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Abstract
We study spectral approaches for the MAX-2-LIN(k) problem, in which we are given a system of
m linear equations of the form xi − xj ≡ cij mod k, and required to find an assignment to the n
variables {xi} that maximises the total number of satisfied equations.

We consider Hermitian Laplacians related to this problem, and prove a Cheeger inequality
that relates the smallest eigenvalue of a Hermitian Laplacian to the maximum number of satisfied
equations of a MAX-2-LIN(k) instance I. We develop an Õ(kn2) time algorithm that, for any
(1− ε)-satisfiable instance, produces an assignment satisfying a

(
1−O(k)

√
ε
)
-fraction of equations.

We also present a subquadratic-time algorithm that, when the graph associated with I is an expander,
produces an assignment satisfying a

(
1−O(k2)ε

)
-fraction of the equations. Our Cheeger inequality

and first algorithm can be seen as generalisations of the Cheeger inequality and algorithm for
MAX-CUT developed by Trevisan.
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1 Introduction

In the MAX-2-LIN(k) problem, we are given a system of m linear equations of the form
ui−vi ≡ ci mod k, where ui, vi ∈ {x1, . . . , xn} and each equation has weight bi. The objective
is to find an assignment to the variables xi that maximises the total weight of satisfied
equations. As an important case of Unique Games [8, 15], the MAX-2-LIN(k) problem has
been extensively studied in theoretical computer science. This problem is known to be
NP-hard to approximate within a ratio of 11/12 + δ for any constant δ > 0 [9, 13], and
it is conjectured to be hard to distinguish between MAX-2-LIN(k) instances for which a
(1− ε)-fraction of equations can be satisfied versus instances for which only an ε-fraction can
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be satisfied [16]. On the algorithmic side, there has been a number of LP and SDP-based
algorithms proposed for the MAX-2-LIN(k) problem (e.g., [6, 12, 15, 26]), and the case of
k = 2, which corresponds to the classical MAX-CUT problem for undirected graphs [10, 14],
has been widely studied over the past fifty years.

In this paper we investigate efficient spectral algorithms for MAX-2-LIN(k). For any
MAX-2-LIN(k) instance I with n variables, we express I by a Hermitian Laplacian matrix
LI ∈ Cn×n, and analyse the spectral properties of LI . In comparison to the well-known
Laplacian matrix for undirected graphs [7], complex-valued entries in LI are able to express
directed edges in the graph associated with I, and at the same time ensure that all the
eigenvalues of LI are real-valued. We demonstrate the power of our Hermitian Laplacian
matrices by relating the maximum number of satisfied equations of I to the spectral properties
of LI . In particular, we develop a Cheeger inequality that relates partial assignments of I
to λ1(LI), the smallest eigenvalue of LI . Based on a recursive application of the algorithm
behind our Cheeger inequality, as well as a spectral sparsification procedure for MAX-2-
LIN(k) instances, we present an approximation algorithm for MAX-2-LIN(k) that runs in
Õ(k · n2) time1 . To the best of our knowledge, this is the first purely spectral polynomial-
time algorithm for the MAX-2-LIN(k) problem with approximation guarantees that matches
SDP-based ones for constant values of k. The formal statement of our result is as follows:

I Theorem 1. There is an Õ(k · n2)-time algorithm such that, for any given MAX-2-LIN(k)
instance I with optimum 1− ε, the algorithm returns an assignment φ satisfying at least a
(1−O(k)

√
ε)-fraction of the equations2.

Our result can be viewed as a generalisation of the MAX-CUT algorithm by Trevisan [27],
who derived a Cheeger inequality that relates the value of the maximum cut to the smallest
eigenvalue of an undirected graph’s adjacency matrix. The proof of Trevisan’s Cheeger
inequality, however, is based on constructing sweep sets in R, while in our setting constructing
sweep sets in C is needed, as the underlying graph defined by LI is directed and eigenvectors
of LI are in Cn. The other difference between our result and the one in [27] is that the goal
of the MAX-CUT problem is to find a bipartition of the vertex set, while for the MAX-2-LIN(k)
problem we need to use an eigenvector to find k vertex-disjoint subsets, which corresponds
to subsets of variables assigned to the same value.

Our approach also shares some similarities with the one by Goemans and Williamson [11],
who presented a 0.793733-approximation algorithm for MAX-2-LIN(3) based on Complex
Semidefinite Programming. The objective function of their SDP relaxation is, in fact, exactly
the quadratic form of our Hermitian Laplacian matrix LI , although this matrix was not
explicitly defined in their paper. In addition, their rounding scheme divides the complex
unit ball into k regions according to the angle with a random vector, which is part of our
rounding scheme as well. Therefore, if one views Trevisan’s work [27] as a spectral analogue
to the celebrated SDP-based algorithm for MAX-CUT by Goemans and Williamson [10], our
result can be seen as a spectral analogue to the Goemans and Williamson’s algorithm for
MAX-2-LIN(k).

