
Dynamic Pricing of Servers on Trees
Ilan Reuven Cohen
TU Eindhoven, The Netherlands
CWI, Amsterdam, The Netherlands
ilanrcohen@gmail.com

Alon Eden
Tel Aviv University, Israel
alonarden@gmail.com

Amos Fiat
Tel Aviv University, Israel
fiat@tau.ac.il

Łukasz Jeż
University of Wrocław, Poland
lje@cs.uni.wroc.pl

Abstract

In this paper we consider the k-server problem where events are generated by selfish agents, known
as the selfish k-server problem. In this setting, there is a set of k servers located in some metric
space. Selfish agents arrive in an online fashion, each has a request located on some point in the
metric space, and seeks to serve his request with the server of minimum distance to the request. If
agents choose to serve their request with the nearest server, this mimics the greedy algorithm which
has an unbounded competitive ratio. We propose an algorithm that associates a surcharge with
each server independently of the agent to arrive (and therefore, yields a truthful online mechanism).
An agent chooses to serve his request with the server that minimizes the distance to the request plus
the associated surcharge to the server.

This paper extends [9], which gave an optimal k-competitive dynamic pricing scheme for the
selfish k-server problem on the line. We give a k-competitive dynamic pricing algorithm for the
selfish k-server problem on tree metric spaces, which matches the optimal online (non truthful)
algorithm. We show that an α-competitive dynamic pricing scheme exists on the tree if and only
if there exists α-competitive online algorithm on the tree that is lazy and monotone. Given this
characterization, the main technical difficulty is coming up with such an online algorithm.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Algorithmic mechanism design

Keywords and phrases Online algorithms, Online mechanisms, k-server problem, Online pricing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.10

Category APPROX

Funding Ilan Reuven Cohen: Partially supported by the ERC consolidator grant 617951.
Alon Eden: Partially supported by the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122, by the
Israel Science Foundation (grant numbers 317/17 and 1841/14).
Amos Fiat: Partially supported by the Israel Science Foundation (grant number 1841/14).
Łukasz Jeż: Partially supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

© Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Łukasz Jeż;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilanrcohen@gmail.com
mailto:alonarden@gmail.com
mailto:fiat@tau.ac.il
mailto:lje@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Dynamic Pricing of Servers on Trees

1 Introduction

Online algorithms were designed to deal with cases where the input arrives piecemeal over
time and consists of a sequence of events. Problems such as paging, online matching, online
scheduling, etc., are all examples of such problems.

This paper, belongs to a thread of recent research where events are selfish and the goal is
to set surcharges on the various decisions that can be made by the agent with some desirable
goal in mind such as minimizing social cost, makespan, completion time, flow time, sum of
completion times, etc. (See Section 1.1 for some examples.) The prices may change over time,
but must be known to the selfish agent upon arrival so that the agent can make an informed
decision. Truthfulness is immediate in such settings, the agent gets asked no questions and
therefore cannot lie about anything. The agent simply takes the utility maximizing (disutility
minimizing) option available.

Specifically, in the dynamic pricing scheme for the k-server problem that we consider, the
mechanism sets a surcharge on each server prior to an arrival of the next request. The agent
that issues the request greedily chooses the server which minimizes the distance between the
server and request plus the surcharge for the server. Note that the mechanism may update
the surcharge of the servers based on past requests.

This paper extends the dynamic pricing results obtained for the k-server problem in [9]
and deals with servers on a tree rather than restricted to a line. Although the basic idea is
the same: use dynamic pricing to “nudge” selfish agents to act as though they were under
the control of a centralized online algorithm, the tree metric is much more challenging to
deal with than the line.

We show that any α-competitive online algorithm on the tree that is simultaneously (i)
lazy: moves at most one server and (ii) monotone: the set of points served by server (if
non-empty) is contiguous and includes the server location, can be converted into a dynamic
posted pricing scheme for the selfish k-server problem on the tree with a competitive ratio of
α. These properties were defined and in fact proved for the line [9], but they extend naturally
to trees; cf. Section 2.2 for formal definitions. Thus, the main challenge in this paper is to
give a k-competitive k-server algorithm for the tree that is lazy and monotone.

In the work of Cohen et al. [9], the main idea for obtaining an algorithm with those
properties on a line is to run a simulation of the Double Cover (DC) algorithm and serve
each request (at point) r with a server that is adjacent to r (i.e., there are no intermediate
servers on its path to r) and that can be matched to a simulated Double Cover server which
serves r in a min cost matching. This maintains the competitive ratio and ensures laziness
and monotonicity. Generalizing this idea to trees is not immediate. In particular, choosing
an arbitrary server adjacent to the request which can also be matched to a simulated server
in a min cost matching results in non-monotonicity, which cannot be priced. This means
that one needs a deeper understanding of the tree topology in deciding which of the servers
is to serve the request (We explain this in detail in Section 2.2).

1.1 Related Work

1.1.1 Dynamic Pricing Schemes and Online Mechanisms
Lavi and Nisan [18] initiated the study of competitive analysis of incentive compatible online
auctions. In particular, they give an incentive compatible on-line auction for many identical
items with a tight competitive ratio. They consider both revenue and social welfare targets.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:3

Awerbuch, Azar, and Myerson [1] give a general scheme that produces posted prices
for general combinatorial auctions, with a competitive ratio equal to the logarithm of the
ratio between highest and lowest prices, times the underlying competitive ratio for the
combinatorial auction.

Although not explicitly stated as a pricing scheme, [14] effectively gives a dynamic pricing
scheme for 2 servers in any metric space. Dynamic pricing was used in the context of packets
with values and deadlines [12] with the goal of maximizing social welfare. Dynamic subsidies
were introduced in [6] in the context selfish agents and facility locations. In [9] selfish agent
versions were introduced for metrical task systems [4], for the k-server problem [19] on the
line, and for metrical matching [15] on the line, and appropriate dynamic pricing schemes
were described for reducing social cost. Dynamic pricing for scheduling selfish agents on
related machines to minimize makespan were studied in [11]. In [13] dynamic prices were
used to give a good approximation to the maximal flow time. In [10] dynamic prices were
used to approximate the sum of weighted completion times. Many problems and extensions
remain open.

1.1.2 The k-server problem
The k-server problem was introduced by Manasse et al. [19] as a far reaching generalization
of various online problems. The best-studied of those is the paging (caching) problem, which
corresponds to k-server problem on a uniform metric space. Sleator and Tarjan [20] gave
several k-competitive algorithms for paging and proved that this is the best possible ratio for
any deterministic algorithm.

The famous k-server conjecture of Manasse et al. [19] hypothesizes that the k-server
problem is no harder in other metric spaces, i.e., that k is the optimal ratio for deterministic
algorithms in general metrics. A lower bound of k holds in any metric space of at least
k + 1 points [19], and a nearly matching upper bound of 2k − 1 was given for the Work
Function Algorithm (WFA) by Koutsoupias and Papadimitriou [17], which remains the best
known algorithm for general metrics. The conjecture has been settled (exactly) for several
special metrics. In particular, Chrobak et al. [7] gave an elegant k-competitive algorithm for
the line metric, called Double Coverage (DC), which was later extended and shown to be
k-competitive for all tree metrics [8]. Additionally, Bartal and Koutsoupias have shown that
WFA is k-competitive for the line, the star, and all metric spaces with k + 2 points [3].

Moreover, Bansal et al. [2] have recently shown that the exact competitive ratio of the
DC algorithm, which we simulate by dynamic pricing scheme, when it uses k servers but the
offline optimum uses only h ≤ k servers is k(h+1)

k+1 . (For such setting, the general lower bound
is k

k−h+1 [19], which is matched only for the special case of paging [20].)
Most results on the k-server problem can be found in the survey by Koutsoupias [16]. Due

to our focus, we ignore the randomized variant, on which there is significant recent progress [5].

1.2 Roadmap to this Paper
The next section, Section 2 gives the model and sufficient condition to give of competitive
pricing algorithms on trees. We show that any algorithm that is lazy and monotone can be
used to derive a dynamic pricing scheme, and that a dynamic pricing scheme implies that
such an algorithm must exist. Section 3 gives an algorithm that is clearly lazy and monotone,
but it remains to show that all points on the tree are associated with some server, i.e., that
the algorithm is well defined. This is shown in Section 4. In Section D (in the Appendix) we
show that the algorithm of Section 3 can be implemented in polynomial time. The Appendix
also contains full proofs of various claims.

