approximations that are computed using the other main contribution of this paper: noisy
binary search trees, whose key ideas are described in the following.

Noisy Binary Search

As a key ingredient of our approximate sorting algorithm, we need to merge an almost-sorted
sequence with a set of elements, without any substantial increase in the final maximum
dislocation. More precisely, given a sequence S with maximum dislocation d and an element
x € S, we want to compute an approrimate rank of x in S, i.e., a position that differs
by O(max{d,logn}) from the position that 2 would occupy if the elements S U {z} were
perfectly sorted. This same problem has been solved optimally in O(logn) time in the easier
case in which errors are not persistent and S is already sorted [9]. The idea of [9] is to locate
the correct position of x using a binary decision tree: ideally each vertex v of the tree tests
whether x appears to belong to a certain interval of S and, depending on the result, one of
the children of v is considered next. Since these intervals become narrower as we move from
the root towards the leaves (that are in a one-to-one correspondence with positions of S) we
eventually discover the correct rank of x in S. In order to cope with failures, this process is
allowed to backtrack when inconsistent comparisons are observed, thus repeating some of
the comparisons involving ancestors of v. Moreover, to obtain the correct result with high
probability, a logarithmic number of consistent comparisons with a leaf are needed before
the algorithm terminates.

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

Notice how the above process relies on the fact that it is possible to gather more information
on the true relative position of by repeating a comparison multiple times (in fact, it is
trivial to design a simple O(log2 n)-time algorithm in this error model). Unfortunately, this
is no longer the case when errors are persistent. To overcome this problem we design a noisy
binary search tree in which testing whether = belongs to the interval associated with a vertex
v also causes the interval itself to grow thus ensuring that, in future tests involving v, x will
always be compared with different elements. This, however, is a source of other difficulties:
first, the intervals of the descendants of v also need to be suitably updated to account for
the new elements in v’s interval. Moreover, since intervals are now dynamic, it is possible for
multiple tests on the same vertex to report different results even when no comparison errors
occur: this is because an interval that did not initially contain x might eventually grow into
one that does. Finally, since growing intervals need to overlap, one also has to be careful in
avoiding repeated comparisons arising from unrelated vertices (i.e., vertices that are not in
ancestor-descendant relation in the tree). We overcome these problems by using two search
trees that initially comprise of disjoint intervals and ensure that all the vertices exhibiting
the problematic behaviours discussed above will be confined to only one of the two trees: in
some sense, we guarantee that one of two search trees will behave similarly to the one of [9],
where leaves now represent groups of O(logn) positions in S.

1.2 Related work

Sorting with persistent errors has been studied in several works, starting from [5] who
presented the first algorithm achieving optimal dislocation (matching lower bounds appeared
only recently in [10]) by finding a maximum-likelihood permutation of the input elements
given the observed errors. The algorithm in [5] uses only O(nlogn) comparisons and is

1

able to handle any constant comparison error probability p € (0, 5) (later improved to

>
p< 35— Q(lolgol%)% in [17]), but unfortunately its running time O(n®*<) is quite large. For
example, if we require the algorithm to succeed with a probability of 1—1/n, the analysis in [5)

yields ¢, = %. On the contrary, all subsequent faster algorithms [10,11,13] — see Table 1

— use a number of comparisons which is asymptotically equal to their respective running time

and work for a smaller range of values of p (i.e., p < 55 in [13] and p < 75 in [10,11]).
Other works considered error models in which repeating comparisons is possible, although

expensive. For example, [4] studied algorithms which use a bounded number of rounds for

some “easier” versions of sorting (e.g., distinguishing the top k elements from the others).

Note that each round consists of a set of comparison operations, where it is possible to
compare the same pair of elements several times using independent comparisons like in the
non-persistent model; Also, the comparisons made in each round are decided a priori, i.e.,
they do not depend on the results of the comparisons in this round. In each round, a fresh
set of comparison results is generated, and each round consists of § - n comparisons. They
evaluate the algorithm’s performance by estimating the number of “misclassified” elements
and also consider a variant in which errors now correspond to missing comparison results.

In general, sorting in presence of errors seems to be computationally more difficult than
the error-free counterpart. For instance, [1] provides algorithms using subquadratic time (and
number of comparisons) when errors occur only between elements whose difference is at most
some fixed threshold. Also, [8] gives a subquadratic time algorithm when the number k of
errors is known in advance.

