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Abstract
Solving the NP-hard Maximum Cut or Binary Quadratic Optimization Problem to optimality is
important in many applications including Physics, Chemistry, Neuroscience, and Circuit Layout.
The leading approaches based on linear/semidefinite programming require the separation of so-called
odd-cycle inequalities for solving relaxations within their associated branch-and-cut frameworks. In
their groundbreaking work, F. Barahona and A.R. Mahjoub have given an informal description of
a polynomial-time separation procedure for the odd-cycle inequalities. Since then, the odd-cycle
separation problem has broadly been considered solved. However, as we reveal, a straightforward
implementation is likely to generate inequalities that are not facet-defining and have further undesired
properties. Here, we present a more detailed analysis, along with enhancements to overcome the
associated issues efficiently. In a corresponding experimental study, it turns out that these are
worthwhile, and may speed up the solution process significantly.
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1 Introduction

There are various applications that require solving the Maximum Cut (henceforth MaxCut)
problem to optimality, and this has been achieved in the literature by specialized branch-
and-cut algorithms that are based on certain relaxations of MaxCut. A prominent example
is the determination of ground states in Ising Spin Glasses [1, 3, 4]. Other applications occur
in, e.g., Chemistry, Neuroscience, and Circuit Layout. Also, the generic Binary Quadratic
Optimization problem (BQP) has a direct transformation to MaxCut, see, e.g. [1], such that
enhanced branch-and-cut algorithms for MaxCut directly lead to enhanced branch-and-cut
algorithms for the BQP.

A key element to be carried out repeatedly in the course of such branch-and-cut algorithms
is the separation of odd-cycle inequalities associated with the cut polytope as defined in
Section 2. In their groundbreaking work, F. Barahona and A.R. Mahjoub [2] have shown
that, under certain conditions, the odd-cycle inequalities induce maximal faces (facets)
of the cut polytope – which is desirable for their application within a branch-and-cut
algorithm. Moreover, they have given an informal description of a polynomial-time separation
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procedure for these inequalities. Since then, this “algorithmic frame” has been used in many
computational studies, but we are not aware of any accounts on the details of the respective
implementations or experimental evaluations.

As we show in this paper, however, the odd-cycle inequalities derived using a “straightfor-
ward” implementation of this frame are frequently not facet-inducing – for two reasons that
are both inherent to the algorithm. At the same time, it is, to the best of our knowledge, the
only polynomial-time one proposed so far. Along with a more detailed analysis of odd-cycle
separation, we thus provide extensions to overcome these shortcomings efficiently by extend-
ing the original algorithm. Finally, we present an experimental study showing the practical
impact of these enhancements using established benchmark instances for MaxCut and the
BQP. It turns out that the additional effort invested is typically more than compensated,
i.e., has a positive effect on the solution process.

The outline of this paper is as follows: In Section 2, we define the separation problem
for odd-cycle inequalities in the context of solving MaxCut by branch-and-cut, present
the outline of the polynomial time separation algorithm given in [2], and point out the
shortcomings of a naïve implementation. In Section 3, we analyze the problem formally and
present various strategies to enhance the separation procedure. These are experimentally
evaluated in Section 4.

2 The Maximum Cut Problem and Odd-Cycle Inequalities

Let G = (V,E) be a simple undirected graph, i.e., there are no loops and no parallel edges.
For k > 1, a walk in G is a set of edges W = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ⊆ E. If, in
addition, the vertices v0, v1, . . . , vk ∈ V are pairwise different, W is called a path. Provided
that W is a walk and {v0, vk} ∈ E, we call W ∪ {v0, vk} a closed walk. If P is a path, and
{v0, vk} ∈ E, then C = P ∪ {v0, vk} is called a (simple) cycle. We will also refer to a closed
walk that is not a simple cycle as a non-simple cycle.

