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—— Abstract

The £,-norm of the degree vector was recently introduced by [Chlamt4¢, Dinitz, Robinson ICALP ’19]
as a new cost metric for graph spanners, as it interpolates between two traditional notions of cost
(the sparsity ¢1 and the max degree £« ) and is well-motivated from applications. We study this from
an approximation algorithms point of view, analyzing old algorithms and designing new algorithms
for this new context, as well as providing hardness results. Our main results are for the ¢2-norm and
stretch 3, where we give a tight analysis of the greedy algorithm and a new algorithm specifically
tailored to this setting which gives an improved approximation ratio.
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1 Introduction

Graph spanners are subgraphs which approximately preserve distances: given a graph
G = (V, E) (possibly with lengths on the edges), a subgraph H of G is a t-spanner of G if
da(u,v) <dp(u,v) <t-dg(u,v) for all u,v € V, where dg denotes shortest-path distances
in G (and dy in H). The value ¢ is called the stretch of the spanner.

There have been two traditional ways of studying spanners. The first way is to study
universal tradeoffs that can be achieved in all graphs between the stretch and some notion
of the “cost” of a spanner, particularly the sparsity [2] or the weight [8]. The second is to
study the optimization problem arising from fixing the stretch and trying to optimize the
“cost” for the particular given graph. These two lines of work are highly complementary,
and have proceeded in parallel. So there is now an extensive line of work on tradeoffs and
approximation algorithms for sparsity (total number of edges) and, to a lesser extent, the
maximum degree, which are two of the oldest and most well-studied notions of cost.

However, both of these objective functions have drawbacks. If we optimize the sparsity
we might end up with a small number of very large degree nodes, which can be a problem for
many applications (particularly in distributed systems where the degree is usually related to
some notion of “load” on a node). On the other hand, if we try to minimize the maximum
degree then we get the opposite problem. If it is unavoidable for there to be some node of
large degree d, the maximum degree objective allows us to make every other vertex also of
degree d, with no change in the objective function. Since the whole point of using spanners
is to get a more compact representation of the graph, this is a significant issue.
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In order to remedy these drawbacks, [10] recently proposed a new objective function: the
£, norm of the degree vector. Given a spanner H, we can define ||H|, to be the ¢,-norm of
the n-dimensional vector in which the coordinate corresponding to a node v contains the
degree of v in H. Then ||H||; is just (twice) the total number of edges, and || H ||« is precisely
the maximum degree. Thus the £,-norm is an interpolation between these two classical
objectives. Moreover, for 1 < p < 0o, this notion of cost has the properties that we want:
it encourages low-degree nodes rather than high-degree nodes, but if high-degree nodes are
unavoidable it still encourages the rest of the nodes to be as low-degree as possible. These
properties, of interpolating between the average and the maximum, are why the £,-norm
has appeared as a popular objective for a variety of problems, ranging from clustering (the
famous k-means problem [17, 19]), to scheduling [6, 5, 1], to covering [16].

The focus of [10] was on universal guarantees rather than approximation algorithms,
although they made interesting and suggestive observations about approximation algorithms.
In particular, they showed that for stretch 3 and the ¢5-norm, the greedy algorithm performs
better than would be expected from its behavior in ¢; and ¢, (see Section 1.1 for more
discussion). In this paper we focus on approximation algorithms, particularly for the
special case pointed out by [10] — stretch 3 and the ¢3-norm. We precisely characterize the
performance of the greedy algorithm, showing that it does even better than was claimed
in [10]. We then design a new algorithm which is specialized to this setting and which, when
combined with the greedy algorithm, gives the best known approximation.

1.1 Background on £,-Norm Spanners

We will be concerned with the following problem.

» Definition 1. In the MINIMUM £,-NORM ¢-SPANNER problem we are given an (unweighted)
graph G = (V, E) and are asked to find the t-spanner H of G which minimizes ||H|p.

In this paper we will focus on MINIMUM ¢5-NORM 3-SPANNER, although many of our
techniques can be extended to other stretch values and ¢, norms.

Recall the classical greedy algorithm for finding ¢-spanners in undirected graphs: we add
edges to the spanner as long as they do not close a cycle of length at most ¢ + 1. In the
weighted setting, edges are sorted by non-decreasing order of weight, and added as long as
they are not already t-spanned. Here, we focus only on the unweighted setting.

In [10], the authors gave the following tight universal bounds on the ¢3 norm of a 3-spanner:

» Theorem 2 ([10]). Given an n-vertex connected unweighted undirected graph G:

1. There exists a 3-spanner H of G with | H||2 < min{O(n), |G|z}, and the greedy algorithm
returns such a spanner.

2. Any 3-spanner H of G must satisfy | H||2 > max{y/n, Q(\/[Gl2)}.

This immediately implies the following approximation guarantees:

» Corollary 3. Given an n-vertexr unweighted graph G, the greedy algorithm gives an O(y/n)-
approximation for MINIMUM {5-NORM 3-SPANNER.

» Corollary 4. Given an n-vertex unweighted graph G, the greedy algorithm gives an
O(n/+/||Gl2)-approximation for MINIMUM {2-NORM 3-SPANNER.

Corollary 3 is the strongest approximation guarantee, as a function of n, that follows
from the universal bounds in Theorem 2. However, unlike in the ¢; and ¢, case, the authors
of [10] showed that such tight universal upper and lower bounds do not give a tight analysis
of the approximation guarantee for /5. In particular, the authors showed that the greedy
algorithm actually gives a slightly better O(n53/12%)-approximation.
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1.2  Our Results and Techniques

We begin in Section 2 by giving a new analysis of the greedy algorithm, improving on the
O(n%/128) hound from [10].

» Theorem 5. Given an n-vertex unweighted graph G, the greedy algorithm gives an O(n®/7)-
approximation for MINIMUM f¢5-NORM 3-SPANNER.

We also show that this analysis is tight, i.e., there are graphs in which greedy is an
Q(n3/7)-approximation. Thus we resolve the question raised by [10] on the performance of
the greedy algorithm for the fo-norm and stretch 3.

Interestingly, despite the fact that greedy is purely combinatorial, we analyze it via a
constant-size linear program: we show that the problem of finding the worst-case approxima-
tion ratio of the greedy algorithm reduces to solving a single LP. To do this, we decompose
the input graph into a small collection of nearly-biregular subgraphs. For any such subgraph,
this LP has variables describing degree and size parameters in the relevant portion of the
greedy spanner and an optimal spanner (and thus has constant size). The objective function
in the LP captures the ratio of the upper bound on the ¢>-norm of a greedy spanner to an
optimal spanner for any of these subgraphs. We find an optimal solution to this LP, thus
giving a tight bound on the approximation ratio.

We then go beyond previously proposed algorithms to give a new algorithm which is
specialized to the case of the /5-norm and stretch 3. First we rewrite the standard flow-based
LP for spanners (from [12]) to have an £,-norm objective, which leaves it as a convex (rather
than linear) program which is polynomial-time solvable via Ellipsoid. We then give two new
rounding algorithms, one of which is essentially the algorithm used in [9] for the {o.-norm
objective, but with different parameters and a different objective, and thus a different analysis.
Our second new algorithm draws independent random values for every edge and vertex in the
graph, and includes an edge e if these values satisfy one of three conditions relating to the
solution of the convex relaxation. Similar ideas have been used for stretch 3 and 4 with the
{1-objective [12, 7, 13], but this is the first algorithm (to the best of our knowledge) which
combines vertex and edge random sampling.

