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Abstract
The Earth Mover Distance (EMD) between two sets of points A,B ⊆ Rd with |A| = |B| is
the minimum total Euclidean distance of any perfect matching between A and B. One of its
generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching
of size |A| between sets of points A,B ⊆ Rd with |A| ≤ |B|. The problems of computing EMD
and asymmetric EMD are well-studied and have many applications in computer science, some of
which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at
least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time
complexity in n are known (even for finding approximately optimal matchings), but suffer from
exponential dependence on the dimension.

In this paper we show that significant improvements in exact and approximate algorithms
for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the
following results:

Under the Orthogonal Vectors Conjecture, there is some c > 0 such that EMD in Ω(clog∗ n)
dimensions cannot be computed in truly subquadratic time.
Under the Hitting Set Conjecture, for every δ > 0, no truly subquadratic time algorithm can
find a (1 + 1/nδ)-approximate EMD matching in ω(logn) dimensions.
Under the Hitting Set Conjecture, for every η = 1/ω(logn), no truly subquadratic time algorithm
can find a (1 + η)-approximate asymmetric EMD matching in ω(logn) dimensions.
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1 Introduction

In the Earth Mover Distance (EMD) problem, we are given two sets A and B each with n
vectors in Rd, and want to find the minimum cost of any perfect matching between A and B,
where an edge between a ∈ A and b ∈ B has cost ‖a− b‖2.

In a harder variant of the problem (“EMD matching”), we want to actually find a perfect
matching with the optimal cost. This is a special case of the geometric transportation problem,
in which each vector of A has a positive supply and each vector of B has a positive demand,
and the goal is to find an optimal “transportation map”, i.e., match each unit of supply with
a unit of demand while minimizing the total distance, summed over all units of supply.

A more general variant of the EMD problem (with an analogous extension to arbitrary
supplies/demands) allows for the possibility that |A| < |B|, and requires the map from A to
B to be an injection. We refer to this variant as the asymmetric EMD problem.
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Earth Mover Distance is a discrete analogue of the Monge-Kantorovich metric for proba-
bility measures, which has connections to various areas of mathematics [26]. Furthermore,
computing distance between probability measures is an important problem in machine learn-
ing [23, 20, 7, 13] and computer vision [22, 10, 25], to which Earth Mover Distance is often
applied. To provide a few specific examples, computing geometric transportation cost has
applications in image retrieval [22], where asymmetric EMD allows the distance to deal with
occlusions and clutter. In computer graphics, computing the actual transportation map is
useful for interpolation between distributions, though the metric may be non-Euclidean [10].

For the exact geometric transportation problem, the best known algorithm simply formu-
lates the problem in terms of minimum cost flow, yielding a runtime of O(n2.5 · polylog(U))
where U is the total supply (assuming that d is subpolynomial in n) [18, 19]. Even for EMD,
the best known algorithm follows directly from the general graph algorithms for maximum
matching in O(m

√
n) time [14].

The situation is better for approximation algorithms. There has been considerable work
on both estimating the transportation cost [15, 6] and computing the actual map [24, 3, 5]
in time nearly linear in n but exponential in dimension d. Most recently, it was shown [17]
that there is an O(nε−O(d) log(U)O(d) log2 n) time algorithm which outputs a transportation
map with cost at most (1 + ε) times the optimum. This algorithm is very efficient when the
dimension d is constant or nearly constant, and when ε is not too small – say, constant or
O(1/polylog(n)). However, when d = ω(logn), the algorithm is not guaranteed to find even
a constant-factor approximation in quadratic time.

Despite considerable progress on improving the algorithms for geometric matching prob-
lems over the last two decades, little is known about lower bounds on their computational
complexity. In particular, we do not have any evidence that a running time of the form
O(n · poly(d, logn, 1/ε)) is not achievable. This is the question we address in this paper.

1.1 Our Results
In this paper we provide evidence that geometric transportation problems in high-dimensional
spaces cannot be solved in (truly) subquadratic time. This applies to both exact and
approximate variants of the problem, and even in the special case of unit supplies. In
particular we show a conditional quadratic hardness for the exact EMD problem, as well as the
approximate variant of EMD when the (approximately) optimal matching must be reported.

Our hardness results are based on two well-studied conjectures in fine-grained complexity:
Orthogonal Vectors Conjecture and Hitting Set Conjecture (see [29] for a comprehensive
survey).

1.1.1 Exact EMD and Orthogonal Vectors Conjecture
The Orthogonal Vectors (OV) problem takes as input two sets A,B ⊆ {0, 1}d(n) where
|A| = |B| = n and asks whether there are some vectors a ∈ A and b ∈ B such that a · b = 0.
The popular Orthogonal Vectors Conjecture hypothesizes that in sufficiently large dimensions,
the obvious quadratic time algorithm for OV is nearly optimal:

I Orthogonal Vectors Conjecture. Let d(n) = ω(logn). For every constant ε > 0, no
randomized algorithm can solve d(n)-dimensional OV in O(n2−ε) time.

A plethora of problems have been shown to have nontrivial lower bounds under the
Orthogonal Vectors Conjecture; often these lower bounds are essentially tight (e.g. [1, 2, 8,
11, 28]; see [29] for a comprehensive survey). It is known that if the conjecture fails, then
the Strong Exponential Time Hypothesis (SETH) fails as well [27], providing evidence for
hardness of OV, and by extension of these problems to which OV can be reduced.
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Our first result shows that EMD in “nearly constant” dimension is hard to compute
exactly in truly subquadratic time, under the Orthogonal Vectors Conjecture:

I Theorem 1. There is a constant c > 0 under which the following holds. If there exists
ε > 0 and d(n) = Ω(clog∗ n) such that EMD on O(logn)-bit vectors in d(n) dimensions can
be computed in O(n2−ε) time, then the Orthogonal Vectors Conjecture is false.

