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Abstract
Two-dimensional packing problems are a fundamental class of optimization problems and Strip
Packing is one of the most natural and famous among them. Indeed it can be defined in just one
sentence: Given a set of rectangular axis parallel items and a strip with bounded width and infinite
height, the objective is to find a packing of the items into the strip minimizing the packing height.
We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial
running time with respect to the width of the strip. It is known that there is no pseudo-polynomial
time algorithm for Strip Packing with a ratio better than 5/4 unless P = NP. The best algorithm
so far has a ratio of 4/3 + ε. In this paper, we close the gap between inapproximability result and
currently known algorithms by presenting an algorithm with approximation ratio 5/4 + ε. The
algorithm relies on a new structural result which is the main accomplishment of this paper. It states
that each optimal solution can be transformed with bounded loss in the objective such that it has one
of a polynomial number of different forms thus making the problem tractable by standard techniques,
i.e., dynamic programming. To show the conceptual strength of the approach, we extend our result
to other problems as well, e.g., Strip Packing with 90 degree rotations and Contiguous Moldable
Task Scheduling, and present algorithms with approximation ratio 5/4 + ε for these problems as well.
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1 Introduction

Two-dimensional packing problems typically have quite natural formulations and arise in a
wide variety of contexts (see e.g. [8]). A characteristic challenge in this kind of problem is
the space efficient placement of rectangles in a given area. Despite their simple description,
they are usually quite hard and require sophisticated algorithmic techniques in order to
reliably and efficiently find good solutions. Indeed, the study of algorithms for fundamental
two-dimensional packing problems, like, e.g., Strip Packing, 2D-Knapsack, 2D-Bin Packing,
or Unsplittable Flow on a Path, can be traced back to 1980 when Baker et al. [4] and Coffman
et al [9] studied the first algorithms for two-dimensional packing problems. Furthermore,
new results for these problems are regularly presented on top level conferences like FOCS,
STOC and SODA up to today (see, e.g., [2, 5, 10, 13, 14, 18, 33, 27]). As all of these packing
problems are NP-hard, they are typically studied in the context of approximation algorithms.
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Figure 1 The upper and lower bounds for pseudo-polynomial approximations achieved so far.

We say an approximation algorithm A has an (absolute) approximation ratio α (or call it
α-approximation) if for each instance I of the problem it holds that A(I) ≤ αOPT(I), where
OPT(I) is the optimal value of the corresponding objective function.

Although there is a huge range of work related to improving the absolute approximation
ratio of algorithms for Strip Packing [3, 4, 6, 9, 12, 16, 22, 24, 28, 29, 30, 31] and there
have been breakthroughs for 2D-Knapsack [10] and Unsplittable Flow on a Path [14], these
problems are still not understood well. In the context of Strip Packing, for instance, there is a
huge gap between the best known lower and upper bound of 3/2 and 5/3+ε [15], respectively.
Similar, for 2D-Knapsack and Unsplittable Flow on a Path, (1 + ε)-approximation schemes
might be possible while the best algorithms known so far have absolute approximation ratios
of 17/9 + ε [10] and 5/3 + ε [14] respectively. Closing these gaps between lower and upper
bounds poses a fascinating challenge.

To close these gaps, it is essential that the corresponding problem and the structure
of optimal or at least good solutions, in particular, are understood well. Hence, it can be
helpful to look at the problem from different angles and consider other goals regarding the
approximation or the running time. One example, where this approach has already been
particularly effective, is the consideration of asymptotic approximation ratios, where we allow
an extra additive term, i.e., an algorithm A has an asymptotic approximation ratio of α if
there exists a constant c such that A(I) ≤ αOPT+c for each instance I. While there has been
extensive work on algorithms with asymptotic approximation ratios [3, 9, 12, 24, 31, 6, 22]
the algorithm by Kenyon and Rémila [24] is particularly prominent. It has an asymptotic
approximation ratio of (1 + ε)OPT +O(hmax/ε

2) for each ε > 0 where hmax is the largest
occurring item height. Due to its small running time (which is a polynomial in the number
of jobs as well as 1/ε) and its relatively small additive term, the techniques used in this
algorithm have become the standard to handle items which have a small height compared
to the value of the objective function in most of the later developed algorithms for Strip
Packing and other 2-dimensional packing problems. On the other hand, for the 2-dimensional
geometric Knapsack problem, the consideration of other running times (as e.g. in [2] where
the considered algorithm has a pseudo- and quasi-polynomial running time, which allows the
size of the Knapsack and terms of the form 2log(n)O(1) to appear as factors in the running
time) have brought new insights, which ultimately led to an algorithm for this problem
(presented in [10]) that has the currently best approximation ratio of 17

9 + ε.