While it is common to trade off two different algorithms at the parameter setting
where they have the same approximation ratio (e.g., as was done in the ¢;-objective for
spanners [12, 7]), this is not what we do. Instead, the most important question is correctness:
we carefully parameterize these algorithms so that every edge is spanned in the combined
algorithm. Proving that this combined algorithm does yield a 3-spanner, and analyzing its
approximation ratio, is surprisingly complex and takes up the bulk of this paper. In the end,
we prove the following theorem.

» Theorem 6. There is a polynomial-time algorithm for MINIMUM f5-NORM 3-SPANNER
. L -~ 5/16
with approximation ratio O(||G||5" ).

Finally, trading our new algorithm off with the greedy guarantee of Corollary 4, we
immediately get our strongest approximation guarantee as a function of n:

» Corollary 7. Trying both the algorithm of Theorem 6 and the greedy algorithm and returning
the better of the two gives an O(n°/'3)-approzimation.

In light of all of these upper bound results, a natural question is whether MINIMUM
£2-NORM 3-SPANNER is also hard to approximate. This is also important because strong
hardness results are known for both the ¢; and ¢, norms. Strong hardness of approximation
for the ¢;-norm in directed graphs has been known since [18, 15] (where strong means

11:3

APPROX/RANDOM 2019



11:4

Approximating the Norms of Graph Spanners

the same hardness that is known for the famous LABEL COVER problem, i.e., hard to
approximate better than 2log’ " for arbitrarily small constant €), and this was recently
extended to undirected graphs by [11] by proving hardness for instances of LABEL COVER
with some extra structure. For the ¢..-norm objective, the techniques of [18, 15, 11] were
significantly extended in both the directed and undirected settings by [9] in order to prove
similar hardness bounds.

It is not hard to see that if we attempt to use the hardness results for ¢; or £, as a
“black box” then we will not be able to prove anything useful, simply because the hardness
results are subpolynomial (with respect to n) and thus changing the norm loses the entire
hardness. In fact, the hardness reduction used in the ¢; case [11] does not seem to work
for the ¢3-norm, since it relies on adding many low-degree nodes to amplify the hardness.
On the other hand, we show that if we use the £, hardness reduction of [9] (with slightly
different parameters), which amplifies hardness by adding a small number of high-degree
nodes, we can prove a similar hardness bound.

» Theorem 8. Unless NP C BPTIME(2PY18()) - for any constant € > 0 there is no
polynomial-time algorithm that can approximate MINIMUM {5-NORM 3-SPANNER better
than 208" .

At a very high level, this is obtained by re-analyzing the reduction of [9] more carefully.
In [9], since they cared only about the maximum degree, it was not necessary to analyze the
(many) nodes with smaller degrees. Moreover, some of the key arguments in [9] are false in
the context of the fo-norm: there is an argument that we can change the optimal solution to
be “canonical” without affecting the /., norm, but in the ¢s-norm there is an effect. So we
need to instantiate the reduction with different parameters, perform a more detailed analysis,
and replace some key steps with more refined arguments. This all significantly complicates
the analysis. Since our main focus is on algorithms rather than hardness, we defer the proof
to Appendix A.

2 Greedy

Here, we improve over the the analysis in [10] and give a nearly tight (up to polylogarithimic
factors) analysis of the greedy algorithm. We give only a high-level overview here, and defer
many of the details to the full version of the paper. We show the following:

» Theorem 9. Given an n-vertex unweighted graph G, the greedy algorithm gives an O(n3/7)-
approximation for the minimum fo-norm 3-spanner.

This can be seen to be tight by considering the following graph: Let T be a tree of depth
3, where the root has n*/7 children, all level 1 nodes have n?/7 children, and all level 2 nodes
have n'/7 children (so the number of leaves is n). Now let G be the graph created by taking
T and adding an edge between the root and every leaf. Clearly, T is a 3-spanner of G with
[ T||2 = O(n*/7). However, the greedy algorithm could start by taking all the edges from the
root to the leaves of T, right away creating a subgraph with />-norm at least n.

Our analysis will decompose the graph into a small number of well structured subgraphs,
and analyze the behavior of the greedy algorithm on each part. The condition on each
subgraph is the following.

» Definition 10. We say a graph (L, R, E) with vertex set L U R is nearly bi-regular if there

exist integers dr,, dr such that every vertex u € L has |[I'(u)NR| € [d,/6,dL] and every vertex
v € R has [T'(v)NL| € [dr/(6log|R|),dR].
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We use standard regularization techniques to give the following decomposition (the proof
is deferred to the full version).

» Lemma 11. Given an undirected graph G = (V, E) with |V| = n, there exist O(log®n)
subgraphs H; = (L;, R;, E;) of G such that the edge sets {E;} are a partition of E, and each
H; is nearly bi-regular.

To analyze the performance of the greedy algorithm on each subgraph in the above
partition, we use a specific constant size linear program, similar to the linear program used
for the universal lower bound in [10], but with a different objective function: finding the
worst-case ratio between the £o-norm of the greedy algorithm and an optimal spanner. The
linear program assumes that an optimal set of paths of length < 3 that span the edges of any
biregular graph H; has a fairly regular structure. In particular, it assumes that the union
of such an extremal set of paths is a four layered graph such that the subgraph induced
on every two subsequent layers is bipartite and biregular. Such a graph can be succinctly
described by the cardinalities of the different layers and the degrees of the bipartite graphs
connecting every two consecutive layers. A pruning argument shows that this assumption is
without loss of generality, up to a polylogarithmic factor in the ¢ norm.

We solve this linear program and show that the example graph described after Theorem 5
gives a feasible solution with value n3/7, for which there is a dual solution giving the
complementary bound. This linear program, its optimal solution, and its connection to the
performance of the greedy algorithm are all given in the full version. Here we only mention
the conclusion:

» Lemma 12. Let H be an N-vertex nearly bi-regular graph, and let P be a graph (not
necessarily a subgraph) which spans every edge in E by a path of length at most 3. Then we
have min{N, | Hl|2}/|[P||2 = O(N®/7).

We can now prove our main theorem for this section.