As mentioned above, an easier error model is the one with non-persistent errors, meaning
that the same comparison can be repeated and the errors are independent, and happen with
some probability p < 1/2. In this model it is possible to sort n elements in time O(nlog(n/q)),
where 1 — ¢ is the success probability of the algorithm [9] (see also [2,12] for the analysis of
the classical Quicksort and recursive Mergesort algorithms in this error model).

49:5

ESA 2019

49:6

Optimal Sorting with Persistent Comparison Errors

More generally, computing with errors is often considered in the framework of a two-person
game called Rényi-Ulam Game. In this game a questioner tries to identify an unknown
object = from a universe U by asking yes-or-no questions to a responder, but some of the
answers might be wrong. The case in which U = {1,...,n}, the questions are of the form
“is s > x7”, and each answer is independently incorrect with probability p < % has been
considered by [9], where the authors provide a binary search algorithm that succeeds with
probability 1 — ¢ and requires O(log %) worst-case time. In [3], the authors then showed how
to find s using an optimal amount of queries up to additive polylogarithmic terms. The
variant in which responder is allowed to adversarially lie up to k times has been proposed
by Rényi [15] and Ulam [18], which has then been solved by Rivest et al. [16] using only
logn + kloglogn + O(klog k) question, which is tight. Among other results, near-optimal
strategies for the distributional version of the game have been devised in [7]. For more
related results on the topic, we refer the interested reader to [14] for a survey and to [6]
for a monograph.

1.3 Paper Organization

The rest of this work is organized as follows: in Section 2 we give some preliminary definitions;
then, in Section 3, we present our noisy binary search algorithm, which will be used in
Section 4 to design an optimal randomized sorting algorithm. Finally, in Section 5, we briefly
argue on how our sorting algorithm can be adapted so that it does not require any external
source of randomness. Due to space limitations, this manuscript only includes the core parts
of the analysis of our sorting algorithm. We refer the reader to the full version of the paper
for the formal analysis of other claims of Section 4, and of the results in the remaining
sections. Moreover, Section 4 makes use of an improved analysis of the sorting algorithm
of [10] which can also be found in the full version of the paper.

2 Preliminaries

According to our error model, elements possess a true total linear order, however this order
can only be observed through noisy comparisons. In the following, given two distinct elements
x and y, we will write z < y (resp. « > y) to mean that z is smaller (resp. larger) than y
according to the true order, and x < y (resp. = > y) to mean that x appears to be smaller
(resp. larger) than y according to the observed comparison result.

Given a sequence or a set of elements A and an element 2 (not necessarily in A), we define
rank(z, A) = {y € A : y < z}| as the true rank of element = in A (notice that ranks start
from 0). Moreover, if A is a sequence and x € A, we denote by pos(x, A) € [0, |A] — 1] the
position of x in A (notice that positions are also indexed from 0), so that the dislocation of x
in A is disl(z, A) = | pos(z, A) — rank(z, A)|, and the mazimum dislocation of the sequence
A is disl(A) = max,e 4 disl(x, A).

For z € R™, In 2z and log 2 refer to the natural and the binary logarithm of z, respectively.

3 Noisy Binary Search

Given a sequence S = (g, ..., Sp—1) of n elements with maximum dislocation d > logn, and
an additional element x not in S, we want to compute in time O(logn) an approzimate rank
of z in S, that is, a position where to insert in S while preserving a O(d) upper bound on
dislocation of the resulting sequence. More precisely, we want to compute index r, such that
|r, — rank(z, S)| = O(d), in presence of persistent comparison errors: Errors between x and

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

the elements in S happen independently with probability p, and whether the comparison
between x and an element y € S is correct or erroneous does not depend on the position of y
in .S, nor on the actual permutation of the sorted elements induced by their order in S (i.e.,
we are not allowed to pick the order of the elements in S as a function of the comparison
errors involving x). We do not impose any restriction on the errors of comparisons that do
not involve z.

In the following, we will show an algorithm that computes such a rank r,, in time O(logn).
This immediately implies that O(logn) time also suffices to insert x into S so that the
resulting sequence (sg, ..., Sy —1,%, S, , Sp—1) still has maximum dislocation O(d).