Using techniques similar to those for the above theorem, we also address a question raised
in [9] about the complexity of the maximum/minimum weighted assignment problem when
the weight matrix has low rank. The minimum weighted assignment problem is defined as
follows: given an n × n weight matrix which determines a complete bipartite graph, find
the cost of the minimum weight perfect matching. Motivated by the observation that the
problem can be solved in O(n logn) time if the weight matrix is rank-1, it is asked whether
there is an O(nr2 logn) time algorithm for rank-r matrices [9]. We can answer this question
in the negative, under the Orthogonal Vectors Conjecture. In fact, we can show something
stronger (see Appendix A for the proof):

I Theorem 2. There is a constant c > 0 under which the following holds. If there exists
ε > 0 and r(n) = Ω(clog∗ n) such that the minimum assignment problem with rank-r weight
matrices can be solved in O(n2−ε) time, then the Orthogonal Vectors Conjecture is false.

1.1.2 Approximate EMD and the Hitting Set Conjecture
The second conjecture on which we base some of our results is hardness of the Hitting Set
(HS) problem. This problem, similar to OV, takes two sets of vectors A,B ⊆ {0, 1}d as input,
and asks whether there exists some a ∈ A such that a · b 6= 0 for every b ∈ B.

I Hitting Set Conjecture. Let d(n) = ω(logn). For every constant ε > 0, no randomized
algorithm can solve d(n)-dimensional HS in O(n2−ε) time.

It is known that HS reduces to OV, but the reverse reduction is unknown, so the Hitting
Set Conjecture is “stronger” than the Orthogonal Vectors Conjecture [2]. The Hitting Set
Conjecture has been used to prove conditional hardness of the Radius problem in sparse
graphs [2]. The utility of the Hitting Set problem in conditional hardness results comes
from the difference between its “∃∀” logical structure and the “∃∃” logical structure of the
Orthogonal Vectors problem, which makes it more natural for some types of problems.

Under the Hitting Set Conjecture, we prove hardness of approximation for the EMD
matching problem (in which we want to find the optimal or nearly-optimal matching).
Simultaneously we obtain stronger hardness of approximation for asymmetric EMD matching.

I Theorem 3. For any δ > 0 and d(n) = ω(logn), if (1 + 1/nδ)-approximate EMD matching
can be solved in d(n) dimensions in truly subquadratic time, then the Hitting Set conjecture
is false.

I Theorem 4. For any d(n) = ω(logn) and η = 1/ω(logn), if (1 + η)-approximate asym-
metric EMD matching can be solved in d(n) dimensions in truly subquadratic time, then the
Hitting Set Conjecture is false.

Finally, motivated by the question of how hard Hitting Set really is, compared to
Orthogonal Vectors, we generalize the result that Hitting Set reduces to Orthogonal Vectors
by finding a set of approximation problems that lie between Orthogonal Vectors and Hitting
Set in difficulty. For a positive integer function k(n) ≤ n/2, we define the (k, 2k)-Find-OV

APPROX/RANDOM 2019
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Figure 1 Summary of reductions.

problem: given two sets A,B ⊆ {0, 1}d(n) with |A| = |B| = n and the guarantee that there
exist at least 2k orthogonal pairs between A and B, find k pairs {(ai, bi)}ki=1 such that
ai · bi = 0 for every i.

We prove the following theorem in Appendix C.

I Theorem 5. Let k(n) ≤ n/2. If (k, 2k)-Find-OV can be solved in truly subquadratic time,
then the Hitting Set conjecture is false.

See Figure 1 for an overview of the structure of our main results (Theorems 1 and 3
respectively; the proof of Theorem 4 has the same structure as the latter). We provide the
remaining definitions of the relevant problems in the next section.

2 Preliminaries

Before diving into the reductions, we formally define the remainder of the problems which
we’re studying. Each problem we study takes sets of vectors as input, so one parameter of a
problem is the dimension d, which is a function of the input size n. That is, every function
d : N→ N defines a d(n)-dimensional EMD problem, and a d(n)-dimensional OV problem,
and so forth. We gloss over this choice of d in the subsequent definitions.

2.1 Earth Mover Distance
The Earth Mover Distance (EMD) problem is defined as follows: given two sets A,B ⊆ Rd(n)

with |A| = |B|, find

min
π:A→B

∑
a∈A
‖a− π(a)‖2

where π is a bijection. We’ll restrict our attention to the special cases where A,B ⊆ Zd(n)

with polynomially bounded entries (for hardness of exact EMD) and A,B ⊆ {0, 1}d(n) (for
hardness of approximate EMD).

We can define the asymmetric EMD problem as above, except we relax the constraint
|A| = |B| = n to |A| ≤ |B| = n, and require π to be a injection rather than a bijection.
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The EMD matching problem is the variant of the EMD problem in which the desired
output is the optimal matching π. Similarly we can define the asymmetric EMD matching
problem. An algorithm “solves” EMD matching (or its asymmetric variant) up to a certain
additive or multiplicative factor if the cost of the bijection it outputs differs from the optimal
cost by at most that additive or multiplicative factor.

2.2 Variants of Orthogonal Vectors
The reduction from Hitting Set to approximate EMD matching will go through the variants
of OV defined next.

The Maximum Orthogonal Matching (MOM) problem is defined as follows: given two
sets A,B ⊆ {0, 1}d(n), with |A| ≤ |B| = n, find an injection π : A→ B which maximizes

|{a ∈ A | a · π(a) = 0}|.

And the Find-OV problem is defined as follows: given two sets A,B ⊆ {0, 1}d(n) with
|A| = |B| = n, find the set S ⊆ A of vectors a ∈ A such that there exists some b ∈ B with
a · b = 0. An algorithm solves Find-OV up to an additive error of t if it returns a set S′ ⊆ S
for which |S′| ≥ |S| − t.

