
Improved Algorithms for Time Decay Streams
Vladimir Braverman
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
vova@cs.jhu.edu

Harry Lang
MIT CSAIL, Cambridge, MA, USA
harry1@mit.edu

Enayat Ullah
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
enayat@jhu.edu

Samson Zhou
School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
samsonzhou@gmail.com

Abstract
In the time-decay model for data streams, elements of an underlying data set arrive sequentially
with the recently arrived elements being more important. A common approach for handling large
data sets is to maintain a coreset, a succinct summary of the processed data that allows approximate
recovery of a predetermined query. We provide a general framework that takes any offline-coreset
and gives a time-decay coreset for polynomial time decay functions.

We also consider the exponential time decay model for k-median clustering, where we provide a
constant factor approximation algorithm that utilizes the online facility location algorithm. Our
algorithm stores O(k log(h∆) + h) points where h is the half-life of the decay function and ∆ is the
aspect ratio of the dataset. Our techniques extend to k-means clustering and M -estimators as well.

2012 ACM Subject Classification Theory of computation→ Facility location and clustering; Theory
of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Streaming algorithms, approximation algorithms, facility location and clus-
tering

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.27

Category APPROX

Acknowledgements This material is based upon work supported in part by the National Science
Foundation under Grant No. 1447639, by the Google Faculty Award and by DARPA grant N660001-
1-2-4014. Its contents are solely the responsibility of the authors and do not represent the official
view of DARPA or the Department of Defense.

1 Introduction

The streaming model of computation has become an increasingly popular model for processing
massive datasets. In this model, the data is presented sequentially, and the objective is
to answer some pre-defined query. The overwhelmingly large size of the dataset imposes
a number of restrictions on any algorithm designed to answer the pre-defined query. For
example, a streaming algorithm is permitted only a few passes, or in many cases, only a
single pass over the data. Moreover, the algorithm should also use space sublinear in, or even
logarithmic in, the size of the data. For more details on the background and applications of
the streaming model, [4, 45, 1] provide excellent surveys.

© Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@cs.jhu.edu
mailto:harry1@mit.edu
mailto:enayat@jhu.edu
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Improved Algorithms for Time Decay Streams

Informally, a coreset for a given problem is a small summary of the dataset such that the
cost of any candidate solution on the coreset is approximately the same as the cost in the
original set. Coresets have been used in a variety of problems, including generalized facility
locations [29], k-means clustering [31, 9], principal component analysis [33], and `p-regression
[24]. Coresets also have a number of applications in distributed models (see [39, 44, 6, 3],
for example). To maintain the coresets throughout the data stream, one possible approach
is the so called merge-and-reduce method, in which the multiple sets may be adjusted and
combined. Several well-known coreset constructions [37, 17] for the k-median and k-means
problems are based on the merge-and-reduce paradigm.

1.1 Motivation
Many applications discard obsolete data, choosing to favor relatively recent data to base
their queries. This motivates the time decay model, in which there exists a function w so
that the weight of the tth most recent item is w(t). Note that this is a generalization of both
the insertion-only streaming model, where w(t) = 1 for all t, and the sliding-window model,
where w(t) = 1 for the most recent W items, and w(t) = 0 for t > W . In this paper, we
study the problem of maintaining coresets over a polynomial decay model, where w(t) = 1

ts

for some parameter s > 0, and an exponential decay model, where w(t) = 2 T −t+1
h at time T

for some half-life parameter h > 0.
Although exponential decay model is well-motivated by natural phenomena that exhibit

half-life behavior, [20] notices that exponential decay and the sliding window model is often
insufficient for many applications because the decay occurs too quickly and suggests that
polynomial decay may be a reasonable alternative for some applications, such as availability
of network links. For example, consider a network link that fails at every time between 10
and 60 and a second network link that fails once at time 75. Intuitively, it seems like the
second link should be better, but under many parameters, the exponential decay model and
sliding window model will both agree that the first link is better. Fortunately, under the
polynomial decay model, events that occur near the same time have approximately the same
weight, and we will obtain some view in which the first link is preferred [40]. In practice, time
decay functions have been used in natural language understanding to give more importance
to recent utterances than the past ones [47].

Organization. The rest of the paper is organized as follows. In Section 2, we summarize
the main results of the paper and the algorithmic approaches. In Section 3, we discuss
the related work, and in Section 4, we formalize the problem and discuss the preliminaries
required. In Sections 5 and 6, we handle the polynomial and exponential decay, respectively,
in detail, wherein we present the algorithmic details as well as the complete analysis.

2 Our Contributions

We summarize our results and give a high-level idea of our approach for problems in the
polynomial and exponential decay models in the following subsections respectively. The
reader is encouraged to go through Sections 5 and 6 for details.

2.1 Polynomial decay
In the polynomial decay model, a stream of points P arrives sequentially and the weight
of the tth most recent point, denoted as w(t), is w(t) = 1

ts where s > 0 is a given constant
parameter of the decay function. We first state a theorem that shows that we can use an
offline coreset construction mechanism to give a coreset for the polynomial decay model.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:3

I Theorem 1. Given an algorithm that takes a set of n points as input and constructs an
ε-coreset of F (n, ε) points in O (nT (ε)) time, there exists a polynomial decay algorithm that
maintains an ε-coreset while storing O

(
ε−1 lognF

(
n, ε

logn

))
points and with update time

O
(
ε−1 logn F (n, ε)T (ε/ logn)

)
.

Theorem 1 applies to any time-decay problem on data streams that admits an approximation
algorithm using coresets. Among its applications are the problems of k-median and k-means
clustering,M -estimator clustering, projective clustering, and subspace approximation. We list
a few of these results in Table 1. Our result is a generalization of the vanilla merge-and-reduce
approach used to convert offline coresets to streaming counterparts. In particular, plugging
in s = 0, we get the vanilla streaming model, and the theorem recovers the corresponding
guarantees.

