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Abstract
We study rumor spreading in graphs, specifically multicommodity multicast problem under the
wireless model: given source-destination pairs in the graph, one needs to find the fastest schedule to
transfer information from each source to the corresponding destination. Under the wireless model,
nodes can transmit to any subset of their neighbors in synchronous time steps, as long as they
either transmit or receive from at most one transmitter during the same time step. We improve
approximation ratio for this problem from Õ(n 2

3 ) to Õ(n 1
2 +ε) on n-node graphs. We also design

an algorithm that satisfies p given demand pairs in O(OPT + p) steps, where OPT is the length of
an optimal schedule, by reducing it to the well-studied packet routing problem. In the case where
underlying graph is an n-node tree, we improve the previously best-known approximation ratio of
O( log n

log log n
) to 3. One consequence of our proof is a simple constructive rule for optimal broadcasting

in a tree under a widely studied telephone model.
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1 Introduction

1.1 Motivation and Formulation

Rumor spreading problems have been popular for decades motivated by applications ranging
from increasing throughput in synchronizing networks [3], keeping object copies in distributed
databases synchronized [11], to recreational mathematics [4]. Common objectives in rumor
spreading involve the total number of messages, the total number of transmissions (especially
when message sizes are bounded in transmissions) and the completion time. In this paper, we
study the minimum completion time objective for the multicast version of the problem where
a set of source terminals wish to send their messages to their respective subsets of sinks.

The requirements for rumor spreading problem range from sending a single message from
a single source to all nodes (broadcast), a subset of nodes (multicast) or a more generalized
multicommodity version of multicast that we study. The rules for message transmission that
have been widely studied are synchronous and range from the telephone model [5], the radio
model [1] and the recently introduced wireless [6] model that shares the features of the first
two. We mainly study the wireless model in this paper.
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Multicommodity Multicast Problem. Given a communication graph G and demand pairs
of vertices (s1, t1), . . . , (sp, tp), where each source si has a unique piece of information (message
or packet), the problem is to find a schedule that transfers the message from every source si
to its corresponding destination ti in a minimum number of steps. The rules under which
the information is allowed to be sent in each step depend on the model.

Wireless Model. During each step, every node v in G is allowed to pick some of the vertices
adjacent to v and send all information v has accumulated to those nodes at once (so there is
no bound on message size). Nodes cannot receive from more than one source, nor can they
send and receive during the same time step.

1.2 Related Work
The type of models that have been studied could be differentiated by the demand requirements
and the rules under which information is spread. We highlight three different models
relevant to our study, which roughly correspond to spanning, Steiner and generalized Steiner
connectivity requirements studied in network design.
1. In the Broadcast problem, there is a single source (root) that must send its information

to all nodes in the system.
2. In the more general Multicast problem, the root only needs its information to reach a

subset of nodes in the system.
3. In the even more general Multicommodity Multicast problem, we are given source-

destination pairs, and every source must transmit its message to the corresponding
destination node.

We describe various models that define the rules of synchronous information transmission
in rounds.
1. In the Telephone model, during one time step, every node with information is allowed

to send it to only one of the adjacent nodes (neighbours) in the graph.
2. In the Radio model, a set of transmitting nodes send out information and only the

other nodes that have unique transmitting neighbors can receive the information from
that neighbor1.

3. In the Wireless model, during one time step, every node with information is allowed
to send it to any subset of neighbours.

In all models, nodes cannot receive from more than one source, nor can they send and receive
during the same time step. The key difference between the radio and wireless models is that
in the wireless model, receivers have tunable apparatus that allows them to listen in one
exactly one of the neighbors that may be transmitting, whereas in the radio model, a node
with two neighbors transmitting cannot receive any information due to interference. The
most widely studied versions do not restrict the number of messages sent between a pair of
nodes in each step, but capacitated versions are possible.

1.2.1 Telephone model
For the broadcast/multicast problems under the telephone model Ravi [10] showed a poly-
logarithmic approximation in general graphs, by relating it to spanning/Steiner trees that
simultaneously have small max degree and diameter (the so-called poise of the graph).

1 We do not discuss this model further in this paper.
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For this broadcast/multicast problem under the telephone model Elkin and Kortsarz [2]
gave the best known O( log k

log log k )-approximation factor, where k is the number of terminals
the information should be delivered to.

I Theorem 1 (Multicast approximation [2]). Given graph G, root r and k target sinks, there
is a poly-time algorithm TelephoneMulticast that finds a schedule that sends information
from the root to all sinks in the telephone model and has approximation ratio O( log k

log log k ).

The very general multicommodity multicast under telephone model was studied as well,
where the best approximating ratio Õ(2

√
log k) was achieved by Nikzad and Ravi [9]. Note

that this ratio is super-polylogarithmic but sub polynomial in k, the number of terminals. No
better approximations are known and part of the difficulty stems from the inability to relate
this objective directly to graph parameters since the solution can in general be disconnected.
This problem was also studied for special classes of graphs. First, it is known that if G is
a tree, then a polynomial time algorithm to find optimal schedule for telephone broadcast
can be derived through dynamic programming. Recently Iglesias, Rajaraman, Ravi and
Sundaram [7] have shown a O( log3 k logn

log logn )-approximation for multicommodity multicast for
planar graphs.

1.2.2 Wireless model
Given that there are no restrictions on the number of neighbors receiving a transmission, for
both the broadcast and multicast problems, optimal schedules under wireless model can be
found in polynomial time using a simple Breadth-First Search (BFS) algorithm.

For the multicommodity multicast problem the best known approximate ratio was given
by Iglesias, Rajaraman, Ravi and Sundaram [6], who also introduced the wireless model.
They also showed an O( logn

log logn )-approximation when the underlying graph is an n-node tree,
as well as Õ(n 2

3 )-approximation for general n-node graphs. There were two main ideas used
in their paper: (i) If there are many sources that want to send to the same sink, we can
satisfy them quickly using approximation algorithm for multicast under the telephone model;
(ii) If there are many short disjoint path from sources to their respective destinations, we
can satisfy them in parallel, otherwise we can reduce the number of sources considerably.

