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Abstract
Coverage functions are an important subclass of submodular functions, finding applications in
machine learning, game theory, social networks, and facility location. We study the complexity of
partial function extension to coverage functions. That is, given a partial function consisting of a
family of subsets of [m] and a value at each point, does there exist a coverage function defined on all
subsets of [m] that extends this partial function? Partial function extension is previously studied
for other function classes, including boolean functions and convex functions, and is useful in many
fields, such as obtaining bounds on learning these function classes.

We show that determining extendibility of a partial function to a coverage function is NP-
complete, establishing in the process that there is a polynomial-sized certificate of extendibility.
The hardness also gives us a lower bound for learning coverage functions. We then study two
natural notions of approximate extension, to account for errors in the data set. The two notions
correspond roughly to multiplicative point-wise approximation and additive L1 approximation. We
show upper and lower bounds for both notions of approximation. In the second case we obtain
nearly tight bounds.
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1 Introduction

When can a partial function – given as a set of points from a domain, and a value at each
point – be extended to a total function on the domain, that lies in some particular class
of functions? This is the basic question of partial function extension, and is studied both
independently (such as in convex analysis) and as a recurring subproblem in many areas in
combinatorial optimization, including computational learning and property testing.

In this paper we study the computational complexity of partial function extension
for coverage functions. Coverage functions are a natural and widely-studied subclass of
submodular functions that find many applications, including in machine learning [18],
auctions [6, 19], influence maximization [8, 22], and plant location [11]. For a natural
number m, let [m] denote the set {1, 2, . . . ,m}. A set function f : 2[m] → R+ is a coverage
function if there exists a universe U of elements with non-negative weights and m sets
A1, . . . , Am ⊆ U such that for all S ⊆ [m], f(S) is the total weight of elements in ∪j∈SAj .
A coverage function is succinct if |U | is at most a fixed polynomial in m.
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The complexity of partial function extension has been studied earlier for other function
classes, with a number of important applications shown. For boolean functions, Boros et
al. present complexity results for extension to a large number of boolean function classes,
as well as results on approximate extension [9]. Pitt and Valiant show a direct relation
between the complexity of partial function extension problem and proper PAC-learning.
Informally, a class F of (boolean) functions on 2[m] is said to be properly PAC-learnable
if for any distribution µ on 2[m] and any small enough ε > 0, any function f∗ ∈ F can be
learned by a polynomial-time algorithm that returns a function f ∈ F with a polynomial
number of samples that differs from f∗ with probability at most ε. Pitt and Valiant show
that if partial function extension for a class F of functions is NP-hard, then the class F
cannot be PAC-learned unless NP = RP [21].1 They show computational lower bounds for
various classes of boolean functions, thereby obtaining lower bounds on the complexity for
learning these classes. In this paper, we show lower bounds on partial function extension for
coverage functions, which by this relation give lower bounds on proper PAC learning as well.
In separate work, we present results on the computational complexity of partial function
extension for submodular, subadditive, and convex functions, and show further connections
with learning and property testing [5].

Characterizing partial functions extendible to convex functions is widely studied in convex
analysis. Here a partial function is given defined on a non-convex set of points, and is
required to be extended to a convex function on the convex hull or some other convex
domain. Characterizations for extendible partial functions are given in various papers, such
as [12, 26]. This finds many applications, including mechanism design [14], decision making
under risk [20], and quantum computation [25].

Another example of the ubiquity of partial function extension is in property testing.
Given oracle access to a function f , the goal of property testing is to determine by querying
the oracle if the function f lies in some class F of functions of interest, or is far from it, i.e.,
differs from any function in F at a large number of points. Partial function extension is a
natural step in property testing, since at any time the query algorithm has a partial function
consisting of the points queried and the values at those points. If at any time the partial
function thus obtained is not extendible to a function in F , the algorithm should reject, and
should accept otherwise. Partial function extension is used to give both upper and lower
bounds for property testing [5, 23]. Partial function extension is thus a basic problem that
finds application in a wide variety of different fields.

Our Contribution

Our input is a partial function H = {(T1, f1), . . . , (Tn, fn)} with Ti ⊆ [m] and fi ≥ 0, and the
goal is to determine if there exists a coverage function f : 2[m] → R≥0 such that f(Ti) = fi
for all i ∈ [n]. This is the Coverage Extension problem. Throughout the paper we use [m]
for the ground set, n for the number of defined sets in the partial function, and D for the set
of defined sets {T1, . . . , Tn}. We also use d = maxi∈[n] |Ti| to denote the maximum size of
sets in D, and F :=

∑
i∈[n] fi.

Our first result shows that Coverage Extension is NP-hard. Interestingly, we show if there
exists a coverage function extending the given partial function then there is an extension by a
coverage function for which the size of the universe |U | is at most n. This shows that Coverage

1 Randomized Polynomial (RP) is the class of problems for which a randomized algorithm runs in
polynomial time, always answers correctly if the input is a “no” instance, and answers correctly with
probability at least 1/2 if the input is a “yes” instance.
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Extension is in NP. In contrast, it is known that minimal certificates for non-extendibility
may be of exponential size [10]. Also, unlike property testing, this shows that Coverage
Extension does not become easier when restricted to succinct coverage functions.

I Theorem 1. Coverage Extension is NP-complete.

For the hardness, we show a reduction from fractional graph colouring, a problem studied
in fractional graph theory. Our hardness for extension also shows the following result for
proper learning of succinct coverage functions.

I Theorem 2. Unless RP = NP, the class of succinct coverage functions cannot be PAC-
learned (i.e., cannot be PMAC-learned with approximation factor α = 1).

These are the first hardness results for learning coverage functions based on standard
complexity assumptions. Earlier results showed a reduction from learning disjoint DNF
formulas to learning coverage functions [13], however as far as we are aware, there are no
known lower bounds for learning disjoint DNF formulas. The following theorem is shown in
the appendix.

Given the hardness result for Coverage Extension, we study approximation algorithms for
two natural optimization versions of the extension problem. In both of these problems, the
goal is to determine the distance between the given partial function and the class of coverage
functions. Based on the notion of the distance, we study the following two problems.

In Coverage Approximate Extension, the goal is to determine minimum value of α ≥ 1
such that there exists a coverage function f : 2[m] → R≥0 satisfying fi ≤ f(Ti) ≤ αfi for all
i ∈ [n].

In Coverage Norm Extension, the goal is to determine the minimum L1 distance from
a coverage function, i.e., minimize

∑
i∈[n] |εi| where εi = f(Ti)− fi for all i ∈ [n] for some

coverage function f .
The two notions of approximation we study thus roughly correspond to the two prevalent

notions of learning real-valued functions. Coverage Approximate Extension corresponds to
PMAC learning, where we look for point-wise multiplicative approximations. Coverage Norm
Extension corresponds to minimizing the L1 distance in PAC learning.

Throughout this paper, the minimum value of α in Coverage Approximate Extension
will be denoted by α∗ and minimum value of

∑
i∈[n] |εi| in Norm Extension will be denoted

by OPT . As both of these problems are generalisations of Coverage Extension, they are
NP-hard. We give upper and lower bounds for approximation for both of these problem.

I Theorem 3. There is a
(
min{d,m2/3} log d

)
-approximation algorithm for Coverage Ap-

proximate Extension. If d is a constant then there is a d-approximation algorithm.

In Coverage Norm Extension, OPT = 0 iff the partial function is extendible and hence
no multiplicative approximation is possible for OPT unless P = NP (because of Theorem 1).
We hence consider additive approximations for Coverage Norm Extension. An algorithm for
Coverage Norm Extension is called an α-approximation algorithm if for all instances (partial
functions), the value β returned by the algorithm satisfies OPT ≤ β ≤ OPT + α. We show
nearly tight upper and lower bounds on the hardness of approximation. As defined before
F =

∑
i∈[n] fi. Note that an F -approximation algorithm is trivial, since the function f = 0

is coverage and satisfies
∑
i∈[n] |f(Ti)− fi| ≤ F .

I Theorem 4. There is a (1−1/d)F -approximation algorithm for Coverage Norm Extension.
Moreover, a coverage function f can be efficiently computed such that

∑
i∈[n] |f(Ti)− fi| ≤

OPT + (1− 1/d)F .

APPROX/RANDOM 2019
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I Theorem 5. It is NP-hard to approximate Coverage Norm Extension by a factor α =
2poly(n,m)F δ for any fixed 0 ≤ δ < 1. This holds even when d = 2.

