
Trace Reconstruction: Generalized and
Parameterized
Akshay Krishnamurthy
College of Information and Computer Sciences, University of Massachusetts, Amherst, USA
akshay@cs.umass.edu

Arya Mazumdar
College of Information and Computer Sciences, University of Massachusetts, Amherst, USA
arya@cs.umass.edu

Andrew McGregor
College of Information and Computer Sciences, University of Massachusetts, Amherst, USA
mcgregor@cs.umass.edu

Soumyabrata Pal
College of Information and Computer Sciences, University of Massachusetts, Amherst, USA
spal@cs.umass.edu

Abstract

In the beautifully simple-to-state problem of trace reconstruction, the goal is to reconstruct an
unknown binary string x given random “traces” of x where each trace is generated by deleting each
coordinate of x independently with probability p < 1. The problem is well studied both when the
unknown string is arbitrary and when it is chosen uniformly at random. For both settings, there is
still an exponential gap between upper and lower sample complexity bounds and our understanding
of the problem is still surprisingly limited. In this paper, we consider natural parameterizations and
generalizations of this problem in an effort to attain a deeper and more comprehensive understanding.
Perhaps our most surprising results are:

1. We prove that exp(O(n1/4√log n)) traces suffice for reconstructing arbitrary matrices. In the
matrix version of the problem, each row and column of an unknown

√
n×
√

n matrix is deleted
independently with probability p. Our results contrasts with the best known results for sequence
reconstruction where the best known upper bound is exp(O(n1/3)).

2. An optimal result for random matrix reconstruction: we show that Θ(log n) traces are necessary
and sufficient. This is in contrast to the problem for random sequences where there is a super-
logarithmic lower bound and the best known upper bound is exp(O(log1/3 n)).

3. We show that exp(O(k1/3 log2/3 n)) traces suffice to reconstruct k-sparse strings, providing an
improvement over the best known sequence reconstruction results when k = o(n/ log2 n).

4. We show that poly(n) traces suffice if x is k-sparse and we additionally have a “separation”
promise, specifically that the indices of 1’s in x all differ by Ω(k log n).

2012 ACM Subject Classification Mathematics of computing → Probability and statistics

Keywords and phrases deletion channel, trace reconstruction, matrix reconstruction

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.68

Funding Akshay Krishnamurthy: Supported in part by NSF Award 1763618.
Arya Mazumdar : Supported in part by NSF Awards 1642658 and 1642550.
Andrew McGregor : Supported in part by NSF Award 1637536.
Soumyabrata Pal: Supported in part by NSF Awards 1642658 and 1642550.

© Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 68; pp. 68:1–68:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshay@cs.umass.edu
mailto:arya@cs.umass.edu
mailto:mcgregor@cs.umass.edu
mailto:spal@cs.umass.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.68
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Trace Reconstruction: Generalized and Parameterized

1 Introduction

In the trace reconstruction problem, first proposed by Batu et al. [4], the goal is to reconstruct
an unknown string x ∈ {0, 1}n given a set of random subsequences of x. Each subsequence,
or “trace”, is generated by passing x through the deletion channel in which each entry of x
is deleted independently with probability p. The locations of the deletions are not known;
if they were, the channel would be an erasure channel. The central question is to find how
many traces are required to exactly reconstruct x with high probability.

This intriguing problem has attracted significant attention from a large number of
researchers [4, 8, 10, 11, 15, 17, 18, 21, 24, 26–28]. In a recent breakthrough, De et al. [11]
and Nazarov and Peres [26] independently showed that exp(O((n/q)1/3)) traces suffice
where q = 1 − p. This bound is achieved by a mean-based algorithm, which means that
the only information used is the fraction of traces that have a 1 in each position. While
exp(O((n/q)1/3)) is known to be optimal amongst mean-based algorithms, the best algorithm-
independent lower bound is the much weaker Ω(n5/4/ logn) [16].

Many variants of the problem have also been considered including: (1) larger alphabets
and (2) an average case analysis where x is drawn uniformly from {0, 1}n. Larger alphabets
are only easier than the binary case, since we can encode the alphabet in binary, e.g., by
mapping a single character to 1 and the rest to 0 and repeating for all characters. In the
average case analysis, the state-of-the-art result is that exp(O(log1/3(n))) traces suffice1,
whereas Ω(log9/4 n/

√
log logn) traces are necessary [15–17]. Very recently, and concurrent

with our work, other variants have been studied including a) where the bits of x are associated
with nodes of a tree whose topology determines the distribution of traces generated [10] and
b) where x is a codeword from a code with o(n) redundancy [8].

In order to develop a deeper understanding of this intriguing problem, we consider fine-
grained parameterization and structured generalizations of trace reconstruction. We prove
several new results for these variations that shed new light on the problem. Moreover, in
studying these settings, we refine existing tools and introduce new techniques that we believe
may be helpful in closing the gaps in the fully general problem.

1.1 Our Results

Parametrizations. We begin by considering parameterizations of the trace reconstruction
problem. Given the important role that sparsity plays in other reconstruction problems (see,
e.g., Gilbert and Indyk [13]), we first study the recovery of sparse strings. Here we prove the
following result.

I Theorem 1. If x has at most k non-zeros, exp(O((k/q)1/3 log2/3 n)) traces suffice to recover
x exactly, with high probability, where q = 1−p = Ω(k−1/2 log1/2 n) is the retention probability.

As some points of comparison, note that there is a trivial exp(O(k/q + logn)) upper
bound, which our result improves on with a polynomially better dependence on k/q in the
exponent. The best known results for the general case is exp(O((n/q)1/3)) [11,26] and our
result is a strict improvement when k = o(n/ log2 n). Note that since we have no restrictions
on k in the statement, improving upon exp(O((k/q)1/3)) would imply an improved bound in
the general setting.

1 p is assumed to be constant in that work.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:3

Somewhat surprisingly, our actual result is considerably stronger (See Corollary 7 for
a precise statement). We also obtain exp(O((k/q)1/3 log2/3 n)) sample complexity in an
asymmetric deletion channel, where each 0 is deleted with probability exponentially close
to 1, but each 1 is deleted with probability p = 1 − q. With such a channel, all but a
vanishingly small fraction of the traces contain only 1s, yet we are still able to exactly identify
the location of every 0. Since we can accommodate k = Θ(n) this result also applies to the
general case with an asymmetric channel, yielding improvements over De et al. [11] and
Nazarov and Peres [26].

We elaborate more on our techniques in the next section, but the result is obtained
by establishing a connection between trace reconstruction and learning binomial mixtures.
There is a large body of work devoted to learning mixtures [1,2,5,7,9,12,14,19,20,25] where
it is common to assume that the mixture components are well-separated. In our context,
separation corresponds to a promise that each pair of 1s in the original string is separated
by a 0-run of a certain length. Our second result concerns strings with a separation promise.

I Theorem 2. If x has at most k 1s and each 1 is separated by 0-run of length Ω(k logn),
then, with p = 1/2, poly(n) traces suffice to recover x with high probability.

Note that reconstruction with poly(n) traces is straightforward if every 1 is separated by
a 0-run of length Ω(

√
n logn); the basic idea is that we can identify which 1s in a collection

of traces correspond to the same 1 in the original sequence and then we can use the indices of
these 1s in their respective traces to infer the index of the 1 in the original string. However,
reducing to Ω(k logn) separation is rather involved and is perhaps the most technically
challenging result in this paper.

Here as well, we actually obtain a slightly stronger result. Instead of parameterizing
by the sparsity and the separation, we instead parameterize by the number of runs, and
the run lengths, where a run is a contiguous sequence of the same character. We require
that each 0-run has length Ω(r logn), where r is the total number of runs. Note that this
parameterization yields a stronger result since r is at most 2k + 1 if the string is k sparse,
but it can be much smaller, for example if the 1-runs are very long. On the other hand,
the best lower bound, which is Ω(n5/4/ logn) [16], considers strings with Ω(n) runs and
run length O(1).

As our last parametrization, we consider a sparse testing problem. We specifically consider
testing whether the true string is x or y, with the promise that the Hamming distance between
x and y, ∆(x, y), is at most 2k. This question is naturally related to sparse reconstruction,
since the difference sequence x − y ∈ {−1, 0, 1}n is 2k sparse, although of course neither
string may be sparse on its own. Here we obtain the following result.

I Theorem 3. For any pair x, y ∈ {0, 1}n with ∆(x, y) ≤ 2k, exp(O(k logn)) traces suffice
to distinguish between x and y with high probability.

Generalizations. Turning to generalizations, we consider a natural multivariate version of
the trace reconstruction problem, which we call matrix reconstruction. Here we receive matrix
traces of an unknown binary matrix X ∈ {0, 1}

√
n×
√
n, where each matrix trace is obtained

by deleting each row and each column with probability p, independently. Here the deletion
channel is much more structured, as there are only 2

√
n random bits, rather than n in the

sequence case. Our results show that we can exploit this structure to obtain improved sample
complexity guarantees.

In the worst case, we prove the following theorem.

ESA 2019

68:4 Trace Reconstruction: Generalized and Parameterized

I Theorem 4. For the matrix deletion channel with deletion probability p,

exp(O(n1/4
√
p logn/q))

traces suffice to recover an arbitrary matrix X ∈ {0, 1}
√
n×
√
n.

While no existing results are directly comparable, it is possible to obtain exp(O(n1/3 logn))
sample complexity via a combinatorial result due to Kós et al. [22]. This agrees with the
results from the sequence case, but is obtained using very different techniques. Additionally,
our proof is constructive, and the algorithm is actually mean-based, so the only information
it requires are estimates of the probabilities that each received entry is 1. As we mentioned,
for the sequence case, both Nazarov and Peres [26] and De et al. [11] prove a exp(Ω(n1/3))
lower bound for mean-based algorithms. Thus, our result provides a strict separation between
matrix and sequence reconstruction, at least from the perspective of mean-based approaches.

