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Abstract
In the Equal-Subset-Sum problem, we are given a set S of n integers and the problem is to decide
if there exist two disjoint nonempty subsets A, B ⊆ S, whose elements sum up to the same value.
The problem is NP-complete. The state-of-the-art algorithm runs in O∗(3n/2) ≤ O∗(1.7321n) time
and is based on the meet-in-the-middle technique. In this paper, we improve upon this algorithm
and give O∗(1.7088n) worst case Monte Carlo algorithm. This answers a question suggested by
Woeginger in his inspirational survey.

Additionally, we analyse the polynomial space algorithm for Equal-Subset-Sum. A naive
polynomial space algorithm for Equal-Subset-Sum runs in O∗(3n) time. With read-only access to
the exponentially many random bits, we show a randomized algorithm running in O∗(2.6817n) time
and polynomial space.
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1 Introduction

In the Subset-Sum problem, we are given as input a set S of n integers a1, . . . , an and a
target t. The task is to decide if there exists a subset of S, such that a total sum of the
numbers in this subset is equal to t. This can be formulated in the following form:

n∑
i=1

xiai = t

and the task is to find xi ∈ {0, 1}. Subset-Sum is one of the fundamental NP-complete
problems. Study on the exact complexity of Subset-Sum led to the discovery of one of the most
fundamental algorithmic tool: meet-in-the-middle. [24] used this technique to give a O∗(2n/2)
algorithm for Subset-Sum in the following way: First, rewrite the Subset-Sum equation:

bn/2c∑
i=1

xiai = t−
n∑

bn/2c+1

xiai.

Then enumerate all O(2n/2) possible values of the left side L(x1, . . . , xbn/2c) and O(2n/2)
possible values of the right side R(xbn/2c+1, . . . , xn). After that, it remains to look for the
value that occurs in both L and R, i.e., meeting the tables L and R. One can do that
efficiently by sorting (see [24] for details). To summarize, meet-in-the-middle technique is
based on rewriting the formula as an equation between two functions and efficiently seeking
any value that occurs in both of their images.

Later, [39] observed that space usage of meet-in-the-middle can be improved toO∗(2n/4) by
using space-efficient algorithm for 4-SUM. However, the time complexity remains unchallenged
and one of the most prominent open problem in the area of exact algorithms is to improve
upon meet-in-the-middle for Subset-Sum:

I Open Question 1. Can Subset-Sum be solved in O∗(2(0.5−δ)n) time for some constant
δ > 0?

In this paper, we consider the Equal-Subset-Sum problem. We are given a set S of n
integers and the task is to decide if there exist two disjoint nonempty subsets A,B ⊆ S,
whose elements sum up to the same value. Similarly to Subset-Sum, this problem is NP-
complete [45]. In the inspirational survey, [44] noticed Equal-Subset-Sum can be solved by
using meet-in-the-middle and asked if it can be improved: 1

I Open Question 2 (cf., [43],[44]). Can we improve upon the meet-in-the-middle algorithm
for Equal-Subset-Sum?

The folklore meet-in-the-middle algorithm for Equal-Subset-Sum (that we will present in
the next paragraph) works in O∗(3n/2) time.

Folklore algorithm for Equal-Subset-Sum

First, we arbitrarily partition S into S1 = {a1, . . . , abn/2c} and S2 = {abn/2c+1, . . . , an}.
Recall that in Equal-Subset-Sum we seek two subsets A,B ⊆ S, such that A ∩B = ∅ and
Σ(A) = Σ(B). We can write the solution as 4 subsets: A1 = A∩S1, A2 = A∩S2, B1 = B∩S1

1 [43, 44] noticed that 4-SUM gives O∗(2n) algorithm, but it actually gives a O∗(3n/2) algorithm, see [35,
Appendix C].
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and B2 = B ∩ S2, such that: Σ(A1) + Σ(A2) = Σ(B1) + Σ(B2). In particular, it means
that: Σ(A1) − Σ(B1) = Σ(B2) − Σ(A2). So, the problem reduces to finding two vectors
x ∈ {−1, 0, 1}bn/2c and y ∈ {−1, 0, 1}dn/2e, such that:

bn/2c∑
i=1

xiai =
dn/2e∑
i=1

yiai+bn/2c.

We can do this in O∗(3n/2) time as follows. First, enumerate and store all 3bn/2c possible
values of the left side of the equation and all 3dn/2e possible values of the right side of the
equation. Then look for a value that occurs in both tables (collision) in time O∗(3n/2) by
sorting the values. The total running time is therefore O∗(3n/2). Analogously to Subset-Sum,
one can improve the space usage of the above algorithm to O∗(3n/4) (see [35, Appendix C]).