Table 1 Coresets for some problems in polynomial decay streams.

Problem Coreset size Offline algorithm

Metric k-median clustering O
(
s
ε3 k log k log4 n

)
[30]

Metric k-means clustering O
(
s
ε3 k log k log4 n

)
[9]

Metric M -estimator O
(
s
ε3 k log k log4 n

)
[9]

jth subspace approximation O
(
j2s
ε4 log8 n log

(logn
ε

))
[30]

Low rank approximation O
(
s
ε2 kd logn

)
[34]

Approach. A natural starting point would be to attempt to generalize existing sliding
window algorithms to time decay models. These algorithms typically use a histogram data
structure [14], in which multiple instances of streaming algorithms are started at various
points in time, one of which well-approximates the objective evaluated on the data set
represented by the sliding window. However, generalizing these histogram data structures to
time-decay models does not seem to work since the weights of all data points changes upon
each new update in time-decay model, whereas streaming algorithms typically assume static
weights for each data point.

Instead, our algorithm partitions the stream into blocks, where each block represents a
disjoint collection of data point between certain time points. Each arriving element initially
begins as its own block, containing one element. The algorithm maintains an unweighted
coreset for each block, and merges blocks (i.e corresponding coresets) as they become older.
However, at the end, each block is to be weighted according to some function, and so the
algorithm chooses to merge blocks when the weights of the blocks become “close”. Thus, a
coreset for each block will represent the set of points well, as the weights of the points in
each block do not differ by too much.

2.2 Exponential decay
We also provide an algorithm that achieves a constant approximation for k-median clustering
in the exponential decay model. Our guarantees also extend to k-means clustering and
M -estimators.

Given a set P of points in a metric space, let ∆ denote its aspect ratio i.e the ratio
between the largest and (non-zero) smallest distance between any two points in P . The
weight of the tth most recent point at time T is w(t) = 2 T −t+1

h where h > 0 is the half-life
parameter of the exponential decay function.

APPROX/RANDOM 2019

27:4 Improved Algorithms for Time Decay Streams

I Theorem 2. There exists a streaming algorithm that given a stream P of points with
exponentially decaying weights, with aspect ratio ∆ and half-life h, produces an O (1)-
approximate solution to k-median clustering. The algorithm runs in O (nk log(h∆)) time and
uses O (k log(h∆) + h) space.

Approach. Although our previous framework will work for other decay models, the algorithm
may use prohibitively large space. The intuition behind the polynomial decay approach
is that a separate coreset is maintained for each set of points that roughly have the same
weight. In other words, the previous framework maintains a separate coreset each time the
weight of the points decrease by some constant amount, so that if R is the ratio between
the largest weight and the smallest weight, then the total number of coresets stored by the
algorithm is roughly logR. In the polynomial decay model, the number of stored coresets
is O (logn), but in the exponential decay model, the number of stored coresets would be
O (n), which would no longer be sublinear in the size of the input. Hence, we require a new
approach for the exponential decay model.

Instead, we use the online facility location (OFL) algorithm of Meyerson [43] as a
subroutine to solve k-median clustering in the exponential decay model. In the online facility
location problem, we are given a metric space along with a facility cost for each point/location
that appears in the data stream. The objective is to choose a (small) number of facility
locations to minimize the total facility cost plus the service cost, where the service cost of a
point is its distance to the closest facility. For more details, please see Section 6.

Our algorithm for the exponential time decay model proceeds on the data stream, working
in phases. Each phase corresponds to an increasing “guess” for the value of the cost of the
optimal clustering. Using this guess, each phase queries the corresponding instance of OFL.
If the guess is correct, then the subroutine selects a bounded number of facilities. On the
other hand, if either the cost or the number of selected facilities surpasses a certain quantity,
then the guess for the optimal cost must be incorrect, and the algorithm triggers a phase
change. Upon a phase change, our algorithm uses an offline k-median clustering algorithm
to cluster the facility set and produces exactly k points. It then runs a new instance of OFL
with a larger guess, and continues processing the data stream.

However, there is a slight subtlety in this analysis. The number of points stored by OFL is
dependent on the weights of the point. In an exponential decay function, the ratio between
the largest weight and smallest weight of points in the data set may be exponentially large.
Thus to avoid OFL from keeping more than a logarithmic number of points, we force OFL to
terminate after seeing log(h∆) points during a phase. Furthermore, we store points verbatim
until we see k + h distinct points, upon whence we will trigger a phase change. We show
that forcing this phase change does indeed correspond with an increase in the guess of the
value for the optimal cost.

3 Related Work

The first insertion-only streaming algorithm for the k-median clustering problem was presented
in 2000 by Guha, Mishra, Motwani, and O’Callaghan [36]. Their algorithm uses O (nε) space
for a 2O(1/ε) approximation, for some 0 < ε < 1. Subsequently, Charikar et al [16] present
an O (1)-approximation algorithm for k-means clustering that uses O

(
k log2 n

)
space. Their

algorithm uses a number of phases, each corresponding to a different guess for the value of
the cost of optimal solution. The guesses are then used in the online facility location (OFL)
algorithm of [43], which provides a set of centers whose number and cost allows the algorithm

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:5

to reject or accept the guess. This technique is now one of the standard approaches for
handling k-service problems. Braverman et al [13] improve the space usage of this technique
to O (k logn). [11] and [12] develop algorithms for k-means clustering on sliding windows, in
which expired data should not be included in determining the cost of a solution.

Another line of approach for k-service problems is the construction of coresets, in particular
when the data points lie in the Euclidean space. Har-Peled and Mazumdar [37] give an
insertion-only streaming algorithm for k-medians and k-means that provides a (1 + ε)-
approximation, using space O

(
kε−d log2d+2 n

)
, where d is the dimension of the space.

