
Direct Sum Testing: The General Case
Irit Dinur
The Weizmann Institute of Science, Rehovot, Israel
http://www.wisdom.weizmann.ac.il/~dinuri/
irit.dinur@weizmann.ac.il

Konstantin Golubev
D-MATH, ETH Zurich, Switzerland
https://people.math.ethz.ch/~golubevk/
golubevk@ethz.ch

Abstract
A function f : [n1] × · · · × [nd] → F2 is a direct sum if it is of the form f (a1, . . . , ad) = f1(a1) ⊕
. . .⊕ fd(ad), for some d functions fi : [ni]→ F2 for all i = 1, . . . , d, and where n1, . . . , nd ∈ N. We
present a 4-query test which distinguishes between direct sums and functions that are far from them.
The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on the direct product
test constructed by Dinur & Steurer (2014).

We also present a different test, which queries the function (d+ 1) times, but is easier to analyze.
In multiplicative ±1 notation, this reads as follows. A d-dimensional tensor with ±1 entries is

called a tensor product if it is a tensor product of d vectors with ±1 entries, or equivalently, if it is
of rank 1. The presented tests can be read as tests for distinguishing between tensor products and
tensors that are far from being tensor products.
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1 Introduction

Let us first fix some notations and definitions. By [n] we mean the set {0, 1, 2, . . . , n}.
For d positive integers n1, . . . , nd, we denote [n; d] = [n1] × · · · × [nd]. For two functions
F,G : X → Y , we denote by dist(F,G) the relative Hamming distance between them, namely
dist(F,G) = Prx∈X [F (x) 6= G(x)]. We say that F : X → Y is ε-close to have some Property,
if there exists a function G : X → Y such that g has the Property and dist(F,G) ≤ ε.

Given d functions fi : [ni]→ F2, i = 1, . . . , d, where n1, . . . , nd ∈ N, their direct sum is
the function f : [n; d]→ F2 given by f (a1, . . . , ad) = f1(a1)⊕ f2(a2)⊕ . . .⊕ fd(ad), where ⊕
stands for addition is in the field F2. We denote f = f1 ⊕ · · · ⊕ fd. We study the testability
question: given a function f : [n; d] → F2 test if it is a direct sum, namely if it belongs
to the set

DirectSum[n;d] = {f1 ⊕ · · · ⊕ fd | fi : [ni]→ F2, i = 1, . . . , d} .

Direct sum is a natural construction that is often used in complexity for hardness
amplification [15, 8, 9, 13, 14]. It is related to the direct product construction: a function
f : [n; d]→ Fd2 is the direct product of f1, . . . , fd as above if f (a1, . . . , ad)=(f1(a1), . . . , fd(ad))
for all (a1, . . . , ad) ∈ [n; d]. The testability of direct products has received attention
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40:2 Direct Sum Testing: The General Case

[7, 5, 4, 10, 6] as abstraction of certain PCP tests. It was not surprising to find [3] that there
is a connection between testing direct products to testing direct sum. However, somewhat
unsatisfyingly this connection was confined to testing a certain type of symmetric direct
sum. A symmetric direct sum is a function f : [n]d → F2 that is a direct product with all
components equal; namely such that there is a single g : [n]→ F2 such that

f (a1, . . . , ad) = g(a1)⊕ g(a2)⊕ · · · ⊕ g(ad).

In [3], a 3-query test was presented for testing if a given f is a symmetric direct sum, and
the analysis carried out relying on the direct product test. It was left as an open question to
devise and analyze a test for the property of being a (not necessarily symmetric) direct sum.

We design and analyze a four-query test which we call the “square in a cube” test, and
show that it is a strong absolute local test for being a direct sum. That is, the number of
queries is an absolute constant (namely, 4), and the distance from a function to the subspace
of direct sums is bounded by some absolute constant (independent of n and d) times the
probability of the failure of the test on this function. We also describe a simpler (d+ 1)-query
test, whose easy analysis we defer to Section 3.

In order to define the test, we need to introduce the following notation. Given two strings
a, b ∈ [n; d] and a set S ⊆ [d], denote by aSb the string in [n; d] whose i-th coordinate equals
ai if i ∈ S and bi otherwise.

Test 1 Square in a Cube test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Choose two subsets S, T ⊂ [d] uniformly at random, and let U = S4T be their

symmetric difference.
3. Accept iff

f(a)⊕ f(aSb)⊕ f(aT b)⊕ f(aUb) = 0.