1.3 Packet routing problem
Another widely studied problem related to our work is so-called store-and-forward packet
routing problem, where given packets at different source nodes, one needs to find a synchronous
schedule of transporting them to given destinations, with the only restriction that no two
packets can traverse the same edge at the same time step.

The main difference between store-and-forward packet routing and multicommodity
multicast under wireless model is that the capacity restriction is put on the edge, not on the
node. This means that a node can do the following: (i) receive several packets at the same
time; (ii) send several packets as long as they use different edges; (iii) send and receive at
the same time. What is not allowed in this model is to accumulate several packets and send
them along one edge altogether, in contrast with the wireless model which can do that.

The analysis of packet routing problem involves a trade-off between the “dilation” para-
meter d (maximum path length) and the “congestion” criterion c (maximum number of
paths using any edge). Note, that both c and d are lower bounds on the length of the
optimal schedule for packet routing. Srinivasan and Teo [12] showed a polynomial time
algorithm to find a schedule of length O(c+ d), which achieves a constant approximation.
We reduce wireless multicommodity multicast problem to a packet routing problem to derive
one of our results.

ESA 2019
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When the paths for the packets are given, Leighton, Maggs and Rao [8] initiated a long
line of work that showed the existence and efficient construction of schedules of length
O(c+ d), which was used extensively in the work cited above on finding such near optimal
routes when the paths are not specified in advance.

1.4 Our Contributions
In this paper we focus on multicommodity multicast problem under the wireless model.

We show that for any given constant ε > 0, there is a polynomial time Õ(n 1
2 +ε)-

approximation algorithm that, given an arbitrary graph G and pairs of source-destination
nodes (si, ti), finds a schedule to transfer information from source si to destination ti for
all i (Theorem 2). This algorithm generalizes the ideas of Iglesias et al. [6] and applies
them recursively.
We design a polynomial time algorithm that, given an arbitrary graph G and p pairs
of source-destination nodes (si, ti), finds a schedule of length O(OPT + p) to transfer
information from source si to destination ti for all i, where OPT is the length of the
optimal one (Theorem 10). To prove this result, we reduce our problem to an instance of
packet routing in an appropriately defined auxiliary digraph.
We show that there is a polynomial time 3-approximation algorithm that, given a tree T
and pairs of source-destination nodes (si, ti), finds a schedule to transfer information from
source si to destination ti for all i (Theorem 16). This result decomposes the schedule
into sending messages up the tree followed by a phase that sends it down the tree.
We give a simple optimal schedule for the broadcast in the tree under telephone model
(Theorem 23). This is not a new result but a conceptual improvement over the previous
strategies that all rely on dynamic programming by providing a simple explicit rule for
choosing the transmitting pairs.

The widely studied telephone and relatively new wireless models are related to each other
in the following way. Even though spreading information from one source to several sinks
under wireless model can be done efficiently using BFS, collecting information from several
sources into one sink is equivalent under both models. This follows from the fact that while
collecting to one sink every piece of information travels on a straight path. This observation
implies that the gossip problem, where every node in the graph has to sent its message to all
other nodes, is equivalent under both models, up to a constant factor. More precisely, the
optimal schedule for the gossip problem under the wireless model is no longer than twice
the optimal broadcast schedule under the telephone model, which can be used to sweep
all information to a fixed root and spread it back in a BFS tree to all nodes. In the other
direction, the optimal schedule for the gossip problem under the wireless model is at least as
long as the optimal broadcast schedule under the telephone model since both models are
required to collect information from all the nodes to a root under the same constraints.

The multicommodity multicast problem is a generalization of both multicast and gossip
problems, so combines the difficulty of both. Finding approximation algorithms for this
problem under wireless model includes difficulties for multicommodity multicast under
telephone model. As mentioned earlier, the best-known approximation ratio of Õ(2

√
logn) [9]

for multicommodity multicast under telephone model is sub polynomial in n, whereas the
best-known ratio for this problem under the wireless model is Õ(n 2

3 ) [6]. Thus, the very
general multicommodity multicast problem under the wireless model appears to be quite
hard to approximate. Our work significantly improve this ratio down to roughly O(

√
n).
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2 General graphs

In this section, we study general multicommodity-multicast problem in arbitrary graphs. The
best known approximation ratio so far is Õ(n 2

3 ) [6]. We improve this bound to roughly Õ(
√
n).

I Theorem 2. Algorithm 3 is a polynomial algorithm that, given any ε > 0 and arbitrary
graph with demand pairs, can find a multicommodity-multicast schedule in the wireless model
with approximation ratio O

(
n

1
2 +ε
)
.

In the sequel, we assume that we are given the length L of the optimal rumor spreading
schedule. Note that there is always a wireless multicast schedule of linear length in a
connected graph by using any spanning tree, and traversing an Euler tour of the tree twice
and using the edges in the traversal in order. Thus, we can guess the length L at the very
beginning in the range [1, 4(n− 1)].

2.1 Algorithm
Our algorithm exploits two main observations that were introduced by Iglesias, Rajaraman,
Ravi and Sundaram [6].

2.1.1 Idea 1
The first key idea is the following. If there are numerous sources that want to send to the
same sink, we can satisfy all demands that originate in those sources. Algorithm 1 shows
how this can be done. The analysis of the algorithm is summarized in Lemma 3.

I Lemma 3 (Big in-demand [6]). Given a vertex t that is a sink in demand pairs (s1, t), . . . ,
(sd, t), Algorithm 1 satisfies all demands from nodes s1, . . . , sd in Õ(L) steps.

Note that we are not only satisfying d demand pairs, but potentialy up to d · n demands,
because every si could be a source of up to n demand pairs.

Algorithm 1 Algorithm for satisfying all demands in the “demand-neighbourhood” of a given
vertex.

procedure InDemand(G,S, t)
Input: graph G, source nodes S = {s1, . . . , sd} with the same sink t.

Run TelephoneMulticast(G, t, S) to get schedule TM that spreads information
from t to all nodes in S under telephone model.

Reverse schedule TM and run it on G to collect all information from s1, . . . , sd in t.
Run BFS(t) to spread information from t to all sinks that correspond to sources in S.

end procedure

2.1.2 Idea 2
The key observation here is the following. If we can find a lot of disjoint source-destination
paths, we can satisfy all of them in parallel, and hence in at most the length of the longest
path. We will try to greedily find as many paths of length at most L as possible from given
sources to corresponding destinations. Algorithm 2 summarizes this procedure.