We further prove that, when the undirected graph associated with a MAX-2-LIN(k)
instance is an expander, the approximation ratio from Theorem 1 can be improved. Our
result is formally stated as follows:

1 The notation Õ(·) suppresses poly-logarithmic factors in n, m, and k.
2 An instance I has optimum 1− ε, if the maximum fraction of the total weights of satisfied equations is

1− ε.
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I Theorem 2. Let I be an instance of MAX-2-LIN(k) on a d-regular graph with n vertices
and suppose its optimum is 1− ε. There is an Õ

(
nd+ n1.5

k
√
ε

)
-time algorithm that returns an

assignment φ : V → [k] satisfying at least a

1−O(k2) · ε

λ3
2(LU ) (1)

fraction of equations in I, where λ2(LU ) is the second smallest eigenvalue of the normalised
Laplacian matrix of the underlying undirected graph U .

Our technique is similar to the one by Kolla [18], which was used to show that solving
the MAX-2-LIN(k) problem on expander graphs is easier. In [18], a MAX-2-LIN(k) instance
is represented by the label-extended graph, and the algorithm is based on an exhaustive
search in a subspace spanned by eigenvectors associated with eigenvalues close to 0. When
the underlying graph of the MAX-2-LIN(k) instance has good expansion, this subspace is
of dimension k. Therefore, the exhaustive search runs in time O

(
2k + poly(n · k)

)
, which

is polynomial-time when k = O(logn). Comparing with the work in [18], we show that,
when the underlying graph has good expansion, the eigenvector associated with the smallest
eigenvalue λ1(LI) of the Hermitian Laplacians suffices to give a good approximation. We
notice that Arora et al. [4] already showed that, for expander graphs, it is possible to satisfy
a 1−O(ε log(1/ε)) fraction of equations in polynomial time without any dependency on k.
Their algorithm is based on an SDP relaxation.

1.1 Other related work

There are many research results for the MAX-2-LIN(k) problem (e.g., [6, 12, 15, 26]), and we
briefly discuss the ones most closely related to our work. For the MAX-2-LIN(k) problem and
Unique Games, spectral techniques are often employed to analyse the Laplacian matrix of the
Label-Extended graph (see, e.g., the aforementioned [18]), which has a strong connection with
our Hermitian Laplacian: the latter can be seen as one of the blocks that arise in a particular
block-diagonalisation of the former. Arora et al. [3], instead, use spectral techniques to
obtain a particular decomposition of the constraint graph of a Unique Games instance, and
exploit this decomposition to design an exp

(
(kn)O(ε))poly(n)-time algorithm for Unique

Games. Regarding polynomial-time algorithms, Charikar et al. [6] propose an SDP-based
algorithm for Unique Games that satisfies a 1−O(

√
ε log k) fraction of constraints, which is

nearly optimal assuming the Unique Games Conjecture [16]. We remark that canonical SDP
programs for Unique Games can be solved in nearly-linear time [25].

Our result also relates to the research on spectral methods for synchronisation problems.
For example, the adjacency matrix corresponding to our Hermitian Laplacian is considered
by Singer [23] in relation to an angular synchronisation problem. The relation between the
eigenvectors of such matrix and the MAX-2-LIN(k) problem is also mentioned but without
offering formal approximation guarantees. Bandeira et al. [5] prove a Cheeger-type inequality
that relates the spectra of an operator, the graph connection Laplacian, to “how well” an
instance of the O(d)-synchronisation problem can be solved. Their results, however, are not
directly comparable to ours: even though our Hermitian Laplacian can also be seen as a
graph connection Laplacian for an SO(2)-synchronisation problem, our goal is to assign the
n vertices to at most k elements of SO(2), while the goal of Bandeira et al. is to assign each
vertex to a possibly different element of O(d).

ESA 2019
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2 Hermitian Matrices for MAX-2-LIN(k)

We can write an instance of MAX-2-LIN(k) by I = (G, k), where G = (V,E, b, c) denotes
a directed graph with an edge weight function b : E → R+ and an edge color function
c : E → [k], where [k] def= {0, 1, . . . , k − 1}. More precisely, every equation ui − vi ≡ ci mod k

with weight bi corresponds to a directed edge (ui, vi) with weight b(ui, vi) = buivi = bi
and color c(ui, vi) = cuivi = ci. In the rest of this paper, we will assume that G is weakly
connected, and write u v if there is a directed edge from u to v. The conjugate transpose
of any vector x ∈ Cn is denoted by x∗.