» Remark 1. The O(logn) running time is asymptotically optimal for all d = n'~¢, for
constant € < 1, since a (logn —logd) = Q(logn) decision-tree lower bound holds even in
absence of comparison errors.

In the following, for the sake of simplicity, we let ¢ = 103 and we assume that n = 2cd-2" —1

for some non-negative integer h. Moreover, we focus on p < 3% even though this restriction

can be easily removed to handle all constant p < %, as we argue at the end of the section.

We counsider the set {0,...,n} of the possible ranks of x in S and we subdivide them into
2. 2" ordered groups go, g1, ... each containing cd contiguous positions, namely, group g;
contains positions cid, ..., ¢(i + 1)d — 1. Then, we further partition these 2 - 2" groups into

two ordered sets Gy and Gy, where Gy contains the groups g; with even i (i =0 (mod 2))
and G the groups g; with odd i (i =1 (mod 2)). Notice that |Go| = |G1| = 2". In the next
section, for each G, we shall define a noisy binary search tree Tj;, which will be the main
ingredient of our algorithm.

3.1 Constructing T, and T}

Let us consider a fixed j € {0,1} and define n = 2[logn]. The tree T; comprises of a binary
tree of height h + 1 in which the first h + 1 levels (i.e., those containing vertices at depths 0
to h) are complete and the last 7 levels consists of 2" paths of 7 vertices, each emanating
from a distinct vertex on the (h + 1)-th level. We index the leaves of the resulting tree
from 0 to 2" — 1, we use h(v) to denote the depth of vertex v in 7}, and we refer to the
vertices v at depth h(v) > h as path-vertices. Each vertex v of the tree is associated with one
interval I(v), i.e., as a set of contiguous positions, as follows: for a leaf v having index i, I(v)
consists of the positions in gs;4;; for a non-leaf path-vertex v having u as its only child, we
set I(v) = I(u); finally, for an internal vertex v having v and w as its left and right children,
respectively, we define I(v) as the interval containing all the positions between min I (u) and
max I (w), endpoints included.

Moreover, each vertex v of the tree has a reference to two shared pointers L(v) and R(v)
to positions in Z \ |J gicG, 9i- Intuitively, L(v) (resp. R(v)) will always point to positions
of S occupied by elements that are smaller (resp. larger) than all the elements s; with
i € I(v). For each leaf v, let L(v) initially point to min I(v) —d — 1 and R(v) initially point
to max I(v) + d. A non-leaf path-vertex v shares both its pointers with the corresponding
pointers of its only child, while a non-path vertex v shares its left pointer L(v) with the left

pointer of its left child, and its right pointer R(v) with the right pointer of its right child.

See Figure 1 for an example.

Notice that we sometimes allow L(v) to point to negative positions and R(v) to point to
positions that are larger than n — 1. In the following we consider all the elements s; with
1 < 0 (resp. i > n) to be copies a special —oco (resp. +00) element such that —oco < x and
—00 < x in every observed comparison (resp. 400 > x and +o00 >).

49:7

ESA 2019

49:8

Optimal Sorting with Persistent Comparison Errors

T

L(u) R(u) v h

L(r)

w
7
o 5 ¢ ... &
—oo] [9 | [91] [92] [98 |- [ei] | | | | [9n—1]
) T(u) ' _ I(w)
) 1(v)

I(r)

Figure 1 An example of the noisy tree Tp. On the left side the shared pointers L(-) and R(-) are
shown. Notice how L(r) (and, in general, all the L(-) pointers on the leftmost side of the tree) points
to the special —oo element. Good (resp. bad) vertices are shown in black (resp. while). Notice that,
since " € I(w), T" = Tp and all the depicted vertices are either good or bad.

3.2 Walking on T;

The algorithm will perform a discrete-time random walk on each 7). Before describing such
a walk in more detail, it is useful to define the following operation:

» Definition 2 (test operation). A test of an element x with a vertex v is performed by
(i) comparing x with the elements sp(,) and sg(y), (i) decrementing L(v) by 1 and, (iii)
incrementing R(v) by 1. The tests succeeds if the observed comparison results are x > sp(y)
and ¥ < Sp(v), otherwise the test fails.