A common pattern seems unavoidable in algorithms for Subset-Sum and Equal-Subset-
Sum: we have to go through all possible values of the left and the right side of the equation.
This enumeration dominates the time used to solve the problem. So, it was conceivable that
perhaps no improvement for Equal-Subset-Sum could be obtained unless we improve an
algorithm for Subset-Sum first [43, 44].

1.1 Our Contribution
While the meet-in-the-middle algorithm remains unchallenged for Subset-Sum, we show that,
surprisingly, we can improve the algorithm for Equal-Subset-Sum. The main result of this
paper is the following theorem.

I Theorem 1.1. Equal-Subset-Sum can be solved in O∗(1.7088n) time with high probability.

This positively answers Open Question 2. To prove this result we observe that the
worst case for the meet-in-the-middle algorithm is that of a balanced solution, i.e., when
|A| = |B| = |S \ (A∪B)| ≈ n/3. We propose a substantially different algorithm, that runs in
O∗(22/3n) time for that case. The crucial insight of the new approach is the fact that when
|A| ≈ |B| ≈ n/3, then there is an abundance of pairs X,Y ⊆ S, X 6= Y with Σ(X) = Σ(Y ).
We use the representation technique to exploit this. Interestingly, that technique was initially
developed to solve the average case Subset-Sum [9, 25].

Our second result is an improved algorithm for Equal-Subset-Sum running in polynomial
space. The naive algorithm in polynomial space works in O∗(3n) time by enumerating all
possible disjoint pairs of subsets of S. This algorithm is analogous to the O∗(2n) polynomial
space algorithm for Subset-Sum. Recently, [6] proposed a O∗(20.86n) algorithm for Subset-
Sum on the machine that has access to the exponential number of random bits. We show
that a similar idea can be used for Equal-Subset-Sum.

I Theorem 1.2. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum in
polynomial space and time O∗(2.6817n). The algorithm assumes random read-only access to
exponentially many random bits.

This result is interesting for two reasons. First, [6] require nontrivial results in information
theory. Our algorithm is relatively simple and does not need such techniques. Second, the
approach of [6] developed for Subset-Sum has a barrier, i.e., significantly new ideas must be
introduced to get an algorithm running faster than O∗(20.75n). In our case, this corresponds to
the algorithm running in O∗(21.5n) ≤ O∗(2.8285n) time and polynomial space (for elaboration
see Section 4). We show that relatively simple observations about Equal-Subset-Sum enable
us to give a slightly faster algorithm in polynomial space.

ESA 2019
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1.2 Related Work
The Equal-Subset-Sum was introduced by [45] who showed that the problem is NP-complete.
This reduction automatically excludes 2o(n) algorithms for Equal-Subset-Sum assuming ETH
(see [35, Appendix B]), hence for this problem we aspire to optimize the constant in the
exponent. The best known constant comes from the meet-in-the-middle algorithm. [44] asked
if this algorithm for Equal-Subset-Sum can be improved.

Exact algorithms for Subset-Sum

[36] proved that in the exact setting Knapsack and Subset-Sum problems are equivalent.
[39] showed that the meet-in-the-middle algorithm admits a time-space tradeoff, i.e.,

T S2 ≤ O∗(2n), where T is the running time of the algorithm and S ≤ O∗(2n/2) is the space
of an algorithm. This tradeoff was improved by [2] for almost all tradeoff parameters.

[3] considered Subset-Sum parametrized by the maximum bin size β and obtained
algorithm running in time O∗(20.3399nβ4). Subsequently, [4] showed that one can get a faster
algorithm for Subset-Sum than meet-in-the-middle if β ≤ 2(0.5−ε)n or β ≥ 20.661n. In this
paper, we use the hash function that is based on their ideas. Moreover, the ideas in [3, 4]
were used in the recent breakthrough polynomial space algorithm [6] running in O∗(20.86n)
time.

From the pseudopolynomial algorithms perspective Knapsack and Subset-Sum admit
O(nt) algorithm, where t is a value of a target. Recently, for Subset-Sum the pseudopolynomial
algorithm was improved to run in deterministic Õ(

√
nt) time by [29] and randomized Õ(n+ t)

time by [11] (and simplified, see [27, 30]). However, these algorithms have a drawback of
running in pseudopolynomial space O∗(t). Surprisingly, [32] presented an algorithm running
in time Õ(n3t) and space Õ(n2) which was later improved to Õ(nt) time and Õ(n log t) space
assuming the Extended Riemann Hypothesis [11].

From a lower bounds perspective, no algorithm working in Õ(poly(n)t0.99) exists for
Subset-Sum assuming SETH or SetCover conjecture [18, 1].

Approximation

[45] presented the approximation algorithm for Equal-Subset-Sum with the worst case ratio
of 1.324. [7] considered a different formulation of approximation for Equal-Subset-Sum and
showed an FPTAS for it.

Cryptography and the average case complexity

In 1978 Knapsack problems were introduced into cryptography by [34]. They introduced a
Knapsack based public key cryptosystem. Subsequently, their scheme was broken by using
lattice reduction [40]. After that, many knapsack cryptosystems were broken with low-density
attacks [31, 17].