APPROX/RANDOM 2019

10:4 Dynamic Pricing of Servers on Trees

2 The Model and Preliminaries

2.1 The Selfish k-server problem
In this problem, there is a set of k-servers located in some metric space defined by an
undirected weighted tree T = (V,E,w). A sequence of selfish requests σ = 〈σ1, σ2, . . . , 〉
arrives online, where each request is issued at some point in the metric space. Before an
arrival of each request, a dynamic pricing scheme sets a surcharge (price) on each server,
and the arriving request chooses to be served by the server s that minimizes the sum of the
distance of s from the request and the surcharge on s; the server s is then moved to the
request. The dynamic pricing scheme’s objective is to minimize the total distance moved
by all servers.

Formally, given a request sequence σ = 〈σ1, σ2, . . . , σT 〉, each of the requests must be
served by one of the k servers, let ` = 〈`1, `2, . . . , `T 〉 denote the solution sequence, where
`i ∈ {1, . . . , k} is the index of the server which serves the i-th request. Define the event prefix
σ≺t to be the sequence of events up to but not including event t: σ≺t = 〈σ1, σ2, . . . , σt−1〉 .
The servers location after request t is: si(σ≺t+1) = si(σ≺t) for i 6= `t and s`t

(σ≺t+1) = σt.
Let si(σ≺1) denote the initial server location.

The cost of serving σ by the solution sequence ` is

COST(σ, `) =
T∑

t=1
dist(σt, s`t

(σ≺t)).

In the selfish setting, the server that serves the request σt in step t is chosen so as to
minimize the distance of σt to the server’s current location plus the surcharge function
c : σ≺t × {1, . . . , k} 7→ R+ (i.e., c depends only on past events). The chosen server is:

`c
t ∈ arg mini dist

(
σt, si(σ≺t)

)
+ c(σ≺t, i).

Let `c = 〈`c
1, . . . , `

c
t〉 be the (solution) sequence of server indices chosen by the selfish

requests σ, and let `∗ = 〈`∗1, . . . , `∗t 〉 be the servers that minimize the total cost for σ. A
pricing scheme c is α-competitive if for any σ:

COST(σ, `c)
COST(σ, `∗) ≤ α.

2.2 A Sufficient Condition for Competitive Pricing Algorithms on trees
In this paper, we focus on tree metrics, where given a weighted tree T = (V,E,w), we define
a tree metric space to include the vertices of T along with all points along the edges of T
(see Fig. 3a in Appendix A). Given two points a, b ∈ T , we denote by P[a, b] the [unique]
path between a and b including both endpoints. We use dist(a, b) to denote the distance
between a and b defined by the metric. We also use P(a, b] to denote the path from a to b
that is open at a and closed at b.

We avoid reasoning about prices by describing how any online algorithm of a certain form
can be converted into a dynamic pricing scheme that nudges the [upcoming] selfish agent do
exactly as the online algorithm.

We use the following two properties. We say that an online algorithm is
1. lazy if it moves at most one server.
2. monotone if a server i, located at si, serves a point p, then it also serves all the points

along the path P[si, p].

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:5

The following lemma shows that any algorithm that satisfies the above properties can be
translated into a dynamic pricing scheme with the same competitive ratio. We sketch the
proof below for a “degenerate” case, and we defer the full proof to Appendix C.

I Lemma 1. Given a lazy and monotone online algorithm for the k-server problem on tree
metrics, with a competitive ratio of α, there is a dynamic pricing scheme for the k-server
problem on tree metrics, with the same competitive ratio.

Proof sketch. Just before the arrival of some request σt (and after serving σ≺t), every server
s has an associated subtree Ts of points such that for every point p ∈ Ts if the next request
were made at p, then s would serve it; we say that s is responsible for Ts (breaking ties
lexicographically in case multiple servers are at a request’s location). These subtrees partition
the whole tree metric, i.e., they are disjoint and their union is the entire tree.

First, we set the price for servers for which Ts = ∅ at ∞. Next, we observe that when
setting the surcharges it is sufficient to consider just the endpoints of the subtrees. We say
that two non-empty subtrees, Ts and Ts′ , are touching at an endpoint p if there is no server
s′′ such that in the paths from s to p and from s′ to p in T contain a point q(6= p) ∈ Ts′′ .
Note that there may be many mutually touching subtrees.

Consider a maximal collection of non-empty subtrees Ts1 , Ts2 , . . . , Tsk
, which pairwise

touch at an endpoint p. (Clearly, p belongs to one of those subtrees.) The key observation
is that a selfish agent requesting service at p must be indifferent between choosing any of
the servers s1, . . . , sk. This induces a set of linear equations giving the difference in the
surcharges, c(si)− c(sj),

dist(si, p) + c(si) = dist(sj , p) + c(sj) for all 1 ≤ i < j ≤ k
⇒ c(si)− c(sj) = dist(sj , p)− dist(si, p) for all 1 ≤ i < j ≤ k. (1)

The relationship of subtrees “touching” can itself be described as a tree, so the equations
above (1) can all be simultaneously satisfied. Any solution gives the prices we need. J

The above argument is incomplete, as when subtrees touch at tree vertices, or at at a
server’s location, the selfish request may deviate from the prescribed behavior of the algorithm.
This issue can be treated easily by “nudging” the subtrees to avoid these phenomena. More
on this in Appendix C.

How to find a lazy and monotone algorithm

Any non-lazy algorithm can be trivially transformed into a lazy algorithm simply by delaying
the motion of a server that is not serving a request. However, this may result in a server serving
a non-empty set of points that does not include its location, contradicting monotonicity.
Rather than simply following the simulation, we do as in [9]1, one may move any server
matched to the simulated server in a min cost matching – this is guaranteed to preserve
the competitive ratio. We show below that monotonicity can be preserved by choosing an
appropriate matching. Given an online algorithm A and a set of requests σ, let cost(A, σ) be
the cost of A for serving σ.

I Lemma 2 ([9], Lemma 4.3). Let ON be an online algorithm, let on≺t
i be the location of

server i after ON serves requests σ≺t, and let LAZY be an algorithm that serves request σt by
the server ` which is matched to σt in an arbitrary min-cost matching between {on≺t+1

i }i∈[k]
and s≺t, where the latter is a vector of locations of LAZY’s servers after serving σ≺t. Then
cost(LAZY, σ≺t) ≤ cost(ON, σ≺t) for every t.

1 Originally shown for the line, but the proof works for any metric space, which we show in Appendix B
for completeness.

APPROX/RANDOM 2019

10:6 Dynamic Pricing of Servers on Trees

The above lemma suggests a natural approach to find an algorithm with the desired
properties. The approach is to simulate an algorithm that does not satisfy these properties (in
our case, the Double Cover algorithm discussed in Section 2.4), and whenever the simulated
algorithm serves the request with one of its simulated servers, choose a real server that is
matched to the simulated server in a min-cost matching. While this solution produces a lazy
algorithm with the same competitive ratio, it is not a-priori clear if such a server can be
chosen in a way that results in a monotone algorithm. We show that for the Double Cover
algorithm, this can indeed be done.

2.3 Characterization of min-cost matching on trees
We now give a full characterization of min-cost matchings on trees. As mentioned, the
matching between two sets of points P and Q (|P | = |Q|) in a tree metric T is more involved
than in a line, as given a point p ∈ P , there can be multiple points in Q local to p that can be
matched to p in a min-cost matching between P and Q. Figure 1 contains a simple example.

In order to characterize the min-cost matching we use the following definition to “cut” a
tree T at point x to two trees: Tx(p), T x(p), where p ∈ Tx(p). Formally,

I Definition 3. Given a tree T and two distinct points p, x ∈ T , let Tx(p) be the subtree that
contains p and does not contain x when splitting T into two subtrees at point x. Let T x(p)
be T \ Tx(p).

We define the lowest common ancestor of two points p and q in the tree when rooted at
point r.

I Definition 4. The lowest common ancestor of two points p, q with respect to a point
r, as LCAr(p, q) = argmaxx∈T {dist(x, r) : x ∈ P(p, r) ∩ P(q, r)}.

The following Lemma gives necessary and sufficient conditions for a point p ∈ P to be
matched to q ∈ Q in some min cost matching.