Our lower bound is roughly based on the equivalence of validity and membership, where
given a convex, compact set K, the validity problem is to determine the optimal value of cTx
given a vector c over all x ∈ K, while the membership problem seeks to determine if a given
point x is in K or not. The equivalence of optimization and separation is a widely used tool.
The reduction from optimization to separation is particularly useful for, e.g., solving linear
programs with exponential constraints. Our work is unusual in both the use of validity and
membership rather than optimization and separation, and because of the direction – we use
the equivalence to show hardness of the validity problem. We hope that our techniques may
be useful in future work as well.

Related Work

We focus here on work related to partial function extension and coverage functions. In a
separate paper, we study partial function extension to submodular, subadditive, and convex
functions, showing results on the complexity as well as applications to learning and property
testing [5]. Previously, Seshadri and Vondrak [23] introduce the problem of extending
partial functions to a submodular function, and note its usefulness in analyzing property
testing algorithms. For submodular functions, partial function extension is also useful in
optimization [24]. The problem of extending a partial function to a convex function is also
studied in convex analysis [26, 12]. As mentioned earlier, both characterizing extendible
partial functions, and the complexity of partial function extension has been studied for large
classes of Boolean functions [9, 21].

Chakrabarty and Huang study property testing for coverage functions [10]. Here, the
goal is to determine whether the input function (given by an oracle) is coverage or far
from coverage by querying an oracle, where distance is measured by the number of points
at which the function must be changed for it to be coverage. They show that succinct
coverage functions can be reconstructed with a polynomial number of queries and hence
can be efficiently tested. However, they conjecture that testing general coverage functions
requires 2Ω(m) queries, and prove this lower bound under a different notion of distance. They
present a particular characterization of coverage functions in terms of the W -transform that
we use as well.

There has also been interest in sketching and learning coverage functions. Badanidiyuru
et al. [1] showed that coverage functions admit a (1 + ε)-sketch, i.e., given any coverage
function, there exists a succinct coverage function (of size polynomial in m and 1/ε) that
approximates the original function within (1 + ε) factor with high probability. Feldman and
Kothari [13] gave a fully polynomial time algorithm for learning succinct coverage functions
in the PMAC model if the distribution is uniform. However, if the distribution is unknown,
they show learning coverage functions is as hard as learning polynomial size DNF formulas
for which no efficient algorithm is known.

Balkanski et al [3] study whether coverage functions can be optimized from samples. They
consider a scenario where random samples {(Si, f(Si))} of an unknown coverage function f
are provided and ask if it is possible to optimize f under a cardinality constraint, i.e., solve
maxS:|S|≤k| f(S). They prove a negative result: no algorithm can achieve approximation
ratio better than 2Ω(

√
logm) with a polynomial number of sampled points.
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2 Preliminaries

As earlier, for m ∈ Z+, define [m] := {1, 2, . . . ,m}. A set function f over a ground set [m]
is a coverage function if there exists a universe U of elements with non-negative weights
and m sets A1, ..., Am ⊆ U , such that for all S ⊆ [m], f(S) is the total weight of elements in
∪j∈SAj . A coverage function is succinct if |U | is at most a fixed polynomial in m.

Chakrabarty and Huang [10] characterize coverage functions in terms of theirW -transform,
which we use as well. For a set function f : 2[m] → R≥0, the W -transform w : 2[m] \ ∅ → R
is defined as

∀S ∈ 2[m] \ ∅, w(S) =
∑

T :S∪T=[m]

(−1)|S∩T |+1f(T ) . (1)

The set {w(S)|S ∈ 2[m] \ ∅} is called the set of W -coefficients of f . We can also recover the
function f from its W -coefficients.

∀T ⊆ [m], f(T ) =
∑

S⊆[m]:S∩T 6=∅

w(S) . (2)

If f is a coverage function induced by the universe U and sets A1, . . . , Am, then the
W -transform w(S) is precisely the weight of the set {(∩i∈SAi) \ ∪j 6∈SAj}, and is hence
non-negative. The converse is also true. The set {S|w(S) > 0} is the called the support of
the coverage function, and the elements are exactly the elements of the universe U .

I Theorem 6 ([10]). A set function f : 2[m] → R≥0 is a coverage function iff all of its
W -coefficients are non-negative.

From Theorem 6, given a partial function H, there exists a coverage function f satisfying
f(Ti) = fi for all i ∈ [n] iff the following linear program is feasible, where the variables are
the W -coefficients w(S) for all S ∈ 2[m] \ ∅.

Extension-P:
∑

S:S∩Ti 6=∅

w(S) = fi ∀i ∈ [n] , w(S) ≥ 0 ∀S ∈ 2[m] \ ∅.

All missing proofs are in the appendix.

3 Coverage Extension and PAC-Learning

Our first observation is that there is a polynomial-sized certificate of extendibility to a
coverage function. This is obtained by observing that at a vertex of the feasible set in
Extension-P, at most n of the variables are non-zero. It is interesting to compare this with
Chakrabarty and Huang [10], who give an example to show that minimal certificates of
nonextendibility may be of exponential size.

I Proposition 7. If a partial function is extendible to a coverage function, then it is also
extendible to a coverage function with support size ≤ n. Hence, Coverage Extension is in NP.

We show the NP-hardness of Coverage Extension by reduction from fractional chromatic
number, defined as follows. Given a graph G = (V,E), a set I ⊆ V is called an independent
set if no two vertices in I are adjacent. Let I be the set of all independent sets. The fractional
chromatic number χ∗(G) of a graph G is the optimal value of the following linear program.

APPROX/RANDOM 2019
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χ∗(G) :=
{

min
∑
I∈I

xI :
∑

I∈I:v∈I
xI ≥ 1 ∀v ∈ V (G), 0 ≤ xI ≤ 1 ∀I ∈ I

}

Note that if xI ∈ {0, 1} then the optimal value is just the chromatic number of the graph.2

I Theorem 8 ([15]). For graph G = (V,E), there exist nonnegative weights {xI}I∈I on
independent sets such that χ∗(G) =

∑
I∈I xI and

∑
I∈I:v∈I xI = 1 ∀v ∈ V .

I Corollary 9. For graph G = (V,E) and for any value of t such that χ∗(G) ≤ t ≤ |V |,
there exist nonnegative weights {zI}I∈I on independent sets such that

∑
I∈I zI = t and∑

I∈I:v∈I zI = 1 ∀v ∈ V .

I Theorem 10 ([17]). Given graph G = (V,E) and 1 ≤ k ≤ |V |, it is NP-hard to determine
if χ∗(G) ≤ k.

We now show the NP-hardness of Coverage Extension.

Proof of Theorem 1. Since membership in NP was shown earlier, we give the reduction
from fractional chromatic number. The input is a graph G = (V,E) and 1 ≤ k ≤ |V |.

We identify [n′] with the set of vertices V , and therefore E(G) ⊆ {{i, j}|i, j ∈ [n′]}, and
any set S ⊆ [n′] can be viewed as a set of vertices. The partial function construction is as
follows. The ground set is [n′] and therefore m = n′. The partial function is defined at all
vertices, all edges, and the set consisting of all vertices. Hence D, the set of defined points for
the partial function, is {{i}|i ∈ [n′]} ∪E(G)∪ {[n′]} and |D| = n′ + |E(G)|+ 1. The value of
the partial function h at these defined sets is given by

h(S) =


1 if S = {i}, i ∈ [n′] ,
2 if S ∈ E(G) ,
k if S = {[n′]} .

Intuitively, the function h(S) can be interpreted as the (fractional) number of colours used
to colour the subset S.

We claim that χ∗(G) ≤ k iff the above partial function is extendible. Suppose χ∗(G) ≤ k.
Therefore by Corollary 9, there exist nonnegative weights {xI}I∈I such that

∑
I∈I xI = k

and
∑
I∈I:v∈I xI = 1 ∀v ∈ V (G). For all S ∈ 2[m] \ ∅, define the function w(S) as xS if

S ∈ I and 0 otherwise. Since w(S) ≥ 0, this defines the W -transform for a coverage function
g. We have, for any i ∈ [n′],

g({i}) =
∑

S:S∩{i}6=∅

w(S) =
∑

I∈I:i∈I
xI = 1 ,

for any {i, j} ∈ E(G),

g({i, j}) =
∑

S:S∩{i,j}6=∅

w(S) =
∑

I∈I:i∈I
xI +

∑
I∈I:j∈I

xI = 2

as no independent set I can contain both i and j; and finally g({[n′]}) =
∑
S:S∩{[n′]}6=∅ w(S) =∑

I∈I xI = k. Therefore g is an extension of the above partial function h.

