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Abstract
Consider a variant of the Mastermind game in which queries are `p distances, rather than the usual
Hamming distance. That is, a codemaker chooses a hidden vector y ∈ {−k,−k + 1, . . . , k − 1, k}n

and answers to queries of the form ‖y− x‖p where x ∈ {−k,−k + 1, . . . , k − 1, k}n. The goal is to
minimize the number of queries made in order to correctly guess y.

In this work, we show an upper bound of O
(
min
{

n, n log k
log n

})
queries for any real 1 ≤ p <∞ and

O(n) queries for p = ∞. To prove this result, we in fact develop a nonadaptive polynomial time
algorithm that works for a natural class of separable distance measures, i.e., coordinate-wise sums of
functions of the absolute value. We also show matching lower bounds up to constant factors, even
for adaptive algorithms for the approximation version of the problem, in which the problem is to
output y′ such that ‖y′ − y‖p ≤ R for any R ≤ k1−εn1/p for constant ε > 0. Thus, essentially any
approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors.
Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker
answers queries with any q = (1± ε)‖y− x‖p, there is no query efficient algorithm.
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1 Introduction

Mastermind is a game played between two players, the codemaker and the codebreaker. In
the 1970 original 4-position 6-color version of the game, the codemaker chooses 4 colored
pegs, each taking one of 6 colors, and the codebreaker tries to guess the codemaker’s 4 pegs
by making queries to the codemaker by taking a guess at the sequence of the codemaker’s
4 colored pegs. These guesses are answered by two numbers, the number of pegs guessed
that are in the right position and the right color, indicated by black pegs, and the additional
number of pegs of the right color but in the wrong position, indicated by white pegs.
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1:2 The Query Complexity of Mastermind with `p Distances

Ever since, this game and its generalizations and variants have been studied by many
computer scientists. The original version was completely characterized by [7], who showed
upper and lower bounds of 5 queries for deterministic strategies. The n-position k-color
generalization of the game was studied in [4], which sparked a line of research that lead to
progressive improvement in upper and lower bounds for this problem, both in the original
version of the game as well as in related variants of the game [2]. As these variants are not
the focus of this work, we refer the reader to the expositions of [5, 2] for more details on
this literature.

Note that in the variant that the codebreaker only receives the black peg answers, the
problem can be phrased as guessing a hidden vector based on Hamming distance queries. One
can then consider many variants of the Mastermind game in which the codebreaker guesses
the codemaker’s hidden vector based on other distance queries. For instance, motivated by
the theory of black-box complexity, [1] recently studied the variant where the distance is the
length of the longest common prefix with respect to an unknown permutation. In recreational
mathematics, the `1 distance case has been studied under the name of “digit-distance” [6].
In this work, we study the case of `p distance queries. That is, the codemaker chooses a
hidden vector y ∈ {−k,−k + 1, . . . , k − 1, k}n and answers to queries of the form ‖y− x‖p
where x ∈ {−k,−k + 1, . . . , k − 1, k}n.

1.1 Our contributions
On the algorithmic side, we present Theorem 9, in which we develop a very general nonadaptive
algorithm that works for any separable distance measure, i.e., the distance between x,y ∈ Rn
is given by f(x−y) where f(x) =

∑n
i=1 gi(|xi|). When we apply this to the case of gi(x) = xp

for any constant real 1 ≤ p <∞, i.e., when f is the (p-th power of the) `p norm, we obtain a
polynomial time algorithm making O

(
min

{
n, n log k

logn

})
queries. For p =∞, we give a simple

algorithm achieving O(n) queries. We also give lower bounds for any adaptive algorithm that
match our upper bounds up to constant factors, for any constant integer 1 ≤ p <∞ (Theorem
11) and for p =∞ (Theorem 12). In fact, our lower bounds are for a weaker problem, the
problem of outputting an approximation y′ such that its distance from the true hidden vector
y is at most ‖y′ − y‖p ≤ R, whenever the approximation radius satisfies R ≤ k1−εn1/p

(where we think of n1/p = 1 when p =∞) for constant ε > 0. Thus, approximation for this
problem is hard, in the sense that finding the point exactly is optimal up to constant factors,
even when the approximation radius is as large as k1−εn1/p.