I Lemma 5. Let P and Q be two sets of points in T such that |P | = |Q|, and let p ∈ P
and q ∈ Q. Then there exists a min-cost matching M : P → Q that matches p to q if and
only if the following holds – when considering every point x 6= q on the path from p to q,∣∣T x(q) ∩ P

∣∣ > ∣∣T x(q) ∩Q
∣∣.

The following structural lemma is used in our proofs (we defer both proofs to Appendix E).

I Lemma 6. Let P , Q be two sets of points in T (|P | = |Q|). For points q, r ∈ T , let Tr(q)
be a sub-tree such that |Tr(q) ∩ P | > |Tr(q) ∩Q|. Then there exists p ∈ Tr(q) ∩ P such that
for all x ∈ P(p, r) ,

∣∣T x(r) ∩ P
∣∣ > ∣∣T x(r) ∩Q

∣∣.
2.4 The Double Cover algorithm
In order to achieve an optimal deterministic bound, our surcharge algorithm simulates the
Double Cover (DC) algorithm on trees [8]. In [8], the following was shown.

I Theorem 7 ([8]). The Double Cover algorithm is k-competitive.

The algorithm roughly works as follows: When a request is issued at some point r, move
all the servers that “see” r (have no other server on the path to r) at the same speed until
either (i) a server d is blocked by another server c that moves towards r, in which case d
no longer “sees” r and will cease moving towards r (and all servers that see r will continue
moving towards r), or (ii) a server d reached r’s position, in which case, the servers stop
moving, and d serves r.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:7

We use the following notation throughout the paper. The locations of the Double Cover
servers, dci(σ≺t) ∈M , i = 1, . . . , k, determine the “area of responsibility” for every Double
Cover server: should some request occur at point p ∈ M , there is at least one server i at
dci(σ≺t) that will be used by the Double Cover algorithm to serve the request at p. If the
time t and requests σ≺t = σ1, . . . , σt−1 are fixed, we can simplify notation as follows:

si = si(σ≺t), i = 1, . . . , k,
S = 〈s1, . . . , sk〉

dci = dci(σ≺t),
DC = 〈dc1, . . . , dck〉

dci(r) = dci(σ≺tr) r ∈ T,
DC(r) = 〈dc1(r), . . . , dck(r)〉.

In [9], we showed that for the line metric, exactly one of the two adjacent real servers
to the request can be matched to the simulated server at the request (Lemma 4.2 in [9]).
Moreover, if we use DC on the line as ON, serving the request σt using the adjacent real
server that is matched to σt recovers monotonicity (Lemma 4.4 in [9]). For the case where
the underlying metric is a tree, this is much more involved, as there can be multiple adjacent
real servers that can be matched to σt in a min cost matching, and choosing the wrong one
might result in a violation of monotonicity, as shown in Figure 1. In Section 3, we define a
binary relation �r on pairs of servers that can serve a request at point r such that if i �r j,
then server i cannot cause a monotonicity issue with respect to server j (more on that in
the relevant section). Since �r is a strict order(see Lemma 15), there exists a server that is
maximal with respect to �r, and using this server would not cause monotonicity issue.

The following property on the movement of the double cover servers on trees that is used
to prove the correctness of our algorithm.

I Lemma 8. For any DC server dci, and any point r ∈ T : If dci does not serve the request
at r(dci(r) 6= r), then for any p /∈ Tr(dci) we have P[dci, dci(p)] ⊆ P[dci, dci(r)].

Proof. Consider the trail of a DC server moving in response to a request. Observe that
every point along the trail was closer to the (former) location of the DC server than to the
(former) location of any other DC server. That is:

For all dcj , r ∈ T, for every q ∈ P(dcj , dcj(r)], dist(dcj , q) < dist(dcz, q) for all z 6= j. (2)

Let dcj(r, t) be the position of server j after a movement of at most t units for a request
r, or the maximum movement the server can make if it is blocked before moving t unites. Let
tj(r) be the distance traversed by dcj for the request r, i.e., tj(r) = dist(dcj , dcj(r)). Since
p /∈ Tr(dci), the following holds:

For all dcj ∈ Tr(dci), t′ ≤ tj(r) : P[dcj , dcj(p, t′)] ⊆ P[dcj , dcj(r, t′)]. (3)

We will prove that ti(p) ≤ ti(r) and by (3) the condition holds. Let b be the DC server
that blocks i, i.e. dcb(r, ti(r)) ∈ P(dci(r, ti(r)), r), and let y = dcb(r, ti(r)).

Case 1: dcb ∈ Tr(dci) and tb(p) ≥ ti(r). By (3), dcb(p, ti(r)) = y ∈ P(dci(p, ti(r)), p), so dcb

block dci at ti(r) when the request is at p.
Case 2: dcb ∈ Tr(dci) and tb(p) < ti(r). Let dc` the server which blocked dcb, by (2) we

have dc`(p, tb(p)) /∈ P(dcb, y). Hence, dc`(p, tb(p)) ∈ P(y, p) ⊆ P(dci(p, tb(p)), p) so dc`

block dci at tb(p) < ti(r) when the request is at p.
Let x = LCAp(r, dcb) and txb = dist(tb, x). Note that if dcb /∈ Tr(dci) then txb ≤ ti(r).

APPROX/RANDOM 2019

10:8 Dynamic Pricing of Servers on Trees

Case 3: dcb /∈ Tr(dci) and tb(p) ≥ txb . Hence, dcb(p, txb) = x and x ∈ P(r, p) ⊆ P(dci(p, txb), p)
so dcb blocks dci at txb ≤ ti(r) when the request is at p.

Case 4: dcb /∈ Tr(dci) and tb(p) < txb . Let dc` the server which blocked dcb. By (2),
dc`(p, tb(p)) /∈ P(dcb, x) hence dc`(p, tb(p)) ∈ P(x, p) ⊆ P(dci(p, txb), p) so dc` blocks dci

at tb(p) < ti(r) when the request is at p. J

3 An Algorithm for Dynamic Pricing on Trees

We now present a lazy and monotone k-competitive algorithm. This is a “new” (optimal)
algorithm for the k-server problem on trees. As mentioned, our goal is to find a region
for each server, such that for any request in the region, there exists a min cost matching
which matches the server to the dc server at the request (after the movement of the dc
servers). Note that, for some requests more than one server can be matched to the request.
Figure 1 contains a simple example. Moreover, the figure shows that the naïve approach
that matches an arbitrary min-cost server to the DC server serving the request produces
non-monotonicity. We need to select the real server to move more carefully – this is the
purpose of the precedence relation, �r.

Recall the the definition of a lowest common ancestor (LCA) (Definition 4). We now
define the precedence relation that is used to determined which of the servers in the min-cost
matching to the DC server that serves the request can be used to serve the request. Roughly
speaking, a server i precedes server j with respect to point r (i �r j) if, when inspecting the
LCA of i and j with respect to point r, there is a DC server ` that comes from j’s subtree
and leaves the LCA towards r. The intuition behind this definition is as follows. Suppose we
choose j as the server that serves r (when j is in the min-cost matching to the DC server
that serves r). If the request is at a point r′ further away from r, DC server ` might not
leave the LCA, preventing server j from being in a min-cost matching to the DC server that
serves the request at r′, which might result in non-monotonicity. This situation is exactly
the one depicted in Figure 1.

I Definition 9. We say that server i �r j (i has higher priority than j with respect to r) if
(i) LCAr(si, sj) 6= sj, and (ii) there exists some DC server ` such that:

LCAr(si, sj) ∈ P[dc`, dc`(r)] and dc` ∈ TLCAr(si,sj)(sj).

I Definition 10. We define

MC(r) = {` : ∃ min-cost matchingM : S→ DC(r) such thatM(s`) = r}

to be the set of servers that can be matched to the DC server serving the next request
located at r.

Accordingly, we define:

I Definition 11. A point r ∈ T is `-colorable for some server `:
1. ` ∈ MC(r).
2. There is no server j such that j ∈ MC(r) and j �r `.

The intuition behind the above definition is that Property 1 ensures that the conditions
for Lemma 2 hold and thus the algorithm is k-competitive. Finally, Property 2 ensures that
the algorithm is monotone and well-defined, as we will show. See Figure 2 in Section A for
illustrations of the various definitions made above.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:9

Algorithm 1 The Monotone Regions algorithm (see Fig. 3 in Appendix A) for illustration.

Input: A tree metric T , initial servers locations 〈s1(∅), . . . sk(∅)〉 ∈ Mk, and an online
sequence of requests σ ∈ T ∗.

