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Abstract
In the Maximum Label Propagation Algorithm (Max-LPA), each vertex draws a distinct random label.
In each subsequent round, each vertex updates its label to the label that is most frequent among its
neighbours (including its own label), breaking ties towards the larger label. It is known that this
algorithm can detect communities in random graphs with planted communities if the graphs are very
dense, by converging to a different consensus for each community. In [17] it was also conjectured
that the same result still holds for sparse graphs if the degrees are at least C log n. We disprove this
conjecture by showing that even for degrees nε, for some ε > 0, the algorithm converges without
reaching consensus. In fact, we show that the algorithm does not even reach almost consensus, but
converges prematurely resulting in orders of magnitude more communities.
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1 Introduction

In the last years, opinion exchange dynamics on graphs and networks has received much
attention, see [19] for an excellent survey. Apart from the desire to improve our understanding
of social processes, opinion exchange dynamics have also found applications in the fields of
distributed computing and network analysis. For example, opinion exchange dynamics like
the 3-majority protocol or the 2-choice dynamics have been proposed as simple distributed
solutions to the basic problems of consensus forming, majority detection, and plurality
consensus in distributed networks [2, 3, 5, 7, 10, 12, 13].
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58:2 Max-LPA on Sparse Random Graphs

Label propagation algorithms (LPA) are a certain kind of opinion exchange dynamics
which have been used for community detection in networks [4, 14, 15, 21, 23]. Despite their
great practical importance (see the surveys [4, 15, 23]), and although obtaining theoretical
bounds on success and speed of LPAs was proposed as an important research question [1, 8, 18],
rigorous theoretical analyses of LPAs have only appeared recently. The first such study by
Kothapalli, Pemmaraju and Sardeshmukh [17] investigated an algorithm called Max-LPA.
In this algorithm, each vertex starts with a random label in the interval [0, 1]. In each
round, every vertex switches its label to the majority label in its neighbourhood (including
its own label), breaking ties towards larger labels. In [17] Max-LPA was studied on an
Erdős-Rényi model with planted communities.1 In this model, the vertex set is partitioned
as V = V1∪̇ . . . ∪̇Vk, where all sets Vk have a certain minimal size. Then every edge inside
of one of the sets Vi is inserted independently with some probability pi, and every edge
between different partite sets is inserted independently with probability p′ � p := mini{pi}.
The study [17] considered dense cases, e.g. for |Vi| = Ω(n) they set p = Ω(n−1/4+ε) and
p′ = O(p2). For this case they show that Max-LPA successfully recovers the communities, i.e.,
it converges quickly to a state where for each i the labels within the set Vi are all identical,
and any two distinct sets Vi have different labels. The authors of [17] conjectured that their
conditions on p are very far from tight, and that it should suffice to require p ≥ C logn/n (i.e.,
expected degrees of C logn instead of Ω(n3/4+ε)), if there is a sufficient gap between p and p′.

The conjecture from [17] has been considered in at least two subsequent papers [6, 9],
both of whom have tried to obtain results for LPA algorithms in sparser cases, see Section 1.1
below. However, the conjecture remained unresolved, and the behaviour of Max-LPA and
other LPAs generally remained poorly understood in the sparse case. In this paper we
show that the conjecture from [17] is actually false in a strong sense. Even in the extreme
case of just one rather dense community, i.e. p′ = 0, and p = n−1+ε, Max-LPA fails to label
the communities consistently. In fact, with high probability the algorithm gets stuck with
all label classes having size o(n). For this negative result, note that the case of just one
community corresponds to running the Max-LPA process on a classical Erdős-Rényi graphs
Gn,p, in which each edge is inserted independently with probability p. We thus phrase our
main result for Erdős-Rényi graphs Gn,p with expected degree d := np ≤ nε.

I Theorem 1. There exists constants C > 0 and ε > 0 such that for any C logn/n ≤ p ≤
n−1+ε, the Max-LPA process on an Erdős-Rényi graph Gn,p terminates with Ω(d3) different
label classes each of size at most O

(
n/d3), where d := np denotes the expected degree of a

vertex in Gn,p.

Note that our result does not immediately extend to smaller values of p, as the property
“Max-LPA finds consensus on G” is not monotone.