In this spirit, algorithms with pseudo-polynomial running time, which allow the widths
of the strip or the size of the smallest or largest item to appear in the running time with a
polynomial dependence, have been considered for the Strip Packing problem to provide a
better understanding of its hardness, see Figure 1 for an overview. The so far best pseudo-
polynomial time algorithm has an approximation ratio of 4/3+ε [11, 21] while there is a lower
bound of 5/4 (see [17]) on the approximation ratio for this kind of algorithms unless P = NP.
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Results

Before we summarize the results presented in this paper, we define the Strip Packing problem
formally. We have to pack a set I of n rectangular items into a given strip with width
W ∈ N and infinite height. Each item i ∈ I has a width w(i) ∈ N≤W and a height h(i) ∈ N.
The area of an item i ∈ I is defined as a(i) := h(i) · w(i) and the area of a set of items
I ′ ⊆ I is defined as a(I ′) :=

∑
i∈I′ a(i). A packing of the items is given by a mapping

ρ : I → N≤W × N, i 7→ (xi, yi) which assigns the lower left corner of an item i ∈ I to a
position ρ(i) = (xi, yi) in the strip. An inner point of i ∈ I (with respect to a packing ρ)
is a point from the set inn(i) := {(x, y) ∈ R × R |xi < x < xi + w(i), yi < y < yi + h(i)}.
We say two items i, j ∈ I overlap if they share an inner point (i.e., inn(i) ∩ inn(j) 6= ∅).
A packing is feasible if no two items overlap and if xi + w(i) ≤ W for all i ∈ I. The
objective of the Strip Packing problem is to find a feasible packing ρ with minimal height
h(ρ) := max{yi + h(i) | i ∈ I, ρ(i) = (xi, yi)}. Given an instance I of the Strip Packing
problem, we denote this minimal packing height with OPT(I) and dismiss the I if the
instance is clear from the context.

Analyzing the structure of solutions is a valuable tool in the development of algorithms,
and this holds for approximation as well as exact algorithms. By analyzing the structure
of optimal solutions and finding properties that all optimal solutions share, we aim to
dramatically reduce the search space of solutions in size and gain other structural insights
enabling the application of well-understood algorithmic techniques like dynamic or integer
programming. This general approach is widely used in the context of two-dimensional packing
problems, and there are many success stories in other areas of combinatorial optimization as
well. One such example is the problem of Scheduling on Identical Machines where it lead
to an approximation scheme [19] whose running time (nearly) matches the lower bound [7].
In this paper, we present an analysis of the structure of optimal solutions that consist of
rectangular objects placed inside a rectangular packing area, that is restricted on one side.
The structural result developed from this consideration (see Lemma 3) is particularly valuable
in the design of algorithms for the Strip Packing problem as we can find a pseudo-polynomial
time algorithm that matches the lower bound of 5/4 except for a negligibly small ε.

I Theorem 1. There is a pseudo-polynomial algorithm for Strip Packing which finds a
(5/4 + ε)-approximation in O(n log(n)) ·WOε(1) operations, where Oε dismisses all factors
solely dependent on 1/ε.

Moreover, since we consider optimal solutions with the above described properties, this
result also comes in handy for the development of algorithms for the problem Contiguous
Moldable Task Scheduling, which is a generalization of Strip Packing where each rectangular
item can take on a bounded number of different shapes. However, when adapting the
algorithm to this problem, we get a running time where Oε(1) also does appear in the
exponent of the number of items n, see Theorem 2. More formally in this problem, we
are given a set J of n jobs and m identical machines. Each job j ∈ J can be scheduled
on different numbers of machines given by Mj ⊆ {1, . . . ,m}. Depending on the number of
machines i ∈Mj , each job j ∈ J has a specific processing time pj(i) ∈ N. A schedule S is
given by three functions: σ : J → N which maps each job j ∈ J to a starting time σ(j);
ρ : J → {1, . . . ,m} which maps each job j ∈ J to the number of processors ρ(j) ∈Mj it is
processed on; and ϕ : J → {1, . . . ,m} which maps each job j ∈ J to the first machine it is
processed on. The job j ∈ J will use the machines ϕ(j) to ϕ(j) + ρ(j)− 1 contiguously. A
schedule S = (σ, ρ, ϕ) is feasible if each machine processes at most one job at a time and its
makespan is defined by maxj∈J σ(j) + pj(ρ(j)). The objective is to find a feasible schedule,
which minimizes the makespan. This problem and prominent variants where the jobs do not
need to occupy contiguous machines have been widely studied, see e.g. [32, 25, 26, 23, 20].