Proof of Theorem 9. Let {H;} be the partition of G into O(log®n) subgraphs given in
Lemma 11, and let N; be the number of vertices in H;. If H is a spanner returned by the greedy
algorithm, we know by Theorem 2 that for each i, we have |H N H;||2 = min{O(N;), | H;||2}
Choose an iy that maximizes this expression. Then we have ||[Hlls < >, |[H N H;|l2 =
O(log® n) - min{ Ny, || Hi, |2}

On the other hand, letting P be an optimal 3-spanner of G, we know in particular that
P spans the edges in H;,. And so our approximation ratio is bounded by

[Hls _ Ollog® n) min{Niy, |[Hy 2}
1Pl — P12
= O~(N3/7) by Lemma 12

20

=0n*7). <

3 LP-Based Rounding

We now turn to algorithms based on rounding LP relaxations. In particular, we analyze
the performance of the linear programming relaxation (though with a different objective
function) suggested by [12, 9] for MINIMUM ¢; 3-SPANNER and MINIMUM /., 3-SPANNER,
respectively. Focusing on {5, we consider the following convex program, noting that it is only
the objective function which is nonlinear:

11:5
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o\ 1/2
min Z <Z xe>
veV \e~v
s.t. Z yp =1 V(u,v) € E (1)
pru~v,|p|<3
Te > Z Yp Y(u,v),e € £ (2)
pru~v,|p|<3
poe
TeyYp >0 Ve,p (3)

While the objective function is not linear, it is convex, and so this LP can be efficiently
solved by standard techniques (e.g., the Ellipsoid Method). Let us briefly see why this is a
relaxation. In the intended (integral) solution, for every edge e € F, z, is an indicator for
whether e appears in our spanner. Thus the objective function describes the ¢35 norm of our
spanner. Furthermore, for every edge (u,v) we can pick a unique path p of length at most 3
between u and v in our spanner, and set y, = 1, while setting y,» = 0 for every other path p’
between u and v. This is clearly a feasible solution.

3.1 Independent Edge Sampling

Given an optimum solution to the linear program, consider the following simple rounding
algorithm, which slightly generalizes the rounding suggested in [9], parametrized by a constant
a € (0,1):

Edge-Round(a): Independently add each edge e € E to the spanner with probability z¢.

One part of our rounding algorithm will use this rounding for a specific value of «, though
it will not necessarily return a spanner. We would like to bound the 5 norm of the subgraph
returned by this algorithm. For our anlalysis of this and other rounding algorithms, we will
need the following standard Chernoff bound (cf. [14], Theorem 1.1):

» Theorem 13. Let X = > "' | X;, where X; are independently distributed in [0,1]. Then
for all t > 2eE[X], we have Prob[X > ¢] <27t

We have the following bound on the ¢p-norm of the subgraph returned by Algorithm
Edge-Round:

» Lemma 14. Let H be the output of Edge-Round(«). Then with probability at least
1 —2lesn=log®n e hape ||H||y < log?(n)||G||A“LP?.
Proof. First note that for every vertex v € V' the expected degree of v in H is

E[dy(v)] = ng‘ >1,

where the inequality follows since the z.’s support a flow of 1 from v to any neighbor. Thus,
by Theorem 13, and taking a union bound over all vertices, we have that with probability at
least 1 — n2~ 198" all vertices v € V satisfy

E[dm(v)] <log”n- Y 2

e~~v

<log’n-dg(v)*=2 <Z xe> . (by Holder’s inequality)

en~v
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Thus if we define vectors f, g as f, = dg(v)23®) and g, = (dpp(v))>®, then we get

IH|13 <log*n > de(v)* =) (drp)*®

veV
= log4 nf-g
< log4n 1 fll1/a-a)llgll/a (by Holder’s inequality)
11—« «@
=login (Z dG(v)2> (Z(de(v))2>
veV veV
= log* n||G|I2 ¥ LP? <

The above lemma on its own does not give a clear approximation guarantee. However,
when combined with the known lower bounds on OPT, we can get the following bound:!
» Lemma 15. Let H be the output of Edge-Round(a). Then with probability at least
1— 210gn—10g2 n; we have ||HH2 — O <||G||élia)/2) .OPT.

Proof. With the stated probability, by Lemma 14 we have

11—«
|H |2 < log®n|G[3"*LP* <log?n|G|3 *OPT = log®n (”G”2> -OPT

oPT
11—«
<log®n ~HG7”2 - OPT,
QVIIGl2)

where the final inequality is from the lower bound in Theorem 2, which proves the lemma. <

3.2 A New Rounding Algorithm

We now present a new rounding algorithm for the same linear programming relaxation,
which we have designed specifically for the f5-norm, and which gives our best approximation
guarantee (when traded off with the greedy algorithm).

In fact, we will round our LP solution by trying two different algorithms, and returning
the union of the edge sets returned by the two algorithms. We will show that every edge will
be spanned by at least one of the two algorithms with high probability. Our first algorithm
is simply Edge-Round(3/7).

Algorithm 1 Edge-Round(3/7).

Independently add each edge e € E to the spanner with probability m‘z/ T

Lemma 15 directly implies that with high probability this algorithm returns a subgraph
with ¢5 norm at most OPT - O(HG||§/7), which is even better than our final guarantee (see
Lemma 17). However, it is not guaranteed to return a valid spanner.

Our second algorithm takes a different approach. We balance the need in our objective
function for both few edges overall and low degrees for individual vertices by simultaneously
limiting which vertices can buy edges and what edges they can buy.

1 In [9], it was shown that this algorithm gives a 3-spanner for @ = 1/3, which already gives an O(HGH;/S)—

approximation via Lemma 15. However, this is weaker than our final O(||G H;/ 16) guarantee.
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Algorithm 2 Edge/Vertex Sampling.

For every vertex v € V, and for every edge e € E, independently sample uniformly
random variables z; €g [0,1], 2} € [0,1], and z. € [0,1].
For every edge e = (u,v) € E, add e to the spanner if at least one of the following three
conditions holds:

1. 2. < zé/4 and z; < :Eé/4.

2.z, < 1:%/4 and 2z < o:é/4.

1/4 1/4
3. z;L Sxe/ and zegxe/.

» Remark 16. The algorithm is formulated for directed graphs. If the graph is undirected,
run the algorithm on the directed graph where every original edge is considered with both
possible orientations.

Both showing that these algorithms give a good approximation, and showing that together
they give a valid 3-spanner, requires a technically involved argument. We separate these two
arguments in the next two subsections.

In Section 3.2.2, we will show that every edge has a probability of 2(1/polylogn) of being
spanned by at least one of the two algorithms. Thus, the complete algorithm will be

For some constant ¢ > 0, run both Algorithm 1 and Algorithm 2 O(log®n) times, and

output the union of all the edges chosen by either algorithm over the various iterations.

Thus, for an approximation guarantee of O(f), it suffices to show that the probability
that either algorithm returns a subgraph with /5 norm greater than O(OPT - f) is at most
O(1/log°n) for some sufficiently large constant ¢ > 0. This approximation guarantee (for

5/16y . . . .
F=1G|5" ") is given in Section 3.2.1.

3.2.1 Approximation guarantee

As mentioned earlier, Lemma 15 implies that Algorithm 1 returns a subgraph with ¢ norm
at most OPT - O(||G||§/7) with probability at least 1 — 2~ (1=e(1)lee” n Thjg is in fact better
than our final approximation guarantee, so we will focus now on Algorithm 2.

We give the following upper bound on the ¢5 norm of the subgraph given by Algorithm 2.

» Lemma 17. For any b = b(n) > 1, Algorithm 2 outpuls a graph with {5 norm at most
OPT - O(b1/2\|G||g/16) with probability at least 1 — exp(—Q(log?n)) — 1/b.

Proof. We will bound the contribution to the ¢ norm of every kind of edge added by the
algorithm. In particular, we define the three corresponding edge sets

Z, §x1/4 }

(u,v)

E, = {(U7U) er ‘ Z(u,v) < I%/

4
w,v)?