A rigorous analysis of LPAs is challenging due to the high influence of dependencies. In
[9] this was stated as: “The absence of substantial theoretical progress in the analysis of LPAs
is largely due to the lack of techniques for handling the interplay between the non-linearity
of the local update rules and the topology of the graph.” In order to prove our result we need
to combine local analysis of the dynamics with global properties of the graph, in particular
by inventing a discharging technique for showing that no set of size O(n/d3) can propagate
much further without the help of (suitably defined) unstable vertices. We hope that this
technique will also turn out to be useful for the analysis of other LPAs.

1 also called clustered Erdős-Rényi graph or stochastic block model
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1.1 Other related work
There is a huge body of experimental work on LPAs for community detection, and we refer
the reader to surveys [4, 15, 23]. Basic properties of Max-LPA were analysed in [20], and in
particular it was shown that the algorithm always converges to a stable configuration or to a
limiting cycle of length 2. An experimental comparison of Max-LPA with other tie-breaking
techniques was performed in [8], with the conclusion that Max-LPA typically converges faster
than other tie-breaking rules, but that repeated runs on the same graph produces slightly
less consistent outcomes than other LPAs.

As outlined above, there are only very few rigorous mathematical results on LPAs. In an
attempt to improve on results from [17], Cruciani, Natale, and Scornavacca [9] studied the
2-choices dynamics as a “sampling” approximation of an LPA. In this dynamics, a vertex
updates its label to the majority label among its own and the labels of two randomly drawn
neighbours, breaking ties towards its own label. For this variant of an LPA, [9] studied
clustered regular graphs with two clusters, i.e., graphs with fixed degree d within each of
the clusters, and fixed degree d′ � d between the clusters. While both, the algorithm and
the setting, differ slightly from [17], the authors compare their results with [17] and improve
the (average) degree d from d = n3/4+ε to d = n1/2. The proof idea relies on expansion
properties of the graph, and n1/2 is a natural barrier for this approach.

In [6], Clementi et al. analysed the Erdős-Rényi model with two planted communities, for
an LPA which uses a different tie-breaking rule than Max-LPA: it breaks ties randomly. For
this variant they claim that a repeated application of this LPA with random tie breaking
can successfully recover the communities with high probability, even for densities as sparse
as p = Θ(1/n). However, their result has a catch: the analysis is only done for a dynamic
version of the random graph model, in which all edges are re-drawn in every round. This
simplifies the analysis considerably, since it removes dependencies between different rounds.
In particular, the state of the algorithm at any time can be completely described by the
number of vertices of each label in each of the partite sets, whereas in the static case the
structural information is essential. As we show in this paper, the behaviour of the Max-LPA
in the sparse case reveals that it fails precisely because of the structural properties of the
label classes. In other words, the behaviour in the static and the dynamic case are completely
different, and an analysis of the dynamic case in general will not explain the behaviour of
the static case.

1.2 Some intuition on the Max-LPA process
In this section we provide some intuition for Theorem 1. Recall that we assume that,
by definition of the Max-LPA process, each v ∈ V chooses it original label uniformly and
independently from [0, 1]. With high probability all vertices will therefore have different
labels. Throughout our paper we will thus assume without loss of generality that in the
beginning of the process the labels of all vertices are pairwise different.

Consider a random graph Gn,p and recall that we denote by d = pn its average degree.
Then almost all vertices will have a neighbour which holds one of the n/d highest labels
(here and in the sequel of this overview we ignore polylog(d) factors). After the first round
we thus expect that (almost) all but the largest n/d labels are extinct, i.e., are not present
any more at any vertex.

Let us thus have a closer look at how such a high label evolves in the first few rounds
of the Max-LPA process. Hence, consider a vertex v with a label ` that belongs to the n/d
largest labels. We expect that v pushes ` to some of its neighbours. Depending on the size

APPROX/RANDOM 2019



58:4 Max-LPA on Sparse Random Graphs

of `, the number of neighbours which receive ` in round 1 can range from very few to almost
all neighbours (but this is not our concern at the moment). In order to understand what can
happen in subsequent rounds, we need to distinguish two cases: (i) v receives in round 1 a
new label `′ > ` or (ii) v keeps its initial label ` in round 1. In case (i), whenever the label `
got pushed onto enough neighbours of v in round 1, vertex v will get back its initial label `
in round 2. In this case quite a number of different scenarios can happen in further rounds,
as for example v can receive back its initial label not only in round 2, but also in other
subsequent rounds if the label ` was pushed down far enough into the r-neighbourhood of u.