ESA 2019
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This problem is a generalization of Strip Packing as it contains this problem (and Strip
Packing with rotations) as a special case: We define the number of machines m as the
width of the strip W and for each item i ∈ I we introduce one job i with Mi := {w(i)}
and processing time pi(w(i)) = h(i) (or introduce one job i with Mi := {w(i), h(i)} and
processing times pi(w(i)) = h(i) and pi(h(i)) = w(i) respectively). Therefore, we cannot
hope for a pseudo-polynomial algorithm with a ratio better than 5/4 unless P = NP. We
adapt the structure and algorithmic result to find an algorithm with an approximation ratio,
which almost matches this bound.

I Theorem 2. There is a pseudo-polynomial algorithm for the Contiguous Moldable Parallel
Tasks Scheduling problem which finds a (5/4 + ε)-approximation in (nm)Oε(1) operations.

Remark that for the case where for at least one job j ∈ J we have that |Mj | ∈ Ω(m) the
running time of this algorithm is polynomial in the input size. Furthermore, we can hope
that in realistic instances the number of machines is bounded by a function in the number of
jobs n. If this is the case, the mentioned algorithm is a polynomial time algorithm as well,
which further motivates the consideration of pseudo-polynomial time algorithms. As the
Contiguous Moldable Parallel Tasks Scheduling contains the Strip Packing with Rotations as
a special case, this theorem implies a (5/4 + ε)-approximation with running time (nW )Oε(1)

for this problem as well.

Methodology

We follow the general approach mentioned above. More precisely, we analyze optimal solutions
and how they can be transformed carefully into well-structured solutions without too much
loss in the objective. Knowing that such a transformation is always attainable, the algorithm
will iterate the potential structures of the transformed optimal packings and fill the items
inside this structure using dynamic and linear programming. The same basic scheme has
been used for this and other packing problems before, e.g. [2, 27, 11, 21]. However, finding
a suitable transformation to a well structured solution provides a challenge that depends
on the problem itself (i.e. a structural result from other packing problems might not be
applicable for Strip Packing) and our approach significantly differs from previous ones.

In the approaches seen before, i.e., in [27], [11] and [21], there arises a natural set of critical
items, e.g., all items with height larger than 1/3 OPT in [11] and [21]. The characteristic of
this set is that the aspired approximation ratio is exceeded if we place one of these items
on top of the optimal packing area. The transformation strategy used in these previous
approaches is heavily dependent on the fact that there can be at most two critical items
on top of each other. This allows placing all critical items in the optimal packing area
while discarding some noncritical items, which are placed on top of the optimal packing
later (see Figure 2a). If three critical items can be put on top of each other (which will be
the case as soon as a critical item can have a height smaller than OPT/3) the described
transformation will not work. To find an algorithm with ratio 4/3− ε, we need to overcome
this major obstacle.

To construct a (5/4 + ε)-approximation, we introduce a new technique, in the following
called shifting and reordering. In contrast to the previous results, our structural result
does not guarantee that all critical items are packed inside the optimal packing area. Instead,
we shift and reorder the items of an optimal packing such that the critical items with
height larger than 1/4OPT are aligned into three shelves using the area W × (5/4 + ε)OPT
(see Figure 2b).
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optimal reordered

(a) Previous reordering technique.

optimal reordered gap for disc. items

(b) The new shifting and reordering technique.

Figure 2 A comparison of old and new strategies in the simplified case. Dark gray rectangles
represent the critical items, while the light gray area represents the other items, which can be sliced
vertically during the reordering. The hatched area represents an area where we can place the items
that are sliced by the reordering.

A challenge which arises using this new strategy is the fact that by the newly introduced
shifting and reordering technique a constant number of the other (non-critical) items will be
sliced vertically and thus have to be discarded temporally from the packing. Although this
set of discarded items also appears in previous approaches, their handling differs significantly.
Since the shifting strategy extends the occupied packing area by the factor (5/4 + ε) with
respect to its height, these discarded items cannot be placed on top of the packing as
done in previous approaches, see Figure 2. Instead, the discarded items have to be placed
carefully into gaps generated by the shifting and reordering step. By a careful analysis of
the rearrangement, we prove that each possible structure of a rearranged optimal packing
provides suitable gaps to place these items.