E, = {(u,v) €EE |z, < xzﬁv), zh < xzﬁv)}

Es; = {(um) EE|zf < x1/4v), Z(uw) < )/t }

(u (u,v)
Now consider the various degrees defined by these edge sets:
di(u) = v eV [(u,v) € B} da(v) ={ueV | (u,v) € Er}
dz(u) = [{v e V| (u,v) € Es}| dy(v) = {u € V| (u,v) € Es}|
ds(u) ={v e V[ (u,v) € Es}|  ds(v) =[{ueV|(uv) € Es}
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To bound the ¢5 norm of the subgraph returned by the algorithm, we bound each of
> ey (di(u))? seperately for each i € [6]. However, we only analyze the contribution for
i =1 and ¢ = 3. The analysis for i = 6 is identical to the analysis for ¢ = 1, and the analysis
for i € {2,4,5} is essentially identical to the analysis for i = 3.

Let us start by analyzing Y, . (d1(u))?. Note that for every u € V, di(u) is a sum of
independent Bernoulli random variables with success probabilities

1/4 o 1/4 1/2
Prob[z(y,,) < x(qjﬁv)] - Prob[z; < x(iv)] = x(i’v).

Thus, individual degrees behave exactly as in Edge-Round(1/2). Therefore, the proof of
Lemma 15 (which did not use any property of the correlation between different degrees)
shows that with high probability the total contribution to the ¢5 norm from these degrees is
at most OPT - O(||GH1/4) (which is even smaller than our claim).

Now let us analyze the contribution from the d3 degrees. First, for every vertex u € V,
let us define

A

[(u) := {veV|(uv)€Ez 1/4}

Lluv)

Note, as before, that |P(u)| is a sum of independent Bernoulli random variables with
probabilities xz 4@), and so with high probability, using Hoélder’s inequality, we have

D(u)| <log”n- Y @/t <log’n-de(u)* *dup(u)'/.
v:(u,v)EE

We will also need to bound (in expectation and with high probability) the following expression:

E Z $11{41)) = Z 3521))

vel(u) vi(u,v)EE
< dg(u)2dyp (u)'/? (by Cauchy-Schwarz).

This is not a sum of Bernoulli random variables, but it is a sum of independent random
variables distributed in [0, 1], where the expectation of the sum is at least 1, so we can use
Theorem 13 and get that with probability at least 1 — 2~ 108" we have

> xiﬁi) <log?n - dg(u)'*dup(u)'/?.
vel(u)

Suppose we have sampled the 2T variables, so the sets f(u) are fixed and the two bounds
on f(u) above hold for all ©w € V. Note that this high probability event is completely
independent of the z~ variables. Conditioned on this event, for every u € V, (dz(u))?
is a random variable distributed in [0, [I'(«)|?] that depends only on z;. The expected
contribution from a single vertex u € V is

— 4
Bl(ds(w)’] = Y] Probley <yl 2 Sailh,)

v1,v2 €l (1)

Z Z “”25,41;2)

vy Ef(u) Vo Ef(u)

Z xéﬁ))

vel (u)
<log*n - de(u)® 4dyp (u)®/* by our bounds on I'(u)

IN
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Thus, by Markov’s inequality, with probability at least 1 — 1/b we have

> Elds(w)®] < blog*n- > de ()4
e ueV

< blog* Tl”(dG(U)5/4)u€V||8/5HdLP(U)3/4”8/3 by Holder’s inequality

5/8 3/8
=blog'n (Z dg(u)2> (Z dLP(u)2>

ueV uevVv
=blog*n - LP¥4|G||3/*
< blog*n - OPT**|G|5/*

opT*/* 5/4
< b polylog(n) - OPT?/*. e IG5/ by Theorem 2
2

= 0(|G|3®) - oPT?

Thus the contribution of the ds degrees to the {5 norm is at most O(\EHGH‘;/M) - OPT,
as claimed. <

3.2.2 Correctness

We will use the following regularization lemma (simplified form of Lemma 2.6 in [9]):

» Lemma 18. There exists a constant C > 0 such that for any vertices u,v € V and set P
of paths from u to v of length at most 3 such that ZpeP yp = 1, there exists a subset P’ C P
satisfying the following conditions.
For some 1 < k < 3, all paths in P’ have length k.
There exists some yo > 0 such that every path p € P’ has weight y, € [yo, 2yo]. Further-
more, 1 > yo|P’| > 1/(log® n).
If k = 3, then all the paths in P’ are tuples in E1 x Eo x E3 for some pairwise disjoint
collection of edge sets E1, Fo, B3 C E.
If k = 3, then there exist positive integers dr,dr such that:
For every edge e; € E1, the number of paths in P’ which include ey is in the range
[dr,drlogC n]. Note that this gives |E1| < |P’'|/dr < 1/(dLyo).
Every edge e3 € Eo participates in ezactly one path in P’.

For every edge es € Es, the number of paths in P’ which include es is in the range
[dr,drlog n]. Note that this gives |Es| < |P’|/dr < 1/(dryo).

Note that given a solution to our LP relaxation, for every edge (u,v) € E there does exist
such a set of paths P, and so there exists a set of paths P’ of length k as in the lemma. If
k =1, this is just the edge (u,v) which then has LP value y, ) > 1/(log® n), and will be
added by Algorithm 1 w.p. (1). It is also easy to see that Algorithm 1 will span (u,v) if
k = 2. Indeed, we have:

» Lemma 19. Let P’ be a set of paths of length k for an edge (u,v) € E as in Lemma 18.
Then if k = 2, then w.p. Q(l) at least one of these paths will be added by Algorithm 1.

Proof. Since the paths in P’ are of length 2, they are also edge disjoint. By the capacity
constraints, every edge e in these paths must have LP value x, > yo. Thus, the probability
that at least one path in P’ will be added by Algorithm 1 is bounded by
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Prob[Some path in P’ is added] = 1 — H Prob[P’ is not added]

peP’
=1- H (1 — Proble; is added]Probl[ey is added])
p=(e1,e2)EP’
2
>1- ] (1—(1/3/7) )
peEP’

|P’]
—1- (1 —y8/7)
>1—exp (—y8/7|P'|)

>1—exp (1/logc n) =0(1),

where the last inequality follows from the fact that yg/ "IP'| > yolP'| > 1/10g€ n. <

Thus it remains to deal with edges for which P’ is a set of paths of length 3. We will show
that every such edge is spanned with probability £2(1) by either Algorithm 1 or Algorithm
2, depending on the parameters dy,dg from Lemma 18. In both cases, we show that the
relevant algorithm adds a large number of paths from P’ in expectation, and that outside
some easy special cases, the number of paths added is (at least mildly) concentrated around
the expectation by Chebyshev’s inequality. The following lemma describes the correctness
property of Algorithm 1.

» Lemma 20. Let (u,v) € E be an edge and P’ be a set of paths of length 3 as in Lemma 18
with corresponding parameters yo,dr,dr. Then if max{dr,dr} > yo_2/3/1ogc n for some
constant C' > 0, Algorithm 1 will add at least one path in P" with probability 2(1).