1. After serving σ≺t, before the current request σt is revealed:
a. Initialize the forest F 0 ← T

b. For i = 1, . . . , k:
i. Ci ← {p ∈ F i−1 : p is i-colorable}

Ci is the set of points that are i-colorable in the current forest F i−1.
ii. Ri ← { p ∈ Ci : for all q ∈ P(p, si), q ∈ Ci }

Ri is the monotone region of Ci around the location of server i.
iii. F i ← F i−1 \Ri

Fi is the remaining forest after removing Ri.
2. Let σt be the current request, and let ` ∈ [k] be the server such that σt ∈ R`

Serve σt with server `
dct+1 ← DC(dct, σt)

Our algorithm is described in Algorithm 1. We remark that it is not obviously poly-time.
In particular, it may not be clear how Ri’s can be computed efficiently. However, we describe
how to implement the algorithm in poly-time in Appendix D.

We say that our algorithm is well defined if for every sequence σ≺t, for every point x ∈ T ,
there exists a server i such that x ∈ Ri.

I Theorem 12. There exists a dynamic pricing scheme for the selfish k-server problem on
trees with an optimal competitive ratio of k.

Proof. Assuming Algorithm 1 is lazy, monotone and well defined, it can be simulated by a
pricing scheme by Lemma 1 and it is k-competitive by Lemma 2, because a point r ∈ T is
served by server ` only if r is in R`, and therefore r is `-colorable, which implies ` ∈ MC(r).
The algorithm laziness follows by definition and the monotonicity of the algorithm follows by
step 1(b)ii of Algorithm 1, since the region contains only points p such that all other points
on the path from p to the server are also in the region of the server2. To conclude the proof,
Lemma 13 below implies the algorithm is well-defined. J

4 Algorithm 1 is Well Defined

In this section, we show that Algorithm 1 is well defined, i.e. that every point in the tree
would be in some server’s region, concluding the proof of Theorem 12. To help the reader
in following this section, various figures, depicting important lemmas of this section, are
presented in Figure 4 of Section A.

I Lemma 13 (Well-Defined Lemma). For any sequence σ, Algorithm 1 is well-defined.

2 We note that Ci itself might not be continuous, and therefore, step 1(b)ii is needed in order to ensure
monotonicity.

APPROX/RANDOM 2019

10:10 Dynamic Pricing of Servers on Trees

Figure 1 In order to maintain double cover’s (DC) competitive ratio, we want to serve each
request with a real server that “sees” the request (has no intermediate real servers along the path to
the request), and is matched to a DC server that serves the request in a min cost matching between
the real servers and the simulated DC servers. Unfortunately, choosing an arbitrary real server that
is matched to the DC server might violate monotonicity. In the figure above DC servers are depicted
by squares, namely a, b, c, and real servers by circles, namely 1, 2, 3. Figure I depicts the initial
configuration. We consider two possible locations of the next request, r, p. If the next request is at r,
depicted in Figure II, then after the DC servers move, server a which served the request can either
be matched to the green(2) server (Figure IV), or to the blue(1) server (Figure V) in the min-cost
matching. If one chooses to serve the request with the blue(1) server, then it violates monotonicity.
This is since if the next request in the initial configuration is on p (Figure III) instead, then the
unique min-cost matching matches the green(2) server to server b. Finally, note that in the initial
configuration r is not blue(1) colorable. According to Definition 11, properties 1 and 2 hold for the
blue(1) server, but property 3 does not since (2) ∈ MC(r) and (2) �r (1) (DC server a traverses
LCAr(1, 2) and “arrives” from the blue(1) server subtree).

We use the following observation:

I Observation 14 (See Figure 4a). From the definition, we observe that for every r, p, q in
T (r 6= p):
(1) For q ∈ Tr(p), we have: x ∈ Tr(p) ⇐⇒ r /∈ P[x, q].
(2) For q /∈ Tr(p), we have: x ∈ Tr(p)⇒ r ∈ P[x, q].

In order to prove Lemma 13, we first show that the relation �r is a strict partial order.

I Lemma 15. �r is a strict partial order relation for every r ∈ T .

Proof. In order to show that �r is a strict partial order relation, we need to show it is
irreflexive and transitive. (Note that these two properties imply asymmetry.) Since it is clear
that �r is irreflexive (LCAr(sj , sj) = sj for every r ∈ T and j), we show that it is transitive.

Assume that i �r j and j �r `, we prove that i �r `. Let Li,j = LCAr(si, sj) and Lj,` =
LCAr(sj , s`) and Li,` = LCAr(si, s`). Let dci,j and dcj,` be the respective dc servers which
order the servers, i.e., Li,j ∈ P [dci,j , dci,j(r)] and dci,j ∈ TLi,j (sj), and Lj,` ∈ P [dcj,`, dcj,`(r)]
and dcj,` ∈ TLj,`

(s`).
Case 1. Li,j ∈ P[Lj,`, r], hence Li,` = Li,j and TLi,j (sj) = TLi,j (s`), and therefore Li,` ∈
P[dci,j , dci,j(r)] and dci,j ∈ TLi,`

(s`). By Definition 9 i �r `.
Case 2. Lj,` ∈ P[Li,j , r], hence Li,` = Lj,` and therefore Li,` ∈ P[dcj,`, dcj,`(r)] and dcj,` ∈

TLi,`
(s`). By Definition 9 i �r `. J

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:11

This allows us to conclude that every point in the tree T is colorable by some server.

I Corollary 16. For any r ∈ T , there exist j such that r is j-colorable.

Proof. Consider a point r ∈ T . Recall that MC(r) is the set of servers the can be matched
to r in a min-cost matching between S and DC(r). Since �r is a strict order relation (by
Lemma 15), there is a server ` ∈ MC(r) that is maximal with respect to �r in MC(r), i.e.,
such that for every server j ∈ MC(r), j �r `. Hence, there is a server ` for which Properties 1
and 2 of `-colorability hold. J

A subtree T̃ is fully-colorable if for any point p ∈ T̃ there exists a server ` such that
p is `-colorable and s` ∈ T̃ . Since Algorithm 1 preserves monotonicity, it follows that a
server would color points only in the subtree containing this server. Therefore, in order to
prove that Algorithm 1 is well-defined we need to show that not only the original tree T is
fully-colorable (Corollary 16), but also that every T̃ ∈ F i−1 is fully-colorable as well.

For the sake of proving this property (Corollary 22), we characterize properties of the
min-cost matching MC(p) and the relation �p. First, we now show that for any server ` the
region in which ` is in the min-cost matching is monotone.

I Lemma 17 (See Figure 4b). For any server ` and two points r, p in T such that p /∈ Tr(s`),
the following holds – if ` ∈ MC(p) then ` ∈ MC(r).

Proof. We will show that for any point x ∈ P[s`, r], if dcj(r) ∈ Tx(s`) then dcj(p) ∈ Tx(s`):
First, we observe that dcj(r) 6= r (dcj does not serve request at r), since r /∈ Tx(s`) and

dcj(r) ∈ Tx(s`). Then, we observe that dcj ∈ Tx(s`), since P(dcj(r), x) ⊆ P(dcj , x). By
Lemma 8, we have P [dcj , dcj(p)] ⊆ P [dcj , dcj(r)], since x /∈ P(dcj , dcj(r)) (dcj(r) ∈ Tx(s`)),
we have x /∈ P(dcj , dcj(p)) and we have dcj(p) ∈ Tx(si).

We get that for every x in P[s`, r], if dcj(r) ∈ Tx(s`), then dcj(p) ∈ Tx(s`), which
implies |Tx(s`) ∩ dc(p)| ≥ |Tx(s`) ∩ dc(r)|. Since ` ∈ MC(p), for any x ∈ P[s`, r] we have
|Tx(s`) ∩ S| > |Tx(s`) ∩ dc(p)|. Which together yields that the condition of Lemma 5 hold
also for dc(r), and therefore ` ∈ MC(r). J

Which yields the following lemma which will be used to prove Lemma 21.

I Lemma 18 (See Figure 4c). For any two servers b, ` and a points x in T such that
b ∈ MC(x) and s` /∈ Tx(sb) we have for any p ∈ P(sb, x) that ` /∈ MC(p).