In case (ii), on the contrary, v is already in a quite stable situation, as v and many of
its neighbours have the same label. More precisely, in order for v to change its label in
any of the subsequent rounds, (almost) all neighbours of v which receive label ` in round
1 need to lose ` again in one of the subsequent rounds. For any such neighbour u ∈ N(v)
this can either happen if, at some point in time, say t, the initial label of u is pushed back
onto u or the neighbourhood of u will contain a different label `′ 6= ` on two or more of its
vertices. Note that, for most neighbours of v, the first case is unlikely, as the vast majority
of neighbours of v initially held one of the n− n/d labels which are extinct after the first
round. The latter case, on the other hand, can only happen if u is in a cycle of length at
most 2(t+ 1) (here we use that we assumed that in the beginning all vertices have pairwise
different labels). Note that for each constant t ∈ N there exists a constant ε = ε(t) > 0
so that the random graph Gn,p with ω(1/n) ≤ p ≤ n−1+ε has the property that all but a
negligible number of vertices are not contained in a cycle of length at most t. Hence, almost
all vertices v ∈ V which keep their label in round 1, together with their neighbours u ∈ N(v)
which receive the label of v in round 1 and initially held one of the n− n/d smallest labels,
are in a quite stable configuration already after the first round.

After the first round only a constant fraction of vertices are in such a stable configuration.
However, by analysing the subsequent rounds of the process in a similar fashion we can show
that after the first few rounds, all but n/d4 vertices are in such a stable configuration.

Once we have shown that all but n/d4 vertices are in stable configurations, we still
have to argue that the n/d4 non-stable vertices will not be able to break up these stable
configurations. To handle this case we use a discharging argument to show that if a label
class grows to size n/d3, then this label class induces a subgraph with density at least 3/2.
As a random graph Gn,p with log(n)/n ≤ p ≤ nε whp does not contain such a set, we deduce
that no label class gets that large. We note that this idea is similar to techniques used to
study k-bootstrap percolation on Erdős-Rényi graphs [11], in which an initial set of active
vertices successively activates every vertex that has at least k active neighbours. Our case
can be viewed as a (hypothetical) 3/2-bootstrap percolation.

1.3 Notation and terminology
Our graph-theoretic notation is standard and follows that of [22]. In particular, for a graph
G, we denote by V and E the set of vertices and edges, respectively. Moreover, e(G) := |E|
is the number of edges of G. For any subset S ⊆ V we let G[S] denote the subgraph of G
that is induced by the vertices of S. We denote by E(S) the set of edges of G[S] and define
e(S) := |E(S)|. For any two disjoint subsets S, T ⊂ V we denote by E(S, T ) the set of edges
with one endpoint in S and the other in T and define e(S, T ) := |E(S, T )|. For a vertex
v ∈ V , we denote by N(v) the neighbourhood of v, which excludes v, and by d(v) := |N(v)|
its degree. For any positive integer r ≥ 2, the r-neighbourhood of a vertex v, denoted by
Nr(v), is the set of vertices that can be reached from v by a path of length at most r (i.e.
the r-neighbourhood of a vertex v includes v).
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We consider the classical random graph model from Erdős and Rényi. For a positive
integer n and 0 ≤ p := p(n) ≤ 1. We denote by Gn,p the probability space over graphs on n
vertices where every possible edge is present with probability p independently of all other
edges. We write d := np for the expected degree of a graph G ∼ Gn,p and ∆(G) for its
maximum degree. We say that an event E = E(n) happens with high probability, or whp, if
Pr[E(n)]→ 1 for n→∞. We use the notation Õ(.) to hide polylog(d) factors.

2 Some properties of random graphs

In this section, we provide some results on random graphs which are important in our analysis.
First, we state a standard result from random graph theory on degree concentration (the
proof follows e.g. from [16, Corollary 2.3] together with a union bound).

I Lemma 2. For every ε > 0 there exists a positive constant C such that for G ∼ Gn,p with
p ≥ C log(n)

n with probability at least 1− 2ne− ε2d
3 , it holds for every vertex v ∈ V that

(1− ε)d ≤ d(v) ≤ (1 + ε)d,

where d = pn.