For W ⊆ V , let δ(W ) := {e = {u, v} ∈ E | u ∈ W, v ∈ V \W}. The edge subsets δ(W )
for any W ⊆ V are the cuts of G. They correspond to bipartitions of the vertex set V into
W and V \W . Given weights we for e ∈ E, the maximum cut problem, formulated as an
integer linear programming problem, reads:

max
∑
e∈E

wexe (1)∑
e∈Q

xe −
∑

e∈C\Q

xe ≤ |Q| − 1 for all Q ⊆ C ⊆ E, C cycle and |Q| odd (2)

0 ≤ xe ≤ 1 for all e ∈ E (3)
xe ∈ Z for all e ∈ E (4)

Any solution x̂ of (2)–(4) corresponds to a cut F̂ = {e ∈ E | x̂e = 1} and vice versa. The
necessary and sufficient condition for this to hold is that F̂ intersects with every cycle in
G in an even number of edges which is enforced by the odd-cycle inequalities (2) while the
trivial constraints (3) give lower and upper bounds. Consequently, any optimum solution x∗
of (2)–(4) gives rise to an optimum cut F ∗ = {e ∈ E | x∗e = 1} with maximum total weight.
We refer to x̂ and x∗ as the characteristic vectors of F̂ and F ∗, respectively. Also, we will
call a cycle associated with an odd-cycle inequality “odd cycle” although |C| may be even,
and refer to it as a pair (C,Q) if its unique determination matters.

The cut polytope is the convex hull of the feasible solutions to the maximum cut problem
associated with G = (V,E):

PCUT(G) = conv{x ∈ RE | x satisfies (2)–(4)}
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At the core of any linear programming based branch-and-cut algorithm, a sequence
of linear programming relaxations of (1)–(3) is solved by a cutting plane algorithm: The
first relaxation just consists of (1) and (3). Then it is the task of an odd-cycle separation
algorithm to decide if the optimum solution x̂ of the current relaxation satisfies all odd-cycle
constraints (2). If so, the linear programming relaxation (1)–(3) is solved to optimality and
its objective function value is used as an upper bound in a branch-and-bound scheme. If not,
the separation algorithm must provide at least one odd-cycle inequality that is violated by x̂.
The produced inequalities are then added to strengthen the current relaxation, this new
relaxation is solved to optimality, and the process is iterated until the separation algorithm
decides that the solution of the current linear program satisfies all odd-cycle constraints.

In branch-and-cut, it is preferred that the separated inequalities define facets of the
polytope associated with the problem, so here, we would prefer odd-cycle inequalities that
define facets of the cut polytope PCUT(G). Barahona and Mahjoub [2] have given a proof
that an odd-cycle inequality defines a facet of PCUT(G) if and only if its associated cycle C
is chordless, i.e., if there is no edge in E \ C that connects two vertices of C.

2.1 Polynomial-Time Separation of Odd-Cycle Inequalities
We describe the polynomial time algorithm of Barahona and Mahjoub [2]. For this purpose,
we rewrite the odd-cycle inequalities (2) associated with a graph G = (V,E) as follows:∑

e∈Q

(1− xe) +
∑

e∈C\Q

xe ≥ 1 for all Q ⊆ C ⊆ E, C cycle and |Q| odd (5)

Our task is to solve the separation problem for x̂ ∈ [0, 1]E . Let G1 = (V1, E1) and
G2 = (V2, E2) be two copies of G, and denote with u1 ∈ V1 the representative of u ∈ V
in G1 and with u2 ∈ V2 the one in G2. Based on these copies, define a new weighted
graph GS = (VS , ES) with VS = V1 ∪ V2, ES = E1 ∪ E2 ∪ E3. The additional edge
set E3 ⊆ V1 × V2 consists of the edges {u1, v2} and {v1, u2} for each {u, v} ∈ E. The
edges {u1, v1} ∈ E1 receive weights ω({u1, v1}) = x̂{u,v}, the edges {u2, v2} ∈ E2 also
receive weights ω({u2, v2}) = x̂{u,v}, and the edges {u1, v2}, {v1, u2} ∈ E3 receive “inverted”
weights ω({u1, v2}) = ω({v1, u2}) = 1 − x̂{u,v}. To ease notation, we will frequently write
ω(F ) :=

∑
e∈F ω(e) for any edge set F ⊆ ES or F ⊆ E. Moreover, we will also write VS(F ) or

V (F ) to denote the vertex set {v ∈ VS | ∃ {v, w} ∈ F} or {v ∈ V | ∃ {v, w} ∈ F}, respectively.
The fundamental property of the construction described is that, for any u ∈ V , any

path Pu ⊆ ES from u1 to u2 in GS corresponds to a closed walk C in the original graph G
containing u. Moreover, it inevitably involves an odd number of edges from the set E3 that,
as the associated ω-weights indicate, define the subset Q ⊆ C.