We define the Hermitian adjacency matrix AI ∈ Cn×n for instance I by

(AI)uv
def=


buvω

cuv
k u v,

bvuωk
cvu v  u,

0 otherwise,

where ωk = exp
( 2πi
k

)
is the complex k-th root of unity, and ωk = exp

(
− 2πi

k

)
is its

conjugate. We define the degree-diagonal matrix DI by (DI)uu = du where du is the
weighted degree given by du

def=
∑
u v buv +

∑
v u bvu. The Hermitian Laplacian matrix

is then defined by LI = DI −AI , and the corresponding normalised Laplacian matrix by
LI = D

−1/2
I LID

−1/2
I = I −D−1/2

I AID
−1/2
I . The eigenvalues of any matrix A are expressed

by λ1(A) ≤ . . . ≤ λn(A). The quadratic forms of LI can be related to the corresponding
instance of MAX-2-LIN(k) by the following lemma.

I Lemma 3. For any vector x ∈ Cn, we have x∗LIx =
∑
u v buv ‖xu − ω

cuv
k xv‖2 and

x∗LIx = 2
∑
u∈V

du ‖xu‖2 −
∑
u v

buv ‖xu + ωcuvk xv‖2
.

The lemma below presents a qualitative relationship between the eigenvector associated
with λ1(LI) and an assignment of I.

I Lemma 4. All eigenvalues of LI are in the range [0, 2]. Moreover, λ1(LI) = 0 if and only
if there exists an assignment satisfying all equations in I.

3 A Cheeger inequality for λ1(LI) and MAX-2-LIN(k)

The discrete Cheeger inequality [1] shows that, for any undirected graph G, the conductance
hG of G = (V,E) can be approximated by the second smallest eigenvalue of G’s normalised
Laplacian matrix LG, i.e.,

λ2(LG)
2 ≤ hG ≤

√
2 · λ2(LG). (2)

Moreover, the proof of the second inequality above is constructive, and indicates that a
subset S ⊂ V with conductance at most

√
2 · λ2(LG) can be found by using the second

bottom eigenvector of LG to embed vertices on the real line. As one of the most fundamental
results in spectral graph theory, the Cheeger inequality has found applications in the study
of a wide range of optimisation problems, e.g., graph partitioning [20], max-cut [27], and
many practical problems like image segmentation [22] and web search [17].

In this section, we develop connections between λ1(LI) and MAX-2-LIN(k) by proving a
Cheeger-type inequality. Let φ : {x1, . . . , xn} → [k]∪ {⊥} be an arbitrary partial assignment
of an instance I, where φ(xi) = ⊥ means that the assignment of xi has not been decided.



H. Li, H. Sun, and L. Zanetti 71:5

These variables’ assignments will be determined through some recursive construction, which
will be elaborated in Section 5. We remark that this framework of recursively computing a
partial assignment was first introduced by Trevisan [27], and our theorem can be viewed as a
generalisation of the one in [27], which corresponds to the k = 2 case of ours.

To relate quadratic forms of LG with the objective function of the MAX-2-LIN(k) problem,
we introduce a penalty function as follows:

I Definition 5. Given a partial assignment φ : {x1, . . . , xn} → [k]∪ {⊥} and a directed edge
(u, v), the penalty of (u, v) with respect to φ is defined by

pφuv(I) def=


0 φ(u) 6= ⊥, φ(v) 6= ⊥, φ(u)− φ(v) ≡ cuv mod k

1 φ(u) 6= ⊥, φ(v) 6= ⊥, φ(u)− φ(v) 6≡ cuv mod k

0 φ(u) = φ(v) = ⊥
1− 1

k exactly one of φ(u), φ(v) is ⊥.

(3)

For simplicity, we write pφuv when the underlying instance I is clear from the context.

The values of pφuv from Definition 5 are chosen according to the following facts: (1) If both u
and v’s values are assigned, then their penalty is 1 if the equation φ(u)− φ(v) 6≡ cuv mod k

associated with (u, v) is unsatisfied, and 0 otherwise; (2) If both u and v’s values are ⊥,
then their penalty is temporally set to 0. Their penalty will be computed when u and v’s
assignment are determined during a later recursive stage. (3) If exactly one of u, v is assigned,
pφuv is set to 1− 1/k, since a random assignment to the other variable makes the edge (u, v)
satisfied with probability 1/k, hence pφuv is set to 1− 1/k.