In Section 3, we present the central idea to find the improved structural result – the
shifting and reordering technique. However, to highlight the basic steps, a simplified problem
is considered. In this simplified case just the critical items have to be placed integrally
while all other items are allowed be partitioned into vertical slices, which do not have to be
placed contiguously.

In general (when the non critical items cannot be placed as non contiguous vertical slices)
the slicing of some items will cause problems when trying to place them inside gaps generated
by the new strategy, because these gaps might be thin. Hence, we cannot slice items that
are too wide in some sense. Nevertheless, we may slice certain narrow items further called
sliceable. To overcome this obstacle, we use a lemma from [21], which states the possibility
to partition each slightly stretched packing into Oε(1) rectangular areas (without removing
any item). This partition provides the property that each critical item is contained in (or
intersected by) area(s) exclusively containing critical and sliceable items. Up to three critical
items can overlap each of the vertical borders of these areas and these overlapping items may
not be shifted horizontally or vertically by our new technique. In the full version, we extend
the strategy presented in Section 3 to these areas although it becomes much more involved.

Combining our new techniques to place critical items on three shelves, find suitable gaps
for discarded non-critical items and handle the exclusive slicing of narrow items together
enables us to prove the structural result from Lemma 3 and in Section 2, we provide a
more detailed road-map of its proof. As mentioned above, the algorithm iterates all possible
structures defined by the structure result and tries to place all items into this structure using
linear and dynamic programming until a suitable structure is found.

ESA 2019
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The structural result applies to all optimal solutions with the property that they consist
of rectangular objects placed into a rectangle that is extendable on one side. Optimal
solutions of the three considered problems, i.e., Strip Packing, Strip Packing with rotations
and Contiguous Moldable Task Scheduling, all have this property. Thanks to this fact, we
were able to obtain algorithms which find 5/4 + ε approximations for each of the three
problems by carefully adapting the underlying dynamic program.

2 Structural Result

In this section, we introduce the Structural Lemma, which presents the fundamental insight
to achieve the approximation ratio (5/4 + ε). Roughly speaking, the lemma states that
each optimal solution can be transformed such that it has a simple structure, see Lemma 3.
Due to space limitations, we cannot present the proof here and we refer to the full version.
Nevertheless, we provide a high-level overview on the steps of the proof, which consists of
the following two basic steps. First the given instance and a corresponding optimal solution
is simplified by rounding the sizes of the items (widths and heights) as well as partitioning
the set of items into parts, that can be handled almost independently. Afterward, the items
in the optimal packing are reordered such that they provide the properties demanded by the
lemma.

Given an optimal packing with height OPT for an instance I, we first perform some
simplification steps. First, we partition the set of items by defining
L := {i ∈ I |h(i) > δOPT, w(i) ≥ δW} as the set of large items,
T := {i ∈ I |h(i) ≥ (1/4 + ε)OPT, w(i) < δW} as the set of tall items,
V := {i ∈ I | δOPT ≤ h(i) < (1/4 + ε)OPT, w(i) ≤ µW} as the set of vertical items,
MV := {i ∈ I | εOPT ≤ h(i) < (1/4 + ε)OPT, µW < w(i) ≤ δW} as the set of vertical
medium items,
H := {i ∈ I |h(i) ≤ µOPT, δW ≤ w(i)} as the set of horizontal items,
S := {i ∈ I |h(i) ≤ µOPT, w(i) ≤ µW} as the set of small items and
M := {i ∈ I |h(i) < εOPT, µW < w(i) ≤ δW} ∪ {i ∈ I |µOPT < h(i) ≤ δOPT} =
I \ (L ∪ T ∪ V ∪MV ∪H ∪ S) as the set of medium sized items,

where we chose δ and µ such that the total area of the itemsMV ∪M is small, resulting in
|MV | to be in O(1/(εδ2)). Afterward the heights of the items with height larger than δOPT
are rounded such that there are at most O(1/(εδ)) sizes and such that their y-coordinates
are positioned on multiples of εδOPT.

In the next step, we discard the items S ∪M from the packing since they can be placed
later on, using the NFDH algorithm from [9]. By an adaption of a lemma in [21], we were
able to show that the residual packing can be partitioned into Oε(1) rectangular subareas,
called boxes, that contain exactly one item from the set L ∪MV , only items from the set
H, or only items from the set T ∪ V. Furthermore, horizontal items are allowed to overlap
horizontal box borders, while vertical and tall items are allowed to overlap vertical box
borders. Note that in this partitioning step no item is removed from the packing or changes
its position.

