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Abstract
In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation
have been introduced. Some of these are used to index structures far more complex than a single
string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such,
there has been an increasing effort to better understand under which conditions such an indexing
scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput.
Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and
several other BWT related structures can be represented as Wheeler graphs, and that Wheeler
graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a
given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph,
could have numerous applications in indexing. Here we resolve the open question of whether there
exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present:

The problem of recognizing whether a given graph G = (V,E) is a Wheeler graph is NP-complete
for any edge label alphabet of size σ ≥ 2, even when G is a DAG. This holds even on a restricted,
subset of graphs called d-NFA’s for d ≥ 5. This is in contrast to recent results demonstrating
the problem can be solved in polynomial time for d-NFA’s where d ≤ 2. We also show the
recognition problem can be solved in linear time for σ = 1;
There exists an 2e logσ+O(n+e) time exact algorithm where n = |V | and e = |E|. This algorithm
relies on graph isomorphism being computable in strictly sub-exponential time;
We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated
WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler
graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant
C ≥ 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on
the Unique Games Conjecture, for all C ≥ 1, it is NP-hard to find a C-approximation;
We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest
subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that
the WS problem is in APX for σ = O(1);

The above findings suggest that most problems under this theme are computationally difficult.
However, we identify a class of graphs for which the recognition problem is polynomial time solvable,
raising the open question of which parameters determine this problem’s difficulty.
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1 Introduction

Within the last two decades, there has been the development of Burrows Wheeler Transform
(BWT) [7] based indices for compressing a diverse collection of data structures. This list
includes labeled trees [31], certain classes of graphs [14, 29], and sets of multiple strings [16, 26].
This has motivated the search for a set of general conditions under which a structure can
be indexed by a BWT based index, and consequently the introduction of Wheeler graphs.
A Wheeler graph is a directed graph with edge labels which satisfies two simple axioms
related to the ordering of its vertices. They were introduced by Gagie et al. [17] (also see [2]).
Although not general enough to encompass all BWT-based structures (e.g., [18]), the authors
demonstrated that Wheeler graphs offer a unified way of modeling several BWT based data
structures such as representations of de Bruijn graphs [6, 10], generalized compressed suffix
arrays [31], multistring BWTs [27], XBWTs [14], wavelet matrices [9], and certain types of
finite automaton [1, 5, 24]. They also showed that there exists an encoding of a Wheeler
graph G = (V,E) which requires only 2(e+ n) + e log σ + σ log e+ o(n+ e log σ) bits where
σ is the size of the edge label alphabet, e = |E|, and n = |V |. This encoding allows for
the efficient traversal of multiple edges while processing characters in a string, using an
algorithm similar to the backward search in the FM-index [15]. Since their introduction
Wheeler graphs have been further developed using techniques such as tunneling by Alanko
et al. [2]. Also, ideas closely coupled to Wheeler graphs have shown up in the recent work by
Equi et al. for exact pattern matching on graphs [12, 13]. However, not all directed edge
labeled graphs are Wheeler graphs, and thus not all directed edge labeled graphs can have
such techniques applied to them. The authors of [17] posed the question of how to reasonably
recognize whether a given graph is a Wheeler graph.

The question is of both theoretical and practical value, as it might be the first step before
attempting to apply some compression scheme to a given graph. For example, one could use
the existence of a Wheeler subgraph to encode a graph. To do so, you could maintain an
encoding of the subgraph using the framework presented in [17] in addition to an adjacency
list of the edges not included in the encoding. Depending on the size of the subgraph, such
an encoding might provide a large space savings at the cost of a modest time trade-off while
traversing the graph. This concept also motivates the portion of the paper where we look
at optimization versions of this problem that seek subgraphs of the given graph which are
Wheeler graphs. Unfortunately for practitioners of such a method, this problem turns out
to be computationally difficult as well. As a positive result, we show that the problem of
finding a maximal Wheeler subgraph admits a polynomial time algorithm which has solution
size within some constant factor of optimal for constant alphabet size. We also show that the
problem of recognizing Wheeler graphs is similar to that of identifying the queue number of
a graph, indicating a class of graphs where the problem becomes computationally tractable.

1.1 Wheeler Graphs
The notation (u, v, k) is used for the directed edge from u to v with label k. We will assume
the usual ordering on the edge labels which come from the alphabet {1, 2, ..., σ}.

I Definition 1. A Wheeler graph is a directed graph with edge labels where there exists an
ordering π on the vertices such that for any two edges (u, v, k) and (u′, v′, k′):
(i) k < k′ =⇒ v <π v

′;
(ii) (k = k′) ∧ (u <π u′) =⇒ v ≤π v′.