More recently, [26] introduced a cryptographic scheme that is provably as secure as
Subset-Sum. They proposed a function f(−→a , S) = −→a ,

∑
i∈S ai (mod 2l(n)), i.e., the function

which concatenates −→a with the sum of the ai’s for i ∈ S. Function f is a mapping of an
n bit string S to an l(n) bit string and −→a are a fixed parameter. Our algorithms can be
thought of as an attempt to find a collision of such a function in the worst case.

However, in the average case more efficient algorithms are known. [42] showed that when
solving problems involving sums of elements from lists, one can obtain faster algorithms
when there are many possible solutions. In the breakthrough paper, [25] gave O∗(20.337n)
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algorithm for an average case Subset-Sum. It was subsequently improved by [9] who gave an
algorithm running in O∗(20.291n). These papers introduced a representation technique that
is a crucial ingredient in our proofs.

Total search problems

The Number Balancing problem is: given n real numbers a1, . . . , an ∈ [0, 1], find two disjoint
subsets I, J ⊆ [n], such that the difference |

∑
i∈I ai−

∑
j∈J aj | is minimized. The pigeonhole

principle and the Chebyshev’s inequality guarantee that there exists a solution with difference
at most O(

√
n

2n ). [28] showed that in polynomial time one can produce a solution with
difference at most n−Θ(logn), but since then no further improvement is known.

[37] considered the problem Equal Sums: given n positive integers such that their total
sum is less than 2n − 1, find two subsets with the same sum. By the pigeonhole principle the
solution always exists, hence the decision version of this problem is obviously in P. However
the hard part is to actually find a solution. Equal Sums is in class PPP but it remains
open to show that it is PPP-complete. Recently, this question gained some momentum. [23]
showed that Number Balancing is as hard as Minkowski. [5] showed the reduction from
Equal Sums to Minkowski and conjectured that Minkowski is complete for the class PPP.
Very recently, [41] identified the first natural problem complete for PPP.

In [35, Appendix E] we show that our techniques can also be used to solve Number
Balancing for integers in O∗(1.7088n) time.

Combinatorial Number Theory

If Σ(S) < 2n − 1, then by the pigeonhole principle the answer to the decision version of
Equal-Subset-Sum on S is always YES. In 1931 Paul Erdős was interested in the smallest
maximum value of S, such that the answer to Equal-Subset-Sum on S is NO, i.e., he
considered the function:

f(n) = min{max{S} | all subsets of S are distinct, |S| = n, S ⊆ N}

and showed f(n) > 2n/(10
√
n) [19]. The first nontrivial upper bound on f was f(n) ≤

2n−2 (for sufficiently large n) [16]. Subsequently, [33] proved that f(n) ≤ 0.2246 · 2n and [10]
showed f(n) ≤ 0.22002 · 2n. [20] offered 500 dollars for proof or disproof of conjecture that
f(n) ≥ c2n for some constant c.

Other Variants

Equal-Subset-Sum has some connections to the study of the structure of DNA molecules [15,
14, 12]. [13] considered k-Equal-Subset-Sum, in which we need to find k disjoint subsets of
a given set with the same sum. They obtained several algorithms that depend on certain
restrictions of the sets (e.g., small cardinality of a solution). In the following work, [14]
considered other variants of Equal-Subset-Sum and proved their NP-hardness.

2 Preliminaries

Throughout the paper we use the O∗ notation to hide factors polynomial in the input
size and the Õ notation to hide factors logarithmic in the input size. We also use [n]
to denote the set {1, . . . , n}. If S = {a1, . . . , an} is a set of integers and X ⊆ {1, . . . , n},
then ΣS(X) :=

∑
i∈X ai. Also, we use Σ(S) =

∑
s∈S s to denote the sum of the elements

of the set. We use the binomial coefficient notation for sets, i.e., for a set S the symbol(
S
k

)
= {X ⊆ S | |S| = k} is the set of all subsets of the set S of size exactly k.

ESA 2019
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We may assume that the input to Equal-Subset-Sum has the following properties:
the input set S = {a1, . . . , an} consists of positive integers,∑n
i=1 ai < 2τn for a constant τ < 10,

integer n is a multiple of 12.

These are standard assumptions for Subset-Sum (e.g., [3, 22]). For completeness, in
[35, Appendix A] we prove how to apply reductions to Equal-Subset-Sum to ensure these
properties.

We need the following theorem concerning the density of prime numbers [21, p. 371,
Eq. (22.19.3)].

I Lemma 2.1. For a large enough integer b, there exist at least 2b/b prime numbers in the
interval [2b, 2b+1].