2 The chromatic number of a graph is the minimum number of colours required to colour the vertices so
that no two adjacent vertices get the same colour.
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Now suppose there is an extension, i.e., there exists w(S) ≥ 0 for all S ∈ 2[m] \ ∅ such
that for any i ∈ [n′],

∑
S:S∩{i}6=∅ w(S) = 1; for any {i, j} ∈ E(G),

∑
S:S∩{i,j}6=∅ w(S) = 2;

and finally
∑
S:S∩{[n′]}6=∅ w(S) = k. For any {i, j} ∈ E(G), we have∑

S:S∩{i,j}6=∅

w(S) =
∑

S:S∩{i}6=∅

w(S) +
∑

S:S∩{j}6=∅

w(S)−
∑

S:S⊇{i,j}

w(S) .

Therefore,
∑
S:S⊇{i,j} w(S) = 0, i.e., if w(S) > 0 then S must be an independent set. It now

follows that χ∗(G) ≤
∑
S:S∩{[n′]}6=∅ w(S) = k. J

Proper PAC-learning of Coverage functions
We now prove Theorem 2. We first recall the definition of proper PAC-learning.

I Definition 11 ([2]). An algorithm A properly PAC-learns a family of functions F , if for
any distribution µ (on 2[m]) and any target function f∗ ∈ F , and for any sufficiently small
ε, δ > 0:
1. A takes the sequence {(Si, f∗(Si))}1≤i≤l as input where l is poly(m, 1/δ, 1/ε) and the

sequence {Si}1≤i≤l is drawn i.i.d. from the distribution µ,
2. A runs in poly(m, 1/δ, 1/ε) time, and
3. A returns a function f : 2[m] → R ∈ F such that

PrS1,...,Sl∼µ
[
PrS∼µ[f(S) = f∗(S)] ≥ 1− ε

]
≥ 1− δ

We use the reconstruction algorithm for coverage functions given by Chakrabarty and
Huang [10] in our proof. Given a coverage function f as an input, this reconstruction
algorithm terminates in O(ms) steps where s is the support size of f , i.e., the number of
non-zero W -coefficients of f , and returns these non-zero W -coefficients.

Recall the reduction from fractional chromatic number to Coverage Extension (Theorem
1). Given an instance of fractional chromatic number (graph G = (V,E) and rational k′
with |V | = n′), the instance of Coverage Extension is a set of defined points D = {{i}|i ∈
[n′]} ∪ E(G) ∪ {[n′]} and a function h on D. Let k = |D| = |V |+ |E|+ 1. From Theorem 1
and Proposition 7, χ∗(G) ≤ k′ iff h is extendible to a coverage function with support size at
most k.

Let F be a family of coverage functions with support size at most k. Let ε = 1/k3 (and
hence ε < 1/|D|) and µ be a uniform distribution over {(S, h(S))|S ∈ D}. Now suppose a
(randomized) algorithm A properly PAC-learns F . We will show that in this case, we can
determine efficiently if the partial function is extendible to a coverage function, and hence
RP = NP.

Suppose the algorithm A returns a function g. If the partial function is extendible then
there exists a function in F that has the same value on samples seen by A. Therefore, if
the partial function is extendible then g(S) must be equal to h(S) for all S ∈ D (since
ε < 1/|D| and A must satisfyPrS∼D∗ [f(S) = f∗(S)] ≥ 1 − ε). We run the reconstruction
algorithm on input g. If the partial function is extendible then g must be in F and hence
the reconstruction algorithm must terminate in O(mk) steps. Further, if {w(S)}S∈S is the
output of the algorithm then (i) w(S) > 0 for all S ∈ S, (ii) |S| ≤ k (iii) the coverage function
f ′ given by the W -coefficients w′(S) = w(S) if S ∈ S and 0 otherwise is an extension of the
partial function h. Condition (iii) should hold because f ′ must be the same as g which we
have shown earlier is an extension of h.

The converse is also true – if the reconstruction algorithm terminates and (i), (ii), (iii)
hold then clearly h is extendible (by f ′). Since all the steps require polynomial time to check,
we can efficiently determine if the partial function is extendible.

APPROX/RANDOM 2019



30:8 The Complexity of Partial Function Extension for Coverage Functions

4 Coverage Approximate Extension

We now build the framework for Theorem 3. We start with the following lemma.

I Lemma 12. Given a partial function H and α ≥ 1, there is no coverage function f

satisfying fi ≤ f(Ti) ≤ αfi for all i ∈ [n] iff the following program, with variables li for all
i ∈ [n] is feasible:

−α
∑
i:li<0

fili <
∑
i:li>0

fili (3)

∑
i:S∩Ti 6=∅

li ≤ 0 ∀S ⊆ [m] (4)

Thus the optimal approximation ratio α∗ is the minimum value of α for which (3) and (4)
are not feasible together.

A natural representation of the partial function H = {(T1, f1), . . . , (Tn, fn)} is as a
weighted bipartite graph H = (A ∪ [m], E) with |A| = n, and an edge between ai ∈ A and
j ∈ [m] if the set Ti contains element j ∈ [m]. Each vertex ai ∈ A also has weight fi. Then
d = maxi |Ti| is the maximum degree of any vertex in A. For the remainder of this section,
we will use this representation of partial functions.

We use the following notation given a bipartite graph H = (A∪ [m], E). For any S ⊆ [m],
let N(S) = {v ∈ A : (v, j) ∈ E for some j ∈ S} be the set of neighbours of set S. Similarly
for set R ⊆ A, N(R) = {j ∈ [m] : (v, j) ∈ E for some v ∈ R} be the set of neighbours of
set R. For any vertex v in H, we use N(v) for N({v}). In this bipartite graph representation,
the inequality (4) is equivalent to

∑
i∈N(S) li ≤ 0 for all S ⊆ [m].

We now define a parameter κ called the replacement ratio for a partial function H.

I Definition 13. Let H = (A ∪ [m], E) be a bipartite graph with weights fv on each v ∈ A.
For v ∈ A, let Fv = {R ⊆ A \ {v} |N(R) ⊇ N(v)} be the set of all subsets of A \ {v} that
cover all the neighbours of v. We call each R ∈ Fv a replacement for v. The replacement
ratio κ is then the minimum of

∑
w∈R

fw

fv
over all vertices v ∈ A and replacements R ∈ Fv.

The proof of the upper bound in Theorem 3 will follow from the bounds on α∗ shown in
Lemma 14, 16 and 18.

I Lemma 14. For any partial function H, α∗ ≥ 1
κ .

Proof. By definition of κ, there exists a vertex v ∈ A and a replacement R for v such that∑
w∈R fw = cfv. Note that setting lw = −1 ∀w ∈ R, lv = 1 and all other lw’s to be

zero results in feasibility of the inequalities
∑
w∈N(S) lw ≤ 0 for all S ∈ 2[m] \ ∅. From the

definition of α∗ and Lemma 12, α∗
∑
w∈R fw ≥ fv, and hence α∗ ≥ 1/κ. J

Let β = min{d,m2/3}
κ . Given values {lv}v∈A on the vertices in A such that

∑
v∈N(S) lv ≤ 0

for all S ⊆ [m], we will show that β
∑
v:lv<0 fvlv ≥

∑
v:lv>0 fvlv and hence α∗ ≤ β. If lv = 0

for any vertex, we simply ignore such a vertex, since it does not affect either (4) or (3).
By scaling, we can assume that lv ∈ Z for all v ∈ A. At some point, we will use Hall’s

theorem to show a perfect matching. To simplify exposition, we replace each v ∈ A with |lv|
identical copies, each of which is adjacent to the same vertices as v. Each such new vertex v′
has lv′ = 1 if lv > 0 and lv′ = −1 if lv < 0, and fv′ = fv. Let the new bipartite graph be
H ′ = (A′ ∪ [m], E′). It is easy to check that in the new bipartite graph, the degree of vertices
in A′ and the values κ,

∑
v∈A′:lv>0 fvlv,

∑
v∈A′:lv<0 fvlv and

∑
v∈N(S) lv remain unchanged

for all S ⊆ [m].
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Let N = {v ∈ A′|lv = −1} and P = {v ∈ A′|lv = 1}, and let E− be the set of edges with
one end-point in N , while E+ are the edges with one end-point in P. For any S ⊆ [m], let
N−(S) = N(S) ∩N and N+(S) = N(S) ∩ P (so N(S) = N+(S) ∪N−(S)). Finally, define
E+(S) (E−(S)) as the set of edges with one end-point in S and the other end-point in P
(P). If S = {j}, we abuse notation slightly and use N−(j), N+(j), E−(j) and E+(j). Note
that |N−(S)| ≥ |N+(S)| for all S ⊆ [m] in H ′, since in H,

∑
v∈N(S) lv ≤ 0 for all S ⊆ [m].