Remark that in [21] the items inMV were handled the same as the medium sized items
M, i.e., they were simply placed on the top of the packing. However, this is not possible in
our case since these items can have a height of up to (1/4 + ε)OPT and we need the extra
height of (1/4 + ε)OPT to apply the shifting and reordering. Consequently, we have to think
of a new strategy to handle them. Since their number is bounded by Oε(1), it is possible to
handle them as if they were large. This different handling of vertical medium itemsMV is,
regarding previous algorithms, one of the novelties of this result.
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Next, we consider the mentioned partition of the optimal solution into rectangular axis-
parallel boxes. The items in L ∪MV and the boxes containing horizontal items need no
more attention since for each item in L∪MV we can guess its position in pseudo-polynomial
time and by extending the packing by a factor of O(ε) the horizontal items can be placed
inside the boxes using a configuration LP building upon the techniques presented in [24].

We innovate the reordering of the items inside the boxes for vertical and tall items T ∪ V
using the new shifting and reordering technique (see Section 3). Using this technique, we
extend all the boxes with height larger than OPT/2 by only OPT/4, shift and reorder the
items inside, and partition their area such that each subarea contains either only tall items
of the same height, only vertical items, or no item. Note that the boxes can be overlapped
by up to three tall items on each side (left or right). When reordering the items inside the
boxes, we cannot move these overlapping items. We refer to the full version for the proof of
this alteration with overlapping items.

During this reordering step, we slice vertical items vertically. This slicing needs to be
fixed since in the aspired Structural Lemma 3 all the items are positioned integral. We prove
that by using a configuration LP to place the vertical items, we end up with only Oε(1)
items, that have to be placed fractionally. We place these items inside Oε(1) containers of
width µW and height OPT/4. An arising challenge is the placement of these containers
inside the already extended packing. Other than in the previous attempts (see [27], [11], or
[21]), it is not possible to place these extra boxes on top of the packing. By a careful analysis
of the area added due to the shifting step, we manage to find a placement of these items
inside the rearranged packing. All these considerations together are enough to prove the
following structural result:

I Lemma 3 (Structural Lemma). By extending the packing height to (5/4 + 5ε)OPT each
rounded optimal packing can be rearranged and partitioned into O(1/(δ3ε5)) boxes with the
following properties:

There are |L|+ |MV | = O(1/(δ2ε)) boxes BL each containing exactly one item from the
set L ∪MV and all items from this set are contained in these boxes.
There are at most O(1/(δ2ε)) boxes BH containing all horizontal items H with BH∩BL = ∅.
The horizontal items can overlap horizontal box borders, but never vertical box borders.
There are at most O(1/(δ2ε5)) boxes BT containing tall items, such that each tall item t

is contained in a box with rounded height h(t).
There are at most O(1/(δ3ε5)) boxes BV containing vertical items, such that each vertical
item v is contained in a box with rounded height h(v).
There are at most O(1/(δ2ε5)) boxes BS for small items, such that the total area of these
boxes combined with the total free area inside the horizontal boxes is at least as large as
the total area of the small items.
The lower and top border of each box is positioned at a multiple of εδOPT.

3 Introducing the Shifting and Reordering Technique

To demonstrate the central new idea which leads to the improved structural result – the
shifting and reordering technique – we consider the following simplified case. We have to
pack items with a tall height integrally, while we are allowed to slice all other items vertically.
We can assume that the packing, which we consider here, is the packing inside a box for T
and V for the case that no tall item overlaps the box borders. Remember, in the general
case, there can be such items and hence the reordering gets a little bit more complicated as
in this simplified case. We will demonstrate that, in this simplified scenario, it is possible to
rearrange the items such that there are a constant number of rectangular subareas, which
contain only tall items with the same height.

ESA 2019
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(a) An optimal packing. (b) The packing after the
first shift
(Step 1 and 2).

1
1

3

3

3
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(c) The packing after the
second shift
(Step 3 and 4).

2

3

4

1

5

(d) The final reordered
packing after Step 5.

Figure 3 States of the item rearrangement. Dark rectangles represent tall items while light gray
areas might contain non-tall sliced items.

Let a packing with height H be given. We define tall items as the items which have
a height larger than 1/4H. Further, assume that there is an arithmetic grid with N + 1
horizontal grid lines with distance H/N such that each tall item starts and ends at the grid
lines. For now, we can think of this grid as the integral grid with H + 1 grid lines. Later,
we can reduce the grid lines by rounding the heights of the items. We are interested in a
fractional packing of the non-tall items. Therefore, we replace each non-tall item i by exactly
w(i) items with height h(i) and width 1. This step is called slicing. We define a box as a
rectangular subarea of the packing area.