Thus, each such path Pu corresponds to an odd closed walk (C,Q) in G that may however
have vertex as well as edge repetitions, i.e., C is not necessarily a simple cycle. Fig. 1 shows a
small example where two different paths of equal length (w.r.t. ω as well as the total number
of edges) in GS lead to either a simple or non-simple cycle in G.

Now, the central idea of the algorithm is to compute, for each u ∈ V , an ω-shortest path
Pu from u1 to u2 in GS .

If then ω(Pu) ≥ 1 for every u ∈ V , then there is no odd closed walk (C,Q) that violates∑
e∈Q

(1− xe) +
∑

e∈C\Q

xe ≥ 1 for all Q ⊆ C ⊆ E, C closed walk and |Q| odd (6)

and, therefore, no simple cycle C that violates (5).

ESA 2019
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Otherwise, if ω(Pu) < 1 for some u ∈ V , then Pu corresponds to an odd closed walk
(C,Q) that violates (6). However, only if (C,Q) is “accidentally” simple, we have found a
violated inequality of type (5).

This does not affect the correctness of the approach: Even when using (C,Q) “as is” in
the cutting plane algorithm, i.e., when possibly adding an inequality of type (6) rather than
one of type (5) to the linear program, the final result satisfies all the latter and thus solves
the relaxation (1)–(3) of MaxCut. However, while inequalities (6) are valid for PCUT(G),
they are not facet-inducing. And even if a cycle (C,Q) derived from an ω-shortest path
in GS is simple, it is very likely to have chords as we show in Sect. 3.3. So in summary,
when using the described approach, the likelihood to generate cutting planes that do not
correspond to facets of PCUT(G) is high. Fortunately, we can efficiently construct from Pu a
simple odd cycle (C,Q) that violates (5), and even one that is chordless, as we shall see in
Sect. 3.2 and 3.3, respectively.

0 0

00 0

1

0 0 0

0 0

G GS

u u1 u2

v1 v2

w1 w2

v

w

(C1, Q1)

u

v

w

(C2, Q2)

u

v

w

Figure 1 Left: An example graph G whose edges are annotated with an (integral) linear program
solution. Middle: The corresponding separation graph GS (only zero-weight edges are shown). The
dashed edges correspond to a shortest u1-u2-path that induces a non-simple odd closed walk in G

(edge {v, w} is used twice, see the left of the two cycles depicted on the right). If the subpath within
the right copy of G is replaced by the dotted one, the induced cycle is simple (but not chordless).

3 Non-Simple and Non-Chordless Simple Odd Cycles

To the best of our knowledge, the possible non-simplicity of odd closed walks derived with
the common procedure, as well as the possible presence of chords, has attracted almost no
further consideration in the literature before. However, as we will see, it matters not only in
theory but also in practice.

Besides the preserved correctness of the separation algorithm already discussed, another
possible reason why non-simplicity has been ignored may be the existence of an easy proof
that any odd closed walk (C,Q) contains at least one simple cycle (C ′, Q′) with C ′ ⊆ C,
Q′ ⊆ Q, and with |Q′| odd:

If (C,Q) is non-simple, then either there is at least one edge e = {u, v} ∈ E that occurs
k > 1 times on C. Or, each edge e ∈ E occurs at most once on C, but there is a vertex
v ∈ V whose degree w.r.t. the edges of C is dC(v) := |{w ∈ V : {v, w} ∈ C}| > 2 (cf. Fig. 2).
Since we assumed before that no edge is contained twice in C, dC(v) must then be even1.

1 The present case of odd closed walks induced by simple paths P in GS with weight ω(P ) < 1 implies
k ≤ 2 since any combination of an E3-instance with an E1- or E2-instance of the same edge e ∈ E leads
to an ω-weight of at least one. Moreover, the simplicity of Pu implies dC(v) ≤ 4 for all v ∈ V .
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Figure 2 Multiple cycles comprising an edge {u, v} ∈ E or a single vertex v ∈ V .