Our goal is to show β
∑
v∈N fv ≥

∑
v∈P fv.

I Lemma 15. Suppose for some β′ ≥ 1, β′|N−(S)| ≥
∑
j∈S |N+(j)| for all S ⊆ [m]. Then

for each vertex v ∈ P, there exists a replacement Fv ⊆ N such that each vertex in N is
contained in Fv for at most β′ vertices v ∈ P. Hence, β′

∑
v∈N fv ≥ κ

∑
v∈P fv and so

α∗ ≤ β′

κ .

Proof. By Hall’s theorem, there exists a set of edges M ⊆ E− such that (i) the degree in
M of each vertex j ∈ [m] is at least |N+(j)|, and (ii) the degree in M of each vertex v ∈ N
is at most β′. Because of (i), for each j ∈ [m] there is an injection hj from edges in E+(j)
to edges in E−(j) ∩M , i.e., each edge in E+(j) maps to a distinct edge in E−(j) ∩M .
Now for a vertex v ∈ P, consider a neighbouring vertex j ∈ N(v). Each such edge (v, j)
is in E+(j), and is hence mapped by hj to an edge in E−(j) ∩M . Let Fv be the end-
points in N of these mapped edges. That is, w ∈ Fv iff there exists j ∈ N(v) such that
(w, j) = hj(v, j). Then Fv is a replacement for v, and hence,

∑
w∈Fv fw ≥ κfv. Further,

because of (ii), and since each hj is an injection, each vertex in N is contained in Fv for at
most β′ vertices v ∈ P. Then summing the inequality

∑
w∈Fv fw ≥ κfv over all v ∈ P, we

get that β′
∑
v∈N fv ≥ κ

∑
v∈P fv as required. J

I Lemma 16. For any partial function H, α∗ ≤ d
κ .

Proof. Fix S ⊆ [m]. Since |N−(j)| ≥ |N+(j)| for all j ∈ [m],
∑
j∈S |N−(j)| ≥

∑
j∈S |N+(j)|,

and since d is the maximum degree of any vertex in A′, d|N−(S)| ≥
∑
j∈S |N−(j)|. The

proof follows from Lemma 15. J

If we can show m2/3|N−(S)| ≥
∑
j∈S |N+(j)| for all S ⊆ [m] then by Lemma 15, α∗ ≤

m2/3

κ . Unfortunately this may not be true. Let N = {v1},P = {v2}, E− = {(v1, j)|j ∈ [m]}
and E+ = {(v2, j)|j ∈ [m]}. Note that

∑
j∈[m] |N+(j)| = m whereas |N−([m])| = 1. Notice

that in this bad example, the bipartite graph contains a 4-cycle v1, j1, v2, j2, v1 where v1 ∈ N
and v2 ∈ P . We now define a subgraph called a diamond which generalises such a 4-cycle. A
diamond (vp, vn, J) of size k is a subgraph of H ′ where vp ∈ P, vn ∈ N , J ⊆ [m] (|J | = k)
such that for all j ∈ J , both (vp, j) and (vn, j) are contained in E′. Note that a 4-cycle is a
diamond of size two (and the bad example considered above is a diamond of size m).

Let kmax = ma (0 ≤ a ≤ 1) be the maximum size of any diamond in H ′.

I Lemma 17. For all S ⊆ [m], m 1+a
2 |N−(S)| ≥

∑
j∈S |N+(j)|, where ma is the size of the

largest diamond in H ′.

Proof. Recall that for all j ∈ [m], |N+(j)| ≤ |N−(j)|, hence there is an injection hj from
N+(j) to N−(j), i.e, hj maps each vertex in N+(j) to a unique vertex in N−(j). Fix S ⊆ [m]
and vertex v ∈ P, and let Sv := N(v) ∩ S be the neighbourhood of v in S. We will consider
N+(Sv) and N−(Sv), the negative and positive neighbourhoods of Sv. Note that since all
vertices in Sv are adjacent to v ∈ P , a vertex in N−(Sv) is adjacent to at most ma vertices in
Sv, by definition of a. Thus for a vertex v′ ∈ N−(Sv), there are at most ma different vertices
j ∈ Sv for which hj maps a vertex in N+(j) to v′, and hence ma|N−(Sv)| ≥

∑
j∈Sv |N

+(j)|.
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Now if there is a vertex v ∈ P such that m 1−a
2
∑
j∈Sv |N

+(j)| ≥
∑
j∈S |N+(j)| then we

are done, since

|N−(S)| ≥ |N−(Sv)| ≥
∑
j∈Sv |N

+(j)|
ma

≥
∑
j∈S |N+(j)|
m

1+a
2

.

So assume that for all v ∈ P,
∑
j∈Sv |N

+(j)| ≤
∑

j∈S
|N+(j)|

m
1−a

2
. In this case, note that by

reversing the order of summation,

∑
j∈S
|N+(j)|2 =

∑
j∈S

∑
v∈N+(j)

|N+(j)| =
∑

v∈N+(S)

∑
j∈Sv

|N+(j)| ≤ |N+(S)|
∑
j∈S |N+(j)|
m

1−a
2

.

Therefore, using the above inequality for |N+(S)|,

|N−(S)| ≥ |N+(S)| ≥ m
1−a

2

∑
j∈S |N+(j)|2∑
j∈S |N+(j)| ≥

m
1−a

2

|S|

(∑
j∈S |N+(j)

)2

∑
j∈S |N+(j)| ≥

∑
j∈S |N+(j)|
m

1+a
2

as required by the lemma. The third inequality follows from Cauchy-Schwarz. J

From Lemmas 15 and 17, if a ≤ 1/3 then α∗ ≤ m2/3

κ . Next we show this is true in general.

I Lemma 18. For any partial function H, α∗ ≤ m2/3

κ .

Proof. If kmax ≤ m1/3 then by Lemma 17 and 15, α∗ ≤ m2/3

κ . So we assume kmax > m1/3.
In this case, we pick a diamond (vp, vn, J) of size > m1/3. We remove, for all j ∈ J , the
edges (vp, j) and (vn, j). We repeat the above procedure (in the new graph) until we are left
with a bipartite graph where all diamonds are of size at most m1/3. Note that if a diamond
(vp, vn, J) of size k is removed then the degree of vn decreases by k. Hence, for a fixed vertex
vn, number of removed diamonds is at most m2/3 (as at any step we remove diamonds of size
at least m1/3). It is easy to see that after every step, |N−(S)| ≥ |N+(S)| (for all S ∈ 2[m] \∅)
still holds in the bipartite graph. Let H∗ be the bipartite graph at the end (all diamonds of
size at most m1/3).

Note that we do not remove any vertex in the above procedure. Fix vertex v ∈ P. By
Lemmas 17 and 15 with a = 1/3, there exists Fv ⊆ N such that Fv covers all neighbours
of v in H∗ and each vertex in N is contained in Fv for at most m2/3 vertices v ∈ P. Since
we have removed edges, Fv may not cover all the neighbours of v in H ′. Let v1, . . . , vs ∈ N
be the set of all vertices such that for each i ∈ [s], a diamond (v, vi, J i) was removed in a
removal step. Clearly {v1, . . . , vs}∪Fv cover all the neighbour of v in H ′. Therefore, we have∑s
i=1 fvi +

∑
w∈Fv fw ≥ κfv. Since any vi (1 ≤ i ≤ s) is a part of at most m2/3 removed

diamonds and each vertex in N is contained in Fv for at most m2/3 vertices v ∈ P , summing
the above inequality for each v ∈ P, we get m2/3∑

v∈N fv ≥ κ
∑
v∈P fv as required. J

It follows from Lemmas 14, 16 and 18 that an algorithm that returns min{d,m2/3}
κ is a

min{d,m2/3}-approximation algorithm. However, computing κ corresponds to solving a
general set cover instance, and is NP-hard. This connection however allows us to show the
following result.