Proof. Assume towards a contradiction that there exists p ∈ P(sb, x) such that ` ∈ MC(p).
Consider a point y ∈ P(x, p) which isn’t a tree vertex, and in which at most a single DC
server will arrive if the request is issued at this point (there exists such a point due to the
continuity of the metric space). According to Lemma 17, `, b ∈ MC(y).

Therefore, by Lemma 6 we have:

|Ty(sb) ∩ DC(y)| < |Ty(sb) ∩ S| , and
|Ty(s`) ∩ DC(y)| < |Ty(s`) ∩ S| .

Since y is not a tree node, T = Ty(s`) ∪ Ty(sb) ∪ {y}. Moreover, there is at most one
DC(y) server at y (by y’s selection), so overall there are more real servers than DC(y) servers,
a contradiction. J

The following is an important property of the strict partial order �r.

I Lemma 19 (See Figure 4d). For any two servers `, j, a point r such that sj ∈ Tr(s`), and
any point p /∈ Tr(s`): If j �p `, then j �r `.

APPROX/RANDOM 2019

10:12 Dynamic Pricing of Servers on Trees

Proof. First, since sj ∈ Tr(s`) then LCAr(s`, sj) ∈ Tr(s`), therefore we have that
LCAr(s`, sj) = LCAp(s`, sj). Second, j �p ` therefore there exists dci such that dci ∈
TLCAp(s`,sj)(s`), and LCAp(s`, sj) ∈ P[dci, dci(p)]. Clearly, if the request is on r and dci

serves point r then LCAr(s`, sj) ∈ P [dci, dci(r)]. If dci does not serves point r, by Lemma 8
we have P [dci, dci(p)] ⊆ P [dci, dci(r)], and again LCAr(s`, sj) ∈ P [dci, dci(r)]. In either case
LCAr(s`, sj) ∈ P[dci, dci(r)] and by Definition 9 we have j �r `. J

We now prove the main technical lemma used in proving that the algorithm is monotone.
The lemma roughly shows the following. Let r ∈ T be some point that is ` colorable by some
server `, and let j be another server on the “same side” of ` with respect to r. Let p be a
point on the other side of ` and j with respect to r. The lemma states that if p is j-colorable,
then it is also `-colorable (see Figure 4e for a visual depiction).

The significance of this lemma is the following – suppose r is a point that the algorithm
decided should be served by some server ` (which obviously means r is `-colorable). Since
we want our algorithm to be monotone, this immediately disconnects all the points further
away from r from the servers that are on the same side as ` with respect to r. This would be
a problem if there was such a point p that can be served only by servers on the same side as
`, but not ` itself. The lemma basically shows this situation cannot happen.

I Lemma 20 (See Figure 4e). For any two servers `, j and two points r, p in T such that
sj , s` ∈ T r(p): If r is `-colorable and p is j-colorable, then p is `-colorable.

Proof. Assume for contradiction that p is not `-colorable. We consider the following cases
Case 1. ` ∈ MC(p). By the definition of `-colorable, we have that there is a server i

such that i ∈ MC(p) and i �p `. If si ∈ T r(p), then by Lemma 17, i ∈ MC(r),
and by Lemma 19, i �r `, Hence r is not `-colorable, a contradiction. Otherwise,
si ∈ Tr(p). Let x = LCAp(s`, si). Note that r ∈ P[s`, p], r ∈ P[sj , p] and r /∈ P[si, p] by
Observation 14. We get that P[si, p] ∩ P[s`, p] = P[si, p] ∩ P[r, p] = P[si, p] ∩ P[sj , p],
hence LCAp(sj , si) = LCAp(s`, si) = x. In addition, Tx(s`) = Tx(r) = Tx(sj), and since
i �p ` we get i �p j by Definition 9. Recall that, i ∈ MC(p), therefore p not j-colorable,
a contradiction.

Case 2. ` /∈ MC(p). By Lemma 5, there exists a point x on the path from s` to p such that
|Tx(s`) ∩ S| ≤ |Tx(s`) ∩ DC(p)| . (4)

Let x be the closest point to r for which (4) holds. Since j ∈ MC(p), by Lemma 5,
for every point y on the path from sj to p, |Ty(sj) ∩ S| > |Ty(sj) ∩ DC(p)|, and hence,
x ∈ P [s`, LCA(s`, sj)] ⊆ P [s`, r]. Moreover, since r is `-colorable, ` ∈ MC(r), so Lemma 5
implies that
|Tx(s`) ∩ S| > |Tx(s`) ∩ DC(r)| . (5)

Therefore, combining (4) and (5) yields |Tx(s`) ∩ DC(r)| < |Tx(s`) ∩ DC(p)|, and there
must be a server dca such that dca ∈ Tx(s`) and dca(r) /∈ Tx(s`) ⇒ x ∈ P[dca, dca(r)].
In addition, we have∣∣T x(r) ∩ S

∣∣ > ∣∣T x(r) ∩ DC(p)
∣∣ , (6)

since x is the closest point to p for which (4) holds. Combining (4) and (6) yields that
in T̂ = T x(r) \ Tx(s`) we have

∣∣∣T̂ ∩ S
∣∣∣ > ∣∣∣T̂ ∩ DC(p)

∣∣∣. Notice that for every b 6= a such
that dcb ∈ T x(r), we have that dcb(r) ∈ T x(r) since only a single DC server can cross
point x. Since

∣∣∣T̂ ∩ DC(p)
∣∣∣ =

∣∣∣T̂ ∩ DC
∣∣∣, by Lemma 8, we get

∣∣∣T̂ ∩ DC(p)
∣∣∣ =

∣∣∣T̂ ∩ DC(r)
∣∣∣.

Therefore,
∣∣∣T̂ ∩ S

∣∣∣ > ∣∣∣T̂ ∩ DC(r)
∣∣∣, and Lemma 6 implies that there exists si ∈ T̂ such

that for all z ∈ P[si, x], we have
|Tz(si) ∩ S| > |Tz(s`) ∩ DC(r)| . (7)

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:13

In addition, (7) holds also for z ∈ (x, r) by (5), hence, i ∈ MC(r). Moreover, since
x = LCAr(si, s`), x ∈ P[dca, dca(r)] and dca ∈ Tx(s`), we also have i �r `, which
combined with i ∈ MC(r) is a contradiction to r being `-colorable. J

The main lemma to show the property fully-colorable is the following:

I Lemma 21. For a fully-colorable sub-tree T̃ , let r, p ∈ T̃ be two points and ` a server in T̃
such that p /∈ Tr(s`). If we have that

r is `-colorable, and
for all servers a such that sa ∈ T̃ where p is a-colorable, we have sa ∈ Tr(s`),

then for any x ∈ P(r, p], x is `-colorable.

Proof. First, by Lemma 20 we have that p is `-colorable as well. Assume for the purpose
of contradiction that it is not true, let x ∈ P(r, p) be the closet point to p such that x is
not `-colorable. Since T̃ is fully-colorable, there exists a server b, such that sb ∈ T̃ and x
is b-colorable. Note that, if sb ∈ Tr(s`), then sb, s` ∈ T r(x), and since r is `-colorable, by
Lemma 20, x is ` colorable, a contradiction. Let L = LCAr(p, sb)
Case 1. One of the following two holds: (i) x /∈ P(sb, s`), (ii) x = L. In this case, sb, s` ∈

T x(p) and x is b-colorable. Therefore, by Lemma 20, p is b-colorable, a contradiction.
Case 2. x ∈ P(sb, s`), and x 6= L, which implies s` /∈ Tx(sb), and b ∈ MC(x) (since x is

b-colorable). Therefore, by Lemma 18, we have ` /∈ MC(y) for any y ∈ P(sb, x), however
since x 6= L, there exist z ∈ P(x, sb)∩P(x, p), on one hand z is `-colorable (by our choice
of x), on the other hand ` /∈MC(z) (since z ∈ P(sb, x)), a contradiction. J

The above lemma implies the following corollary, yielding that Algorithm 1 is well-defined.

I Corollary 22. For a fully-colorable subtree T̃ , and i a server such that si ∈ T̃ , then for all
subtrees T̂ ∈ T̃ \Ri we have that T̂ is fully-colorable tree.