In the first case, let Ce
1 , . . . , C

e
k be the corresponding closed walks that result from starting

a path in v – each time using a different edge that is not e – and continuing the path until v
is reached again first using e. In the second case, let Cv

1 , . . . , C
v
dC (v)

2
be the respective closed

walks that result from starting a path in v using each time a different edge, and ending when
v is first reached again.

We refer to the associated subsets of Q as Qe
i := Ce

i ∩Q, i ∈ {1, . . . , k}, and Qv
i := Cv

i ∩Q,
i ∈ {1, . . . , dC(v)

2 }, respectively. Since Q is odd, there is at least one i∗ ∈ {1, . . . , k}
(i∗ ∈ {1, . . . , dC(v)

2 }) such that |Qe
i∗ | ≤ |Q| (|Qv

i∗ | ≤ |Q|) is odd as well. Now either (Ce
i∗ , Qe

i∗)
((Cv

i∗ , Qv
i∗)) is simple in which case we are done. Or, we find an edge f ∈ Ce

i∗ , f 6= e, that
occurs more than once on Ce

i∗ (a vertex w 6= v in Cv
i∗ such that dCv

i∗ (w) > 2) and have thus
reduced the extraction of a simple cycle to a strictly smaller non-simple one. Thus, since any
simple cycle has length at least three, the according recursion must terminate after finitely
many steps with a cycle that is simple.

It however remains open how to extract a (chordless) simple odd closed walk from a
non-simple one efficiently. This will be addressed in Sect. 3.2 and Sect. 3.3 after clarifying in
Sect. 3.1 which kinds of non-simplicity can occur from the method described in Sect. 2.1.

3.1 Cases of Non-Simplicity
The landscape of different cases and their implications concerning the facet-defining property
of the associated odd-cycle inequalities is depicted in Fig. 3.

odd closed walk

non-simple

non-chordless chordless

facet-definingnon-facet-defining

subsequent nested crossing

simple

Figure 3 Categorization of odd closed walks.

Let Pu be an ω-shortest path from u1 to u2 in GS , and let (C,Q) be its induced odd
closed walk in G. We may assume w.l.o.g. (and enforce in an implementation) that Pu does
not enter u1 and that it does not leave u2 which implies that dC(u) = 2.

Now if (C,Q) is non-simple, there must be at least one vertex v with dC(v) > 2, i.e.,
v 6= u. The simplicity of Pu then implies that it must traverse v1 as well as v2. Denote the
corresponding subpath, that itself defines an odd closed walk, with Pv. It is fully nested
within Pu, i.e., Pv ( Pu. Moreover, since the number of E3-edges in Pu as well as in Pv is
odd, the number of E3-edges in Pu \ Pv must be even. Hence, while its induced edge set in
G is still a closed walk, it is not an odd one.

ESA 2019
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Of course, an odd closed walk (C,Q) induced by an ω-shortest path Pu in GS may have
not only one but several vertices v ∈ V with dC(v) > 2. If all the associated subpaths of Pu

are fully nested, the previous arguments imply that only the innermost one of them induces
a simple odd cycle. Otherwise, any two strict subpaths of Pu, say Pv and Pw, may either
occur subsequently, i.e., Pv ∩ Pw = ∅, or crossing, i.e., either w1 or w2 occurs in Pv but not
both. Fig. 4 displays the respective vertex sequences using the notation vs and ve (for “start”
and “end”) since, for any v ∈ V , v 6= u, v2 may be visited by Pu before v1 is visited and
vice versa.

u1 u2vs ws we ve

u1 u2vs ve ws we

u1 u2vs vews we

u

v w

u

v w

u

v w

Figure 4 Left: Schematic depiction of (from top to bottom) two fully nested, subsequent, and
crossing subpaths Pv and Pw of Pu. Right: The corresponding interpretations in the original graph
(from left to right).

In the subsequent case, both Pv and Pw correspond to odd closed walks since they both
comprise an odd-cardinality subset of E3-edges (but neither Pu \ Pv nor Pu \ Pw does). In
the crossing case, Pv and Pw both correspond to odd closed walks as well. However, if the
subpaths from vs to ws and from ve to we refer to the same edge set in G, then both odd
closed walks associated to Pv and Pw are equivalent (and thus lead to the same inequality).