We prove the following theorem for Test 1.

I Theorem 1.1 (Main). There exists an absolute constant c > 0 s.t. for all d ∈ N and
n1, . . . , nd ∈ N, given f : [n; d]→ F2,

dist(f,DirectSum[n;d]) ≤ c · Pr
a,b,S,T

[f(a)⊕ f(aSb)⊕ f(aT b)⊕ f(aS4T b) 6= 0]

where a, b are chosen independently and uniformly from the domain of f , and S, T are random
subsets of [d].

Our proof, similarly to [3], relies on a combination of the BLR linearity testing theorem [2]
and the direct product test of [6]. The trick is to find the right combination. We first observe
that once we fix a, b, the test is confined to a set of at most 2d points in the domain, and
can be viewed as performing a BLR (affinity rather than linearity) test on this piece of the
domain. From the BLR theorem, we deduce an affine linear function on this piece. The next
step is to combine the different affine linear functions, one from each piece, into one global
direct sum, and this is done by reducing to direct product.
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Testing if a tensor has rank 1

An equivalent way to formulate our question is as a test for whether a d-dimensional tensor
with ±1 entries has rank 1. Indeed moving to multiplicative notation and writing hi = (−1)fi

and h = (−1)f , we are asking whether there are h1, . . . , hd such that

h = h1 ⊗ · · · ⊗ hd.

Denoting

TensorProduct[n;d] = {h1 ⊗ · · · ⊗ hd | hi : [ni]→ {−1, 1}, , i = 1, . . . , d}

we have

I Corollary 1.2. There exists an absolute constant c > 0 s.t. for all d ∈ N and n1, . . . , nd ∈ N,
for every h : [n; d]→ {−1, 1},

dist(h, TensorProduct[n;d]) ≤ c · Pr
a,b,S,T

[h(a) · h(aSb) · h(aT b) · h(aS4T b) 6= 1].

Structure of the Paper

In Sections 2 and 3 we present two different approaches for testing whether a d-dimensional
binary tensor is a tensor product. In Section 4 we discuss possible directions for future
research. In Appendix A, we give a proof of the proposition which expands the range of
parameters in the direct product test of [6]. This is used in the course of the proof in Section 2.

2 Square in a Cube Test

In this section we present the Square in a Cube Test. Then we introduce the required
background: the BLR test for a function being Affine in Subsection 2.1, the direct product
test of Dinur & Steurer in Subsection 2.2. Finally, in Subsection 2.3 we prove the main result
on the test.

We start by introducing some notation.
Given two vectors a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [n; d], define
∆(a, b) = {i : ai 6= bi} ⊆ [d];
the induced subcube Ca,b is the binary cube F∆(a,b)

2 ;
the projection map ρa,b : Ca,b → [n; d] defined for x ∈ Ca,b as

ρa,b (x)i =


ai = bi, i 6∈ ∆(a, b);
bi, i ∈ ∆(a, b) and xi = 1;
ai, i ∈ ∆(a, b) and xi = 0;

The following test is the same as Test 1 in Introduction.

Test 2 Square in a Cube test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Choose x, y ∈ Ca,b uniformly at random.
3. Query f at ρa,b(0), ρa,b(x), ρa,b(y) and ρa,b(x⊕ y).
4. Accept iff f(ρa,b(0))⊕ f(ρa,b(x))⊕ f(ρa,b(y))⊕ f(ρa,b(x⊕ y)) = 0.

I Theorem 2.1. Suppose a function f : [n; d]d → F2 passes Test 2 with probability 1− ε for
some ε > 0, then f is O(ε)-close to a tensor product.

APPROX/RANDOM 2019
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2.1 The BLR affinity test
The Blum-Luby-Rubinfeld linearity test was introduced in [2], where its remarkable properties
were proven. Later a simpler proof via Fourier analysis was presented, e.g. see [1]. Below we
give a variation of this test for affine functions, see [12, Chapter 1].

I Definition 2.2. A function g : Fd2 → F2 is called affine, if there exists a set S ⊆ [d] and a
constant c ∈ F2 such that for every vector x ∈ Fd2

g(x) = c⊕
⊕
i∈S

xi.

Note that (see [12, Exercise 1.26]) a function g is affine iff for any two vectors x, y ∈ Fd2 it
satisfies

g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0. (1)

The BLR test implies that if a function g : Fd2 → F2 satisfies (1) with high probability,
then it is close to an affine function.