Proof. First, consider the case where d, = Q(1/y0). In this case, every edge e; = (u,u’) € E;

that participates in any path in P’ has LP value z,, = Q(l) Thus, such an edge is added

by Algorithm 1 w.p. Q(1). Moreover, there are Q(1/yo) paths of length 2 from v’ to v with

LP value at least yo (suffixes of paths in P’ starting with e;), and by Lemma 19, w.p. Q(1)

Algorithm 1 will add at least one of these, and this event is independent of e; being added.

Thus, in this case the lemma follows. The lemma follows similarly when dp = Q(1 /Y0)-
Assume therefore that for some arbitrarily large constant C” > 0 we have

di.dr < 1/(yolog”" n). (4)
Now assume w.l.o.g. that dy, > dg. Thus, by our assumption, we have
dp > y62/3/ logC’ n. (5)

Consider the case where (dr <)drdr < y, 2/3 logC” n, which in particular implies dp <
logcu+cl n. In this case define a new set of paths P” C P’ by taking for every edge e3 € F3
a single path in P’ containing es. Note that |P”| > |P’|/(drlog® n). Since |Ey| < |P'|/dy,
and every edge in F; participates in at most dj, logC n paths in P’, this implies that at least
|P'|/(2ddR 1og*" n) edges in E; each participate in at least dy, /(2dg log® n) paths in [P”|.
Let Ef C E; be this set of edges. So we have

|| - 1 1

Ei| > .
| 1| o QdeR IOgQCTL o 2deRyO log3cn a Qyé/s 10g3C+C" n
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Now, for every e; € Ef, denote by P”(ey) the set of paths in P” containing e;. By definition of
Ej, for every such e; we have |P”(el)| > dp/(2dglog® n). Note that by capacity constraints
we have z., > dryo > yo / log n. Thus, as in the proof of Lemma 19, the probability that
at least one path in P”(e1) is added is bounded by

Prob[Some path in P”(e;) is added]

= Proble; is added] - | 1 — H (1 — Prob[p \ ey is added])

pEP” (e1)
> (dLy0)3/7 (1 —(1- 6/7)\P”(e1)|)
1/710g 3¢’ /7 (1 6/7 dr./(2dr log® n)>
1/7 log =3¢ /Ty, (1 6/7 =2/3 /(210gC+C" ~C" ))
1/71Og 3¢ /7 (1 — exp(— /21/(2logC+C”—C/ n)))
— Oy 1/3)

By definition of P”, the paths in P"”(e;) are completely edge disjoint from the paths in
P"(e}) for any ey,e} € Ej. Thus, there is a probability of Q(yé/?’) that at least one path
in P"(ey) is added, and these are independent events for the different edges e; € E{. By
our bound on |E}|, there are Q(y, 1/ %) such edges, and so the probability that at least one
of them will contribute a path in P” to the spanner is at least Q(1). This concludes our
analysis of the case where drdr <y, 2/3 logC” n. From this point on, we assume that

drdr > yaz/g’ log®" n (6)
Now define new LP values for F; U E5 U E3 as follows:

dLyQ if e e By
.T/e = Yo if e € Es
dRyO if e € F3.

Then by capacity constraints, for every edge e € E1 U E5 U E5, we have x, > x/.. Consider an
algorlthm that adds edges e € Fy U F» U E5 independently with probability ( )3/ 7 instead
of xe . Clearly, the probability that Algorithm 1 adds at least one path from P’ is at least
the probability that the algorithm with modified LP values does so. Let us now analyze
the probability that the modified algorithm adds at least one path from P’, and denote by
Y the number of paths from P’ added by the modified algorithm. We start by analyzing
the expectation of Y. By definition of the modified algorithm, every path p € P’ is added
with probability

Problp is added] = (dLyO)3/7yg/7(dRyo)3/7 = (deR)3/7yg/7'

Since |P'| = yo_l/(logC n) for some ¢ € [0, C], for an appropriate choice of C”; the expected
number of paths added by the modified algorithm satisfies

E[Y] = |P'|(dedr)* Ty
=log °n- (drdr)*Ty)'" (7)
> 1og?" /T by (6)

> 10g1+c/2+30/2 n
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where the last inequality follows if we choose, say,
C"=7/3+7c/247C)2.

Thus, the expected number of paths in P’ added is (relatively) large. However, since the
paths in P’ are not disjoint, this does not guarantee that at least one path will be added with
probability £2(1). To show this, we need to show concentration. As in [9], we use Chebyshev’s

inequality, which guarantees that Prob[Y = 0] < 1 as long as
1
Var[V] = E[Y?] - (E[Y])* < S (E[V])*, (8)

To show that (8) holds, consider the contribution of edge-disjoint versus non-edge-disjoint
paths:

E[Y?] = Z Prob[p; and p, are added]

p1,p2€P’
= Z Prob[p; and ps are added] + Z Prob[p; is added]Prob[ps is added]
p1,p2€P’ p1,p2€P’
p1Np27#0 p1Np2=0
< Z Prob[p; and ps are added] + Z Prob[p; is added]Prob[ps is added]
p1,p2€P’ p1,p2€P’
P1Np2#£0
= Z Prob[p; and py are added] + E[Y]?
p1,p2E€P’
p1Np2#£0

Thus, to show (8), it suffices to bound the contribution from pairs of non-edge-disjoint paths.

These fall into three categories: pairs of identical paths, pairs sharing only the first edge
(in Ey), and pairs sharing only the third edge (in E3). The contribution from paths in the
first category is at most

Z Prob[p; and py are added] = E[Y] = o(E[Y]?). (since E[Y] > logn)
p1=p2€P’

The analysis for the second and third categories is identical, so let us focus only on pairs of
paths sharing only the first edge. These pairs contribute

Z Z Prob[p: and py are added] = Z Z (dLy0)3/7y§/7(dRy0)6/7

e1€E1 py,paeP’ e1€E1 py,paeP’
p1Np2={e1} p1Npz2={e1}

Z Z di/7d%/7yé5/7

e1€E1 py,preP’
p1Np2={e1}

| Ex|(dzlog® n)* - dy/"dy Ty T

IA

IN

T g T

(log2 n)dlLOﬁd%”ySﬁ

< (log™* " )y Tyg T (by (4))
_ lngc-&-2c—40”/7 n- E[Y]2 (by (7))
=log ¥?n-E[Y)?

Thus, all three categories contribute at most o(E[Y]?), and this concludes the proof. <
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Finally, we examine edges that will be spanned by Algorithm 2. Note that the trade-off
between the two algorithms has nothing to do with the approximation guarantee. In fact, at
the parameter threshold between the two algorithms (where max{dy,dr} ~ yq 2/ 3), both
algorithms either give or could be easily modified to give a better approximation than |G ||§/ 16,
The reason for trading off the two algorithms is that beyond the threshold, Algorithm 2 will
still give a large number of spanning paths for each edge in expectation, but in reality will
only span such an edge with very low probability (in which event it will span it with many

paths). The following lemma gives the parameter regime for edges spanned by Algorithm 2.

» Lemma 21. Let (u,v) € E be an edge and P’ be a set of paths of length 3 as in Lemma 18
with corresponding parameters yo,dy,,dr. Then there exists a constant C' > 0 such that if

dp,dr < y(;2/3/logc, n, Algorithm 2 will add at least one path in P’ with probability Q(1).