ESA 2019
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Algorithm 2 Algorithm for finding disjoint paths between sources and destinations.

procedure DisjointPath(G,D,L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and the length of the optimal

algorithm L.

P = ∅
while there is a demand pair (s, t) ∈ D such that the distance between s and t is at

most L do
Add shortest path from s to t to P .
Delete all vertices in this path from G.

end while
Return P .

end procedure

2.1.3 Our idea
Iglesias, Rajaraman, Ravi and Sundaram [6] used both ideas and balanced parameters in
them to achieve Õ(n 2

3 )-approximation. We will combine and generalize these ideas in a
different way.

Idea 2.1.1 is useful when there is a vertex with high in-demand. More precisely, it allows
us to reduce the number of distinct sources while there are a lot of demand pairs.

Idea 2.1.2 instead shows how we can either satisfy a lot of demand pairs in parallel or
significantly reduce the number of distinct sources.

Our contribution comes from generalizing both ideas and combining them alternatively.
We use the first idea to reduce the number of demand pairs, then we use the second idea
to reduce the number of distinct sources. Now, given smaller number of sources we exploit
the first idea again to reduce the number of demand pairs even further, etc. Algorithm 4
corresponds to the first idea of reducing the number of demand pairs given the number of
distinct sources, whereas Algorithm 5 corresponds to the second idea of reducing the number
of distinct sources given fixed number of demand pairs. These two algorithms call each other
recursively. If we keep doing this infinitely long, we will achieve Õ(

√
n)-approximation, so

the main Algorithm 3 stops when it gets ε-close to it.
The analysis of the algorithm is presented in the main Lemma 7. The key idea in the

analysis is that the first observation can improve the performance of the second one, and
vice versa. So we alternatively apply each observation to improve the previous one.

2.2 Correctness and Complexity
B Claim 4. Algorithm 3 satisfies all given demands in the graph under wireless model rules.

First, note that the length L of the optimal schedule is at most 4(n− 1), where n is the
number of vertices, so one of the runs of S(G,D, k, L) will use the correct guess of L and
hence will satisfy all demands as long as Algorithm 4 works properly.

B Claim 5. Algorithms 4 and 5 satisfies all given demands in the graph under wireless
model rules.

Proof. First, note that algorithms 4 and 5 call each other alternatively, but every second
time, the parameter k (which keeps track of the number of iterations) decreases by 1, so it
will eventually reach 0. Also, note that every time any of these algorithms modify the set of
demand pairs D, they correctly satisfy or split demands. After k reaches 0, Algorithm 4 just
runs BFS from every source node, which clearly satisfies all demands. C



R. Ravi and O. Rudenko 78:7

Algorithm 3 Algorithm for rumor spreading in the general graph.

procedure GeneralMM(G,D, ε)
Input: unweighted graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and precision

ε > 0.

Take integer k = d 1
4εe.

for L = 1, 2, . . . , 4(n− 1) do . guess for the length of the optimal schedule
if S(G,D, k, L) produces a shorter schedule then

Save S(G,D, k, L) as current answer in BestSchedule.
end if

end for
Return BestSchedule.

end procedure

Algorithm 4 Algorithm for general graphs based on the number of sources.

procedure S(G,D, k, L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)}, iteration number k and the

length of the optimal schedule L.

if k = 0 then . condition to exit the recursion
for every distinct source s do

Run BFS(s). . to satisfy all demands in D that start in s
end for
Exit.

end if

Compute s to be the number of vertices in the graph that are sources in at least one
demand pair in D.

Take α = 1+k logs n
2k+1 .

while there is a vertex t with at least s1−α demands going into it do
Compute St to be those vertices that needs to send information to t. So St =

{s | (s, t) ∈ D}.
Run InDemand(G,St, t) to satisfy all demands that originate in St.
Delete all demands that originate in St from D.

end while
Run P (G,D, k − 1, L).

end procedure

B Claim 6. Algorithm 3 runs in polynomial time(n, 1
ε ).

Proof. First, note that Algorithm 1 runs in polynomial time, because TelephoneMulticast
as well as BFS run in polynomial time. Since we can find shortest path between any two
nodes in a graph is polynomial time, Greedy Algorithm 2 runs in polynomial time as well
since we decrease the number of vertices in the graph at each iteration.

Then, Algorithm 3 runs Algorithm 4 4(n − 1) times, so it is polynomial time as long
as Algorithm 4 is.

Algorithms 4 and 5 call each other alternatively, at most k = d 1
4εe = O( 1

ε ) times each.
So it is enough to show that both of these algorithms each run in polynomial time.

ESA 2019
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Algorithm 5 Algorithm for general graph based on the number of demand pairs.

procedure P(G,D, k, L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and iteration number k and

the length of the optimal algorithm L.

Take β = 1+k logp n
2k+2 .

while the number of disjoint paths d = |DisjointPath(G,D,L)| is at least p1−β do
Satisfy all d demands in parallel following paths in DisjointPath(G, D, L).
Delete all those demands from D.

end while

Denote DisjointPath(G,D,L) to be the disjoint paths for demand pairs
{(s1, t1), . . . , (sd, td)}.

Let a new graph G′ be G with added complete binary tree with leaves t1, . . . , td and
root r.

Compute S to be all vertices in G that are sources in at least one demand pair in D.
TM = TelephoneMulticast(G, r, S). . TM spreads information from the root r to

all sources in D under telephone model
Reverse schedule TM and run it on G. . It will collect all information from sources in

D into t1, . . . , td

Dnew = ∅
for (s, t) ∈ D do

Find ti among t1, . . . , td that has information from source s.
Add demand pair (ti, t) into Dnew.

end for
Run S(G,Dnew, k, L).

end procedure

Algorithms 4 runs Algorithm 1 at most s
s1−α = sα times. Given that α = 1+k logs n

2k+1 we
have that sα = 2k+1

√
snk ≤ 2k+1

√
nk+1 ≤ n. As we have already noted, Algorithm 1 also runs

in poly-time, so overall 4 is poly-time in terms of n and 1
ε .