2.3 Relevant prior work
We will apply the following theorem from [12] to our low-dimensional hardness result of
exact EMD:

I Theorem 6 ([12]). Assuming OVC, there is a constant c > 0 such that Bichromatic `2-
Closest Pair in clog∗ n dimensions requires n2−o(1) time, with vectors of O(logn) bit entries.

3 Exact EMD in low dimensions

To prove hardness of the exact EMD problem under the Orthogonal Vectors Conjecture, we
reduce to the bichromatic closest pairs problem, and then apply Theorem 6 due to [12]. The
intuition for the reduction is as follows: given two sets A and B of n vectors, we’d like to
augment set A with n − 1 copies of a vector that is equidistant from all of B, and much
closer to B than A is. Similarly, we’d like to augment set B with n− 1 copies of a vector
that is equidistant from all of A, and much closer to A than B is. If this were possible, then
the minimum cost matching between the augmented sets would only match one pair of the
original sets: the desired closest pair.

Unfortunately, it is in general impossible to find a vector equidistant from n vectors in
d � n dimensions. But this can be circumvented by embedding the vectors in a slightly
higher-dimensional space, and adjusting coordinates in the “free” dimensions to ensure that
an equidistant vector exists. So long as the free dimensions used to adjust set A are disjoint
from the free dimensions used to adjust set B, the inner products between A and B are
unaffected, and the distances change in an accountable way.

Since we are working in the `2 norm, we will need the following simple lemma which
shows that any integer can be efficiently decomposed as a sum of a constant number of
perfect squares.

I Lemma 7. For any ρ > 0 and any positive integer m, there is an O(mρ) time algorithm
to decompose m as a sum of O(log 1/ρ) perfect squares.

APPROX/RANDOM 2019
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Proof. Here is the algorithm: repeatedly find the largest square which does not push the
total above m, until the remainder does not exceed O(mρ/2). Then compute the minimal
square decomposition for the remainder by dynamic programming.

The first, greedy phase takes O(polylog(m)) time and finds O(log 1/ρ) perfect squares
which sum to some m′ with m−mρ/2 ≤ m′ ≤ m. The second, dynamic programming phase
takes O(mρ) time (even naively). By Lagrange’s four-square theorem, a decomposition of
m−m′ into at most four perfect squares is found. J

Now we describe the main reduction of this section. We’ll use a shorthand notation
to define vectors more concisely: for example, axbycz refers to an (x+ y + z)-dimensional
vector with value a in the first x dimensions, b in the next y dimensions, and c in the next
z dimensions.

I Theorem 8. Let d = d(n) ≤ n be a dimension, and let k > 0 be a constant. There is a
constant c = c(k) for which the following holds. Suppose that there is an algorithm which
computes the `2 earth mover distance between sets A′, B′ ⊆ [1, n16k]2d+2c+2 of size n in
O(n2−ε) time. Then bichromatic closest pair between sets A,B ⊆ [1, nk]d of size n can be
computed in O(n2−ε) time as well.

Proof. Set ρ = 1/(16k), and let c = O(log 1/ρ) be the constant in Lemma 7 for the number
of perfect squares in a decomposition. Let A and B be two sets of vectors from {1, . . . , nk}d.
Let N = n16k. Our goal is to compute

min
a∈A,b∈B

‖a− b‖2 .

We can assume without loss of generality that ‖a‖2
2 and ‖b‖2

2 are odd for all a ∈ A and b ∈ B:
for instance, we can replace each vector z = (z1, . . . , zd) by (2z1, . . . , 2zd, 1).

We construct sets A′ and B′ of (2d + 2c + 2)-dimensional vectors as follows. Let
u = 0d(10c)0c+10d (parentheses for clarity). Let v = Nd0c+1(10c)0d. Add n− 1 copies of u
to B′ and add n− 1 copies of v to A′. For each a ∈ A, add the following vector to A′, where
we’ll define vector adja ∈ Zc+1 later:

a′ = f(a) = 0d(adja)0c+1a.

Similarly, for each b ∈ B, add the following vector to B′, where we’ll define adjb ∈ Zc+1 later:

b′ = g(b) = Nd0c+1(adjb)b.

Now pick any a ∈ A. We’ll construct adja so that the following equalities are both
satisfied:

‖a′ − u‖2
2 = n4kd2 = ‖adja‖

2
2 .

Define the first element adja(0) = (‖a‖2
2 + 1)/2. Since ‖a‖2

2 ≤ n2kd, we can then use
Lemma 7 to find c integers adja(1), . . . , adja(c) so that ‖adja‖

2
2 = n4kd2. Furthermore,

‖a′ − u‖2
2 = ‖adja − 10c‖2

2 + ‖a‖2
2

= ‖adja‖
2
2 − 2 · adja(0) + 1 + ‖a‖2

2

= n4kd2.

For each b ∈ B, we can similarly construct adjb so that ‖b′ − v‖2
2 = ‖adjb‖

2
2 = n4kd2.
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We claim that

EMD(A′, B′) = 2(n− 1)n2kd+ min
a∈A,b∈B

√
N2d+ 2n4kd2 + ‖a− b‖2

2.

To prove this claim, notice that ‖u− v‖2 ≥ N
√
d and ‖a′ − b′‖2 ≥ N

√
d for every

a′ ∈ A′ \ {v} and b′ ∈ B′ \ {u}, whereas ‖a′ − u‖2 � N
√
d/n and ‖b′ − v‖ � N

√
d/n. This

means that the optimal matching between A′ and B′ will minimize the number of (u, v)
and (a′, b′) edges. Hence, exactly one element of A′ \ {v} will be matched to an element
in B′ \ {u}. So if M denotes this optimal matching, and x′ = f(x) ∈ A′ is matched with
y′ = g(y) ∈ B′, then the cost of M is

cost(M) =

 ∑
a′∈A′\{v,x′}

‖a′ − u‖2 +
∑

b′∈B′\{u,y′}

‖b′ − v‖2

+ ‖x′ − y′‖2

= 2(n− 1)n2kd+
√
N2d+ ‖adjx‖

2
2 +

∥∥adjy∥∥2
2 + ‖x− y‖2

2

= 2(n− 1)n2kd+
√
N2d+ 2n4kd2 + ‖x− y‖2

2.