Lastly, we consider the random matrix case, where every entry of X is drawn iid from
Ber(1/2). Here we show that O(logn) traces are sufficient.

I Theorem 5. For any constant deletion probability p < 1, O(logn) traces suffice to re-
construct a random X ∈ {0, 1}

√
n×
√
n with high probability over the randomness in X and

the channel.

This result is optimal, since with o(logn) traces, there is reasonable probability that a row/-
column will be deleted from all traces, at which point recovering this row/column is impossible.
The result should be contrasted with the analogous results in the sequence case. For sequences,
the best results for random strings is exp(O(log1/3 n)) [17] and Ω(log9/4 n/

√
log logn) [16].

In light of the lower bound for sequences, it is suprising that matrix reconstruction admits
O(logn) sample complexity.

1.2 Our Techniques
To prove our results, we introduce several new techniques in addition to refining and extending
many existing ideas in prior trace reconstruction results.

Theorem 1 is proved via a reduction from trace reconstruction to learning the parameters
of a mixture of binomial distributions. Surprisingly, this natural connection does not seem to
have been observed in the earlier literature. We then use a generalization of a complex-analytic
approach introduced by De et al. [11] and Nazarov and Peres [26] to prove a bound on the
sample complexity of learning a binomial mixture. This generalization is to move beyond
the analysis of Littlewood polynomials, i.e., polynomials with {−1, 0, 1} coefficients, to the
case where coefficients have bounded precision. The generalization is not difficult. This is
our simplest result to prove but we consider the final result to be revealing as it shows that
sparsity plays a more important role than length in the complexity of trace reconstruction.

Our most technically involved result is Theorem 2. This is proved via an algorithm that
constructs a hierarchical clustering of the individual 1s in all received traces according to
their corresponding position in the original string. This clustering step requires a careful
recursion, where in each step we ensure no false negatives (two 1s from the same origin are
always clustered together) but we have many false positives, which we successively reduce.
At the bottom of the recursion, we can identify a large fraction 1s from each 1 in the original
string. However, as the recursion eliminates many of the 1s, simply averaging the positions of
the surviving fraction leads to a biased estimate. To resolve this, we introduce a de-biasing
step which eliminates even more 1s, but ensures the survivors are unbiased, so that we can
accurately estimate the location of each 1 in the original string. The initial recursion has
L = log logn levels, which is critical since the debiasing step involves conditioning on the
presence of 2L 1s in a trace, which only happens with probability 2−2L = 1/n.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:5

Theorem 3 leverages combinatorial arguments about k-decks (the multiset of subsequences
of a string) due to Krasikov and Roditty [23]. The result demonstrates the utility of these
combinatorial tools in trace reconstruction. As further evidence for the utility of combinatorial
tools, the connection to k-decks was also used by Ban et al. [3] in independent concurrent
work on the deletion channel.

For Theorem 4, we return to the complex-analytic approach and extend the Littlewood
polynomial argument to multivariate polynomials. Since the unknown matrices are

√
n×
√
n,

we can use a natural bivariate polynomial of degree O(
√
n), which yields the improvement.

However, the result of Borwein and Erdélyi [6] used in previous work on trace reconstruc-
tion applies only to univariate polynomials. Our key technical result is a generalization
of their result to accommodate bivariate Littlewood polynomials, which we then use to
demonstrate separation.

For Theorem 5, using an averaging argument and exploiting randomness in the original
matrix, we construct a statistical test to determine if two rows (or columns) from two different
traces correspond to the same row (column) in the original string. We show that this test
succeeds with overwhelming probability, which lets us align the rows and columns in all
traces. Once aligned, we know which rows/columns were deleted from each trace, so we can
simply read off the original matrix X.

Notation. Throughout, n is the length of the binary string being reconstructed, n0 is the
number of 0s, k is the number of 1s, i.e., the sparsity or weight. For matrices n is the total
number of entries, and we focus on square

√
n×
√
n matrices. For most of our results, we

assume that n, n0, k are known since, if not, they can easily be estimated using a polynomial
number of traces. Let p denote the deletion probability when the 1s and 0s are deleted
with the same probability. We also study a channel where the 1s and 0s are deleted with
different probabilities; in this case, p0 is the deletion probability of a 0 and p1 is the deletion
probability of a 1. We refer to the corresponding channel as the (p0, p1)-Deletion Channel or
the asymmetric deletion channel. It will also be convenient to define q = 1− p, q0 = 1− p0
and q1 = 1 − p1 as the corresponding retention probabilities. Throughout, m denotes the
number of traces.

2 Sparsity and Learning Binomial Mixtures

We begin with the sparse trace reconstruction problem, where we assume that the unknown
string x has at most k 1s. Our analysis for this setting is based on a simple reduction
from trace reconstruction to learning a mixture of binomial distributions, followed by a
new sample complexity guarantee for the latter problem. This approach yields two new
results: first, we obtain an exp(O((k/q1)1/3 log2/3 n)) sample complexity bound for sparse
trace reconstruction, and second, we show that this guarantee applies even if the deletion
probability for 0s is exponentially close to 1.

To establish our results, we introduce a slightly more challenging channel which we refer
to as the Austere Deletion Channel. The bulk of the proof analyzes this channel, and we
obtain results for the (p0, p1) channel via a simple reduction.

I Theorem 6 (Austere Deletion Channel Reconstruction). In the Austere Deletion Channel,
all but exactly one 0 are deleted (the choice of which 0 to retain is made uniformly at random)
and each 1 is deleted with probability p1. For such a channel,

m = exp(O((k/q1)1/3 log2/3 n))

traces suffice for sparse trace reconstruction where q1 = 1− p1, provided q1 = Ω(
√
k−1 logn).

ESA 2019

68:6 Trace Reconstruction: Generalized and Parameterized

We will prove this result shortly, but we first derive our main result for this section as a
simple corollary.

I Corollary 7 (Deletion Channel Reconstruction). For the (p0, p1)-deletion channel,

m = q−1
0 exp(O((k/q1)1/3 log2/3 n))

traces suffice for sparse trace reconstruction where q0 = 1 − p0 and q1 = 1 − p1 =
Ω(
√
k−1 logn).

Proof. This follows from Theorem 6. By focusing on just a single 0, it is clear that the
probability that a trace from the (p0, p1)-deletion channel contains at least one 0 is at least
q0. If among the retained 0s we keep one at random and remove the rest, we generate a
sample from the austere deletion channel. Thus, with m samples from the (p0, p1) deletion
channel, we obtain at least mq0 samples from the austere channel and the result follows.
Note that Theorem 1 is a special case where p0 = p1 = p. J

Remarks. First, note that the case where q1 is constant (a typical setting for the problem)
and k = o(logn) is not covered by the corollary. However, in this case a simpler approach
applies to argue that poly(n) traces suffice: with probability qk1 ≥ 1/ poly(n) no 1s are deleted
in the generation of the trace and given poly(n) such traces, we can infer the original position
of each 1 based on the average position of each 1 in each trace. Second, note that the weak
dependence on q0 ensures that as long as q0 = 1/ exp(O((k/q1)1/3 log2/3 n)), we still have the
exp(O((k/q1)1/3 log2/3 n)) bound. Thus, our result shows that sparse trace reconstruction is
possible even when zeros are retained with exponentially small probability.

Reduction to Learning Binomial Mixtures. We prove Theorem 6 via a reduction to learning
binomial mixtures. Given a string x of length n, let ri be the number of ones before the ith zero
in x. For example, if x = 1001100 then r1 = 1, r2 = 1, r3 = 3, r4 = 3. Note that the multi-set
{r1, r2, . . . , } uniquely determines x, that each ri ≤ k, and that the multi-set has size n0.
The reduction from trace reconstruction to learning binomial mixtures is appealingly simple:

1. Given traces t1, . . . , tm from the austere channel, let si be the number of leading ones in
ti.

2. Observe that each si is generated by a uniform2 mixture of Bin(r1, q1), . . . ,Bin(rn0 , q1)
where q1 = 1− p1. Hence, learning r1, r2, . . . , rn0 from s1, s2, . . . , sm allows us to recon-
struct x.

To obtain Theorem 6, we establish the following new guarantee for learning binomial
mixtures.

I Theorem 8 (Learning Binomial Mixtures). LetM be a mixture of d = poly(n) binomials:

Draw sample from Bin(ai, q) with probability αi

where 0 ≤ a1, . . . , ad ≤ a are distinct integers, the values αi have poly(n) precision, and
q = Ω(

√
a−1 logn). Then exp(O((a/q)1/3 log2/3 n)) samples suffice to learn the parameters

exactly with high probability.

2 Note that since the ri are not necessarily distinct some of the binomial distributions are the same.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:7

Proof. Let M′ be a mixture where the samples are drawn from
∑d
i=1 βiBin(bi, q), where

0 ≤ b1, . . . , bd ≤ a are distinct and the probabilities βi ∈ {0, γ, 2γ, . . . , 1} where 1/γ = poly(n).
Consider the variational distance

∑
i |Ai −Bi| betweenM andM′ where

Ai = Pr [sample fromM is i] =
d∑
j=1

αj

(
aj
i

)
qi(1− q)aj−i

Bi = Pr [sample fromM′ is i] =
d∑
j=1

βj

(
bj
i

)
qi(1− q)bj−i .

We will show that the variational distance betweenM andM′ is at least

ε = exp(−O((a/q)1/3(log 1/γ)2/3)) .

