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Abstract
A bipartite graph G(U, V ;E) that admits a perfect matching is given. One player imposes a
permutation π over V , the other player imposes a permutation σ over U . In the greedy matching
algorithm, vertices of U arrive in order σ and each vertex is matched to the highest (under π) yet
unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained
matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching
problem asks: suppose the first (max) player reveals π, and the second (min) player responds with
the worst possible σ for π, does there exist a permutation π ensuring to match strictly more than a
half of the vertices? Can such a permutation be computed in polynomial time?

The main result of this paper is an affirmative answer for these questions: we show that there
exists a polytime algorithm to compute π for which for every σ at least ρ > 0.51 fraction of the
vertices of V are matched. We provide additional lower and upper bounds for special families of
graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the
welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations.
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1 Introduction

Given a bipartite graph G(U, V ;E), where U and V are the sets of vertices and E ∈ U ×V is
the set of edges, a matching M ⊂ E is a set of edges such that every vertex is incident with
at most one edge of M . For simplicity of notation, for every n we shall only consider the
following class of bipartite graphs, that we shall refer to as Gn. For every G(U, V ;E) ∈ Gn
it holds that |U | = |V | = n and that E contains a matching of size n (and hence G has a
perfect matching). All results that we will state for Gn hold without change for all bipartite
graphs that have a matching of size n (and arbitrarily many vertices).

Karp, Vazirani and Vazirani [12] introduced the online bipartite matching problem. This
setting can be viewed as a game between two players: a maximizing player who wishes
the resulting matching to be as large as possible, and a minimizing player who wishes the
matching to be as small as possible. First, the minimizing player chooses G(U, V ;E) in
private (without the maximizing player seeing E), subject to G ∈ Gn. Thereafter, the
structure of G is revealed to the maximizing player in n steps, where at step j (for 1 ≤ j ≤ n)
the set N(uj) ⊂ V of vertices adjacent to uj is revealed. At every step j, upon seeing N(uj)
(and based on all edges previously seen and all previous matching decisions made), the
maximizing player needs to irrevocably either match uj to a currently unmatched vertex in
N(uj), or leave uj unmatched.

There is much recent interest in the online bipartite matching problem and variations
and generalizations of it, as such models have applications for allocation problems in certain
economic settings, in which buyers (vertices of U) arrive online and are interested in purchasing
various items (vertices of V ). A prominent example of such an application is online advertising;
for more details, see for example the survey by Mehta [17]. The new problems are both
theoretically elegant and practically relevant.

Max-Min Greedy Matching

We study a setting related to online bipartite matching, that we call Max-Min Greedy
matching. Our setting is also a game between a maximizing player and a minimizing player.
The bipartite graph G(U, V ;E) ∈ Gn is given upfront. Upon seeing G the maximizing player
chooses a permutation π over V . Upon seeing G and π, the minimizing player chooses a
permutation σ over U . The combination of G, π and σ define a unique matching MG[σ, π]
that we refer to as the greedy matching. It is the matching produced by the greedy matching
algorithm in which vertices of U arrive in order σ and each vertex u ∈ U is matched to the
highest (under π) yet unmatched v ∈ N(u) (or left unmatched, if all N(u) is already matched).

The matching MG[σ, π] has several additional equivalent definitions. For example,
MG[σ, π] is the matching produced by the greedy matching algorithm in which vertices
of V arrive in order π and each vertex v ∈ V is matched to the highest (earliest in arrival
order under σ) yet unmatched u ∈ N(v) (or left unmatched, if all N(v) is already matched).
Also, MG[σ, π] is the unique stable matching in G (in the sense of [9]), if the preference order
of every vertex u ∈ U over its neighbors is consistent with π, and the preference order of
every vertex v ∈ V over its neighbors is consistent with σ.

Let ρ[G] = 1
n maxπ minσ[|MG[σ, π]|], and let ρ = minG∈Gn [ρ[G]]. It is easy to see that

ρ ≥ 1
2 . In fact, to ensure a matching of size n/2, the max player need not work hard.

Since every greedy matching is a maximal matching, for every permutation π the obtained
matching is of size at least n/2. The question we study in this work is whether the max
player can ensure a matching of size strictly greater than n/2; that is, whether ρ is strictly
greater than 1

2 .
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For an upper bound on ρ, it was observed by Cohen Addad et al. [4] that ρ ≤ 2/3. To
show this, they observe that in the 6-cycle graph, depicted in Figure 1, no permutation π can
guarantee to match more than two vertices in the worst case. Indeed, suppose (without loss
of generality) that π = (v3, v2, v1). For σ = (u1, u3, u2), u1 is matched to v2, u3 is matched
to v3, and u2 is left unmatched, resulting in a matching of size 2.

Figure 1 For every permutation π there exists a permutation σ that matches only 2 of the 3
vertices. Thick edges are in the matching; gray vertices are unmatched.

1.1 Our Results

Our main result resolves the open problem in the affirmative:

I Theorem (main theorem). It holds that ρ ≥ 1
2 + 1

86 > 0.51. Moreover, there is a polyno-
mial time algorithm that given G(U, V ;E) produces a permutation π over V satisfying the
above bound.

The significance of this result is that 1/2 is not the optimal answer. We believe that
further improvements are possible. In fact, for Hamiltonian graphs we show that ρ ≥ 5

9
(see Section 6).

The proof method is quite involved; it is natural to ask whether simpler approaches may
work. In what follows we specify three natural attempts that all fail.

Failed attempt 1: random permutation

A first attempt would be to check whether a random permutation π obtains the desired result
(in expectation). The performance of a random permutation is interesting for an additional
reason: it is the performance in scenarios where the graph structure is unknown to the
designer. Unfortunately, there exists a bipartite graph G, even one where all vertices have
high degree, for which a random permutation matches no more than a fraction 1/2 + o(1) of
the vertices (see Section 4).

In contrast, we show that in the case of Hamiltonian graphs a random permutation
guarantees a competitive ratio strictly greater than 1/2 (Section 4). A similar proof approach
applies to regular graphs as well.

I Theorem (random permutation). There is some ρ0 >
1
2 such that for every Hamiltonian

graph G ∈ Gn, regardless of n, a random permutation π results in ρ ≥ ρ0. Similarly, there is
some constant ρ0 >

1
2 such that for every d-regular graph G, regardless of d, n, a random

permutation π results in ρ ≥ ρ0.

APPROX/RANDOM 2019
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Failed attempt 2: iterative upgrading

A second attempt would be to iteratively “upgrade” unmatched vertices, with the hope
that the iterative process will reach a state where many vertices will be matched. That
is, in every iteration consider the worst order σ for the current permutation π and move
all unmatched vertices (in the matching induced by (π, σ)) to be ranked higher in π. This
algorithm is similar to the k-pass Category Advice algorithm of [1], but with the difference
that in [1] σ remains unchanged throughout the k iterations. In [1] it was shown that in their
setting, the fraction of matched vertices approaches 2

1+
√

5 ' 0.619 as k grows. In contrast,
in Appendix B we show that in our setting this process can go on for logn iterations before
reaching a permutation that matches more than a half of the vertices. This fact gives some
indication that establishing a proof using this operator might be difficult.

Failed attempt 3: degree-based ranking

A third attempt would be to give preference to vertices with lower degrees, as they would
have fewer opportunities to be matched to incoming vertices of U . Consider a graph with
multiple copies of the subgraph (u1, v1), (u2, v2), (u1, v2) along with two additional vertices
ua, ub (and their partners va, vb). If we connect all vertices of type v1 to ua and ub, we get
that their degree is 3, while the degree of vertices of type v2 is 2. If π is chosen according to
the degree, vertices of type v2 will be ranked higher than vertices of type v1. In this case, if
σ orders the vertices of type u1 first, they will be matched to vertices of type v2, leaving the
vertices of type v1 unmatched. The resulting matching will therefore be of size (1/2 + o(1))n.

Why is this model interesting mathematically?