I Lemma 4. By adding at most 1/4H to the packing height and slicing non-tall items, we
can rearrange the items such that we generate at most 3/2N containers which contain tall
items with the same height only, and at most 9/4N + 1 container for sliced items.

Proof. In this proof, we will present a rearrangement strategy which provides the desired
properties. This strategy consists of two shifting steps and one reordering step. In the shifting
steps, we shift items in the vertical direction, while in the reordering step we change the
item positions horizontally. In the first shifting step, we ensure that tall items intersecting
the horizontal lines 1/4H or 3/4H will touch the bottom or the top of the packing area,
respectively. In the second shift, we ensure that tall items not intersecting these lines have a
common upper border as well. Last, we reorder the items such that tall items with the same
height are positioned next to each other if they have a common upper or lower border.

Step 1: First Shift. Note that there is no tall item completely below 1/4H or completely
above 3/4H since each tall item has a height larger than 1/4H. We shift each tall item t

intersecting the horizontal line 1/4H down, such that its bottom border touches the bottom
of the strip. The sliced items below t are shifted up exactly h(t), such that they are now
positioned above t. In the same way, we shift each tall item intersecting the horizontal line
at 3/4H but not the horizontal line at 1/4H such that its upper border is positioned at H
and shift the sliced items down accordingly, see Figure 3b.

Step 2: Introducing Pseudo Items. At this point, we introduce a set of containers for the
sliced items, which we call pseudo items, see Figure 3b. We draw vertical lines at each left or
right border of a tall item and erase these lines on any tall item. Each area between two
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consecutive lines which is bounded on top and bottom by a tall item or the packing area and
contains sliced items represents a new item called pseudo item. Note that no sliced item is
intersecting any box border since they are positioned on integral widths only. Furthermore,
when we shift a pseudo item, we shift all sliced items included in this container as well.

When constructing the pseudo items, we consider one special case. Consider a tall item t

with height larger than 3/4H. There can be no tall item positioned above or below t, and t
was shifted down. For these items, we introduce one pseudo item of height H and width w(t)
containing t and all sliced items above. Note that each pseudo item has a height, which is a
multiple of H/N . Furthermore, note that each tall or pseudo item touching the top or the
bottom border of the packing area has a height larger than 1/4H.

Step 3: Second Shift. Next, we do a second shifting step consisting of three sub-steps.
First, we shift each tall or pseudo item intersected by the horizontal line at 3/4H but not the
horizontal line at 1/4H exactly 1/4H upwards. Second, we shift each pseudo item positioned
between the horizontal lines at 1/2H and 3/4H, such that their lower border is positioned
at the horizontal line 3/4H. Last, we shift each tall or pseudo item intersected by the
horizontal line at 1/2H but not the horizontal line at 1/4H or 3/4H such that its upper border
is positioned at the horizontal line 3/4H. After this shifting, no item overlaps another item
since we have shifted the items intersecting the line at 3/4H exactly 1/4H, while each item
below is shifted at most 1/4H.

Step 4: Fusing Pseudo Items. After the second shift, we will fuse and shift some pseudo
items. We want to establish the property that each tall and pseudo item has one border
(upper or lower), which touches one of the horizontal lines at 0, 3/4H, or 5/4H. At the moment
there can be some pseudo items between the horizontal lines 1/4H and 1/2H, which do not
touch one of the three lines. In the following, we study the three cases where those pseudo
items can occur. These items do only exist if there is a tall item touching the bottom of the
packing and another tall item above this item with a lower border at or below 1/2H before
the second shifting step. Consider two consecutive vertical lines we had drawn to generate
the pseudo items. If a tall item overlaps the vertical strip between these lines, its right and
left borders either lie on the strips borders or outside of the strip.

Case 1: In the first considered case there are three tall items, t1, t2, and t3 from bottom
to top, which overlap the strip. In this scenario t1 must have its lower border at 0, t2
its upper border at 3/4H, and t3 its upper border at 5/4H. As a consequence, there are
at most two pseudo items: One is positioned between t1 and t2, and the other between
t2 and t3. We will stack them, such that the lower border of the stack is positioned at
3/4H and prove that this is possible without overlapping t3. The total height of both
pseudo items is H − h(t1) − h(t2) − h(t3). The total area not occupied by tall items is
H − h(t1) − h(t2) − h(t3) + 1/4H since we have added 1/4H to the packing height. The
distance between t1 and t2 is at most 1/4H since t1’s lower border is at 0 and t2’s upper
border is at 3/4H and both have a height larger than 1/4H. Therefore, the distance between
t2 and t3 is at least H − h(t1)− h(t2)− h(t3), see Figure 3c at the items marked with 1.