I Lemma 19. Given a partial function, the replacement ratio κ can be efficiently approximated
by κ′ such that κ ≤ κ′ ≤ κ log d. If d is a constant, the replacement ratio κ can be
determined efficiently.
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This completes the proof of the upper bound in Theorem 3. In the full version of the paper,
we show there exist partial functions such that (i) α∗ = 1/κ for any value of κ, and (ii)
with d =

√
m and α∗ = Ω(

√
m

κ logm ). The bounds shown on α∗ thus cannot be substantially
improved.

5 Coverage Norm Extension

From Theorem 6, the Norm Extension problem can be stated as the convex program Norm-P.
It can be equivalently transformed to a linear program whose dual is Norm-D.

Norm-P: min
∑n
i=1 |εi|∑

S:S∩Ti 6=∅

w(S) = fi + εi ∀i ∈ [n]

w(S) ≥ 0 ∀S ∈ 2[m] \ ∅

Norm-D: max
n∑
i=1

fiyi

∑
i:S∩Ti 6=∅

yi ≤ 0 ∀S ∈ 2[m] \ ∅ (5)

−1 ≤ yi ≤ 1 ∀i ∈ [n] (6)
Both Norm-P and Norm-D are clearly feasible. We use OPT for the optimal value of

Norm-P (and Norm-D). As stated earlier, no multiplicative approximation is possible for
OPT unless P = NP. Therefore, we consider additive approximations for Norm Extension.

An algorithm for Norm Extension is called an α-approximation algorithm if for all instances
(partial functions), the value β returned by the algorithm satisfies OPT ≤ β ≤ OPT+α. First
we prove our upper bound in Theorem 4. Recall that d = maxi∈[n] |Ti| and F =

∑
i∈[n] fi.

As noted earlier, the function f(·) = 0 is trivially an F -approximation algorithm for Norm
Extension, since

∑
i∈[n] |f(Ti)− fi| = F .

Proof of Theorem 4. Consider the linear programs obtained by restricting Norm-P to
variables w(S) for S ∈ [m], and similarly restricting the constraints (5) in Norm-D to sets
S ∈ [m] only. They are clearly the primal and dual of each other. The optimal values of
these modified problems (say OPTR, wR and yR) can be computed in polynomial time. We
will show that OPT ≤ OPTR ≤ OPT + (1− 1/d)F for the proof of the theorem. The first
inequality is obvious, since OPTR is the optimal solution to a relaxed (dual) linear program.

For the second inequality, define yA = (yA1 , . . . , yAn ) as the vector such that for all i ∈ [n],
yAi = yRi if yRi ≤ 0 and yRi /d otherwise. Then note that

OPTR =
∑
i∈[n]

fiy
R
i =

∑
i∈[n]

fiy
A
i + (1− 1/d)

∑
i:yR
i
≥0

fiy
R
i ≤

∑
i∈[n]

fiy
A
i + (1− 1/d)F , (7)

where the last inequality is because each yRi ≤ 1. We now show that yA is a feasible solution
for Norm-D, and hence

∑
i∈[n] fiy

A
i ≤ OPT . Together with (7) this completes the proof.

Clearly yA satisfies the constraints (6). We will show that yA also satisfies the constraints
(5) for all S ∈ 2[m] \∅. Consider any S ∈ 2[m] \∅. Let P = {i ∈ [n]|S∩Ti 6= ∅ and yRi > 0}
and N = {i ∈ [n]|S ∩ Ti 6= ∅ and yRi ≤ 0}. Thus P ∪ N are all sets in D that have
nonempty intersection with S. We have for any j ∈ S that

∑
i:j∈Ti y

R
i ≤ 0. Summing these

inequalities over j ∈ S, we obtain
∑
i∈P∪N |Ti ∩ S|yRi ≤ 0. Thus

∑
i∈P y

R
i + d

∑
i∈N y

R
i ≤ 0.

From the definition of yAi , we get
∑
i:S∩Ti 6=∅ y

A
i ≤ 0, as required. J

We now prove the lower bound in Theorem 4. We start with an outline of the proof.
In a nutshell, the proof shows the following reductions (for brevity, WM stands for Weak
Membership and WV for Weak Validity):

APPROX/RANDOM 2019



30:12 The Complexity of Partial Function Extension for Coverage Functions

Densest-Cut ≤p Cut WM ≤p Span WM ≡ Coverage WM ≤p Coverage WV
≤p Norm Extension .

Given a graph G = (V,E) and a positive rational M , the Densest-Cut problem asks if
there is a cut S ⊂ V such that |δ(S)|

|S| |V \S| > M . The Densest-Cut problem is known to be NP-
hard [7], and ultimately we reduce the Densest-Cut problem to the problem of approximating
the optimal value for Norm-P. We formally define the other problems later. However, to
show this reduction, we need to utilize the equivalence of optimization (or validity) over
a polytope and membership in the polytope. Typically optimization algorithms use the
equivalence of optimization and separation to show upper bounds, e.g., that a linear program
with an exponential number of constraints can be optimized. Our work is unique in that we
use the less-utilized equivalence of validity and membership; and secondly, we use it to show
hardness. In fact, since we are looking for hardness of approximation algorithms, our work is
complicated further by the need to use weak versions of this equivalence.

Given a convex and compact set K and a vector c, the Strong Validity problem, given a
vector c, is to find the maximum value of cTx such that x ∈ K (the x which obtains this
maximum is not required). In the Strong Membership problem, the goal is to determine
if a given vector y is in K or not. The Weak Validity and Weak Membership problems
are weaker versions of the Strong Validity and Strong Membership problems respectively,
formally defined later. Then Theorem 4.4.4 in [16] says that for a convex and compact body
K, there is an oracle polynomial time reduction from the Weak Membership problem for K
to the Weak Validity problem for K.

To formally state Theorem 4.4.4 from [16], which will form the basis of our reduction, we
need the following notations and definitions.

We use ||.|| for the Euclidean norm. Let K ⊆ Rn′ be a convex and compact set. A ball of
radius ε > 0 around K is defined as

S(K, ε) := {x ∈ Rn
′
| ||x− y|| ≤ ε for some y in K} .

Thus, for x ∈ Rn′ , S(x, ε) is the ball of radius ε around x. The interior ε-ball of K is
defined as

S(K,−ε) := {x ∈ K|S(x, ε) ⊆ K}

Thus S(K,−ε) can be seen as points deep inside K.

I Definition 20 ([16]). Given a vector c ∈ Qn′ , a rational number γ and a rational number
ε > 0, the Weak Validity problem is to assert either (1) cTx ≤ γ + ε for all x ∈ S(K,−ε), or
(2) cTx ≥ γ − ε for some x ∈ S(K, ε). Note that the vector x satisfying the second inequality
is not required.

I Definition 21 ([16]). Given a vector y ∈ Rn′ and δ > 0, the Weak Membership problem is
to assert either (1) y ∈ S(K, δ), or (2) y 6∈ S(K,−δ).

Intuitively, in the Weak Membership problem, it is required to distinguish between the
cases when the given point y is far from the polyhedron K (in which case, the algorithm
should return y 6∈ S(K,−δ)) and y is deep inside K (which case the algorithm should return
y ∈ S(K, δ)). If y is near the boundary of K, then either output can be returned. Our
reduction crucially uses the following result.
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I Theorem 22 (Theorem 4.4.4 of [16]). Given a weak validity oracle for K ⊆ Rn′ that runs
in polynomial time and a positive R such that K ⊆ S(0, R), the Weak Membership problem
for the polyhedron K can be solved in polynomial time.

For our problem K is the polytope of linear program Norm-D.

K :=

y ∈ Rn :
∑

i:S∩Ti 6=∅

yi ≤ 0 ∀S ⊆ [m], ||y||∞ ≤ 1

 . (8)

Coverage WM ≤p Coverage WV ≤p Coverage Norm Extension

Coverage Weak Membership is the Weak Membership problem for polytope K (8). Given a
set D = {T1, . . . , Tn} (where Ti ⊆ [m]) with weights ŷi (ŷi ∈ R) associated with Ti for all
i ∈ [n] and a δ > 0, the goal in this problem is to assert either (ŷ1, . . . , ŷn) ∈ S(K, δ) or
(ŷ1, . . . , ŷn) 6∈ S(K,−δ).