In addition, vertices with in-degree zero must be placed first in the ordering.
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We consider an ordering of the vertices of the graph a proper ordering if it satisfies the axioms
of the Wheeler graph definition. See Figure 1 for an illustration. One critical property of
Wheeler graphs is called path coherence. This property is characterized by the fact that if you
start at any consecutive range of vertices under the proper ordering π, and traverse the graph
following edge labels matching the characters in a string P , then when finished processing
P the vertices ended on will form a consecutive range. This property is key to allowing
the efficient traversal of multiple edges simultaneously, as well as achieving a compressed
representation of the graph.

Figure 1 An example of a Wheeler graph with σ = 3. The ordering on the edge labels is:
red (solid) < blue (long-dash) < green (short-dash).

The following list of properties for a Wheeler graph can be deduced from Definition 1.

I Property 1. All edges inbound to a vertex v have the same edge label.

I Property 2. In a proper ordering all vertices with same inbound edge label are ordered
consecutively.

I Property 3. It is possible for a vertex to have multiple outbound edges with the same label.
It is also possible for a vertex to have more than σ inbound or outbound edges.

I Property 4. We call two edges (u, v, k) and (u′, v′, k) with the same label a rainbow if
u < u′ and v′ < v. No rainbows can exist in a proper ordering (see Figure 2).

I Property 5. For σ = 1, ignoring self-loops, any proper ordering is also a topological
ordering. The vertices with self-loops must be placed last in the ordering otherwise a rain-
bow is created.

1.2 Problem Definitions
The first question we wish to answer is given a directed graph with edge labels, does a proper
ordering π exist? We define this problem formally as the following.

I Problem 1 (Wheeler Graph Recognition). Given a directed edge labeled graph G = (V,E),
answer “YES” if G is a Wheeler graph and “NO” otherwise.

Although we do not demand it here, ideally, a solution to the above problem would also
return a proper ordering.

Figure 2 In a proper ordering all of the above configurations cannot occur.
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Motivated by the compression of general graphs (which are not necessarily Wheeler
graphs), we next define two optimization versions of Problem 1 where we seek to find
Wheeler subgraphs.

I Problem 2 (Wheeler Graph Violation (WGV)). Given a directed edge labeled graph G = (V,E)
identify the smallest E′ ⊆ E such that G′ = (V,E\E′) is a Wheeler graph.

We also consider the dual of this problem.

I Problem 3 (Wheeler Subgraph (WS)). Given a directed edge labeled graph G = (V,E)
identify the largest E′′ ⊆ E such that G′′ = (V,E′′) is a Wheeler graph.

1.3 Our Contribution
In Section 2 we show that the problem of recognizing whether a given graph is a Wheeler
graph is NP-complete even for an edge alphabet of size σ = 2. The result holds even
when the input is a directed acyclic graph (DAG) and when the number of edges leaving
a vertex with the same label is at most five. In the full version of this paper [19] we show
that for σ = 1 the recognition problem can be reduced to that of determining if a DAG
has queue number one which can be solved in linear time [22].
In Section 3 we provide an exponential time algorithm which solves the recognition
problem on a graph G = (V,E) in time 2O(n+e logσ) where n = |V | and e = |E|. It uses
the idea of enumerating through all possible encodings (of bounded size) of Wheeler
graphs, and the fact that we can test whether there exists an isomorphism between two
undirected graphs in sub-exponential time. This technique also gives us exact algorithms
for the optimization problems presented in this paper which run in time 2O(n+e logσ).
Section 4 examines the optimization versions of this problem called Wheeler Graph
Violation (WGV) and Wheeler Subgraph (WS). We show via a reduction of the Minimum
Feedback Arc Set problem that the Wheeler Graph Violation problem is APX-hard,
and assuming the Unique Games Conjecture, cannot be approximated within a constant
factor. This holds even when the graph is a DAG. On the other hand, we show that the
Wheeler Subgraph problem is in the complexity class APX for σ = O(1). We do so by
providing a poly-time algorithm whose solution size is Ω(1/σ) times the optimal value.
Using PQ-trees and ideas similar to those used in detecting if the queue number of a
DAG is one, we demonstrate a class of graphs where Wheeler graph recognition can be
done in linear time (see full version [19]).

2 NP-completeness of Wheeler Graph Recognition

I Theorem 2. The Wheeler Graph Recognition Problem is NP-complete for any σ ≥ 2.