Our main algorithmic technique for obtaining Theorem 9 is a judicious application of a
generalization of the Fourier-based detecting matrix construction of [3]. Our lower bounds
are simply obtained by counting the number of lattice points in an `p ball.

Finally, we consider a noisy version of the above problem, where the codemaker is allowed
to answer queries with any answer that is within (1± ε)‖y− x‖p. For this variant, we show
that any algorithm must make Ω(exp(ε2Θ(kpn))) queries in Theorem 13. That is, there is
no query efficient algorithm for this problem.

2 Preliminaries

2.1 Notation
I Definition 1 (`p norm). Let 1 ≤ p ≤ ∞. Then, we endow Rn with the `p norm ‖·‖p,
given by

‖x‖p :=
(

n∑
i=1
|xi|p

)1/p

(1)
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if p <∞ and

‖x‖∞ := nmax
i=1
|xi| (2)

if p =∞.

IDefinition 2 (Weight of binary vector). Let a ∈ {0, 1}ν . Then, wt(a) is the number of 1s in a.

I Definition 3 (Even-odd decomposition). Let h : R→ R be any function. Then, the even-odd
decomposition of h is given by

heven(x) := h(x) + h(−x)
2

hodd(x) := h(x)− h(−x)
2 .

(3)

It is easy to see that h = heven+hodd and that heven(−x) = heven(x) and hodd(−x) = −hodd(x)
for all x ∈ R.

2.2 Bshouty’s detecting matrix
We very briefly review the construction of the detecting matrix of [3], as we build off of this
result for our algorithms.

I Definition 4 (Detecting matrix [3]). A (d1, d2, . . . , dn)-detecting matrix is a {0, 1}-matrix
such that for every u,v ∈

∏n
i=1{0, 1, . . . , di − 1} with u 6= v, we have Mu 6= Mv.

The theorem we use is the following:

I Theorem 5 (Bshouty detecting matrix, Theorem 4/Corollary 5 of [3]). Let 1 < d1 ≤ d2 ≤
· · · ≤ dn where d1 + d2 + · · ·+ dn = d. There is a (d1, d2, . . . , dn)-detecting matrix M of size
s× n where

s(log s− 4) ≤ 2n log d
n
. (4)

Furthermore, for u ∈
∏n
i=1{0, 1, . . . , di − 1}, there is a polynomial time algorithm for

recovering u given Mu.

We will only sketch the main idea behind the construction of the matrix and the decoding
algorithm, and refer the reader to [3] for the proof of the bounds and the correctness.

2.2.1 Fourier representation [3]
We consider the Fourier basis on real-valued functions defined on the Boolean hypercube
{−1,+1}ν , i.e., the basis

B :=
{
χa(x) :=

∏
ai=1

xi

∣∣∣∣∣a ∈ {0, 1}ν
}
⊆ {f : {−1,+1}ν → R}. (5)

It is known that B is an orthonormal basis, and thus any f : {−1,+1}ν → R can be uniquely
represented as

f(x) =
∑

a∈{0,1}s
f̂(a)χa(x) (6)

APPROX/RANDOM 2019



1:4 The Query Complexity of Mastermind with `p Distances

where f̂(a) is the Fourier coefficient of χa given by

f̂(a) = 1
2ν

∑
x∈{−1,+1}ν

f(x)χa(x). (7)

Using the fast Fourier transform, all the coefficients f̂(a) can be found from the values
of f(x), x ∈ {−1,+1}ν , and ordered according to lexicographic order of a ∈ {0, 1}ν in
time O(ν2ν).