The walk on T; proceeds as follows. At time 0, i.e., before the first step, the current
vertex v coincides with the root r of T;. Then, at each time step, we walk from the current
vertex v to the next vertex as follows:

1. We test x with all the children of v and, if ezactly one of these tests succeeds, we walk to
the corresponding child.

2. Otherwise, if all the tests fail, we walk to the parent of v, if it exists.

In the remaining cases we “walk” from v to itself. We also define 7 = 240[logn| and we stop

the walk as soon as one of the following two conditions is met:

Success: The current vertex v is a leaf of 7;. In this case we say that the walk returns v;

Timeout: The 7-th time step is completed and the success condition is not met.

It turns out that at least one of the walks on Ty and 77 will succeed w.h.p., while the other

can either succeed or timeout. If any of the walks succeeds and returns v, we output any

position in the interval I(v). Otherwise, we return an arbitrary position. We are then to

prove the following result, whose analysis can be found in the full version of the paper:

» Theorem 3. Let S be a sequence of n elements having maximum dislocation at most d >
logn and let © ¢ S. Under our error model, an index r,, € [rank(x, S) — ad,rank(z, S) + ad)
can be found in O(logn) time with probability at least 1 — O(n=%), where a > 1 is an
absolute constant.

To conclude this section, we remark that our assumption that p < % can be easily

relaxed to handle any constant error probability p < % This can be done by modifying
the test operation so that, when z is tested with a vertex v, the majority result of the

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

comparisons between x and the set {SL(’L))7SL(’U)—17"‘7SL(’L))—k+1} (resp. z and the set
{sR(v), SR(v)+1r+ > SR(’U)+I€*1}) of n elements is considered, where k is a constant that only
depends on p. Consistently, the pointers L(v) and R(v) are shifted by k positions, and the
group size is increased to k - ¢. Notice how our description for p < é corresponds exactly to
the case k = 1. The only difference in the statement Theorem 3 is that « is no longer an
absolute constant, but rather, it depends (only) on the value of p.

4 Optimal Sorting Algorithm
4.1 The algorithm

Here we present an optimal sorting algorithm that, given a sequence S of n elements,
computes, in O(nlogn) worst-case time, a permutation of S having maximum dislocation
O(logn) and total dislocation O(n), w.h.p. In order to avoid being distracted by roundings,
we assume that n is a power of two.? Our algorithm will make use of the noisy binary search
of Section 3 and of the WindowSort algorithm [10]. For our purposes, we need the following
stronger version of the original result in [10], in which the bound on the total dislocation
was only given in expectation:

» Theorem 4. Consider a set of n elements that are subject to random persistent comparison
errors. For any dislocation d, and for any (adversarially chosen) permutation S of these
elements such that disl(S) < d, WindowSort(S,d) requires O(nd) worst-case time to compute,
with probability at least 1 — %, a permutation of S having maximum dislocation at most
¢, - min{d,logn} and total dislocation at most ¢, - n, where ¢, is a constant depending only

on the error probability p < 3—12

We give a brief description of WindowSort and prove the above theorem in Section 5 of
the full version of the paper. Notice that WindowSort also works in a stronger error model in
which S can be chosen adversarially after the comparison errors between all pairs of elements
have been randomly fixed, as long as its maximum dislocation is at most d. In the remaining
of this section, we assume p < 1/32 in order to be consistent with Section 3, though both
the above theorem and the algorithm we are going to present will only require p < 1/16.
Using the noisy binary search in Section 3, we now define an operation that allows us to add
a linear number of elements to an almost-sorted sequence without any asymptotic increase
in the resulting dislocation, as we will formally prove in the sequel. More precisely, if A and
B are two disjoint subsets of S, we denote by Merge(A, B) the sequence obtained as follows:

For each © € B, compute an index r,, such that | rank(s, A) — ;| < ad. This can be done

using the noisy binary search of Section 3, which succeeds with probability at least 1 — W.

Insert simultaneously all the elements z € B into A in their computed positions 7,
breaking ties arbitrarily. Return the resulting sequence.