Since there are at most ((a + 1) · (1/γ + 1))d possible choices for the parameters of M′,
standard union bound arguments show that

O(log(((a+ 1) · (1/γ + 1))d)/ε2) = exp(O((a/q)1/3(log 1/γ)2/3))

samples are sufficient to distinguishM from all other mixtures.
To prove the total variation bound, observe that by applying the binomial formula, for

any complex number w, we have

∑
i≥0

(Ai −Bi)wi =
∑
i≥0

wi

∑
j≥0

αj

(
aj
i

)
qi(1− q)aj−i − βj

(
bj
i

)
qi(1− q)bj−i


=

∑
j≥0

(αjzaj − βjzbj)

where z = qw + (1− q). Let G(z) =
∑
j≥0(αjzaj − βjzbj) and apply the triangle inequality

to obtain:∑
i≥0
|Ai −Bi||wi| ≥ |G(z)| .

Note that G(z) is a non-zero degree d polynomial with coefficients in the set

{−1, . . . ,−2γ,−γ, 0, γ, 2γ, . . . , 1}.

We would like to find a z such that G(z) has large modulus but |wi| is small, since this will
yield a total variation lower bound. We proceed along similar lines to Nazarov and Peres [26]
and De et al. [11]. It follows from Corollary 3.2 in Borwein and Erdélyi [6] that there exists
z ∈ {eiθ : −π/L ≤ θ ≤ π/L} such that

|G(z)| ≥ γ exp(−c1L log(1/γ))

for some constant c1 > 0. For such a value of z, Nazarov and Peres [26] show that

|w| ≤ exp(c2/(qL)2)

for some constant c2 > 0. Therefore,∑
i≥0
|Ai −Bi| exp(ic2/(qL)2) ≥

∑
i≥0
|Ai −Bi||wi| ≥ |G(z)| ≥ γ exp(−c1L log(1/γ))

ESA 2019

68:8 Trace Reconstruction: Generalized and Parameterized

For i > τ = 6qa, by an application of the Chernoff bound, Ai, Bi ≤ 2−i, so we obtain

∑
i>τ

2−i exp(ic2/(qL)2)︸ ︷︷ ︸
=Tτ

+
τ∑
i=0
|Ai −Bi| exp(τc2/(qL)2) ≥ γ exp(−c1L log(1/γ)) .

τ∑
i=0
|Ai−Bi| ≥

exp(−c1L log(1/γ))
exp(τc2/(qL)2) − Tτ

exp(τc2/(qL)2) ≥
γ exp(−c1L log(1/γ))

exp(τc2/(qL)2) −O(2−τ) (1)

where the second equality follows from the assumption that c2/(qL2) ≤ (ln 2)/2 (which we
will ensure when we set L) since,

Tτ
exp(τc2/(qL)2) = O(1) · 2−τ exp(τc2/(qL)2)

exp(τc2/(qL)2) = O(2−τ) .

Set

L = c 3
√
τ/(q2 log(1/γ)) = c 3

√
6a/(q log(1/γ))

for some sufficiently large constant c. This ensures that the first term of Eqn. 1 is

exp(−O((a/q)1/3 log2/3(1/γ))).

Note that

c2
qL2 <

c2
qc2(a/(q log(1/γ)))2/3 ≤

c2
c2
·
(

log(1/γ)
aq1/2

)2/3
≤ c2
c2
·
(

log(1/γ)
aq2

)2/3

and so by the assumption that q = Ω(
√

log(1/γ)/a) we may set the constant c large enough
such that c2/(qL2) ≤ (ln 2)/2 as required. The second term of Eqn. 1 is a lower order term
given the assumption from the assumption on q and thus we obtain the required lower bound
on the total variation distance. J

Theorem 6 now follows from Theorem 8, since in the reduction, we have d = O(n)
binomials, one per 0 in x, αi is a multiple of 1/n0 and importantly, we have a = k. The key
is that we have a polynomial with degree a = k rather than a degree n polynomial as in the
previous analysis.

Remark. If all αi are equal, Theorem 8 can be improved to poly(n) · exp(O((a/p)1/3)) by
using a more refined bound from Borwein and Erdélyi [6] in our proof. This follows by
observing that if αi = βi = 1/d, then

∑
j≥0(αjzaj − βjzsj) is a multiple of a Littlewood

polynomial and we may use the stronger bound |G(z)| ≥ exp(−c1L)/d, see Borwein and
Erdélyi [6].We can also show that the exponential dependence on a1/3 in Theorem 8 is
necessary.

I Theorem 9 (Binomial Mixtures Lower Bound). There exists subsets

{a1, . . . , ak} 6= {b1, . . . , bk} ⊂ {0, . . . , a}

such that ifM =
∑k
i=1 Bin(ai, 1/2)/k andM′ =

∑k
i=1 Bin(bi, 1/2)/k, then ‖M−M′‖TV =

exp(−Ω(a1/3)). Thus, exp(Ω(a1/3)) samples are required to distinguishM fromM′.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:9

Proof. Previous work [11, 26] shows the existence of two strings x, y ∈ {0, 1}n such that∑
i |txi − t

y
i | = exp(−Ω(n1/3)) where tzi is the expected value of the ith element (indexed

at 0) of a string formed applying the (1/2, 1/2)-deletion channel to the string z. We may
assume

∑
i∈[n] xi =

∑
i∈[n] yi ≡ k since otherwise

∑
i

|txi − t
y
i | ≥

∣∣∣∣∣∑
i

txi −
∑
i

tyi

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

xi/2−
∑
i∈[n]

yi/2

∣∣∣∣∣∣ ≥ 1/2

which would contradict the assumption
∑
i |txi − t

y
i | 6= exp(−Ω(n1/3)).

ConsiderM =
∑k
i=1 Bin(ai, 1/2)/k andM′ =

∑k
i=1 Bin(bi, 1/2)/k, where ai (bi) is the

number of coordinates preceding the ith 1 in x (y). Note that

txi =
k∑
r=1

(
ar
i

)
/2ar+1 and tyi =

k∑
r=1

(
br
i

)
/2br+1 ,

and so

‖M−M′‖TV =
∑
i

|Pr [M = i]− Pr [M′ = i] |

=
∑
i

1
k

∣∣∣∣∣
k∑
r=1

(
ar
i

)
/2ar −

k∑
r=1

(
br
i

)
/2br

∣∣∣∣∣
= 2

k

∑
i

|txi − t
y
i | = exp(−Ω(n1/3)) ,

which proves the result. J

3 Well-Separated Sequences

We now prove Theorem 2, showing that poly(n) traces suffice for reconstruction of a k-sparse
string when there are Ω(k logn) 0s between each consecutive 1. We call such sequences of 0s
the 0-runs of the string. We also refer to the length of the shortest 0-run as the gap g of
the string x.

I Theorem (Restatement of Theorem 2). Let x be a k-sparse string of length n and gap at
least ck log(n) for a large enough c. Then poly(n) traces from the (1/2, 1/2)-Deletion Channel
suffice to recover x with high probability.

In Section 3.1, we present the basic ideas and technical challenges in proving the theorem.
We also describe the algorithm in detail and explain how to set the parameters. Full details
are presented in Section 3.3. In Section 3.2, we strengthen Theorem 2 to show that poly(n)
traces suffice under the weaker assumption that each 0-run has length Ω̃(r) where r is the
total number of runs (0-runs + 1-runs). Observe that this is a weaker assumption, since
r ≤ 2k + 1 always, but r can be much less than k.

3.1 A Recursive Hierarchical Clustering Algorithm and Its Analysis:
Overview

Let {pu}ku=1 denote the positions (index of the coordinate from the left) of the k 1s in
the original string x. Let N denote the multi-set of all positions of all received 1s and call
N = |N |. We will construct a graph G on N vertices where every vertex is associated with a

ESA 2019

68:10 Trace Reconstruction: Generalized and Parameterized

received 1. We decorate each vertex v with a number zv ∈ N , which is the position of the
associated received 1. Each vertex v also has an unknown label yv ∈ {1, . . . , k} denoting the
corresponding 1 in the original string.

At a high level, our approach uses the observed values {zv}v∈V to recover the unknown
labels {yv}v∈V . Once this “alignment” has been performed, the original string can be recovered
easily, since the average of {zv1{yv = u}}v∈V is an unbiased estimator for pu/2.

A starting observation. Our first observation is a simple fact about binomial concentration,
which we will use to define the edge set in G: by the Chernoff bound, with high probability,
for every vertex v, if yv = u then we must have |zv − pu/2| ≤ c

√
n logn for some constant

c. Defining the edges in G to be {(v, w) : |zv − zw| ≤ 2c
√
n logn} then guarantees that all

vertices with yv = u are connected. This immediately yields an algorithm for the much
stronger gap condition g ≥ 4c

√
n logn, since with such separation, no two vertices v, w with

yv 6= yw will have an edge. Therefore, the connected components reveal the labeling so that
poly(n) traces suffice with g = Ω(

√
n logn).

Intuitively, we have constructed a clustering of the received 1s that corresponds to the
underlying labeling. To tolerate a weaker gap condition, we proceed recursively, in effect con-
structing a hierarchical clustering. However there are many subtleties that must be resolved.

The first recursion. To proceed, let us consider the weaker gap condition of g ≥ Ω̃(k1/2n1/4).
In this regime, G still maintains a consistency property that for each u all vertices with
yv = u are in the same connected component, but now a connected component may have
vertices with different labels, so that each connected component C identifies a continguous
set U ⊂ {1, . . . , k} of the original 1s. Moreover, due to the sparsity assumption, C must
have length, defined as maxv∈C zv −minv∈C zv, at most O(k

√
n logn). Therefore if we can

correctly identify every trace that contains the left-most and right-most 1 in U , we can
recurse and are left to solve a subproblem of length O(k

√
n logn). Appealing to our starting

observation, this can be done with a gap of g ≥ Ω̃(k1/2n1/4).
The challenge for this step is in identifying every trace that contains the left-most and

right-most 1 in U , which we call uL and uR respectively. This is important for ensuring a
“clean” recursion, meaning that the traces used in the subproblem are generated by passing
exactly the same substring through the deletion channel. To solve this problem we use a
device that we call a Length Filter. For every trace, consider the subtrace that starts with the
first received 1 in U and ends with the last received 1 in U (this subtrace can be identified
using G). If the trace contains uL, uR then the length of this subtrace is 2 + Bin(L− 2, 1/2)
where L is the distance between uL, uR in the original string. On the other hand, if the
subtrace does not contain both end points, then the length is 2 + Bin(L′ − 2, 1/2) where
L′ ≤ L − g. Since we know that L ≤ Õ(k

√
n) and we are operating with gap condition

g = Ω̃(k1/2n1/4) = Ω̃(
√
L), binomial concentration implies that with high probability we can

exactly identify the subtraces containing uL and uR.