Case 2: Now consider the case where there is one tall item t1 touching the bottom, and one
tall item t2 with height at least 1/2H touching 5/4H. Obviously, t2 has a height of at most
3/4H. Furthermore, there is at most one pseudo item, and it has to be positioned between
1/4H and 1/2H. We shift this pseudo item up until its bottom touches 1/2H, see Figure 3c
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at the item marked with 2. This is possible without constructing any overlap, because the
distance between t1 and the horizontal line 1/2H is less than 1/4H and, therefore, the distance
between the line 1/2H and the lower border of the tall item is larger than the height of the
pseudo item.

After this step, we consider each tall item t with height larger than 1/2H touching 5/4H.
We generate a new pseudo item with width w(t) and height 3/4H, with upper border at
5/4H and lower border at 1/2H, containing all pseudo items below t touching 1/2H with their
lower border.

Case 3: In the last case we consider, there are two tall items t1 and t2 and two pseudo
items; one of the items t1 and t2 touches the top of the packing or the bottom, while the
other ends at 3/4H. Hence, the distance between the tall items has to be smaller than 1/4H.
Furthermore, one of the pseudo items has to touch the top or the bottom of the packing
while the other is positioned between t1 and t2. Since the distance between t1 and t2 is less
than 1/4H, one of the distances between the packing border and the lower border of t1 or the
upper border of t2 is at least H − h(t1)− h(t2). Therefore, we can fuse both pseudo items
by shifting the one between t1 and t2 such that it is positioned above or below the other one,
see Figure 3c at the items marked with 3.

I Observation 1. After the shifting and fusing, each tall or pseudo item touches one of the
horizontal lines at 0, 3/4H or 5/4H.

Step 5: Reordering the Items. In the last part of the rearrangement, we reorder the items
horizontally to place pseudo and tall items with the same height next to each other. In
this reordering step, we create five areas each reserved for certain items. To do so, we take
vertical slices of the packing and move them to the left or the right in the strip. A vertical
slice is an area of the packing with width one and height of the considered packing area, i.e.
5/4H in this case. While rearranging these slices, it will never happen that two items overlap.
However, it can happen, that some of the tall items are placed fractionally afterward. This
will be fixed in later steps.

Area 1: First, we will extract all vertical slices containing (pseudo) items with height H.
Then, shifting all the remaining vertical slices to the left as much as possible, we create one
box for pseudo items of height H at the right, see Figure 3d at Area 1. In this area, we sort
the pseudo items such that the pseudo items containing tall items with the same height are
placed next to each other. In this step, we did not place any tall item fractionally.

Area 2: Afterward, we take each vertical slice containing a (pseudo) item with height at
least 1/2H touching the horizontal line at 5/4H. Remember, there might be pseudo items
containing a tall item t with a height between 1/2H and 3/4H. We shift these slices to the left
of the packing and sort them in descending order of the tall items height h(t), see Figure 3d at
Area 2. Afterward, we sort the pseudo items below these tall items, which are touching 1/2H

with their bottom in ascending order of their heights, which is possible without generating
any overlapping. In this step, it can happen that we slice tall items which touch the bottom
of the strip. We will fix this slicing in one of the following steps, when we consider Area 5.

Area 3: Next, we look at vertical slices containing (pseudo) items t with height at least
1/2H touching the bottom of the strip. We shift them to the right until they touch the
Area 1 and sort these slices in ascending order of the heights h(t), see Figure 3d at Area 3.
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Note that there are no pseudo or tall items that have their upper border positioned at 3/4H

in these slices. In this step, it can happen that we slice tall items touching the top of the
packing. This will be fixed in the next step.

Area 4: Look at the area above 3/4H and left of Area 2 but right of Area 1, see Figure 3d
at Area 4. In this area no item overlaps the horizontal line 3/4H. Therefore, we have
a rectangular area where each item either touches its bottom or its top and no item is
intersected by the area’s borders. In [27] it was shown that, in this case, we can sort the
items touching the line 3/4H in ascending order of their height and the items touching 5/4H

in descending order of heights and no item will overlap another item. Now all items with the
same height are placed next to each other, and thus we fixed the slicing of tall items.