Our sorting algorithm, that we call RiffleSort (see the pseudocode in Algorithm 1), works

as follows. For k = 10%”, we first partition S into k + 1 subsets Ty, T4, ..., Tx: Each T;, with

1 < < k, contains 2:~1/n elements chosen uniformly at random from S\{T;+1, Ti42, - -, Tk},
and To = S\{T1,T5, ..., Tk} contains the remaining n — \/HZle 2i=1 = /n elements. As its

This assumption can be easily removed by adding dummy o0 elements to S. Since WindowSort, the
noisy binary search of Section 3, and ultimately our algorithm will also work when p is an upper bound
on the error probability, it is not necessary to simulate errors when comparisons involving dummy
elements are performed.

In fact,lTheorem 4 is the only reason preventing our novel sorting algorithm to work for any constant
pe [07 5)'

49:9

ESA 2019

49:10

Optimal Sorting with Persistent Comparison Errors

Algorithm 1 RiffleSort(S).

To,T1,. .., Tk < partition of S computed as explained in Section 4.1;
So + WindowSort(7p, /n);
foreachi=1,...,k = 10% do
S; +— Merge(Si,hTi);
L S; < WindowSort(S;,~ - ¢p - logn);

[N

o

return Si;

first step, RiffleSort will approximately sort Ty using WindowSort, and then it will alternate
merge operations with calls to WindowSort. On one hand the merge operations allow us to
iteratively grow the set of approximately sorted elements to ultimately include all the elements
in S but, on the other hand, each operation also increases the dislocation by a constant
factor. This is a problem since the rate at which the dislocation increases is faster than the
rate at which new elements are inserted. The role of the sorting operations is exactly to
circumvent this issue: each WindowSort call has the effect of locally rearranging the elements,
so that all newly inserted elements are now closer to their intended positions, causing (an
upper bound to) the resulting maximum dislocation to increase by only an additive constant.
The corresponding pseudocode is shown in Algorithm 1, in which v > max{202a, 909} is an
absolute constant (recall that « is the constant from Theorem 3).

4.2 Analysis

» Lemma 5. The worst-case running time of Algorithm 1 is O(nlogn).

Proof. Clearly the random partition Tp, ..., T} can be computed in time O(nlogn),> and the
first call to WindowSort requires time O(|Tp|-+/n) = O(n) (see Theorem 4). We can therefore
restrict our attention to the generic i-th iteration of the for loop. The call to Merge(S;—_1,T;)
can be performed in O(]S;|logn) time since, for each x € T;, the required approximation of
rank(z, S;_1) can be computed in time O(log |S;—1]) and |T;| = |S;—1] < n, while inserting
the elements of 7; in their computed ranks requires linear time in |S;_1| + |T;| = |S;]. The
subsequent execution of WindowSort with d = O(logn) requires time O(|S;|logn), where
the hidden constant does not depend on i. Therefore, for a suitable constant ¢, the time
spent in the i-th iteration is ¢|S;|logn and total running time of Algorithm 1 can be upper
bounded by:

k k
CZ|S¢\logn:c\/ﬁlogn~22i < 2Mley/nlogn = 2enlogn. <
i1 i1

The following lemma, that concerns a thought experiment involving urns and randomly
drawn balls, will be useful to upper bound the dislocation of the sequences returned by the
Merge operations. Since it can be proved using arguments that do not depend on the details
of RiffleSort, we omit its proof, which can be found in the full version of the paper.

5 The exact complexity depends on whether we can sample u.a.r. an integer from a range in O(1) time. If
this is not the case, then integers can be generated bit-by-bit using rejection, and the total number of
required random bits will be O(n) with probability at least 1 — n~2, as shown in the full version of
this paper. To maintain a worst-case upper bound on the running time also in the unlikely event that
O(nlogn) bits do not suffice, we can stop the algorithm and return any arbitrary permutation of S.

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

» Lemma 6. Consider an urn containing N = 2M balls, M of which are white, while the
remaining M are black. Balls are iteratively drawn from the urn without replacement until
the urn is empty. If N is sufficiently large and 9log N < k < l—l\é holds, the probability that
any contiguous subsequence of at most 100k drawn balls contains k or fewer white balls is
at most N—6.

We can now show that, if A and B contain randomly selected elements, the dislocation
of Merge(A, B) is likely to be at most a constant factor larger than the dislocation of A:

» Lemma 7. Let A be a sequence containing m randomly chosen elements from S and having
mazimum dislocation at most d, with logn < d = o(m). Let B be a set of m randomly chosen
elements from S\ A. Then, for a suitable constant v, and for large enough values of m,
merge(A, B) has mazimum dislocation at most yd with probability at least 1 —m~2.