Further recursion. The difficulty in applying a second recursive step is that when g =
o(k1/2n1/4) the length filter cannot isolate the subtraces that contain the leftmost and
rightmost 1s for a block U , so we cannot guarantee a clean recursion. However, substrings
that pass through the filter are only missing a short prefix/suffix which upper bounds any error
in the indices of the received 1s. We ensure consistency at subsequent levels by incorporating
this error into a more cautious definition of the edge set (in fact the additional error is the
same order as the binomial deviation at the next level, so it has negligible effect). In this

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:11

way, we can continue the recursion until we have isolated each 1 from the original string.
The Ω(k logn) lower bound on run length arises since the gap at level t of the recursion,
gt, is related to the gap at level t− 1 via gt =

√
k logn · gt−1 with g1 =

√
n logn, and this

recursion asymptotes at Ω(k logn).
The last technical challenge is that, while we can isolate each original 1, the error in our

length filter introduces some bias into the recursion, so simply averaging the zv values of the
clustered vertices does not accurately estimate the original position. However, since we have
isolated each 1 into pure clusters, for any connected component corresponding to a block of
1s, we can identify all traces that contain the first and last 1 in the block. Applying this idea
recursively from the bottom up allows us to debias the recursion and accurately estimate all
positions.

The algorithm in detail: recursive hierarchical clustering. We now describe the recursive
process in more detail. Let us define the thresholds:

τ1 = Õ(n1/2), τ2 = Õ(k1/2n1/4), τ3 = Õ(k3/4n1/8), . . . , τD = Õ(k1−1/2Dn1/2D),

which will be used in the length filter and in the definitions of the edge set. Observe that
with D = log logn, we have τD = Õ(k). Let x̃1, . . . , x̃m denote the m = poly(n) traces. We
will construct a sequence of graphs G1, G2, . . . , GD on the vertex sets V1 ⊃ V2, . . . ,⊃ VD,
where each vertex v corresponds to a received 1 in some trace tv ∈ [m] and is decorated
with its position zv and the unknown label yv. The dth round of the algorithm is specified as
follows with z(1)

v = zv and V1 as the set of all received 1s.
1. Define Gd with edge set Ed = {(v, w) : v, w ∈ Vd and |z(d)

v − z(d)
w | ≤ τd}.

2. Extract kd ≤ k connected components C(d)
1 , . . . , C

(d)
kd

from Gd.
3. For each connected component C(d)

i , extract subtraces {x̃(d,i)
j }mj=1 where x̃(d,i)

j is the
substring of x̃j starting with the first 1 in Ci and ending with the last 1 in Ci. Formally,
with ` = min{zv : v ∈ Ci, tv = j} and r = max{zv : v ∈ Ci, tv = j}, we define
x̃

(d,i)
j = x̃j [`, . . . , r].

4. Length Filter: Define L(d,i) = maxj len(x̃(d,i)
j). If

len(x̃(d,i)
j) ≤ L(d,i) − Ω(

√
L(d,i) log(L(d,i))),

delete all vertices v ∈ Ci with tv = j. Let Vd+1 be all surviving vertices.
5. For v ∈ Vd+1, define z(d+1)

v = zv −minv′∈Ci,tv=tv′ zv′ .

We analyze the procedure via sequence of lemmas. The first one establishes a basic consist-
ency property: that two 1s originating from the same source 1 are always clustered together.

I Lemma 10 (Consistency). At level d let Vd,u = {v ∈ Vd, yv = u} for each u ∈ [k]. Then
with high probability, for each d and u there exists some component C(d)

i at level d such that
Vd,u ⊂ C(d)

i .

The next lemma provides a length upper bound on any component, which is important
for the recursion. At a high level since we are using a threshold τd at level d and the string is
k-sparse, no connected component can span more than kτd positions.

I Lemma 11 (Length Bound). For every component C(d)
i at level d, we have L(d,i) ≤

2kτd. Moreover if U is a contiguous subsequence of {1, . . . , k} with
⋃
u∈U Vd,u ⊂ C

(d)
i , then

minu∈U pu −maxu∈U pu ≤ 2kτd.

ESA 2019

68:12 Trace Reconstruction: Generalized and Parameterized

Finally we characterize the length filter.

I Lemma 12 (Length Filter). For a component C(d)
i at level d, let U be the maximal

contiguous subsequence of {1, . . . , k} such that
⋃
u∈U Vd,u ⊂ C

(d)
i . Define uL = arg minu∈U pu

and uR = arg maxu∈U pu. Then for any v ∈ C
(d)
i , if uL and uR are present in tv, then

v survives to round d + 1, that is v ∈ Vd+1. Moreover, for any v ∈ Vd+1, let pmin(v, U)
denote the original position of the first 1 from U that is also in the trace tv. Then we have
pmin(v, u)− puL ≤ Õ(

√
kτd).

The lemmas are all interconnected and proved formally in Section 3.3. It is important that
the error incurred by the length filter is

√
kτd = τd+1 which is exactly the binomial deviation

at level d+ 1. Thus the threshold used to construct Gd+1 accounts for both the length filter
error and the binomial deviation. This property, established in Lemma 12, is critical in the
proof of Lemma 10.

For the hierarchical clustering, observe that after D = log logn iterations, we have
τD = Õ(k). With gap condition g = Ω̃(k) and applying Lemma 10, this means that the
connected components at level D each correspond to exactly one 1 in the original string.
Moreover since the length filter preserves every trace containing the left-most and right-most
1 in the component, the probability that a subtrace passes through the length filter is at least
1/4. Hence, after log logn levels, the expected number of surviving traces in each cluster is
m/4log logn = m/(log2 n). Thus for each original 1 u ∈ {1, . . . , k}, our recursion identifies at
least m/(log2 n) vertices v ∈ V1 such that tv = u.

Removing Bias. The last step in the algorithm is to overcome bias introduced by the length
filter. The de-biasing process works upward from the bottom of the recursion. Since we have
isolated the vertices corresponding to each 1 in the original string, for a component C(D−1)

i

at level D − 1, we can identify all subtraces that survived to this level that contain the first
and last 1 of the corresponding block U (D−1)

i ⊂ [k]. Thus, we can eliminate all subtraces
that erroneously passed this length filter.

Working upwards, consider a component C(d)
i that corresponds to a block U (d)

i ⊂ [k]
of 1s in the original string. Since we have performed further clustering, we have effectively
partitioned U (d)

i into sub-blocks U (d+1)
1 , . . . , U

(d+1)
s . We would like to identify exactly the

subtraces that survived to level d that contain the first and last 1 of U (d)
i , but unfortunately

this is not possible due to a weak gap condition. However, by induction, we can exactly
identify all subtraces that survive to level d that contain the first and last 1 of the first and
last sub-block of U (d)

i , namely U (d+1)
1 and U (d+1)

s . Thus we can de-bias the length filter at
level d by filtering based on a more stringent event, namely the presence of 2D−d nodes. In
total to de-bias all length filters above a particular component, we require the presence of∑D
d=1 2D−d = O(2D) = O(logn) nodes, which happens with probability Ω(1/n). Thus we can

debias with only a polynomial overhead in sample complexity. See Figure 1 for an illustration.

3.2 Strengthening to a Parameterization by Runs

We next parameterized the problem by the number of runs, r = 1 + |{i ∈ [n−1] : xi 6= xi+1}|,
in the string x being reconstructed. We will argue that if every 0-run has length Ω̃(r) then
poly(n) traces suffice. The proof is via a reduction to the k-sparse case in the previous sections.

Let x′ ∈ {0, 1}<n be the string formed by replacing every run of 1s in x by a single
1. We first argue that we can reconstruct x′ with high probability using poly(n) traces
generated by applying the (1/2, 1/2)-Deletion Channel to x. We will prove this result for

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:13

the case r = Ω(logn) since otherwise poly(n) traces is sufficient even with no gap promise.3
Observe that with m = poly(n) traces, if every 0-run in x has length at least c logn for some
sufficiently large constant c > 0, then a bit in every 0-run of x appears in every trace with
high probability. Conditioned on this event, no two 1’s that originally appeared in different
runs of x are adjacent in any trace. Next replace each run of 1s in each trace with a single
1. The end result is that we generate traces that are generated as if we had deleted each
0 in x′ with probability 1/2 and each 1 in x′ with probability 1 − 1/2t ≥ 1/2 where t is
the length of the run that the 1 belonged to in x. This channel is not equivalent to the
(1/2, 1/2)-Deletion channel, but our analysis for the sparse case continues to hold even if the
deletion probability of each 1 is different. Thus we can apply Theorem 2 to recover x′, and
the sparsity of x′ is at most r. Since the algorithm identifies corresponding 1s in x′ in the
different traces, we can then estimate the length of the 1-runs in x that were collapsed to
each single 1 of x′ by looking at the lengths of the corresponding 1-runs in the traces of x
before they were collapsed.

I Theorem 13. For the (1/2, 1/2)-Deletion Channel, poly(n) traces suffice if the lengths of
the 0-runs are Ω̃(r) where r is the number of runs in x.

