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Abstract

We prove that for every constant c and ε = (logn)−c, there is no polynomial time algorithm that
when given an instance of 3-LIN with n variables where an (1 − ε)-fraction of the clauses are
satisfiable, finds an assignment that satisfies atleast ( 1

2 + ε)-fraction of clauses unless NP ⊆ BPP.
The previous best hardness using a polynomial time reduction achieves ε = (log logn)−c, which is
obtained by the Label Cover hardness of Moshkovitz and Raz [J. ACM, 57(5), 2010] followed by
the reduction from Label Cover to 3-LIN of Håstad [J. ACM, 48(4):798–859, 2001].

Our main idea is to prove a hardness result for Label Cover similar to Moshkovitz and Raz
where each projection has a linear structure. This linear structure of Label Cover allows us to
use Hadamard codes instead of long codes, making the reduction more efficient. For the hardness of
Linear Label Cover, we follow the work of Dinur and Harsha [SIAM J. Comput., 42(6):2452–2486,
2013] that simplified the construction of Moshkovitz and Raz, and observe that running their
reduction from a hardness of the problem LIN (of unbounded arity) instead of the more standard
problem of solving quadratic equations ensures the linearity of the resultant Label Cover.
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9:2 Improved 3LIN Hardness via Linear Label Cover

1 Introduction

In this paper, we study the 3-LIN problem. An instance of 3-LIN consists of a set of n
variables over F2 and a set of m equations that contain at most three variables each, and the
goal is to find an assignment to the n variables that satisfies the most number of equations.1
If the given set of linear equations admits an assignment that satisfies every equation, then
one such assignment can be found in polynomial time by Gaussian elimination. However, the
general problem of finding the most of number of equations is NP-hard when the instance
does not admit a satisfying assignment, and a large amount of research has been done on the
limit of polynomial time approximation algorithms.

Assigning random values to variables satisfies exactly half the equations in expectation,
giving a 1/2-approximation algorithm. Håstad and Venkatesh [7] achieved an approximation
factor of 1/2 + 1/O(

√
m), which was improved by Khot and Naor [10] to 1/2 +O(

√
logn/n).

From the hardness side, there are strong hardness results even when the instance is almost-
satisfiable. For 1 ≥ c > s > 0, let Gap 3-LIN(c, s) denote the problem of distinguishing
whether the given instance of 3-LIN is at least c-satisfiable or at most s-satisfiable. Håstad’s
classic hardness results [6] show the following.

I Theorem 1.1 ([6]). The following hardness results for Gap 3-LIN hold.
1. For any constant ε > 0, Gap 3-LIN(1− ε, 1/2 + ε) is NP-hard.
2. There exists a constant c > 0 such that for ε = 1/(logn)c, there is no polynomial time

algorithm that solves Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ DTIME[nO(log logn)].

Håstad’s results are proved by giving the reduction from Label Cover to 3-LIN. Label
Cover is a common starting point for hardness results, and we define the optimization
problem below.

I Definition 1.2 (Label Cover). An instance of Label Cover contains a regular bipartite
multi- graph G = (A,B,E) and two finite sets ΣA and ΣB, where |ΣA| ≥ |ΣB |. Every vertex
in A is supposed to get a label in ΣA, and every vertex in B is supposed to get a label in ΣB.
For each edge e ∈ E there is a projection πe : ΣA → ΣB. Given a labeling to the vertices
of the graph, i.e., functions φA : A→ ΣA and φB : B → ΣB, an edge e = (a, b) ∈ E is said
to be “satisfied” if πe(φA(a)) = φB(b). For 1 ≥ c > s > 1, Gap Label Cover(c, s) is the
problem if distinguishing whether the given instance of Label Cover is at least c-satisfiable
or at most s-satisfiable.

Håstad’s theorem can be stated in terms of reduction from Gap Label Cover(1, δ) as
follows.

I Theorem 1.3 ([6]). For every ε ∈ (0, 1) and positive integer `, there exists a δ = poly(ε)
and a poly(n, 2`, 21/ε)-time reduction from n-sized instances of Gap Label Cover(1, δ) with
label size ` to Gap 3-LIN(1− ε, 1/2 + ε).

When [6] was published, the hardness of Label Cover was achieved by the PCP
theorem [2, 1] and parallel repetition [13]. More precisely, Gap Label Cover(1, ε) with
label size poly(1/δ) was NP-hard under poly(nlog 1/δ)-time reductions. The two results
of Håstad stated in Theorem 1.1 follow from this hardness of Gap Label Cover and
Theorem 1.3 by setting δ to be an arbitrarily small constant and 1/logn respectively. Since

1 This maximization version is also known as Max 3-LIN in the literature.
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achieving a subconstant soundness for Label Cover by parallel repetition requires a
superpolynomial blowup in the instance size, ε > 0 could not be taken to subconstant under
polynomial time reductions. Later in a celebrated paper, Moshkovitz and Raz [12] gave an
improved hardness of Label Cover that achieves sub-constant error under polynomial time
reductions. Their main result can be stated as follows.

I Theorem 1.4 ([12, Theorem 11]). For every n, and every δ > 0 (that can be any func-
tion of n), 3-SAT on inputs of size n can be reduced to Gap Label Cover(1, δ) when
Label Cover instance has n1+o(1) · poly(1/δ) vertices and |ΣA| ≤ exp(poly(1/δ)), |ΣB | ≤
poly(log 1/δ).