2.2.2 Detecting matrix construction
The overall idea is as follows. We choose s as in equation (4) and ν := log2 s. Then, we
view column vectors in Rs with s = 2ν rows as enumerations of the values of functions
f : {−1,+1}ν → R. That is, for x ∈ {−1,+1}ν , the xth row of the column vector representing
f is f(x). We then view our detecting matrix M ∈ {0, 1}s×n as a family of n {0, 1}-valued
functions defined on {−1,+1}ν and Mu as a linear combination of functions from this
family, where the coefficients of the linear combination are specified by the unknown vector
u ∈

∏n
i=1{0, 1, . . . , di − 1}. The n functions of M have a special structure in the Fourier

basis, so that there is an efficient iterative algorithm for recovering the coordinates of u in
batches from the Fourier coefficients of the function Mu.

We iteratively construct columns of M as follows. For each a ∈ {0, 1}ν , we will choose `a
more columns to construct, so that in the end, we have

∑
a∈{0,1}ν `a = n columns.

Suppose that columns 1 through r have already been constructed. Let a ∈ {0, 1}ν and
choose an integer `a such that

dr+1dr+2 . . . dr+`a ≤ 2wt(a)

dr+1dr+2 . . . dr+`adr+`a+1 > 2wt(a)−1.
(8)

We then construct `a more columns of M so that the ith new function ga,i has Fourier
coefficient of χa as

ĝa,i(a) = dr+1dr+2 . . . dr+i/2wt(a) (9)

and the Fourier coefficient of χb for any b > a (in the usual ordering on the Boolean
hypercube) as

ĝa,i(b) = 0. (10)

The way we choose the column functions ga,i to have these properties is described in [3].

2.2.3 Decoding algorithm
We now show how to efficiently decode Mu. Essentially, we will decode `a of the entries of u
at a time, subtract them off, and recurse.

Note that column vector Mu is the enumeration of the values of a linear combination
f of the ga,i functions from above, where the row corresponding to x ∈ {−1,+1}ν is f(x).
Then, using the fast Fourier transform, we find all the Fourier coefficients f̂(z) for z ∈ {0, 1}ν
and search for a maximal a ∈ {0, 1}ν such that f̂(a) 6= 0. For such an a, one can prove that
its Fourier coefficient in f is

f̂(a) = 1
2wt(a) (λr+1 + λr+2dr+1 + λr+3dr+1dr+2 + · · ·+ λr+`a+1dr+1dr+2 . . . dr+`a) (11)
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where r is the number of columns inM before the columns corresponding to a, and λr+i = ur+i
(for sake of matching the notation in [3]). Since λr+i ∈ {0, 1, . . . , dr+i − 1} for all i ∈ [`a], we
can recover all of the λr+i. Then, these coefficients can be subtracted off and we can recurse
on the remaining entries of u.

In our Theorem 9, we will modify the above algorithm to allow for non-integer values for
the λr+i, as long as they are bounded and well-separated (to be made precise later).

3 Algorithms

We now describe our upper bounds. As a warm up, we start with algorithms for `1, `2, and
`∞. These will introduce some tricks that we exploit in our coordinate-wise sums algorithm.
Then, we combine these tricks along with a modification of the Bshouty detecting matrix
algorithm described above to obtain Theorem 9.

3.1 Algorithms for `1, `2, and `∞

Our algorithms will be based around the idea of applying the Bshouty detecting matrix M
to the hidden vector y. This can be most straightforwardly applied in the case of `2, by
expanding squared distances (equation (12)).

I Theorem 6 (Algorithm for `2 queries). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖2. Then, there
is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. By first making the query with the 0 vector, we may find the norm ‖y‖2 of the
unknown vector. Now suppose we query for ‖x− y‖2. Note then that

〈x,y〉 =
‖x‖22 + ‖y‖22 − ‖x− y‖22

2 (12)

so we can compute the inner product between x and y. Thus by taking n queries to be the n
standard basis vectors x = ei for i ∈ [n], we can always recover y in n+ 1 queries. To obtain
s = O

(
n log k
logn

)
for k ≤ n, we can take our query vectors x to be the rows of the detecting

matrix of Theorem 4/Corollary 5 of [3] and recover y by using the decoding algorithm as
described in the proof. We thus conclude as desired. J

As shown above, if we can simulate computing inner products with binary vectors in O(1)
queries each, then we get an O(n) algorithm by querying with the standard basis vectors or
O
(
n log k
logn

)
by using [3]. For `1, we take a similar approach. This time, the way we extract

the inner product is quite different from the case of `2. This technique turns out to be much
more flexible, and will allow us to generalize the result to coordinate-wise sums.