We first show a simple reduction from the Betweenness problem to Wheeler Graph Recognition.
Although straightforward, it requires graphs with either O(n) sources or O(n) edges with
the same label leaving a single vertex. In Section 2.3, by expanding on the techniques used
in the first reduction we show that even if these quantities are limited to at most five the
recognition problem remains NP-complete.

2.1 The Betweenness Problem
The Betweenness Problem was established as NP-complete by Opatrný in 1979 [30]. Like our
problem, it deals with finding a total ordering on a set of elements subject to some constraints.
The input to the Betweenness problem is a list of distinct elements T = t1, . . . , tn and a
collection of k < n3 ordered triples of (t11, t12, t13), (t21, t22, t23), . . . (tk1 , tk2 , tk3) where every element
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in a triple is in T . The list T should be placed into a total ordering with the property that
for each of the given triples the middle item in the triple appears somewhere between the
other two items. The items of each triple are not required to be consecutive in the total
ordering. The decision problem is determining if such an ordering is possible.

As an example, consider the input T = 1, 2, 3, 4, 5, 6 and the triples: (5, 2, 3), (1, 5, 2),
(4, 5, 6), (4, 6, 2). A total ordering which satisfies the given triples is 1, 4, 5, 6, 2, 3. An ordering
which does not satisfy the given triples is 1, 2, 3, 4, 5, 6 since it violates the triples (5, 2, 3),
(1, 5, 2), and (4, 6, 2).

2.2 Reduction from Betweenness to Wheeler Graph Recognition

Figure 3 An example of the reduction with input list 1,2,3,4,5,6 and triples (5, 2, 3),(1, 5, 2),(4, 5, 6).

Suppose we are given as input to the Betweenness Problem the list t1, t2, . . . , tn and
triples (t11, t12, t13), (t21, t22, t23), . . . , (tk1 , tk2 , tk3). We construct a DAG of size O(nk) as follows:

Create a source vertex v0 and vertices vji for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
For each triple (tj1, t

j
2, t

j
3) create a vertex for each element of the triple, we call them wj1,

wj2, and w
j
3 respectively.

Create the edges (v0, v
1
i , 1) and edges (vji , v

j+1
i , 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1.

Create the following edges:
(vji , w

j
1, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj2

(vji , w
j
3, 2) if ti = tj3

(vji , w
j
2, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj3

I Lemma 3. An instance of the Betweenness problem has an ordering satisfying all of the
constraints iff the graph constructed as above is a Wheeler graph.

Proof Sketch. The intuition is that the vertices with inbound edge label 1 represent the
permutation of the elements in T . The edges labeled 1 force the permutation to be duplicated
k times, once for each constraint. The vertices with the inbound edge label 2 represent the
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elements in each triple. The edges with label 2 enforce that the only valid orderings of the
vertices representing elements in T are orderings that satisfy the Betweenness constraints.
This is enforced by having no edges labeled 2 which are crossing in the figure. The detailed
proof can be found in the full version of this paper [19]. J

Theorem 2 follows from Lemma 3. The fact that being a Wheeler graph implies (arched)
level planarity with respect to each edge label is the key to the reduction.

The Wheeler graph recognition problem can be solved in linear time for an alphabet of
size one. This follows from relating the notion of queue number to Wheeler graphs, and
previous results which give a linear time algorithm for finding a one-queue DAG [21, 22, 23].
This also gives an upper bound on the number of edges which can be in a Wheeler graph [11].
The proof can be found in the full version of this paper [19].

I Theorem 4. The Wheeler graph recognition problem can be solved in linear time for an
edge alphabet of size σ = 1.

I Theorem 5. For σ = 1, the number of edges in a Wheeler graph is O(n).

2.3 NP-completeness of Wheeler Graph Recognition on d-NFA’s
Now we restrict the number of edges with the same label that can leave a single vertex. We
adopt the terminology used by Alanko, Policriti and Prezza and consider the problem of
recognizing whether a d-NFA is also a Wheeler graph [3]. A d-NFA is defined as follows:

I Definition 6. A d-NFA G is an NFA where the number of edges with the same character
leaving a vertex is at most d. We refer to the value d as the non-determinism of G.

We emphasize that here an NFA contains a single start state, from which we assume each
vertex is reachable. The results in this section are in contrast to the recent work of Alanko,
Policriti and Prezza who showed that it can be recognized in polynomial time whether a
2-NFA is a Wheeler graph [3]. Their result coupled with the observation that the reduction
in Section 2 requires a nΘ(1)-NFA suggests an interesting question about what role non-
determinism plays in the tractability of Wheeler graph recognition. To this end, we prove
Theorem 7.