Without loss of generality, we only consider φ for which φ(u) 6= ⊥ for at least one vertex
u, and define the penalty of assignment φ by

pφ
def=

2
∑
u v buvp

φ
uv

Vol(φ) , (4)

where Vol(φ) def=
∑
φ(u)6=⊥ du. Notice that the pφuv’s value is multiplied by buv in accordance

with the objective of MAX-2-LIN(k) that maximises the total weight of satisfied assignments.
Also, we multiply pφuv by 2 in the numerator since edges with at least one assigned endpoint
are counted at most twice in Vol(φ). Notice that, as long as G is weakly connected, pφ = 0 if
and only if all edges are satisfied by φ and, in general, the smaller the value of pφ, the more
edges are satisfied by φ. With this in mind, we define the imperfectness p(I) of I to quantify
how close I is to an instance where all equations can be satisfied by a single assignment.

I Definition 6. Given any MAX-2-LIN(k) instance I = (G, k), the imperfectness of I is
defined by p(I) def= minφ∈([k]∪{⊥})V \{⊥}V pφ.

The main result of this section is a Cheeger-type inequality that relates p(I) and λ1(LI),
which is summarised in Theorem 7. Note that, since sin(x) ≥ (2/π) · x for x ∈ [0, π/2], the
factor before

√
2λ1 in the theorem statement is at most (2 + k/4) for k ≥ 2.

I Theorem 7. Let λ1 be the smallest eigenvalue of LI . It holds that
λ1

2 ≤ p(I) ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1. (5)

Moreover, given the eigenvector associated with λ1, there is an O(m+n logn)-time algorithm
that returns a partial assignment φ such that

λ1

2 ≤ p
φ ≤

(
2− 2

k
+ 1

2 sin(π/k)

)√
2λ1. (6)

ESA 2019



71:6 Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem

Set S(1)
t,η

Set S(2)
t,η

Set S(3)
t,η

Random rotation
by η ∈ [0, 2π/k)

t

Figure 1 Illustration of the proof for Theorem 7 for the case of k = 3. The gray circle is
obtained by sweeping t ∈ [0, 1], and the red arrow represents a random angle η ∈ [0, 2π/k). A partial
assignment is determined by the values of η and t.

Proof Sketch of Theorem 7. We present an overview of the proof here, and a complete
proof of the theorem can be found in the full version of the paper. The easy direction of (5),
i.e., λ1/2 ≤ p(I), follows from the Courant-Fischer characterisation of eigenvalues and that
the eigenvector problem is a relaxation of MAX-2-LIN(k). Hence, we will mainly sketch the
techniques used to prove the other direction of (5). We assume that z ∈ Cn is the vector
such that

z∗LIz

z∗DIz
= λ1,

and prove the existence of an assignment φ based on z satisfying

pφ ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1 =

(
2− 2

k
+ 1

2 sin(π/k)

)√
2 · z

∗LIz

z∗DIz
.

We first scale each coordinate of z such that maxu∈V ‖zu‖2 = 1. In this way z can be
seen as an embedding of the vertices to the complex unit ball. For any real numbers t ≥ 0
and η ∈ [0, 2π

k ), we define k sets of vertices indexed by j ∈ [k] as follows:

S
(j)
t,η =

{
u

∣∣∣∣ ‖zu‖ ≥ t and θ(zu, eiη) ∈
[
j · 2π

k
, (j + 1) · 2π

k

)}
.

Here, we use θ(a, b) ∈ [−π, π) to represent the angle from b ∈ C to a ∈ C, i.e., a
‖a‖ =

b
‖b‖ exp (iθ(a, b)). We then define an assignment φt,η where φt,η(u) = j if there is j ∈ [k]
such that u ∈ S(j)

t,η , and φt,η(u) = ⊥ otherwise. By definition, the k vertex sets correspond
to the vectors in the k regions of the unit ball after each vector is rotated by η radians
counterclockwise. The role of t is to only consider the coordinates zu with ‖zu‖ ≥ t. This is
illustrated in Figure 1.
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Now we assume t ∈ [0, 1] is chosen such that t2 follows from a uniform distribution over
[0, 1], and η is chosen uniformly at random from [0, 2π/k). Further calculations show that

Et,η [Vol(φt,η)] =
∑
u∈V

du · P [‖zu‖ ≥ t] =
∑
u∈V

du ‖zu‖2 = z∗DIz,

and

Et,η

[
2
∑
u v

buv p
φ
uv

]
≤
(

2− 2
k

+ 1
2 sin(π/k)

)
·
√
z∗LIz ·

√
2z∗DIz.

Hence, it holds that

Et,η
[
2
∑
u v buvp

φ
uv

]
Et,η [Vol(φt,η)] ≤

(
2− 2

k
+ 1

2 sin(π/k)

)
·
√

2 · z
∗LIz

z∗DIz
.