3.2 Handling Non-Simple and Chorded Simple Odd Cycles
There are basically three ways to deal with non-simplicity.

3.2.1 The “Take-As-Is” Strategy
Since the potential non-simplicity of a closed odd walk (C,Q) does not affect the validity of
the associated inequality, one may consider to simply use it as a cutting plane as is.

3.2.2 The “Throw-Away” Strategy
Another strategy is to discard non-simple closed odd walks, i.e., to generate an inequality
only if a closed odd walk computed is “accidentally” simple.

However, to still preserve an exact separation algorithm, it must then be sure that at
least one simple cycle is still identified if a violated odd-cycle inequality exists. Moreover,
as already discussed in Sect. 2.1, any vertex u ∈ V may have several ω-shortest paths Pu

some of which may induce non-simple cycles, and that may even all have the same number of
edges. So “throwing away” any such Pu containing a subpath Pv by “trusting” that a simple
cycle will be identified when computing an ω-shortest v1-v2-path may fail in general.

Fortunately, the desired guarantee can nevertheless be established if we strive for (ω, `)-
shortest paths instead, where `(v) ∈ Z denotes the number of edges used in a (currently)
shortest path to each vertex v ∈ VS . In this context, a u1-v-path P in GS involving edge
{v, w} ∈ ES is (ω, `)-shorter than the best previous one, if either “classically” dist(u) +
ω(u, v) < dist(v), or if dist(u) +ω(u, v) = dist(v) and `(u) + 1 < `(v). With these extensions,
the original separation algorithm will identify at least one violated odd-cycle inequality if
any exists, as we will now show.
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I Theorem 1. Let Pu ⊆ ES be an ω-shortest path from u1 to u2 in GS with weight ω(Pu) < 1
and of edge length `(Pu). Then there exists a vertex w ∈ V such that each (ω, `)-shortest
path Pw in GS satisfies ω(Pw) ≤ ω(Pu), |Pw| ≤ |Pu|, and whose induced odd closed walk
(C,Q) in G is simple.

Proof. If the odd closed walk induced by Pu is itself simple, the statement follows by choosing
Pw = Pu. So suppose this is not the case. Then there exists a strict subpath Pv of Pu. Now
either Pv is simple, in which case we may choose Pw = Pv. Otherwise, we recurse on the path
Pv that clearly satisfies |Pv| ≤ |Pu| − 2. Since the number of edges of the paths considered
thus decreases strictly monotonically, and since any shortest path in GS has a positive length,
this process will eventually terminate at some simple path Pw, w ∈ VS , as otherwise, there
would exist a path of the same ω-weight which is shorter w.r.t. ` – a contradiction. J

3.2.3 The “Extraction” Strategy
A final strategy to deal with non-simple odd closed walks is to extract the simple odd cycles
contained in it. This is motivated by several advantages, e.g.:

If a shortest inner subpath Pv ⊆ Pu corresponding to a simple cycle in G is found, the
shortest path computation w.r.t. v may be omitted (accepting a possible loss of a different
inequality corresponding to another shortest v1-v2-path).
A single pass of Pu might allow to extract several simple cycles from one non-simple one.
Information found during the extraction might be used to avoid the addition of duplicate
inequalities (cf. the case of crossing subpaths at the end of Sect. 3.1).

Moreover, as expressed in the following observation, it is possible to implement simple
cycle extractions requiring only a number of operations that is proportional to the length of
the closed walk (which can be no more than 2|V |). So since a single pass of the closed walk
is inevitably required to even generate an inequality from it or find out whether it is simple,
the respective enhancement does not increase the asymptotic running time, and does not
even require the (ω, `)-extension from Sect. 3.2.2 (which is nevertheless worthwhile) in order
to provide a safe exact separation procedure.

I Observation 2. Let Pu be an ω-shortest path from u1 to u2 in GS with weight ω(Pu) < 1,
and whose induced odd closed walk (C,Q) in G is not simple. Traverse Pu starting from u1
(or, walking backwards, from u2) and let v ∈W be the first vertex such that v1 and v2 were
both visited on this traversal. Then the cycle in G corresponding to the path Pv is simple.

An inequality derived based on Observation 2 (i.e., on a first fully nested subpath Pv of
Pu that does not contain any further fully nested subpaths itself) neither needs to be the
only one that can be extracted from Pu (cf. Sect. 3.1), nor needs to be maximally violated
among these.