Proof. First consider the case where drdr < logC” n for some constant C” > 0. This is an
easy special case, but also the tight case of our entire analysis. In this case, define a new set
of paths P” C P’ by taking for every edge e3 € F3 a single path in P’ containing ez, and then
out of these, choosing for every edge e; € E; used in these paths a single path containing e;.
Note that |P”| > |P’|/log2c"’C n, and all the paths in P” are edge disjoint. For any path
p = (u,u,v',v) € P, we can bound the probability that p is added by Algorithm 1 by
Prob[p is added] > Prob[z(y,./) < x%ﬁt,)] - Prob[z,, < xzfu,), xgl/fv,)]
- Prob[z; < :czéf{v,), xzv/ffv)] - Prob[z(y) < 1’21{’4”,)]

> Prob[z(y,u) < yé“] - Prob[z,, < yé/4} ~Prob[zj’, < y(l)/4] - Prob[z(y,v) < yé“]

= Yo.

Since the paths in P are completely edge-disjoint, and share no interior vertices, the above
events are independent for the various paths, and so the probability that at least one path in
P is added is at least

1= (1= y0)'™"1 > 1 exp(—yo|P"[) > 1 — exp(—yo|P'|/1og>* T n)
>1- exp(71/10g3c+c// n) = Q(1).
Now consider the remaining case. That is, assume from now on that
drdp > log”" n. (9)
As in the proof of Lemma 20, consider the result of running Algorithm 2 with LP values
{z} as defined in that proof. As before, modifying the LP values in such a way can only

decrease the probability that one of the paths in P’ will be chosen. Let Y be the following
set of paths, added by Algorithm 2 using the modified LP values:

Y = {(u,u',v/,’u) € P/ ‘ (Z(u,u') < (x/(u,u’))1/4> A (Z;’ < (xl(u,u’))1/47 (xl(u/,v’))l/4)
A (Z:_’ < (‘r/(u’,v’))l/4’ (xzv’,v))l/AL) A (Z(v,v’) < ($/(v,v’))l/4)}
Since dy,,dg > 1, the probability that a single path p € P’ is added to Y is exactly

(dryo)Y/* - min{(dLy0)1/4,y(l)/4} : min{y(l)/47 (dryo)*} - (dryo)Y* = (drdr)**yo.
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Since |P’'| = yy ' /(log® n) for some ¢ € [0, O], for an appropriate choice of C”, the expected
number of paths added by the modified algorithm satisfies

E[Y] = |P'|(d dr)" *yo = log~n - (drdr)"/* (10)
>1log® ~n by (9)
> logn,

where the last inequality follows if we choose C”' =1 + c.
As before, it is not enough to show that the expected number of paths is large, we also
need to show concentration. As in the proof of Lemma 20, it suffices to show that

> Probpy,p2 C Y] =0 ((E[Y])?).

p1,p2€P’

p1Np27#D
These pairs of non-edge-disjoint paths fall into three categories: pairs of identical paths, pairs
sharing only the first edge (in E7), and pairs sharing only the third edge (in E3). As before,
the contribution from identical paths is E[Y] = o((E[Y])?) (where the final bound follows
since E[Y] > logn). Since the analysis for the second and third categories is essentially the
same, we focus on pairs of paths sharing only the first edge. These pairs contribute

> > ProbpupCYl= > > (deyo) v’ v (dryo)

e1€E1 py,paeP’ e1€E1 py,paeP’
p1Np2={e1} p1Np2={e1}

Z Z dlL/4d};¢/2yg/2

e1€E1 py,preP’
p1Np2={e1}

1
< —— - (di logc n)2 . dlL/4d}_z/2yS/2
dryo

= (log®” n)dy/*d}{ "y

< (log2c_3c//4 n)ollL/Qd}%/2 (since dr, < y()_2/3/ logc/ n)
=1og”@ "> B[V (by (10))
<log™*/*n-E[Y],

where the final bound follows if we choose C” > 1+ 8C/3 + 8¢/3. Thus, all three categories
contribute at most o(E[Y]?), and this concludes the proof. <

4 Generalizations and Open Questions

While we provided approximation and hardness bounds for MINIMUM {5-NORM 3-SPANNER,
the true approximability still remains open. Perhaps more interesting, though, is the question
of the more general MINIMUM /,-NORM k-SPANNER problem. Some of our techniques
easily extend to this more general setting, but some do not. The linear-programming based
framework we use to analyze the greedy algorithm should basically work for other values of
p and k, but the details become more complicated.

Recall that our strongest approximation algorithm (from Section 3) is a careful tradeoff
between greedy, independent edge sampling (Edge-Round), and a combined vertex and edge
sampling (Algorithm 2). Independent edge sampling (Edge-Round) can also be analyzed
for other values of p and k, where the right a to use depends on the value of k (indeed,
this is the main technique used by [9] for p = oo, and correctness for other values of k
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follows directly from [9]). Our more tailored algorithm (Algorithm 2), which combines edge
and vertex sampling, seems harder to generalize for larger values of k. Algorithm 2 is a
generalization of the ideas used for k = 3,4 in the ¢; case (due to [12, 7, 13]), and it is a
fascinating open question to extend these techniques to larger stretch values. For stretch
k = 3 and other values of p, Algorithm 2 can be reanalyzed with appropriate parameters
and seems to give nontrivial guarantees. In general, designing and analyzing approximation
algorithms for other values of p and k remains an exciting challenge which may require new
algorithmic ideas.

With respect to hardness, our results in Appendix A already include other values of
p. For larger stretch values, the basic construction can be extended by including “outer
paths” in the same way as has been done for many other spanner hardness results ([15, 9]
in particular).
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A Hardness Results

Since the analysis is simpler in the directed setting, we follow [9] and begin with it. We will
also prove hardness for the more general /,-norm version, and hardness when p = 2 will
follow as a corollary. First, though, we give some notation and background necessary for
the reduction.

A.1 Background: Min-Rep and Spanner Hardness

Our hardness bounds rely on the Min-Rep problem. In Min-Rep we are given a bipartite
graph G = (A, B, E) where A is partitioned into groups A, Aa, ..., A, and B is partitioned
into groups By, Bs, ..., B,, with the additional property that every set A; and every set B;
has the same size (which we will call |¥| due to its connection to the alphabet of a 1-round
2-prover proof system). This graph and partition induces a new bipartite graph G’ called
the supergraph in which there is a vertex a; for each group A; and similarly a vertex b; for
each group B;. There is an edge between a; and b; in G’ if there is an edge in G between
some node in A; and some node in B;. A node in G’ is called a supernode, and similarly an
edge in G’ is called a superedge.?

A REP-cover is a set C' C AU B with the property that for all superedges {a;,b;} there
are nodes ¢ € A; N C and b € B; N C where {a,b} € E. We say that {a,b} covers the
superedge {a;,b;}. The goal is to construct a REP-cover of minimum size.