Note that Coverage Norm Extension is the Strong Validity problem for K with ci = fi.
We show the following lemma (Coverage WV ≤p Coverage Norm Extension).

I Lemma 23. If there is an α = 2poly(n,m)F δ efficient approximation algorithm (for any
fixed 0 ≤ δ < 1) for Coverage Norm Extension then there is an efficient algorithm for Weak
Validity problem for K.

Theorem 22 immediately gives Coverage WM ≤p Coverage WV.

Span WM ≡ Coverage WM

In fact, we show that Coverage Weak Membership is NP-hard even for the case when |Ti| = 2
for all i ∈ [n].3 The restriction |Ti| = 2 gives us a graphical representation of the membership
problems. We first introduce some notations, which will be used in the remainder. Given a
weighted graph G = (V,E) and a set S ⊆ V , the span E+

G(S) and cut δG(S) of set S are
the set of edges with at least one endpoint and exactly one endpoint in S respectively. We
use w(E+

G(S)), w(δG(S)) and w(EG(S)) for the sum of weight of edges with at least one
endpoint, exactly one endpoint and both endpoints in S respectively. If the set S is a single
vertex v then we use v instead of {v}. If the graph G is understood from the context we
drop the subscript G.

Given a set D = {T1, . . . , Tn} (Ti ⊆ [m]) with the property that |Ti| = 2 for all i ∈ [n],
we construct a weighted graph G = (V,E) as follows: vertex set V = [m] and {i, j} ∈ E
(i, j ∈ [m]) iff there exists a Tk ∈ D such that Tk = {i, j}. The weight ŷk associated with
Tk = {i, j} is now associated to the edge {i, j}. Now the constraint

∑
i:Ti∩S 6=∅ yi ≤ 0 (in

the polyhedron K) translates to
∑
e∈E+(S) ye ≤ 0 for all S ⊆ V . Thus Coverage-Weak-

Membership for |Ti| = 2 case is equivalent to following problem, which we call Span Weak
Membership.

Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0, assert either
ŷ = (ŷe)e∈E is in S(Ks, δ) or ŷ is not in S(Ks,−δ), where

Ks =

 ∑
e∈E+(S)

ye ≤ 0 ∀S ⊆ V, ||y||∞ ≤ 1

 . (9)

3 There is a relatively easier proof for unrestricted d by reduction from Set Cover, which we show in the
full version.
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Figure 1 Reduction from Cut Strong Membership to Span Strong Membership. The number
shown on the edges in E is the weight ye, while on edges in E′ is the product of L = 24 and
weight y′

e.

Densest-Cut ≤p Cut WM ≤p Span WM

We now show that the Span Weak Membership is NP-Hard thereby showing Coverage Weak
Membership is also NP-Hard for the restricted setting with |Ti| = 2 for all i ∈ [n]. We first
define Cut Weak Membership.

Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0, the goal in
Cut Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ is not in S(Kc,−δ)
where

Kc =

 ∑
e∈δ(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 . (10)

Note that in the Cut Weak membership problem, we have constraints
∑
e∈δ(S) ye ≤ 0

instead of
∑
e∈E+(S) ye ≤ 0 for all S.

I Lemma 24. There is a reduction from Densest-Cut to Cut Weak Membership and from
Cut Weak Membership to Span Weak Membership. Therefore, Coverage Weak Membership is
NP-hard even when d = 2.

We can now complete the proof of Theorem 5.

Proof of Theorem 5. Suppose there is an efficient α-approximation algorithm for Coverage
Norm Extension. Then by Lemma 23 there is an efficient algorithm for Weak Validity
problem for polytope K (8) and then by Theorem 22 we have an efficient algorithm for
Coverage Weak Membership. But by Lemma 24, this is not possible unless P = NP . J

We here prove Lemma 25, which is a weaker statement than Lemma 24 to convey the
main ideas. Recall that in Strong Membership problem, the goal is to decide if given
vector y is in polyhedron K. Following our nomenclature, we define the following Strong
Membership problems.

An instance of Span Strong Membership and Cut Strong Membership is given by a
weighted graph G = (V,E) with weights ŷe on the edges, and the goal is to decide if vector
y = (ye)e∈E is in Ks and Kc respectively, with Ks and Kc as defined in (9), (10).

I Lemma 25. There is a reduction from Densest-Cut to Cut Strong Membership, and from
Cut Strong Membership to Span Strong Membership.
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Proof. For the second reduction, the instance of Cut Strong Membership is weighted graph
G = (V,E) with weights ye on the edges. We assume ||y||∞ ≤ 1 as otherwise clearly y 6∈ Kc.

Let L = 2|E|+ |V ||E|. We construct an instance of Span Strong Membership (see Figure
1), i.e., graph G′ = (V ′, E′) and weights y′e as follows:

V ′ = V ∪ {s, t} , E′ = E ∪ {s, t} ∪ {v, s} ∀v ∈ V , y′
e =


ye
L

if e ∈ E(G)
− 1

2L
w(δG(v)) if e = {v, s}, v 6= t

−1 if e = {s, t}.

Then ||y′||∞ ≤ 1.
Assume y 6∈ Kc, i.e., there exists S ⊆ V s.t. w(δG(S)) > 0. We need to show there

exists S′ ⊆ V ′ s.t.
∑
e∈E+(S′) y

′
e > 0. For S′ = S, L

∑
e∈E+(S′) y

′
e = w(EG(S)) +w(δG(S)) +∑

v∈S −
1
2 ·w(δG(v)) = w(EG(S)) +w(δG(S))− 1

2 · (2w(EG(S)) +w(δG(S))) = w(δG(S))
2 > 0.

Now assume y ∈ Kc, i.e., ∀S ⊆ V,w(δG(S)) ≤ 0. We need to show ∀S′ ⊆ V ′,∑
e∈E+(S′) y

′
e ≤ 0. Since y′{s,t} = −1 (and L is sufficiently large), we need to consider

only those S′ which do not contain either s or t. But we have shown that for such S′,∑
e∈E+(S′) y

′
e = w(δG(S′))

2L ≤ 0.
Now we finish the proof by giving a reduction from Densest-Cut to Cut Strong Membership.

Given an undirected graph G = (V,E) and rational M , we want to know if there exists
S ⊂ V s.t. δG(S)

|S||V \S| > M . Consider the complete graph G′ = (V,E′) where the weight of an
edge is 1−M

L if it existed in E, and is −ML otherwise (note that edges may now have positive,
negative, or zero weight). Let L′ = 2 max{M, |1−M |} be a sufficiently large quantity so that
||ŷ||∞ < 1 . It is easy to see that Lw(δG′(S)) = |δG(S)| −M |S||V \ S|. Therefore, ∃S ⊂ V
s.t. w(δG′(S)) > 0⇔ ∃S ⊂ V s.t. |δG(S)|

|S||V \S| > M . J
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A Appendix

Proof of Proposition 7
Consider the polyhedron Extension-P. If the partial function is extendible, then Extension-P
is nonempty. Since the variables are non-negative, the polyhedron must have a vertex [4],
and in particular there is a vertex in which at most n variables w(S) are non-zero. This is
because the dimension of the problem is 2m, hence at a vertex at least 2m constraints must
be tight. But then at least 2m − n of constraints w(S) ≥ 0 must be tight.

Proof of Corollary 9
Consider the polytope P = {

∑
I∈I:v∈I xI = 1 ∀v ∈ V (G), 0 ≤ xI ≤ 1 ∀I ∈ I}. By

the Theorem 8, there exists x = {xI}I∈I in P such that χ∗(G) =
∑
I∈I xI . Consider

y = {yI}I∈I given by y{v} = 1 for all v ∈ V (G) and 0 otherwise. Therefore, y ∈ P and
|V (G)| =

∑
I∈I yI . Consider z = λx+ (1− λ)y where λ = |V (G)|−t

|V (G)|−χ∗(G) . Therefore, z ∈ P
and

∑
I∈I zI = λ

∑
I∈I xI + (1− λ)

∑
I∈I yI = t.

http://arxiv.org/abs/1207.0944
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Proof of Lemma 12

From Theorem 6, given a partial function H and α ≥ 1, there exists a coverage function f
satisfying fi ≤ f(Ti) ≤ αfi for all i ∈ [n] iff the following linear program is feasible, where
the variables are the W -coefficients w(S) for all S ∈ 2[m] \ ∅ :

fi ≤
∑

S:S∩Ti 6=∅

w(S) ≤ αfi ∀i ∈ [n]

w(S) ≥ 0 ∀S ∈ 2[m] \ ∅.