Similarly, Chen [17] introduced an algorithm using O
(
k2dε−2 log8 n

)
space, with the same

approximation guarantees.
Cohen and Strauss [20] study problems in time-decaying data streams in 2003. There

are a number of results [40, 22, 21, 23] in this line of work, but the most prominent time-
decay model is the sliding window model. Datar et al [25] introduced the exponential
histogram as a framework in the sliding window for estimating statistics such as count,
sum of positive integers, average, and `p norms. This initiated an active line of research,
including improvements to count and sum [35], frequent itemsets [18, 10], frequency counts
and quantiles [2, 42], rarity and similarity [26], variance and k-medians [5] and other geometric
and numerical linear algebra problems [28, 15, 8].

4 Preliminaries

Let X be the set of possible points in a space with metric d. A weighted set is a pair
(P,w) with a set P ⊂ X and a weight function w : P → [0,∞). A query space is a tuple
(P,w, f,Q) that combines a weighted set with a set Q of possible queries and a function
f : X ×Q→ [0,∞). A query space induces a function

f̄(P,w, q) =
∑
p∈P

w(p)f(p, q).

We now instantiate the above with some simple examples.

I Example 3 (k-means). Let Q be all sets of k points in Rd, and for C ∈ Q define
f(p, C) = minc∈C d2(p, c). The k-means cost of (P,w) to C is∑

p∈P
w(p) min

c∈C
d2(p, c).

I Example 4 (k-median). Let Q be all sets of k points in Rd, and for C ∈ Q define
f(p, C) = minc∈C d(p, c). The k-median cost of (P,w) to C is∑

p∈P
w(p) min

c∈C
d(p, c).

Note that both k-median and k-means are captured in f̄(P,w,C). We now define an ε-coreset.

I Definition 5 (ε-coreset). A ε-coreset for the query space (P,w, f,Q) is a tuple (Z, u), where
Z ⊆ X is a set of points and u : Z → [0,∞) are their corresponding weights, such that for
every q ∈ Q

(1− ε)f̄(P,w, q) ≤ f̄(Z, u, q) ≤ (1 + ε)f̄(P,w, q).

An important property of coresets is that they are closed under operations like union
and composition. We formalize this below.

APPROX/RANDOM 2019

27:6 Improved Algorithms for Time Decay Streams

I Proposition 6 (Merge-and-reduce, [17]). Coresets satisfy the following two properties.
1. If S1 and S2 are ε-coresets of disjoint sets P1 and P2 respectively, then S1 ∪ S2 is an

ε-coreset of P1 ∪ P2.
2. If S1 is an ε-coreset of S2 and S2 is a δ-coreset of S3, then S1 is a ((1+ε)(1+δ)−1)-coreset

of S3.
We now define approximate triangle inequality, a property that allows us to extend our results
obtained in metric spaces to ones with semi-distance functions. In particular, this allows us
to extend results for k-median clustering to k-means and M -estimators in exponential decay
streams.

I Definition 7 (λ-approximate triangle inequality). A function d(·, ·) on a space X satisfies
the λ-approximate triangle inequality if for all x, y, z ∈ X ,

d(x, z) ≤ λ(d(x, y) + d(y, z)).

5 Polynomial Decay

We consider a time decay, wherein a point p in the stream, which arrived at time t, has
weight w(p) = (T − t+ 1)−s at time T > t, for some parameter s > 0. Equivalently, the tth
most recent element has weight t−s for some s > 0.

We present a general framework which, for given problem, takes an offline coreset
construction algorithm and adapts it to polynomial decay streams. Our technique can be
viewed as a generalization of merge-and-reduce technique of Bentley and Saxe [7]. We also
briefly discuss some applications towards that end. We start with stating our main theorem
for polynomial decay streams.

I Theorem 8. Given an offline algorithm that takes a set of n points as input and constructs
an ε-coreset of F (n, ε) points in O (nT (ε)) time, there exists a polynomial decay algorithm that
maintains an ε-coreset while storing O

(
ε−1s lognF (n, ε/ logn)

)
points and with update time

O
(
ε−1s logn F (n, ε)T (ε/ logn)

)
.

Notation. We use N to denote the set of natural numbers. We use CS-RAM to denote an
offline coreset construction algorithm, which given n points, constructs an ε-coreset in time
O (nT (ε)) and takes space F (n, ε). We abuse notation by using F (n, ε) to also refer to the
corresponding coreset.

5.1 Algorithm
We start with giving a high-level intuition of the algorithm. Given a stream of points, the
algorithm implicitly maintains a partition of the streams into disjoint blocks. A block is a
collection of consecutive points in the stream, and is represented by two positive integers
a and b as [a, b], where a represents the position of the first point in the block and b the
last point, relative to the start of the stream. Let the set of blocks be denoted by B. Our
algorithm stores points of a given block by maintaining a coreset for the points in that block.
As the stream progresses, we merge older blocks i.e. the corresponding coresets. Informally,
the merge happens when the weights of the blocks become close.

We first define a set of integer markers xi, which for a given i ∈ N, depends on the
decay parameter s and target ε. These markers dictate when to merge blocks as the stream
progresses. For a given i ∈ N, we define xi to be the minimum integer greater than or equal
to 2i such that

1− ε
(xi − 2i + 1)s ≤

1 + ε

xsi
.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:7

Equivalently, we can write
(

xi

xi−2i+1

)s
≤ 1+ε

1−ε . Note that each of the 2i points following xi
in the stream, has weight within 1+ε

1−ε times the weight of xi. Moreover, xi’s can be exactly
pre-computed from the equation and we therefore assume that these are implicitly stored by
the algorithm. Each new element in the stream starts as a new block. As mentioned before,
the blocks are represented by two integers [a, b] and the points are stored as a coreset. When
a block [a, b] reaches xi, then algorithm merges all of [xi − 2i + 1, xi] points into a single
coreset. In the end, the algorithm outputs the weighted union of the coresets of the blocks.