The binary entropy function is h(α) = −α log2 α− (1− α) log2 (1− α) for α ∈ (0, 1) and
h(0) = h(1) = 0. For all integers n ≥ 1 and α ∈ [0, 1] such that σn is an integer, we have
the following upper bound on the binomial coefficient [38]:

(
n
αn

)
≤ 2h(α)n. We also need a

standard bound on binary entropy function h(x) ≤ 2
√
x(1− x).

Throughout this paper all logarithms are base 2.

3 Faster Exponential Space Algorithm

In this section, we improve upon the meet-in-the-middle algorithm for Equal-Subset-Sum.

I Theorem 3.1. Equal-Subset-Sum can be solved in O∗(1.7088n) time with high probability.

Theorem 3.1 is proved by using two different algorithms for Equal-Subset-Sum. To bound
the trade-off between these algorithms we introduce the concept of a minimum solution.

I Definition 3.2 (Minimum Solution). For a set S of positive integers we say that a solution
A,B ⊆ S is a minimum solution if its size |A|+ |B| is smallest possible.

We now assume that the size of the minimum solution has even size for simplicity of
presentation. The algorithm and analysis for the case of odd-sized minimum solution is
similar, but somewhat more messy due to all the floors and ceilings one needs to take care of.

In Section 3.1 we prove that the meet-in-the-middle approach for Equal-Subset-Sum
already gives algorithm running in time O∗((3 − ε)n/2) if the minimum solution A,B is
unbalanced, i.e., ||A ∪ B| − 2n

3 | > ε′n for some ε′ > 0 depending on ε. Subsequently, in
Section 3.2 we propose an algorithm for balanced instances, i.e., when the size of a minimum
solution is close to 2/3. In particular, we show how to detect sets A,B with Σ(A) = Σ(B)
and |A| ≈ |B| ≈ n

3 , with an O∗(2 2
3n) time algorithm. By bounding trade-off between the

algorithms from Section 3.1 and Section 3.2 we prove Theorem 3.1 and bound the running
time numerically.

3.1 Equal-Subset-Sum for unbalanced solutions via meet-in-the-middle

I Theorem 3.3. If S is a set of n integers with a minimum solution of size `, then
Equal−Subset−Sum with input S can be solved in O∗(

(
n/2
`/2
)
2`/2) time with high probability.
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Algorithm 1 UnbalancedEqualSubsetSum(S, `).

1: Randomly split S into two disjoint S1, S2 ⊆ S, such that |S1| = |S2| = n/2
2: Enumerate C1 = {Σ(A1)− Σ(B1) | A1, B1 ⊆ S1, A1 ∩B1 = ∅, |A1|+ |B1| = `/2}
3: Enumerate C2 = {Σ(A2)− Σ(B2) | A2, B2 ⊆ S2, A2 ∩B2 = ∅, |A2|+ |B2| = `/2}
4: if ∃x1 ∈ C1, x2 ∈ C2 such that x1 + x2 = 0 then
5: Let A1, B1 ⊆ S1 be such that x1 = Σ(A1)− Σ(B1)
6: Let A2, B2 ⊆ S2 be such that x2 = Σ(A2)− Σ(B2)
7: return (A1 ∪A2, B1 ∪B2)
8: end if
9: return NO

Proof of Theorem 3.3. Algorithm 1 uses the meet-in-the-middle approach restricted to
solutions of size `. We will show that this algorithm solves Equal − Subset− Sum in the
claimed running time.

The algorithm starts by randomly partitioning the set S into two equally sized sets S1, S2.
Let A,B be a fixed minimum solution of size |A ∪ B| = `. We will later show that with
Ω(1/poly(n)) probability |(A ∪B) ∩ S1| = |(A ∪B) ∩ S2| = `/2. We assume this is indeed
the case and proceed with meet-in-the-middle. For S1 we will list all A1, B1 that could
possibly be equal to S1 ∩ A and S1 ∩ B, i.e. disjoint and with total size `/2. We compute
x = Σ(A1)− Σ(B1) and store all these in C1. We proceed analogously for S2.

We then look for x1 ∈ C1 and x2 ∈ C2 such that x1 + x2 = 0. If we find it then we
identify the sets A1 and B1 that correspond to x1 and sets A2 and B2 that correspond to x2
(the easiest way to do that is to store with each element of C1 and C2 the corresponding pair
of sets when generating them). Finally we return (A1 ∪A2, B1 ∪B2).

Probability of a good split. We now lower-bound the probability of S1 and S2 splitting
A ∪B in half. There are

(
n
n/2
)
possible equally sized partitions. Among these there are(

`
`/2
)(

n−`
(n−`)/2

)
partitions that split A∪B in half. The probability that a random partition

splits A and B in half is:(
`
`/2
)(

n−`
(n−`)/2

)(
n
n/2
) ≥ 2`2n−`

(n+ 1)22n = 1
(n+ 1)2

because 2n

n+1 ≤
(
n
n/2
)
≤ 2n.