By Farkas’ Lemma, it follows that the above linear program is feasible iff the following
linear program is infeasible, with variables yi and zi for all i ∈ [n]:

α

n∑
i=1

fiyi <

n∑
i=1

fizi (11)

∑
i:S∩Ti 6=∅

yi ≥
∑

i:S∩Ti 6=∅

zi ∀S ∈ 2[m] \ ∅ (12)

yi, zi ≥ 0.

Now we proceed towards proving the claim. Suppose li’s satisfy (4) and (3). Set yi and
zi as follows: If li ≤ 0 then let yi = −li and zi = 0. Else if li > 0 then let yi = 0 and
zi = li. It is easy to see that yi, zi ≥ 0 and li = zi − yi and hence (12) is satisfied by yi’s and
zi’s. Further, α

∑n
i=1 fiyi = α(

∑
i:li≤0 fiyi +

∑
i:li>0 fiyi) = −α

∑
i:li≤0 fili and similarly∑n

i=1 fizi =
∑
i:li>0 fili. Thus (11) is also satisfied by yi’s and zi’s.

For the other direction observe that if the vector y = (y1, .., yn), z = (z1, ..., zn) ≥ 0
satisfy (11) and (12) then wlog we can assume for any i, the minimum of yi and zi is 0
(otherwise we can decrease both yi and zi by the minimum of yi and zi, and α ≥ 1 allows
(11) to remain true). Note that

∑
i fiyi =

∑
i:yi≤zi fiyi +

∑
i:yi>zi fiyi =

∑
i:yi>zi fiyi, since

min{yi, zi} = 0 by the previous observation. Now suppose y, z ≥ 0 satisfy (11) and (12).
We thus have α

∑n
i=1 fiyi <

∑n
i=1 fizi ⇔ α

∑
yi>zi

fiyi <
∑
zi>yi

fizi. Now let li = zi − yi.
This makes both (4) and (3) true.

Proof of Lemma 19

Suppose we are given a weighted bipartite graph G = (A ∪ [m], E) with weight fv on

each v ∈ A. Recall that κ is the minimum of
∑

w∈R
fw

fv
over vertices v ∈ A and R ∈ Fv

where Fv = {R ⊆ A \ {v}|N(R) ⊇ N(v)} is the set of all R ⊆ A \ {v} that covers all the
neighbours of v.

We will use f(R) (R ⊆ A) to denote the summation
∑
v∈R fv. If d is a constant then

for each v ∈ A, we can find minimum of f(R) over all R ⊆ Fv in O(nd) time where n = |A|.
Therefore, by taking the minimum of the above minimum value over all vertices v ∈ A, we
get the value of κ. For general d, we use an approximation algorithm for Set-Cover to find,
for each vertex v ∈ A, a set R′v ∈ Fv such that f(R′v) ≤ f(Rv) log d where Rv is the optimal
set. It can be seen that κ′ = minv∈A f(R′v)

fv
has the property κ′ ≤ κ log d.
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Proof of Lemma 23
The instance of weak validity problem is given by a vector c ∈ Qn and rational numbers γ
and ε > 0. We show that there is a reduction from general Weak Validity to Weak Validity
with instances satisfying ci ≥ 0 for all i ∈ [n].

Let N = {i ∈ [n]|ci ≤ 0}. Consider a vector c′ such that c′i = 0 for i ∈ N and ci otherwise
and γ′ = γ −

∑
i∈N |ci|. If x is in S(K, ε) then clearly x̄ defined as x̄i = −1 if i ∈ N and

xi otherwise, is also in S(K, ε). If for some x in S(K, ε), we have (c′)Tx ≥ γ′ − ε then for
x̄ ∈ S(K, ε), we have cT x̄ =

∑
i∈N |ci|+ (c′)Tx ≥ γ − ε. Also if for all x ∈ S(K,−ε), we have

(c′)Tx ≤ γ′ + ε then cTx ≤
∑
i∈N |ci|+ (c′)Tx ≤ γ + ε. This shows the reduction and hence

we assume ci ≥ 0 in the instance of Weak Validity problem.
Let OPT and OPT ′ be the optimal value of Norm-P for (f1, . . . , fn) = (c1, . . . , cn)

and (f1, . . . , fn) = (Lc1, . . . , Lcn) respectively (L will be chosen later). Obviously OPT ′ =
L ·OPT . Let the approximation algorithm for Norm-P return β for instance (f1, . . . , fn) =
(Lc1, . . . , Lcn). Let C =

∑
i ci. Therefore, OPT ′ ≤ β ≤ OPT ′+2poly(n,m)(LC)δ = L ·OPT +

2poly(n,m)(LC)δ and hence β/L ≤ OPT + 2poly(n,m)(C)δ
L1−δ . We set L :=

(
2poly(n,m)(C)δ

2ε

)1/1−δ

so that 2poly(n,m)(C)δ
L1−δ = 2ε. Note that the number of bits to specify L is polynomial in

〈c〉, 〈ε〉, n,m, where 〈c〉, 〈ε〉 denote the number of bits required to represent these quantities.
Thus, OPT ≤ β/L ≤ OPT + 2ε. Now if γ + ε ≤ β/L then for the optimal solution x∗ ∈ K,
cTx∗ = OPT ≥ β

L − 2ε ≥ γ − ε. If γ + ε ≥ β/L then for all x in K (and hence S(K,−ε)),
we have cTx ≤ OPT ≤ β/L ≤ γ + ε. Since at least one of these two conditions must hold,
the conditions of weak validity problem can be correctly asserted.

Proof of Lemma 24
In the proof, for any vector y, recall that we use ||y||∞ for maxi |yi| and ||ŷ − y|| for the
Euclidean distance between ŷ and y. We will frequently use the fact that the distance of a
point x0 from the hyperplane wTx+ b = 0 is equal to |w

T x0+b|
||w|| .

Recall the definitions of Span Weak Membership, Cut Weak Membership and Densest Cut:

1. Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0,
a. The goal in Span Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Ks, δ) or ŷ

is not in S(Ks,−δ) where

Ks =

 ∑
e∈E+(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 ,

b. The goal in Cut Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ
is not in S(Kc,−δ) where

Kc =

 ∑
e∈δ(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 .

Note that in the Cut Weak membership, we have constraints
∑
e∈δ(S) ye ≤ 0 instead of∑

e∈E+(S) ye ≤ 0 for all S.
2. In the Densest-Cut problem, given a graph G = (V,E) and a positive rational M , the

goal is to decide if there exist a set S ⊂ V s.t. |δ(S)|
|S||V \S| ≥M .



U. Bhaskar and G. Kumar 30:19

a

b

c

d

5

−7

1

−3

G = (V,E)

a

b

c

d s

t

5

−7

1

−3 −1

1

3

1

−
24

G′ = (V ′, E′)

Figure 2 Reduction from Cut-Weak-Membership to Span-Weak-Membership. The number shown
on the edges in E is the weight ye, while on edges in E′ is product of L = 48 and weight y′

e.

The Densest-Cut is known to be NP-Hard [7]. Note that |δ(S)|
|S||V \S| called the density of

cut (S, V \ S) can take values only from
{

r
s(|V |−s) |1 ≤ r ≤ |E|, 1 ≤ s ≤ |V | − 1, r, s ∈ Z+

}
.

Thus there are only polynomially many possible values of cut densities. We will use this fact
in our proof.

I Lemma 26. There is a reduction from Cut Weak Membership to Span Weak Membership.

Proof. Our goal in Cut Weak Membership, given a graph a G = (V,E) with weights ŷe on
edges and δ > 0, is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ is not in S(Kc,−δ). If
the point ŷ violates the constraint ||y||∞ ≤ 1 of Kc then it can be asserted that ŷ is not in
S(Kc,−δ). So we assume ||ŷ||∞ ≤ 1. Given this assumption, we have w(δG(v)) ≤ |E|.