Area 5: In the last step, we will reorder the remaining items. Namely the items touching
the bottom of the strip left of Area 3 and the items touching the horizontal line at 3/4H

with their top between Area 2 and Area 3. The items touching the bottom are sorted in
descending order of their height and the items touching the horizontal line at 3/4H are sorted
in ascending order regarding their heights.

B Claim. After the reordering of Area 5 no item overlaps another.

Proof. First, note that the items touching 5/4H have a height of at most 3/4H. Therefore,
no item touching the bottom having height at most 1/2H can overlap with these items.
Furthermore, note that before the reordering no item was overlapping another. Let us assume
there are two items b and t, which overlap at a point (x, y) after this reordering. Then
all items left of x touching 3/4H have their lower border below y, while all items touching
the bottom left of x have their upper border above y. Therefore, at every point left and
right of (x, y) in the Area 5 there is an item overlapping it. Hence, the total width of items
overlapping the horizontal line y is larger than the width of the Area 5. Therefore in the
original ordering, there would have been items overlapping each other already since we did
not add any items – a contradiction. As a consequence in this new ordering, no two items
overlap, which concludes the proof of the claim. C

Analyzing the Number of Constructed Boxes. In the last part of this proof, we analyze
how many boxes we have created for tall and sliced items.

B Claim. After the described reordering there are at most 3
2N boxes for tall items all

containing items of only one height.

Proof. Each tall item with height at least 3/4H touches the bottom and we create at most
one box in Area 1 for each height. Therefore, we create at most N/4 boxes for these items.
Each tall item that has a height between 1/2H and 3/4H touches either the bottom or the
horizontal line 5/4H. On each of these lines, we create at most one box for items with the
same height. Therefore, we create at most 2N/4 boxes for these items. Last, each tall item
with height larger than 1/4H but smaller than 1/2H either touches the bottom of the packing,
the horizontal line 3/4H or the horizontal line 5/4H. At each of these lines, we create at most
one box for each height. Therefore, we create at most 3N/4 of these boxes. In total, we
create at most 3

2N boxes for tall items. C

B Claim 5. After the described reordering there are at most 9
4N + 1 boxes containing sliced

items.

ESA 2019



62:12 Closing the Gap for Pseudo-Polynomial Strip Packing

Proof. Let us consider the number of boxes for sliced items. Each pseudo item’s height is a
multiple of H/N . Therefore, we have at most N different sizes for pseudo items. There are at
most 4 boxes for each height less than 1/4H. One is touching H with its top border in Area 1,
one is touching 3/4H with its bottom border in Area 4, one is touching 3/4H with its top
border in Area 5, and one is touching 1/2H with its bottom border in Area 2. Furthermore,
there are at most 3 boxes for each size between 1/4H and 1/2H. One is touching 5/4H with
its top border in Area 4, one is touching 3/4H with its top border in Area 5, and one is
touching 0 with its bottom border in Area 5. Additionally, there are at most 2 boxes for
each pseudo item size larger than 1/2H. One is touching 5/4H with its top border in Area 2,
the other is touching 0 with its bottom border in Area 3. Last there is only one pseudo item
with height larger than 3/4H in Area 1. It has height H. Since the grid is arithmetically
defined, we have at most N/4 sizes with height at most 1/4H, N/4 sizes between 1/4H

and 1/2H and at most 1/4N sizes between 1/2H and 3/4H. Therefore, we create at most
4 · 1/4N + 3 · 1/4N + 2 · 1/4N + 1 = 9

4N + 1 boxes for sliced items. C

Since the number of boxes for tall and sliced items is as small as claimed, this concludes the
proof of the Lemma 4. J

In this section, we have proven that in this simplified case it is possible to reorder the items
such that they have a nice structure. Nevertheless, when considering the mentioned partition
into rectangular subareas (called boxes) from [21] we encounter some obstacles. In each box
B containing tall and vertical items there can be up to three tall items overlapping its left
and right border. Especially critical to apply the above described shifting and reordering
technique are the items overlapping the box at the height h(B)−H/4, because these items
cannot be moved. The reason why we cannot move these objects is the impossibility of
judging their intertwining with other objects within the respective other box(es) in which
they are contained. Therefore, since the reordering technique requires them to be shifted
up, a first step is to discard these items from the respective boxes by partitioning them into
smaller boxes at the left and right borders of these items. However, we cannot get rid of the
items overlapping the box below this horizontal line of h(B)−H/4, and handling these items
without moving them becomes quite technical. A detailed analysis how to reorder the items
inside a box if tall items overlap the borders can be found in the full version of this paper.
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