For any fixed constant € > 0, we say that an instance of Min-Rep is a YES instance
if OPT = 2r (i.e. a single node is chosen from each group) and is a NO instance if
OPT > 29°8" "np We will sometimes refer to the hardness gap (in this case 218" ")
as the soundness s, due to the connection between Min-Rep and proof systems. The following
theorem is due to Kortsarz [18] (the polynomial relations between the parameters are implicit
rather than explicit in his proof, but are straightforward to verify since the instances used
in [18] are obtained by parallel repetition [20] applied to instances of 3SAT-5 which have a
constant gap [4, 3]).

2 Rather than G being the graph and G’ being the supergraph, sometimes G’ is referred to as the graph
and G is called the label-extended graph.
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» Theorem 22 ([18]). Unless NP C DTIME(2P°108(")) * for any constant € > 0 there is no
polynomial-time algorithm that can distinguish between YES and NO instances of Min-Rep.
This is true even when the graph and the supergraph are reqular, and both the supergraph
degree and |3| are polynomial in the soundness.

A.2 Directed Hardness
A.2.1 Reduction

We first consider the directed setting (note that here the “degree” in the degree vector is
the sum of the in-degree and the out-degree). Suppose we are given a Min-Rep instance
G = (A, B, E) with associated supergraph G’ = (U, V, E’) from Theorem 22. For any vertex
w e UUV we let I'(w) denote its group. So I'(u) C A for w € U, and I'(v) C B for v € V.
Similarly, for a € AU B, we let I'"1(a) be the unique w € U UV such that a € T'(w). We will
assume without loss of generality that G’ is regular with degree dg: and G is regular with
degree da«. Our reduction will also use a special bipartite regular graph H = (X,Y, Eg),
which will simply be the directed complete bipartite graph with |X| = |Y]|. Let dg denote
the degree of a node in H, so dg = |X| = |Y| (later when we move to the undirected
setting H will not just be the complete bipartite graph). We will set all of these values to
(der + |%| 4 1)P/P=1) (for the undirected setting we will set dg to this value, but |X| = |Y|
will be larger).

Our instance G = (Vg, Eg) of MINIMUM /£,-NORM 3-SPANNER will be a combination of
these three graphs. The four sets of vertices are

Ve =U x X VE -V xY

(e} o

Vik = Ax Ey VE=-BxEy.

The actual vertex set Vg of our instance G will be V£, UVE, UVEUVE. Defining the
edge set is a little more complex, as there are a few different types of edges. We first create

outer edges, which are incident on outer nodes:
Eout = {((u,2), (v,y)) :ueUAveVAre X ANyeY ANu,v} € E'A\(x,y) € Eg}.

Note that if we fix  and y the corresponding outer edges form a copy of the supergraph G’.
Thus these edges essentially form |Ey| copies of the supergraph.

We also have inner edges, which correspond to |Eg| copies of the Min-Rep instance (note
that unlike the supergraph copies, these copies are vertex disjoint):

Ein ={((a,e),(be)):a € ANbe BAe € Ey A{a,b} € E}.

We will now add connection edges, i.e., edges that connect some of the outer nodes to
some of the inner nodes. Let

EE = {((u,x),(a,(z,y)):u€UNa€T(u) Az € X A(x,y) € Ey}, and

EE — {((b, (z,9)), (v,y) :veVAbeT(w)Ay €Y A(z,y) € En}.

con

In other words, the outer node (u,z) (resp. (v,y)) is connected to the inner nodes in its
group in each copy of G that corresponds to an Ey edge that involves x (resp. y).
Finally, for technical reasons we need to add group edges internally in each group in each

copy of G: let EL ., ={((a.€),(d €)) : e € Ey ANa,a’ € ANT *(a) ="}(a)}, and let
Ef ., ={((be),(t/,e)):e€ Eg AbY € BAT Hb) =T"1(V)}.

Our final edge set is the union of all of these, namely FEg = E,,; U E;,, UEL UEE U
EL . UEE

group group*
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A.2.2 Analysis

We first consider the YES case. We can use almost the same spanner as was used to prove
the equivalent lemma in [9] (Lemma 3.3). Unfortunately, since in [9] only the maximum
degree mattered, they did not need to optimize the degrees of non-extremal vertices, while
we do. So we actually use a slightly sparser spanner construction.

» Lemma 23. Ifé is a YES instance of Min-Rep, then there is a 3-spanner S of G with
18]Iy < 3du (|U]|X] + [V][Y])!/P

Proof. Since G is a YES instance, for each u € U there is some f(u) € T'(u) and for each
v € V there is some f(v) € I'(v) so that {f(u), f(v)} € E for all {u,v} € E’. Our spanner
S the connection edges suggested by the REP-cover: for every v € U and x € X and
(x,y) € Ep, it contains the connection edge ((u,x), (f(u), (x,y))). Similarly, for every v € V
and y € Y and (x,y) € Fp, it contains the connection edge ((f(v), (x,v)), (v,y)). It also
contains a star of group edges centered at the chosen node in every group: for every u € U
and e € Ey and a € I'(u) it includes the group edges ((f(u),e), (a,e)) and ((a,e), (f(u),e)),
and for every v € V and e € Ey and b € I'(v) it includes the group edges ((f(v),e), (b, e))
and ((b,e), (f(v),e)). Finally, it contains the appropriate inner edges: for every {u,v} € E’
with u € U and v € V and every e € Eg, we add the inner edge ((f(u),e), (f(v),e)).

This is precisely the spanner from [9, Lemma 3.3] but with fewer group edges (we include
stars in each group, while [9, Lemma 3.3] included all group edges). It is easy to verify that
this change does not affect the correctness of the spanner: all edges in G not in S are still
spanned. So we rely on [9, Lemma 3.3] for correctness.

So we just need to analyze ||S||,. To do this, we can just count the degrees in S of
each type of nodes. There are |U||X| + |V||Y| outer nodes, each of which has degree at
most di in S. For the inner nodes, we divide into those that are chosen (those that are
(f(u),e) or (f(v),e) for some u or v in U UV) and those that are not. There are at most
|Er|(|A| + |B]|) inner nodes which are not chosen, and in S they all have degree 2 (an
incoming and outgoing group edge from the node in the same group that is chosen). There
are at most |Eg|(|U| + |V]) inner nodes which are chosen, each of which has degree in S of
at most |X| + dg + 1 (the group edges, inner edges, and connection edges that it is incident
with respectively). Putting all this together, we get that

1], < ((JU[IX|+ [VIIY]) - dF;
+|Eu|(|Al +|B) - 2° + |Eg|([U| + [V)(IZ] + dgr + 1)P)/?
< ((UIX|+ [VIIY]) - db + 21 Ex|([U] + [V])(|Z] + dgr + 1)P)/?
< BUUNX|+ [VI[Y]) - diy)'/P
<3dy(|U||IX|+ V[V )7,

where we have used our setting of dy and the fact that |A| + |B| = (|[U| + |[V])|Z]. <

Now we analyze the NO setting.

» Lemma 24. Ifé is a NO instance of Min-Rep, then every 3-spanner S of G has ||S||, >
sdu (|U[|X]+|V|[Y])'/P.