The next lemma gives a lower bound on the number of vertices that do not have a
neighbour in a large subset.

I Lemma 3. Let M > 0, ε > 0, log(n)/n ≤ p ≤ n−1+ε and G = (V,E) ∼ Gn,p. Let S ⊂ V
be a subset of vertices of size |S| = Ω

(
n(log(d))2

d

)
, where d = pn. Then whp all but at most

nd−M vertices v ∈ V \ S have at least one neighbour in S.

Proof. As each vertex v ∈ V \ S has |S| opportunities to have an edge into S we have that

Pr [e(v, S) = 0] = (1− p)|S| ≤ e−Ω((log(d))2) = d−Ω(log(d)).

Thus, letting X be the random variable which counts the number of vertices in V \ S
with no neighbour on S and writing X as a sum of indicator random variables, we can
conclude that

E[X] ≤ nd−Ω(log(d)).

Setting t = nd−M − E[X] = ω(log(n)), the proof now follows by Chernoff bounds. J

In the following we argue that there are not many vertices which are in short cycles.

I Lemma 4. Let k be a positive integer and let G ∼ Gn,p with p = ω(1/n). Then whp the
number of cycles of length at most k is less than dk+1, where d = pn. Therefore, at most
kdk+1 vertices are contained in such cycles.

Proof. For 1 ≤ i ≤ k let Xi be a random variable counting the number of cycles of length i
in G. Then the expectation of Xi is given by

E[Xi] =
(
n

i

)
(i− 1)!

2 pi ≤ di ≤ dk,

where the last inequality follows as d ≥ 1. Thus, letting X :=
∑k
i=1Xi be the random

variable counting the number of cycle of length at most k, we can conclude by linearity of
expectation that

E[X] ≤ kdk.

APPROX/RANDOM 2019



58:6 Max-LPA on Sparse Random Graphs

Using Markov’s inequality we get

Pr
[
X ≥ dk+1] ≤ k

d
= o(1)

which finishes the proof, as each cycle contains at most k vertices. J

3 Notation and terminology for the Max-LPA process

Let us assume that the Max-LPA process runs on a random graph G ∼ Gn,p with C log(n)/n ≤
p ≤ n−1+ε, for some suitable constants C > 0 and ε > 0. We first introduce some notation.
We define L to be the set of labels used in the Max-LPA process and for any t ≥ 0 we denote
by `t(v) the label of a vertex v ∈ V after the t-th round of the Max-LPA process. Recall that
we assume without loss of generality that all labels `0(v) are distinct. For any label ` ∈ L
we denote by v` the (by our assumption unique) vertex from which label ` originated from,
i.e. `0(v`) = `. Moreover, we call a label ` extinct in a round t > 0 if there exists no vertex
v ∈ V with `t(v) = `.

During the Max-LPA process, we say that a vertex v propagates its label onto u ∈ N(v) in
the t-th round of the process if `t−1(v) = `t(u) and `t−1(v) 6= `t−1(u). If `i(u) 6= `t−1(v) for
all i ≤ t−1 (i.e. if u never held the label `t−1(v) so far), we say that v forward-propagates the
label `t−1(v) onto u in round t. Otherwise, we say that v back-propagates the label `t−1(v)
onto u in round t. In abuse of notation, we will also call a label ` to be forward-propagating
and backward-propagating from or onto a vertex v.

As we saw in the introduction, in the absence of (short) cycles, back-propagation is
essentially the only way that a vertex which has a neighbour holding the same label can
change its current label. Thus, in order to create stable configurations, we need to understand
such back-propagation of labels properly. The following definition will help us do so.

I Definition 5. Let v ∈ V , t ≥ 0 and assume that ` is a label which v holds for the first time
in round t, i.e. `t(v) = ` and `i(v) 6= ` for all i < t. Then we define the `-propagation set of v
to be the vertex v together with all vertices w for which there exists a path v = v0, . . . , vk = w

such that for all 0 ≤ i ≤ k the vertex vi receives label ` in round t+ i from vi−1 and did not
hold it in any round j < t+ i.