To visualize this, consider the integer line, and suppose that we have xi’s marked on
the positive side of the line, for example x1 = 2, x2 = 4 The tuple indices of the blocks
represent the relative position of the point in the stream, with the start being 1 and the end
point being n. At the start, the stream is on the non-positive end with the first point at
0. As the time progresses, the stream moves to the right side. Therefore, when we observe
the first element, it moves to the point 1. We then store it as a new block, represented by
[1, 1]; we also simultaneously store a coreset corresponding to it. As time progresses, a block
reaches xi for some i which can be formally expressed as a + xi ≤ n. We then merge all
blocks in the range [a, a + 2i − 1]. Note that by definition of xi, we would have observed
all these elements and also we will not merge partial blocks. We present this idea in full in
Algorithm 1 and intuition in Figure 1. We remark that when we construct coresets, we use
an offline algorithm CS-RAM which given a set of n points P and a query space (P,w, f, q)
produces an ε-coreset.

n

a+ x2

111122

a

44· · ·

Stream of elements

Figure 1 The algorithm merges blocks in each interval [a, a+ 2i − i] for a ≤ n− xi.

Algorithm 1 ε-coreset for polynomial decaying streams.

Input: Stream P , polynomial decay function w(t) = 1
ts , for some s > 0, an offline coreset

construction algorithm CS-RAM
Output: (1 + ε) coreset.
1: Initialize B = ∅
2: for each element pn of the stream do
3: Insert [n, n] into B as a new block and construct a coreset
4: for each block [a, b] ∈ B do
5: if a+ xi < n for some i then
6: Merge the blocks in [a, a+ 2i − 1] and reduce to get an ε

3 logn -coreset
7: end if
8: end for
9: end for
10: for each block [a, b] ∈ B do
11: Give the block weight u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
12: end for

APPROX/RANDOM 2019

27:8 Improved Algorithms for Time Decay Streams

5.2 Analysis
We first show that a weighted combination of blocks gives us an ε-coreset. For a block [a, b],
let the weight of the block be denoted as u(a, b). We set u(a, b) = ū where ū satisfies

1− ε
as
≤ ū ≤ 1 + ε

bs
.

The following lemma shows that any such ū produces a 3ε-coreset.

I Lemma 9. Let (Z, u) be an ε-coreset for (P,w, f,Q). Let ū : Z → [0,∞) be such that
(1− ε)u(z) ≤ ū(z) ≤ (1 + ε)u(z) for every z ∈ Z, then (Z, ū) is a 3ε-coreset for (P,w, f,Q).

Proof. Since (Z, u) is an ε-coreset for (P,w, f,Q), therefore for every q ∈ Q,

(1− ε)f̄(P,w, q) ≤ f̄(Z, u, q) ≤ (1 + ε)f̄(P,w, q)

⇐⇒ (1− ε)
∑
p∈P

w(p)f(p, q) ≤
∑
z∈Z

u(z)f(z, q) ≤ (1 + ε)
∑
p∈P

w(p)f(p, q)

⇐⇒ (1− ε)2
∑
p∈P

w(p)f(p, q) ≤
∑
z∈Z

ū(z)f(z, q) ≤ (1 + ε)2
∑
p∈P

w(p)f(p, q).

Note that for ε < 1, we have (1 − 2ε)f̄(P,w, q) ≤ (1 − ε)2f̄(P,w, q) ≤ f̄(Z, ū, q) ≤ (1 +
ε)2f̄(P,w, q) ≤ (1 + 3ε)f(P,w, q). Therefore (Z, ū) is a 3ε-coreset for (P,w, f,Q). J

Having assigned weights to the blocks, we can take the union to get the coreset of B. For
simplicity, we choose u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
in Algorithm 1. We now present a lemma that

bounds the number of blocks maintained by the algorithm.

I Lemma 10. Given a polynomial decay stream of n points as input to Algorithm 1, the
number of blocks produced is O

(
ε−1s logn

)
.

Proof. Consider any two adjacent blocks. By the definition of the xi’s, the ratio between the
weights of the oldest and youngest elements is at least (1 + ε)/(1− ε). In the full stream, the
oldest element has weight 1/ns and the youngest element has weight 1. Let B be the number of

blocks so that
(

1+ε
1−ε

)bBc
≤ ns. Solving for B, we get B ≤ s logn

log((1+ε)/(1−ε)) . We will now lower
bound the denominator using the numerical inequality ln(1+x) ≥ 2x

2+x for x > 0; equivalently
log(1 + x) ≥ c · 2x

2+x for x > 0 and c = Θ(1). We get log
(

1+ε
1−ε

)
= log

(
1 + 2ε

1−ε

)
≥ 2cε, and

therefore we have B = O
(
ε−1s logn

)
. J

We now give the proof of the main theorem for the polynomial decay model.

Proof of Theorem 8. From Proposition 6, we get that when we merge disjoint blocks, we do
not sacrifice the coreset approximation parameter ε. However, when we reduce, for instance
two ε-corsets, we get a 2ε-coreset. For n points observed in the stream, note that there
would be at most logn reduces. This follows from the fact that the size of successive blocks
increase exponentially. Therefore using an offline ε′-coreset construction algorithm CS-RAM
with ε′ = ε/3 logn, we get that merging and reducing the blocks produces an ε/3-coreset (by
Proposition 6). Finally, from Lemma 9, we get that taking a union of these blocks weighted
by u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
gives us an ε-coreset.

For the space bound, we have from Lemma 10 that the number of blocks is O
(
ε−1s logn

)
.