The claim follows. So the algorithm is simply: run the EMD algorithm on (A′, B′) and use
the computed matching cost to find the closest pair distance, according to the above formula.

The time complexity of constructing A′, B′ is O(n5/4d1/8), dominated by computing a
square decomposition for each vector. Since A′ and B′ are sets of O(n) vectors in Z2d+2c+2

with entries bounded by max(N,n2kd) ≤ n16k, the EMD between A′ and B′ can be computed
in O(n2−ε) time. Thus, the overall algorithm takes O(n2−ε) time. J

Theorem 1 follows from the above reduction and Theorem 6.

4 Approximate EMD under the Hitting Set Conjecture

In this section we prove hardness of approximation for the EMD matching problem when
the approximately optimal matching must be reported. Note that the techniques from
the previous section do not immediately generalize to this scenario, since the reduction in
Theorem 8 is not approximation-preserving. A multiplicative error of 1 + ε in the EMD
algorithm would induce an additive error of Õ(εn16k) in the closest pair algorithm, due to
the large integers constructed in the reduction. A bucketing scheme, to ensure that the
diameter of the input point set is within a constant factor of the closest pair, could eliminate
the dependence on the values of the input coordinates, yielding a multiplicative error of
only 1 + Õ(εn).

However, (1 + ε)-approximate closest pair is only quadratically hard for ε = o(1) [21]; for
any constant ε > 0, there is a subquadratic (1 + ε)-approximation algorithm [16, 4]. Thus,
the above arguments would only yield (1 + Õ(1/n))-approximate hardness. Furthermore, the
factor of n loss intuitively feels intrinsic to the approach of reducing from closest pair, since
the EMD is the sum of n distances. Thus, a different approach seems necessary if we are to
achieve hardness for ε = ω(1/n).

Our method broadly consists of two steps. First, we show that EMD can encode
orthogonality, by reducing approximate Maximum Orthogonal Matching (the problem of
reporting a maximum matching in the implicit graph with an edge for each orthogonal pair)
to approximate EMD matching. Second, we show that approximate Maximum Orthogonal
matching can solve an instance (A,B) of Hitting Set by finding an orthogonal pair (a, b) for
every a ∈ A if possible, even if the set of orthogonal pairs does not constitute a matching.

APPROX/RANDOM 2019
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We start by proving that asymmetric EMD matching reduces to EMD matching for the
appropriate choices of error bounds. The reduction pads the smaller set of vectors A with
a vector that is equidistant from the opposite set B, so that its contribution to the earth
mover distance can be accounted for. Of course, it is first necessary to transform the vectors
so that an equidistant vector exists.

I Lemma 9. Suppose that (1+ε)-approximate EMD matching in D dimensions can be solved
in T (n,D) time. Then (1 + ε)-approximate asymmetric EMD matching in d dimensions can
be solved with an additional additive factor of nε

√
d in T (n, 2d) time.

Proof. Let A,B ⊆ {0, 1}d with |A| ≤ |B|. Define sets A′, B′ ⊆ {0, 1}2d by mapping a ∈ A
to the vector

(a1, . . . , ad, 1− a1, . . . , 1− ad)

and similarly mapping b ∈ B to

(b1, . . . , bd, 1− b1, . . . , 1− bd).

Then add |B| − |A| copies of the zero vector to A′.
Now |A′| = |B′|, so we can run the approximate EMD algorithm on A′ and B′ to find

some bijection π : A′ → B′ such that∑
a′∈A′

‖a′ − π(a′)‖2 ≤ (1 + ε)EMD(A′, B′).

Each vector b′ ∈ B′ has ‖b′‖2
2 = d, so the distance from the zero vector to each match is

exactly
√
d. And for any a ∈ A and b ∈ B which map to a′ ∈ A′ and b′ ∈ B′,

‖a′ − b′‖2
2 = 2 ‖a− b‖2

2 .

Hence, the cost of π is∑
a′∈A′

‖a′ − π(a′)‖2 = (|B| − |A|)
√
d+
√

2 ·
∑
a∈A
‖a− π(a)‖2

and the optimal cost is

EMD(A′, B′) = (|B| − |A|)
√
d+
√

2 · EMD(A,B).

It follows that∑
a∈A
‖a− π(a)‖2 ≤

ε√
2

(|B| − |A|)
√
d+ (1 + ε)EMD(A,B),

which is the stated error bound. J

Next, we reduce approximate Maximum Orthogonal Matching to approximate asymmetric
EMD matching. The general idea, given input sets (A,B), is to deform A and B so that
orthogonal pairs (a, b) are mapped to pairs (a′′, b′′) with distance d0, and all other pairs are
mapped to pairs with distance at least d1 > d0. Then add |A| auxiliary vectors to B, each
with distance exactly d1 from all vectors in A. Thus, in an optimal matching, each vector of
A is either matched with an orthogonal vector at distance d0, or some vector with distance
exactly d1. This introduces a nonlinearity, ensuring that in the additive matching cost, an
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orthogonal pair’s contribution is not “cancelled out” by the contribution of a pair with dot
product 2, for instance. A similar trick was used by [8] in the context of edit distance, another
“additive” metric.

The following simple lemma will be useful:

I Lemma 10. There are maps φ1, φ2 : {0, 1}d → {0, 1}3d such that for any a, b ∈ {0, 1}d,

φ1(a) · φ2(b) = d− (a · b).

Furthermore, the maps can be evaluated in O(d) time.

Proof. Each dimension expands into three dimensions as follows:

ai 7→ (φ1(a)3i, φ1(a)3i+1, φ1(a)3i+2) = (ai, 1− ai, 1− ai)

bi 7→ (φ2(b)3i, φ2(b)3i+1, φ2(b)3i+2) = (1− bi, bi, 1− bi).