Proof. Let p be the point in T̂ for which this does not hold, since T̃ is fully-colorable, let
j be the server such that sj ∈ T̃ and p is j-colorable. Let r = argminx{dist(p, x) : x ∈
P(si, p) ∩ Ri} be the closest point to p in Ri. Observe that r /∈ P(sj , si) since otherwise
P(sj , p) ⊆ P(sj , r) ∪ P(r, p), where P(sj , r) ∩ Ri = ∅ and P(r, p) ∩ Ri = ∅. Therefore,
P(sj , p)∩Ri = ∅, and thus sj ∈ T̂ , a contradiction. Hence, by Observation 14(1), sj ∈ Tr(si).
Finally, By Lemma 21, the entire P(r, p) is i-colorable, a contradiction for p /∈ Ri. J

Using this corollary, we can now prove the Well-Defined Lemma.

Proof of Well-Defined Lemma [Lemma 13]. In order for Algorithm 1 to be well-defined,
each point in T should be in the R` region of some server `. We will show that each subtree
T̃ ∈ F i after iteration i in the run of the algorithm execution is fully-colorable. The initial
tree, T is fully-colorable by Corollary 16. After each iteration i, every subtree in F i is
fully-colorable by Corollary 22 (Note that, Ri is a subregion of a single subtree of F i−1).
Therefore, eventually a sub-tree would contain a single server and it is fully-colored by this
server, which yields that F k = ∅ as needed. J

APPROX/RANDOM 2019

10:14 Dynamic Pricing of Servers on Trees

References
1 Baruch Awerbuch, Yossi Azar, and Adam Meyerson. Reducing Truth-telling Online Mechanisms

to Online Optimization. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 503–510, New York, NY, USA, 2003. ACM. doi:
10.1145/780542.780616.

2 Nikhil Bansal, Marek Eliás, Lukasz Jez, Grigorios Koumoutsos, and Kirk Pruhs. Tight Bounds
for Double Coverage Against Weak Adversaries. Theory Comput. Syst., 62(2):349–365, 2018.
doi:10.1007/s00224-016-9703-3.

3 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theor. Comput. Sci., 324(2-3):337–345, 2004. doi:10.1016/j.tcs.
2004.06.001.

4 Allan Borodin, Nathan Linial, and Michael E. Saks. An Optimal On-Line Algorithm for
Metrical Task System. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

5 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. k-
server via multiscale entropic regularization. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 3–16, 2018. doi:10.1145/3188745.3188798.

6 Niv Buchbinder, Liane Lewin-Eytan, Joseph (Seffi) Naor, and Ariel Orda. Non-Cooperative
Cost Sharing Games via Subsidies. Theor. Comp. Sys., 47(1):15–37, July 2010. doi:10.1007/
s00224-009-9197-3.

7 Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New Results on
Server Problems. SIAM J. Discrete Math., 4(2):172–181, 1991. doi:10.1137/0404017.

8 Marek Chrobak and Lawrence L. Larmore. An Optimal On-Line Algorithm for k-Servers on
Trees. SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

9 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing Online Decisions:
Beyond Auctions. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 73–91. SIAM, 2015. doi:10.1137/1.9781611973730.7.

10 Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub. Truthful Prompt Scheduling for
Minimizing Sum of Completion Times. In 26th Annual European Symposium on Algorithms,
ESA 2018, August 20-22, 2018, Helsinki, Finland, pages 27:1–27:14, 2018. doi:10.4230/
LIPIcs.ESA.2018.27.

11 Michal Feldman, Amos Fiat, and Alan Roytman. Makespan Minimization via Posted Prices. In
Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge,
MA, USA, June 26-30, 2017, pages 405–422, 2017. doi:10.1145/3033274.3085129.

12 Amos Fiat, Yishay Mansour, and Uri Nadav. Efficient contention resolution protocols for
selfish agents. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 179–188. SIAM, 2007. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283403.

13 Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. Minimizing Maximum Flow
Time on Related Machines via Dynamic Posted Pricing. In Kirk Pruhs and Christian Sohler,
editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,
Vienna, Austria, volume 87 of LIPIcs, pages 51:1–51:10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.51.

14 Sandy Irani and Ronitt Rubinfeld. A Competitive 2-Server Algorithm. Inf. Process. Lett.,
39(2):85–91, 1991. doi:10.1016/0020-0190(91)90160-J.

15 Bala Kalyanasundaram and Kirk Pruhs. Online Weighted Matching. J. Algorithms, 14(3):478–
488, 1993. doi:10.1006/jagm.1993.1026.

16 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
doi:10.1016/j.cosrev.2009.04.002.

https://doi.org/10.1145/780542.780616
https://doi.org/10.1145/780542.780616
https://doi.org/10.1007/s00224-016-9703-3
https://doi.org/10.1016/j.tcs.2004.06.001
https://doi.org/10.1016/j.tcs.2004.06.001
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1007/s00224-009-9197-3
https://doi.org/10.1007/s00224-009-9197-3
https://doi.org/10.1137/0404017
https://doi.org/10.1137/0220008
https://doi.org/10.1137/1.9781611973730.7
https://doi.org/10.4230/LIPIcs.ESA.2018.27
https://doi.org/10.4230/LIPIcs.ESA.2018.27
https://doi.org/10.1145/3033274.3085129
http://dl.acm.org/citation.cfm?id=1283383.1283403
http://dl.acm.org/citation.cfm?id=1283383.1283403
https://doi.org/10.4230/LIPIcs.ESA.2017.51
https://doi.org/10.1016/0020-0190(91)90160-J
https://doi.org/10.1006/jagm.1993.1026
https://doi.org/10.1016/j.cosrev.2009.04.002

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:15

17 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

18 Ron Lavi and Noam Nisan. Competitive Analysis of Incentive Compatible On-line Auctions.
In Proceedings of the 2Nd ACM Conference on Electronic Commerce, EC ’00, pages 233–241,
New York, NY, USA, 2000. ACM. doi:10.1145/352871.352897.

19 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive Algorithms for
Server Problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

20 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized Efficiency of List Update and
Paging Rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

A Figures

Figure 2 Servers and DC servers are denoted by numbers and letters respectively. Points on
the tree are said to be colorable by some set of servers. Colorability of a point r is determined
by simulating the double cover (DC) algorithm for a request at r. When DC processes a request,
multiple DC servers move towards the request, and one or more arrive to serve it. Imagine a server
were to look along the tree towards r when the DC servers were in motion in response to a request
at r. Such a server may see a trail left by (at most one) DC server in motion towards r. Different
servers may see trails of different DC servers. Two servers see the same trails beyond (above) their
lowest common ancestor (when the tree is rooted at r) but for a DC server that traverses their lowest
common ancestor, they may observe different trails. We say that server i has higher priority than
server j with respect to r, if the trail of the DC server that traverses the lowest common ancestor of
i and j is contained in the trail seen by server j (of the same DC server). On the left the movement
of the DC servers relative to the real server positions is depicted. On the right, all paths from real
servers to r are depicted, with dashed lines indicating vertices seen by more than one real server.
In this example, 1 �r 3 since that trail that server 1 sees of DC server a is contained in the trail
that server 3 sees of DC server a. Similarly, 2 �r 3 (because of a), 5 �r 4 (because of c), and
4, 5 �r 1, 2, 3 (because of b). Notice that �r is not defined for all pairs of servers; For example,
both 1 �r 2 and 2 �r 1. Subsequent to the motion of the DC servers, there are several min cost
matching between real servers and DC servers. In one such matching server 1 is matched to server b,
in another such min matching server 2 is matched to server b, in a third such min matching server 3
is matched to server b. Therefore, MC(r) = {1, 2, 3}. Since 1 �r 2, 3 �r 2, 2 �r 1 and 3 �r 1. We
get that r is 1, 2-colorable. r is not 3-colorable since 1 �r 3.

APPROX/RANDOM 2019

https://doi.org/10.1145/210118.210128
https://doi.org/10.1145/352871.352897
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1145/2786.2793

10:16 Dynamic Pricing of Servers on Trees

(a) A tree metric. (b) Servers’ locations s≺t.

(c) DC servers’ locations dc≺t with boundary
points B≺t. (d) The critical tree graph T≺t

c .

(e) The coloring of the tree as produced by
ColorRegion. Notice that the tree is colored irre-
spective of the next request.

(f) When (next) request σt occurs, it is serviced
by the server in whose region it is located.

Figure 3 Key ingredients for Algorithm 1.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:17

(a) Observation 14.

(b) Lemma 17.

(c) Lemma 18. (d) Lemma 19.

(e) Lemma 20.

Figure 4 A visual depiction of the lemmas used in order to prove the Well-Defined Lemma.