I Theorem 7. The Wheeler Graph Recognition Problem is NP-complete for d-NFA’s, d ≥ 5.

The strategy of the proof is to reduce the NP-complete problem 4-NAESAT to Wheeler
Graph Recognition. In 4-NAESAT each clause is of length 4, and an expression is satisfiable
iff there exists a truth assignment such that each clause contains both a true literal and a
false literal. We start with 4-NAESAT, rather than 3-NAESAT, to obtain a 3-NAESAT
instance with the special property highlighted by Lemma 8.

I Lemma 8. An instance φ of 4-NAESAT can be reduced in poly-time to an instance φ′ of
3-NAESAT where a variable occurring in the middle of a clause appears at most twice in φ′.

Proof. Convert the 4-NAESAT instance φ to a 3-NAESAT instance φ′ by converting each
clause (ak, bk, ck, dk) into the clauses (ak, wk, bk) and (ck, wk, dk). Both clauses have a
satisfying not-all-equal assignment iff it is not the case that ak = bk = ck = dk. We note
that the variable used in the middle of the clauses, wk, is used only twice in φ′. J

For convenience, we define a case of 3-NAESAT where each variable occuring in the
middle occurs at most twice, we call this 3-NAESAT∗. We next describe the construction of
a one source DAG from an instance of 3-NAESAT∗.
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Figure 4 Vertex Z1 and Z2 could be for clauses (x1, x2, x3), (x2, x3, x4). Each “betweenness”
constraint adds a layer. (x4, X, x4) constraint shown.

Suppose we are given an instance φ of 3-NAESAT∗ with variables x1, x2, . . . , xn and the
clauses (ak, bk, ck) where we assume ak, bk, ck can represent either a Boolean variable or its
negation. We create a single source DAG G based on φ. The first step creates a menorah
like structure which allows for the vertices representing xi and xi to swap places in G, but
otherwise fixes the positions of the vertices. We begin by adding the vertices which represent
our variables, x1, . . . , xn, X, x1, . . . , xn; (the role of X will become clear). Next, we add the
structure to constrain their possible positions.

Add to G the vertices:
s0

1 . . . , s
0
n;

For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i: sji and s
j
i ;

Add to G the red edges:
(s0

1, s
0
2, 1), . . . (s0

n, X, 1);
For 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− i: (sj−1

i , sji , 1) and (sj−1
i , sji , 1);

For 1 ≤ i ≤ n− 1: (s0
i , s

1
i , 1) and (s0

i , s
1
i , 1);

For 1 ≤ i ≤ n: (sn−ii , xi, 1) and (sn−ii , xi, 1);

For clause k, denoted (ak, bk, ck), we add a vertex Zk. Suppose the middle variable of
the clause, bk, is xh (positive or negated), then we add the vertices zjk for 1 ≤ j ≤ n− h, and
red edges (s0

h, z
1
k, 1), (z1

k, z
2
k, 1) . . . (zn−hk , Zk, 1).

Now we wish add a set of betweenness type constraints on any proper ordering given of the
vertices L0 = {x1, . . . , X, xn . . . x1, Z1, Z2, . . .}. Given a constraint (y1, y2, y3) we insist y2 be
between y1 and y3 in the ordering. This can be enforced by adding a layer of new vertices
L1 = {x1

1, . . . , X
1, x1

n . . . x
1
1, Z

1
1 , Z

1
2 , . . .} with red edges labeled 1 from vertices in layer L0

to their corresponding vertices in L1. We use the same gadget that was used in Section
2. Consider adding a betweenness on the vertices y1, y2, y3 in L0. Add the vertices w1

1,
w1

2, and w1
3 and the blue edges (y1

1 , w
1
1, 2), (y1

2 , w
1
2, 2), (y1

3 , w
1
3, 2), (y1

1 , w
1
2, 2) and (y1

3 , w
1
2, 2).

Additional betweenness constraints can be similarly enforced by adding a new layer on top
of L1 with a new gadget. Add the betweenness constraints (xi, X, xi) for 1 ≤ i ≤ n fixing X,
and betweenness constraints (ak, Zk, bk) and (ck, X, Zk) for every clause (ak, bk, ck).
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Table 1 Possible relative orderings of ak, bk, ck, Zk, X subject to (ak, Zk, bk) and (ck, X, Zk).

Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

FFT ck . . . X . . . bk, Zk . . . ak ck . . . X . . . bk, Zk . . . ak

FTF bk, Zk . . . X . . . ck . . . ak bk, Zk . . . X . . . ak . . . ck

TFF ak . . . bk, Zk . . . X . . . bk . . . ck ak . . . bk, Zk . . . X . . . bk . . . ck

FTT ck . . . bk . . . X . . . bk, Zk . . . ak ck . . . bk . . . X . . . bk, Zk . . . ak

TFT ak . . . ck . . . X . . . Zk, bk ck . . . ak . . . X . . . Zk, bk

TTF ak . . . Zk, bk . . . X . . . ck ak . . . Zk, bk . . . X . . . ck

Table 2 Orderings implied by all-equal assignment are not possible while satisfying constraints.

(Not) Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

TTT ak . . . bk . . . ck . . . X ck . . . bk . . . ak . . . X

FFF X . . . ck . . . bk . . . ak X . . . ak . . . bk . . . ck

Before proving the correctness of the reduction, we make the observation that because
any variable occurring in the middle of a clause occurs as most twice in the whole expression,
the maximum number of edges leaving a vertex s0

i is bounded by 3 + 2 = 5. All of the other
vertices have at most three edges with the same label leaving them.

I Lemma 9. The leveled graph G constructed as above from an instance φ′ of 3-NAESAT∗
is a Wheeler graph iff φ′ is satisfiable.

Proof. Given a truth assignment that satisfies the 3-NAESAT∗ instance φ′, put the vertices
in L0 whose variables are assigned the value T on the left side of X in Figure 4, and the
vertices whose variables are assigned F on the right side of X. For example, if x1 = T, x2 = F ,
the two left-most vertex on level L0 would be x1 followed by x2. Now, for clause (ak, bk, ck)
we have the possible not-all-equal truth assignments and relative orderings of L0 which
satisfy the Wheeler graph axioms in Table 1. This shows that a Wheeler graph ordering of
the vertices is possible by placing Zk’s correctly given the truth assignment.

In the other direction, if G is a Wheeler graph then the ordering of the menorah structure
is fixed with the exception of zji vertices and the ordering duplicated across layers L0,L1, . . ..
We will show the ordering given to L0 must have every clause getting a not-all-equal
assignment. Suppose to the contrary that L0 was given an ordering where either ak, bk, ck
are all on the left(true) or the right side(false) of X. Then we have the options in Table 2.

In all cases listed in Table 2, placing Zk between ak and bk violates the constraint
(ck, X, Zk), implying we violate a Wheeler graph constraint as well, a contradiction. Hence,
if G is a Wheeler graph, a valid ordering for L0 implies a valid truth assignment for φ′. J

This leaves open the complexity of the recognition problem for 3-NFA’s and 4-NFA’s.

3 An Exponential Time Algorithm

We can apply the encoding introduced by Gagie et al. [17] to develop exponential time
algorithms to solve all of the problems presented in this paper. The idea is to enumerate
over all possible encodings of Wheeler graphs with the proper number of vertices, edges, and
labels, checking whether the encoding is isomorphic with the given graph. This idea exploits
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the fact that having such a space efficient encoding also implies have a limited search space
of Wheeler graphs. The graph isomorphism can be checked efficiently enough to maintain
the desired time complexity. The results are summarized in the following two theorems.

I Theorem 10. Recognizing whether G = (V,E) is a Wheeler graph can be done in time
2e logσ+O(n+e), where n = |V |, e = |E|, and σ is the size of the edge label alphabet.

Before describing the algorithm that proves Theorem 10 we need to describe the encoding
of a Wheeler graph given in [17]. A Wheeler graph can be completely specified by three
bit vectors. Two bit vectors I and O both of length e + n and a bit vector L of length
e log σ. We assume that the vertices of the Wheeler graph G are listed in a proper ordering
x1 <π x2 <π . . . <π xn. The array I is of the form 0`110`21 . . . 0`n1 and O is of the form
0k110k21 . . . 0kn1. Here `i is the out-degree of xi whereas ki is the in-degree of xi. The array
L indicates which of the e character symbols are assigned to each edge. Specifically, the ith
character in L gives us the label of the edge corresponding to the ith zero in O. In [17] an
additional C array is added, and these arrays are equipped with additional rank and select
structures to allow for efficient traversal as is done in the FM-index [15]. For our purposes,
however, the arrays O, I, and L are adequate.