Since we maintain an ε/ logn coreset for each block, we get that the offline coreset construc-
tion algorithm takes space F (n, ε/ logn). Therefore, we get that the space complexity is

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:9

O
(
ε−1s lognF (n, ε/ logn)

)
. For update time, note that for n points, we have O

(
ε−1s logn

)
blocks and we use an (ε/ logn)-coreset algorithm which takes time O (F (n, ε) T (ε/ logn))
per block. We therefore get a total time of O

(
ε−1s logn F (n, ε)T (ε/ logn)

)
J

Applications. Coresets have been designed for a wide variety of geometric, numerical linear
algebra and learning problems. Some examples include k-median and k-means clustering
[17], low rank approximation [46], `p regression [19], projective clustering [27], subspace
approximation [32], kernel methods [48], Bayesian inference [38] etc. We instantiate our
framework with a few of these problems, and present the results in Table 1.

6 Exponential Decay

We now discuss another model of time decay in which the weights of previous points decay
exponentially with time. Analogous to our polynomial decay model, a point that first
appeared in the stream at time t ≤ T has weight 2 T −t+1

h at time T , where the parameter
h > 0 is the half-life of the decay function. We however consider a different viewpoint to
simplify the analysis; we maintain that the weight of a point observed at time t is fixed to be
2t/h where h > 0 is the half-life parameter. These are equivalent since the ratio of weights
between successive points is the same in both the models.

Online Facility Location. We first discuss the problem of Online Facility Location (OFL) as
our algorithm uses it as a sub-routine. The problem of facility location, given a set of points
P ⊆ X , called demands, a distance function d(·, ·) and fixed cost f > 0, conventionally called
the facility cost, asks to find a set of points C that minimizes the following objective.

min
C⊆X

∑
p∈P

min
c∈C

d(p, c) + |C| f

Informally, it seeks a set of points such that the cumulative cost of serving the demands
(known as service cost), which is d(p, c) and opening new facilities f , is minimized. Online
Facility Location is the variant of the above problem in the streaming setting, wherein the
facility assignments and service costs incurred are irrevocable. That is to say, once a point is
assigned to a facility, it cannot be reassigned to a different facility at a later point in time,
even if the newer facility is closer. A simple and popular algorithm to this problem is by
Meyerson [43], wherein upon receiving a point, it calculates its distance to the nearest facility
and flips a coin with bias equal to the distance divided by facility cost. If the outcome is
heads (or 1), it opens a new facility, otherwise the nearest point serves this demand and it
incurs a service cost, equal to the distance. From here on, we abuse notation and use OFLto
refer to the algorithm of Meyerson [43].

6.1 Algorithm
Our algorithm for exponential decaying streams is a variant of the popular k-median clustering
algorithm [13, 16], which uses OFL as a sub-routine. We first briefly discuss the algorithm of
[13] and then elucidate on how we adapt this to exponential decay streams. The algorithm
operates in phases, where in each phase it maintains a guess, denoted by L, to the lower
bound on optimal cost. It then uses this guess to instantiate the OFL algorithm of [43] on a
set of points in the stream. If the service cost of OFL grows high or the number of facilities
grows large, it infers that the guess is too low and triggers a phase change. It then increases
the guess by a factor of β (to be set appropriately) and the facilities are put back at the
start of the stream and another round of OFL is run.

APPROX/RANDOM 2019

27:10 Improved Algorithms for Time Decay Streams

Notation. We first define and explain some key quantities. The aspect ratio of a set is
defined as the ratio between the largest distance and the smallest non-zero distance between
any two points in the set. We use ∆ to denote the aspect ratio of the stream P . For simplicity
of presentation, we assume that the minimum non-zero distance between two points is at
least 1. We define W as the total weight of the first h log ∆ points in the stream divided by
the minimum weight. Suppose the stream starts at t = z, then for any h = Ω(1),

W = 1
2z/h

h log(∆+1)∑
t=z

2t/h = ∆
21/h − 1

= Θ(h∆).

For a set P ⊆ (X , d), we use OPTk(P) to denote the optimal k-median clustering cost
for the set. For two sets P and S, we use COST(P, S) to denote the cost of clustering P
with S as medians. Whenever we use OPT, it corresponds to the optimal cost of k-median
clustering of the stream seen till the point in context. We use KM-RAM to denote an offline
constant cr-approximate k-median clustering algorithm in the random access model (RAM).
Given a set of points P and a positive integer k, KM-RAM outputs (C, λ), where C is a set of
k points and λ = COST(P, C) ≤ cr · OPTk(P).

Our Algorithm. Our algorithm, inspired from [16, 13], works in phases. We however have
important differences. Each of our phases are again sub-divided into two sub-phases. In the
first sub-phase we execute OFL same as [16, 13] and after each point we check if the cost or
the number of facilities is too large. If this is indeed the case, we trigger a phase change.
However, if we read h log ∆ points in a phase, then we move on to the second sub-phase
of the algorithm. Here we simply count points and store them verbatim. Upon reading
k + h points, we trigger a phase change. The intuition for this sub-phase is that a phase
change is triggered when OPT increases by a factor of β. After h log ∆ points, subsequent
points are so heavy relative to points of the previous phase that any service cost will be
large enough to ensure OPT has increased. Therefore, we restrict the algorithm to read at
most h log ∆ + k + h points in a single phase. When we start a new phase, we cluster the
existing facility set to extract exactly k points using an off-the-shelf constant approximate
KM-RAM algorithm and continue processing the stream. We present the above idea in full in
Algorithm 2. We now state our main theorem for exponential decay streams.

I Theorem 11. There exists a streaming algorithm that given a stream P of exponen-
tial decaying points with aspect ratio ∆ and half-life h, produces an O (1)-approximate
solution to k-median clustering. The algorithm runs in O (nk log(h∆)) time and uses
O (k log(h∆) + h) space.