Figure 5 Issues with the naïve pricing algorithm. In the example on the left, the range served
by the blue server has the blue server on its left end. The open interval up to the blue server is
served by the green server. By setting the surcharges as in the naïve algorithm, a selfish request
(the next request) in the blue zone is indifferent between moving the green and blue servers, so we
have no guarantee that selfish agents emulate the online algorithm. The figure on the right shows a
similar problem where the green and blue regions touch, and, again, by setting the prices naïvely,
selfish agents may choose to move either the green or the blue agent in response to a request. In
both cases, a solution to this problem is to break the tie by “pushing” the boundary between the
green and blue regions slightly “away” from the blue region. See Figure 6 for details.

APPROX/RANDOM 2019

10:18 Dynamic Pricing of Servers on Trees

B Proof of Lemma 2

Proof of Lemma 2. Given two sets of points P,Q such that |P | = |Q|, let w(P,Q) be the
weight of the min-cost matching between P and Q.

Let costt(LAZY) and costt(ON) be the respective cost of algorithms LAZY and ON when
serving request σt. We show that for every t,

costt(LAZY) + ∆Φ ≤ costt(ON), (8)

for a non-negative potential function Φ = w(S, on), where S and on are the current locations
of the servers of LAZY and ON respectively. To prove (8), it suffices to consider the moves of
ON and LAZY independently, in this order.

Fix some min-cost matching M : S → on. We keep M fixed as ON moves its servers.
Clearly, when ON moves a server ` by distance d, the cost ofM does not increase by more
than d. Hence, the same holds for the min-cost matching. Thus Φ increases by at most d,
and (8) holds.

Once ON is done with its moves, we analyze the move of LAZY. Note that at this point
σt ∈ on, i.e., ON has one of its servers at σt. LetM′ be the updated min-cost matching after
ON moves, and let `′ be some server of LAZY that is matched to σt. Upon the move of `′ to
σt, the cost ofM′ is decreased by dist(s`′ , σt). Since the cost of the min-cost matching after
`′ moves is no bigger than that ofM′, Φ decreases by at least dist(s`′ , σt) as well, which is
exactly costt(LAZY). Therefore, costt(LAZY) + ∆Φ ≤ 0, and (8) holds. J

C Full Argument for Lemma 1

The proof sketch of Lemma 1 shows that one can set surcharges where for the incoming agent
there exists a server that minimizes the distance + surcharge and this is the same server that
the algorithm would choose. Whenever this server can be matched (in a min cost matching)
to the DC server that served the request, Lemma 2 implies that the competitive ratio achieved
is optimal. This is enough for a truthful online algorithm with optimal competitive ratio if we
can break ties for the agent. However, our goal is to let the agents break ties for themselves.

We first notice the are two scenarios where an agent can have more than one disutility
minimizing server – (i) either the transition between the responsibility area of server j and
adjacent server i is the location of server i (left side of Figure 5). In this case, setting prices
using Equation (1) will result in both server i and server j being the disutility minimizing
servers for the responsibility area of agent i. (ii) the responsibility area of agent i contains a
tree vertex x from which starts the responsibility area of agent j (right side of Figure 5, i is
blue and j is green). In this case, if a request is made in the responsibility area of agent i
but on the other side of x than server i itself (i.e., in T x(si)), then both server i and server j
are the disutility minimizing servers for this request.

To resolve this issue, we “nudge” the responsibility area of agent i slightly to the direction
of the responsibility area of agent j by an exponentially decreasing tiny ε (see Figure 6). We
inspect the proof of Lemma 2 to see why this does not change the competitive ratio. Since
we do not necessarily use the server that minimizes the min cost matching at the nudged
areas, Equation (8) does not hold if the request is in the nudged area. We notice though that
this equation is violated by at most kε. To see this, we first move ON to the request. Using
the same argument as in Lemma 2, we see that Equation (8) still holds after doing this.

We now move LAZY. Assume LAZY moves some server `′. If the request would have been
in the border between two responsibility areas before the nudge, then the cost of the min
cost matching would have decreased by at least dist(s`′ , σt) and this would have paid for the

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:19

Figure 6 Modifying the regions for which the DC servers are responsible by pushing their
boundaries away from real servers and tree vertices. This prevents indifference between different
real servers except for isolated points. The boundaries are pushed by small amounts such that even
their sum over all regions and all steps is arbitrarily small, thus having no effect on the competitive
ratio. See Appendices B and C for the full argument, which uses a potential function.

cost of moving `′. We notice that if the location of a request in DC moves by ε, the locations
of all servers change by at most ε. Therefore, using the same matching in the nudged area
as we would have used in the border before the nudge increases the cost of the min cost
matching by at most kε. Hence, moving `′ decreases the cost of the min cost matching by at
least dist(s`′ , σt)− kε, violating Equation (8) by at most kε.

As we can let ε exponentially decay (say by a factor of two at each step t), summing
Equation (8) for all t’s yields that the cost of LAZY is at most 2kε larger than the cost of
ON. As ε is arbitrarily small, so is the difference between LAZY and ON, which thus have
the same competitive ratio.

D Implementation in Polynomial Time

Algorithm 1 as defined in Section 3 is continuous in the sense that every point is considered
when deciding which set of points should be in the region Ri of some server i. In this secion,
we show that one can discretize the metric space in a way that only polynomially many
points (in the number of servers and vertices of the tree) are considered when determining
the regions of each server.

Consider a point p ∈ T , such that there exist 1 ≤ i < j ≤ k such that

dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)

(where ‖ denotes concatenation), then p is called a boundary point. That is, a boundary
point is a point for which, if a request occurs in p, two DC servers will serve the request.
Define the set of all boundary points for Double Cover just before event t arrives (see Fig. 3c
in Appendix A):

B≺t =
{
p | ∃1 ≤ i < j ≤ k such that dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)

}
.

I Definition 23. Given a tree metric T = (V,E, dist), a set of requests σ≺t, and the current
locations of the servers S≺t, we define the critical tree graph T≺t

c by subdividing the edges
of the tree (V,E) at all the server locations and boundary points, and retaining the distance
function dist, see Fig. 3 in Appendix A. Formally:

APPROX/RANDOM 2019

10:20 Dynamic Pricing of Servers on Trees

Define the vertex set of the critical tree graph T≺t
c to be the set V ≺t

c , the union of the
following point sets on the tree metric

Vertices of the tree T .
Server locations

{
S≺t

`

}
`=1,...,k

.

The set of boundary points B≺t.
The edge set of T≺t

c is denoted by E≺t
c . There is an edge (p, q) ∈ E≺t

c (where p ∈ V ≺t
c

and q ∈ V ≺t
c) if p and q lie along the same edge of T , and there is no intermediate point

r ∈ V ≺t
c between them. The weight of the edge (p, q) ∈ E≺t

c is the distance between p and
q in the tree metric T .

The intuition behind the critical graph is that the vertices of the graph are exactly the
points in the metric space where the sets of valid colors ({` : p is `-colorable}) change.

I Lemma 24. Let e = {v1, v2} be some edge of T≺t
c , and let ` be some server such that

v1 ∈ P[s`, v2] and v1 is `-colorable. The edge e is `-colorable iff there exists some point p
along the edge, excluding the endpoints, such that ` ∈ MC(p).

Proof. By definition, if e is `-colorable, then for every p along the edge, p is `-colorable, and
therefore, ` ∈ MC(p).

Now assume that there exists some p along the edge e such that ` ∈ MC(p). Since there
exists some min-cost matching such that s` is matched to the DC server that serves p, and
since p cannot be a vertex of T , by Lemma 5,

|Tp(s`) ∩ S| > |Tp(s`) ∩ DC(p)| . (9)

Since there are no servers and no tree vertices along edge e, for every point q ∈ P [v1, v2] \
{v1, v2},

|Tq(s`)| = |Tp(s`)| . (10)

For a given q ∈ P[v1, v2] \ {v1, v2} let

d1(q) = |Tq(v1) ∩ DC(q)| (= |Tq(s`) ∩ DC(q)|)

be the set of DC servers in the subtree containing v1 when splitting T at point q after serving
a request at q. Let i be the index of the DC server that serves all the requests along the
edge e, excluding its endpoints (there must be a unique such DC server since there are no
boundary points along e). Notice that for every j 6= i, P [dcj , dcj(q)]∩P [v1, v2] \ {v1, v2} = ∅.
Otherwise, there would have been a point q along e which is closer to server j than server i,
which implies the existence of a boundary point along e.