Algorithms 5 runs Algorithm 2 at most p
p1−β = pβ times. Given that β = 1+k logp n

2k+2 we
have that pβ = 2k+2

√
pnk ≤ 2k+2

√
nk+1 ≤ n. As we have already noted, Algorithm 2 also runs

in poly-time. So overall Algorithm 4 is polynomial time in terms of n and 1
ε . C

2.3 Analysis
First, assume that for the given graph and demand pairs the optimal schedule takes L time
steps. The main Theorem 2 will follow from the following key lemma:

I Lemma 7. For every k ∈ N0 the following holds:
(Sk) If the number of distinct sources is s, then there is a Õ( 2k+1

√
snk)-approximation

schedule.
(Pk) If the total number of demand pairs is p, then there is a Õ( 2k+2

√
pnk)-approximation

schedule.

Note that s ≤ n, so for every k ∈ N0 from Sk we can have Õ( 2k+1
√
snk) = Õ(n

k+1
2k+1 )

approximation schedule. As k →∞, k+1
2k+1 →

1
2 , and hence we can find a schedule that has

approximation ratio O(n 1
2 +ε) for any positive ε. Thus, Lemma 7 implies the main Theorem 2.
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To prove the main lemma, we use an important observation that handles aggregated
messages with a few sinks.

I Lemma 8. If there is only one sink in multicommodity multicast under wireless model,
then there is an O( log p

log log p )-approximation algorithm for satisfying all demands, where p is
the number of sources.

Proof. The proof is based on the fact that collecting information from several sources to one
sink t under wireless model is equivalent to multicasting information from t to those sources
under telephone model (in reverse).

Note that because we are collecting information at one node, every piece of information
travels on the path (the node never sends information to several neighbours at the same
time) and so every step of the schedule is a matching - in other words, we have never used
the power of wireless model over telephone model. Hence, collecting information at one node
under wireless model is equivalent to collecting under telephone model, which is further
equivalent to multicast under telephone model by reversing the schedule.

Using the known approximation result for multicasting under the telephone model given
in Theorem 1, we can find a multicast schedule of length at most O(L · log p

log log p ). Reversing it
leads to a schedule that collects all information into t in time O(L · log p

log log p ). J

We can now prove our initial lemma about satisfying all the demands of sources corres-
ponding to a single sink.

Proof of the Lemma 3. We will produce a schedule that will satisfy all demands from nodes
s1, . . . , sd in Õ(L) steps. It will go in two stages:
1. Collect all information from s1, . . . , sd in t using Lemma 8.
2. Send it all together from t to all sinks of s1, . . . , sd using BFS.
Note that the second step could be done in O(L) by BFS from t, because the distance from t

to any sink of si is at most the distance from t to si plus the distance from si to sink, which
is at most L+ L = 2L. J

Proof of key Lemma 7. We prove this by induction on k. Moreover, the structure will be
as follows.

1. Sk ⇒ Pk for every k ≥ 0.
2. Pk ⇒ Sk+1 for every k ≥ 0.

Base case. It is enough to prove base case S0, in other words that it is possible to satisfy
all demands with approximation ratio O(s). Note that if we fix an arbitrary source v, we can
satisfy all its demands in O(L) steps by BFS starting at v (exploiting the power of wireless
model where we can send to several neighbours at the same time). By repeating this over
the s sources, it is possible to satisfy all demands in O(L · s) steps.

Induction step. Fix an arbitrary k ≥ 0.
1. We want to prove that Sk ⇒ Pk.

To recall, this means that: if there is a Õ( 2k+1
√
snk) approximation schedule for s sources,

then there is a Õ( 2k+2
√
pnk) approximation schedule for p demand pairs.

Assume that we are given p demand pairs.
Forming greedy paths: Start with an arbitrary source and try to find a path of length
at most L to one of its destinations. If found, delete all vertices in this path from the
graph and repeat. This corresponds to Algorithm 2.

ESA 2019
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After this stage we have some maximal number d of disjoint paths (s1, t1), . . . , (sd, td).
Note that because they are disjoint we can satisfy all of them in parallel in L steps.
Let β ∈ [0, 1] be a constant we will set afterwards. The idea of Algorithm 5 is the
following.
a. If the number of greedy paths d is at least p1−β , then satisfy those demands in

parallel and repeat.
b. If the number of greedy paths d is less than p1−β , we will reroute/collect all

information at t1, . . . , td using Lemma 9 and finish everything in one shot by applying
Sk to it.

We cannot repeat the first case more that p
p1−β = pβ times, and so the total number of

rounds in the schedule is at most Õ(L · pβ).
In the second case, there are d ≤ p1−β sources now, so by applying Sk we get that we can
send all information in Õ(L · 2k+1

√
p1−βnk). Combining the two cases gives approximation

ratio Õ(pβ + 2k+1
√
p1−βnk). Minimizing this leads to β = 1+k logp n

2k+2 and approximation
ratio Õ( 2k+2

√
pnk), which is exactly what we wanted.

Technical note: we need to ensure that β ∈ [0, 1]. Clearly β ≥ 0. Now, k = 0 leads to
β = 1

2 , giving a √p approximation ratio. For k ≥ 1 we have that p ≥ n⇒ β ≤ 1, but in
the case p < n the approximation ratio √p is better than Õ( 2k+2

√
pnk) for any k.

The only thing left is to prove the following lemma.
I Lemma 9 ([6]). If there are d greedy paths (s1, t1), . . . , (sd, td), we can collect all
information at one of the t1, . . . , td in Õ(L) time.
Figure 1 gives an example illustration of the Lemma 8.

s1 t1

s2 t2

s3 t3

s’

t’

t’’

s’’

s’’’

t’’’

s’’’’

t’’’’

Figure 1 Collecting information from all sources into t1, . . . , tk.