Test 3 The BLR affinity test.

Given a query access to a function f : Fd2 → F2:
1. Choose x ∼ Fd2 and y ∼ Fd2 independently and uniformly at random.
2. Query g at 0, x, y and x⊕ y.
3. Accept if g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0.

I Theorem 2.3 ([2]). Suppose g : Fd2 → F2 passes the affinity test with probability 1− ε for
some ε > 0. Then g is ε-close to being affine.

2.2 Direct Product Test
I Definition 2.4. For k,M,N ∈ N, and k functions g1, . . . , gk : [N ] → [M ], their dir-
ect product is the function g : [N ]k → [M ]k denoted g = g1 × · · · × gk and defined as
g ((x1, . . . , xk)) = (g1(x1), . . . , gk(xk)). A function g : [N ]k → [M ]k, is called a direct
product if there exist k functions g1, . . . , gk : [N ]→ [M ] such that g = g1 × · · · × gk for all
(x1, . . . , xk) ∈ [N ]k.

Dinur & Steurer [6] presented a 2-query test, Test 4, that, with constant probability,
distinguishes between direct products and functions that are far from direct product.

Test 4 Two-query test T (t).

Given a query access to a function g : [N ]k → [M ]k:
1. Choose x ∼ Fd2 and y ∼ Fd2 independently and uniformly at random.
2. Query g at 0, x, y and x⊕ y.
3. Accept if g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0.

I Theorem 2.5 ([6, Theorem 1.1]). Let k,M,N be positive integers, let t ≤ αk, where
0 < α < 1, and let ε > 0. Let g : [N ]k → [M ]k be given such that

Pr
A,x,y

(g(x)A = g(y)A) ≥ 1− ε,

where A, x, y are chosen w.r.t. the test distribution T (t). Then there exists a direct product
function g′ such that Ex [dist(g(x), g′(x))] = O(εk/t).
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I Remark 2.6. The above formulation of Theorem 2.5 is slightly more general than the
original statement in [6], as there it is proved for 0 < α < 1/2. In order to show that the
Theorem holds for 0 < α < 1, we prove the following reduction statement:

If a function g passes Test T (t) with probability at least 1 − ε for t = αk with
1/2 ≤ α < 1, then g passes Test T (t′) with probability at least 1 − ε′ for t′ = α′k,
where 0 < α′ < 1/2, ε′ = rε/α and r is a positive integer.

This reduction shows that Theorem 2.5 is true as it is stated for t = αk for all 0 < α < 1, as
the reduction affects only the constant in the O(·) notation.

For a more detailed explanation, see Appendix A.

2.3 Proof of Theorem 2.1
For a positive integer D, we denote by µ2/3(FD2 ) the distribution on FD2 , where each coordinate,
independently, is equal to 0 with probability 1/3 and to 1 with probability 2/3.

We use the following proposition in the course of the proof.

I Proposition 2.7. Let S ⊆ [D] be a set and χS : FD2 → F2 be the corresponding linear
function, i.e., χS(x) =

⊕
i∈S xi. Suppose

Pr
x∼µ2/3(FD

2 )
(χS(x) = 0) > 2

3 ,

then S = ∅.

Proof. Consider (−1)χS . Then

Pr
x∼µ2/3(FD

2 )
(χS(x) = 0) = Pr

x∼µ2/3(FD
2 )

(
(−1)χS(x) = 1

)
.

Also the following holds

1
3 <

∣∣∣∣∣2 Pr
x∼µ2/3(FD

2 )

(
(−1)χS(x) = 1

)
− 1

∣∣∣∣∣ =
∣∣∣Ex∼µ2/3(FD

2 )(−1)χS(x)
∣∣∣ =

∣∣∣∣∣∣
∏
i∈[D]

Exi∼µ2/3(F2)(−1)xi

∣∣∣∣∣∣ =

∣∣∣∣∣
(
−1

3

)|S|∣∣∣∣∣ =
(

1
3

)|S|
,

and the statement follows. J

Proof of Theorem 2.1. Assume Test 2 rejects a function f : [n; d] → F2 with probability
less than ε, i.e.,

Pr
a,b∼[n;d]
x,y∼Ca,b

(fa,b(0)⊕ fa,b(x)⊕ fa,b(y)⊕ fa,b(x⊕ y) = 0) > 1− ε,

where all distributions are uniform, and fa,b is a shorthand for f ◦ ρa,b. Then there exists
a ∈ [n; d] such that

Pr
b∼[n;d]
x,y∼Ca,b

(fa,b(0)⊕ fa,b(x)⊕ fa,b(y)⊕ fa,b(x⊕ y) = 0) > 1− ε.