Then for each i,
3i+2∑
j=3i

φ1(a)jφ2(b)j = ai(1− bi) + (1− ai)bi + (1− ai)(1− bi) = 1− aibi.

Summing over i = 1, . . . , d we get φ1(a) · φ2(b) = d− (a · b) as desired. J

I Lemma 11. Suppose that (1 + ε)-approximate asymmetric EMD in D dimensions can
be solved with an additional additive factor of nε

√
D in T (n,D) time. Then the Maximum

Orthogonal Matching problem in d dimensions can be solved up to an additive factor of
O(nεd) in T (2n, 12d+ 1) time.

Proof. Let A,B ⊆ {0, 1}d with |A| ≤ |B| = n. Define A′, B′ ⊆ {0, 1}3d by A′ = φ1(A) and
B′ = φ2(B), where φ1, φ2 are as defined in Lemma 10.

Let d′ = 3d for convenience. Now we construct sets A′′, B′′ ⊆ {0, 1}4d′+1 as follows,
starting from sets A′ and B′. We add 2d′ dimensions to ensure that ‖a′′‖2

2 = ‖b′′‖2
2 = d′

for every a′′ ∈ A′′ and b′′ ∈ B′′ without changing the inner products. Add another d′ + 1
dimensions, extending each a′′ ∈ A′′ so that a′′3d′+1 = 1 and a′′i = 0 otherwise; and extend
each b′′ ∈ B′′ so that b′′3d′+2 = 1 and b′′i = 0 otherwise. Finally augment B′′ with |A| copies
of the vector v ∈ {0, 1}4d′+1 with 3d′ zeros followed by d′ + 1 ones.

Notice that for every a ∈ A and b ∈ B corresponding to some a′′ ∈ A′′ and b′′ ∈ B′′,

‖a′′ − b′′‖2
2 = ‖a′′‖2

2 + ‖b′′‖2
2 − 2a′′ · b′′ = 2(d′ + 1)− 2a′′ · b′′ = 2a · b+ 4d+ 2,

and

‖a′′ − v‖2
2 = 2(d′ + 1)− 2a′′ · v = 4d+ 4.

Now we run the approximate asymmetric EMD matching algorithm on A′′ and B′′,
yielding an injection π : A′′ → B′′ such that∑

a′′∈A′′
‖a′′ − π(a′′)‖2 ≤ |B

′′|ε
√

4d′ + 1 + (1 + ε)EMD(A′′, B′′).

For each a′′ ∈ A′′, if ‖a′′ − π(a′′)‖2
2 > 4d+4, then we can set π(a′′) = v, preserving injectivity

and decreasing the cost of the matching. Therefore every edge has cost either
√

4d+ 2 or√
4d+ 4. In particular, if there are m orthogonal pairs in the matching, the total cost is∑
a′′∈A′′

‖a′′ − π(a′′)‖2 = m
√

4d+ 2 + (|A| −m)
√

4d+ 4.

APPROX/RANDOM 2019



12:10 Conditional Hardness of Earth Mover Distance

By the same argument as above, the minimum cost matching is obtained by maximizing
the number of orthogonal pairs. If the maximum possible number of orthogonal pairs in a
matching is mOPT, then

EMD(A′′, B′′) = mOPT
√

4d+ 2 + (|A| −mOPT)
√

4d+ 4.

Substituting these expressions into the approximation guarantee and solving, we get that
m ≥ mOPT −O(εnd) as desired. J

In the above lemma we assumed that we are given an algorithm for asymmetric EMD
matching which has both a multiplicative error of 1 + ε and an additive error of nε

√
d, since

this is the error introduced by the reduction to (symmetric) EMD. However, we are also
interested in the hardness of (1 + ε)-approximate asymmetric EMD matching in its own
right. Removing the additive error from the hypothesized algorithm in Lemma 11 directly
translates to an improved Maximum Orthogonal Matching algorithm, with an additive error
of O(ε|A|d) instead of O(εnd), where n = |A|+ |B|:

I Lemma 12. Suppose that there is an algorithm which solves (1+ε)-approximate asymmetric
EMD matching in T (|A| + |B|, d) time, where the input is A,B ⊆ {0, 1}d. Then the
Maximum Orthogonal Matching problem can be solved up to an additive error of O(ε|A|d) in
T (2n, 12d+ 1) time.

Now we could reduce OV to approximate Maximum Orthogonal Matching. The proof of
the following theorem is given in Appendix B for completeness.

I Theorem 13. Let d = ω(logn). Under the Orthogonal Vectors Conjecture, for any
ε > 0 and δ ∈ (0, 1), (1 + 1/nδ)-approximate EMD matching in {0, 1}d cannot be solved in
O(n2δ−ε) time.

However, Theorem 13 does not prove quadratic hardness for any approximation factor
larger than (1 + 1/n), and in fact breaks down completely for (1 + 1/

√
n)-approximate

EMD matching.
Instead, we reduce Hitting Set to approximate Maximum Orthogonal Matching, through

approximate Find-OV. These two problems are structurally similar; the technical difficulty is
that Find-OV may require finding many orthogonal pairs even when the largest orthogonal
matching may be small, in which case applying the Maximum Orthogonal Matching algorithm
would result in little progress. We resolve this with the following insight: if many vectors
in set A are orthogonal to at least one vector in set B but there is not a large orthogonal
matching, then some vector in set B is orthogonal to many vectors in A. But these vectors
can be found efficiently by sampling.

In the proof of the following theorem we formalize the above idea.