The outline of the algorithm is given below as Algorithm 1. It essentially enumerates all
bit vectors of a given length, checks whether or not the bit vector encodes a valid Wheeler
graph, and if so then checks whether the encoding matches our given graph G. Let S
represent the set of all possible encodings we wish to check. Note that |S| ≤ 22(e+n)+e logσ.

Algorithm 1 IdentifyWheelerGraph(G).

for all (O, I, L) ∈ S do
if (O, I, L) defines a valid wheeler graph G′ then

convert G to undirected graph α(G)
convert G′ to undirected graph α(G′)
if α(G) and α(G′) are isomorphic then

return “Wheeler Graph”
end if

end if
end for
return “Not a Wheeler Graph”

The Wheeler graph corresponding to the encoding can be extracted by working from
right to left reading the array I. For each zero in I, we know which symbol should be on the
inbound edge going into the corresponding vertex. We only need to decide where the edge’s
tail was. Let k be the edge label and j be the index of the label k in L which is furthest to
the right in L and yet to be used. If no such j exists we reject the encoding. When assigning
the tail for an edge, take as the tail the vertex xi where i = rank1(O, select0(O, j)). We call
the graph constructed in this way G′.

We now wish to check whether G′ and G are the same graphs only with a reordering of
the vertices, that is, G′ is the result of applying an isomorphism to G. Unlike the typical
isomorphism for labeled graphs, where a bijection between the symbols on the edge alphabet
is all that is required, here we wish for the adjacency and the label on the edge to be preserved
in the mapping between G and G′. Specifically, we wish to know if there exists a bijective
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function f : V (G)→ V (G′), such that if u, v ∈ V (G) are adjacent via an edge (u, v, k) with
label k in G, then f(u) and f(v) are also adjacent via an edge (f(u), f(v), k) with label k in
G′. Using ideas similar to those presented by Miller in [28], this problem can be reduced in
polynomial time to checking whether two undirected graphs are isomorphic.

I Lemma 11. Checking whether the direct edge labeled graph G′ is edge label preserving
isomorphic to G can be reduced in polynomial time to checking if two undirected graphs are
isomorphic.

Proof. See full version [19]. J

The final step in this algorithm is to check whether α(G) and α(G′) are isomorphic.
Using well established techniques this can be done in time 2

√
n′+O(1) where n′ is the number

of vertices in α(G) [4]. The total time complexity of Algorithm 1 is the number of bit
strings tested, multiplied by the time it takes to (1) validate whether the bit string encodes a
Wheeler graph G′ and decode it, (2) convert G and G′ to undirected graphs α(G) and α(G′),
and (3) test whether α(G) and α(G′) are isomorphic. This yields an overall time complexity
of |S|nO(1)2

√
n+2e(σ+1)+O(1), i.e., 2e logσ+O(n+e) for Algorithm 1.

4 Optimization Variants to Wheeler Graph Recognition

4.1 The Wheeler Graph Violation Problem is APX-hard
In this section, we show that obtaining an approximate solution to the WGV problem that
comes within a constant factor of the optimal solution is NP-hard. We do this through a
reduction that shows that WGV is at least as hard as solving the Minimum Feedback Arc
Set problem (FAS). FAS in its original formulation is phrased in terms of a directed graph
where the objective is to find the minimum number of edges which need to be removed in
order to make the directed graph a DAG. A slightly different formulation proves more useful
for us. Letting Fπ = {(vi, vj) ∈ E | π(vi) > π(vj)} we have the following:

I Lemma 12 (Younger [32]). Determining a minimum feedback arc set for G = (V,E) is
equivalent to finding an ordering π on V for which |Fπ| is minimized.

From this, we can present the equivalent formulation of FAS.

I Definition 13 (Minimum Feedback Arc Set (FAS)). The input is a list T = t1t2 . . . tn of n
numbers and a set of k inequalities of the form ti < tj. This task is to compute an ordering
π on T so that the number of inequalities violated in minimized.

Interestingly, we could not have used FAS for proving that the Wheeler graph recognition
problem is NP-complete, as FAS is fixed-parameter tractable in terms of the size of the
feedback arc set [8]. Indeed, setting the size of the feedback arc-set to zero is equivalent to
checking if the given graph is a DAG and the problem becomes solvable in polynomial time.

On the other hand, it has been shown that FAS is APX-hard, meaning that every problem
in APX is reducible to it [25]. It also implies, assuming NP 6= P, that there is a constant
C ≥ 1 such that there is no polynomial time algorithm which provides a C-approximation.
The reduction provided in this section implies:

I Theorem 14. The WGV problem is APX-hard.
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Figure 5 A bold edge in Figure 6 is actually k + 1 subdivided edges.