APPROX/RANDOM 2019
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Note that the operations re-indexing the domain [n; d]1, as well as flipping a function, i.e.,
adding the constant one function to it element-wise, preserve the distance between functions.
Hence, w.l.o.g. we can assume for convenience that a = (0, . . . , 0) and that f(a) = 0.

We write Cb for Ca,b and fb for fa,b. Then for every b ∈ [n; d],

Pr
x,y∼Cb

(fb(0)⊕ fb(x)⊕ fb(y)⊕ fb(x⊕ y) = 0) = 1− εb.

The BLR theorem (Theorem 2.3) implies that for each b ∈ [n; d] there exists a subset
S(b) ⊆ ∆(a, b), such that

Pr
x∼Cb

(
fb(x) = χS(b)(x)

)
= 1− εb.

I Remark 2.8. By the BLR theorem, there should be the ‘greater or equal to’ sign instead of
the equality. We assume equality for convenience.

Let F : [n; d] → Fd2 be a function defined as follows. For each b ∈ [n; d], the set
S(b) ⊆ ∆(a, b) can be viewed as a subset of [d], since ∆(a, b) ⊆ [d]. Then F (b) is defined as
the element of Fd2 corresponding to the set S(b).

We now show that F passes Test 4 with high probability and hence is close to a direct
product.

Let b ∈ [n; d] be chosen uniformly at random, and let b′ ∈ [n; d] be chosen with respect to
the following distribution D(b). For each i ∈ [d],

b′i =
{
bi, w.p. 3/4;
chosen uniformly at random from [n] \ {bi}, w.p. 1/4.

Note that the distribution on pairs (b, b′), where b is chosen uniformly from [n; d] and b′ w.r.t.
D(b), is equivalent to the following: for each i ∈ [d],{

bi = b′i chosen uniformly from [n], w.p. 3/4;
bi 6= b′i both chosen uniformly from [n] w.p. 1/4.

(2)

In particular, it is symmetric in the sense that choosing b′ ∼ [n; d] uniformly at random first,
and then b ∼ D(b′), leads to the same distribution on pairs (b, b′) as the one described above.

For such a pair (b, b′) define distribution Db,b′ on [n; d] as follows. For a vector x ∼ Db,b′ ,

xi =


0, if i ∈ ∆(b, b′);
0, w.p. 1/3;
bi = b′i w.p. 2/3.

if i 6∈ ∆(b, b′).

Note that the distribution Db,b′ is supported on a binary cube of dimension d − |∆(b, b′)|
inside [n; d]. Denote

εb,b′ = Pr
x∼Db,b′

(
f(x) 6= χF (b)(x)

)
.

We claim that the following holds

εb = Pr
x∼Cb

(
f(x) 6= χF (b)(x)

)
= E
b′∼D(b)

εb,b′ . (3)

1 By this we mean selecting permutations πi on [ni] for i = 1, . . . , d, and setting fπ1,...,πd (x1, . . . , xd) =
f (π1(x1), . . . , πd(xd))
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To see (3) note that since b is chosen uniformly, b′ is chosen w.r.t. D(b), and x ∼ Db,b′ , the
resulting distribution for x is

xi =
{

0, w.p. 1/2;
bi w.p. 1/2,

which is exactly the uniform distribution on Cb.
We now show that

Pr
b∼[n;d]
b′∼D(b)

(
εb,b′ + εb′,b >

1
3

)
< 6ε (4)

First note that it follows from the definitions that

E
b∼[n;d]

E
b′∼D(b)

εb,b′ = E
b∼[n;d]

εb = ε.

And by the symmetry of the distribution on pairs (b, b′),

E
b∼[n;d]

E
b′∼D(b)

εb′,b = E
b′∼D(b)

E
b∼[n;d]

εb′,b = ε.

Combined together, the previous two equations imply that

E
b∼[n;d]

E
b′∼D(b)

(εb,b′ + εb′,b) = 2ε,

and by the Markov inequality, Inequality 4 follows. By the definition of εb,b′ ,

Pr
x∼Db,b′

(
χF (b)(x) = χF (b′)(x)

)
> 1− (εb,b′ + εb′,b) .

which is equivalent to

Pr
x∼Db,b′

(
χF (b)∆F (b′)(x) = 1

)
> 1− (εb,b′ + εb′,b) .