Running time. To enumerate C1 and C2 we need O∗(
(
n/2
`/2
)
2`/2) time, because first we

guess set S1 ∩ (A ∪ B) of size `/2 and then split between A and B in at most 2`/2
ways. We then check the existence of x1 ∈ C1 and x2 ∈ C2 such that x1 + x2 = 0 in
O∗((|C1|+ |C2|) log (|C1|+ |C2|)) time by sorting.
We can amplify the probability of a good split to O(1) by repeating the whole algorithm
polynomially many times.

Correctness. With probability Ω(1/poly(n)) we divide the A ∪B equally between S1 and
S2. If that happens the set C1 contains x1 such that x1 = Σ(A ∩ S1) − Σ(B ∩ S1)
and the set C2 contains x2 that x2 = Σ(A ∩ S2) − Σ(B ∩ S2). Note that x1 + x2 =
Σ(A∩ S1) + Σ(A∩ S2)−Σ(B ∩ S1)−Σ(B ∩ S2) = Σ(A)−Σ(B) which is 0, since A,B is
a solution. Therefore Algorithm 1 finds a solution of size ` (but of course, it could be
different from A,B). J

ESA 2019
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3.2 Equal-Subset-Sum for balanced solutions
I Theorem 3.4. Given a set S of n integers with a minimum solution size ` ∈ ( 1

2n, (1− ε)n]
for some constant ε > 0, Equal-Subset-Sum can be solved in time O∗(2`) w.h.p.

We use Algorithm 2 to prove Theorem 3.4. In this algorithm, we first pick a random
prime p in the range [2n−`, 2n−`+1], as well as an integer t chosen uniformly at random from
[1, 2n−`]. We then compute the set C = {X ⊆ S | Σ(X) ≡p t}. In the analysis, we argue that
with Ω(1/poly(n)) probability C contains two different subsets X,Y of S with Σ(X) = Σ(Y ).
To identify such pair it is enough to sort the set |C| in time O(|C| log |C|), and then scan it.
We return X \ Y and Y \X to guarantee that the returned sets are disjoint.

Algorithm 2 BalancedEqualSubsetSum(a1, . . . , an, `).

1: Pick a random prime p in [2n−`, 2n−`+1]
2: Pick a random number t in [1, 2n−`]
3: Let C = {X ⊆ S | Σ(X) ≡p t} be the set of candidates . C contains two sets with equal

sum with probability Ω(1/poly(n)).
4: Enumerate and store all elements of C . In time O∗(|C|+ 2n/2)
5: Find X,Y ∈ C, such that Σ(X) = Σ(Y ) . In time O∗(|C|)
6: return (X \ Y, Y \X)

We now analyse the correctness of Algorithm 2. Later, we will give a bound on the
running time and conclude the proof Theorem 3.4. First, observe the following:

I Lemma 3.5. Let S be a set of n positive integers with minimum solution size of `. Let

Ψ = {Σ(X) | X ⊆ S and ∃Y ⊆ S such that X 6= Y and Σ(X) = Σ(Y )} . (1)

If ` > n
2 , then |Ψ| ≥ 2n−` (note that all elements in Ψ are different).

A BX

S

Figure 1 Scheme presents the set S of positive integers and two disjoint subsets A, B ⊆ S. The
point is that if Σ(A) = Σ(B) then for any subset X ⊆ S \ (A ∪ B) we have a guarantee that
Σ(A ∪X) = Σ(B ∪X).

Proof. Let A,B ⊆ S be a fixed minimum solution to S. We know that ` = |A ∪ B|,
Σ(A) = Σ(B) and A∩B = ∅. With this in hand we construct set Ψ of 2n−` pairs of different
X,Y ⊆ S with Σ(X) = Σ(Y ).

Consider set Z = S \ (A ∪ B). By the bound on the size of A and B we know that
|Z| = n− `. Now we construct our candidate pairs as follows: take any subset Z ′ ⊆ Z and
note that X ∪Z ′ and Y ∪Z ′ satisfy Σ(X ∪Z ′) = Σ(Y ∪Z ′). There are 2|Z| possible subsets
of set Z and the claim follows.
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Now we will prove that if ` > n
2 then all subsets of Z have a different sum. Assume

for a contradiction that there exist Z1, Z2 ⊆ Z, such that Σ(Z1) = Σ(Z2) and Z1 6= Z2.
Then Z1 \ Z2 and Z2 \ Z1 would give a solution smaller than A,B, because |Z| < `. This
contradicts the assumption about the minimality of A,B. It follows that if ` > 1

2n then all
constructed pairs have a different sum. J

Now, we consider the hashing function ht,p(x) = x+ t (mod p). We prove that if the set
Ψ (see Equation 1) is sufficiently large, then for a random choice of t, at least one element of
set Ψ is in the congruence class t.