Recall from Section 1.2 that two vertices u and v that are connected by an edge and that
hold the same label in some round t can only change their label if they are in a short cycle
or if a label is back-propagated. In the following definition we only capture the latter (as we
will argue in Section 4 that we do not have to consider vertices that are in short cycles).

I Definition 6. Let t ≥ 0 and assume that the Max-LPA process has run for t rounds. For
any v ∈ V we denote by L(t)

v := {` ∈ L : ∃i ≤ t such that `i(u) = `} the set of labels v held
in the first t rounds of the process. We then call an edge {u, v} ∈ E stable after round t if
(i) `t(v) = `t(u),
(ii) for all forward-propagating labels ` ∈ L(t)

v \ {`t(v)} of v we have that no vertex in the
`-propagation set of v holds the label ` after round t, and

(iii) for all forward-propagating labels ` ∈ L(t)
u \ {`t(u)} of u we have that no vertex in the

`-propagation set of u holds the label ` after round t.
A vertex v ∈ V is then called stable after round t if it belongs to a stable edge after the t-th
round. All other vertices are called unstable after round t.

Moreover, we call an unstable vertex vulnerable in round t+ 1 if the labels of all vertices
in N(v) ∪ {v} are pairwise different after round t.
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Note that being stable a priori does not mean that a vertex will never change its label again.
However, we can show:

I Lemma 7. Let t0 and t be positive integers with t < t0 and let u, v ∈ V be adjacent vertices.
If {u, v} is a stable edge at time t and neither u nor v belong to a cycle of length 2t0 or less
then both u and v will keep their label (and thus remain stable vertices) until round t0.

Proof. Let t ≤ i < t0 and let us assume that {u, v} is a stable edge in round i. We claim
that then the same is true in round i+ 1 as well. Indeed, as u and v are in a stable edge and
not contained in cycles of length less than 2t0, we have that any label ` ∈ L(t)

u \ `t(u) appears
at most once in the neighbourhood of u namely on the unique vertex which pushed the label
` onto u. As the same is true for v as well, no label ` can be back-propagated onto u or v.

Hence, the only way for u or v to change their label is if they see a label ` in their
neighbourhood at least twice. As these two neighbours cannot be connected (else u or v
would be in a triangle), this can only happen if there exist two different paths from u or v to
the vertex v` from which the label ` originated from. Hence, the appearance of the label ` in
two neighbours of u (or v) in round t ≤ i < t0 implies the existence of a cycle of length at
most 2i+ 2 ≤ 2t0 which contains u (or v). As this is a contradiction, we have that u and v
will not change their label in the i-th round. Thus `i+1(u) = `i+1(v). As furthermore, again
since u and v are not contained in cycles of length less than 2t0, no label ` ∈ L(t)

u \ `t(u) (or
` ∈ L(t)

v \ `t(v)) can reappear in the `-propagation set of u (or v) through a path from v` not
through u (or v), the edge {u, v} remains stable as desired. The statement of the lemma
now follows by a simple induction. J

4 The first two rounds of the process

In this section we carefully analyse the first two rounds of the process and show that after
two rounds there are at most Õ(n/d) unstable vertices left. As explained in the introduction,
we are mainly interested in the behaviour of the highest labels, hence we define the following.

I Definition 8. For a label ` ∈ L, let the rank of ` be rk(`) := |{`′ ∈ L | `′ ≤ `}|. In
particular, the smallest label has rank 1, and the largest label has rank n. Then we define

LX =
{
` ∈ L : rk(`) ≥ n

(
1− (log(d))2

d3

)}
,

LY =
{
` ∈ L : n

(
1− (log(d))2

d2 − (log(d))2

d3

)
≤ rk(`) < n

(
1− (log(d))2

d3

)}
,

LZ =
{
` ∈ L : n

(
1− (log(d))2

d

)
≤ rk(`) < n

(
1− (log(d))2

d2 − (log(d))2

d3

)}
.

Additionally, we denote by X(t), Y (t) and Z(t) the sets of vertices holding labels in LX , LY
and LZ after round t ≥ 0, respectively.

We are particularly interested in vertices that propagate their label to at least one
neighbour in the first round but also lose their label in this round. Those are vertices which
initially engage in back-propagation. As this can cause a series of troubles, we call those
vertices and their labels “bad”. More precisely, we define the following:

I Definition 9. A label ` is called good if `1(v`) = ` and v` forward-propagates label ` in
the first round to at least one of its neighbours. Otherwise, we call ` bad.