Proof. For the simplicity of the argument (and to use results about broadcast time,
which is the same as collecting information at one node), we will add to our graph a
dummy complete binary tree with leaves t1, . . . , td and root r and our goal will be to
collect all information at r in Õ(L) time. Obviously, if we can do this, then we also will
be able to collect all information at one of the t1, . . . , td in the same amount of time.
Consider an arbitrary source s and pick a fixed sink t for it (only one). Consider the
path between s→ t in the optimal schedule. This path has length at most L and hence
it should intersect with path si → ti for some i (otherwise we can find one more disjoint
path of length at most L). This means that if we run the optimal schedule, then nodes
on the greedy paths will contain information from all sources. Hence if we run it for L
more steps by transmitting information only along greedy paths, information from all
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sources will eventually be at one of t1, . . . , td. The dummy binary tree has depth at most
log d ≤ logn, so if we run the schedule for 2 logn more rounds (two parallel rounds per
level), the root r will contain all the information.
This means that it is possible to collect all information in r in at most 2L + 2 logn
steps. Using Lemma 8 we can find schedule that collects all information into r in at most
O((2L+ 2 logn) logn

log logn )) = Õ(L) steps. J

2. We want to prove that Pk ⇒ Sk+1.
Here we will expoit Lemma 3. Note that we are not just satisfying d demand pairs, but
potentialy up to d · n demands, because every source si could be in up to n demand pairs.
Also, by the base case we know that this could be done in O(dL) steps, but this lemma
gives a much better bound.
Now, assume that we have s sources, and let α ∈ [0, 1] be number that we will define
afterwards. The main idea of Algorithm 4 is the following.
a. If there is a vertex with at least s1−α demands going into it, then satisfy those

demands by Lemma 3 and repeat.
b. If every vertex has less than s1−α demands going into it, then the total number

p of demand pairs is small and we will finish in one shot by applying Pk.
In the first case we can satisfy all demands in Õ(L) steps by the lemma, and also we will
repeat this at most s

s1−α = sα times, so the total number of steps is Õ(L · sα).
In the second case, if every vertex has less than s1−α demands going into it, then the
total number of demands is p ≤ s1−αn. Applying Pk gives that we can find a schedule to
satisfy all demands in Õ(L · 2k+2

√
s1−αnk+1).

Combining the two yields to approximation ratio Õ(sα + 2k+2
√
s1−αnk+1). By minim-

izing this we get α = 1+(k+1) logs n
2k+3 for the call to S(G,D, k + 1, L) and corresponding

approximation ratio Õ( 2k+3
√
snk+1), which is what we wanted.

Technical note: we need to ensure that α ∈ [0, 1]. Clearly α ≥ 0. Note that α ≤ 1 if and
only if s ≥

√
n, but in the case s <

√
n the approximation ratio O(s) in the base case is

better than Õ( 2k+3
√
snk+1) for any k. J

3 Reduction to packet routing

In this section we draw a connection between multicommodity multicast problem and
extensively studied store-and-forward packet routing problem. We further derive an algorithm
that satisfies all demands in O(OPT + number of demand pair) for multicommodity multicast
under wireless model using approximation results from packet routing problem. Note that
if the number of given demand pairs is small or the optimal schedule is long, this gives a
better approximation result compared to the one we have shown in Section 2.

I Theorem 10. There is a polynomial time algorithm that finds a schedule of length O(L+p)
for multicommodity multicast problem with p demand pairs under wireless model.

3.1 Packet routing problem
We are going to relate wireless multicommodity multicast and packet routing problem.

I Definition 11 (Store-and-forward packet routing problem). Given an arbitrary (directed)
graph G and source-sink pairs of vertices (s1, t1), . . . , (sp, tp), where each source si has a
unique packet, the problem is to find a schedule that transfers packets from every source si to
every destination ti in a minimum amount of steps, so that no two packets can traverse the
same edge at the same unit of time.
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Note that under wireless model we are allowed to send several pieces of information at
once along one edge, which is not the case for packet routing problem. On the other hand,
packet routing problem has no other restrictions. This implies that a node can: (i) receive
several packets at the same time (ii) send several packets as long as they use different edges
(iii) send and receive at the same time.

The analysis of packet routing problem involves a trade-off between the “dilation” para-
meter d (maximum path length) and the “congestion” criterion c (maximum number of paths
using any edge). Note that both c and d are lower bounds on the length of the optimal
schedule for packet routing. Since the paths for the packets are not specified a priori, note
that the problem also first involves finding such paths minimizing the sum of the dilation
and congestion and then constructing an actual (offline centralized) schedule that completes
in about this many rounds. Srinivasan and Teo [12] do just that and show how to construct
a schedule of length O(c+ d), which achieves constant approximation.

I Theorem 12 ([12]). There is a polynomial time algorithm that finds a schedule for store-
and-forward packet routing problem and gives a constant approximation.

3.2 Reduction from wireless to packet routing
We prove Theorem 10 by reducing multicommodity multicast under the wireless model to
packet routing problem and using Theorem 12. There are two superior properties in the
packet routing problem: (i) a node can receive from several sources per time step; (ii) a node
can send and receive at the same time step.

First, we will show how to eliminate (i). The number of incoming messages is a lower
bound under wireless model (because a node can receive only from one source), whereas it
is not the case in packet routing problem. Given an instance for wireless multicommodity
multicast, we are going to modify it to create another instance for packet routing and use
its schedule to design a fast wireless schedule that satisfies given demand pairs. Formally
speaking, given an arbitrary undirected graph G we construct directed graph G′ in the
following way. For every node v ∈ G we create two nodes vin and vout in G′ and put a
directed edge vin → vout. Also, for every edge (u, v) ∈ G we put directed edges uout → vin
and vout → uin in G′. Then, every demand pair (s, t) in G correspond to demand pair
(sin, tout) in G′. We split every original vertex into “only receiving” and “only sending” part.
In this way the inbound restriction of v in G is translated into congestion restriction of edge
vin → vout in G′.

We still need to address the second difference (ii) between packet routing and wireless.
But for now we relax this condition and show how to transform wireless multicommodity
multicast to packet routing allowing nodes to send and receive at the same time under
wireless model.

I Definition 13. The Upgraded Wireless model is the relaxation of the wireless model
in which a node is allowed to send and receive information at the same time.

I Lemma 14 (Packet to information routing). Given a schedule for packet routing problem
on the graph G′, it is possible to transform it in polynomial time to a schedule of the same
length on the graph G under the upgraded wireless model.