Proposition 2.7 implies that if 1− (εb,b′ + εb′,b) > 2
3 , then

F (b)Cb∩Cb′ = F (b′)Cb∩Cb′ .

By Theorem 2.5, the function F : [n; d]→ Fd2 is close to a direct product, i.e., there exist
d functions F1, . . . , Fd : [n]→ F2 such that

Pr
b∼[n;d]

(F (b) = (F1(b1), . . . , Fd(bd))) ≥ 1−O(ε).

Therefore,

Pr
b∼[n;d]

(
f(b) =

d⊕
i=1

Fi(bi)
)
≥ 1−O(ε). J

APPROX/RANDOM 2019
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3 The Shapka Test

In this section we present a different test for whether a tensor is a tensor product. It queries
the tensor at (d+ 2) places at most, but the proof is simpler than for the previous test.

In [11], Kaufman and Lubotzky showed an interesting connection between the theory of
high-dimensional expanders and property testing. Namely, they showed that F2-coboundary
expansion of a 2-dimensional complete simplicial complex implies testability of whether a
symmetric F2-matrix is a tensor square of a vector. The following test is inspired by their
work and in a way generalizes it. However, since the description below does not employ
neither terminology nor machinery of high-dimensional expanders, we refer to [11] for the
connection between this theory and property testing.

Given two strings a, b ∈ [n; d], for i ∈ [d] denote by aib ∈ [n; d] the vector which coincides
with a in every coordinate except for the i-th one, where it coincides with b, i.e.,

(aib)j =
{
aj , if j 6= i;
bi, if j = i.

For a string a ∈ [n; d], and a number x ∈ [ni], we write aix for the string which is equal to a
in every coordinate except for the i-th one, where it is equal to x, i.e.,

aix = (a1, . . . , ai−1, x, ai+1, . . . , ad).

Test 5 The Shapka Test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Define the query set Qa,b ⊆ [n; d] to consist of a, ajb for all j ∈ [d], and also b if

d is even.
3. Query f at the elements of Qa,b.
4. Accept iff

⊕
q∈Qa,b

f(q) = 0.

I Remark 3.1. Shapka is the Russian word for a winter hat (derived from Old French chape
for a cap). The name the Shapka test comes from the fact that the set Qa,b consists of the
two top layers of the induced binary cube Ca,b (and also the bottom layer if d is even).

I Theorem 3.2. Suppose a function f : [n; d]→ F2 passes Test 5 with probability 1− ε for
some ε > 0, then f is ε-close to a tensor product.

Proof. Let δ be the relative Hamming distance from f to the subspace of direct sums, i.e.,
for every direct sum g : [n; d]→ F2 it holds that

Prx∼[n;d] (f(x) 6= g(x)) ≥ δ.

For a vector a ∈ [n; d], let us define the local view of f from a, that is d functions
fa1 , . . . , f

a
d , where fdi : [ni]→ F2, i = 1, . . . , d, that are defined as follows. For 1 ≤ i ≤ d− 1,

and x ∈ [ni],

fai (x) = f(aix).

For i = d, the definition of fad : [nd]→ F2 depends on the parity of d and goes as follows{
fad (x) = f(adx), if d is odd,
fad (x) = f(adx)⊕ f(a), if d is even.
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Given a collection of d functions, gi : [ni]→ F2, i = 1, . . . , d, recall that their direct sum
is the function g1 ⊕ · · · ⊕ gd such that for a vector x ∈ [n; d] the following holds

g1 ⊕ · · · ⊕ gd =
⊕
i∈[d]

gi(xi).

The following holds for any [n; d],

(f − fa1 ⊕ · · · ⊕ fad )) (b1, . . . , bd) =
⊕
q∈Qa,b

f(q). (5)

As fa1 ⊕ · · · ⊕ fad is a direct sum, it is at least δ-far from f , and hence for any a ∈ [n; d],

Pr
b∼[n;d]

((f − fa1 ⊕ · · · ⊕ fad ) (b) = 1) ≥ δ. (6)

Assume now that f fails Test 5 with probability ε, i.e.,

ε = Pr
a,b∼[n;d]

 ⊕
q∈Qa,b

f(q) = 1

 .