APPROX/RANDOM 2019



58:8 Max-LPA on Sparse Random Graphs

As not only vertices which initially hold a bad label can cause troubles, but also all
vertices which (potentially) hold such a bad label in later rounds, we also consider the
2-neighbourhood of such vertices.

I Definition 10. We denote by

X
(2)
bad :=

⋃
`∈LX
` is bad

N2(v`)

the set of all vertices that are in the 2-neighbourhood of a vertex v ∈ X(0) initially holding a
bad label. Similarly, we define

Y
(2)
bad :=

⋃
`∈LY
` is bad

N2(v`).

Additionally, for any bad label ` ∈ LX or ` ∈ LY we call the 2-neighbourhood N2(v`) an
Xbad-set and a Ybad-set, respectively.

In the later rounds the following situation can also arise. Whenever we have a vulnerable
vertex, it can propagate its label and get a new label in the same round. This again results
in vertices which engage in back-propagation. The following rather general definition will
later allow us to capture all such situations. The definition may remain a bit mysterious at
first glance, but we will show later why it makes sense (see Section 5).

I Definition 11. We define two sets set of vertices, called A-nodes and B-nodes, as follows:

A :=
⋃

v∈X(0)

⋃
w∈N(v)∩Z(0)

(N(w) \ {v})

B :=
⋃

v∈Y (0)

⋃
w∈N(v)∩Z(0)

(N(w) \ {v})

With the above definitions at hand, we can state our first main lemma, which summarises
the behaviour of the algorithm in the first two rounds.

I Lemma 12. For every M > 0 there exist C > 0 and ε > 0 such that the following holds.
Let C logn

n ≤ p ≤ n−1+ε and assume that we run the Max-LPA process on a graph G ∼ Gn,p.
Then with high probability there exists a set D ⊆ V of size at most nd−M such that the
following statements hold:
(ACYC) All cycles in G[V \D] have length larger than 200.

(NBZ) Every vertex in V \D has at least one neighbour in Z(0). Moreover, all vertices
in V \D which forward-propagate in round 1 hold a label from LX , LY or LZ .

(NBY) Every vertex in V \D has at least one neighbour in Y (1). Moreover, all vertices
in V \D which forward-propagate in round 2 hold a label from LX or LY .

(NBX) Every vertex in V \D has at least one neighbour in X(2). Moreover, all vertices
in V \D which forward-propagate in round 3 hold a label from LX .

(UNST-
TYPES2)

After the second round, every unstable vertex in V \ N(D) is in Z(0), A, B,
X

(2)
bad or Y

(2)
bad.
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(UNST2X) There are Õ(n/d3) vertices in X
(2)
bad.

(UNST2Y) There are Õ(n/d) vertices in Y
(2)

bad .

(UNST2Z) There are Õ(n/d) vertices in Z(0).

(UNST2A) There are Õ(n/d2) vertices in A.

(UNST2B) There are Õ(n/d) vertices in B.

(UNST2) There are Õ(n/d) unstable vertices after the second round.

As the proof of Lemma 12 is rather long, we only give a short overview. As a first step
one can argue that the labels from LY and LX propagate their labels to a linear fraction of
their 1-Neighbourhood and 2-Neighbourhood, respectively. I.e. one can show that both Y (1)

and X(2) are of size Θ(n(log(d))2/d). Thus, by Lemma 3 and Lemma 4, we can define D as
the 5-Neighbourhood of all vertices which do not have a neighbour in Z(0) or Y (1) or X(2)

and which are contained in cycles of length 200 or less, and the first four items of Lemma 12
then follow easily.

The proof of (UNST-TYPES2) is a rather involved case analysis. In a nutshell, one can
show that all vertices v ∈ V \N(D) which are not contained in Z(0), A, B, X(2)

bad or Y (2)
bad are

connected through a stable path of length at most two to a vertex v` for some good label `.
To show items (UNST2X) to (UNST2B) one can calculate the number of bad labels in

LX and LY using standard probabilistic tools (as e.g. Chernoff bounds). The sizes of these
five sets then simply follow from their definition and Lemma 2. Last, note that (UNST2) is
just a summary of the other statements of Lemma 12.