3.3 Sparsity with Gap: Technical Details
This section contains missing details from Section 3. Recall that we have a string x ∈ {0, 1}n
that is k-sparse. We further assume that each 1 in x is separated by a run of g 0s, and we
refer to g as the gap. Recall that we define {pu}ku=1 as the position of the k 1s in original
string, where p1 < p2 < . . . , pk. As further notation we refer to the collection of m = poly(n)
traces as T = {x̃j}mj=1.

The first level

As a warm up, we show an algorithm called FindPositions, that uses poly(n) traces to
reconstruct x exactly with high probability when the gap g = Ω(

√
n logn). The algorithm

returns the values {pu}ku=1 and crucially uses a binomial mean estimator. Given s samples
X1, X2, . . . , Xs from a binomial distribution Bin(n, 1

2) this estimator returns an estimate of
n, n̂ = round

(
2
s

∑s
i=1Xi

)
, where the round function simply rounds the argument to the

nearest integer. From the Hoeffding bound, it is clear that

Pr(n̂ 6= n) = Pr(|n̂− n| ≥ 0.5) = Pr
(∣∣∣1
s

s∑
i=1

Xi −
n

2

∣∣∣ ≥ 1
4

)
≤ 2 exp

(
− s

8n2

)
≤ 2 exp(−nε),

as long as s = 8n2+ε for any ε > 0.
The algorithm FindPositions is displayed in Algorithm 1. Our first result of this section

guarantees that with g = Ω(
√
n logn) Algorithm 1 recovers x exactly with poly(n) traces.

I Theorem 14. Algorithm 1 (FindPositions) successfully returns the string x from m

traces with probability at least 1 − 3n−2 as long as m ≥ Ω(n2 logn) and the gap g ≥
4
√

2n log(nm3) = Θ(
√
n logn).

3 Specifically, if r = O(log n), with probability at least 1/2r = 1/ poly(n) a trace also has r runs. Given
poly(n) traces with r runs we can estimate each run length because we know the ith run in each such
trace corresponds to the ith run in the original string.

ESA 2019

68:14 Trace Reconstruction: Generalized and Parameterized

Algorithm 1 FindPositions.

Initialize: length of x: n, m traces T , gap g > 4
√

2n log(mn3).
For each received 1, create a vertex v decorated with tuple (zv, tv) where zv ∈ [n] is the
position of the received 1 and tv ∈ [m] is the index of the trace.
Create graph G = (V,E) using vertex set above, and with edges:

E =
{

(v, w) : |zv − zw| ≤
√

2n log(mn3)
}

Find connected components C1, . . . , Ck′ in G (If k′ 6= k report failure).
For each connected component Ci, use the binomial mean estimator on {zv}v∈Ci to estimate
p̂i.
Return {p̂i}k

′

i=1.

Proof. First, let us associate with each vertex v an unknown label yv ∈ [k] describing the
correspondence between this received 1 and a 1 in the original string. The first observation
is that if yv = u then zv ∼ Bin(pu, 1

2) and we always have pu ≤ n. Thus, by Hoeffding’s
inequality and a union bound, we have

Pr[∃v ∈ V : |zv − pu/2| > τ] ≤ |V | exp(−2τ2/n) ≤ exp(log(mk)− 2τ2/n)

And so with τ =
√
n log(mkn2)/2, with probability 1 − n−2 all zv values concentrate

appropriately.
This event immediately implies that G is consistent in the sense that if yv = yv′ then

(v, v′) ∈ E. Further the gap condition implies the converse property, which we call purity: if
yv 6= yv′ then (v, v′) /∈ E. Formally, if yv 6= yv′ then

g/2 ≤ |pyv/2− pyv′/2|
≤ |zv − pyv/2|+ |zv − zv′ |+ |pyv′/2− zv′ |

≤
√

2n log(mkn2) + |zv − zv′ |

which implies that |zv − zv′ | ≥ g/2−
√

2n log(mkn2) >
√

2n log(mn3). Hence (v, v′) /∈ E.
The above two properties reveal that each connected component can be identified with

a single 1 u ∈ [k] and the component contains exactly the received 1s corresponding to
that original one (formally Cu = {v : yv = u}). From here we simply use the binomial
estimator on each component. First observe that, by a Chernoff bound, with probability
1− k exp(−m/36), each 1 from the original string appears in at least a 1/3-fraction of the
traces, so that |Cu| ≥ m/3. Then apply the guarantee for the binomial mean estimator along
with another union bound over the k positions. Overall the failure probability is

n−2 + k exp(−m/36) + 2k exp
(−m

24n2

)
which is at most 3n−2 with m ≥ 24n2 log(2kn2). With this choice, we can tolerate g =
O(
√
n logn). J

The recursion

We now use the algorithm FindPositions in a recursive manner to estimate the parameters
p1, . . . , pk even when the gap g is much less than

√
n logn. Define a series of threshold

parameters, to be used in the dth level of recursion:

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:15

Algorithm 2 Algorithm RecurGap.

Initialize: Traces T = {x̃j}mj=1, gap lower bound g ≥ ck log2(n).
For each received 1, create vertex v decorated with (zv, tv) where zv ∈ [n] is the position
of the received 1 and tv ∈ [m] is the index of the trace.
Set z(1)

v = zv, V1 = V

for d = 1, . . . , D: do
Create graph Gd with vertices Vd and with edges

E1 =
{

(v, w) ∈ Vd : |z(d)
v − z(d)

w | ≤ τd/4
}

Extract connected components C(d)
1 , . . . , C

(d)
kd

of Gd.
For each connected component C(d)

i , extract subtraces {x̃(d,i)
j }mj=1 where x̃(d,i)

j = x̃j [`, r]
and ` = min{zv : v ∈ C(d)

i , tv = j} and r = max{zv : v ∈ C(d)
i , tv = j}.

Define L(d,i) = maxj len(x̃(d,i)
j). If

len(x̃(d,i)
j) ≤ L(d,i) −

√
2L(d,i) log(kmn),

delete all vertices v ∈ C(d)
i with tv = j. Let Vd+1 be all surviving vertices.

For v ∈ C(d)
i ∩ Vd+1, define z(d+1)

v = zv −min{zv′ : v′ ∈ C(d)
i , tv′ = tv}.

end for

τ1 = 4
√

2n log(mnk);

τd = 80
√
kτi−1 log(mnk), d = 2, . . . , D

where the total number of levels is D. Note that, τd ≤ 802 ·4
√

2 ·k1− 1
2d−1 n

1
2d log1−1/2d(nmk).

In particular, if D = O(log logn) then we have τD = O(k log(n)).
Recall that V is the vertex set for the graph used above, where each vertex corresponds

to a received 1 and is associated with an unknown original one yv. Our main theorem of this
section is the following.

I Theorem 15. Assume g ≥ 2τD for some D ≤ log log(n). Then except with probability
1− 1/n, Algorithm 2 (RecurGap) with D levels of recursion returns sets S1, . . . , Sk ⊂ V such
that
1. For all u ∈ [k], Su ⊂ {v ∈ V : yv = u}.
2. |Su| ≥ m/ log5(n).

The theorem follows from the three lemmas stated earlier. Here we re-state the lemmas
in detail and provide the proofs.

I Lemma 16 (Consistency). At level d let Vd,u = {v ∈ Vd, yv = u} for each u ∈ [k]. Then
with probability 1− 1/n2, for each d and u there exists some component C(d)

i at level d such
that Vd,u ⊂ C(d)

i .

I Lemma 17 (Length Bound). At level d, the following holds with probability at least 1−1/n2:
For every component C(d)

i at level d, we have L(d,i) ≤ 2kτd. Moreover if U is a contiguous
subsequence of {1, . . . , k} with

⋃
u∈U Vd,u ⊂ C

(d)
i , then minu∈U pu −maxu∈U pu ≤ 4kτd.

ESA 2019

68:16 Trace Reconstruction: Generalized and Parameterized

I Lemma 18 (Length Filter). Assume m ≥ n. At level d, the following holds with probability at
least 1−1/n2: For a component C(d)

i at level d, let U be the maximal contiguous subsequence of
{1, . . . , k} such that

⋃
u∈U Vd,u ⊂ C

(d)
i . Define uL = arg minu∈U pu and uR = arg maxu∈U pu.

Then for any v ∈ C(d)
i , if uL and uR are present in tv, then v survives to round d+ 1, that is

v ∈ Vd+1. Moreover, for any v ∈ Vd+1, let pmin(v, U) denote the original position of the first
1 from U that is also in the trace tv. Then we have pmin(v, u)− puL ≤ 8

√
kτd log(nmk).

The proofs of the lemmas are all-intertwined. In the induction step we will assume that
all lemmas hold at the previous level of the recursion. Throughout we repeatedly take union
bound over all m traces and all up-to-k components, and set the failure probability for each
event to be 1/n2. In applications of Hoeffding’s inequality, this produces a 2 log(nmk) term
inside the square root.

Proof of Lemma 17. We proceed by induction. For the base case, by Hoeffding’s inequality,
we know that for all v ∈ V1 we have

|zv − pyv/2| ≤
√
n log(mkn) = τ1/8

except with probability n−2. This means that the position corresponding to a single original
1 u can span at most τ1/4 positions. If two such regions are merged into a single connected
component, then the distance between the regions is at most τ1, by construction. Since there
are most k such regions, the total length is at most (k − 1)τ1 + kτ1/4 ≤ 2kτ1. The second
claim follows from the concentration statement.