Proof. Suppose for the sake of contradiction that this is false. Let S be a 3-spanner of G with
S|, < sdu(|U||X| 4 [V|[Y])/P. For every outer node (u,x) in V.%, and edge (v,y) € Ex,

let d:% (u, z) be the number of outer edges in S that are incident on (u, z) and have the other

APPROX/RANDOM 2019
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endpoint of the form (v, y) for some v € V. Similarly, for every outer node (v,y) in V%, and
edge (z,y) € Eny, let d,%(v,y) be the number of outer edges in S that are incident with
(v,y) and have the other endpoint of the form (u,y). For every outer node (u,x) in V.2, and
edge (z,y) € Ep, let d%¥ (u,x) be the number of connection edges in S that are incident
with (u,z) and have the other endpoint of the form (a, (z,y)) for some a € I'(u). Similarly,
for every outer node (v,y) in V., and edge (z,y) € Eg, let d%¥ (v,y) be the number of
connection edges in .S that are incident with (v,y) and have the other endpoint of the form
(b, (z,y)) for some b € T'(v).

Now with this notation in hand, the fact that ||S||, < sdg (|U||X|+|V|[Y])!/? implies that

5 (z«dﬁ;zm O+ (@0, 2)) 3 (o)) + (o, >>p>)
(z,y)EEm \uelU veEV

< (sdm)P(JU[|X] + [V]IY])

Now a simple application of Holder’s inequality gives us the following.

5 (zwm(u D)+ L) + Y (@) + (o, >>)

(z,y)€EH \uelU veV

< (sdu)(|U||X| + [V][Y]) (Holder’s inequality)
< 2sdp(|U||X]) (H and G’ are both balanced)
< |Ex|2s|U] (H is regular with degree dp)
< |Egls(|U] +|V]) (G’ is balanced)

Thus averaging now implies that there is some (z,y) € Ex such that

D (doh(u,x) + dih(u, @) + ) (doi(v,y) + digh (v,y) < s([U]+|V]) (11)
uelU veV

Fix this (z,y). We create a set Cq(u) C I'(u) for each uw € U by adding all @ € I'(u) such
that there is a connection edge ((u, ), (a, (z,y))) which contributes to dZ:¥ (u, z). Similarly,
we create a set C1(v) C I'(v) for each v € V by adding all b € I'(v) such that there is a
connection edge ((b, (z,y)), (v,y)) which contributes to d%:¥ (v, y).

Now we create similar sets for the outer edges. For each u € U we create a set Ca(u) C T'(u)
and for each v € V' we create a set Cy(v) as follows. For every outer edge ((u, ), (v,y)) in S
(i.e., every outer edge which contributes to dy.%(u) + d,.5(v)), we pick an arbitrary a € I'(u)
and b € I'(v) such that {a,b} € E and add a to Cs(u) and b to Ca(v).

Let C(u) = Cy(u) U Cy(u) for all uw € U, and let C'(v) = C1(v) U Ca(v) for all v € V. Let

C = (UyevC(u))) U (Uyey C(v)). Clearly by construction we know that

IC1< D (dgifi @) + (dih (. 2)) + D (i (v, ) + (dE (v,9))

uelU veV
< s(|U|+ |V]). (by (11))

Now we claim that C is a valid REP-cover. This will prove the lemma, since it will
imply that S is not a NO instance, giving a contradiction and thus implying that no such
S can exist. To see that C' is a REP-cover, consider an arbitrary superedge {u,v} € E'.
It is not hard to see (and was proved in [9]) that the only way that S can span the outer
edge ((u,x), (v,y)) is to either include that edge in S or include a canonical path between
the endpoints: a path which uses a connection edge to get to some (a, (x,y)), then an inner
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edge to get to some (b, (z,y)), then a connection edge to get to (v,y). If the outer edge is
included in S, then when we constructed C2(u) and Ca(v) we explicitly added some a € I'(u)
and b € I'(v) that cover {u,v}. Otherwise S spans the outer edge using a canonical path,
which from the construction of C;(u) and Cy(v) means that there is some a,b € C which
covers {u,v}. Thus C is a REP-cover, which proves the lemma. |

Now we can prove our hardness bound using these lemmas.

» Theorem 25. Unless NP C DTIME(2P°Y!e(™)) | for any constant € > 0 and p > 1 there
is no polynomial-time algorithm that can approrimate MINIMUM {,-NORM 3-SPANNER 4n

1 )17610g1’€ n

directed graphs better than 2(32;—1

Proof. Lemmas 23 and 24, together with Theorem 22, imply that under the complexity
assumption, there is no polynomial-time algorithm with approximation ratio better than

sdu(|UIX| +|VI[YDY? s

3du (U[|X| + [VI[Y]/r 3

The only thing that remains is to argue about the increase in the size: the n in the value
of s is really |A| + |B|, while our graph G is larger. But it is not too much larger: the number
of vertices in G is |Vg| = |U||X| + |[V||Y| + |A||Ex| + |B||Ex| = O(n(|Z] + dg )/ P=1)) <
O(n“'%) = O(nGP~V/(P=1)) Thus the overall hardness that we obtain is

S _ 12log1_‘n _ 121Og1—6(N(p—1)/(3p—1)) _ 32(31;;11)1—510g1—e N.
3 3 3
The extra 1/3 factor can be absorbed by using a smaller e. <

Our claimed hardness theorem for p = 2, the directed version of Theorem 8, is a corollary
of this theorem for p = 2.

A.3 Undirected Hardness

We extend the directed hardness to the undirected setting in the same way that it was
extended for LDES in [9]. First, we start with a slightly different Min-Rep instance with
some useful extra properties (from [11] instead of from [18], and with some extra analysis
from [9]). Then we combine it with a graph H which is the finite projective plane of degree
dp = (dg' +|%|+1)?/P=1 which is a graph of girth 6 with |X| = |Y| = d%. Then we further
subsample G to ensure that there are no cycles of length less than 5 consisting of outer edges
(some were introduced via the way we combined G with H). All of this is necessary in order
to ensure that in any 3-spanner of GG, the only ways of spanning an outer edge are through
the outer edge itself or through a canonical path (and in particular, there is no way to span
it using just other outer edges).

We give a sketch of the analysis and proof here, since it is simply re-analyzing the
construction of [9] using the ideas from the previous section. It is straightforward to prove
the analog of Lemma 23, since we use the same spanner suggested by the existence of a good
REP-cover and analyze all degrees in the same way. This implies that in a YES instance,
there will be a k-spanner S with ||S|, < O((|U||X|+ [V|[Y)'/? - dy).

The NO setting is more difficult to analyze, since it requires arguing directly about the
subsampling process. But if we follow the analysis in [9] but with the notation from the
previous section, we get that in a NO instance,

D (dot(u,x) + dih (u, @) + Y (doih(v,y) + digi (v,) = s /21U +|V])
uelU veV

11:21
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for every {x,y} € Ep. This is the equivalent of Equation (11) but as a direct proof rather
than by contradiction. Then as in the directed case, we can combine these to get the following
theorem (the dependence on p is slightly worse since the graph that we build is larger due to
using the finite projective plane rather than the complete bipartite graph).

» Theorem 26. Unless NP C BPTIME(2P°W1°8(")  for any constant € > 0 and p > 1 there
is no polynomial-time algorithm that can approximate MINIMUM £,-NORM 3-SPANNER better

than 2(£75) Tlog!

Theorem 8 is now a corollary of this theorem when p = 2.
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