I Theorem 7 (Algorithm for `1 queries). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖1. Then, there
is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. We will just show how to compute inner products in O(1) queries, since the rest
follows as in the `2 case. Let τ ∈ {0, 1}n be any binary vector and consider the sign vector
σ ∈ {±1}n with σi = (−1)τi+1. Then for σi ∈ {±1} and −k ≤ yi ≤ k, we have that

|kσi − yi| =
∣∣kσi − σ2

i yi
∣∣ = |k − σiyi| = k − σiyi. (13)

APPROX/RANDOM 2019



1:6 The Query Complexity of Mastermind with `p Distances

Thus,

‖kσ − y‖1 =
n∑
i=1
|kσi − yi| =

n∑
i=1

k − σiyi = kn− σ · y (14)

so we may compute the quantity σ · y = kn−‖kσ − y‖1. We may then compute the desired
inner product with binary vectors as τ · y = (σ · y + 1n · y)/2. J

To conclude the section, we show an O(n) algorithm for `∞ queries. This turns out to be
optimal, as we show later.

I Theorem 8 (Algorithm for `∞ queries). Let y ∈ {−k,−k+ 1, . . . , k− 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖∞. Then, there
is a polynomial time algorithm that recovers y in s = O(n) queries.

Proof. For each i ∈ [n], we make the query q+
i = ‖kei − y‖∞ and q−i = ‖−kei − y‖∞. Note

that yi = 0 if and only if these two are both equal to k. If yi > 0, then q−i = k + yi > k and
if yi < 0, then q+

i = k − yi > k. Thus, with these two queries, we can determine yi. Thus,
we recover y in O(n) queries. J

3.2 Algorithm for coordinate-wise sums
In the previous section, we obtained polynomial time algorithms with tight query complexity
for `1 and `2 by simulating inner product computations between y and binary vectors. We
now generalize these ideas to an algorithm for any query given by sums along the coordinates.
This in particular includes all (p-th powers of) `p norms, even for p not an integer.

I Theorem 9 (Algorithm for coordinate-wise sums). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be
an unknown vector, and suppose that we receive answers to s queries of the form f(y− x),
where f(x) =

∑n
i=1 gi(|xi|). For each i ∈ [n], define the function hi(x) = gi(k − x) and

consider the even-odd decomposition hi = (hi)even + (hi)odd (see Definition 3). Also consider
the following quantities:

Mmin
i := min

x∈{−k,−k+1,...,k−1,k}
(hi)odd(x)

Mmax
i := max

x∈{−k,−k+1,...,k−1,k}
(hi)odd(x)

∆i := min
x1,x2∈{−k,−k+1,...,k−1,k}

x1 6=x2

|(hi)odd(x1)− (hi)odd(x2)|

∆ :=
n

min
i=1

∆i

di :=
⌈
Mmax
i −Mmin

i

∆

⌉
+ 1

(15)

If ∆ > 0, then there is a polynomial time algorithm that recovers y with s =

O

(
min

{
n,

log
∏n

i=1
di

logn

})
queries.

Proof. Let heven and hodd be the functions that apply (hi)even and (hi)odd on the ith co-

ordinate, respectively. We will show that we can recover hodd(y) in O
(

min
{
n,

log
∏n

i=1
di

logn

})
queries. Note that since minni=1 ∆i > 0, (hi)odd is injective for each i and thus we can recover
y from hodd(y) in polynomial time using a lookup table for the values of (hi)odd.