Proof. First, given a packet routing schedule R on G′ we modify R to schedule R′ such that
the following is true: (i) R′ sends information through the same path as R (ii) R′ finishes in
the same amount of steps as R (iii) the graph G′ does not contain any nodes that receive
from more than one source at any time step. Then we show how given R′ one can simply
construct an upgraded wireless schedule of the same length on G.
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Let’s fix an arbitrary time step in R. Every node that sends to several destinations, or
sends and receives at the same time can still do so under upgraded wireless model. The
only issue is that a node cannot receive from several sources. Note that vout can receive
only from vin, so we will show how to alter the schedule R so that every node vin receives a
packet from at most one neighbor. The main idea is that instead of accumulating packets
at ’receiving’ vertices vin, we will accumulate information at ’sending’ vertices uout. More
precisely, if vertex uout sends packet pi to vin at some point t in time in R, then the new
schedule R′ does the following: vertex uout will hold packet pi and send it to vin right before
the time step when vin sends pi to vout in R. So we send information only when needed,
otherwise hold it in the previous node.

Note that in R′ there is no vertex that receives from more than one node at a time.
Moreover, the time at which every packet arrives to any vertex vout under R is the same as
in R′. This follows from the fact that whenever some vertex vout needs a packet pi from vin,
vertex vin would have already collected packet pi by construction of R′.

We are left to show that packet routing R′ on graph G′ could be transformed into
upgraded wireless schedule W of the same length on graph G. Every time vertex uout sends
a packet pi to vin, let W send information i from u to v. Indeed, W has the same number of
steps as R′ and satisfies all demands, because it just mirrors packet schedule of R′. Moreover,
W is a valid upgraded wireless schedule, since in R′ every node receives from at most one
node at every time step. J

I Lemma 15. Given a schedule under upgraded wireless model it is possible to transform
it in polynomial time to a schedule under wireless model, which has at most 3 times as
many steps.

Proof. Fix a time step and let S to be the directed graph of information flow of the given
schedule under upgraded wireless model at this specific time step. So there is a directed edge
u→ v in S if and only if node u sends information to node v during this time step. We will
show how to send all information that S does using wireless model in three time steps.

Note that the in-degree of every node in S is at most 1, because under upgraded wireless
model a node still cannot receive from more than one source per time step. Each connected
component in any directed graph with in-degree bounded by 1 has a simple characterization.
It is a directed cycle with outbound trees hanging from it. More precisely, it is a union of
the cycle v1 → v2 → . . .→ vk → v1 with several trees each rooted at one of vi’s, where every
edge in a tree is directed out from the root. Note that it is enough to show how to transfer
information in one connected component of schedule S using the wireless model and then
run this in parallel across different connected components.

Deleting an edge vk → v1 from the cycle (any other edge works as well) leads us to a
tree rooted at v1, where every edge is directed out from the root. We show how to send
all information along the edges in such a tree. We apply the following trick: let the level
of the vertex be its distance to the root of the tree. Now, call the vertex even if its level
is even and odd if its level is odd. First, all odd nodes that need to send information will
do so (and so even ones will be able to receive). Then, all even nodes will be allowed to
send information (and so odd ones will receive). In this way every node is either receiving or
sending information. Finally, we send information along the deleted edge vk → v1 from the
cycle. Hence instead of sending all information in one time step, we did it in three. This
blows up the total number of time steps by a factor of 3. J

I Remark. The result in Lemma 15 is sharp, for instance when underlying demand graph S
is a directed cycle on 3 vertices. Under thre upgraded wireless model information could be
sent in 1 step, whereas under the usual wireless model it requires 3 steps.
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We are going to combine these results to prove Theorem 10. Given multicommodity
multicast problem under wireless model on graph G with p demand pairs, we construct
graph G′ as described. Also, for every demand pair (si, ti) in G we create a separate packet
that originates at si and needs to be delivered to ti. Note that even if there is one piece of
information that originates at source s and needs to be sent to different sinks t1, . . . , tk, we
create different packets p1, . . . , pk for each of these demands. If we consider optimal wireless
schedule of length L on G and trace the path of every packet pi, then the length of every
such path is at most L, and on every edge the number of paths that uses that edge is at
most p (because there are p paths in total). Hence, dilation d ≤ L and congestion c ≤ p. We
do not know the optimal wireless schedule, but both c and d are lower bound on the length
of optimal packet routing schedule, and hence c+d

2 is also a lower bound. Theorem 12 gives
a constant-approximation schedule for packet routing, and hence this schedule satisfy all
demands in O(c + d) = O(L + p) time steps. Then we exploit Lemma 14 and Lemma 15
to transform it into a O(L+ p) schedule for multicommodity multicast problem under the
wireless model, which proves Theorem 10.

4 Rumor spreading in trees

In this section we present a simple polynomial algorithm Tree that gives a constant approx-
imation for wireless rumor spreading in trees, which improves the best known O( logn

log logn )-
approximation ratio for n-node trees.

I Theorem 16. Algorithm Tree runs in polynomial time and gives 3-approximation for
multicommodity multicast problem in a tree under wireless model.

The algorithm consists of two parts. We use the same idea as Iglesias, Rajaraman,
Ravi and Sundaram [6], by rooting the tree and splitting rumor spreading into sending all
information up the tree to ancestors, and then sending it down the tree to descendants.

4.1 Algorithm

Algorithm 6 Algorithm for rumor spreading in the tree.

procedure Tree(T,D)
Input: Tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}.
Pick an arbitrary vertex r and root the tree T at r.
Dup := ∅
Ddown := ∅
for (s, t) ∈ D do

Find the least common ancestor lca(s, t) of s and t.
Add demand pair (s, lca(s, t)) to Dup.
Add demand pair (lca(s, t), t) to Ddown.

end for
Run TreeUp(T,Dup).
Run TreeDown(T,Ddown).

end procedure

In order to send information up the tree, algorithm TreeUp uses a greedy approach to
send information that should go the furthest first. This strategy satisfies all demand pairs
in at most 2·OPT time steps, where OPT is the length of the optimal schedule. Lemma 19
provides an analysis of the algorithm.
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Algorithm 7 Algorithm for rumor spreading, when all demands go up the tree.

procedure TreeUp(T,D)
Input: Rooted tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}, where ti is an

ancestor of si in the tree, for every i.
Dclean := ∅ . This will contain a subset of demand pairs D with non-repeating sources.
for every vertex s ∈ G that is a source in D do

Among all demand pairs in D with source s consider the one, which has the longest
distance between s and corresponding sink in the tree.