A corollary of the above result, obtained by combining it with Håstad’s reduction from
Theorem 1.3, is that given a system of linear equations, it is NP-hard to distinguish between
cases where 1 − o(1) fraction of equations are satisfied vs at most 1/2 + o(1) fraction are
satisfied, where the o(1) term is 1/(log logn)−Ω(1).

I Theorem 1.5 ([12]). There exists some constant c > 0 such that for ε = 1/(log logn)c,
Gap 3-LIN(1− ε, 1/2 + ε) is NP-hard.

Later, an improved parallel repetition by Dinur and Steurer [4] allowed c to be an arbitrary
constant.

The above route prove hardness of 3-LIN is restricted by the large size of the alphabet
in the resulting Label Cover instance in Theorem 1.4. Quantitatively, the alphabet size
is exponential in poly(1/ε). The fact that the long code in Håstad’s reduction has size
exponential in the alphabet size restricts ε = 1/(log logn)O(1).

Our main contribution for 3-LIN is to bring ε in the above result down to 1/(logn)c for any
constant c, while keeping the size of the reduced instance polynomial (albeit the reduction
becomes randomized).

I Theorem 1.6 (Main). For any constant c > 0 and ε = 1/(logn)c, there is no polynomial
time algorithm for Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ BPP.

We get around the above alphabet barrier by starting with a reduction that would make
the resulting Label Cover linear, and use Hadamard codes instead of long codes. Since
the Hadamard code keeps the reduction size polynomial in the alphabet size, we can take
ε = 1/(logn)Ω(1). A similar idea was previously used by Khot [8]. We define Linear Label
Cover as follows.

I Definition 1.7 (Linear Label Cover). A Linear Label Cover is a special case of
Label Cover where the alphabets are of the form ΣA = Fa2 ,ΣB = Fb2 where a, b are natural
numbers. Each projection π : Fa2 → Fb2 is affine in the sense that π(x) = αx + β for some
α ∈ Fb×a2 , β ∈ Fb2. For 1 ≥ c > s > 0, the Gap Linear Label Cover(c, s) is defined
similarly to Gap Label Cover(c, s).

We prove the following hardness result for Linear Label Cover, which may be of
independent interest.

I Theorem 1.8 (Hardness of Linear Label Cover). For any constant c > 0, for δ = 1/(logn)c,
there is no polynomial time algorithm for Gap Linear Label Cover(1−δ, δ) unless NP ⊆
BPP, when Label Cover instance has poly(n) vertices and |ΣA| = poly(n), |ΣB | =
polylog(n).

We remark that if the above theorem can be further strengthened to obtain δ = 1/nc (i.e.,
a linear version of the Sliding Scale conjecture), then this leads to near-optimal hardness of
3-LIN (i.e, Gap 3-LIN(1− ε, 1/2 + ε) is hard for ε = 1/poly(n)) [11].

APPROX/RANDOM 2019



9:4 Improved 3LIN Hardness via Linear Label Cover

1.1 Proof Ideas
Our main technical contribution is Theorem 1.8 for Linear Label Cover, essentially
proving a linear analogue of the Moshkovitz-Raz PCP [12] followed by the Dinur-Steurer
parallel repetition [4]. The proof is given through a long sequence of reductions. We split
them in 3 major steps.
1. Interestingly, the starting point of our reduction is again the hardness of (not necessarily

linear) Label Cover proved by Moshkovitz and Raz [12] augmented by Dinur and
Steurer [4], proving NP-hardness of Gap Label Cover(1, 1/logc n) for any c > 0, while
keeping the reduction size and the alphabet size polynomial. In Section 2, we give a
randomized reduction from this Label Cover to Gap LIN(1− 1/logc n, 0.9). This style
of reduction appeared previous from Label Cover to Closest Vector Problem [9].
Note that the standard proof of the PCP theorem encodes 3-SAT (or Circuit SAT) by
solving quadratic equations over F2, and this is essentially the only place that needs where
nonlinearity occurs. Our hardness result for solving linear equations with completeness
very close to (but not exactly) 1 allows us to follow previous PCP constructions that will
ensure linearity of the Label Cover instance in the subsequent steps.

2. To prove the hardness of Linear Label Cover given the above hardness of LIN, we
closely follow the steps of Dinur and Harsha [3], who gave a simpler and modular proof
of [12]. The two basic building blocks in their proof are robust PCPs and decodable
PCPs. Robust PCPs are PCPs where in the soundness case, for any proof and most
random choices of the verifier, not only are the local views non-accepting, but they
are also very far from any accepting string. It is indeed equivalent to Label Cover.
Using our previous hardness for LIN as the starting point and following the standard
robust PCP construction (e.g., low-degree extension and sum-check protocol), we can
prove a polynomial time reduction to Linear Label Cover(1− 1/ logc n, 1/ logc n) for
any c > 1, but the alphabet size will be always exp(logc0 n) for some c0 > 1, which is
superpolynomial.