In addition, Guruswami et al. demonstrated that assuming the Unique Games Conjecture
holds, and NP 6= P, there is no constant C ≥ 1 such that a polynomial-time algorithm’s
approximate solution to FAS is always a factor C from the optimal solution. We state this
as a lemma.

I Lemma 15 (Guruswami et al. [20]). Conditioned on the Unique Games Conjecture, for
every C ≥ 1, it is NP-hard to find a C-approximation to FAS.

An approximation preserving reduction from FAS to WGV combined with Lemma 15
proves the other main result of this section:

I Theorem 16. Conditioned on the Unique Games conjecture, for every constant C ≥ 1, it
is NP-hard to find a C-approximation to WGV.

4.2 The Reduction of FAS to WGV
Let T = t1, t2, . . . , tn and inequalities t11 < t12, t

2
1 < t22, . . . , t

k
1 < tk2 be the input to FAS.

We define a heavy edge between the vertices u and v with label ` as k + 1 subdivided
edges between u and v each with label `. That is, a heavy edge between u and v with label `
consists of the edges (u,wi, `) and (wi, v, `) for 1 ≤ i ≤ k+ 1. See Figure 5 for an illustration.
Use the following steps to create a graph (which is a DAG):

Create a vertex v0 and vertices vji for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ k.
For each inequality tj1 < tj2 create a vertex for both tj1 and tj2, labeled w

j
1 and wj2,

respectively.
Create heavy edges (v0, v

1
i , 1) for 1 ≤ i ≤ n + 1 and heavy edges (vji , v

j+1
i , 1) for

1 ≤ i ≤ n+ 1, 1 ≤ j ≤ k − 1.
Create heavy edges (v0, w

1
1, 2), and heavy edges (vjn+1, w

j
2, 2) and (vjn+1, w

j+1
1 , 2) for

1 ≤ j ≤ k − 1, and heavy edge (vkn+1, w
k
2 , 2).

Add the regular (not heavy) edges (vji , w
j
1, 2) if ti = tj1, and (vji , w

j
2, 2) if ti = tj2 for

1 ≤ i ≤ n, 1 ≤ j ≤ k.

An example of the reduction is given in Figure 6. The intuition is that the vertices with
an inbound heavy edge labeled 1 represent the permutation of the elements in T . The heavy
edges labeled 1 force the permutation to be duplicated k times, once for each constraint.
The vertices with the inbound edge label 2 represent the elements in each inequality. We
will show that this is an approximation preserving reduction.

Let E′ be a solution to WGV and G′ = (V,E\E′) and let π represent a proper ordering
on the vertices of G′. Lemma 17 indicates that, other than permuting the ordering found on
the vertices vji for 1 ≤ i ≤ n (with the ordering duplicated for 1 ≤ j ≤ k), the ordering for
the vertices in Figure 6 is fixed.
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Figure 6 An example of the reduction from FAS to WGV where T = 1, 2, 3, 4, 5, 6 and the set of
inequalities is 5 < 3, 1 < 5, and 6 < 4.

I Lemma 17. Let φ represent a permutation of the set [n + 1]. Any ordering π which
provides a solution to the WGV instance is of the form

v0, v
1
φ(1), v

1
φ(2), . . . v

1
φ(n+1), . . . v

k
φ(1), v

k
φ(2), . . . v

k
φ(n+1), w

1
1, w

1
2, w

2
1, w

2
2, . . . w

k
1 , w

k
2 .

Proof. See full version [19]. J

Let f(x) refer to the reduction described above applied to an instance x of FAS creating
an instance f(x) of WGV. We also refer to the solution to either of these problems as OPT(·),
and val(·) as the cost function. For instance x of FAS val(x) is the number of violated
inequalities and for an instance f(x) of WGV val(f(x)) it is the number of violating edges.

I Lemma 18. Given an instance x of FAS, a solution(or sub-optimal solution) to the instance
f(x) of WGV that has ` ≤ k axiom violating edges yields a solution(or sub-optimal solution)
to x with ` violated inequalities. The converse holds as well.

Proof. See full version [19]. J

I Lemma 19. Given an instance x of FAS, a C-approximation to the solution OPT(f(x))
yields a C-approximation to the solution OPT(x).

Proof. By Lemma 18 any (sub-optimal) solution with objective value C · val(OPT(f(x))) to
f(x), gives us a (sub-optimal) solution to x with the same objective value, C ·val(OPT(x)). J

Theorem 14 follows from Lemma 19 and Theorem 16 follows from Lemma 19 and Lemma 15.
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Figure 7 Arborescences have their roots aligned in level L0. The relative ordering for each type
of vertex can be read from top to bottom, left to right.