6.2 Analysis
We first analyze the service cost and space complexity of OFL. For the tth point in the stream
pt, the weight of pt, denoted w(pt), is w(pt) = 2t/h. The following two lemmas will establish
bounds on the service cost and number of facilities of OFL.

I Lemma 12. When OFL is run on a stream of n points with exponentially decaying weights,
with facility cost f = L

k(1+logW) where L > 0, it produces a service cost of at most 6OPTk(P)+
2L with probability at least 1/2.

Proof. The proof follows the standard analysis of Online Facility Location. Let P is the set
of points read in a phase. Instead of looking at |P | distinct points with varying weights, we
view it as repeated points of unit or minimum weight. The total number of points is therefore
at most W = Θ(h∆).

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:11

Algorithm 2 k-median clustering in exponential decay streams.

Input: k, stream P , an offline constant approximate k-median clustering algorithm KM-RAM.

1: L← 1, C ← ∅
2: while solution not found do
3: i← 0, COST← 0, f ← L

k(1 + h log ∆) .

4: while stream not ended do
5: p← next point from stream
6: q ← closest point to p in C

7: σ ←
(

min
(
w(p) · d(p, q)

f
, 1
))

8: if probability σ then .do with probability σ
9: C ← C ∪ {p}
10: else
11: COST← COST + w(p) · d(p, q)
12: w(q)← w(q) + w(p)
13: end if
14: i← i+ 1
15: if COST > γL or |C| > (γ − 1)k(1 + logW) then .cost or number of facilities too

large
16: break and raise flag .trigger phase change
17: else if i ≥ h log ∆ then .second sub-phase
18: for l = 1 to h+ k do .count points and store them verbatim
19: p← next point from stream
20: C ← C ∪ {p}
21: end for
22: break and raise flag
23: end if
24: end while
25: if flag raised then .phase change
26: (C, λ)← KM-RAM (C, k) .cluster existing facilities
27: L← max

(
βL, λ

crγ

)
28: else
29: Declare solution found
30: end if
31: (C, λ)← KM-RAM (C, k)
32: end while
Output: C,COST

We remind the reader that OPTk(P) = min
K⊆P,|K|=k

∑
p∈P min

y∈K
d(p, y) is the optimal cost

and COST(P) is the total service cost incurred by OFL. Let C∗ be the set of corresponding
facilities allocated by OPT, and c∗i ’s denote the optimum k facilities where i ∈ [k] and C∗i
the set of points from P served by the facility c∗i . Let Ai =

∑
x∈C∗

i
d(x, c∗i) be the service

cost of C∗i . We now further partition each region into rings. Let S1
i be the first ring around

c∗i that contains half the nearest points in C∗i . Formally, S1
i = arg min

K,|K|=|C∗
i |/2

∑
x∈K d(x, c∗i).

APPROX/RANDOM 2019

27:12 Improved Algorithms for Time Decay Streams

Furthermore, S2
i is the second ring around c∗i containing one-quarter of the points in C∗i

and so on. Therefore, we can inductively define Sji = arg min
K,|K|=|C∗

i |/2j

∑
x∈K\∪j−1

l=1 S
l
i
d(x, c∗i).

Note that Sji may be not be uniquely identifiable, but their existence suffices for the sake of
analysis. Let Aji =

∑
x∈Sj

i
d(x, ci) be the cost of set Sji . For a point p, use d∗p and dp for its

optimal cost and cost incurred in the algorithm respectively.
We look at two cases. In the first case, suppose each region has a facility open; let the

facility of Sji be sji . We look at the cost incurred by subsequent points arriving in this region.
Consider the set Sji and let q be a facility in Sji . A subsequent point p incurs a cost dp = d(p, q).
By triangle inequality, we have dp ≤ d∗p+d∗q . By definition of Sji , we have d∗q ≤ d∗z for any point
z ∈ Sj+1

i . We sum over all z in Sj+1
i and get d∗q ≤

Aj+1
i

|Sj+1
i |

. We therefore get dp ≤ d∗p + Aj+1
i

|Sj+1
i |

.

Summing over all points is Sji , we get COST(Sji , s
j
i) ≤ A

j
i + |S

j
i |Aj+1

i

|Sj+1
i |

= Aji +2·Aj+1
i . Summing

over all j’s, we get COST(C∗i , c∗i) ≤ 3Ai. Finally, summing over i’s, we get that in the first
case COST(P, C∗) ≤ 3OPTk(P). We now look at the second case wherein each region has
a facility open. The number of points is at most W , therefore, the number of regions is at
most k(1 + log(W)). The expected service cost incurred by a region before opening a facility
is at most f (See Fact 1, [41]). Therefore, the total service cost ≤ f k(1 + log(W)) = L.
Combining the two cases, we get that COST(P, C∗) ≤ 3OPTk(P) + L. Note that when we
store points verbatim, we do not incur any service cost. With a simple application of Markov
inequality, we get that with probability at least 1/2, COST(P, C∗) ≤ 6OPTk(P) + 2L. J

I Lemma 13. When OFL is run on a stream of n points with exponentially decaying weights,
with facility cost f = L

k(1+logW) where L > 0, the number of facilities produced is at most
(2 + 6

LOPTk(P))k(1 + logW), with probability at least 1/2.

Proof. Considering the points as repeated points of minimum weight, the total number of
points is at most W and the total number of regions is at most k(1 + logW). One facility
in each region gives us k(1 + logW) facilities. After opening a facility in a region, each
subsequent point has probability dp

f to open a facility. Therefore, the expected number
of facilities is

∑
p
dp

f . We showed in Lemma 12 that
∑
p dp ≤ 3 OPTk(P). Hence, the

expected number of facilities is at most 3OPTk(P)
f = 3OPTk(P)k(1+logW)

L . A simple application
of Markov’s inequality completes the proof. J

k-median clustering. We now state some key lemmas that will help us establish that the
algorithm produces a O (1) approximation to the k-median clustering cost. We then show
how these come together and present the detailed guarantees in Theorem 17.