This implies by linearity of expectation that

Et,η

[
2
∑
u v

buvp
φ
uv −

(
2− 2

k
+ 1

2 sin(π/k)

)
· Vol(φt,η) ·

√
2 · z

∗LIz

z∗DIz

]
≤ 0,

and existence of an assignment φ satisfying (6).
Now we turn to the runtime needed to find such a vertex set. Notice that we need to

find t and η such that φt,η satisfies (6). Therefore, we construct two sequences of sweep
sets: the first is based on t, and the second is based on η. For constructing the sweep sets
based on t, the algorithm increases t from 0 to 1, and updates the corresponding conditional
expectation looking only at the edges incident with u whenever t exceeds ‖zu‖. Notice that
each edge (u, v) will be updated at most twice, i.e., the step when t reaches ‖zu‖ and the step
when t reaches ‖zv‖, and the total runtime needed to update Vol(φt,η) is O(m). Hence, the
total runtime for constructing the sweep sets based on t is O(m). The runtime analysis for
constructing the sweep sets based on η is similar: the algorithm increases η from 0 to 2π/k,
and updates the penalties pφuv of the edges (u, v) only if the assignment of u or v changes.
Since every edge will be updated at most twice, the runtime for constructing the sweep sets
based on η is O(m) as well. Hence, the total runtime of the algorithm is O(m+ n logn). J

I Remark 8. We remark that the factors λ1/2 and
√
λ1 in Theorem 7 are both tight within

constant factors. The tightness can be derived directly from Section 5 of [27], since when
k = 2, our inequality is the same as the one in [27] up to constant factors.

We also remark that the factor of k in Theorem 7 is necessary, which is shown by the
following instance: the linear system has nk variables where every variable belongs to one
of k sets S0, . . . , Sk−1 with |Si| = n for any 0 ≤ i ≤ k − 1. Now, for any i, we add n

equations of the form xu − xv = 1 mod k with xu ∈ Si, xv ∈ Sj , and j = i + 1 mod k,
and n equations of the form xu − xv = 1 mod k with xu ∈ Si, xv ∈ Sj , and j = i + 2
mod k. This instance is constructed such that the underlying graph is regular, and every
assignment could only satisfy at most half of the equations, implying that the imperfectness
is p(I) = Ω(1). However, mapping each variable in Si to the root of unity ωik, it’s easy to
see that λi(LI) = O(1/k). Hence Theorem 7 is tight with respect to k.

Finally, we compare the proof techniques of Theorem 7 with other Cheeger-type inequal-
ities in the literature: first of all, most of the Cheeger-type inequalities (e.g., [1, 19, 20, 27])
consider the case where every eigenvector is in Rn and are only applicable for undirected
graphs, while for our problem the graph G associated with I is directed and eigenvectors of

ESA 2019
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AI are in Cn. Therefore, constructing sweep sets in C is needed, which is more involved than
proving similar Cheeger-type inequalities (e.g., [1, 27]). Secondly, by dividing the complex
unit ball into k regions, we are able to show that a partial assignment corresponding to k
disjoint subsets can be found using a single eigenvector. This is quite different from the
techniques used for finding k vertex-disjoint subsets of low conductance in an undirected
graph, where k eigenvectors are usually needed (e.g. [19, 20, 21]).

We also remark that, while sweeping through values of t is needed to obtain any guarantee
on the penalty of the partial assignment computed, we could in principle just choose a
random angle η: in this way, however, the partial assignment returned would satisfy (6)
only in expectation.

4 Sparsification for MAX-2-LIN(k)

We have seen in Section 3 that, given any vector in Cn whose quadratic form with LI is close
to λ1(LI), we can compute a partial assignment of I with bounded approximation guarantee.
In Section 5 we will show that a total assignment can be found by recursively applying this
procedure on variables for which an assignment has not yet been fixed. In particular, we
will show that every iteration takes a time nearly-linear in the number of equations of our
instance, which can be quadratic in the number of variables. To speed-up each iteration
and obtain a time per iteration that is nearly-linear in the number of variables, we need to
sparsify our input instance I.

In this section we show that the construction of spectral sparsifiers by effective resistance
sampling introduced in [24] can be generalised to sparsify MAX-2-LIN(k) instances. In
particular, given an instance I of MAX-2-LIN(k) with n variables and m equations, we can
find in nearly-linear time a sparsified instance J with about nk log(nk) equations such that
for any partial assignment φ : V → [k], the number of unsatisfied equations in J is preserved
within a constant factor. This means that we can apply our algorithm for MAX-2-LIN(k) to a
sparsified instance J , and any dependency onm in our runtime can be replaced by nk log(nk).
We remark that we could simply apply uniform sampling to obtain a sparsified instance.
However, this would in the end result in an additive error in the fraction of unsatisfied
equations, much like in the case of the original Trevisan’s result for MAX-CUT [27]. With
our construction, instead, we only lose a small multiplicative error.