Since there are no tree vertices along e, we get that for every q, q′ ∈ P[v1, v2] \ {v1, v2},
d1(q) = d1(q′). Therefore, for every such point q,

|Tq(s`) ∩ DC(q)| = d1(q) = d1(p) = |Tp(s`) ∩ DC(p)| . (11)

Combining (9), (10) and (11) yields that for every q ∈ P[v1, v2] \ {v1, v2}, |Tq(s`) ∩ S| >
|Tq(s`) ∩ DC(q)| . Therefore,

∣∣T q(s`) ∩ S
∣∣ < ∣∣T q(s`) ∩ DC(q)

∣∣, and there exists some point
q′ ∈ P[q, v2] such that∣∣T q′(s`) ∩ S

∣∣ ≤ ∣∣T q′(s`) ∩ DC(q)
∣∣⇒ ∣∣T q′(q) ∩ S

∣∣ ≤ ∣∣T q′(q) ∩ DC(q)
∣∣ .

Since there are no servers in P[p, v2] (there are no servers along every edge e of T≺t
c),

for every server j such that sj ∈ Tq(v2), q′ is on the path from sj to q, and by Lemma 5,
j /∈ MC(q). By definition, this implies that for every point q along edge e, and every j such

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:21

that sj ∈ T v2(q), q is not j-colorable. Since by Corollary 16 every point is colorable by
some server, we get that for every q along e, q is `′-colorable by some server `′ such that
s`′ ∈ T q(v2) ⇒ s`′ ∈ T v1(v2). By Lemma 20, since v1 is `-colorable, we get that every q
along the edge e is `-colorable, which implies that e is `-colorable, as desired. J

I Lemma 25. Let e be some edge {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′.

There exists i ∈ {j, j′} such that all points in P[v, v′] \ {v, v′} are i-colorable which can be
determined by inspecting a single point in P[v, v′] \ {v, v′}.

Proof. consider some edge e = {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′. Let

p be a point between v and v′. By Corollary 16, it is colorable by some server `. Since there
are no servers along x, ` must be located either in T v(p) or in T v′(p). Assume without loss
of generality that ` ∈ T v(p). By Lemma 20, p is j-colorable, which implies that j ∈ MC(p).
By Lemma 24, x is j-colorable. J

I Lemma 26. Determining Ri at every iteration i in Step 1b of Algorithm 1 can be done in
polynomial time.

Proof. Consider the graph T≺t
c . This graph has at most 2k − 1 + |V | vertices – k servers, at

most k− 1 boundary points, and |V | original vertices. The boundary points can of course be
computed in polynomial time. Consider iteration i of Step 1b of Algorithm 1. To determine
Ri, one can start at si, which is obviously in Ri, and then expend Ri using any tree traversal
algorithm (that runs in linear time) on T≺t

c . The traversal does not go further down the tree
if the vertex/edge currently considered is not i-colorable.

To check if a point r ∈ T is i-colorable can be done in poly-time: Computing MC(r) can
be done in poly-time using the characterization in Lemma 5. Therefore, property 1 can
immediately be checked. For Property 2, one should consider each server j ∈ MC(r), and
check that j ⊀r i, which again can be done in poly-time.

From the above, it is clear that determining whether a vertex in T≺t
c is i-colorable can be

done in poly-time. As for an edge, by Lemma 25, checking whether the edge is i-colorable
can be done by inspecting an arbitrary point in the edge, and checking whether this point
is i-colorable, which again, can be done in poly-time. Therefore, the tree-traversal can be
made in poly-time, and so does determining Ri. J

E Missing Proofs of Section 4

Proof of Lemma 5. ⇐: Let p ∈ P and q ∈ Q be two points such that there exists a point
x ∈ P(p, q) such that

∣∣T x(q) ∩ P
∣∣ ≤ ∣∣T x(q) ∩Q

∣∣ and let M : P → Q be a matching such
thatM(p) = q. Since p is matched to a server in Tx(q),

∣∣T x(q) ∩ P − {p}
∣∣ < ∣∣T x(q) ∩Q

∣∣,
and there must be a server p̂ ∈ Tx(q) ∩ P that is matched to a server q̂ ∈ T x(q) ∩ Q. Let
y = LCAx(p̂, q). Since p̂ and q are both in Tx(q), y 6= x. Consider the matchingM′ in which
p is matched to q̂, p̂ is matched to q, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃). We have

dist(p, q) + dist(p̂, q̂) = dist(p, x) + dist(x, y) + dist(y, q) +
dist(p̂, y) + dist(y, x) + dist(x, q̂)

> dist(p, x) + dist(x, q̂) + dist(p̂, y) + dist(y, q)
≥ dist(p, q̂) + dist(p̂, q),

where that first equality is due to the fact that the path from x to y is contained in both
the path from p to q and the path from q̂ to p̂, the first strict inequality is due to dropping
non-zero terms, and the last inequality follows from the triangle inequality. Therefore,M′ is
a matching of a strictly smaller cost than that ofM, andM cannot be a min-cost matching.

APPROX/RANDOM 2019

10:22 Dynamic Pricing of Servers on Trees

⇒: Assume that the condition holds for p, q, letM be a matching. Let x = LCAq(p,M(p)).
Case 1. x 6= q, therefore

∣∣T x(q) ∩ P
∣∣ > ∣∣T x(q) ∩Q

∣∣. Hence, there exists p̂ ∈ T x(q) s.t.
M(p̂) /∈ T x(q). Let q̂ = M(p̂), and q′ = M(p). Note that dist(p, q′) = dist(p, x) +
dist(x, q′) and dist(p̂, q̂) = dist(p̂, x) + dist(x, q̂). Consider the matchingM′ in which p is
matched to q̂, p̂ is matched to q′, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).

dist(p, q̂) + dist(p̂, q′) ≤ dist(p, x) + dist(x, q̂) + dist(p̂, x) + dist(x, q′)
= dist(p, q′) + dist(p̂, q̂),

where the inequality is by the triangle inequality. Therefore, M′ is also a min-cost
matching. Let x′ = LCAq(p,M′(p)) then dist(p, x′) > dist(p, x) since x′ /∈ T x(q), therefore
we can repeat this process until x = q (Case 2).

Case 2. x = q, hence P(p, q) ⊆ P(p,M(p)). Let q̂ =M(p) and let p̂ be such that q =M(p̂).
Consider the matchingM′ in which p is matched to q, p̂ is matched to q̂, and for every
p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).

dist(p, q) + dist(p̂, q̂) = dist(p, q̂)− dist(q, q̂) + dist(p̂, q̂)
≤ dist(p, q̂) + dist(p̂, q)

where the last inequality is by the triangle inequality. Therefore, M′ is also min cost
matching andM′(p) = q as needed. J

Proof of Lemma 6. Let v be the closest vertex to r in Tr(q) (recall that r 6∈ Tr(q), so v 6= r).
If there exists p ∈ P [v, r) ∩ P , let p ∈ P [v, r) ∩ P be the closest such point to r. In this case,
the condition holds for p since for all x ∈ P(p, r), T x(r) ∩ P = Tr(q) ∩ P .

If there is no such p, then∣∣(T v(r)− {v}) ∩ P
∣∣ = |Tr(q) ∩ P | > |Tr(q) ∩Q| ≥

∣∣(T v(r)− {v}) ∩Q
∣∣ .

By the pigeonhole principle, there exists v′ ∈ T v(r) such that |Tv(v′) ∩ P | > |Tv(v′) ∩Q|.
Therefore, by repeating above process, we find p̂ ∈ P ∩ Tv(v′) for which the condition holds
for all x ∈ P(p̂, v). Since the condition holds for every x ∈ P(v, r) (as T x(r)∩P = Tr(q)∩P),
the lemma follows. J

	Introduction
	Related Work
	Dynamic Pricing Schemes and Online Mechanisms
	The k-server problem

	Roadmap to this Paper

	The Model and Preliminaries
	The Selfish k-server problem
	A Sufficient Condition for Competitive Pricing Algorithms on trees
	Characterization of min-cost matching on trees
	The Double Cover algorithm

	An Algorithm for Dynamic Pricing on Trees
	Algorithm 1 is Well Defined
	Figures
	Proof of Lemma 2
	Full Argument for Lemma 1
	Implementation in Polynomial Time
	Missing Proofs of Section 4