I Theorem 14. Let d = d(n) be a dimension. Suppose that the Maximum Orthogonal
Matching problem can be solved up to an additive error of E(|A|, |B|) in O(n2−εpoly(d))
time, where the input is A,B ⊆ {0, 1}d. Then for any (sufficiently small) α > 0 there is
some γ > 0 such that Find-OV can be solved with high probability up to an additive error of
E(|A|, 2|B|1+α) in O(n2−γpoly(d)) time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. Let α > 0 be a constant we choose later. We
may safely assume that α < 1. Let the degree of a vector a ∈ A, denoted d(a), be the number
of b ∈ B which are orthogonal to a. The algorithm for Find-OV consists of three steps:
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1. For every a ∈ A, sample n1−α/4 vectors from B to get an estimate d̂(a) of d(a). Mark
and remove the vectors for which d̂(a) ≥ nα/2.

2. Next, for every b ∈ B, sample n1−α/2 vectors from A to get an estimate d̂(b) of d(b). Let
Blarge ⊆ B be the set of vectors for which d̂(b) ≥ nα. For each b ∈ Blarge, iterate over A
and mark and remove each a ∈ A for which a · b = 0. Now remove Blarge from B.

3. Run the Maximum Orthogonal Matching algorithm on the remaining set A, and the
multiset consisting of 2nα copies of each remaining b ∈ B. This produces a set of pairs
(ai, bi) where ai · bi = 0. Output the union of {ai}i and the set of all vectors marked and
removed from A in the previous steps.

In the first step, a Chernoff bound shows that with high probability, every vector for
which d(a) ≥ 2nα/2 is marked and removed. Now summing over the remaining vectors,∑

a∈A
d(a) =

∑
b∈B

d(b) ≤ 2n1+α/2.

In the second step, with high probability Blarge contains no b ∈ B for which d(b) ≤ 1
2n

α,
by a Chernoff bound on each such b ∈ B. Therefore |Blarge| ≤ 4n1−α/2. Furthermore, with
high probability Blarge contains every b ∈ B for which d(b) ≥ 2nα.

So after the first two steps, every remaining vector b ∈ B has degree at most 2nα. Suppose
there are t vectors a ∈ A with positive degree, and t′ of these are found in the first two steps.
Then by the degree bound, the remaining t− t′ vectors inject into 2nα copies of B. Therefore
there is an orthogonal matching of size at least t− t′. By the approximation guarantee of
the Maximum Orthogonal Matching algorithm, we find an orthogonal matching of size at
least t− t′ − 2n(1+α)δ in step 3. Overall, we find at least t− 2n(1+α)δ vectors with positive
degree, which gives the desired approximation guarantee.

The time complexity is O((n2−α/4 + n(2−ε)(1+α))poly(d)). This is subquadratic in n for
sufficiently small α. J

As the final step of the reduction, we show that approximate Find-OV can solve Hitting
Set. Note that exact Find-OV obviously solves Hitting Set. It’s also clear that Find-OV with
an additive error of n1−ε solves Hitting Set: simply run Find-OV, and then exhaustively
check the remaining unpaired vectors of A – unless there are more than n1−ε unpaired vectors,
in which case there must be a hitting vector.

To reduce Hitting Set to Find-OV with additive error of Θ(n), the essential idea is simply
to repeatedly run Find-OV on the remaining unpaired vectors. If the Find-OV algorithm
has an additive error of n/2, then given an input A,B with no hitting vector, the algorithm
will find orthogonal pairs for at least n/2 vectors of A. Naively, we’d like to recurse on the
remaining half of A. Unfortunately, the set B cannot similarly be halved, so the error bound
in the next step would not be halved. Thus, the algorithm might make no further progress.

The workaround is to duplicate every unpaired vector of A before recursing. If n/2
orthogonal pairs are found but every vector of A has been duplicated once, then matches
are found for at least n/4 distinct vectors. This suffices to terminate the recursion in
O(logn) steps.

I Theorem 15. Suppose that Find-OV in d dimensions can be solved up to additive error of
n/2 in T (n, d) time. Then Hitting Set in d dimensions can be solved in O((T (n, d)+nd) logn)
time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. Our hitting set algorithm consists of
t = dlogne+ 1 phases. Initialize R1 = A.
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In phase i ≥ 1, run Find-OV on (2i−1Ri, B), where 2iRi is the multiset with 2i copies of
each vector in Ri. Let P ⊆ A be the output multiset and let P ′ be the corresponding set
(removing duplicates). Set Ri+1 = Ri \ P ′. If |Ri+1| > n/2i, report failure (i.e. there is a
hitting vector). Otherwise, proceed to the next phase. If phase t is complete, report success
(i.e. no hitting vector).

Suppose that the algorithm reports success. Then after phase t, we have Rt+1 ≤ n/2t < 1.
Then for every a ∈ A there was some phase i in which a was removed from Ri, and therefore
was orthogonal to some b ∈ B. So there is no hitting vector.

Suppose that the algorithm reports failure in phase i. Then |Ri| ≤ n/2i−1 and |Ri+1| >
n/2i, so |P ′| < n/2i. Therefore |P | ≤ 2i−1|P ′| < n/2. By the Find-OV approximation guar-
antee, not every element of Ri is orthogonal to an element of B. So there is a hitting vector.

The time complexity is dominated by O(logn) applications of Find-OV on inputs of
size O(n), along with O(nd) extra processing in each phase. Thus, the time complexity is
O((T (n, d) + nd) logn). J

The next theorem shows that hardness for approximate EMD matching (conditioned on
the Hitting Set Conjecture) follows from chaining together the above reductions.

I Theorem 16. If there are any ε, δ > 0 such that (1+1/nδ)-approximate EMD matching can
be solved in O(n2−ε) time for some dimension d = ω(logn), then the Hitting Set Conjecture
is false.

Proof. Fix d = ω(logn), and assume without loss of generality that d(n) is polylogarithmic.
Let ε, δ > 0 and suppose that (1+1/nδ)-approximate EMD matching can be solved in O(n2−ε)
time. Then (1 + 1/nδ)-approximate asymmetric EMD can be solved with an additional
additive error of n1−δ

√
d with the same time complexity, by Lemma 9. Hence, the Maximum

Orthogonal Matching problem can be solved with an additive error of n1−δd in the same
time, by Lemma 11.