I Lemma 3.6. Let S be the set of n positive integers bounded by 2O(n) with minimum solution
of size ` and ` > n

2 . For a random prime p ∈ [2n−`, 2n−`+1] and a random t ∈ [1, 2n−`] let
Ct,p = {X ⊆ S | Σ(X) ≡p t }. Then,

Pt,p
[
∃X,Y ∈ Ct,p

∣∣∣ Σ(X) = Σ(Y ), X 6= Y
]
≥ Ω(1/n2).

Proof. Let Ψ be the set defined in (1). So Ψ ⊆ {1, . . . , 2O(n)}, and |Ψ| ≥ 2n−`. It is sufficient
to bound the probability, that there exists an element a ∈ Ψ such a ≡p t. Let a1, a2 ∈ Ψ be
two distinct elements.

Pp [a1 ≡p a2] = Pp [p divides |a1 − a2|] ≤ O(n(n− `)/2n−`).

This is because |a1 − a2| can only have O(n) prime divisors, and we are sampling p from the
set of at least 2n−`/(n− `) primes by Lemma 2.1. Let k be the number of pairs a1, a2 ∈ Ψ
such that a1 ≡p a2. We have E [k] ≤ O(|Ψ|+ (|Ψ|n)2/2n−`). We know that |Ψ| ≥ 2n−`, so
|Ψ|2
2n−` ≥ |Ψ| which means that E [k] ≤ O((|Ψ|n)2/2n−`). Hence, by Markov’s inequality k is
at most O((|Ψ|n)2/2n−`) with at least constant probability. If this does indeed happen, then

|{a (mod p) | a ∈ Ψ}| ≥ |Ψ|
2

k
≥ Ω

(
|Ψ|2

(|Ψ|n)2/2n−`

)
≥ Ω(2n−`/n2),

and the probability that t chosen uniformly at random from [1, 2n−`] will be among one of
the elements of set {a (mod p) | a ∈ Ψ} is |{a (mod p) | a ∈ Ψ}|/2n−` ≥ Ω(1/n2). J

Proof of correctness of Algorithm 2. By Lemma 3.6, after choosing a random prime p and
random number t ∈ [1, 2n−`] the set C = {X ⊆ S | Σ(X) ≡p t} contains at least two subsets
X,Y ⊆ S, such that Σ(X) = Σ(Y ) with probability Ω(1/poly(n)). Algorithm 2 computes
the set C and finds X ′, Y ′ ⊆ S, such that Σ(X ′) = Σ(Y ′). Then it returns the solution
X ′ \ Y ′, Y ′ \X ′. J

Now we focus on bounding the running time of Algorithm 2. We start by bounding the
size of the candidate set C.

B Claim 3.7. Let S be the set of n non-negative integers bounded by 2O(n) with a
minimum solution of size ` such that ` ≤ (1 − ε)n for some constant ε > 0 (think of
ε = 1/100). For a random prime p ∈ [2n−`, 2n−`+1] and a random number t ∈ [1, 2n−`] let
Ct,p = {X ⊆ S | Σ(X) ≡p t }. Then

E [|Ct,p|] ≤ O∗(2`)

Proof. By the linearity of expectations:

E [|Ct,p|] =
∑
X⊆S

Pt,p [p divides Σ(X)− t]
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For the remaining part of the proof we focus on showing Pt,p [p divides Σ(X)− t] ≤
O∗(2`−n) for a fixed X ⊆ S. It automatically finishes the proof, because there are 2n possible
subsets X.

We split the terms into two cases. If Σ(X) = t, then p divides Σ(X)− t with probability 1.
However, for a fixed X ⊆ S, the probability that Σ(X) = t is O( 1

2n−` ) because t is a random
number from [1, 2n−`] and p ≥ 2n−`.

On the other hand, if Σ(X) 6= t, then by the assumption, the set S consists of non-negative
integers bounded by 2τn for some constant τ > 0. In particular, |Σ(X) − t| ≤ 2τn. This
means that |Σ(X) − t| has at most τn

n−` ≤
τ
ε = O(1) prime factors of size at least 2n−`.

Any prime number p that divides Σ(X) − t must therefore be one of these numbers. By
Lemma 2.1 there are at least 2n−`/(n− `) prime numbers in range [2n−`, 2n−`+1]. Hence,
for a fixed X ⊆ S the probability that p divides Σ(X)− t is bounded by O(n2`−n). J

I Lemma 3.8. The set Ct,p can be enumerated in time O∗
(
max

{
|Ct,p|, 2n/2

})
.

The proof of the above lemma is based on [39] algorithm for Subset-Sum. For a full proof
of Lemma 3.8 see, e.g., Section 3.2 of [9]. Observe, that for our purposes the running time is
dominated by O∗(|Ct,p|).

Proof of the running time of Algorithm 2. To enumerate the set Ct,p we need O∗(|C| +
2n/2) time (see Lemma 3.8). To find two subsets X,Y ∈ C, such that Σ(X) = Σ(Y ) we need
O∗(|C| log |C|) time: we sort C and scan it.