3. The second building block, decodable PCP, is similar to robust PCP with the additional
requirement that the prover is given a position i in the original string and supposed to
output the value of the ith position if the given proof is a honest encoding of a valid
original string. The main idea of Dinur and Harsha [3] is to iteratively compose a robust
PCP with a suitable decodable PCP, where the composed PCP is another robust PCP
that consists of a decodable PCP for each constraint of the original robust PCP. This
iteratively reduces the query complexity and the alphabet size of the robust PCP, which
is related to the alphabet size of the equivalent Label Cover instance. This iterative
composition is interleaved and preprocessed by technical operations that reduce the
alphabet size of the robust PCP and make it regular.
Once these two building blocks are linear, the operations of [3] can be used verbatim in
our construction. Our main observation is that every step of this construction preserves
(1) the robust completeness 1−δ for some δ = 1/polylog(n), and (2) the linearity, which were
not issues in [3]. In Section 3, we introduce the basic building blocks and these operations,
and show how they preserve robust completeness and linearity. These iterative operations
will eventually reduce the alphabet size of the Linear Label Cover polynomial, proving
Theorem 1.8.
After the hardness of Linear Label Cover is proved, we give a reduction from Linear

Label Cover with the above parameters to 3-LIN with the required parameters. We do
this by composing with the Hadamard Code to get a (1− ε) vs (1/2 + ε) NP-hardness result
for 3LIN. Similar PCP constructions based on Hadamard codes were presented in [8]. Details
of this step can be found in Section 4.
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2 Reduction to System of Linear Equations

In this section, we first prove the hardness of approximate solving linear equations over large
fields, where each equation can involve as many variables as possible. It will serve as the
starting point towards proving hardness of Linear Label Cover.

I Theorem 2.1. For any constant c > 0, ε = 1/(logn)c, Gap LIN(1 − 1/(logn)c, 0.9) is
NP-hard under polynomial time randomized reductions.

Proof. The proof starts from the following hardness of Label Cover, which is obtained by
combining the main result of Moshkovitz and Raz [12] with the parallel repetition of Dinur
and Steurer [4].

I Theorem 2.2 ([12, 4]). For any constant c > 0, for δ = 1/(logn)c, Gap Label Cover(1, δ)
is NP-hard when the Label Cover instance satisfies |ΣA|, |ΣB | ≤ |A|+ |B|.

Let G = (A,B,E), ΣA, ΣB , and {πe}e∈E be an instance of Label Cover. We show a
reduction to LIN over F2 where

If all Label Cover edges are satisfiable, at least (1 − 1
|ΣA| ) fraction of equations are

satisfiable.
If at most δ fraction of Label Cover edges are satisfiable, at most (1− 1

(δ|ΣA|) ) fraction
of equations are satisfiable.

For each vertex v ∈ ΣA ∪ΣB and possible label ` on the Label Cover instance, we have a
variable xv,` in the LIN instance. Let n = |A||ΣA|+ |B||ΣB | = poly(|A|+ |B|) be the number
of variables. Consider the following four kinds of equations. Recall that every arithmetic is
performed over F2.

(1)
∑
`∈ΣA

xv,` = 1 ∀v ∈ A

(2)
∑
`∈ΣB

xv,` = 1 ∀v ∈ B

(3)
∑

r:πuv(r)=`

xv,r = xu,` ∀(u, v) ∈ E,∀` ∈ ΣB

(4) xv,` = 0 ∀(v, `) ∈ A× ΣA

In our final LIN instance, we treat (1), (2), and (3) as hard constraints that need to be
always satisfied, and find x that always satisfies all hard constraints and as many constraints
in (4) as possible. Also note that in (4), we only consider vertices in A.

This is equivalent to the usual LIN problem with hard constraints by folding. Formally,
let V be the set of assignments that satisfy (1), (2), and (3). If V is empty, we can
conclude that the Label Cover instance is unsatisfiable. Otherwise, there exist c ∈ N and
linearly independent vectors y0, . . . , yc ∈ F(A×ΣA)∪(B×ΣB)

2 such that V = {y0 +
∑c
i=1 yizi :

z1, . . . , zc ∈ F2}. This gives an one-to-one correspondence between Fc2 and V , so we can treat
z1, . . . , zc as the variables of LIN and write the fourth constraints xv,` = 0 in terms of z,
which gives an instance of LIN without hard constraints.

Completeness

If the Label Cover instance is satisfiable, xv,` = 1 if and only if v is assigned with ` gives
an assignment that satisfies (1), (2), and (3), and violates one equation in (4) for each v ∈ A.

APPROX/RANDOM 2019
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Soundness

Let x be an assignment that satisfies (1), (2), and (3). For v ∈ A∪B, let Lv := {` : xv,` = 1}.
Since (1) and (2) require

∑
` xv,` = 1 for every v ∈ A ∪B, Lv is not empty for every v.

Consider the randomized strategy for Label Cover where each v ∈ A ∪B is assigned
with a uniform random label from Lv independently. For (u, v) ∈ E with u ∈ A, v ∈ B, by
(3), xv,` = 1 for some ` ∈ ΣB implies that there exists r ∈ ΣA with πuv(r) = ` such that
xu,r = 1. This implies (u, v) is satisfied with probability at least 1

|Lu| by the randomized
strategy. Then the expected fraction of the Label Cover constraints satisfied by the
strategy is at least

Eu∈A

[
1
|Lu|

]
>

1
Eu∈A[|Lu|]

.

Therefore, if at most δ fraction of Label Cover constraints are simultaneously satisfiable,
we can conclude that

δ >
1

Eu∈A[|Lu|]
⇔ Eu∈A[|Lu|] >

1
δ
.