Applying Theorem 14 with parameter α = δ, we get a randomized algorithm for Find-OV
with an additive error of O(n1−δ2

d1+δ) and time complexity O(n2−γ) for some γ > 0. For
sufficiently large n, the error is at most n/2. Thus, we can apply Theorem 15 to get a
randomized algorithm for Hitting Set with time complexity Õ(n2−γ), which contradicts the
Hitting Set Conjecture. J

Furthermore, we obtain stronger hardness of approximation for asymmetric EMD matching:

I Theorem 17. Let d = ω(logn) and η = 1/ω(logn). If there is a truly subquadratic
(1 + η)-approximation algorithm for asymmetric EMD matching in d dimensions, then the
Hitting Set Conjecture is false.

Proof. Fix d′ = ω(logn) and η = 1/ω(logn) and ε > 0. Suppose that there is an O(n2−ε)
time algorithm which achieves a (1 + η) approximation for asymmetric EMD matching in
d′ dimensions. Set d = min(d′,

√
(logn)/η). Since Rd embeds isometrically in Rd′ , the

algorithm also achieves a (1 + η) approximation for asymmetric EMD in d dimensions.
By Lemma 12, the Maximum Orthogonal Matching problem can be solved up to an

additive error of O(η|A|d) in O(d) dimensions and O(n2−ε) time. By Theorem 14 there is
some γ > 0 such that Find-OV can be solved up to an additive error of O(ηnd) in O(d)
dimensions and O(n2−γ) time. By choice of d we have ηnd = o(n), so for sufficiently large n
the algorithm achieves additive error of at most n/2. Therefore by Theorem 15, Hitting Set
can be solved in O(d) dimensions and Õ(n2−ε) time. Since d = ω(logn), this contradicts the
Hitting Set Conjecture. J
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A Hardness of Low-Rank Minimum Weighted Assignment

The methods we used to prove hardness of exact EMD in low dimensions can be adapted
to prove hardness of minimum weighted assignment with low-rank weight matrices, under
the Orthogonal Vectors Conjecture. In particular, we show in the following theorem that
bichromatic closest pair in d dimensions can be reduced to minimum weighted assignment
with a rank-O(d) weight matrix. The reduction algorithm uses the same input transformation
as Theorem 8, and then solves minimum weighted assignment on the matrix M with entries
Mij =

∥∥A′i −B′j∥∥2
2, where A

′ and B′ are the transformed input sets. The key is that M has
rank O(d), and its minimum weight assignment encodes the squared closest pair distance of
the input – just as the EMD of the transformed input in Theorem 8 encoded the closest pair
distance of the input.

I Theorem 18. Fix a dimension d = d(n) ≤ n, and let ε > 0. Suppose that there is an
algorithm which solves minimum weighted assignment in O(n2−ε) time, if the weight matrix
has rank at most O(d). Then bichromatic closest pair in d dimensions can be solved in
O(n2−ε) time.

Proof. Let A and B be two sets of n vectors in d dimensions, with entries in {1, . . . , nk} for
some constant k > 0. Apply the transformation described in Theorem 8 to construct sets
A′, B′ ∈ {0, . . . , n16k}2d+2c+2 where c is as defined in the proof of the theorem. Define

SQEMD(A′, B′) = min
σ:A′→B′

∑
a′∈A′

‖a′ − σ(a′)‖2
2

where σ ranges over all bijections from A′ to B′. Since ‖u− v‖2
2 ≥ N2d and ‖a′ − b′‖2

2 ≥ N2d

for every a′ ∈ A′\{v} and b′ ∈ B′\{u}, whereas ‖a′ − u‖2
2 � N2d/n and ‖b′ − v‖2

2 � N2d/n,
the optimal matching σ minimizes the number of (u, v) and (a′, b′) edges. In particular,
exactly one element of A′ \ {v} is matched to an element of B′ \ {u}. Thus, paralleling the
proof of Theorem 8, we get

SQEMD(A′, B′) = 2(n− 1)n4kd2 +
(
N2d+ 2n4kd2 + min

a∈A,b∈B
‖a− b‖2

2

)
.

Hence, to compute the bichromatic closest pair distance between A and B, it suffices to
compute SQEMD(A′, B′). Representing A′ and B′ as n× (2d+ 2c+ 2) matrices, let M be
the n× n matrix defined by Mij =

∥∥A′i −B′j∥∥2
2. Then observing that

Mij =
2d+2c+2∑
k=1

(A′ik −B′jk)2 =
2d+2c+2∑
k=1

(A′ik)2 +
2d+2c+2∑
k=1

(B′jk)2 − 2
2d+2c+2∑
k=1

A′ikB
′
jk,

we can write M as the sum of 2d + 2c + 4 rank-1 matrices, so rank(M) ≤ 2d + 2c + 4.
So by assumption, the minimum weight perfect matching in the complete bipartite graph
determined byM can be found in O(n2−εpoly(d)) time. But the cost of the optimal matching
is precisely SQEMD(A′, B′). J

Applying Theorem 6 completes the proof of Theorem 2.

B Proof of Theorem 13

The theorem follows immediately from the reduction from Maximum Orthogonal Matching
to EMD matching shown in section 4, and this next proposition.
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I Proposition 19. Suppose the Maximum Orthogonal Matching problem can be solved up
to an additive factor of nδ in O(nγ) time where δ < 1/2. Then OV can be solved in
O(nγ/(1−δ)) time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. We construct multisets A′ and B′ which
consist of 2nδ/(1−δ) copies of each a ∈ A, and 2nδ/(1−δ) copies of each b ∈ B, respectively. We
then run our approximate Maximum Orthogonal Matching algorithm on A′ and B′. If any
orthogonal pair is found, we return it; otherwise we return that there is no orthogonal pair.