I Lemma 14. At every phase change, with probability at least 1/2, OPTk(P) > L if β ≤ 2
and γ ≥ 9.

Proof. The phase change is triggered in two ways, either the cost or the number of facilities
grows large (more precisely, cost more that γL or the number of facilities greater than
(γ − 1)k(1 + logW)), or we read too many points. Let us look at the first case. Assume
that L ≥ OPTk(P), then from Lemma 12 and 13, we get that with probability at least 1/2,
COST ≤ 8L and the number of facilities is ≤ 8k(1 + logW) respectively. However with
γ ≥ 9, neither of the two conditions are met and therefore the premise that a phase change
was triggered gives us a contradiction. Hence, in the first case, we get L < OPTk(P) with
probability at least 1/2.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:13

In the other case, we store points exactly (incurring no additional cost). The only danger
in this case is performing a phase change too early (before OPT has doubled). Let OPT be
the value of OPT at the beginning of the phase, which we assume starts at time t = z. Since
points cannot be at distance greater than ∆, then

OPT ≤ ∆(1 + 21/h + . . .+ 2z/h)

≤ ∆2(z+1)/h − 1
21/h − 1

Now let OPT be the value of OPT after terminating the phase (which occurs after reading
k + h distinct points after the initial h log ∆ points of the phase). We must prove that
OPT ≥ 2OPT. Observe that after reading k + h distinct points, we must cluster at least h
points across a distance of at least 1 (since we can have at most k centers). The weights of
these points begin at 2(z+h log ∆+1)/h. Therefore,

OPT ≥ OPT +
z+h log ∆+h∑
i=z+h log ∆

2i/h

= OPT + 2(z+h log2(∆)+h)/h − 2(z+h log2(∆))/h

21/h − 1

≥ OPT + ∆
(

2(z+1)/h − 1
21/h − 1

)
≥ 2OPT,

where the second inequality follows from straightforward arithmetic. Let L′ be the value of
L in the previous phase. Thus,

OPT ≥ 2OPT > 2L′ = 2
β
L

where the second inequality holds with probability at least 1/2, as justified above. Setting
β ≤ 2 completes the proof. J

I Lemma 15. At any part in the algorithm, we have COST(P, C) ≤
(
γ + 1+crβ

β−1

)
L.

Proof. We know that the increase of COST(P, C) in the current phase is upper bounded by
the variable COST (see Algorithm 2). In a single phase, we have COST ≤ γL. Therefore,
outside the phase loop, we just need to show that it is at most 1+crβ

β−1 L. Note that it changes
only by the KM-RAM algorithm, which incurs cost of λ ≤ crγL. Suppose that it holds in the
previous phase and let L′ be the value of L in the previous phase. Then the cost outside the
loop is γL′ + 1+crβ

β−1 L′ + λ ≤ 1+crβ
β−1 L, which finishes the proof. J

I Lemma 16. With probability at least 1/2, L ≤
(

1 + 1
γ + 1+crβ

γ(β−1)

)
OPTk(P).

Let L′ and C′ denote the values of L and C in the previous phase. We condition on
the event that L′ < OPTk(P), which we know from Lemma 14 occurs with probability at
least 1/2. From the update equation of L, we either have L = βL′ or L = λ

crγ
. In the first

case, we directly get L ≤ βOPTk(P). With β ≤ 2, we get the claim of the lemma. We
now look at the second case, where we have γcrL ≤ λ ≤ crOPTk(C′) from the guarantee
of the KM-RAM algorithm. It is easy to see that OPTk(C′) ≤ OPTk(P) + COST(P, C′) by
a simple application of triangle inequality on all the points. Moreover, from Lemma 15,
we have COST(P, C′) ≤

(
γ + 1+crβ

β−1

)
L′ ≤

(
γ + 1+crβ

β−1

)
OPTk(P). Combining these, we get

L ≤
(

1
γ + 1 + 1+crβ

γ(β−1)

)
OPTk(P).

APPROX/RANDOM 2019

27:14 Improved Algorithms for Time Decay Streams

We now restate the theorem for the exponential decay model but tailored to Algorithm 2
with all the algorithmic details precisely stated.

I Theorem 17. Let P be a stream of n points with exponential decaying weights parametrized
by the half-life parameter h and let k be some positive integer. Algorithm 2 run with
β ≤ 2, γ ≥ 9,W = O (h∆) on the stream P outputs k points, which produce an O (1)
approximation to the optimal cost of k-median clustering on P with high probability. The
algorithm runs in time O (nk logW) and uses space O (k logW + h).

Proof. Combining Lemma 15 and 16, we get that

COST(P, C) ≤
(
γ + 1 + crβ

β − 1

)(
1
γ

+ 1 + 1 + crβ

γ(β − 1)

)
OPTk(P).

Setting β = 2, γ = 10 and cr = 3 gives us that COST(P, C) ≤ 40OPTk(P).
We emphasize that we give a streaming guarantee, that is, given a fixed point in the

stream, it will hold for all the points seen till then. Note that in the proofs of Lemma 14
and 16, we only need that the random event hold with probability at least 1/2 only in the
previous phase. We can therefore amplify the probability of success by running log(1/δ)
parallel instances to get the bounds to hold with probability at least 1 − δ. The space
bound of the algorithm is O (k logW + h) = O (k log(h∆) + h), which simply follows from
the condition in the algorithm that we don’t allow the number of facilities to grow beyond
O (k(1 + log(W)) combined with the fact that we store k + h points verbatim in the second
sub-phase. J

Extensions. As in [41], our algorithm can easily be extended to other distance functions
that satisfy the approximate triangle inequality (see Definition 7). In particular, we get
constant approximate algorithms for k-means clustering and M -estimators in the exponential
decay model.