To construct a sparsified instance J , we introduce label-extended graphs and their
Laplacian matrices to characterise the original MAX-2-LIN(k) instance. Let P ∈ Rk×k be the
permutation matrix where Pij = 1 if i ≡ j + 1 mod k, and Pij = 0 otherwise. We define the
adjacency matrix ÃI ∈

(
Rk×k

)n×n for the label-extended graph of instance I, where each
entry of ÃI is a matrix in Rk×k given by

(ÃI)uv
def=


buvP

cuv u v,

bvu (P ᵀ)cvu v  u,

0 otherwise.
(7)

We then define the degree-diagonal matrix D̃I ∈
(
Rk×k

)n×n by (D̃I)uu = du · Ik×k, where
Ik×k is the k× k identity matrix, and define the Laplacian matrix by L̃I = D̃I − ÃI . Notice
that the Hermitian Laplacian LI is a compression of L̃I , i.e., there exists an orthogonal
projection U such that U∗L̃IU = LI .
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For any assignment φ : V → [k], we construct an indicator vector x̃I ∈
(
Rk
)n by

(x̃I)u = eφ(u), where ej ∈ Rk is the j-th standard basis vector. Then, it is easy to show that
the total weight of unsatisfied equations for φ is (1/2) · x̃ᵀIL̃I x̃I .3

We show that, for every unsatisfiable instance I, there is a sparsified MAX-2-LIN(k)
instance J such that the quadratic forms between L̃I and L̃J are approximately preserved.
This implies that, when looking at the same assignment, the total weights of unsatisfied
equations in I and J are approximately preserved. Notice that we can decide whether there
is an assignment satisfying all the equations in I by fixing the assignment of an arbitrary
vertex and determining assignments for other vertices accordingly, and therefore we only
need to consider the case when I is unsatisfiable. The main result of the section is as follows:

I Theorem 9. There is an algorithm that, given an unsatisfiable instance I of MAX-2-LIN(k)
with n variables and m equations and parameter 0 < δ < 1, returns in Õ(mk) time an instance
J with the same set of variables and O

(
(1/δ2) · nk log(nk)

)
equations. Furthermore, with

high probability it holds for any vector x ∈
(
Rk
)n that (1−δ)xᵀL̃Ix ≤ xᵀL̃J x ≤ (1+δ)xᵀL̃Ix.

5 Algorithm for MAX-2-LIN(k)

Theorem 9 tells us that, given an instance I∗, we can find a sparse instance I so that the
quadratic forms of the corresponding Laplacians LI∗ and LI are approximately the same.
Therefore throughout this section we assume that the input instance I for MAX-2-LIN(k)
with n variables has m = Õ

(
(1/δ2) · nk

)
equations for some parameter δ > 0. Recall that

Theorem 7 shows that, for any MAX-2-LIN(k) instance I, given an eigenvector for the smallest
eigenvalue λ1(LI), we can obtain a partial assignment φ satisfying

pφ ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1. (8)

Now we show that, by a repeated application of Theorem 7 on the subset of the equations
of I for which both variables are unassigned, we can obtain a full assignment of I. Our
algorithm closely follows the one by Trevisan [27] and is described in Algorithm 1.

To achieve the guarantees of (8), however, we would need to compute the eigenvector
corresponding to λ1(LI) exactly. To obtain a nearly-linear time algorithm, instead, we
relax this requirement and compute a vector z that well-approximates this eigenvector. In
particular, the following lemma shows that, for any δ, we can compute a vector z ∈ Cn
satisfying (9) in nearly-linear time.

I Lemma 10. For any given error parameter δ, there is an Õ
((

1/δ3) · kn) time algorithm
that returns z ∈ Cn satisfying (9).

To analyse Algorithm 1, we introduce some notation. Let t be the number of recursive
executions of Algorithm 1. For any 1 ≤ j ≤ t+ 1, let Ij be the instance of MAX-2-LIN(k) in
the j-th execution. We indicate with ρjm the number of equations in Ij , where 0 ≤ ρj ≤ 1.
Notice that I1 = I and It+1 = ∅. We assume that the maximum number of equations in Ij
that can be satisfied by an assignment is (1− εj)ρjm, with ε = ε1. Also notice that it holds
for any 1 ≤ j ≤ t that εjρjm ≤ εm, which implies εj ≤ ε/ρj . The next theorem presents the
performance of our algorithm, whose informal version is Theorem 1.

3 We remark that, if we use the Hermitian Laplacian matrices LI directly instead, this relation only holds
up to an O(k) factor. That is why we sparsify the matrix L̃I instead.
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Algorithm 1 RecursiveConstruct(I, δ).