Proof. Let f = max{w,9/2}, S’ = Merge(A,B), and S* = (s§,s7,...,85,_1) be the
sequence obtained by sorting S’ according to the true order of its elements. Assume that:
all the approximate ranks r,, for x € B, are such that |r, — rank(z, A)| < 8d; and

all the contiguous subsequences of S* containing no more than 28d + 2 elements in A

have length at most 2005d + 200.

We will show in the sequel that the above assumptions are likely to hold.

Pick any element z € S’. We now show that our assumptions imply that the dislocation
of z in S’ is at most 201d. An element y € B can affect the final dislocation of z in S” only
if one of the following two (mutually exclusive) conditions holds: (i) y < x and 7y > 7y,
or (ii) y > « and ry, < 7. All the remaining elements in B will be placed in the correct
relative order w.r.t. z in S’, and hence they do not affect the final dislocation of x. If (i)
holds, we have:

ry — Bd <ry — fd < rank(y, A) < rank(z, A) < r, + Gd,
while, if (ii) holds, we have:
ry — Bd < rank(z, A) <rank(y, A) <r, + d < r, + Gd,

and hence, all the elements y € B that can affect the dislocation of z in S’ are contained in
the set Y = {y € B:r, — 8d < rank(y, A) < r, + Bd}.

We now upper bound the cardinality of Y. Let y~ be the (r, — 8d — 1)-th element of A;
if no such element exists, then let y~ = s. Similarly, let y™ be the (r, + Ad)-th element
of A; if no such element exists, then let y*™ = s5.. ;. Due to our choice of y~ and y™ we
have that Vy € Y,y~ <y < yT, implying that all the elements in Y appear in the contiguous
subsequence S of $* having y~ and y™ as its endpoints. Since no more than 23d +2 elements
of A belong to S, our assumption guarantees that S contains at most 2003d + 200 elements.
This implies that the dislocation of x in S’ is at most Bd+ Y| < Bd+|S| < 2013d+200 < ~d,
where the last inequality holds for large enough n once we choose v = 2023.

To conclude the proof we need to show that our assumptions hold with probability at
least 1 — |S’|~%. Regarding the first assumption, for # € B, a noisy binary search returns a
rank 7, such that |r, —rank(z, A)| < ad < Bd with probability at least 1 — O(-}). Therefore
the probability that the assumption holds is at least 1 — O(#)

Regarding our second assumption, notice that, since the elements in A and B are randomly
selected from S, we can relate their distribution in S* with the distribution of the drawn
balls in the urn experiment of Lemma 6: the urn contains N = 2m balls each corresponding
to an element in AU B, a ball is white if it corresponds to one of the M = m elements of A,

49:11

ESA 2019

49:12

Optimal Sorting with Persistent Comparison Errors

while a black ball corresponds one of the M = m elements of B. If the assumption does not
hold, then there exists a contiguous subsequence of S* of at least 2008d + 200 elements that
contains at most 28d + 2 elements from A. By Lemma 6 with k = 28d + 2, this happens
with probability at most (2m)~¢ (for sufficiently large values of n). The claim follows by
using the union bound. |

We can now use Lemma 7 and Theorem 4 together to derive an upper bound to the final
dislocation of the sequence returned by Algorithm 1.

» Lemma 8. The sequence returned by Algorithm 1 has mazimum dislocation O(logn) and

total dislocation O(n) with probability at least 1 — n—\l/ﬁ

Proof. For i =1,...,k, we say that the i-th iteration of Algorithm 1 is good if the sequence
S; computed at its end has both (i) maximum dislocation at most ¢, logn, and (ii) total
dislocation at most ¢,|S;|. As a corner case, we say that iteration 0 is good if Sy also satisfies
conditions (i) and (ii) above, which happens with probability at least 1 — @ >1— 5 as
shown by Theorem 4.