References
1 Charu C. Aggarwal, editor. Data Streams - Models and Algorithms, volume 31 of Advances in

Database Systems. Springer, 2007.
2 Arvind Arasu and Gurmeet Singh Manku. Approximate Counts and Quantiles over Sliding

Windows. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 286–296, 2004.

3 Sepehr Assadi and Sanjeev Khanna. Randomized Composable Coresets for Matching and
Vertex Cover. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, (SPAA), pages 3–12, 2017.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and Issues in Data Stream Systems. In Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 1–16, 2002.

5 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 234–243,
2003.

6 Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A New Framework
for Distributed Submodular Maximization. In IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 645–654, 2016.

7 Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:15

8 Vladimir Braverman, Petros Drineas, Jalaj Upadhyay, David P. Woodruff, and Samson Zhou.
Numerical Linear Algebra in the Sliding Window Model. arXiv preprint, 2018. arXiv:
1805.03765.

9 Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint, 2016. arXiv:1612.00889.

10 Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou.
Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM, pages 7:1–7:22, 2018.

11 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on
Sliding Windows in Polylogarithmic Space. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015.

12 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
Problems on Sliding Windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1374–1390, 2016.

13 Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler, and
Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 26–40. Society for Industrial
and Applied Mathematics, 2011.

14 Vladimir Braverman and Rafail Ostrovsky. Smooth Histograms for Sliding Windows. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
2007, Providence, RI, USA, Proceedings, pages 283–293, 2007.

15 Timothy M. Chan and Bashir S. Sadjad. Geometric Optimization Problems over Sliding
Windows. Int. J. Comput. Geometry Appl., 16(2-3):145–158, 2006. A preliminary version
appeared in the Proceedings of Algorithms and Computation, 15th International Symposium
(ISAAC), 2004.

16 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 30–39. ACM, 2003.

17 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

18 Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment: maintaining
closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst., 10(3):265–294,
2006. A preliminary version appeared in the Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM), 2004.

19 Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 205–214. ACM, 2009.

20 Edith Cohen and Martin Strauss. Maintaining time-decaying stream aggregates. In Proceedings
of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 223–233, 2003.

21 Graham Cormode, Flip Korn, and Srikanta Tirthapura. Time-decaying aggregates in out-
of-order streams. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pages 89–98, 2008.

22 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-decaying sketches for sensor
data aggregation. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC, pages 215–224, 2007.

23 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-Decayed Correlated Aggregates
over Data Streams. In Proceedings of the SIAM International Conference on Data Mining,
SDM, pages 271–282, 2009.

24 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney.
Sampling Algorithms and Coresets for `p Regression. SIAM J. Comput., 38(5):2060–2078,
2009. A preliminary version appeared in the Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, (SODA) 2008.

APPROX/RANDOM 2019

http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1612.00889

27:16 Improved Algorithms for Time Decay Streams

25 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM J. Comput., 31(6):1794–1813, 2002. A preliminary
version appeared in the Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002.

26 Mayur Datar and S. Muthukrishnan. Estimating Rarity and Similarity over Data Stream
Windows. In Algorithms - ESA 2002, 10th Annual European Symposium, Proceedings, pages
323–334, 2002.

27 Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation
and projective clustering via volume sampling. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 1117–1126. Society for Industrial and Applied
Mathematics, 2006.

28 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing Diameter in the Streaming
and Sliding-Window Models. Algorithmica, 41(1):25–41, 2005.

29 Dan Feldman, Amos Fiat, and Micha Sharir. Coresets forWeighted Facilities and Their
Applications. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 315–324, 2006.

30 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pages
569–578, 2011.

31 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the 23rd ACM Symposium on Computational
Geometry (SoCG), pages 11–18, 2007.

32 Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P Woodruff. Coresets
and sketches for high dimensional subspace approximation problems. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 630–649. Society for
Industrial and Applied Mathematics, 2010.

33 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2013, pages
1434–1453, 2013.

34 Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792,
2016.

35 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63–72, 2002.

36 Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data
streams. In Foundations of computer science, 2000. proceedings. 41st annual symposium on,
pages 359–366. IEEE, 2000.

37 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300, 2004.

38 Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian
logistic regression. In Advances in Neural Information Processing Systems, pages 4080–4088,
2016.

39 Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S. Mirrokni. Composable
core-sets for diversity and coverage maximization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages 100–108,
2014.

40 Tsvi Kopelowitz and Ely Porat. Improved Algorithms for Polynomial-Time Decay and Time-
Decay with Additive Error. In Theoretical Computer Science, 9th Italian Conference, ICTCS
Proceedings, pages 309–322, 2005.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:17

41 Harry Lang. Online Facility Location on Semi-Random Streams. arXiv preprint, 2017.
arXiv:1711.09384.

42 Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 290–297, 2006.

43 Adam Meyerson. Online facility location. In Foundations of Computer Science, 2001. Proceed-
ings. 42nd IEEE Symposium on, pages 426–431. IEEE, 2001.

44 Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized Composable Core-sets for
Distributed Submodular Maximization. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing (STOC), pages 153–162, 2015.

45 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005.

46 Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pages 143–152. IEEE, 2006.

47 Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen. How time matters: Learning time-decay
attention for contextual spoken language understanding in dialogues. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2133–2142, 2018.

48 Yan Zheng and Jeff M Phillips. Coresets for Kernel Regression. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
645–654. ACM, 2017.

APPROX/RANDOM 2019

http://arxiv.org/abs/1711.09384

	Introduction
	Motivation

	Our Contributions
	Polynomial decay
	Exponential decay

	Related Work
	Preliminaries
	Polynomial Decay
	Algorithm
	Analysis

	Exponential Decay
	Algorithm
	Analysis