So in total, at least 1
(δ|ΣA|) fraction of equations are violated.

Gap Amplification

We have a hardness of LIN over F2 where the completeness value is at least 1− 1
|ΣA| and

the soundness value is at most 1− 1
(δ|ΣA|) . Consider a new system of linear equations where

we sample m linear equations independently, where each new equation randomly chooses
δ · |ΣA| old equations and takes a random linear combination of them. In the completeness
case, at least an (1−O(δ)) fraction of new equations can be satisfied by a good assignment
to old equations.

In the soundness case, fix an assignment to n possible variables. (There are 2n of them.)
It satisfies at most an 1 − 1

(δ|ΣA|) fraction of old equations. Note that if a new equation
chooses an old equation not satisfied by the assignment, it is satisfied with probability exactly
1/2. Therefore, the expected number of new equations satisfied by this fixed assignment is
at most

m ·
((

1− 1
(δ|ΣA|)

)δ·|ΣA| + 1
2

)
≤ m ·

(
1
e

+ 1
2

)
≤ 0.87m.

For a given c ∈ N, let δ = 1/logc n. By taking sufficiently large m = O(n), we can apply
the Chernoff and union bound to conclude that no assignment satisfies more than a 0.9
fraction of new equations. So we reduce from Label Cover to Gap LIN(1 − O(δ), 0.9),
which finishes the proof. J

We remark that the sampling performed above is the only step in our reduction involving
randomization.

3 Reduction to Linear Label Cover

In this section, we show for any c > 0, unless NP ⊆ BPP, there is no polynomial time
algorithm for Gap Linear Label Cover(1− ε, ε) with ε = 1/(logn)c, proving Theorem 1.8.

The construction we employ is almost identical to that of Dinur and Harsha [3], except
that the basic building blocks (robust PCP and decodable PCP) try to prove (almost)
satisfiability of linear equations instead of standard quadratic equations. They are introduced
in Sections 3.1 and 3.2.
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After constructing the building blocks, the result of [3] is proved by iterative composition
of them followed by technical steps including alphabet and degree reduction. Our main
observation in this part is that each of the steps in the construction preserves linearity so
that the final Label Cover instance produced also has a liear structure. We present them
in Section 3.3 and Section 3.4. Finally, Section 3.5 shows how to combine all these steps to
prove Theorem 1.8.

3.1 Robust PCPs
In this subsection, we define robust PCPs. For two strings x, y of the same length n, let
agr(x, y) denote the relative agreement of the strings x, y, defined as

agr(x, y) := Pr
i∈[n]

[xi = yi]

If S is a set of strings, agr(x, S) is defined as maxy∈S{agr(x, y)}.

I Definition 3.1 (Robust PCPs). For functions r, q,m, a, s : N→ N and c, δ : N→ [0, 1], a
verifier V is a robust probabilistically checkable proof (robust PCP) system for a promise
problem L = (LYES, LNO) with randomness complexity r, query complexity q, proof length m,
alphabet size a, robust completeness c, and robust soundness error δ if V is a probabilistic
polynomial-time algorithm that behaves as follows: On input x of length n and oracle access
to a proof string π ∈ Σm(n) over the (proof) alphabet Σ where |Σ| = a(n), V reads the input x,
tosses at most r = r(n) random coins, and generates a sequence of locations I = (i1, . . . , iq) ∈
[m]q(n) and a predicate f : Σq → {0, 1}, which satisfy the following properties.
Robust Completeness. If x ∈ LYES then there exists π such that

E
(I,f)

[agr(πI , f−1(1))] > c. (1)

Robust Soundness. If x ∈ LNO then for every π,

E
(I,f)

[agr(πI , f−1(1))] 6 δ, (2)

where the distribution over (I, f) is determined by x and the random coins of V .
We say that V is linear if Σ = Fb2 for some b and for every f , the accepting sets of the
predicate f , i.e., f−1(1), forms an affine subspace of Σq = Fbq2 over the field F2.

Robust completeness and soundness must be contrasted with (regular) completeness and
soundness of standard PCP verifiers in which the expression for completeness and soundness
given in (1) and (2) respectively are replaced as follows:

Completeness: Pr
I,f

[f(πI) = 1] > c,

Soundness: Pr
I,f

[f(πI) = 1] 6 δ.

In fact, this is the only difference between the above definition and the standard definition
of a PCP system. The robust soundness states that not only does the local view violate the
local predicate f , but in fact has very little agreement with any of the satisfying assignments
of f (and thus is a strengthening of standard robustness). Robust completeness on the other
hand is a weakening of standard completeness.

APPROX/RANDOM 2019
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Another crucial aspect of robust PCP is its equivalence to Label Cover. Namely,
existence of robust PCP for L with parameters r, q,m, a, s, c, δ is equivalent to existence of a
reduction from L to Gap Label Cover(c, δ) where |A| = 2r, |B| = m, |ΣA| ≤ aq, |ΣB | = a
and each v ∈ A has degree q. See Lemma 2.5 of [3]. Also note that the definition of linearity
is equivalent in robust PCP and Label Cover.

I Theorem 3.2 (Robust PCP, Analog of [3, Theorem 6.4]). There exist constants b1, b2 > 0,
c0 > 1 such that for any c > c0 and ε = 1/logc n, Gap LIN(1 − ε, 0.9) with n variables
has a linear robust verifier with robust completeness 1− ε, robust soundness error ε, query
complexity 1/εb1 , proof length poly(n), randomness complexity O(logn), and proof alphabet
size at most 1/εb2 .