We construct an instance of Span-Weak-Membership (see Figure 2), i.e., graph G′ =
(V ′, E′), ŷ′e and δ′ as follows (the values of B and L will be set later):
V ′ = V ∪ {s, t}
E′ = E ∪ {{s, t}} ∪ {{v, s}} ∀v ∈ V ′, v 6= {s, t}

ŷ′e =


ye
L if e ∈ E
−

1
2w(δG(v))

L if e = {v, s}, v 6= t

−BL if e = {s, t}.
The value of B is set to 2|E|+ |V ||E| so that

∑
e∈E+

G′
(S) ŷ

′
e ≤

−B+|E|+1/2|V ||E|
L ≤ 0 for all S

containing either s or t. Further, L = 2B so that ||ŷ′||∞ = 1/2 where ŷ′ = (ŷ′e)e∈E′ . Finally

we choose δ′ = 1
2 min

{ √
|E|δ

2L
√
|E′|

, |E|+1/2|V ||E|√
|E′|L

, 1
2

}
.

B Claim 27. For all S ⊆ V , w(E+
G′(S)) = w(δG(S))

2L .

Proof. This is because

Lw(E+
G′(S)) = L

∑
e∈E+

G′
(S)

w′e = w(EG(S)) + w(δG(S)) +
∑
v∈S
−1

2 w(δG(v)) ,

and since w(δG(v)) counts edges in EG(S) twice and edges in δG(S) once,

Lw(E+
G′(S)) = w(EG(S)) + w(δG(S))− 1

2 · (2w(EG(S)) + w(δG(S))) = w(δG(S))
2 . C

Suppose the algorithm for Span Weak Membership asserts that the point ŷ′ is in S(Ks, δ
′).

If ŷ′ satisfies all the constraints
∑
e∈E+

G′
(S) ye ≤ 0 for all S ∈ 2V \ ∅ then the point ŷ must

satisfy all the constraints
∑
e∈δG(S) ye ≤ 0 for all S ∈ 2V \ ∅ (because by the Claim 27
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w(δG(S)) = 2L ·w(E+
G′(S))) and hence ŷ ∈ Kc . Thus ŷ ∈ S(Kc, δ). Now suppose ŷ′ violates

a constraint
∑
e∈E+

G′
(R) ye ≤ 0 for some R ∈ 2V \ ∅. Since ŷ′ ∈ S(Ks, δ

′), it is at most δ′

distance away from the hyperplanes corresponding to the violated constraints. Therefore,
we have w(E+

G′(R)) =
∑
e∈E+

G′
(R) ŷ

′
e ≤ δ′

√
|E′|. By Claim 27, w(δG(R)) ≤ 2Lδ′

√
|E′|.

Therefore, the point ŷ is at most 2Lδ′
√
|E′|√
|E|

distance from Kc. Since δ′ <
√
|E|δ

2L
√
|E′|

, so
ŷ ∈ S(Kc, δ).

Suppose the algorithm for Span Weak Membership problem asserts that the point ŷ′ is
not in S(Ks,−δ′). If ŷ′ violates a constraint

∑
e∈E+

G′
(S) ye ≤ 0 for some S ∈ 2V \ ∅ then the

point ŷ also violates
∑
e∈δG(S) ye ≤ 0 for S (by Claim 27). Hence, it can be asserted that

ŷ is not in S(Kc,−δ). So now assume that ŷ′ satisfies all the constraints
∑
e∈E+

G′
(S) ye ≤ 0

for all S ∈ 2V \ ∅. Also, as shown earlier, ŷ′ satisfies the other constraints of Ks. Since
ŷ′ is in Ks but not in S(Ks,−δ′), some y ∈ S(ŷ′, δ′) must have distance < δ′ from some
hyperplane of Ks. The distance of ŷ′ from the hyperplane

∑
e∈E+

G′
(S) ye = 0 for S containing

s or t is at least |−B+|E|+1/2|V ||E′||√
|E′|L

= |E|+1/2|V ||E′|√
|E′|L

> δ′. Also for any y ∈ S(ŷ′, δ′), we
have ||y||∞ − ||ŷ′||∞ ≤ ||y − ŷ||∞ ≤ ||y − ŷ′||. So ||y||∞ ≤ δ + 1/2 ≤ 1 for all y ∈ S(ŷ′, δ′).
Therefore, it must be the case that distance of ŷ′ from the hyperplane

∑
e∈E+

G′
(S) ye = 0

for some S ∈ 2V \ ∅ is < δ′. By Claim 27, the distance of the point ŷ from the hyperplane∑
e∈δG(S) ye = 0 is at most 2L

√
|E′|δ′√
|E|

< δ. Hence, ŷ is not in S(Kc,−δ). J

Now we finish the proof by giving reduction from Densest-Cut to Cut Weak Membership.

I Lemma 28. There is a reduction from Densest-Cut to Cut Weak Membership.

Proof. In the Densest Cut problem, a graph G = (V,E) and a positive rational M are
given and the goal is to determine if there exists a set S ⊂ V s.t. the density of the cut
(S, V \ S) is at least M , i.e., |δG(S)|

|S||V \S| ≥M . Let M = p
q for positive integers p, q. We set L to

2 max{M, |1−M |} (so that later, ||ŷ||∞ = 1/2) and t to 1
qL .

Given the graph G = (V,E) and M , the instance of Cut Weak Membership is a complete
graph G′ = (V,E′) (so |E′| = |V |(|V |−1)

2 ), weight ŷe on each edge e ∈ E′ such that ŷe is
1−M
L if it existed in E and −ML otherwise, and δ = 1

2 min{ 1
2 ,

t√
|E′|
}. Let ŷ = (ŷe)e∈E′ . This

defines the polytope Kc as in (10) for the instance of Cut Weak Membership.
It is easy to see that w(δG′(S)) = 1

L (|δG(S)| −M |S||V \ S|). Therefore, ∃S ⊂ V s.t.
w(δG′(S)) ≥ 0⇔ ∃S ⊂ V s.t. |δG(S)|

|S||V \S| ≥M .
Since M is equal to p

q for some p, q ∈ Z+, therefore the weight of an edge is either q−p
qL or

−p
qL . So if a cut value w(δG′(S)) is strictly positive for any S then w(δG′(S)) must be at least
1
qL = t. Similarly, if w(δG′(S)) < 0 then we have w(δG′(S)) ≤ −t.

Now suppose an algorithm for Cut Weak Membership asserts ŷ is in S(Kc, δ). Thus for
all S, w(δG′(S)) =

∑
e∈δG′ (S) ŷe ≤

√
|E′|δ. Since δ < t√

|E′|
, so it must be the case that for

all S, w(δG′(S)) ≤ 0. This implies that for all S, the cut density |δG(S)|
|S||V \S| ≤M .

Suppose the algorithm for Cut Weak Membership asserts that ŷ is not in S(Kc,−δ). If
ŷ 6∈ Kc (and since ||ŷ||∞ ≤ 1) then clearly there exists a set S such that w(δG′(S)) > 0. This
implies there is a cut (S, V \ S) with density |δG(S)|

|S||V \S| > M . Now assume ŷ is in Kc. Now for
any y ∈ S(ŷ, δ), we have ||y||∞ − ||ŷ||∞ ≤ ||y − ŷ||∞ ≤ ||y − ŷ|| ≤ δ. So ||y||∞ ≤ δ + 1/2 < 1.
So there must exist a hyperplane

∑
e∈δG′ (S) ye = 0 for some S with at most δ distance from

ŷ. Therefore, there exist a set S with 0 ≥ w(δG′(S)) ≥ −
√
|E′|δ. Since δ < t√

|E′|
, this
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means w(δG′(S)) = 0 and hence density of cut (S, V \S) is M . Thus, if an algorithm for Cut
Weak Membership asserts that ŷ is not in S(Kc,−δ) then there exists a cut with density
at least M .

Therefore, assuming an efficient algorithm for Cut Weak Membership, it can be determined
if there exists a cut with density at least M or all cuts have density at most M . However,
the goal in Densest Cut is to determine if there is a cut with density ≥M or all cuts have
density strictly less than M . But since the density can take only polynomial number of
values

{
r

s(|V |−s) |1 ≤ r ≤ |E|, 1 ≤ s ≤ |V | − 1, r, s ∈ Z+

}
(as noted before), by using at most

two oracle calls to the Cut-Weak-Membership problem we can solve the original problem. J
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