For the induction step, assume that the connected components at level d−1 have length at
most 2kτd−1. Fix a connected component C(d−1)

i and let u(d−1)
i,1 denote the left-most original

1 present in C(d−1)
i (u(d−1)

i,1 = min{yv : v ∈ C(d−1)
i }). By another application of Hoeffding’s

inequality and using the error guarantee in Lemma 18, we have that

|z(d−1)
v − (pyv − pu(d−1)

i,1
)/2|

≤ |z(d−1)
v − (pyv − pmin(v, U (d−1)

i))/2|+ |pmin(v, U (d−1)
i)− p

u
(d−1)
i,1
|/2

≤
√

2kτd−1 log(mkn) + 8
√
kτd−1 log(mkn) ≤ τd/8

except with probability n−2. From here, the same argument as in the base case yields
the claim. J

Proof of Lemma 18. We have two conditions to verify. Fix a component C(d)
i at level d

with maximal contiguous subsequence U ⊂ [k] and recall the definitions uL = arg minu∈U pu
and uR = arg maxu∈U pu. By another concentration bound, we know that

∀j : len(x̃(d,i)
j) ≤ (puR − puL)/2 +

√
(puR − puL) log(mnk)

with probability 1− n2. This reveals that:

L(d,i) ≤ (puR − puL)/2 +
√

(puR − puL) log(mnk)

Moreover, for any trace j that contains uR, uL the tail bound is two-sided:

∀j s.t. uL, uR ∈ x̃(d,i)
j :

∣∣∣len(x̃(d,i)
j)− (puR − puL)/2

∣∣∣ ≤√(puR − puL) log(mnk).

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:17

Note that we also have L(d,i) ≥ (puR − puL)/2 with overwhelming probability as:

Pr[∀j : len(x̃(d,i)
j) ≤ (puR − puL)/2]

≤
m∏
j=1

Pr[len(x̃(d,i)
j) ≤ (puR − puL)/2 | uR, uL] · Pr[uR, uL]

≤
(

1
2 ·

1
4

)m
= 2−3m

Here we are using the symmetry of the binomial distribution. Thus, with m ≥ n, the failure
probability here is exp(−Ω(n))), which is negligible.

Using the upper bound on L(d,i) reveals that x̃(d,i)
j survives, since

len(x̃(d,i)
j) ≥ (puR − puL)/2−

√
(puR − puL) log(mnk)

≥ L(d,i) − 2
√

(puR − puL) log(mnk) ≥ L(d,i) − 2
√

2L(d,i) log(mnk).

For the second condition, assume that some trace j survives but does not contain uL. Let
umin = arg min{yv : v ∈ C(d)

i , tv = j} denote the first original 1 in this trace that belongs to
C

(d)
i s block (By definition pumin = pmin(v, U) for each v : tv = j). Then we know that

len(x̃(d,i)
j) ≤ (puR − pumin)/2 +

√
(puR − pumin) log(nmk)

≤ (puR − pumin)/2 +
√

2L(d,i) log(nmk)

but since x̃(d,i)
j passed through the length filter, we also have a lower bound on its length,

and so we get that

pumin − puL ≤ 4
√

2L(d,i) log(nmk) ≤ 8
√
kτd log(nmk)

where the last inequality follows from Lemma 17. J

Proof of Lemma 16. The proof here follows the discussion in the previous subsection. Fix a
component C(d−1)

i with corresponding block U (d−1)
i ⊂ [k] at level d− 1 and assume that all

three lemmas apply for all previous levels. For a subtrace x(d−1,i)
j in this component observe

and recall the definition u
(d−1)
i,1 = min{yv : v ∈ C(d−1)

i } and pmin(v, U (d−1)
i), which is the

position of the first 1 in U (d−1)
i that appears in trace tv = j. Since the length of the subtrace

is at most 2kτd−1 by Lemma 17 we get that

|z(d−1)
v − (ptv − pu(d−1)

i,1
)/2|

≤ |z(d−1)
v − (ptv − pmin(v, U (d−1)

i))/2|+ |pmin(v, U (d−1)
i)− p

u
(d−1)
i,1
|/2

≤
√

2kτd−1 log(mnk) + 8
√
kτd−1 log(mkn) = τd/8. (2)

Here the last inequality uses Hoeffding’s bound along with Lemma 18 at level d− 1. This
implies that the clustering at level d is consistent. J

Proof of Theorem 15. First take a union bound over D ≤ log logn applications of the
three lemmas, so that the total failure probability is cD/n2 ≤ 1/n. From now, assume that
the events in the three lemmas all hold for all levels. In particular, this implies that the
components C(D)

i are consistent. We must verify that the clusters are pure and then track
how many vertices remain.

ESA 2019

68:18 Trace Reconstruction: Generalized and Parameterized

C
(1)
1

C
(2)
1 C

(2)
2 C

(2)
3

Figure 1 De-biasing of traces. The figure displays the regions of the original string x that
correspond to each connected component found in the algorithm. The end-points of each component
correspond to 1s in the original string. To de-bias the length filter for component C

(1)
1 at level 1, we

identify and retain only the traces that contain all of the 1s colored red above. Then, to de-bias the
length filter at C

(2)
2 at level 2, we identify and retain only the traces that contain all of the green 1s.

For the first claim, let us revisit the proof of Lemma 16. If two vertices, say v, v′, in a
component at level D − 1 corresponded to different 1s, say u, u′ then by the gap condition,
we know that |pu − pu′ | ≥ g. On the other hand, we know that (2) holds, and we will use
this to prove that no edge appears between these vertices. We have that

|zv − zv′ | ≥ τD/8 + τD/8 + |ptv − pt′v |/2 ≥ τD/4 + g/2,

and so, if g/2 ≥ τD, then the two vertices will not share an edge. The argument applies
for all pairs and hence the clusters at level D are pure, which establishes the first claim in
the Theorem 15.

For the second claim, note that by Lemma 18, for every component at every level, if a
trace contains the two endpoints of that component, then it will survive the filter. Hence,
in every filtering step we expect to retain 1/4 of the subtraces passing through, and, by
a Chernoff bound, we will retain 1/5 of the subtraces except with exp(−Ω(n)), provided
m ≥ n. Since we perform D = log logn levels, we retain m/5log logn = m/ log5(n) traces in
each cluster with high probability. J

Removing Bias: The reverse recursion

Now that we have isolated the vertices into pure clusters, we need to work our way up
through the recursion to remove biases introduced by the hierarchical clustering. For any
component C(D−1)

i corresponding to block U (D−1)
i ⊂ [k] at level D− 1, since the components

at level D are pure, we can identify exactly the subtraces that contain the first and last 1 in
the block. We throw away all other traces, which de-biases the length filter at level D − 1.

Unfortunately for a component C(d−1)
i corresponding to a block U (d−1)

i at level d − 1,
we cannot identify exactly the subtraces that contain the exactly the first and last 1 in the
block. However, we know that C(d−1)

i is further refined into sub-components {C(d)
i′ } at level

d, and by induction we can identify all the traces that contain the left-most and right-most 1
in the left-most and right-most sub-components. We identify all such traces and eliminate
the rest to debias the length filter at level d− 1. See Figure 1 for an illustration.

To debias this length filter, we filter based on the presence of two 1s at level d − 1
(just the end points), and two futher 1s at level d (the inner endpoints of the first and last
sub-components), four further 1s at d + 1, and so on. So, just to debias the length filter
at level d− 1 we require 2D−(d−1) 1s to be present. Since we must debias all length filters
above a particular component, we require the presence of

∑D−1
d=1 2D−d ≤ 2D ≤ log2(n) 1s.

The probability of all log2(n) of these 1s appearing is 1/n and by Chernoff bound, with high
probability at least m/2n of our traces will contain all of these 1s.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:19

For any 1, u, in the original string, let S denote the subset of log2(n) 1s, whose presence we
require to debias the length filters above the pure component containing u. After the debiasing
step, the remaining vertices in the component containing u have zv values distributed as

zv ∼ Bin(pu − 1− |SL|, 1/2) + (|SL|+ 1)

where |SL| is the number of 1s in |S| that appear before u in the sequence, and the final 1 is
due to the presence of u. Using the binomial mean estimator, we can therefore estimate pu
with probability 1− 1/n, provided m/n ≥ n2 log(n). Thus, poly(n) traces suffice to recover
all pu values, provided that g > τD and D = log2 log2 n. This proves Theorem 2.

4 Reconstructing Arbitrary Matrices

Recall that in the matrix reconstruction problem, we are given samples of a matrix X ∈
{0, 1}

√
n×
√
n passed through a matrix deletion channel, which deletes each row and each

column independently with probability p = 1− q. In this section we prove Theorem 4.

I Theorem (Restatement of Theorem 4). For matrix reconstruction, exp(O(n1/4√p logn/q))
traces suffice to recover an arbitrary matrix X ∈ {0, 1}

√
n×
√
n, where p is the deletion

probability and q = 1− p.

The bulk of the proof involves designing a procedure to test between two matrices X and
Y . This test is based on identifying a particular received entry where the traces must differ
significantly, and to show this, we analyze a certain bivariate Littlewood polynomial, which
is the bulk of the proof. Equipped with this test, we can apply a union bound and simply
search over all pairs of matrices to recover the string.

For a matrix X ∈ {0, 1}
√
n×
√
n, let X̃ denote a matrix trace. Let us denote the (i, j)th

entry of the matrix as Xi,j , i, j = 0, 1, . . . ,
√
n − 1, an indexing protocol we adhere to for

every matrix. For two complex numbers w1, w2 ∈ C, observe that

E

√n−1∑
i,j=0

X̃i,jw
i
1w

j
2

 = q2
∑
i,j

wi1w
j
2

∑
ki≥i,kj≥j

Xki,kj

(
ki
i

)(
kj
j

)
pki−iqipkj−jqj

= q2

√
n−1∑

k1,k2=0
Xk1,k2(qw1 + p)k1(qw2 + p)k2

Thus, for two matrices X,Y , we have

1
q2E

√n−1∑
i,j=0

(X̃i,j − Ỹi,j)wi1w
j
2

 =

√
n−1∑

k1,k2=0
(Xk1,k2 − Yk1,k2)(qw1 + p)k1(qw2 + p)k2

, A(z1, z2)

where we are rebinding z1 = qw1 + p and z2 = qw2 + p. Observe that A(z1, z2) is a bivariate
Littlewood polynomial; all coefficients are in {−1, 0, 1}, and the degree is

√
n. For such

polynomials, we have the following estimate, which extends a result due of Borwein and
Erdélyi [6] for univariate polynomials.