Add this pair in Dclean.
end for
Set the depth of every node v, d(v) to be the length of the path from v to the root r.
Set current number of steps i := 0.
while not all demands in Dclean are satisfied do

for v ∈ G do
if d(v) has same parity as i then

Find child u of v with the piece of information that at the current state
needs to travel the longest distance up in the tree to its sink.

Send all information u has up to v.
end if

end for
i = i+ 1

end while
end procedure

The algorithm TreeDown sends information down the tree very fast, using two obser-
vations. First, it exploits the fact that under wireless model information could be sent to
several neighbours simultaneously. Second, we note that any two nodes in a tree have disjoint
set of children. We show that this strategy shows satisfies all demands in at most OPT+1
steps. Lemma 20 gives this analysis of algorithm TreeDown 8.

Algorithm 8 Algorithm for rumor spreading, when all demands go down the tree.

procedure TreeDown(T,D)
Input: Rooted tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}, where ti is a

descendant of si in the tree, for every i.
Set the depth of every node v, d(v) to be the length of the path from v to the root r.
Set current number of steps i := 0.
while not all demands are satisfied do

for v ∈ G do
if d(v) has same parity as i then

send all information v has to all its children in the tree.
end if

end for
i = i+ 1

end while
end procedure

Combining these two algorithms, we get the overall algorithm Tree for wireless mul-
ticommodity multicast in the tree.
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4.2 Correctness and Complexity
B Claim 17. Algorithm Tree 6 satisfies all given demands in the tree under wireless
model rules.

Proof. First, it is clear that if we first send information from source s to lca(s, t) for every
demand pair (s, t), and then from lca(s, t) to t for all (s, t), then we would have sent
information from every s to corresponding t.

Now, we need to show that algorithms TreeUp 7 and TreeDown 8 correctly send
information up and down the tree respectively. First, let’s show that both algorithms obey
wireless rules. Note that in both algorithms only nodes with the same parity of depth can
send information, and so node with opposite parity of depth will receive information, hence
there is no vertex that is trying to send and receive information at the same time.

Next, we show that none of the nodes is trying to receive information from more than one
vertex. Every vertex v in algorithm TreeUp 7 receives from only one if its children (if any).
For algorithm TreeDown 8, observe that nodes with even (or odd) depth are pairwise not
connected, and so sets of theirs children are disjoint.

Finally, note that both algorithms will run until all demands are satisfied. Since at every
step at least one piece of information becomes closer to the destination, it should satisfy all
demands in finite number of steps. C

B Claim 18. Algorithm Tree runs in polynomial time.

Proof. It is enough to show that both algorithm TreeUp 7 and algorithm TreeDown 8
run in polynomial time. Note that since at every step at least one piece of information
becomes closer to the destination, the number of while loops is at most (number of demand
pairs)·(maximum distance in the tree), which is polynomial in the number of vertices in
the tree. In algorithm TreeUp 7 at each iteration of the while loop, we also need to loop
through all children of v and find the one that needs to send information the furthest. This
could be done in poly-time as well, because the number of children, pieces of information
and diameter of the tree are all polynomial in n. C

We show that algorithm Tree outputs a rumor spreading schedule that is at most 3
times longer than the optimal one. Let us denote the length of the optimal schedule to be L.

It is enough to analyze approximation ratios of both algorithm TreeUp and algorithm
TreeDown. We show that the first one gives a 2-approximation and the second one is
almost optimal.

I Lemma 19. Algorithm TreeUp 7 produces the schedule that satisfies all demands in at
most 2L steps.

I Lemma 20 ([6]). Algorithm TreeDown 8 produces the schedule that satisfies all demands
in at most L+ 1 steps.

These two lemmas clearly imply that algorithm Tree 6 has approximation ratio 3.

Proof of Lemma 19. Note that for every source s, all of its sinks could only be the vertices
along the path from s to the root. Observe that for each s− t pair the path from s to t is
unique and hence we can also define a distance from s to t.

If s has to send to several sinks, we can leave only the furthest sink and remove others -
because the tree path from s to the furthest sink also passes through closer sinks. So now we
assume that every source has exactly one sink, which corresponds to the new set of demand
pairs Dclear.
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First, let us assume that the vertex is allowed to send and receive at the same time,
but still is not allowed to receive from more than one source. Under this assumption,
algorithm TreeUp 7 (after removing the line “If d(v) has same parity as i”) achieves
the optimal spreading time! Figure 2 illustrates the execution of this modified version of
algorithm TreeUp 7.
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2
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t1

t2

s2

1

1

2

1

2

1

Figure 2 Illustration of precursor to algorithm Tree 6.

Recall that the algorithm is the following: if node v contains some information, it will try
to send it up. So if no other vertices are trying to send information to the parent of v, then
v is allowed to send information and it is obviously the best possible move.

I Definition 21 (The best/optimal move). Given a multicommodity-multicast problem, the
move is called optimal if there exists a subsequent sequence of moves that will achieve optimal
rumor spreading time.

Now, imagine that at the specific point in time there are several nodes v1, . . . , vk who
want to send to their common parent t.

I Definition 22 (The priority of the vertex). Given a vertex v that has information from
sources s1, . . . , sk, define the priority of v at this particular state of the system to be the
maximum distance from v to all sinks t1, . . . , tk that correspond to sources s1, . . . , sk.

The rule will be that vertices with larger priorities always send first. More precisely, if
there are several nodes v1, . . . , vk who want to send information to their common parent t at
this point in time, then pick the vertex vi with the largest priority and allow it to propagate
information to t (we will break any ties arbitrarily).

We argue that this is an optimal move. Consider the optimal algorithm and the first
moment in time when the state is different from the state in our greedy algorithm. We will
show that optimal algorithm could be modified, so that it still finishes rumor spreading in
the same number of steps, but also does the same move as our greedy algorithm.