1: Compute vector z ∈ Cn satisfying

z∗LIz

z∗DIz
≤ (1 + 2δ)λ1(LI); (9)

2: Apply the algorithm from Theorem 7 to compute φ : V → [k] ∪ {⊥} such that

pφ ≤ (1 + δ)
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1; (10)

3: if 2pφ ≥ (1− 1/k) Vol(φ) then
4: return random full assignment φ′ : V → [k];
5: . the case where the current assignment is worse than a random assignment
6: else if φ is a full assignment (i.e. φ(V ) ⊆ [k]) then
7: return φ;
8: . The recursion terminates if every variable’s assignment is determined
9: else

10: I ′ ← set of equations from I in which both variables’ assignments are not determined;
11: if I ′ = ∅ then
12: set φ(u) to be an arbitrary assignment if φ(u) = ⊥ for any u;
13: return φ;
14: else
15: φ1 ← RecursiveConstruct(I ′, δ);
16: return φ ∪ φ1;

I Theorem 11. Given an instance I of MAX-2-LIN(k) whose optimum is 1 − ε and a
parameter δ > 0, the algorithm RecursiveConstruct(I, δ) returns in Õ

((
1/δ3) · kn2)

time an assignment φ satisfying at least 1− 8ν
√
ε fraction of the equations, where

ν
def= (1 + δ)

(
2− 2

k
+ 1

2 sin(π/k)

)
= O(k).

The following corollary which states how much our algorithm beats a random assignment
follows from Theorem 1.

I Corollary 12. Given a MAX-2-LIN(k) instance I whose optimum is ξ and a constant δ > 0,
Algorithm 1 returns in Õ

(
(1/δ3) · n2k

)
time an assignment φ satisfying at least (1/k + τ) ξ

fraction of the equations, where τ = Ω
( 1
k3

)
.

6 Algorithm for MAX-2-LIN(k) on expanders

In this section we further develop techniques for analysing Hermitian Laplacian matrices
by presenting a subquadratic-time approximation algorithm for the MAX-2-LIN(k) problem
on expander graphs. Our proof technique is inspired by Kolla’s algorithm [18]. However, in
contrast to the algorithm in [18], we use the Hermitian Laplacian to represent a MAX-2-LIN(k)
instance and show that, when the underlying graph has good expansion, a good approximate
solution is encoded in the eigenvector associated with λ1(LI). We assume that G is a
d-regular graph, and hence I = (G, k) is a MAX-2-LIN(k) instance with n variables and nd/2
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equations whose optimum is 1− ε. One can view I as an instance generated by modifying
ε fraction of the constraints (i.e., edges) from a completely satisfiable instance Î = (Ĝ, k).
Hence, a satisfiable assignment ψ : V → [k] for Î will satisfy at least a (1 − ε)-fraction of
equations in I.

Now we discuss the techniques used to prove Theorem 2. Let yψ ∈ Cn be the normalised
“indicator vector” of ψ, i.e., (yψ)u = 1√

n
ω
ψ(u)
k . Then it holds that

(yψ)∗ LÎyψ = 1
d

∑
u v

buv ‖(yψ)u − ωcuvk (yψ)v‖2 = 0.

Hence yψ is an eigenvector associated with λ1

(
LÎ
)

= 0. We denote by U the underlying
undirected graph of G, and denote by LU the normalised Laplacian of U . Note that since U
is undirected, LU only contains real-valued entries. We first show that the eigenvalues of LÎ ,
the normalised Laplacian of the completely satisfiable instance, and of LU , the normalised
Laplacian of the underlining undirected graph U , coincide. Since LU is the Laplacian matrix
of an expander graph, this implies that there is a gap between λ1

(
LÎ
)
and λ2

(
LÎ
)
.

I Lemma 13. It holds for all 1 ≤ i ≤ n that λi
(
LÎ
)

= λi (LU ).

Next we bound the perturbation of the bottom eigenspace of LÎ when the latter is turned
into LI . In particular, Lemma 14 below proves that this perturbation does not affect too
much to the vectors that have norm spreads out uniformly over all their coordinates.

I Lemma 14. Let f ∈ Cn be a vector such that ‖fu‖ = 1√
n
for all u ∈ V . It holds that∥∥∥(LI − LÎ) f∥∥∥ ≤ 2

√
ε. (11)

Based on Lemma 14, we prove that the change from LÎ to LI doesn’t have too much
influence on the eigenvector associated with λ1(LI). For simplicity, let λ2 = λ2(LÎ) = λ2(LU ).

I Lemma 15. Let f1 ∈ Cn be a unit eigenvector associated with λ1(LI). Then we have∥∥∥(LI − LÎ) f1

∥∥∥ ≤ 20
√
ε/λ2.