Fortunately, subsequent and crossing simple cycles may as well be easily recognized
algorithmically by only maintaining the positions of the start and end vertices of the last
subpath identified as to correspond to a simple cycle. Suppose that Pv was the last such
subpath on a traversal of Pu, i.e., the positions of vs and ve are known. Assume further that
the traversal then arrives at some vertex, say we, whose other copy, ws, has already been
visited. If ws ≺ vs, then Pv is fully nested within Pw, and thus Pw need not be considered.
Otherwise, either ws ≺ ve in which case Pv and Pw cross, or ve ≺ ws in which case Pw is
subsequent to Pv (cf. Fig. 4). In any case, we can safely update the two maintained positions
to those of ws and we. We will then classify later paths correctly since a later path crossing
Pv must inevitably either also cross Pw or contain Pw fully nested.

ESA 2019
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Additionally, a constant-time check to eliminate some unwanted duplicate inequalities in
the case of crossing paths Pv and Pw is right at hand from the final statement in Sect. 3.1. If
ve is the immediate predecessor of we on Pu, then the same is likely true (sure if computing
(ω, `)-shortest paths) for vs and ws. This means that {v, w} is a chord (being part of the odd
closed walk w.r.t. Pu), and the odd-cycle inequalities according to Pv and Pw are equivalent.

3.2.4 Further Engineering of the Extraction Strategy
A further opportunity to improve the practical performance of the separation procedure
is to exploit the symmetry of the graph GS : Suppose that, while computing a shortest
u1-u2-path in GS , we process a vertex v2 (v1) such that the distances dist(v1) and dist(v2)
are both known. If dist(v1) + dist(v2) ≥ 1, then v2 (v1) cannot lie on any u1-u2-path that
induces a violated odd-cycle inequality and thus need not be considered for the update of
other distances.

3.3 Chorded Simple Odd Cycles
Finally, as we now know how to extract simple odd cycles, it is natural to strive for chordless
ones, i.e. facet-defining inequalities. However, we will show in this subsection, why we will
not always find these when searching for maximally violated inequalities (as we do when
computing ω- or (ω, `)-shortest paths).

For this purpose, let (C,Q) be a simple cycle, and suppose that, for some x̂ ∈ [0, 1]E , the
associated odd-cycle inequality is violated, i.e.

∑
e∈Q(1− x̂e) +

∑
e∈C\Q x̂e < 1.

Suppose further that C has a chord c, i.e., there exist vertices u, v ∈ V such that
c = {u, v} ∈ E \ C. Partitioning C into the corresponding two {u, v}-paths P1 and P2
partitions Q into Q1 and Q2, and inevitably renders either |Q1| odd and |Q2| even or vice
versa (cf. Fig. 5).

v

C
P2

P1

v

u

v

u

Q Q1

Q2

C1 = P1 ∪ {c}

C2 = P2 ∪ {c}

u

c c

Figure 5 Left: A cycle C with an odd-cardinality edge subset Q (thicker), assumed to have a
chord c = {u, v}. Right: Splitting C into two chordless odd cycles C1 and C2, declaring c once as
“odd” and once as “even”.

Assume w.l.o.g. that |Q1| is even. The cycles C1 = P1 ∪ {c}, with c “marked as odd”,
and C2 = P2 ∪ {c}, with c “marked as even”, correspond to the two odd-cycle inequalities∑

e∈Q1

(1− xe) +(1− xc) +
∑

e∈P1\Q1

xe ≥ 1 (7)

∑
e∈Q2

(1− xe) +xc +
∑

e∈P2\Q2

xe ≥ 1 (8)

whose sum gives the original one above assumed to be violated. This implies that at least
one of (7) and (8) needs to be violated as well.
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Let γ1 := 1−
∑

e∈Q1
(1− x̂e)− (1− x̂c)−

∑
e∈P1\Q1

x̂e and γ2 := 1−
∑

e∈Q2
(1− x̂e)−

x̂c −
∑

e∈P2\Q2
x̂e denote the violations of (7) and (8), respectively. Then γ := γ1 + γ2 is the

violation of the original inequality. Therefore, one of (7) or (8) can only be found if the other
is not violated at all.