The setting of max-min greedy matching is easy to state. The problem of getting a ratio
better than half turns out to be deceptively difficult. As discussed above, several natural
approaches fail to achieve this. The problem remained open for quite some time, despite
attempts to solve it. Indeed, the solution that we find is not simple; it involves taking the best
of four algorithms. However, these algorithms are not unrelated. They all share a unifying
theme that involves a clean combinatorial property, referred to as a maximal path cover (see
Section 2). This theme enabled us to break the barrier of half, but interesting problems
remain open, such as whether the bound of 2/3 can be achieved. We hope that the progress
made in this work will motivate and enable further improvement in this interesting problem.

1.2 Additional Results
We further establish lower and upper bounds for regular graphs.

I Theorem (regular graphs). For d-regulars bipartite graphs, ρ ≥ 5
9 −O( 1√

d
). On the other

hand, for every integer d ≥ 1, there is a regular graph Gd of even degree 2d such that
ρ(Gd) ≤ 8

9 .

An additional natural problem is to find the best permutation π, given a graph G. We
suspect that this is a difficult computational problem. However, the special case of determining
whether there is a perfect π (a permutation on V that for every permutation σ leads to a
perfect matching) does have a polynomial time algorithm (proof appears in Section 5).

I Proposition 1. There is a polynomial time algorithm that given a graph G ∈ Gn determines
whether G has a perfect π, and if so, outputs a perfect π.
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1.3 Application to Resource Allocation and Pricing

Various problems related to online bipartite matching are closely related to problems that
attract attention in the algorithms community. Gaining better understanding of the max-min
greedy matching problem sheds light on more general problems, some of which are still open.
In what follows we elaborate on an application to a pricing problem.

Feldman et al. [8] study the design of pricing mechanisms for allocation of items in
markets. The basic setting is a matching market, where vij is the value of agent i for item
j, and every agent can receive at most a single item. The seller assigns prices to items,
and agents arrive in an adversarial order (after observing the prices), each purchasing an
(arbitrary) item that maximizes their utility (defined as value minus price). It is shown that,
given a weighted bipartite graph (with agents on one side, items of the other side, and weight
vij for the edge between agent i and item j), one can set item prices that guarantee at least
half of the optimal welfare for any arrival order. The last result holds in much more general
settings, namely settings where buyers have submodular valuations over bundles of items 1,
and even in a Bayesain settings, where the seller knows only the (product) distribution from
which agent valuations are drawn, but not their realizations.

In the Bayesian setting no item prices can guarantee better than half of the optimal welfare
in the worst case. A natural question is whether this ratio can be improved in scenarios
where the designer knows the realized values of the buyers from the outset 2. Concretely, do
there exist item prices that guarantee strictly more than half the optimal welfare, for any
arrival order σ? Not only has this question been open for general combinatorial auctions
with submodular valuations, it has been open even for unit-demand buyers, and even if all
individual values are in {0, 1} (henceforth referred to as binary unit demand valuations).
In the latter setting, pricing is equivalent to imposing a permutation over the items, hence
the max-min greedy matching is a precise formulation for the pricing problem in binary
unit-demand settings.

An equivalent scenario is one where in each step the “items player” offers an item, and
the “buyers player”, upon seeing the item, allocates the item to one of the buyers who wants
the item (if there is any), and that buyer leaves. The items player is non-adaptive (plays
blindfolded, without seeing which buyers remain3 ). The size of the matching that can be
guaranteed by the items player is equivalent to the max-min greedy matching problem.

Yet an additional equivalent formulation of the problem is one where the permutation π
is imposed over the buyers rather than over the items. The buyers then arrive in the order
of π, each taking an arbitrary item she wants. One can verify that the size of the matching
that can be guaranteed by an ordering over the buyers is equivalent to the max-min greedy
matching problem.

1 A valuation is said to be submodular if for every two sets S, T , v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ),.
2 The full information assumption is sensible in repeated markets or in markets where the stakes are high

and the designer may invest in learning the demand in the market before setting prices.
3 We note that when the items player is adaptive (chooses the next item based on what happened in

the past), the items player can ensure a perfect matching. This is done as follows: in each step, find a
minimal tight set of items, and offer an arbitrary item from that set. Here, a set of items is tight if the
number of buyers that want items in the set is equal to the size of the set.

APPROX/RANDOM 2019
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1.4 Relation to Previous Work

Relation to online bipartite matching

The Max-Min Greedy Matching problem is a nonstandard version of online problems. In the
standard online matching problem [12], the algorithm designer has control over the matching
algorithm, but has no control over the arrival order of clients (vertices). Our setting can
model a situation in which the designer (the maximizing player) has full control over the
arrival order of clients (it knows which “items” in U each “client” in V wants, and it chooses π
based on this knowledge), but no control over the matching algorithm (the minimizing player
can choose the worst possible match in every step, effectively resulting in a permutation σ).

Karp et al. [12] introduced the Ranking algorithm which has a 1− 1/e competitive ratio
in the online bipartite matching setting. Translating this algorithm to our Max-Min Greedy
setting, it amounts to simply selecting π at random, and then the minimizing player selects σ
after seeing π. We show that there are bipartite graphsG ∈ Gn for which with high probability
over the random choice of π, there is a choice of σ resulting in MG[σ, π] ≤ 1/2 + o(1). Karp
et al. [12] also showed that no algorithm for online bipartite matching has a competitive
ratio better than 1− 1/e+ o(1). This was shown by exhibiting a distribution over “difficult”
graphs. Each graph in the support of this distribution has a unique perfect matching,
and consequently (see Proposition 3), there is a permutation π in the Max-Min Greedy
setting that ensures that all vertices are matched (regardless of σ). Hence neither the lower
bounds nor the upper bounds known for the online matching model give useful bounds in
the Max-Min Greedy model.

There are additional known results for online bipartite matching. For d-regular graphs,
Cohen and Wajc [3] present a random algorithm that obtains 1−O(

√
log d/

√
d) in expectation,

and a lower bound of 1−O(1/
√
d). This is in contrast to our Theorem 12 that shows that

ρ is bounded away from 1 even when d is arbitrarily large. For general bipartite graphs,
under random (rather than adversarial) arrival order, the deterministic greedy algorithm
gives 1− 1/e, and no deterministic algorithm can obtain more than 3/4 [10]. Ranking (which
is a randomized algorithm) obtains at least 0.696 of the optimal matching [15] and at most
0.727 [11]. No random algorithm can obtain more than 0.823 [16].

Relation to pricing mechanisms

Our work is also related to the recent body of literature on pricing mechanisms. Motivated
by the fact that in real-life situations one is often willing to trade optimality for simplicity,
the study of simple mechanisms has gained a lot of interest in the literature on algorithmic
mechanism design. One of the simplest forms of mechanisms is that of posted price mechan-
isms, where prices are associated with items and agents buy their most preferred bundles as
they arrive. Pricing mechanisms have many advantages: they are simple, straightforward,
and allow for asynchronous arrival and departure of buyers. Various forms of posted price
mechanisms for welfare maximization have been proposed for various combinatorial settings
[8, 5, 14, 6]. These mechanisms are divided along several axes, such as item vs. bundle
pricing, static vs. dynamic pricing, and anonymous vs. personalized pricing. For any market
with submodular valuations, one can obtain 1/2 of the optimal welfare by static, anonymous
item prices [8]. Until the present paper, no better results than 1/2 were known even for
markets with unit-demand valuations with {0, 1} individual values. For a market with m
identical items, there exists a pricing scheme that obtains at least 5/7− 1/m of the optimal
welfare for submodular valuations [6].
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2 Proof of Main Result

The graph G(U, V ;E) with |U | = |V | = n has a perfect matching M in which ui ∈ U is
matched with vi ∈ V for every 1 ≤ i ≤ n. For a given i, we refer to ui and vi as partners
of each other. Given a set S ⊂ V , the set of neighbors of S is denoted as N(S) (where
necessarily N(S) ⊂ U). In this section we prove our main result.

I Theorem 2. Given a bipartite graph G(U, V ;E) with a perfect matching {(ui, vi)}, there
exists a permutation π that guarantees that the greedy matching will be of size at least 22

43n,
regardless of σ. Moreover, there is a polynomial time algorithm that chooses π with such
a guarantee.