M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:7

3.2.1 Inner products with binary vectors
We first show that we can compute the inner product between hodd(y) and any binary vector
τ ∈ {0, 1}n. To do this, consider the sign vector σ ∈ {±1}n with σi = (−1)τi+1. Note
that for σi ∈ {±1} and −k ≤ yi ≤ k, we have |kσi − yi| = |k − σiyi| = k − σiyi. Then, by
querying vectors of the form x = kσ, we obtain

f(kσ − y) =
n∑
i=1

gi(k − σiyi) =
n∑
i=1

hi(σiyi). (16)

Then using the even/oddness of (hi)even/(hi)odd, we have

n∑
i=1

hi(σiyi) =
(

n∑
i=1

(hi)even(yi)
)

+
(

n∑
i=1

σi(hi)odd(yi)
)

= 1n ·heven(y)+σ ·hodd(y). (17)

Note also that by querying for k1n and −k1n, we also obtain

f(k1n − y) + f(−k1n − y)
2 =

n∑
i=1

(hi)even(yi) = 1n · heven(y)

f(k1n − y)− f(−k1n − y)
2 =

n∑
i=1

(hi)odd(yi) = 1n · hodd(y).
(18)

Using these, we may compute τ · hodd(y) = 1
2 (σ + 1n) · hodd(y) and thus we are able to

compute dot products of arbitrary binary vectors with hodd(y). At this point, we can obtain
O(n) queries just by taking the binary vectors to be the standard basis vectors, so we focus

on obtaining an algorithm making at most O
(

log
∏n

i=1
di

logn

)
queries.

3.2.2 Modification of the Bshouty detecting matrix decoding [3]
Recall the detecting matrix of [3] for integer vectors in

∏n
i=1{0, 1, . . . , di − 1} for di ∈ N

for i ∈ [n]. If hodd(y) took integer values, then we could just directly use this theorem to
conclude with the desired query complexity. However, this is not true of hodd(y), and so we
need to show how to modify the [3] construction to handle our setting.

We first shift and scale our vector hodd(y). Let Mmin be the vector with Mmin
i in the ith

coordinate. Note that we can easily compute τ ·Mmin. Thus, we are able to compute dot
products of arbitrary binary vectors with the vector (hodd(y)−Mmin). By dividing by ∆,
we have dot products of arbitrary binary vectors with 1

∆
(
hodd(y)−Mmin). We now define

this as

ϕi(y) := 1
∆
(
(hi)odd(y)−Mmin

i

)
ϕ(y) := 1

∆
(
hodd(y)−Mmin) (19)

Note then that 0 ≤ ϕi ≤ di−1 (see equation (15)) and that y1 6= y2 =⇒ |ϕ(y1)− ϕ(y2)| ≥ 1.
Now consider the detecting matrix construction of Theorem 4 in [3]. Recall that we may

extract the Fourier coefficient of χa for some maximal a in our unknown vector ϕ(y) viewed
as a function, which gives us

λr+1 + λr+2dr+1 + λr+3dr+1dr+2 + · · ·+ λr+`a+1dr+1dr+2 . . . dr+`a (20)

APPROX/RANDOM 2019
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which in our case we set λj = ϕj(yj). Now let X :=
∏r+`a+1
j=r+1 ϕj({−k,−k + 1, . . . , k − 1, k})

be the image of our original points in a subset of `a + 1 coordinates starting at r + 1 under
the corresponding ϕj . Consider the function ψ : X → R+ defined via

ψ(z) =
`a∑
i=0

zi+1

i∏
j=1

dr+j . (21)

It is easy to see that when we endow X with the lexicographical ordering, then ψ is increasing.
Thus, given the Fourier coefficient as in equation (20), we can do binary search on the at most
kn values in X to extract the values λr+i in time O(n log k). Given this step of recovering `a
of the coordinates, we can proceed as in the rest of [3] by subtracting these coordinates of
the unknown vector and recursing. Hence, we conclude that we may recover ϕ(y) efficiently
and thus h(y), as claimed. J

3.2.3 Reconstruction with `p queries
As a corollary of the above result, we obtain an algorithm for recovering y ∈ {−k,−k +
1, . . . , k − 1, k}n from s = O

(
min

{
n, n log k

logn

})
distance queries in `p.