Equivalently, there is a (deterministic) polynomial time reduction from Gap LIN(1−ε, 0.9)
to Gap Linear Label Cover(1 − ε, ε), where the Label Cover instance has poly(n)
veritces, |ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB | ≤ 1/εb2 , and each v ∈ A has degree 1/εb1 .

The proof of this theorem is identical to that of [3, Theorem 6.4] and omitted here. The
only difference is Gap LIN(1 − ε, 0.9) with 1/ε = logO(c) n instead of standard quadratic
equations when performing the low degree-extension and the sum-check protocol. The
theorem follows by observing that all the operations are linear and hence the final predicate
is also linear. The completeness of the robust PCP is dictated by the completeness value in
Theorem 2.1.

Combining this reduction with the randomized reduction from Theorem 2.1, we obtain
the following theorem (which is a more formal version of Theorem 1.8).

I Theorem 3.3 (Hardness of Linear Label Cover). There exist constants b1, b2 > 0, c0 > 1
such that for any c > c0 and ε = 1/logc n, unless NP ⊆ BPP, there is no polynomial
time algorithm for Gap Linear Label Cover(1− ε, ε) where the Label Cover instance
has poly(n) veritces, |ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB | ≤ 1/εb2 , and each v ∈ A has
degree 1/εb1 .

3.2 Decodable PCPs
We now discuss the decodable PCP (dPCP), which differs from a PCP in that it has a
decoder as opposed to a verifier. A decoder is similar to a verifier in that it checks whether a
string is in the given language or not by probabilistically checking a small number of positions
in the proof, but it is additionally supposed to return the ith position of the original string
for given i.

For Σ = Fa2 for some a ∈ N, let LINΣ denote the problem of solving linear equations
where an instance consists of k variables that can have a value from Σ, and a system of
linear equations C on k · a variables over F2 canonically represented by the k variables over
Σ. It is equivalent to LIN over F2 on k · a variables, except that we consider each block of a
variables as one variable that can take a value from Σ. We define a decoder for LINΣ below.

I Definition 3.4 (Decoder for LINΣ). Let Σ = Fa2 and σ = Fb2 for some a and b. A
decoder for LINΣ over a proof alphabet σ with parameters m, q, r : N→ N is a probabilistic
polynomial-time algorithm D. It is given a system of linear equations C on n variables over
Σ, and an index j ∈ [n] as input, and oracle access to a proof π of length m(n) over proof
alphabet σ. It tosses r = r(n) random coins and generates (1) a sequence of q = q(n) locations
I = (i1, . . . , iq) and (2) a (local decoding) function f : σq → Σ∪{⊥}. D is called linear if for
every f , P := f−1(Σ) is an affine space of σq = (Fqb

2 ) and f : P → Σ is an affine function
over the base field F2.
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Now we define a dPCP for LINΣ. The dPCP in [3] is defined for Circuit SAT, whereas
ours is for LINΣ. Note that unlike in [3], the dPCP we will construct does not imply any
computational hardness, because it only proves whether the given system of linear equations
is perfectly satisfiable or not, which is a computationally easy problem. The key point is
it proves the system is satisfiable using a proof which is in some sense “locally decodable”.
The dPCP will then be composed with the previous linear robust PCP, which is a system of
linear equations with imperfect completeness, to reduce the query complexity.

I Definition 3.5 (Decodable PCPs for LINΣ). For functions δ : N→ [0, 1] and L : N→ N,
we say that a PCP decoder D is a decodable probabilistically checkable proof (dPCP) system
for LINΣ with perfect completeness, soundness δ and list size L if the following completeness
and soundness properties hold for every system of linear equations C on n variables over Σ.

Completeness. For any y ∈ Σn that satisfies every equation in C, there exists a proof π ∈ σm,
also called a decodable PCP, such that

Pr
j,I,f

[f(πI) = yj ] = 1,

where j ∈ [n] is chosen uniformly at random and I, f are distributed according to C, j,
and the verifier’s random coins.

Soundness. For any π ∈ σm, there is a list of 0 6 ` 6 L strings y1, . . . , y`, where each yi
satisfies all equations in C, such that

Pr
j,I,f

[f(πI) /∈ {⊥, y1
j , . . . , y

`
j}] 6 δ.

Robust soundness. We say that D is a robust dPCP system for LINΣ with robust soundness
error δ, if the soundness criterion above can be strengthened to the following robust
soundness criterion,

E
j,I,f

[agr(πI ,BAD(f))] 6 δ,

where

BAD(f) := {w ∈ σq : f(w) /∈ {⊥, y1
j , . . . , y

`
j}}.

The dPCP result we use is the following.

I Theorem 3.6 (dPCP, Analog of [3, Theorem 6.5]). There exist constants α, γ > 0 such
that for every δ > n−α and input alphabet size Σ of size at most nγ, LINΣ has a linear
robust decodable PCP system with perfect completeness, robust soundness error δ > 0 and
list size L 6 2/δ, query complexity n1/8, proof alphabet σ of size nγ, proof length poly(n),
and randomness complexity O(logn).