The prime number p is at most 2n−`+1 and the expected size of C is O∗(2`). Because we
assumed that ` > n

2 the expected running time is O∗(2`) (we can terminate algorithm when
it exceeds O∗(2`) to Monte Carlo guarantees). The probability of success is Ω(1/poly(n)).
We can amplify it with polynomial overhead to any constant by repetition. J

This concludes the proof of Theorem 3.4.

3.3 Trade-off for Equal-Subset-Sum
In this section, we will proof the Theorem 3.1 by combining Theorem 3.4 and Theorem 3.3.

Proof of Theorem 3.1. Both Theorem 3.4 and Theorem 3.3 solve Equal-Subset-Sum. Hence,
we can focus on bounding the running time. By the trade-off between Theorem 3.4 (which
works for ` ∈ (n2 , (1− ε)n) and Theorem 3.3 the running time is:

O∗
(

max
`∈[1,n/2]∪[(1−ε)n,n]

{(
n/2
`/2

)
2`/2

}
+ max
`∈(n/2,(1−ε)n)

{
min

{(
n/2
`/2

)
2`/2, 2`

}})
For simplicity of analysis we bounded the sums by the maximum (note that O∗ notation

hides polynomial factors). When ` ≤ n/2, the running time is maximized for ` = n/2,
because (let ` = αn):

O∗
((

n/2
`/2

)
2`/2

)
= O∗

(
2 n

2 (h(α)+α)
)

and the entropy function h(x) is increasing in range [0, 0.5). For ` = n
2 the running time

is O∗(20.75n) ≤ O∗(1.682n). Similarly, we get a running time superior to the claimed one
when ` ∈ [(1− ε)n, n]. Note that h(x) ≤ 2

√
x(1− x), which means that the running time is

bounded by O∗(2 n
2 (h(1−ε)+(1−ε))) ≤ O∗(2 n

2 (1+2
√
ε)) which is smaller than our running time

for a sufficiently small constant ε.
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Finally, when ` ∈ [n/2, (1− ε)n] we upper bound the running time by the:

O∗
(

max
`∈[n/2,(1−ε)n)

{
min

{
2 n

2 (h(α)+α), 2αn
}})

.

The above expression is maximized when h(α) = α. By numeric calculations α < 0.77291,
which gives the final running time O∗(2αn) ≤ O∗(1.7088n). J

4 Polynomial Space Algorithm

The naive algorithm for Equal-Subset-Sum in polynomial space works in O∗(3n) time. We
are given a set S. We guess a set A ⊆ S and then guess a set B ⊆ S \A. Finally, we check if
Σ(A) = Σ(B). The running time is:

O∗
((
|S|
|A|

)(
|S| − |A|
|B|

))
≤ O∗(3n).

Known techniques for Subset-Sum allow us to get an algorithm running in O∗(21.5n) and
polynomial space.

I Theorem 4.1. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum
in polynomial space and O∗(21.5n) ≤ O∗(2.8285n) time. The algorithm assumes random
read-only access to exponentially many random bits.

A crucial ingredient of Theorem 4.1 is a nontrivial result for the Element Distinctness
problem [6, 8]. In this problem, one is given read-only access to the elements of a list x ∈ [m]n
and the task is to find two different elements of the same value. The problem can be naively
solved in O(n2) time and O(1) space by brute force. Also by sorting, we can solve Element
Distinctness in Õ(n) time and Õ(n) space. [8] showed that the problem can be solved in
Õ(n3/2) randomized time and Õ(1) space. The algorithm assumes access to a random hash
function f : [m]→ [n].

Proof of Theorem 4.1. We can guarantee random access to the list L = 2S of all subsets
of the set S = {a1, . . . , an} on the fly. Namely, for a pointer x ∈ {0, 1}n we can return an
element of the list L that corresponds to x in O∗(1) time by choosing elements ai for which
xi = 1. More precisely:

L(x1, . . . , xn) = {ai | i ∈ [n], xi = 1}.

Now to decide Equal-Subset-Sum on set S we execute the Element Distinctness algorithm
on the list L of sums of subsets. The list has size 2n, hence the algorithm runs in O∗(21.5n)
time. Element Distinctness uses only polylogarithmic space in the size of the input, hence
our algorithm uses polynomial space. J

Quite unexpectedly we can still improve upon this algorithm.

4.1 Improved Polynomial Space Algorithm
In this section, we show an improved algorithm.

I Theorem 4.2. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum in
polynomial space and time O∗(2.6817n). The algorithm assumes random read-only access to
exponentially many random bits.
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Similarly to the exponential space algorithm for Equal-Subset-Sum, we will combine
two algorithms. We start with a generalization of Theorem 4.1 parametrized by the size of
the solution.