I Corollary 10 (Algorithm for `p queries). Let y ∈ {−k,−k+ 1, . . . , k− 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖p for p a constant.
Then, there is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. We are in the setting to use Theorem 9, with gi(x) = xp for all i ∈ [n] and
hodd(x) = 1

2 ((k − x)p − (k + x)p). Recall that we have efficient algorithms with the desired
guarantees when p ∈ {1, 2} so we dismiss these cases. In the remaining range of p, we just
need to compute

∏n
i=1 di.

Note that

h′odd(x) = −p2
(
(k − x)p−1 + (k + x)p−1) < 0 (22)

on x ∈ [−k, k] so hodd is decreasing on this interval. Then, (2k)p/2 = hodd(−k) ≥ hodd(x) ≥
hodd(k) = −(2k)p/2. Furthermore, note that

h′′odd(x) = p(p− 1)
2

(
(k − x)p−2 − (k + x)p−2). (23)

If p > 2, then this is negative on x ≥ 0, so |h′odd(x)| is smallest at x = 0 and thus
|h′odd(x)| ≥ |h′odd(0)| = pkp−1 for all x. If 1 < p < 2, then this is positive on x ≥ 0, so
|h′odd(x)| is smallest at x = k and thus |h′odd(x)| ≥ |h′odd(k)| = (p/2)(2k)p−1 for all x. In
either case, we have that ∆ = Ω(pkp−1) and the range is Mmax −Mmin = O(kp) and thus
di = O((Mmax −Mmin)/∆) = O(k). Thus, the query complexity is

O

(
min

{
n,

log
∏n
i=1 di

logn

})
= O

(
min

{
n,
n log k
logn

})
(24)

as desired. J

4 Lower Bounds

In this section, we complement our algorithms with matching lower bounds, for integer p.
Our lower bounds work even for the problem of approximating the hidden vector and for
adaptive randomized algorithms with constant success probability.
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I Theorem 11 (Lower bound for integer `p). Let 1 ≤ p < ∞ be a constant integer and
let R ∈ (0, kn1/p] be an approximation radius. Suppose there exists an algorithm A such
that for all unknown vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n, A outputs a vector y′ ∈
{−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖p ≤ R (25)

in s possibly adaptive `p queries with probability at least 2/3 over the algorithm’s random
coin tosses. Then

s = Ω
(
n log(kn1/p/R)

log k + logn

)
. (26)

In particular, if R ≤ k1−εn1/p for some constant ε > 0, then

s = Ω
(

n log k
log k + logn

)
, (27)

which is Ω
(
n log k
logn

)
if k < n and Ω(n) if k ≥ n.

Proof. By Yao’s minimax principle [9], it suffices to show the lower bound for all deterministic
algorithms A that correctly approximates a uniformly random y ∈ {−k,−k+1, . . . , k−1, k}n
with probability at least 2/3.

Note that each query ‖x− y‖pp results in a nonnegative integer that is at most (2k)pn.
Thus, there are at most ((2k)pn+ 1)s possible sequences of answers. Now let Q be the set
of all sequence of answers that A can observe, and for each sequence of answers q ∈ Q, let
Sq denote the set of vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n such that the deterministic
algorithm A observes q on input y. Then, Sq partitions the unknown vectors y into |Q|
disjoint sets. Then, the probability that |Sq| has size at most 1

100
(2k+1)n
|Q| is

Pr
y

(
|Sq| ≤

1
100

(2k + 1)n

|Q|

)
=

∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

Pr
y

(A queries the sequence q)

=
∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

|Sq|
(2k + 1)n

≤
∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

1
100

(2k + 1)n

|Q|
1

(2k + 1)n

≤
∑
q∈Q

1
100|Q| = 1

100 .

(28)

Thus with probability at least 99/100, |Sq| has size at least 1
100

(2k+1)n
|Q| .