4.3 The Wheeler Subgraph Problem is in APX
The dual problem to WGV is the problem of finding the largest subgraph of G which
is a Wheeler graph. This problem (defined in Section 1.2) is called Wheeler Subgraph
problem, abbreviated WS. Unlike WGV, this problem yields a Θ(1)-approximate solution
for constant σ.

We first prove the result for σ = 1. We then apply this result to get an approximation
for σ > 1. The proof for σ = 1 uses a branching of a directed graph. A branching is a set of
arborescence where an arborescence is a directed, rooted tree where all edges point away
from the root. A branching is spanning in that every vertex in V is included exactly one
arborescence in the branching.

I Lemma 20. There exists a linear time Θ(1)-approximation algorithm for WS when the
alphabet set size σ is one.

Proof. Let V0 be the set of sources in G (vertices with in-degree zero). There are two cases:

Case |V0| ≤ n/2: Take a branching F of the input graph G such that each vertex with
in-degree greater than zero is included in some non-singleton arborescence whose root
is a source vertex in V0. Let |F| denote the total number of arborescences in F . Since
|V0| ≤ n/2, it follows that |F| ≤ n/2 as well.
We create a planar leveling (L0, L1, . . .) of F by aligning all roots of the branching on
level L0 in an arbitrary order. Then set Li to be all of the vertices which are distance i
from some root in L0. Because these are trees, we can order the vertices in levels in such
a way that the leveling is planar (and for the purpose of visualization say left to right as
in Figure 7).
We claim that F is a Wheeler graph and that we can obtain a proper ordering π for the
vertices of F from this leveling. Starting with V0, we order the vertices on each level
from the bottom to top before proceeding right to the next level. One can check that the
Wheeler graph axioms are satisfied.
The number of edges in F , denoted e(F), is equal to n− |F|. And, since |F| ≤ n/2, we
have that e(F) ≥ n/2. At the same time, by Theorem 5 the optimal number of edges,
denoted |E∗|, is Θ(n). The ratio of the optimal solution value over the branching solution
value is bounded. In particular, |E∗|/e(F) ≤ Θ(n)/(n/2) = Θ(1). The construction of
the branching, the planar leveling, and the extracting π can all be done in linear time.
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Case |V0| > n/2: Take one outbound edge from each vertex in V0. We obtain a Wheeler
graph with |V0| > n/2 edges. This gives us a solution with an approximation ratio of
|E∗|/|V0| < Θ(n)/(n/2) = Θ(1).

In either case, we have an approximate solution with ẽ edges where ẽ ∈ Θ(|E∗|). J

Next, we consider when σ > 1. Suppose G∗ = (V,E∗) is the optimal solution for
G. Then E∗ = E∗1 ∪ E∗2 . . . E∗σ where E∗k = {(u, v, k) ∈ E∗}. Let Gk = (V,Ek) where
Ek = {(u, v, k) ∈ E} and let G′k = (V,E′k) be the optimal solution for Gk. Then, since
|E∗k | ≤ |E′k| we have

|E∗| =
σ∑
k=1
|E∗k | ≤ σ ·max

k
|E∗k | ≤ σ ·max

k
|E′k|.

Applying the result for σ = 1 (Lemma 20), we can approximate maxk |E′k| with a solution
having ẽ = α ·maxk |E′k| edges for some constant α ≤ 1. Therefore,

α

σ
|E∗| ≤ αmax

k
|E′k| = ẽ ≤ max

k
|E′k| ≤ |E∗|.

So the solution provides Ω(1/σ)-approximation for G as well.

I Theorem 21. There exists a linear time Ω(1/σ)-approximation algorithm for WS.

As a final result, we note that the algorithm presented in Section 3 also provides us with
an exponential time solution to the two optimization problems defined in Section 4. The
solution is to iterate over all possible subsets of edges in E, take the corresponding induced
subgraph, and apply Algorithm 1 to identify if the induced subgraph is isomorphic to a
Wheeler graph. For both the WGV and WS problems the optimal solution is the encoding
with the fewest edges removed. The resulting time complexity is the same as in Theorem 10
with the addition of one e term in the exponent. We have shown the following:

I Theorem 22. The WGV problem and WS problem for an input G = (V,E) with n = |V |,
e = |E| and σ is the size of the edge label alphabet can be solved in time 2e logσ+O(n+e).
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