I Lemma 4.3. Let S be a set of n positive integers, A,B ⊆ S be the solution to Equal-
Subset-Sum (denote a = |A| and b = |B|). There exists a Monte Carlo algorithm which solves
Equal-Subset-Sum in polynomial space and time

O∗
(((

n

a

)
+
(
n

b

))1.5
)
.

The algorithm assumes random read-only access to exponentially many random bits.

Proof. The proof is just a repetition of the proof of Theorem 4.1 for a fixed sizes of solutions.
Our list L will consists of all subsets

(
S
a

)
and

(
S
b

)
. Then we run Element Distinctness

algorithm, find any sets A,B ∈ L such that Σ(A) = Σ(B) and return A \B,B \A to make
them disjoint.

The running time follows because Element Distinctness runs in time Õ(n1.5) and
polylog(n) space. J

Note that the runtime of Lemma 4.3 is maximized when |A| = |B| = n/2. The next
algorithm gives improvement in that case.

I Lemma 4.4. Let S be a set of n positive integers, A,B ⊆ S be the solution to Equal-
Subset-Sum (denote a = |A| and b = |B|). There exists a Monte Carlo algorithm which solves
Equal-Subset-Sum in polynomial space and time

O∗
(

min
{(

n

a

)
20.75(n−a),

(
n

b

)
20.75(n−b)

})
.

The algorithm assumes random read-only access to exponentially many random bits.

Proof of Lemma 4.4. Without loss of generality, we focus on the case a ≤ b. First we guess
a solution set A ⊆ S. We answer YES if we find set B ⊆ S \A such that Σ(A) = Σ(B) or find
two disjoint subsets with equal sum in S \A. We show that we can do it in O∗(20.75(|S\A|))
time and polynomial space which finishes the proof.

First, we arbitrarily partition set S \ A into two equally sized sets S1 and S2. Then
we create a list L1 = [Σ(X) | X ⊆ S1] and list L2 = [Σ(A) − Σ(X) | X ⊆ S2]. We do
not construct them explicitly because it would take exponential space. Instead we provide
a read-only access to them (with the counter technique). We run Element Distinctness
on concatenation of L1 and L2. If element distinctness found x ∈ L1 and y ∈ L2 such
that x = y, then we backtrack and look for X ⊆ S1, such that Σ(X) = x and Y ⊆ S2,
such that Σ(Y ) = Σ(A) − y and return (A,X ∪ Y ) which is a good solution, because
Σ(Y ) + Σ(X) = Σ(A).

In the remaining case, i.e. when Element Distinctness finds a duplicate only in one of the
lists then, we get a feasible solution as well. Namely, assume that Element Distinctness finds
x, y ∈ L1 such that x = y (the case when x, y ∈ L2 is analogous). Then we backtrack and
look for two corresponding sets X,Y ⊆ L1 such that X 6= Y and Σ(X) = Σ(Y ) = x. Finally
we return (X \ Y, Y \X).

For the running time, note that the size of the list |L1| = |L2| = 20.5|S\A|. Hence Element
Distinctness runs in time O∗((|L1|+ |L2|)1.5) = O∗(20.75(n−a)). The backtracking takes time
O∗(|L1| + |L2|) and polynomial space because we scan through all subsets of S1 and all
subsets of S2 and look for a set with sum equal to the known value. J
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Proof of Theorem 4.2. By trade-off between Lemma 4.4 and Lemma 4.3 we get the following
running time:

O∗
(

max
1≤a,b≤n

{
min

{((
n

a

)
+
(
n

b

))1.5
,

(
n

a

)
20.75(n−a),

(
n

b

)
20.75(n−b)

}})

By symmetry this expression is maximized when a = b. Now we will write the exponents
by using entropy function (let a = αn):

O∗
(

max
α∈[0,1]

{
min

{
21.5h(α)n, 2(h(α)+0.75(1−α))n

}})
The expression is maximized when 1.5h(α) = h(α) + 0.75(1− α), By numerical computa-

tions α < 0.36751, which means that the running time is O∗(21.42312n) ≤ O∗(2.6817n). J

5 Conclusion and Open Problems

In this paper, we break two natural barriers for Equal-Subset-Sum: we propose an improve-
ment upon the meet-in-the-middle algorithm and upon the polynomial space algorithm. Our
techniques have additional applications in the problem of finding collision of hash function in
cryptography and the number balancing problem (see [35, Appendix E]).

We believe that our algorithms can potentially be improved with more involved tech-
niques. However, getting close to the running time of Subset-Sum seems ambitious. In
[35, Appendix B] we show that a faster algorithm than O∗(1.1893n) for Equal-Subset-Sum
would yield a faster than O∗(2n/2) algorithm for Subset-Sum. It is quite far from our bound
O∗(1.7088n). The main open problem is therefore to close the gap between upper and lower
bounds for Equal-Subset-Sum.
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