The proof of this theorem is identical to that of [3, Theorem 6.5], except that the initial
starting point is LINΣ instead of Circuit SATΣ. Since the starting point is linear and
all transformations are linear, the final object is also linear. The perfect completeness is
also maintained. As mentioned before, the dPCP constructed here does not imply any
computational hardness unlike in [3].

3.3 Composition
After having building blocks, Dinur and Harsha [3] show how to compose those blocks
iteratively to reduce the query complexity and the alphabet size. Each composition involves
several other operations including alphabet and degree reductions. While the soundness
analyses for them are already proved in [3], we show that all of their operations preserve
linearity and robust completeness.
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9:10 Improved 3LIN Hardness via Linear Label Cover

Efficient Composition ([3, Theorem 4.2])

In the composition, given a regular robust linear PCP verifier V and a robust linear PCP
decoder D, the composed verifier V ′ expects a decodable PCP for each constraint of V .
Recall that the linearity of V is equivalent to the fact that each constraint of V is a system
of linear equations over F2, which is exactly what D expects. An informal description of the
composed verifier is as follows:

1. Randomly choose a location i of the proof for V . Let C1, . . . , CD be the constraints of V
containing the location.

2. Using a (ε, ε2)-sampler ([D], [D], E) and a random s ∈ [D], choose a subset S ⊆ {1, . . . , D}
and run the inner PCP decoder D for each Cj with j ∈ S to decode the ith symbol in
the original proof.

3. Accept if all the values returned by the PCP decoders are the same.

For the second step above, we use (ε, ε2)-samplers given in [5]. Theorem 4.2 of [3] shows
the soundness of the composed verifier V ′, yielding Table 1 below (Table 4.2 in [3]).

Table 1 Parameters for Composition.

V D V ′

proof alphabet Σ σ σ

randomness complexity R r logM + r + logD
query complexity Q q 4/ε4 · q

proof degree D d d

proof length M m 2R ·m
robust soundness error ∆ δ ∆L + 4Lε+ δ

list size - L -

We check this composition preserves robust completeness and linearity.
Linearity: Linearity (over F2) is preserved if both V and D are linear, since the only
additional check we perform is to check whether the returned values are equal.
Robust completeness: Suppose that there exists a proof Π for V that achieves the robust
completeness of at least 1 − ξ. Recall that the composed verifier expects, for each
constraint of the outer PCP, a satisfying assignment encoded by the inner dPCP. The
proof for the composed verifier is the concatenation of all these encodings. Consider the
proof to the composed verifier constructed by the honest encoding of the assignment that
achieves the robust completeness for the outer PCP verifier. We will show that this proof
achieves robust completeness 1− ξ.
Let i be a proof location in the outer PCP and C1, . . . , CD be the constraints involving i.
Furthermore, let ξi be the fraction of these constraints violated by the proof. Since Π is
at least (1− ξ)-robustly complete, we have Ei[ξ] ≤ ξ. For each sample s chosen in the
sampler, let ξi,s be the fraction of constraints in S (chosen by sampler) that are violated.
By regularity of sampler, we have Es[ξi,s] ≤ ξi.
A local view of the composed verifier (corresponding to i, s and the inner dPCP ran-
domness) comprises of the concatenation of the local views of the dPCP encodings
corresponding to the constraints in S. Since the the inner dPCP has perfect completeness
we have the following. Whenever the constraint is satisfied, the corresponding inner
dPCP’s encodings satisfies all constraints while we have no guarantee when the constraint
is not satisfied. Since for each (i, s), the fraction of violated constraints is ξi,s, we have
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that at least (1−ξi,s)-fraction of the local inner views corresponding to (i, s) are satisfying
and furthermore they all decode to the same Π(i). Hence, the local view of the composed
verifier corresponding to (i, s) is at least (1− ξi,s)-close to a satisfying view. Hence, the
robust completeness of this honest proof is at least Ei,s[1− ξi,s] ≥ 1− ξ.

3.4 Label Cover Operations
After the composition, the alphabet reduction step is applied to ensure that the alphabet
size is polynomial in the query complexity and the inverse of the soundness. Also, since the
basic robust PCP given in Theorem 3.2 is not necessarily regular, we also need to show how
to make the initial robust PCP regular. This subsection introduces various such operations
and explains why they preserve robust completeness and linearity.

Degree Reduction ([3, Theorem 5.1])

Given an instance of Label Cover G = (A,B,E), the degree reduction makes the instance
right-regular by appropriately duplicating right vertices and each edge exactly the same
number of times. Theorem 5.1 of [3] ensures that by increasing robust soundness by 4µ
additively, we can ensure that the right degree is 4/µ4 for all right vertices. We check that
this operation preserves linearity and robust completeness.

Linearity: Linearity is obviously preserved, because there is no change in the constraint.
Robust completeness: Since each edge is duplicated the same number of times, robust
completeness does not decrease.

Alphabet Reduction ([3, Theorem 5.5])

Given an instance of Label Cover G = (A,B,E) where ΣA and ΣB are the alphabet set of
the left (bigger) side and the right (smaller) side respectively, the alphabet reduction replaces
ΣB by a smaller set σ by finding a suitable linear code C : ΣB → σk and replacing each
vertex b ∈ B by k vertices b1, . . . , bk. Then assigning x ∈ ΣB to b corresponds to assigning
(C(x))i to b1, . . . , bi. Theorem 5.5 of [3] ensures that if C has a relative distance 1− η3, this
operation increases robust soundness by at most 3η additively. We check that this operation
preserves linearity and robust completeness.