Our proof approach is as follows. We shall first associate with G an auxiliary directed
graph that we refer to as the spoiling graph H(V,D). This notion by itself is not new – similar
notions appeared also in previous related work. The new aspect related to the spoiling graph
and the key to our approach is a notion of a maximal path cover. Given a maximal path
cover of the spoiling graph (which as we show in Proposition 4, can be found in polynomial
time), we partition the set V of vertices into four classes, depending on their roles in the
maximal path cover. The classes are V1 (singleton vertices), S (start vertices of paths),
T (end vertices of paths), and I (intermediate vertices of paths). By considering several
carefully chosen orders among the classes of vertices, and also of vertices within the classes,
we obtain four possible candidate permutations for π, denoted π1, π2, π3, π4. We show that
for every bipartite graph with a perfect matching, at least one of these permutations, if used
as π, guarantees that the greedy matching will be of size at least 22

43n, for every σ. Put in
other words, if for each of {π1, π2, π3, π4} there is a permutation over U for which the greedy
matching is smaller than 22

43n, this would imply (using properties listed in Lemma 5) that
the path cover giving rise to these permutations was not maximal.

We now proceed to define the spoiling graph. Given G(U, V ;E), consider a directed graph
H(V,D) whose vertices are the set V , and whose set D of directed edges (arcs) is defined as
follows: (vi, vj) ∈ D iff (uj , vi) ∈ E. We refer to H(V,D) as the spoiling graph for G, because
arc (vi, vj) ∈ D allows for the possibility that edge (uj , vi) ∈ E is chosen into a matching
M ′ in G, spoiling for vj the possibility (offered by M) of being matched to uj . Note that
this spoiling effect may materialize in a (σ, π) matching only if vi is ranked higher than vj in
π. Hence the spoiling graph conveys information that may be relevant to the choice of π.

As an example of the information that can be derived from the spoiling graph, consider
the following proposition (whose proof can be also obtained as a special case of a result given
in [4] and [13] for the more general case of Gross Substitutes valuations).

I Proposition 3. If G has a unique perfect matching, then ρ(G) = 1.

Proof. Let ui ∈ U and vi ∈ V be partners in the unique perfect matching M of G. We
claim that the spoiling graph H of G is a directed acyclic graph (DAG). Suppose toward
contradiction that H contains a simple directed cycle vi1 , vi2 , . . . , vi` , vi1 . This directed
cycle corresponds to the cycle ui1 , vi1 , ui2 , vi2 , . . . , ui` , vi` , ui1 in G. But removing the edges
(uij , vij ), 1 ≤ j ≤ ` from M and adding the edges (uij , vij+1) to M (where `+ 1 = 1) yields
a different perfect matching, contradicting the uniqueness of M .

Since H is a DAG, we can topologically sort its vertices and choose a permutation π such
that earlier vertices in the topological order have a lower rank in π. This ensures that for
every directed edge (v, w) in H, v’s partner will never prefer w over v. Thus, every vertex
chooses its partner in M upon arrival. J

APPROX/RANDOM 2019



7:8 Max-Min Greedy Matching

We now proceed to define the notion of a maximal path cover. A directed path P (whose
length is denoted by |P |) in H is a sequence of |P | vertices (say, v1, . . . , v|P |) such that
(vi, vi+1) ∈ D for all 1 ≤ i ≤ |P | − 1. A single vertex is a path of length 1. A path cover of
H is a collection of vertex disjoint directed paths that covers all vertices in V . We consider
the following operations that can transform a given path cover to a different one:

1. Path merging: Two paths can be merged into one longer path if H(V,D) has an arc from
the end of one path to the start of the other path.

2. Path unbalancing: Consider any two paths P and P ′ with 1 < |P | ≤ |P ′|, let vs and vt
denote the first and last vertices of P , and let v′s and v′t denote the first and last vertices
of P ′. If (vs, v′s) ∈ D we may remove vs from P and append it at the beginning of P ′.
Likewise, if (v′t, vt) ∈ D we may remove vt from P and append it at the end of P ′.

3. Rotation: if there is a path P (say, vs, . . . , vt) such that (vt, vs) ∈ D, we may add the arc
(vt, vs) to P (obtaining a cycle), and then remove any other single arc from the resulting
cycle to get a path P ′. Observe that P ′ and P have the same vertex set, but they differ
in their starting vertex along the cycle vs, . . . , vt, vs.

A path cover is maximal if no path merging operation and no path unbalancing can
be applied to it, and furthermore, this continues to hold even after performing any single
rotation operation.

I Proposition 4. Given a bipartite graph G(U, V ;E) with a perfect matching {(ui, vi)}, a
maximal path cover in the associated spoiling graph H(V,D) can be found in O(n2) time.

Proof. Start with the trivial path cover in which each vertex of V forms a path of length 1,
and perform arbitrary path merging and path unbalancing operations (some of which are
preceded by a single rotation operation) until no longer possible. The process must end
within O(n2) operations, because each path merging and each path unbalancing operation
increases the sum of squares of the lengths of the paths, and the sum of squares of the lengths
is at most n2. J

Given a maximal path cover of H (where p denotes the number of paths in the path
cover), sort the paths in order of increasing lengths, breaking ties arbitrarily. Hence 1 ≤
|P1| ≤ |P2| ≤ . . . ≤ |Pp|. We consider the following classes of vertices of V :

1. Singleton vertices V1. These are the vertices that belong to paths of length 1 in the given
maximal path cover. Let k = |V1| denote the number of singleton vertices. Observe that
|Pk| = 1 and |Pk+1| > 1.

2. Other vertices V2 = V \ V1. We partition V2 into three subclasses of vertices:

a. Start vertices S. These are the starting vertices of those paths that have length larger
than 1. The start vertex of path j, for k < j ≤ p, is denoted by sj .

b. End vertices T . These are the end vertices of those paths that have length larger
than 1. The end vertex of path j, for k < j ≤ p, is denoted by tj .

c. Intermediate vertices I = V2 \ (S ∪ T ).

I Lemma 5. The classes of vertices listed above have the following properties:
1. There are no arcs in H between vertices of V1. Hence no vertex of V1 can be a spoiler

vertex for another vertex in V1.
2. There are no arcs in H from vertices of V1 to vertices in S. Hence no vertex of V1 can

be a spoiler vertex for a vertex in S.
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3. There are no arcs in H from vertices of T to vertices in V1. Hence no vertex of T can be
a spoiler vertex for a vertex in V1.

4. For i 6= j, there are no arcs in H from any vertex ti ∈ T to any vertex sj ∈ S. Hence no
vertex of T can be a spoiler vertex for a vertex in S, unless they both belong to the same
path in the given maximal path cover.

5. (si, sj) 6∈ D for any si, sj ∈ S with i < j. Hence si cannot be a spoiler vertex for sj if
i < j.

6. (tj , ti) 6∈ D for any ti, tj ∈ S with i < j. Hence tj cannot be a spoiler vertex for ti if
i < j.

7. If for some sj ∈ S and tj ∈ T (where sj and tj are start and end vertices of the same
path Pj) it holds that (tj , sj) ∈ D, then there are no arcs from (T \ {tj}) ∪ V1 to any of
the vertices of Pj, and likewise, no arcs from sk+1, . . . , sj−1 to any of the vertices of Pj.

Proof. All properties follow from the maximality of the path cover. Properties 1,2,3 and
4 hold because otherwise one could perform a path merging operation. Properties 5 and 6
hold because otherwise one could perform a path unbalancing operation. Property 7 holds
because otherwise one could perform a rotation operation for path Pj , followed either by
a path merging operation (if there is an arc from (T \ {tj}) ∪ V1 to any of the vertices of
Pj) or a path unbalancing operation (if there is an arc from sk+1, . . . , sj−1 to any of the
vertices of Pj). J

We now introduce additional notation. Considering only the arcs in D leading from V2
to V1, we let M21 denote the maximum matching among these arcs. In our analysis we shall
consider three parameters:

1. ε1: its value is such that k =
( 1

2 − ε1
)
n (recall that k = |V1| is the number of singleton

paths in the maximal path cover). Observe that ε1 might be negative.
2. ε2: its value is such that p = k + ε2n =

( 1
2 − ε1 + ε2

)
n (recall that p is the total number

of paths in the maximal path cover). Necessarily, ε2 ≥ 0.
3. ε3: its value is such that |M21| =

( 1
2 − ε3

)
n. Necessarily, ε3 ≥ 0.