I Lemma 19. Let f(z1, z2) be non-zero degree n Littlewood polynomial. Then,

|f(z?1 , z?2)| ≥ exp(−C1L
2 logn)

for some z?1 = exp(iθ1), z?2 = exp(iθ2) where |θ1|, |θ2| ≤ π/L, and C1 is a universal constant.

ESA 2019

68:20 Trace Reconstruction: Generalized and Parameterized

Proof. Fix L > 0 and define the polynomial

F (z1, z2) =
∏

1≤a≤L,1≤b≤L
f(z1e

πia/L, z2e
πib/L).

We first show that there exists z?1 , z?2 on the unit disk such that F (z?1 , z?2) ≥ 1. This
follows from an iterated application of the maximum modulus principle. First factorize
F (z1, z2) = zk2G(z1, z2) where k is chosen such that G(z1, z2) has no common factors of
z2. Since F has non-zero coefficients, this implies that G(z1, 0) is a non-zero univariate
polynomial. Further factorize G(z1, 0) = z`1H(z1) so that terms in H have no common factors
of z1. H is also a Littlewood polynomial and moreover it has non-zero leading term, so that
|H(0)| ≥ 1. Thus by the maximum modulus principle:

|F (z?1 , z?2)| = |G(z?1 , z?2)| ≥ |G(z?1 , 0)| ≥ |H(z?1)| ≥ |H(0)| ≥ 1.

Now, for any a, b ∈ {1, . . . , L} we have

1 ≤ |F (z?1 , z?2)| ≤ |f((z?1)πia/L, (z?2)πib/L)| · n(L2−1),

where we are using the fact that |f(z1, z2)| ≤ n. This proves the lemma, since we may choose
a such that (z?1)πia/L = exp(iθ) for |θ| ≤ π/L. J

Let γL = {eiθ : |θ| ≤ π/L} denote the arc specified in Lemma 19. For any z1 ∈ γL,
Nazarov and Peres [26] provide the following estimate for the modulus of w1 = (z1 − p)/q:

∀z ∈ γL : |(z − p)/q| ≤ exp(C2p/(Lq)2).

Using these two estimates, we may sandwich |A(z1, z2)| by

exp(−C1L
2 logn) ≤ max

z1,z2∈γL
|A(z1, z2)| ≤ exp(C ′p

√
n/(Lq)2)

q2

∑
ij

∣∣E[X̃ij − Ỹij]
∣∣ .

This implies that there exists some coordinate (i, j) such that∣∣E[X̃ij − Ỹij]
∣∣ ≥ q2

n
exp

(
−C1L

2 logn− C ′p
√
n

L2q2

)
≥ q2

n
exp

(
−Cn

1/4√p logn
q

)
,

where the second inequality follows by optimizing for L.
The remainder of the proof follows the argument of [26]: Since we have witnessed significant

separation between the traces received from X and those received from Y , we can test between
these cases with exp(O(n1/4√logn)) samples (via a simple Chernoff bound). Since we do
not know which of the 2n traces is the truth, we actually test between all pairs, where the
test has no guarantee if neither matrix is the truth. However, via a union bound, the true
matrix will beat every other in these tests and this only introduces a poly(n) factor in the
sample complexity.

5 Reconstructing Random Matrices

In this section, we prove Theorem 5: O(logn) traces suffice to reconstruct a random
√
n×
√
n

matrix with high probability for any constant deletion probability p < 1. This is optimal
since Ω(logn) traces are necessary to just ensure that every bit appears in a least one trace.

Our result is proved in two steps. We first design an oracle that allows us to identify
when two rows (or two columns) in different matrix traces correspond to the same row
(resp. column) of the original matrix. We then use this oracle to identify which rows and
columns of the original matrix have been deleted to generate each trace. This allows us to
identify the original position of each bit in each trace. Hence, as long as each bit is preserved
in at least one trace (and O(logn) traces is sufficient to ensure this with high probability),
we can reconstruct the entire original matrix.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:21

Oracle for Identifying Corresponding Rows/Columns. We will first design an oracle that
given two strings t and t′ distinguishes, for any constant q > 0, with high probability between
the cases:

Case 1: t and t′ are traces generated by the deletion channel with preservation probability q
from the same random string x ∈R {0, 1}

√
n

Case 2: t and t′ are traces generated by the deletion channel with preservation probability q
from independent random strings x, y ∈R {0, 1}

√
n

It t and t′ are two rows (or two columns) from two different matrix traces, then this test
determines whether t and t′ correspond to the same or different row (resp. column) of the
original matrix. In Section 5.1, we show how to perform this test with failure probability at
most 1/n10. In fact, the failure probability can be made exponentially small but a polynomially
small failure probability will be sufficient for our purposes.

Using the Oracle for Reconstruction. Given m = Θ(logn) traces we can ensure that
every bit of X appears in at least one of the matrix traces with high probability. We then
use this oracle to associate each row in each trace with the rows in other traces that are
subsequences of the same original row. This requires at most

(
m
√
n

2
)
≤ (m

√
n)2 applications

of the oracle and so, by the union bound, this can performed with failure probability at most
(m
√
n)2/n10 ≤ 1/n8 where the inequality applies for sufficiently large n.
After using the oracle to identify corresponding rows amongst the different traces we

group all the rows of the traces into
√
n groups G1, . . . , G√n where the expected size of each

group is mq. We next infer which group corresponds to the ith row of X for each i ∈ [
√
n].

Let f be the bijection between groups and [
√
n] that we are trying to learn, i.e., f(j) = i if

the jth group corresponds to the ith row of X. If suffices to determine whether f(j) < f(j′)
or f(j) > f(j′) for each pair j 6= j′. If there exists a matrix trace X̃ that includes a row
in Gj and a row in Gj′ then we can infer the relative ordering of f(j) and f(j′) based on
whether the row from Gj appears higher or lower in X̃ than the row in Gj′ . The probability
there exists such a trace is 1− (1− q2)m ≥ 1− 1/ poly(n) and we can learn the bijection f
with high probability.

We also perform an analogous process with columns. After both rows and columns have
been processed, we know exactly which rows and columns were deleted to form each trace,
which reveals the original position of each received bit in each trace. Given that every bit of
X appeared in at least some trace, this suffices to reconstruct X, proving Theorem 5.

I Theorem (Restatement of Theorem 5). For any constant deletion probability p < 1, O(logn)
traces are sufficient to reconstruct a random X ∈ {0, 1}

√
n×
√
n.

5.1 Oracle: Testing whether two traces come from same random string
Define Si = {2wi+ j : j = 0, . . . , w − 1} to be a contiguous subsets of size

w = 100n1/4
√

1/q · logn .

Note that there are size w gaps between each Si and Si+1, i.e., w elements that are both
larger than Si and smaller than Si+1. This will later help us argue that the bits in positions Si
and Si+1 in different traces are independent. Given a traces t, t′, define the three quantities:
Xi =

∑
j∈Si tj , Yi =

∑
j∈Si t

′
j and Zi = (Xi − Yi)2. We will show that by considering

Z0, Z1, Z2, . . . we can determine whether t and t′ are traces of the same original string or
traces of two different random strings.

ESA 2019

68:22 Trace Reconstruction: Generalized and Parameterized

The basic idea is that if t and t′ are generated by the same string, many of the bits
summed to construct Xi and the bits summed to construct Yi will correspond to the same
bits of the original string; hence Zi will be smaller than it would be if t and t′ were generated
from two independent random strings. To make this precise, we need to introduce some
additional notation.

I Definition 20. For A ⊂ {0, 1, 2, . . .}, let Rt(A) be the indices of the bits in the transmitted
string that landed in positions A in trace t. Similarly define Rt′(A). For example, if bits in
position 0 and 2 were deleted during the transmission of t then Rt({0, 1, 2}) = {1, 3, 4}.

The next lemma quantifies the overlap between Rt(Si) and Rt′(Si).

I Lemma 21 (Deletion Patterns). With high probability over the randomness of the deletion
channel,

∀i , |Rt(Si) ∩Rt′(Si)| ≥ qw/2 and ∀i 6= j , |Rt(Si) ∩Rt′(Sj)| = 0 .

Note that conditioned on the second property, each Zi is independent.

Proof. First note that by the Chernoff bound, for each j ∈ [
√
n], the jth bit of the original

sequence appears in position qj±r where r = 5n1/4√q logn with high probability. The second
part of the lemma follows since r = wq/20 < w/20 and therefore, with high probability, any
bit in the original string will not appear in Sα in one trace and Sβ in another for α 6= β

because there was a size w gap between Sα and Sβ .
For the first part of the lemma, for each Si, define

S′i = {2wi/q + r/q, 2wi/q + r + 1, . . . , (2wi+ w − 1)/q − r/q} .

By the Chernoff Bound, with high probability the w/q−2r/q > 0.9w/q bits in S′i positions in
the original string arrive in positions Si in the trace. Also with high probability, 0.9q2|S′i| of
the bits in S′i are transmitted in the generation of both t and t′. Hence, |Rt(Si) ∩Rt′(Si)| ≥
0.9w/q · 0.9q2 > qw/2 as required. J

We are now ready to argue that the values Z0, Z1, . . . are sufficient to determine whether
or not t and t′ are generated from the same random string.