It remains to clarify whether we can efficiently extract chordless cycles from a simple
but not chordless one. This turns out to be the case when restricting to one chordless cycle
whose associated inequality is violated. In this case, we may use any chord to (conceptually)
split the initial cycle (C,Q) into two cycles, and proceed with these in the same fashion if
necessary. This can be implemented in a way such that no chord is used for a split more than
once, and the adjacency list of each vertex v ∈ V (C) is traversed at most once (by continuing
at the list position of a possible previous visit of the vertex, cf. Fig. 6). Assuming the
presence of the respective data structures, and the use of bucket sort to order the adjacency
lists appropriately, an asymptotic running time of O(|E|) can be achieved.
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Figure 6 Decomposition of a simple cycle with chords to retrieve one chordless cycle. After
numbering the vertices consecutively and sorting adjacency lists descendingly w.r.t. this numbering,
the decomposition can be carried out in a greedy fashion. If, e.g., the inequality associated to the first
chordless cycle depicted on the right turns out not to be violated, it can be neglected by backtracking
to vertex 2 and continuing with the next edge of its adjacency list. Even if further subdecompositions
take place, the process will never consider any edge more than twice. In particular, no enumerative
consideration of chords used as split edges is required – e.g., the chordless cycles related to the chord
{5, 8} crossing the cycles considered before can be neglected.

4 Experiments

Our experimental study shall particularly address the following two questions:
Does the “quality” of odd-cycle cutting planes matter, i.e., to what extent is the process
of solving the linear programming relaxations of maximum cut and binary quadratic
optimization problems affected by the exclusive separation of odd-cycle inequalities that
correspond to simple or even chordless simple cycles?
Is it worthwhile to invest time for the extraction of (chordless) simple cycles (and to
save some shortest path computations) rather than to simply employ or discard non-
simple cycles?

To this end, we implemented an odd-cycle separation algorithm supporting the “take-
as-is”-strategy, the “throw-away”-strategy, the extraction of simple cycles, an improved
extraction exploiting the symmetry of the separation graph as described in Sect. 3.2.4, and
finally the extraction of one chordless cycle from each simple one. In each of these variants,
(ω, `)-shortest paths are computed for each v ∈ V in general. The three mentioned extraction
variants however omit the shortest path computation w.r.t. a vertex v ∈ V if a simple cycle
based on a shortest subpath Pv has been identified before.
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Based on this implementation, we solved the linear programming relaxations of several
instances from the “binary quadratic and max cut library” [5] by iteratively calling the
linear program solver Gurobi2 in version 8, and our separation algorithm. In case of the
MaxCut instances, the initial linear program defined only lower and upper bounds of the
variables. In case of BQP instances, we started with all inequalities that correspond to the
respective standard linearization. Moreover, after solving a linear program, previously added
inequalities not being satisfied at equality, were removed.

For presentation, we selected those instances where at least one cut was required to
solve the relaxation and the total time needed for this was at most one hour and at least
half a second.

4.1 Odd Cycle Separation Quality
The first two experiments relate to the first question mentioned in the beginning of this
section. As a first quality indicator, we consider the total number of inequalities added while
solving the relaxation and when using the different strategies. Since however, a smaller
number of cuts might result in an increase of the required number of linear programs to
solve, and there is a natural decrease in the number of generated cuts per iteration of the
extraction and “take-as-is”-strategies compared to the “throw-away”-strategy, we complement
this evaluation with another one that considers the total relaxation solution time.

In both experiments, the “take-as-is”-strategy serves as the basis (100% level in the
figures), and the symmetry-aware version of the extraction strategy is omitted from the
presentation, as it generates the same inequalities as the one without symmetry-awareness.
Moreover, to reduce side-effects, duplicate inequalities found during any of the variants are
not counted and eliminated before passing the cuts to the linear program.
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Figure 7 Relative total number of inequalities added (MaxCut instances).
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Figure 8 Relative total number of inequalities added (BQP instances).
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Figure 9 Relative total relaxation solution time (MaxCut instances).