Given the above classes of vertices, we consider four possible candidate permutations for
π (denoted π1, π2, π3, π4, see below for details). Given some permutation π, we shall use the
notation ρ(π) to denote the fraction of vertices guaranteed to be matched under π. This
fraction will be expressed as a function of the parameters ε1, ε2 and ε3, and we will show
that regardless of the value of these parameters, there must be some π with ρ(π) ≥ 22

43 .
The following four lemmas present the four candidate permutations for π along with their

corresponding guarantees. Whenever unspecified, the order within a set of vertices can be
arbitrary; e.g., for two sets of vertices X,Y , π = X,Y means that the set X precedes Y and
the order within X, as well as the order within Y , is arbitrary.

I Lemma 6. For G and π1 = V2, V1,

ρ(π1) ≥ 1
n

(
|V1|+

|V2|
2 − |M21|

2

)
= 1

2 −
ε1
2 + ε3

2 .

Proof. Let σ be an arbitrary permutation over U . Let m denote the number of vertices in V2
that are matched to vertices in U1, where U1 is the set of partners of V1. Then m ≤ |M21|. Of
the |V2| −m vertices of V2 not matched to vertices in U1, at least half are matched (because
for every unmatched vertex from this set, its partner must be matched to a different vertex
from this set). In addition, all those vertices of V1 whose partner is not matched to V2 are
matched, because of property 1 of Lemma 5. Hence the total number of vertices matched is
at least m+ |V2|−m

2 + |V1| −m ≥ |V1|+ |V2|
2 −

|M21|
2 , as desired. J
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I Lemma 7. For G and π2 = V1, V2,

ρ(π2) ≥ 2
3 −

1
3(ε1 + ε3).

Proof. Let σ be an arbitrary permutation over U . All vertices in V1 are matched because
of property 1 of Lemma 5. As to the vertices in V2, observe that |N(V2)| ≥ |V2|+ |M21|, as
the set N(V2) includes the |V2| partners of V2, plus at least |M21| additional neighbors in
U1 (due to the matching M21). Moreover, if x vertices are removed from V2, the number of
remaining neighbors is at least |V2|+ |M21| − 2x, because each vertex of V2 contributed at
most two neighbors to the lower bound that we provided on the number of neighbors.

Let x denote the number of vertices in V2 matched under (π, σ). Then the size of the
matching is |V1|+ x, the number of unmatched vertices in V2 is |V2| − x, and they have at
least |V2|+ |M21| − 2x neighbors which have to be matched. Since the number of matched
vertices at each side is the same, we have that |V1|+ x ≥ |V2|+ |M21| − 2x.

We get that

3x ≥ |V2|+ |M21| − |V1| = n

(
1
2 + ε1

)
+ n

(
1
2 − ε3

)
− n

(
1
2 − ε1

)
=

(
1
2 + 2ε1 − ε3

)
n.

Therefore, the size of the matching is at least

|V1|+ x ≥
(

1
2 − ε1

)
n+

(
1
6 + 2ε1

3 −
ε3
3

)
n =

(
2
3 −

1
3(ε1 + ε3)

)
n. J

I Lemma 8. For G and π3 = tp, . . . , tk+1, V1, sk+1, . . . , sp, I,

ρ(π3) ≥ 2p− k
n

= 1
2 − ε1 + 2ε2.

Proof. In π3, we refer to the vertices of T ∪ V1 ∪ S as the prefix of π3, and to the vertices
of I as the suffix. Lemma 5 implies that within the prefix, the only arcs of H that go from
an earlier vertex to a later vertex are of the form (tj , sj) (for a path Pj that can undergo a
rotation). We claim that regardless of σ, all the prefix will be matched. As the length of this
prefix is 2p− k, this will prove the lemma.

It remains to prove the claim. Suppose first that in the above prefix there are no arcs
of H that go from an earlier vertex to a later vertex. Then earlier vertices in this prefix
cannot be spoiling vertices for later vertices. Hence indeed, regardless of σ, all the prefix will
be matched.

Suppose now that in the prefix of π3 there are arcs of H that go from an earlier vertex
to a later vertex. As noted above, such an arc would be of the form (tj , sj). We need to
show that even if tj acts as a spoiling vertex for sj under π3 and σ, the vertex sj will still be
matched. Consider the path Pj , and let us rename its vertices as x1, . . . , x` (where previously
we used sj = x1 and tj = x`). We wish to show the x1 would be matched even if x` is
matched to the partner of x1. The path Pj implies that the partner of x2 is a neighbor of
x1 in G. Hence x1 will be matched if no vertex preceding x1 = sj in π3 is matched to the
partner of x2. By property 7 of Lemma 5, there is no arc in H from any of the vertices
T ∪ V1 ∩ {sk+1, . . . , sj−1} \ {tj} to x2, and consequently none of them can be matched to
the partner of x2. As to tj = x`, it might be a neighbor of the partner of x2 (in fact, it could
be that ` = 2), but we already assumed that tj is matched to the partner of x1, and hence it
is not matched to the partner of x2. Hence no vertex preceding x1 = sj in π3 is matched to
the partner of x2, and hence sj will be matched. J
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Let Ve (Vo, respectively) denote those vertices of S ∪ I that are at even (odd, respectively)
distance from the beginning of their respective path. Observe that S ⊂ Ve.

I Lemma 9. For G and π4 = tp, . . . , tk+1, V1, Vo, Ve,

ρ(π4) ≥ 5
9 −

p

9n = 1
2 + ε1

9 −
ε2
9 .

Proof. Observe that |Ve| ≥ |Vo|, because in every path (of length above 1) the vertices
alternate in entering Ve and Vo, and start with Ve. Observe also that every vertex v ∈ Ve
contributes two distinct neighbors to N(Ve): the partner of v, and the partner of the vertex
that follows v on its path (note that the vertex that follows v is not in Ve). Likewise, every
vertex v ∈ Vo contributes two distinct neighbors to N(Vo).

Regardless of σ, all p vertices of T and V1 are matched, as in Lemma 8. For a given σ, let
no be the number of vertices matched in Vo and let ne be the number of vertices matched in
Ve. Then, |Vo| − no, the number of unmatched vertices in Vo, satisfies 2(|Vo| − no) ≤ p+ no,
because the neighbors of the unmatched vertices in Vo need to be matched to earlier vertices
in T ∪ V1 ∪ Vo. Likewise, |Ve| − ne, the number of unmatched vertices in Ve, satisfies
2(|Ve| − ne) ≤ p+ no + ne. Adding two times the first inequality and three times the second
we get that 4|Vo| + 6|Ve| − 4no − 6ne ≤ 5p + 5no + 3ne. Using |Vo| + |Ve| = n − p and
|Ve| ≥ |Vo|, we can replace 4|Vo|+ 6|Ve| by 5(n− p), implying that 9(p+ no + ne) ≥ 5n− p,
as desired. J

We can now prove Theorem 2.

Proof. Observe that ρ(G) ≥ maxi∈[1,4][ρ(πi)].

By Lemma 6 we have: ρ(π1) ≥ 1
2 −

ε1
2 + ε3

2 .

By Lemma 7 we have: ρ(π2) ≥ 2
3 −

1
3(ε1 + ε3).

By Lemma 8 we have: ρ(π3) ≥ 1
2 − ε1 + 2ε2.

By Lemma 9 we have: ρ(π4) ≥ 1
2 + ε1

9 −
ε2
9 .

Taking a weighted average of the lower bounds provided by the four lemmas, with weights
2
43 ,

3
43 ,

2
43 ,

36
43 , respectively, results in a weighted average of 22

43 . Hence regardless, of the
values of ε1, ε2 and ε3, at least one of the lemmas gives ρ(G) ≥ 22

43 . For ε1 = 19
86 , ε2 = 10

86 and
ε3 = 21

86 , none of the lemmas implies a bound better than 1
2 + 1

86 = 22
43 .