Combining this equality with (5) and (6), we get the following

ε = E
a∼[n;d]

Pr
b∼[n;d]

((
f − f1

a ⊕ · · · ⊕ fda
)

(b1, . . . , bd) = 1
)
≥
(

E
a∼[n;d]

δ

)
= δ,

which completes the proof. J

4 Further Directions

Below we present possible directions for future research.

1. Can the original function f : [n; d]→ F2 be reconstructed by a voting scheme using the
Shapka Test 5?

2. It is plausible that the Square in the Cube test 2 can be analyzed by the Fourier transform
approach similarly to the analysis of the BLR test.

3. Another test in the spirit of the Shapka Test is the following.

Test 6 The Shapka Test.

Given a query access to a function f : [n; d]→ F2:
a. Choose a, b ∈ [n; d] uniformly at random.
b. Choose x ∈ Ca,b uniformly at random.
c. Query f at ρa,b(0), ρa,b(x), ρa,b(1) and ρa,b(x⊕ 1).
d. Accept iff f(ρa,b(0))⊕ f(ρa,b(x))⊕ f(ρa,b(1))⊕ f(ρa,b(x⊕ 1)) = 0.

We conjecture that this test is also good, i.e., if a function passes the test with high
probability then it is close to a tensor product.
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A Appendix: Proof of Remark 2.6

In this section we show that Theorem 2.5 holds for a wider range of parameters than in its
original formulation in [6]. This was used in the course of the proof of 2.1.

In [6], Dinur and Steurer proved Theorem 2.5 for 0 < α < 1/2. The following reduction
shows that the theorem is true for all 0 < α < 1 by a reduction from 1/2 ≤ α < 1 to some
0 < α′ < 1/2. Recall that Test 4 makes two queries according to the distribution T (t), which
is the following distribution: (1) Choose a set A ⊂ [k] of size t uniformly at random. (2)
Choose x, y ∈ [N ]k uniformly at random, conditioned xA = yA.

I Proposition A.1. Let agr(g, α) denote the probability that a function g passes Test 4
with respect to distribution T (αk). If agr(g, α) ≥ 1 − ε for some 1/2 ≤ α ≤ 1, then
agr(g, α′) ≥ 1− rε for 0 < α′ ≤ 1/2, where r =

⌈
1

2(1−α)

⌉
and α′ = 1− (1− α)r.

In addition, is agr(g, 1/2) ≥ 1− ε, then also agr(g, α− 1/k) ≥ 1− 2ε.
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Proof. Fix a function g : [N ]k → [M ]k, and suppose agr(g, α) ≥ 1− ε for some 1/2 ≤ α < 1,
i.e.,

Pr
A,x,y∼T (αk)

(g(x)A = g(y)A) ≥ 1− ε.

We will show that agr(g, α′) > 1− rε where r =
⌈

1
2(1−α)

⌉
and α′ = 1− (1− α)r. Note that

α′ satisfies 0 < α′ ≤ 1/2.
Given a pair of random vectors x0, xr and a set A distributed according to T (α′k), we

construct a sequence of vectors x1, . . . , xr−1 such that for all 1 ≤ i ≤ r, the pair xi−1, xi is
distributed according to T (αk).

The complement of A has size (1− α)rk. Partition it randomly into r parts of equal size
(1− α)k, [k] \A = B1 ∪ · · · ∪Br. Denote Ci = [k] \Bi for all 1 ≤ i ≤ r.

For each 1 ≤ i ≤ r − 1, construct xi such that it agrees with x0 on the coordinates in
[k] \

⋃i
j=1Bj and with xr on the rest of the coordinates

⋃i
j=iBj . Then for each 1 ≤ i ≤ r,

xi agrees with xi−1 on the set Ci of the size αk. Therefore,

Pr (g(xi−1)Ai
= g(xi)Ai

) ≥ 1− ε.

Hence,

1− r · ε ≤ Pr (∀ 1 ≤ i ≤ r : g(xi−1)Ai
= g(xi)Ai

) ≤ Pr
Ar,x,y∼T (α′k)

(g(x0)Ar
= g(xr)Ar

) .

The case of α′ = 1/2 has to be treated separately. In this case there is a reduction to
α′′ = 1/2− 1/k as follows. Given two vectors x0, x2 distributed w.r.t. T (k/2− 1) construct
an intermediate random vector x1 which agrees on exactly half of the coordinates with both
x0 and x2. J
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