Linearity: Linearity over F2 is preserved if the code C : ΣB → σk is linear with σ = F2a

as the base field for some a ∈ N. The code used in Remark 5.4 of [3] is already linear.
Robust completeness: If an edge (a, b) of the original Label Cover instance is preserved
and the new instance follows the honest encoding, all k edges of the new instance
corresponding to (a, b) will be satisfied. Therefore, robust completeness cannot decrease.

Flip Sides ([3, Section 5.3])

Given an instance of Label Cover G = (A,B,E) where each right vertex b ∈ B has
degree d, the flip side is achieved by flipping A and B, and assigning each v ∈ B a label
from Σd

A, which is supposed to denote the assignments to its neighbors in the original
instance. If v ∈ B has u1, . . . , ud ∈ A as neighbors, (v, ui) in the new instance is satisfied
(i) if the label (a1, . . . , ad) ∈ Σd

A for v has b ∈ ΣB such that the label pair (ai, b) satisfies
the edge (ui, v) in the old instance, and (ii) if ai is equal to the label assigned to ui. This
obviously does not change the robust soundness. We check that it also preserves linearity
and robust completeness.
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Table 2 Sequence of steps to regularize the Label Cover instance. * denotes irregular instances
where the number denotes the average degree.

Label Cover I Degree Flip Degree Alphabet
(Robust PCPs) Red. (→ d) Red. (→ d) Red. (→ σ)
# left vertices n n mDB mDB mDB

(randomness)

# right vertices m mDB n nDAd nDAdk

(proof length)

left degree D∗A dD∗A d d2 d2k

(query complexity)

right degree D∗B d DAd
∗ d d

(proof degree)

left alphabet ΣA ΣA Σd
A Σd

A Σd
A

(# accepting conf.)

right alphabet ΣB ΣB ΣA ΣA σ

(proof alphabet)

soundness error δ δ + 4µ δ + 4µ δ + 8µ δ + 8µ+ 3η
(rob. soundness error)

rob. completeness 1− ξ 1− ξ 1− ξ 1− ξ 1− ξ
(rob. completeness)

Linearity: Linearity is preserved, because for each v ∈ B, the set of (a1, ..., ad) satisfying
(i) above is an affine subspace of (ΣA)d, and the new constraint is merely a projection.
Robust completeness: Cannot decrease since if v ∈ B was assigned b ∈ ΣB in the original
instance, it can be assigned (a1, . . . , ad) ∈ ΣA such that (i) π(ui,v)(ai) = b, and (ii) ai was
assigned to ui if (ui, v) was satisfied in the original instance.

We use a combination of the above 3 operations to get a regular Label Cover instance,
as shown below.

Given an ε > 0, by using (O(ε), O(ε2))-samplers in the composition and doing the above
operations with η = O(ε), d = O(1/ε4), distance 1−O(ε3), |σ| = O(1/ε6), k = O(1/ε6)·|Σ′| ≤
O(1/ε6) · q|Σ|, we can deduce the following lemma.

I Lemma 3.7 ([3, Lemma 5.7]). For all ε : N→ [0, 1], suppose L has a robust linear PCP
verifier V with randomness complexity r, query complexity q, proof length m, average proof
degree DB, robust completeness c, robust soundness error δ over a proof alphabet Σ. Then L
has a regular reduced linear robust PCP verifier, which we shall denote by regularε(V ) with

randomness complexity logm+ logDB,
query complexity O(q log |Σ|/ε14),
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proof length O(q22r log |Σ|/ε10),
proof degree O(1/ε4),
proof alphabet σ of size at most O(1/ε6),
robust completeness c,
and robust soundness δ + ε.

3.5 Putting things together
Finally we prove Theorem 1.8 on the hardness of Linear Label Cover. Let c > 0 be an
arbitrary constant. Let D be the PCP decoder from Theorem 3.6 and V be the robust PCP
from Theorem 3.2 with robust completeness 1− δ with δ = logc n, robust soundness error
ε = 1/logc0 n for some c0 > 1, query complexity 1/εO(1), randomness complexity O(logn) and
proof length poly(n).
I Lemma 3.8 ([3, Lemma 6.6]). Let D, V, ε, δ be as defined above and set εi = (ε)1/3i .
There exist constants c0, c1, c3 > 0 such that for every i > 0 as long as εi < c0, the following
holds. Gap LIN(1− δ, 0.9) has a regular linear robust PCP verifier Vi with query complexity
1/εc1i , robust completeness 1− δ, robust soundness error 2εi, proof alphabet Σi of size c3/εi6,
randomness complexity O(logn) and proof length poly(n).
Proof. The proof is similar to [3], and is a sequence of compositions. We start with the
regularized robust verifier given by applying the sequence of steps given in Section 3.4 to
the robust PCP verifier given in Theorem 3.2. In each subsequent step, we compose the
robust verifier obtained in the previous step with a dPCP, and apply the alphabet reduction
(Theorem 5.5 of [3]) to reduce the size of the alphabet to c3/ε6

i+1. All the parameters remain
the same as in [3], and we only need to focus on the two additional properties we need,
linearity and robust completeness.

Recall that a PCP with robust completeness 1− δ, when composed with a dPCP with
perfect completeness, yields a composed PCP with robust completeness 1− δ. In each step
the inner PCP decoder has perfect completeness, therefore the robust completeness of the
composed PCP is preserved. Recall that the alphabet reduction step also doesn’t affect the
perfect completeness.