The above analysis leads to a polynomial time algorithm for finding π that ensures ρ(G) ≥
22
43 . A maximal path cover of H(V,D) can be found in polynomial time by Proposition 4.
Thereafter, the sets V1, S, T , Ve and Vo can easily be determined, and likewise, the values of
ε1 and ε2 can be easily computed. A maximum matching M21 (from V2 to V1 in H) can be
computed in polynomial time using any standard algorithm for maximum bipartite matching.
Thereafter, ε3 can be easily computed. Given the values ε1, ε2 and ε3, one can determine which
of π1, π2, π3 or π4 provides a higher lower bound on ρ, and use that permutation as π. J

3 Regular Graphs

In this section we consider the case where G(U, V ;E) is a d-regular bipartite graph with 2n
vertices. Given that such graphs have d edge disjoint perfect matchings, one can hope to
achieve higher values for ρ for these graphs.
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3.1 Positive Result
The following known proposition (see for example [18]) establishes a lower bound on ρ, as a
function of d. A proof is provided for completeness.

I Proposition 10. For every d-regular graph G ∈ Gn, it holds that ρ[G] ≥ d
2d−1 .

Proof. Since the greedy algorithm produces a maximal matching, it suffices to show that
every maximal matching in a d-regular graph has size at least d

2d−1n. To see this, let S ⊂ U
and T ⊂ V be the sets of unmatched nodes in an arbitrary maximal matching, and suppose
|S| = |T | = (1− α)n. The nodes in S, T must form an independent set. Consider the size of
the edge set connecting S and V \ T . On the one hand, this size equals (1− α)nd (since all
edges from S go to V \ T ); on the other hand, this size is at most αn(d− 1) (since at least
one edge from each node in V \ T goes to U \ S). Thus, (1− α)nd ≤ αn(d− 1), implying
that α ≥ d/(2d− 1). Hence we have that |MG[σ, π]| ≥ d

2d−1n, for every π. J

Remark: For every d there exists a d-regular graph with a perfect matching that admits
a maximal matching of size d

2d−1n. Suppose that n = 2d− 1, and consider a d-regular graph
where |S| = |T | = d− 1 for some S ⊂ U, T ⊂ V , every node in U \ S is connected to a single,
different node in V \ T , and to all d− 1 nodes in T , and every node in V \ T is connected to
a single, different node in U \ S, and to all d− 1 nodes in S. The perfect matching between
U \ S and V \ T is a maximal matching of size d

2d−1n.
The lower bound of Proposition 10 approaches 1

2 from above as d grows. The following
theorem shows that there exists some permutation π that ensures that the fraction of matched
vertices approaches 5/9. This is a direct corollary from Lemma 9 and a theorem in [7].

I Corollary 11. For d-regulars bipartite graphs, ρ ≥ 5
9 −O( 1√

d
).

Proof. Theorem 3 in [7] shows that every n-vertex d-regular graph has a path cover (referred
to as a linear forest) with p = O( n√

d
) paths. By Lemma 9, ρ(G) ≥ 5

9 −O( 1√
d
). J

Remarks.
1. For small d, the bound of ρ ≥ d

2d−1 which holds for every maximal matching is stronger
than the bound in Corollary 11.

2. The proof of Corollary 11 extends to graphs that are nearly d-regular, by using Theorem 5
from [7].

3. For d-regular graphs, conjectures mentioned in [7] combined with our proof approach
suggest that ρ ≥ 5

9 −O( 1
d ).

3.2 Negative Result
The following example shows that even in a regular graph with arbitrarily high degree, there
may be no permutation π that ensures to match more than a fraction 8/9 of the vertices.

I Theorem 12. For every integers d, t ≥ 1, there is a regular bipartite graph Gd,t of even
degree 2d and n = 3dt vertices on each side such that ρ(Gd,t) ≤ 8

9 .

Proof. Consider a regular bipartite graph G(U, V ;E) with even degree 2d, and 3d vertices
on each side. To define the edge set, let U = U1 ∪ U2 ∪ U3 with each Ui of cardinality d, and
similarly V = V1 ∪ V2 ∪ V3 with each Vi of cardinality d. For every i 6= j, we have a complete
bipartite graph between Ui and Vj , and for every i, there are no edges between Ui and Vi.
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Let π be an arbitrary permutation over V , let S be the first 2d vertices in π, and let T be
the last d vertices. Let i be such that |Vi ∩ T | is largest (breaking ties arbitrarily). Without
loss of generality we may assume that i = 3, and then |V3 ∩ T | ≥ d/3. Hall’s condition
implies that there is a perfect matching between U1 ∪U2 and S (and more generally, between
U1 ∪ U2 and any 2d vertices from V ). Hence one can choose a permutation σ over U whose
first 2d vertices are U1 ∪ U2 that will match the vertices of S one by one. Thereafter, the
vertices of T ∩ V3 will remain unmatched.

To get the graph Gd,t claimed in the theorem, take t disjoint copies of G(U, V ;E)
above. J

4 Random Permutation

In this section we consider scenarios in which the maximizing player is unaware of the graph
structure. In such scenarios, the best she can do is impose a random permutation over the
vertices in V .

We first show that there exists a graph G ∈ Gn for which a random permutation does not
match significantly more than a half of the vertices, even if every vertex has a high degree.

I Proposition 13. There exists a bipartite graph G(U, V ;E) ∈ Gn such that a random
permutation gets ρ(G) = 1

2 + o(1) almost surely.

Proof. Consider the graph G(U, V ;E), where U = (U1, U2), V = (V1, V2), and each of
U1, U2, V1, V2 is of size n/2. The set of edges constitutes of a perfect matching between U1
and V1, a perfect matching between U2 and V2, and a bi-clique between U1 and V2. Let π
be a random permutation. With high probability, for each vertex v1 ∈ V1, except for ∼

√
n

such vertices, we can associate a unique vertex v2 ∈ V2 that precedes v1 in π. Let S ⊆ V1
denote this set. Consider an arrival order σ in which agents in U1 arrive first, with a vertex
u1j preceding a vertex u1j′ if π(v2j) < π(v2j′). Every vertex in U1 such that its neighbor in
V1 (according to the perfect matching) belongs to S will be matched to the corresponding
vertex in V2. Therefore, all but ∼

√
n vertices of V1 remain unmatched, and the size of the

matching is n(1/2 + o(1)), whereas OPT = n. J

In the above example, if the vertices of V with degree 1 are placed in the prefix of π, then
the obtained matching is optimal. This might suggest that prioritizing low degree vertices in
π (and randomizing within sets of vertices of comparable degrees) leads to good performance.
However, the example above can be transformed into one where all vertices in V have the
same degree. To see this, consider a graph where vertices are partitioned into sets of perfect
matchings of size

√
n, {(U11, V11), . . . , (U1

√
n, V1

√
n), (U21, V21), . . . , (U2

√
n, V2

√
n)}. Each V1i

is also connected in a bi-clique to U2i, and in addition, there are sets U ′, V ′ of size
√
n each

connected to the vertices of the other side to balance out the degrees. A similar argument
shows that in this graph, a random permutation performs badly as well.

In contrast to the last examples, in some classes of graphs, a random permutation
guarantees to match a fraction of the vertices that is bounded away from a half. This is
the case, for example, in Hamiltonian graphs. The formal statement and proof are deferred
to Section 6.

5 Finding a perfect π

A permutation π over V is said to be perfect if for every permutation σ over U , |MG[σ, π]| = n.
A vertex v ∈ V is good with respect to a set of vertices S ⊂ V if there is no matching between
N(v) and S. Given permutation π over V , let π(v) be the set of vertices preceding v in π.
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I Observation 14. π is perfect if and only if every vertex v ∈ V is good with respect to π(v).

Proof. Suppose there exists a vertex v ∈ V that is not good. Then, consider a permutation σ
where the vertices in N(v) are placed first, in an order corresponding to the rank (according
to π) of their partners in the perfect matching between N(v) and π(v). In such a σ, v will
not be matched. Now suppose that all vertices in V are good. Then, for every σ, for every
v ∈ V , there exists a vertex u ∈ U that is not matched to a vertex in π(v); therefore v will
surely be matched. J

We present an algorithm that finds a perfect π if one exists, and claims that no such π
exists otherwise.

Checking whether vi is good can be done in polynomial time by running a maximum
matching algorithm on N(vi) and Si.

An algorithm for finding a perfect π.
1. Let S1 = V .
2. In iteration i = 1, . . . , n:

a. Find an arbitrary good vertex vi ∈ Si with respect to Si \ {vi}, and place it in rank
n− i+ 1 in π.

b. Set Si+1 = Si \ {vi}.