We then prove the following lemma which shows that the eigenvector f1 corresponding
to λ1(LI) is close to yψ, the indicator vector of the optimal assignment ψ.

I Lemma 16. Let f1 ∈ Cn be a unit eigenvector associated with λ1(LI). Then, there
exist α, β ∈ C and a unit vector y⊥ ∈ Cn orthogonal to yψ (i.e. (y⊥)∗ yψ = 0) such that
f1 = αyψ + βy⊥ and ‖β‖ ≤ 30

√
ε/λ3

2.

Based on Lemma 16, f1 is close to the indicator vector of an optimal assignment rotated
by some angle. In particular, we have that∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥ =
√

(1− ‖α‖)2 + ‖β‖2 ≤
√

1− ‖α‖2 + ‖β‖2 =
√

2 ‖β‖ ≤ 30

√
2ε
λ3

2
, (12)

where α
‖α‖yψ is the vector that encodes the information of an assignment that satisfies all

the equations in Î and at least 1 − ε fraction of equations in I. Therefore, our goal is to
recover α

‖α‖yψ from f1.
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Proof of Theorem 2. Let ψ be the optimal assignment of I satisfying 1 − ε fraction of
equations, which is also a completely satisfying assignment of Î. Let f1 be a unit eigenvector
associated with λ1(LI). By Lemma 16, there exists α, β ∈ C such that f1 = αyψ + βy⊥
where ‖β‖ ≤ 30

√
ε/λ3

2. Our goal is to find a vector zφ ∈ Cn, which equals the indicator
vector of φ ratoted by some angle and satisfies

‖f1 − zφ‖ ≤
∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥ ≤ 30

√
2ε
λ3

2
, (13)

where the last inequality follows by (12). The assignment φ corresponding to such a zφ will
give us that the fraction of unsatisfied equations by φ is

pφ(I) ≤ 10k2z∗φLIzφ
= 10k2(zφ − f1 + f1)∗LI(zφ − f1 + f1)
≤ k2 ((zφ − f1)∗LI(zφ − f1) + f∗1LIf1 + 2 ‖(zφ − f1)∗LIf1‖)

≤ 10k2
(

2 ‖zφ − f1‖2 + λ1(LI) + 2 ‖zφ − f1‖
√
λ1(LI)

)
≤ 10k2

(
2 · 900 · 2ε

λ3
2

+ 2ε+ 2 · 30 ·

√
2ε
λ3

2
·
√

2ε
)

≤ 100000k2 · ε
λ3

2
,

where the factor 10k2 above follows from the fact that
∥∥∥1− ωjk

∥∥∥2
is at least 1/(10k2) for

j = 1, . . . , k − 1.
To find such vector zφ satisfying (13), we define φη(u) = arg minj∈[k]

∥∥∥(f1)u − eηiωjk
∥∥∥.

Notice that, since α
‖α‖ is equal to eηi for some η ∈ [0, 2π), by defining (zφη )u = eηiωφη(u)

k the
solution to the following optimisation problem minη∈[0,2π)

∥∥zφη − f1
∥∥ gives us a vector that

satisfies (13). To solve this optimisation problem, we notice that it suffices to consider η in
the range [0, 2π/k). Therefore, we simply enumerate all η’s over the following discrete set:{

t
√
ε√
n

∣∣∣∣ t = 0, 1, . . . ,
⌈

2π
√
n

k
√
ε

⌉}
.

By enumerating this set, we can find an assignment φ and an η such that

∥∥f1 − zφη
∥∥ ≤ ∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥+O(
√
ε),

which is enough to get our desired approximation. Since the size of this set is O
( √

n
k
√
ε

)
, the

total running time is O
(
n1.5

k
√
ε

)
plus the running time needed to compute f1. J

7 Concluding remarks

Our work leaves several open questions for further research: while the factor of k in our
Cheeger inequality (Theorem 7) is needed, it would be interesting to see if it’s possible to
construct a different Laplacian for which a similar Cheeger inequality holds with a smaller
dependency on k. For example, instead of embedding vertices in C and mapping assignments
to roots of unity, one could consider embedding vertices in higher dimensions using the
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bottom k eigenvectors of the Laplacian of the label extended graph, and see if a relation
between the imperfectness ratio of Definition 6 and the k-th smallest eigenvalue of this
Laplacian still holds.

Finally, we observe that several cut problems in directed graphs can be formulated as
special cases of MAX-2-LIN(k) (see, e.g., [2, 11]). Because of this, we believe the Hermitian
Laplacians studied in our paper will have further applications in the development of fast
algorithms for combinatorial problems on directed graphs, and might have further connections
to Unique Games.
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