Note that by [8], the volume of a unit `p ball is 2nΓ(1 + 1/p)n/Γ(1 + n/p), so the volume
of a ball of radius R in `p is

V := Rn2nΓ(1 + 1/p)n

Γ(1 + n/p) =
(

Θ
(

R

n1/p

))n
. (29)

Now suppose that q is a sequence of queries such that |Sq| > 2V and let z be the output of
the deterministic algorithm A on the sequence of queries q. Then, at most V of the points
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1:10 The Query Complexity of Mastermind with `p Distances

in S can be in the `p ball of radius R centered at z. Thus, with probability at least 1/2 over
the random hidden vector y, we output a point z such that ‖z− y‖p ≥ R. Thus, if

1
100

(2k + 1)n

|Q|
> 2V, (30)

then our probability of success is at most 1/2 + 1/100 and thus we do not have a correct
algorithm. Thus, it must be that

1
100

(2k + 1)n

|Q|
≤ 2V =⇒ (2k + 1)n

200V ≤ |Q| ≤ ((2k)pn+ 1)s. (31)

Rearranging, we have that

s ≥
log (2k+1)n

200V
log((2k)pn+ 1) = Ω

(
n log(kn1/p/R)

log k + logn

)
, (32)

as claimed. J

For p =∞, we have a lower bound of Ω(n) regardless of k.

I Theorem 12 (Lower bound for `∞). Let R ∈ (0, k] be an approximation radius. Suppose
there exists an algorithm A such that for all unknown vectors y ∈ {−k,−k+ 1, . . . , k−1, k}n,
A outputs a vector y′ ∈ {−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖∞ ≤ R (33)

in s possibly adaptive `∞ queries with probability at least 2/3 over the algorithm’s random
coin tosses. Then

s = Ω
(
n log(k/R)

log k

)
. (34)

In particular, if R ≤ k1−ε for a constant ε > 0, then s = Ω(n).

Proof. By the same argument as the finite `p case, we use Yao’s minimax principle to reduce
the argument to a lower bound for all deterministic algorithms A on uniformly random inputs
y succeeding with probability at least 2/3. Furthermore, by the same partition argument as
before, we have that |Sq| is at least 1

100
(2k+1)n
|Q| with probability at least 99/100.

The volume of an `∞ ball of radius R is (2R)n, so as before, we must have

1
100

(2k + 1)n

|Q|
≤ 2(2R)n. (35)

When p =∞, there are only (2k + 1)s possible sequences of answers, so we instead have the
bound

(2k + 1)n

(2R)n ≤ 200(2k + 1)s (36)

By rearranging, we obtain the bound s = Ω
(
n log(k/R)

log k

)
as desired. J



M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:11

4.1 Lower bound for the noisy problem
Finally, we show that in the noisy version of the problem, i.e., the setting where the codemaker
is allowed to answer the queries x with any q = (1± ε)‖y− x‖p, there is no good algorithm.

I Theorem 13 (Lower bound for the noisy problem). Let 1 ≤ p < ∞ be a constant and
let 0 < R < kn1/p be an approximation radius. Suppose there exists an algorithm A
such that for all unknown vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n, A outputs a vector
y′ ∈ {−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖p ≤ R (37)

in s possibly adaptive (1 ± ε)-noisy `p queries, i.e., answers with adversarially chosen
qx = (1± ε)‖y− x‖p, with probability at least 2/3 over the algorithm’s random coin tosses.
Then

s = Ω
(
exp
(
ε2Θ(kpn)

))
. (38)

Proof. By Yao’s minimax principle, we can take the algorithm to be deterministic by taking
our hidden vector y to be drawn uniformly from {−k,−k + 1, . . . , k − 1, k}n. Now fix any
query x ∈ {−k,−k + 1, . . . , k − 1, k}n and let µ = Ez

(
‖x− z‖pp

)
= Θ(kpn). Then by

Chernoff bounds,

Pr
y

(∣∣∣‖x− y‖pp − µ
∣∣∣ ≥ εµ) ≤ 2 exp

(
−ε2µ

)
. (39)

Thus, if the number of queries s is less than exp
(
ε2Θ(kpn)

)
/200, then by the union bound

over the s queries, with probability at least 99/100 over the choice of y, the codemaker can
just return Ez

(
‖x− z‖pp

)
for any query x. Thus, the deterministic codebreaker algorithm

sees the same sequence of answers with probability at least 99/100 and so the algorithm
cannot be correct. Hence, we conclude that s = Ω(exp

(
ε2Θ(kpn)

)
). J
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