I Lemma 15. If there exists a perfect π, then the algorithm is guaranteed to find a good vi
in every iteration i.

Proof. Consider some perfect permutation π (not necessarily the one produced by our
algorithm), and the suffix Vi−1 = vi−1, vi−2, . . . , v1 of vertices chosen in the first i − 1
iterations of the algorithm (of course, there must be a good v1 at the first iteration, otherwise
there is no perfect π). Let π′ be the permutation that places vi−1, vi−2, . . . , v1 as the lowest
ranked vertices in the same order as the algorithm picked them, and places all other vertices
of V \ Vi−1 in a higher rank than Vi−1 according to their internal order in π.

Since every vj , 1 ≤ j ≤ i − 1, is good with respect to V \ {v1, . . . , vj}, then clearly
vj is good with respect to π′(vj) (since π′(vj) = V \ {v1, . . . , vj}). Now consider a vertex
v ∈ V \ Vi−1. This vertex is good with respect to π(v), and since π′(v) ⊆ π(v), it is clear
that v is good with respect to π′(v). It follows that π′ is perfect as well.

Let v′i be the vertex ranked in position n− i+ 1 in π′. Since π′ is perfect, this vertex is
good with respect to π′(v′i). But since π′(v′i) ∪ {v′i} is exactly the set Si in iteration i, it is
guaranteed that the algorithm can find a good vi in this iteration. J

Let π be the permutation computed by the algorithm. Since every vertex v is good with
respect to π(v), it follows from Observation 14 that π is perfect, and Proposition 1 follows.

6 Hamiltonian Bipartite Graphs

In this section we establish two results about Hamiltonian graphs. First, we show that
ρ ≥ 5

9 . Note that, since for the case of a Hamiltonian graph there exists a path cover using
only a single path (i.e., p = 1), Lemma 9 directly implies that ρ ≥ 5

9 −
1

9n . Theorem 16
improves this bound to 5/9. Second, we show that for Hamiltonian graphs, even a random
permutation π ensures a ratio that is bounded away from 1

2 (this is in contrast to general
graphs, see Section 4).

I Theorem 16. For every Hamiltonian graph G, it holds that ρ ≥ 5
9 .
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Proof. Consider a Hamiltonian graph G and a Hamiltonian cycle u1, v1, u2, v2, . . . , un, vn, u1
that traverses through its vertices. Let Vo = {vi : i = 2`+ 1, ` ∈ N, i ≤ n} be the set of
odd labeled vertices of the cycle, and Ve = V \ Vo.

We first claim that if the number of vertices is even (|Vo| = |Ve| = n
2 ), then π = Ve, Vo

(and in fact, also π = Vo, Ve) ensures that ρ ≥ 5/9. Let ne (respectively, no) be the number
of vertices of Ve (respectively, Vo) matched in MG[σ, π] defined using π = (Ve, Vo) and an
arbitrary σ. Similar to the proof of Lemma 9, it is easy to see that each vertex in Ve
contributes two distinct neighbors to N(Ve), and each vertex in Vo contributes two distinct
neighbors to N(Vo) (the difference from the proof of Lemma 9 is that this property also holds
for v1 ∈ Vo and vn ∈ Ve, and this follows because v1 and vn contribute u1 to N(Vo) and
N(Ve), respectively). The number of unmatched vertices in Vo, namely |Vo| − no, satisfies

2(|Vo| − no) ≤ no,

because the neighbors of the unmatched vertices in Vo must be matched to vertices in Vo,
as they precede the vertices in Ve in π. Likewise, the number of unmatched vertices in Ne,
namely |Ve| − ne, satisfies

2(|Ve| − ne) ≤ ne + no.

Adding two times the first inequality and three times the second, we get

4|Vo|+ 6|Ve| ≤ 9(no + ne) ⇒
5
9 · n ≤ no + ne.

As |V | = n and |MG[σ, π]| = no + ne, this implies that ρ ≥ 5
9 .

We now handle the case where n is odd. Lemma 9 ensures that 5
9 · n−

1
9 of the vertices

are matched by π4 when the path cover is of a single path. If 5
9 · n−

1
9 is not integral, then

d 5
9 · n−

1
9e is at least

5
9 · n, thus ρ ≥

5
9 . Therefore, it only remains to handle the case where

5
9 · n−

1
9 is integral; namely where n = 18`+ 11 for some integer `. In this case, we show

that π = Ve, Vo ensures that |M [σ, π]| > 5
9 · n for every σ. Since n = 18`+ 11, it holds that

|Vo| = 9`+ 6 and |Ve| = 9`+ 5. As in the case where n is even, every vertex in Ve contributes
two distinct neighbors to N(Ve). As for Vo, every vertex in Vo \ {v1, vn} also contributes two
distinct neighbors to N(Vo), and v1 and vn contribute (together) to N(Vo) three additional
distinct vertices (since they share a vertex along the Hamiltonian cycles). Using the same
reasoning as before, it follows that

2(|Ve| − ne) ≤ ne ⇒ 18`+ 10 ≤ 3 · ne ⇒ ne ≥ 6`+ 31
3 .

Since ne is integral, this implies that

ne ≥ 6`+ 4. (1)

Again, for |Vo| − no we have 2(|Vo| − no)− 1 ≤ no + ne. Rearranging gives us

ne + 3no ≥ 18`+ 11.

Adding twice Inequality (1) to the last inequality yields

ne + no ≥ 10`+ 61
3 > 10`+ 61

9 = 5
9 · |V |,

which implies ρ > 5
9 . This concludes the proof. J
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Next, we show that for the case of a Hamiltonian graph, a random permutation yields a
ρ > 1/2.

I Theorem 17. Consider choosing a permutation π uniformly at random. For every Hamilto-
nian graph G, it holds that Eπ[minσ[|MG[σ, π]|]] > 0.5012.

We explain the proof approach here, and present the full details in Appendix A.

Proof Approach

We first provide a high level overview of our proof approach.
A permutation π (over V ) is said to be safe for a set S ⊂ V if for every permutation σ

(over U) the greedy process matches at least one vertex in S (i.e., no σ leaves all vertices in S
unmatched). Fix some constant ε. In order to establish that ρ ≥ (1/2 + ε), we need to show
that there exists a permutation π that is safe for every set S of size (1/2− ε)n. Our proof
approach is the following: we show that for a permutation π chosen uniformly at random,
the expected number (expectation taken over choice of π) of sets of size (1/2− ε)n for which
pi is unsafe is smaller than 1. This implies that there exists a permutation π that is safe for
all sets of size (1/2− ε)n, as desired.

First, we define a collection of sets that can potentially remain unmatched (“bad” sets).
Let Bε denote the set of all sets S ⊂ U of size (1/2− ε)n such that there exists a permutation
π that is unsafe for S.

Second, for a given set S and permutation π we identify a sufficient condition for π to
be safe for S. Let S′ ⊂ S be the lowest αn vertices in S (according to π), let v′ be the last
vertex in S′ (i.e., the vertex with rank αn in S′), and let P be the set of vertices in V − S′
that precede v′ in π. We claim that if the size of P is smaller than the size of N(S′) (the
neighbors of S′), then π is safe for S. To see this, assume by way of contradiction that π
is unsafe for S′. This implies that every vertex in N(S′) is matched to a vertex in V − S′.
Since there are strictly less than |N(S′)| vertices in V − S′ that precede v′, at least one of
the vertices in N(S′) must be matched to a vertex higher than v′. But, this vertex has a
neighbor in S′ with lower rank, contradicting the greedy process.

We now proceed by establishing the following three lemmas:
Few bad sets lemma: the size of Bε is at most nB = nB(ε).
Expansion lemma: given a set S ⊂ V and parameters α, β, the probability (over a random
choice of π) that the lowest αn vertices in S have less than βn neighbors is at most
p = p(α, β).
Good order lemma: given a set S ⊂ V and parameters α, β, the probability (over a
random choice of π) that the (αn)th lowest vertex in S is higher than βn vertices in V \S
is at most q = q(α, β).