Linearity is also preserved because all basic components are linear and all steps (e.g.,
composition, alphabet reduction, and regularization) preserve linearity as previously discussed.

J

The above lemma shows that we can iteratively reduce the query complexity until some
absolute constant while maintaining the soundness and the alphabet size polynomial in the
query complexity.(And the total size of the instance always remains polynomial in n.) Only
a constant number of iterations is needed until (proof alphabet size)(query complexity), an
upper bound on the size of alphabet in the equivalent Label Cover instance, becomes
polynomial in n. This proves our main Theorem 1.8 for Linear Label Cover.

Proof of Theorem 1.8. Set i from Lemma 3.8 so that

(proof alphabet size)(query complexity) = (c3/ε6
i )1/εc1

i = exp
(

1
εc1i
· log

( c3
ε6
i

))
≤ poly(n).

This ensures that εi = 1/logc4 n for some c4 > 0. Using the equivalence between Label
Cover and robust PCP, we have a hardness of Label Cover where the number of vertices
and the size of label are bounded by poly(n), and the completeness is at least 1− 1/logc n,
the soundness is 1/logc4 n. Applying the parallel repetition of [4] O(c/c4) times to reduce the
soundness to 1/logc n finishes the proof. J

APPROX/RANDOM 2019



9:14 Improved 3LIN Hardness via Linear Label Cover

4 Reduction from Linear Label Cover to 3LIN

In this section, we prove our main Theorem 1.6 for 3-LIN. Recall that Theorem 3.3
shows a randomized polynomial reduction from 3-SAT to Gap Linear Label Cover(1−
logc n, logc n) for any constant c > 0, where the number of vertices as well as the number of
labels are bounded by a polynomial. Therefore, the following theorem finishes the proof of
Theorem 1.6. The main idea is to use Hadamard codes instead of long codes using the fact
that the Label Cover instance is linear. A similar argument was used in [8].

I Lemma 4.1. There is a polynomial time reduction from Gap Linear Label Cover(1−
δ, s) to Gap 3-LIN(1− δ, 1/2 +

√
s/2), where the size of the 3-LIN instance is polynomial in

the number of vertices and the size of label in the Label Cover instance.

Proof. Let G = (A,B,E), ΣA, ΣB , {πe}e∈E be an instance of Gap Linear Label Cover
(1− δ, s). Moreover, since the label cover is linear, let the labels to left hand side vertices
come from F`2 and the right hand side vertices from Fr2, and the mapping on each edge is an
affine mapping. Our reduction is described by the following test.

Test

Consider an edge (u, v). The labels x ∈ F`2, y ∈ Fr2 corresponding to the vertices have to
satisfy x = Ay + b.
From the proof, we randomly sample the Hadamard code of x at location α, and that of
y at locations β and β + γ, where γ = AT · α.
Check if 〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉 = 〈α, b〉

Completeness

In the completeness case, if the labels x, y satisfy the edge in the Linear Label Cover,
then we can see that the test will pass.

〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈ATα, y〉
=〈α, b〉

Therefore, if 1− δ edges are satisfiable in the linear Label Cover, at least 1− δ fraction of
3LIN constraints are satisfied.

Soundness

Consider the case where at most s fraction of edges can be satisfied for any labeling in the
Linear Label Cover. Let the Hadamard code encoding function for the left vertices be L
and right vertices be R. Consider their Fourier transforms,

L(α) =
∑
x

L̂(x)χx(α)

R(β) =
∑
y

R̂(y)χy(β)
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Let’s fix an edge, and analyze the probability that the test will accept. We switch to a -1,+1
notation for convenience.

Pr[Test accepts] = Pr
α,β

[〈α, x〉+ 〈β, y〉+ 〈β +ATα, y〉+ 〈α, b〉 = 0]

= Pr
α,β

[(−1)〈α,x〉+〈β,y〉+〈β+ATα,y〉+〈α,b〉 = 1]

=
1 + Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
2

Consider the expectation on the right hand side of the above equation.

Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
(3)

6
∑
x,y

L̂(x)R̂(y)2Eα,β

[
χx(α)χy(β)χz(β +ATα)(−1)〈α,b〉

]
6

∑
x,y,x=Ay+b

L̂(x)R̂(y)2

6
√ ∑
x,y,,x=Ay+b

R̂(y)2
√ ∑
x,y,x=Ay+b

L̂(x)2R̂(y)2

In the above equation, the first term is bounded by 1, and therefore,

(3) 6
√ ∑
x,y,,x=Ay+b

L̂(x)2R̂(y)2

Consider a random assignment where a left vertex gets a label x with probability L̂(x)2

and a right vertex gets a label y with probability R̂(y)2. The probability that such a random
assignment would satisfy the edge, and therefore the expected fraction of edges satisfied,
is exactly∑

x,y,x=Ay+b
L̂(x)2R̂(y)2

If at most s fraction of edges can be satisfied by any assignment, then

s >
∑

x,y,x=Ay+b
L̂(x)2R̂(y)2 > (2 · Pr[Test accepts]− 1)2

or

Pr[Test accepts] 6 1
2 +
√
s

2

Therefore, the expected fraction of 3LIN constraints satisfied is at most 1
2 +

√
s

2 . J
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