I Theorem 22. Let zj =
∑g−1
i=0 Zjg+i for g = 96/q2 and D = median(z0, z1, z2, . . . , zΘ(logn)).

Case 1: If t and t′ are generated from the same string, then Pr[D < (1 − q/4)gw/2] ≥
1− 1/n10.

Case 2: If t and t′ are generated from different strings, then Pr[D ≥ (1 − q/4)gw/2] ≥
1− 1/n10.

Proof. Throughout the proof we condition on the equations in Lemma 21 being satisfied.
Note that this event is a function of the randomness of the deletion channel rather than the
randomness of the strings being transmitted over the deletion channel.

First, suppose t and t′ are generated from different strings. Then Zi has the same
distribution as the variable C in Lemma 23 when r is set to w. Hence, E[zj] = gw/2 and
var(zj) ≤ gw2/2. Therefore,

Pr[zj < (1− q/4)gw/2] ≤ Pr[|zj −E[zj]| ≥ (q/4)gw/2] ≤ var(zj)
E[zj]2 · q2/16 ≤

2
gq2/16 = 1/3.

Therefore, by the Chernoff bound, D ≥ (1− q/4)gw/2 with probability at least 1− 1/n10.

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:23

Now, suppose t and t′ are generated from the same string. Then, Zi has the same
distribution as C in Lemma 23 for some r ≤ w − qw/2. Hence, E[zj] = gr/2 and var(zj) ≤
gr2/2. Therefore,

Pr[zj ≥ (1− q/4)gw/2] ≤ Pr[|zj −E[zj]| ≥ (q/4)gw/2] ≤ var(zj)
E[zj]2 · q2/16 ≤

2
gq2/16 = 1/3.

Therefore, by the Chernoff bound, D < (1−q/4)gw/2 with probability at least 1−1/n10. J

I Lemma 23. Let A ∼ Bin(h, 1/2) and B ∼ Bin(h, 1/2) be independent and C = (A−B)2.
Then,

E[C] = h/2 and var[C] ≤ m2/2 .

Proof. The result follows by direct calculation:

E[(A−B)2] = E[A2] + E[B2]− 2E[A]E[B] = m(m+ 1)/2−m2/2 = m/2

and

var((A−B)2) = E[(A−B)4]− (m/2)2 = m/2 + 6
(
m

2

)
/4−m2/4 = (2m− 1)m/4 .

J

6 Bounded Hamming Distance

In this section, we turn to the sparse testing problem. We show that is possible to distinguish
between two strings x and y with Hamming distance ∆(x, y) < 2k, given exp(O(k logn))
traces. This question is naturally related to sparse reconstruction, since the difference string
x− y ∈ {−1, 0, 1}n is at most 2k sparse, but distinguishing two strings from traces is also at
the core of our analysis in Section 2, as well as the analysis of Nazarov and Peres [26] and
De et al. [11]. In particular given a testing routine, reconstruction simply requires applying
the union bound.

In the binary symmetric channel (where each bit is flipped independently with some
probability), distinguishing between two strings is easier if the Hamming distance is larger,
since the two strings are farther apart. However, it is unclear if this intuition carries over
to the deletion channel. In particular, the number of traces required for testing is unlikely
to even be monotonic in the Hamming distance; if the Hamming distance is odd, then x
and y have different Hamming weight, and we can estimate the Hamming weight using just
O(n) traces.

Our analysis uses a combinatorial result about k-decks due to Krasikov and Roditty [23],
along with an approach first used in McGregor et al. [24].

I Theorem 24 (Krasikov and Roditty [23]). The k-deck of a string is the multi-set of length
k subsequences. No two strings x, y of length n have the same k-deck if ∆(x, y) < 2k.

I Theorem 25. The k-deck of a binary string can be determined exactly with exp(O(k logn))
traces from the symmetric deletion channel assuming p ≤ 1− k/n.

Proof. We argue that sampling exp(O(k logn)) length k-subsequence of a string is sufficient
to reconstruct the k-deck with high probability. The result then follows because if p ≤ 1−k/n,
then with constant probability a trace generated by the deletion channel has length at least
k and hence we can take a random k subsequence of such a trace as a random k subsequence
from x.

ESA 2019

68:24 Trace Reconstruction: Generalized and Parameterized

Let fu be the number of times that u ∈ {0, 1}k appears as a subsequence of x. Then, let
Xu be the number of times u is generated if we sample r = 3nk lognk subsequences of length
k uniformly at random. E [Xi] = rfu/

(
n
k

)
and by an application of the Chernoff bound.

Pr
[
|Xu

(
n

k

)
/r − fu| ≥ 1

]
= Pr

[
|Xu − E [X] | ≥ r/

(
n

k

)]
≤ exp

(
−f

2
u · rfu
3
(
n
k

))
≤ 1/nk

where the last line follows given fu ≥ 1 (if fu = 0 the bound is trivially true) and r =
3nk lognk. Hence, by taking the union bound over all 2k sequences u, it follows that we can
determine the frequency of all length k subsequences with high probability. J

Theorem 3 follows directly from Theorem 24 and Theorem 25.

I Theorem (Restatement of Theorem 3). For all x, y ∈ {0, 1}n such that ∆(x, y) < 2k,

m = exp(O(k logn))

traces are sufficient to be distinguished between x and y.

As noted earlier, if ∆(x, y) is odd then poly(n) traces suffice. Also, regardless of the
Hamming distance, if the location of the first and second positions (say i and j) where x and
y differs by at least Ω(

√
n logn) then it is easy to show that expected weight of the length

i/2 prefix of the traces differs by Ω(1/poly(n)) and hence we can distinguish x and y with
poly(n) traces.

References
1 Dimitris Achlioptas and Frank McSherry. On spectral learning of mixtures of distributions. In

Conference on Learning Theory, 2005.
2 Sanjeev Arora and Ravi Kannan. Learning mixtures of arbitrary gaussians. In Symposium on

Theory of Computing, 2001.
3 Frank Ban, Xi Chen, Adam Frelich, Rocco A. Servedio, and Sandip Sinha. Beyond trace

reconstruction: Population recovery from the deletion channel. arXiv, 2019. arXiv:1904.05532.
4 Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing

strings from random traces. In Symposium on Discrete Algorithms, 2004.
5 Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In Foundations

of Computer Science, 2010.
6 P. Borwein and T. Erdélyi. Littlewood-Type Problems on Subarcs of the Unit Circle. Indiana

University Mathematics Journal, 1997.
7 Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Learning mixtures of

structured distributions over discrete domains. In Symposium on Discrete Algorithms, 2013.
8 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and João Ribeiro. Coded trace recon-

struction. arXiv e-prints, page arXiv:1903.09992, March 2019. arXiv:1903.09992.
9 Sanjoy Dasgupta. Learning mixtures of Gaussians. In Foundations of Computer Science, 1999.

10 Sami Davies, Miklos Z. Racz, and Cyrus Rashtchian. Reconstructing Trees from Traces. arXiv
e-prints, page arXiv:1902.05101, February 2019. arXiv:1902.05101.

11 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Symposium on Theory of Computing, 2017.

12 Jon Feldman, Ryan O’Donnell, and Rocco A Servedio. Learning mixtures of product distribu-
tions over discrete domains. SIAM Journal on Computing, 2008.

13 Anna C. Gilbert and Piotr Indyk. Sparse Recovery Using Sparse Matrices. Proceedings of the
IEEE, 2010.

http://arxiv.org/abs/1904.05532
http://arxiv.org/abs/1903.09992
http://arxiv.org/abs/1902.05101

A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal 68:25

14 Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two gaussians. In
Symposium on Theory of Computing, 2015.

15 Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion
probabilities. In Workshop on Analytic Algorithmics and Combinatorics, 2018.

16 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. arXiv, 2018. arXiv:
1808.02336.

17 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for
random strings and arbitrary deletion probability. In Conference On Learning Theory, COLT
2018, Stockholm, Sweden, 6-9 July 2018., pages 1799–1840, 2018.

18 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace recon-
struction with constant deletion probability and related results. In Symposium on Discrete
Algorithms, 2008.

19 Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares proofs. In
Symposium on Theory of Computing, 2018.

20 Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of
two Gaussians. In Symposium on Theory of Computing, 2010.

21 Sampath Kannan and Andrew McGregor. More on Reconstructing Strings from Random
Traces: Insertions and Deletions. In International Symposium on Information Theory, 2005.

22 Géza Kós, Péter Ligeti, and Péter Sziklai. Reconstruction of matrices from submatrices.
Mathematics of Computation, 2009. doi:10.1090/S0025-5718-09-02210-8.

23 I. Krasikov and Y. Roditty. On a Reconstruction Problem for Sequences. Journal of Combin-
atorial Theory, Series A, 1997.

24 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace Reconstruction Revisited. In
European Symposium on Algorithms, 2014.

25 Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of
gaussians. In Foundations of Computer Science, 2010.

26 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3) samples. In Symposium
on Theory of Computing, 2017.

27 Yuval Peres and Alex Zhai. Average-Case Reconstruction for the Deletion Channel: Sub-
polynomially Many Traces Suffice. In Symposium on Foundations of Computer Science,
2017.

28 Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over
insertion-deletion channels. In Symposium on Discrete Algorithms, 2008.

ESA 2019

http://arxiv.org/abs/1808.02336
http://arxiv.org/abs/1808.02336
https://doi.org/10.1090/S0025-5718-09-02210-8

	Introduction
	Our Results
	Our Techniques

	Sparsity and Learning Binomial Mixtures
	Well-Separated Sequences
	A Recursive Hierarchical Clustering Algorithm and Its Analysis: Overview
	Strengthening to a Parameterization by Runs
	Sparsity with Gap: Technical Details

	Reconstructing Arbitrary Matrices
	Reconstructing Random Matrices
	Oracle: Testing whether two traces come from same random string

	Bounded Hamming Distance