The three lemmas are combined as follows. For a given set S, due to the sufficient
condition identified above, it follows from the union bound that the probability that a
uniformly random permutation π is unsafe for S is at most p+ q. Applying the union bound
once more over all bad sets (at most nB sets, as implied by the few bad sets lemma), implies
that the probability that a uniformly random permutation π is unsafe for some set of size
(1/2− ε)n is at most nB(p+ q). Thus, to conclude the proof, it remains to find parameters
such that nB(p+ q) < 1.

The good order lemma is independent of the graph structure. In contrast, the expansion
lemma and the few bad sets lemma rely heavily on the structure of the graph. As it turns
out, Hamiltonian graphs have properties that enable us to establish the two lemmas with
good parameters.
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A Full Proof of Theorem 17

Throughout this section we use H(·) to denote the binary entropy function; i.e., given a
constant p ∈ (0, 1), H(p) = −p log2 p− (1− p) log2(1− p).

I Fact 18 (Stirling’s Approximation). As n→∞,

n! = (1 + o(1))
√

2πn
(n
e

)n
.

Using Stirling’s Approximation, one can derive the following bound.

I Fact 19. For n and k = pn for some constant p ∈ (0, 1),(
n

k

)
= 2(H(p)+o(1))n, (2)

where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

We first establish the good order lemma, which is independent of the graph structure.

I Lemma 20 (Good order lemma). Let α < β < 1, ρ = 1
2 + ε for some ε > 0 and ρ̄ = 1− ρ

such that β
α > ρ

ρ̄ . Let S ⊂ V be a set of size ρ̄n. The probability that in a random
permutation π there are at least βn vertices of V \ S before αn vertices from S is at most
2−(H(α+β)−H(αρ̄ )ρ̄−H( βρ )ρ−o(1))n.

Proof. We first analyze the case that in the first (α+ β)n vertices in π there are exactly αn
vertices from S. The number of possibilities for this case is

(
ρ̄n
αn

)(
ρn
βn

)
.

Let β′ = β+x and α′ = α−x. By the conditions on α, β and ε, we have that β′

α′ ≥
β
α ≥

ρ
ρ̄ .

Therefore,

β′ρ̄ ≥ α′ρ⇒ β′ρ̄− α′β′ ≥ α′ρ− α′β′ ⇒ (ρ̄− α′)
α′

· β′

(ρ− β′) ≥ 1

⇒ (ρ̄n− α′n+ 1)
α′n

· β′n+ 1
(ρn− β′n) ≥ 1 ⇐⇒

(
ρ̄n
α′n

)(
ρn
β′n

)(
ρ̄n

α′n−1
)(

ρn
β′n+1

) > 1.

It follows that
(
ρ̄n
αn

)(
ρn
βn

)
>

(
ρ̄n
α′n

)(
ρn
β′n

)
for every α′ < α and β′ > β such that α+ β = α′ + β′.

Therefore, the probability to have at most αn vertices from S in the first (α+ β)n vertices
in π is at most

αn ·
(
ρ̄n
αn

)(
ρn
βn

)(
n

(α+β)n
) = 2(H(αρ̄ )ρ̄+H( βρ )ρ+o(1))n

2(H(α+β)+o(1))n

= 2−(H(α+β)−H(αρ̄ )ρ̄−H( βρ )ρ−o(1))n,

where the first equality follows Fact 19. J

http://www.jstor.org/stable/23358636
https://doi.org/10.1561/0400000057
https://doi.org/10.1145/2764468.2764482
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Let ρ = 1
2 + ε for some constant ε > 0, ρ̄ = 1− ρ = 1

2 − ε. The next lemma will be used
in order to prove the few bad sets lemma and the expansion lemma. It uses the existence a
Hamiltonian cycle in the graph in order to claim that most sets will have a large number of
neighbors. Therefore, a random set will have a large expansion. In addition, there will be
few sets of size ( 1

2 − ε)n with less than ( 1
2 + ε)n neighbors (i.e., a few bad sets).

I Lemma 21. Let α ∈ (0, 1/2) and β ∈ (α, 1) be two constants such that δ = β − α < α/2.
The number of sets S of size αn where |N(S)| ≤ βn is at most 2(αH( δα )+(1−α)H( δ

(1−α) )+o(1))n.

Proof. Consider a Hamiltonian cycle that traverses through the graph’s vertices H =
(v1, u1, v2, u2, . . . , vn, un, v1), where {vi}i∈[n] = V and {ui}i∈[n] = U . Let S be some set of
vertices from V of cardinality ρn. Note that in the cycle H, each vertex v of S has two
neighbors, where one of these neighbors is joined with an adjacent vertex from V in the
cycle. Therefore, the number of neighbors of a sequence of k consecutive vertices of V in H
is k + 1. Thus, the set N(S) is of size αn plus the number of consecutive blocks of vertices
from V chosen.

We bound the number of ways to pick at most δn consecutive blocks of vertices from V .
We first bound the number of ways to pick exactly δn such blocks. In this case, the αn chosen
elements have to be within δn blocks. The number of ways to partition αn elements to δn
noen empty blocks is

(
αn−1
δn−1

)
. After deciding the number of elements in each block, we need

to figure out their location along the Hamiltonian cycle. (1− α)n elements reside outside of
the blocks of chosen αn elements. We need to chose the location of the first block in H (for
which there are n possibilities), and then the number of element between each block, where
two blocks are separated by at least one element. The latter is equivalent to splitting (1−α)n
elements into δn non empty bins, for which there are

((1−α)n−1
δn−1

)
possibilities. Overall, there

are n
(
αn−1
δn−1

)((1−α)n−1
δn−1

)
such possibilities4.

For δ′ < δ, one can similarly devise the bound of n
(
αn−1
δ′n−1

)((1−α)n−1
δ′n−1

)
which is smaller

than n
(
αn−1
δn−1

)((1−α)n−1
δn−1

)
by our conditions on α and δ. Overall, we can bound the number

of ways to pick at most δn consecutive blocks of vertices from V by

δn2
(
αn− 1
δn− 1

)(
(1− α)n− 1

δn− 1

)
< δn2

(
αn

δn

)(
(1− α)n

δn

)
= 2o(1)n · 2(H( δα )+o(1))αn · 2(H( δ

(1−α) )+o(1))(1−α)n

= 2(αH( δα )+(1−α)H( δ
(1−α) )+o(1))n,

where the first equality follows Fact 19. J

The expansion and few bad sets lemmas are obtained as direct corollaries of Lemma 21.

I Lemma 22 (Few bad sets Lemma for Hamiltonian graphs). Let ε be a constant such that
ε < 0.1. The number of bad sets in any Hamiltonian graph is at most

|Bε| ≤ 2(ρ̄H( 2ε
ρ̄ )+ρH( 2ε

ρ )+o(1))n.

4 Notice there’s some over-counting in this argument, but this bound suffices for our purpose.
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Proof. Notice that if a set S of size ρ̄n = ( 1
2 − ε)n has more than ρn neighbors, it cannot

be left unmatched, since at least one of it’s neighbors will could not be matched to V \
S. A direct application of Lemma 21 yields that the number of such sets is at most
2(ρ̄H( 2ε

ρ̄ )+ρH( 2ε
ρ )+o(1))n. J

We note that this lemma is not true for general graphs. An example of a graph that
admits 2n/4 bad sets is given in the full version.

I Lemma 23 (Expansion Lemma for Hamiltonian graphs). Consider a set S ⊂ V of size ρ̄n
and parameters α, β. The probability that the lowest αn vertices in S have less than βn

neighbors is at most

2
(
−H(αρ̄ )+αH( δα )+(1−α)H( δ

(1−α) )+o(1)
)
ρ̄n
.

Proof. Consider a set S of size ρ̄n, and the first αn vertices in S in a random permutation.
This set is just a random subset of S of size αn. The number of choices of such subset is(

ρ̄n

αn

)
= 2(H(αρ̄ )+o(1))ρ̄n.

Notice that we can apply Lemma 21 for with set S, even though S is just a subset of
V , because the same proof applies only with respect to a subset of vertices in one side of
a Hamiltonian graph. Therefore, the number of subsets of size αn of S with at most βn
neighbors is at most

2(αH( δα )+(1−α)H( δ
(1−α) )+o(1))ρ̄n.