Assume at this state vertices v1, . . . , vk want to send to their parent t. One of the vertices
vi should be allowed to send info to t since one more piece of information will move closer to
the sink this way. Consider what the optimal algorithm will do. Say it allows vertex vj to
send information to its parent. If vi = vj , then we are done (meaning our current move is
optimal). If not, then consider a different algorithm, where we swap vi in place of vj , and
move this step where vj sends information to its parent to the next time when vi is scheduled
to do so in the optimal algorithm. We claim that this modified algorithm is still optimal.
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To see this, consider the optimal algorithm again. Both vertices vi and vj have common
path to the top (except the very first edge to their parent, which we will ignore). Moreover,
because the priority of vi is at least the priority of vj , then the demand from vj is a subpath
of the demand for vi (remember we associate demand with both the source-sink pair and
the path between them). Because vj goes first and takes the same route as vi, but vi goes
further, we have that at some point during the optimal schedule the current information from
vertices vi and vj will be at the same vertex (somewhere along the demand path). Hence
at the end of the optimal schedule both sinks that correspond to vi and vj will contain the
current information from both vi, vj . And so if we swap vi and vj in our algorithm, after
the same number of time steps as in the optimal schedule again, both sinks that correspond
to vi, vj will contain current information from both vi, vj . Hence our modified algorithm is
optimal as well.

To sum up, this proves that our greedy algorithm which allows vertices with higher
priority to send first is optimal.

To finish the proof we need to get rid of the assumption that a node can send and receive
information at the same time. For this, we use the following idea: let the level of the vertex
be its distance to the root of the tree. Now, call the vertex even if its level is even and odd if
its level is odd. We will alternate between even/odd levels to send/receive. First, all odd
nodes that need to send information will do so (and so even ones will be able to receive).
Then, all even nodes will be allowed to send information (and so odd ones will receive). This
is then repeated. In this way every node is either receiving or sending information at every
step. Clearly, we have increased the number of time step by at most factor 2. Therefore our
algorithm will finish in at most 2L steps. J

Proof of Lemma 20. First, note that the distance between any source and sink is at most
L, because in the optimal schedule all distances are at most L. But we cannot start greedily
send information down, because a vertex cannot both send and receive information at
the same time.

Hence we will use the same idea again - vertices with even/odd levels will alternate to
send/receive. Note that our algorithm TreeDown 8 does the following: first, all even nodes
that need to send information will do so (and so odd ones will be able to receive). Then,
all odd nodes will be allowed to send information (and so even ones will receive). This is
repeated as before.

Consider a fixed source. If it is even, then it will start sending information down right
away, if it is odd, there will be a delay of one step. But after the vertex started sending
information, there will be no delays! For example, if the vertex is even, then it sends
information to the odd one, and at the next iteration all odd vertices are allowed to send
information. Hence, it will take at most L+ 1 steps to deliver all information. J

4.3 Optimal Telephone Broadcast in a Tree
I Corollary 23 (Optimal broadcast in the tree under telephone model). There is a simple
optimal schedule for broadcasting in the tree from any root under telephone model.

Note that it is well-known that the optimal schedule for broadcast in the tree under
telephone model can be found in polynomial time. For instance, one can find such a schedule
using dynamic programming. But this approach only gives an implicit algorithm to find
such a schedule. We will present a very simple explicit optimal schedule algorithm
TreeBroadcast 9.
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Algorithm 9 Algorithm for optimal broadcast in the tree under telephone model.

procedure TreeBroadcast(T )
Input: rooted tree T .

OptimalSchedule = ∅
while T is not empty do

Matching = ∅
for every vertex v ∈ T do

If v is not connected to any leaf, then continue to another v.
Among all children of v, pick an arbitrary leaf u.
Add edge u→ v to Matching.

end for
Add Matching to OptimalSchedule.
Delete Matching from T and any isolated vertices.

end while

Return reversed OptimalSchedule
end procedure

B Claim 24. Algorithm TreeBroadcast 9 outputs the optimal broadcast schedule in
the tree.

Proof. Every broadcast schedule that sends information from the root to all nodes is equivalent
to a schedule that sends information from the root to all leaves. This is further equivalent to
a schedule that collects information from all leaves to the root - by reversing the direction of
information flow and hence the schedule. We will present such a schedule.

Assume we are given that each leaf has a unique piece of information that it wants to
transmit to the root. The schedule is very simple: every leaf that has some information (one
or several pieces collected from other nodes) tries to send it to its parent. After the leaf
successfully propagates the information up, we delete this vertex from the tree. If there are
several leaves who try to send to the same parent, then choose one arbitrarily.

This is an optimal move because in each conflict when several leaves are trying to
send to the parent, the priority of each of these conflicting leaves is the same (since their
distance to the root is the same), so the argument is exactly the same as in the analysis of
Algorithm TreeUp.

The only additional point here is that we do not allow for non-leaf vertices to send
information, even though they might have some information available. This is because if
there is an internal node v, such that in its subtree there are leaves with information that
they haven’t sent up to v yet, there is no need in an optimal scheme for v to try to send
available information up, since it can wait until the very last information in its subtree will
reach v. More formally, the priority of the node v is less than the priority of a leaf in a
subtree of v, and hence we should give a priority to the leaf (by the same argument as in
that of Algorithm TreeUp). This rule makes sure that there is no vertex that is trying to
send and receive information and the same time. C

5 Conclusion

We have studied well-known rumor spreading problem under the wireless model. We designed
approximation algorithms for the most general multicommodity multicast set-up that improve
approximation ratios both for general graphs and when the underlying graph is a tree. For
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general graphs we improve approximation ratio for this problem from Õ(n 2
3 ) to Õ(n 1

2 +ε) on
n-node graphs. We also design an algorithm that satisfies p demand pairs in O(OPT + p)
steps, by reducing it to the well-studied packet routing problem. When underlying graph is an
n-node tree, we improved approximation ratio from O( logn

log logn ) to a constant 3-approximation.
A consequence of our algorithm is the simple constructive rule for optimal broadcasting in a
tree under a widely studied telephone model.
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