We now focus on a generic iteration ¢ > 1 and show that, assuming that iteration ¢ — 1
is good, iteration i is also good with probability at least 1 — 7%2 Since iteration 7 — 1 was
good, the sequence S;_; has maximum dislocation c,logn and hence, by Lemma 7, the
sequence resulting from call to Merge(S;_1,T;) returns a sequence with dislocation at most
vep logn with probability at least 1 — ﬁ >1-— # If this is indeed the case, we have that
the sequence S; returned by the subsequent call to WindowSort satisfies (i) and (ii) with
probability at least 1 — m >1- % (see Theorem 4). The claim follows by using the
union bound on the £ = O(logn) iterations, and by noticing that the returned sequence is
exactly Sg. <

We can therefore state the following result, which follows directly from Lemma 8 and
Lemma 5:

» Theorem 9. Consider a set of n elements that are subject to random persistent comparison
errors. For any (adversarially chosen) input permutation of these elements, RiffleSort
is a randomized algorithm that returns, in O(nlogn) worst-case time, a sequence having
mazimum (resp. total) dislocation O(logn) (resp. O(n)), w.h.p.

5 Derandomization

In Section 4 we showed how it is possible to design a randomized algorithm that approximately
sorts a sequence S of n elements achieving simultaneously asymptotically optimal maximum
dislocation, total dislocation, and running time, w.h.p.% In this section we sketch how
RiffleSort can be adapted to obtain a deterministic algorithm with the same asymptotic
guarantees on running time, dislocation, and success probability (over the comparison errors),
as long as the order of the elements in S does not depend of the comparison errors.”

In order to run RiffleSort, we need to partition the input sequence S into a collection of
logn
2

are chosen uniformly at random from the n—+/n Zf:l 11271 = 2m elements in S \U;‘:l o Ty

random sets Ty, 11, ..., Ty where k = and each T} contains m = /n - 2'~1 elements that

The randomized result also holds when each comparison ¢ has an adversarially chosen and unknown
probability of error p. € [0, p]. The deterministic result holds if p. € [po, p] for some constant pg > 0.

An adversary could make the algorithm fail by first observing all comparison results among the input
elements, and then choosing a suitable input permutation S. In other words, our result holds if the
comparison errors do not depend on the element values nor on the positions in S of the involved elements.

B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna

Notice also that this is the only step in the algorithm that is randomized. To obtain a
version of RiffleSort that does not require any external source of randomness, i.e., that
depends only on the input sequence and on the comparison results, we will generate such a

partition by exploiting the intrinsic random nature of the comparison results. As shown in
2
found in O(n) time using only 6n random bits. Moreover, with a technique similar to that

the full version of the paper, with probability at least 1 — the partition Tp,...,T; can be
of [11], it is possible to simulate “almost-fair” coin flips by xor-ing together a sufficiently
large number of comparison results. Indeed, we can associate the two possible results of
a comparison with the values 0 and 1, so that each comparison behaves as a Bernoulli
random variable whose (unknown) parameter is either p or 1 — p. We can then use the
following fact: let ¢y, ..., cx be k = O(logn) independent Bernoulli random variables such
that P(c; =1) € {p,1—p}Vi=1,...,k, then |Pr(c;®c2®- - Dy = O)—%\ < # Therefore,
if we consider the set A containing the first 7k elements from S and we compare each element
in A to all the elements in S\ A, we obtain a collection of 7k(n — 7k) > 6kn comparison
results (for sufficiently large values of n) from which we can generate 6n almost-fair coin
flips. A coupling argument shows that, with probability at least 1 — %‘%}L — % >1-— #, all
these almost-fair coin flips behave exactly as unbiased random bits, and they suffice to select
a partition Tp,..., T, of S\ A. It is now possible to use RiffleSort on S\ A to obtain
a sequence S’ having maximum dislocation d = O(logn) and total dislocation O(n). This
requires time O(nlogn) and succeeds with probability at least 1 — |[S\ A|7% > 1 —3n"2
since |S'\ A| > §.

What is left to do is to reinsert all the elements of A into S without causing any asymptotic
increase in the total and in the maximum dislocation. While one might be tempted to use
the result of Section 1, this is not actually possible since the errors between the elements in
A and the elements in S’ now depend on the permutation S’. In the full version of this work
we show a simple, but slower, O(n)-time strategy to compute rank(z, S’) with an additive
error of O(logn), even when S’ is adversarially chosen as a function of the errors. Since
A contains O(logn) elements, simultaneously reinserting them in S’ affects the maximum
dislocation by at most an O(logn) additive term, while their combined contribution to the
total dislocation is at most O(log®n). We summarize the discussion of this section in the
following theorem:

» Theorem 10. Consider a set of n elements that are subject to random persistent comparison
errors. For any input permutation of these elements that is chosen independently of the
errors, there exists a deterministic algorithm that returns, in O(nlogn) worst-case time, a
sequence having maximum (resp. total) dislocation O(logn) (resp. O(n)), w.h.p.