Figs. 7 and 8 show a clear trend of decrease of the total number of inequalities added
when restricting to simple or even only chordless simple cycles. Indeed the quality of a cut
appears to have a significant impact, as the extraction of the facet-defining chordless simple
cycles clearly performs best on average across the instances considered. Moreover, in Figs. 9
and 10, one can see that, in most of the cases, the additional effort to extract simple or one
chordless simple cycle does not lead to an increase but a noticeable decrease of the total
relaxation solution time. This means in particular that the advantage of requiring fewer cuts
is a true one, i.e., not negatively compensated by a significant increase of the number of
linear programs required to solve the relaxation.

4.2 Odd Cycle Separation Time

The total relaxation solution time considered in the last experiment is affected by several
aspects. In particular, the different runs per instance did not correspond to the same series
of linear programs, as different cuts lead to different solutions. To address the second
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Figure 10 Relative total relaxation solution time (BQP instances).
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Figure 11 Relative accumulated separation times (MaxCut instances).
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Figure 12 Relative accumulated separation times (BQP instances).
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question mentioned at the beginning of this section, i.e., in order to show that simple and
even chordless simple cycle extraction truly come at negligible cost – we now create equal
preconditions for all separation strategies as follows: After solving a linear program, the
separator is called four times, once with each of the different strategies. After that, one
cutting plane set (the inequalities generated in the “extract-simple”-run) is added to the
linear program and the procedure is iterated.

In this experiment, we thus consider the accumulated time spent in the separation procedure
over all linear programs solved in order to solve the respective relaxation, with the presentation
restricted to those instances where this was at least half a second. As another difference to
the previous experiment, here, duplicate inequalities are not avoided in general. In case of
the extraction strategies, they are however avoided in the way described in Sect. 3.2.3.

The results are shown in Figs. 11 and 12, as well as the percentage of time spent in
separation w.r.t. the total time to solve the relaxation in the fastest of the four cases (denoted
“% LP-relaxation”). As before, the “take-as-is”-strategy (100% level) serves as the basis for
comparisons. Across almost all the instances considered, the extraction of simple cycles
results in a quicker separation compared to the “take-as-is”- and the “throw-away”-strategy.
Not surprisingly, the latter two perform very similarly, as both require a single pass of each
identified odd closed walk. Exploiting symmetries usually gives another measurable speedup.
This may of course as well be applied to the chordless extraction variant which has anyway
not been implemented as efficiently as indicated in Sect. 3.3.

References
1 Francisco Barahona, Michael Jünger, and Gerhard Reinelt. Experiments in quadratic 0–1 pro-

gramming. Mathematical Programming, 44(1):127–137, May 1989. doi:10.1007/BF01587084.
2 Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Mathematical Programming,

36(2):157–173, June 1986. doi:10.1007/BF02592023.
3 Caterina De Simone, Martin Diehl, Michael Jünger, Petra Mutzel, Gerhard Reinelt, and

Giovanni Rinaldi. Exact ground states of Ising spin glasses: New experimental results with a
branch-and-cut algorithm. Journal of Statistical Physics, 80(1-2):487–496, 1995.

4 Caterina De Simone, Martin Diehl, Michael Jünger, Petra Mutzel, Gerhard Reinelt, and
Giovanni Rinaldi. Exact ground states of two-dimensional ±J Ising spin glasses. Journal of
Statistical Physics, 84(5):1363–1371, September 1996. doi:10.1007/BF02174135.

5 Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. A Branch and Bound Algorithm for
Max-Cut Based on Combining Semidefinite and Polyhedral Relaxations. In Matteo Fischetti
and David P. Williamson, editors, Integer Programming and Combinatorial Optimization,
pages 295–309, Berlin, Heidelberg, 2007. Springer.

ESA 2019

https://doi.org/10.1007/BF01587084
https://doi.org/10.1007/BF02592023
https://doi.org/10.1007/BF02174135

	Introduction
	The Maximum Cut Problem and Odd-Cycle Inequalities
	Polynomial-Time Separation of Odd-Cycle Inequalities

	Non-Simple and Non-Chordless Simple Odd Cycles
	Cases of Non-Simplicity
	Handling Non-Simple and Chorded Simple Odd Cycles
	The ``Take-As-Is'' Strategy
	The ``Throw-Away'' Strategy
	The ``Extraction'' Strategy
	Further Engineering of the Extraction Strategy

	Chorded Simple Odd Cycles

	Experiments
	Odd Cycle Separation Quality
	Odd Cycle Separation Time