Since |A′| = |B′| = 2n1/(1−δ), the time complexity of this algorithm is O(nγ/(1−δ)). It is
clear that if A and B have no orthogonal pair, then A′ and B′ have no orthogonal pair, so
the algorithm correctly returns “no pair”.

Suppose that there are a ∈ A and b ∈ B with a · b = 0 but the algorithm returns “no
pair”. Then the matching found by the algorithm had no orthogonal pairs. However, there
is a matching consisting of 2nδ/(1−δ) pairs. Since |B′|δ < 2nδ/(1−δ), this contradicts the
approximation guarantee of the Maximum Orthogonal Matching algorithm. J

C Hardness of (k, 2k)-Find-OV

The (k, 2k)-Find-OV problem provides some sense of the relative “powers” of the Orthogonal
Vectors Conjecture and the Hitting Set Conjecture, as well as another example of how
the Hitting Set Conjecture can be used to explain hardness of approximation problems.
Reducing from OV, we get the following hardness result, and it is not clear how to make any
improvement. Note that this proof extends to the (1, 2k)-Find-OV problem, for which this
lower bound is tight, due to a random sampling algorithm.

I Proposition 20. Fix δ ∈ (0, 1). Assuming OVC, any algorithm for (nδ, 2nδ)-Find-OV
requires Ω(n2−δ−o(1)) time.

Proof. Suppose that there exists an O(n2−δ−ε) time algorithm find for (nδ, 2nδ)-Find-OV.
Here is an algorithm for OV: given sets A,B ⊆ {0, 1}d with |A| = |B| = n, duplicate each
a ∈ A and each b ∈ B exactly 2nδ/(2−δ) times. If the original number of orthogonal pairs was
r, then the new number is 4rn2δ/(2−δ). For r ≥ 1, this exceeds 2(n · 2nδ/(2−δ))δ, so applying
find yields a positive number of orthogonal vectors if and only if r > 0. It’s easy to check
that the time complexity is subquadratic. J

On the other hand, under the Hitting Set Conjecture, we can obtain quadratic hardness.
When k = n/2, hardness follows from Theorem 15, but it holds in greater generality. In
particular, we provide a proof of conditional hardness for k =

√
n, and it extends naturally

to any k = nγ for γ ∈ (0, 1). The proof takes inspiration from the reduction from Hitting Set
to OV [2], with a few extra twists.

I Theorem 21. If the (
√
n, 2
√
n)-Find-OV problem can be solved in O(n2−ε) time for some

ε > 0, then Hitting Set can be solved in O(n2−δ) time for some δ > 0.

Proof. Let find be the presupposed algorithm for (
√
n, 2
√
n)-Find-OV. Set α = ε/7. Let

A,B ⊆ {0, 1}d with |A| = |B| = n. Without loss of generality, assume that no vector is
all-zeroes. Here is an algorithm:
1. For each a ∈ A, randomly sample n1−α vectors from B. If any of these is orthogonal to a,

mark a and remove it from A, replacing it with an all-ones vector.
2. Set k = n1/3−α. Partition A into sets A1, . . . , Ak of approximately equal size, and

similarly partition B into sets B1, . . . , Bk. For each pair (Ai, Bj):
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a. Apply find to (Ai, Bj).
b. If the output is not

√
n/k orthogonal pairs, then continue to the next pair (Ai, Bj).

c. Otherwise, suppose that the output is {(am, bm)}
√
n/k

m=1 . For each vector a ∈ {am}
√
n/k

m=1 ,
mark a and remove it from Ai (and from A), replacing it with an all-ones vector.

d. Go to (a).
3. If the number of unmarked input vectors exceeds 2n1−3α/2, return “NO” and exit.
4. For each a ∈ A, if a is not the all-ones vector, iterate over all b ∈ B, and mark a if any

b ∈ B is orthogonal.
5. Return “YES” if every vector originally in A is now marked, and “NO” otherwise.
We claim that this algorithm solves Hitting Set in strongly subquadratic time. Correctness
is relatively simple: a vector a ∈ A is only marked by the above algorithm if some b ∈ B
is found for which a · b = 0. Thus, if some a ∈ A is a hitting vector for B, then it is never
marked, so the algorithm returns “NO”.

Conversely, suppose that every a ∈ A is orthogonal to some b ∈ B. Then the number
of unmarked input vectors in Step 3 is at most the number of remaining orthogonal pairs.
But each (Ai, Bj) contains at most 2

√
n/k orthogonal pairs after Step 2 finishes, so the

number of remaining orthogonal pairs in Step 3 is at most k2(2
√
n/k) = 2n1−3α/2. Thus,

the algorithm continues to Step 4. Every a ∈ A which has not been marked by the end of
Step 2 is tested against every b ∈ B in Step 4. Therefore every vector is marked, so the
algorithm returns “YES”.

Turning to time complexity, Step 1 takes O(n2−α) time. The complexity of Step 2 is
dominated by the calls to find. For each pair (Ai, Bj) there is at most one call to find for
which the output is not

√
n/k orthogonal pairs. Hence, there are k2 = n2/3−2α such “failed”

calls. To bound the number of “successful” calls to find, for which the output is
√
n/k

orthogonal pairs, note that after Step 1, with high probability each a ∈ A is orthogonal
to at most n2α vectors b ∈ B, so the total number of orthogonal pairs is at most n1+2α.
Each successful call eliminates

√
n/k = n1/3+α/2 orthogonal pairs, so there are at most

n2/3+3α/2 successful calls. This bound dominates the bound on failed calls. Each call takes
time O((n/k)2−ε), so the time complexity of Step 2 is asymptotically

n( 2
3 +α)(2−ε)n

2
3 + 3α

2 = n2− ε
6−

ε2
7 .

Step 3 takes negligible time. Finally, in Step 4, there are at most 2n1−3α/2 vectors a ∈ A
which are not the all-ones vector (since each of these is unmarked), so the complexity is
O(n2−3α/2).

Hence, the overall time complexity is bounded by O(n2−ε/7). J
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