Combining the above, we get that the probability that a random set of αn vertices of S have
at most βn neighbors is at most

2(−H(αρ̄ )+αH( δα )+(1−α)H( δ
(1−α) )+o(1))ρ̄n. J

Now that we have established the three lemmas we are ready to prove Theorem 17.

Proof of Theorem 17. Setting ε = 0.0012, α = 0.245 and β = 0.3675 (and ρ = 1
2 + ε,

ρ̄ = 1− ρ), we get that these parameters satisfy the conditions for Lemmas 20, 23 and 22.
Applying Lemma 22, we get that the size of Bε is at most nB ≤ 20.044n. Applying

Lemma 23, we get that the probability that the lowest αn vertices of a set of size ρ̄n have less
than βn neighbors is at most p ≤ 2−0.86n. Applying Lemma 20, we get that the probability
that for a set S of size ρ̄n the αnth vertex in a random π comes after βn vertices of V − S is
at most q ≤ 2−0.45n. Combining these three, we get that the probability there exists a set of
size ρ̄n unmatched by a random π is at most nB(p+ q) < 1, therefore, there must be a π
that matches at least one vertex in each set of size ρ̄n, and the proof follows. J

This proof approach can be also used to show that a random permutation guarantees to
match more than a half of the vertices in every regular graph. On the other hand, Theorem 24
in Section C shows that one cannot hope to get ρ > 3/4 with a random permutation in
regular graphs.
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Figure 2 An iterative process where unmatched vertices are given priority. In every iteration
thick edges are in the matching; gray vertices are unmatched.

B Iterative Process

A natural approach for establishing the existence of a good permutation π is the following
iterative process of “upgrading” unmatched vertices. Given a permutation π : V → [n] and a
permutation σ : U → [n], let M [π, σ] be the result of the greedy matching where vertices in
U arrive in order σ (from low to high) and each vertex u ∈ U is matched to its lowest (under
π) neighbor (or left unmatched if all its neighbors are already matched).

Fix an arbitrary permutation π1 on V , and let σ1 be a permutation on U minimizing
the greedy matching5. Let M1 = M [π, σ] be the result of the greedy matching under
permutations σ and π. If |M1|/n is some constant greater than 1/2, then terminate with
permutation π1. Otherwise, partition V into the set VL1 of unmatched vertices (L for low,
as they will be placed low in the next iteration, and also for losers, or leftovers) and the set
VH1 of matched vertices (H for high, as they will be placed high in the next iteration, and
also for hitters, or happy).

Consider now a permutation π2 in which VL1 precedes VH1 (preserving the internal order
between vertices in VL1 and similarly between vertices in VH1), and let σ2 be a permutation
on U minimizing the resulting greedy matching. Let M2 = M [π2, σ2]. If |M2|/n is some
constant greater than 1/2, then terminate with permutation π2. Else, partition V into the set
VL2 of unmatched vertices and the set VH2 of matched vertices, and consider a permutation
π3 in which VL2 precedes VH2 (preserving internal orders). Continue this iterative process
until the obtained permutation πk ensures a matching greater than a half.

The intuition behind this approach is that the unmatched vertices need some “help” in
order to be matched, and we provide this help in the form of prioritizing them over their
mates. One might hope that this process will reach a good permutation within a constant
number of iterations. Unfortunately, we show an example where the process goes through
logn iterations before it first obtains a permutation ensuring a matching that exceeds n/2.

5 It is unclear whether σ1 can be computed in polynomial time. The related problem of computing a
minimum maximal matching in bipartite graphs is known to be NP-hard [2]. However, here we consider
the existential problem.
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The construction of the graph is inductive. The base is G0(U0, V0;E0), with two vertices
u, v and a single edge between them. For every i = 1, 2, . . ., Gi(Ui, Vi;Ei) is such that
|Ui| = |Vi| = 2i; it is obtained by taking two (disjoint) copies of Gi−1, with additional edges
of the form (uj , vj) for every uj from one copy of Gi−1 to vj in the second copy of Gi−1. An
example of G3 is presented in Figure 2(a). The iterative process is depicted in Figure 2(a)-(d).
In all iterations preceding the last one, exactly n/2 vertices are matched in the worst σ.

C Additional Results

The following theorem shows that one cannot hope to get ρ > 3/4 with a random permutation
in regular graphs.

I Theorem 24. For every ε > 0 and sufficiently large d, there are d-regular graphs G for
which a random permutation π results in ρ ≤ 3

4 + ε.

Proof. Consider a d-regular bipartite graph G(U, V ;E), where d is very large, there is a
balanced bipartite independent set (S, T ) of size 1−ε

2 n, and conditioned on that, G is random.
Let Q (a random variable) be the set of first 1+ε

2 n vertices under the random permutation π.
Then, E[|T ∩ (V \Q)|] = ( 1−ε

2 )2n ' 1
4n. W.h.p. there will be a perfect matching between Q

and U \ S. Hence one can choose a permutation σ over U that matches all of U \ S to Q.
But then the vertices T ∩ (V \Q) will remain unmatched. J

We also establish a few impossibility results for regular graphs of low degree.

I Theorem 25. The following hold:
There exists a 3-regular bipartite graph G for which ρ(G) = 5

7 .
There exists a 4-regular bipartite graph G for which ρ(G) = 10

13 .

The proof relies on graphs induced by projective planes. A projective plane consists of a
set of lines and a set of points, where (among other properties) every two lines intersect in a
single point and every two points are incident to a single line. A projective plane induces a
bipartite graph G(U, V ;E), where every vertex u ∈ U corresponds to a point in the plane,
every vertex v ∈ V corresponds to a line, and there exists an edge between u and v if the
point corresponding to u is incident to the line corresponding to v.

Proof. For the first result, we show that ρ = 5
7 for the bipartite graph induced by the

Fano plane. The Fano plane is a projective plane consisting of 7 points and 7 lines, with 3
points on every line and 3 lines through every point. Consider the 3-regular bipartite graph
G(U, V ;E) induced by the Fano plane. Let N(V ′) denote the neighbors of a set V ′ ∈ V .
For every set V ′ ∈ V such that |V ′| = 2, it holds that |N(V ′)| = 5. We show below that
for every such V ′ there exists a perfect matching between N(V ′) and V \ V ′. Hence one
can choose a permutation σ over U whose first 5 vertices are N(V ′) that will match the
vertices of V \ V ′ one by one. Thereafter, the vertices of V ′ will remain unmatched. By
Hall’s condition, it suffices to show that for every set U ′ ⊂ N(V ′) such that |U ′| ≤ 5 it holds
that |N(U ′)| ≥ |U ′| + 2 (so that Hall’s condition applies with respect to the set V \ V ′).
Indeed, for every set U ′ of size 1, |N(U ′)| = 3, for every set U ′ of size ≥ 2, |N(U ′)| ≥ 6, and
for every set U ′ of size 5, |N(U ′)| = 7. It follows that ρ(G) = 5/7.

The second result follows a similar argument. It is known that there exists a projective
plane consisting of 13 points and 13 lines, with 4 points on every line and 4 lines through every
point. We claim that ρ = 10

13 for the bipartite graph G(U, V ;E) induced by this projective
plane. By the properties of a projective plane, for every set V ′ ∈ V such that |V ′| = 3, it
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holds that |N(V ′)| ∈ {9, 10}. We show below that for every such V ′ there exists a perfect
matching between N(V ′) (and possibly an additional vertex u in case |N(V ′)| = 9) and V \V ′.
Hence one can choose a permutation σ over U whose first 10 vertices are N(V ′) (possibly
with the additional vertex) that will match the vertices of V \ V ′ one by one. Thereafter, the
vertices of V ′ will remain unmatched. By Hall’s condition, it suffices to show that for every
set U ′ ⊂ N(V ′) such that |U ′| ≤ 10 it holds that |N(U ′)| ≥ |U ′|+ 3 (so that Hall’s condition
applies with respect to the set V \ V ′). Indeed, for every set U ′ of size 1, |N(U ′)| = 4, for
every set U ′ of size ≥ 2, |N(U ′)| ≥ 7, for every set U ′ of size ≥ 5, |N(U ′)| ≥ 11, and for
every set U ′ of size ≥ 9, |N(U ′)| = 13, It follows that ρ(G) = 10/13. J
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