—— References

1 Miklés Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and selection
with imprecise comparisons. ACM Transactions on Algorithms, 12(2):19, 2016.

2 Laurent Alonso, Philippe Chassaing, Florent Gillet, Svante Janson, Edward M Reingold, and
René Schott. Quicksort with unreliable comparisons: a probabilistic analysis. Combinatorics,
Probability and Computing, 13(4-5):419-449, 2004.

3 Michael Ben-Or and Avinatan Hassidim. The Bayesian Learner is Optimal for Noisy Binary
Search (and Pretty Good for Quantum as Well). In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 221-230, 2008. doi:10.1109/F0CS.2008.58.

4 Mark Braverman, Jieming Mao, and S Matthew Weinberg. Parallel algorithms for select and
partition with noisy comparisons. In Proc. of the 48th Annual ACM Symposium on Theory of
Computing (STOC), pages 851-862. ACM, 2016.

49:13

ESA 2019

https://doi.org/10.1109/FOCS.2008.58

49:14

Optimal Sorting with Persistent Comparison Errors

10

11

12

13

14

15

16

17

18

Mark Braverman and Elchanan Mossel. Noisy Sorting Without Resampling. In Proceedings of
the 19th Annual Symposium on Discrete Algorithms, pages 268—276, 2008. arXiv:0707.1051.
Ferdinando Cicalese. Fault-Tolerant Search Algorithms - Reliable Computation with Unreliable
Information. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2013.
Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran. The entropy of lies: playing
twenty questions with a liar. CoRR, abs/1811.02177, 2018. arXiv:1811.02177.

Peter Damaschke. The Solution Space of Sorting with Recurring Comparison Faults. In
Combinatorial Algorithms - 27th International Workshop, IWOCA 2016, Helsinki, Finland,
August 17-19, 2016, Proceedings, pages 397-408, 2016.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with Noisy
Information. SIAM Journal on Computing, 23(5):1001-1018, 1994. doi:10.1137/
S0097539791195877.

Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with Recurrent
Comparison Errors. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th International
Symposium on Algorithms and Computation (ISAAC 2017), volume 92 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 38:1-38:12, Dagstuhl, Germany, 2017. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ISAAC.2017.38.

Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal Dislocation
with Persistent Errors in Subquadratic Time. In Proc. of the 35th Symposium on Theoretical
Aspects of Computer Science (STACS), volume 96 of LIPIcs, pages 36:1-36:13. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.36.

Petros Hadjicostas and KB Lakshmanan. Recursive merge sort with erroneous comparisons.
Discrete Applied Mathematics, 159(14):1398-1417, 2011.

Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant Algorithms.
In Proc. of the 19th Annual European Symposium on Algorithm (ESA), pages 736—-747, 2011.
Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71-109, 2002.

Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl. B, 6:505-516,
1961.

Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with Errors in Binary Search Procedures. J. Comput. Syst. Sci., 20(3):396-404, 1980.
doi:10.1016/0022-0000(80)90014-8.

Aviad Rubinstein and Shai Vardi. Sorting from Noisier Samples. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 960-972, 2017. doi:10.1137/1.9781611974782.60.
Stanislav M. Ulam. Adventures of a Mathematician, 1976.

http://arxiv.org/abs/0707.1051
http://arxiv.org/abs/1811.02177
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.4230/LIPIcs.ISAAC.2017.38
https://doi.org/10.4230/LIPIcs.STACS.2018.36
https://doi.org/10.1016/0022-0000(80)90014-8
https://doi.org/10.1137/1.9781611974782.60

	Introduction
	Main Intuition and Techniques
	Related work
	Paper Organization

	Preliminaries
	Noisy Binary Search
	Constructing T0 and T1
	Walking on Tj

	Optimal Sorting Algorithm
	The algorithm
	Analysis

	Derandomization