5 The next rounds of the Max-LPA process

The main goal of this section is to show the following proposition.

I Proposition 13. After at most 100 rounds, whp the number of unstable vertices is Õ(n/d4).

In the remainder of the paper, we will mostly neglect vertices which are outside the
101-neighbourhood of D. Since |N101(D)| = o(n/d4) (if we choose the constant M in Lemma
12 large enough) the above proposition also follows if we only show that a 1−Õ(n/d4) fraction
of vertices in V \N101(D) is stable after round 100. The main advantage of neglecting these
vertices is that all vertices we consider in this section, and their complete 100-neighbourhood,
are not contained in cycles of length less than 200. Thus, all structures we analyse (such
as Xbad-sets, Ybad-sets and `-propagation sets, label classes) are actually trees (and in the
following, we hence also refer to them as e.g. `-propagation trees instead of `-propagation
sets). To ease notation, we henceforth denote for any set S ⊆ V by Ŝ := S \N101(D) the set
S without the 100-neighbourhood of D.

As the proof of the above proposition is quite involved, we only provide a detailed
overview.

By Lemma 12, we know that after the second round a 1− Õ(1/d) fraction of the vertices
in V̂ is already stable. In order to argue that the number of unstable vertices drops even
further over the next few rounds, we cover all unstable vertices in V̂ by the five classes X̂bad,
Ŷbad, Ẑ(0), Â and B̂, depending on the mechanism that keep them unstable. Note that the
definitions of X̂bad, Ŷbad, Ẑ(0), Â and B̂ are a bit over-pessimistic: vertices may occur in
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several classes, or several times in the same class, and all classes may also contain some stable
vertices. However, our definitions allow us to show that the vertices in each class behave as if
they were randomly distributed. In particular, for a given vertex, say, of type X̂bad, it is easy
to count the number of neighbours in other X̂bad-structures, in Ŷbad-structures, and so on.

The weighted meta-graph in Figure 1 summarizes the situation after round 2. Each
vertex in the meta-graph corresponds to one (or two) of the five classes of unstable vertices
(we depict Ẑ(0) and B̂ as one vertex in all our figures because they evolve identically). The
weights on the edges in the meta-graph are guided by the following idea. Assume that a
vertex is, say, in an X̂bad-structure, and assume pessimistically that its label can take over
arbitrary parts of this structure. Then the weights of the arrows going out from X̂bad are
(an upper bound for) the expected number of structures of other types that the label sees
(and thus, can potentially take over). If we pessimistically assume that it also takes over
these new structures, then the weights of the outgoing edges in the meta-graph also gives a
bound on the expected number of structures that the label can see form there, and so on.
Thus if for each walk in the meta-graph we multiply the weights along a walk, and then sum
these products over all walks in the meta-graph, then we obtain an a bound for the expected
number of structures that the label can take over.

Ŷbad

size: d2

#: n/d
d2

X̂bad

size: d2

#: n/d3

1
d2

1

Â

size: 1
#: n/d2

1
d

1

d

1
d2 d

Ẑ(0)/B̂

size: 1
#: n/d

1

1 d2

1
d2

d2

1
d

1

Figure 1 Meta-graph after round 2. The first value in a node S indicates the size of a
structure S, the second value indicates number of vertices (counted with multiplicity) in structures
of type S. The weight x of a meta-edge from node S to node T indicates that from a random
S-structure S0 there are in expectation at most x edges to T -structures (not counting edges within
S0 if S = T ). The same bound is also valid if S0 is not random among all S-structures, but rather a
random neighbour of a T ′-structure, for any type T ′ that appears in the meta-graph. All values are
upper bounds and suppress any polylog(d) factors.

An important intermediate goal is to show that the graph G′ = (V ′, E′) induced by
unstable vertices from V̂ is scattered, i.e. that most vertices are in small components. To
this end, we would like to have that for any walk in the meta-graph, the weights of the edges
multiply up to something of size o(1). Then, if we start with a random vertex in V ′, all
paths in G′ containing this vertex are short, since its unstable structure is only connected to
few other meta-vertices. Hence, the vertex has small probability to be in a large component.
Unfortunately, after round 2 the meta-graph is still much too dense for our purpose.

Analysing the Max-LPA process further, we show that in the third round the number of
unstable Ẑ(0) and B̂ structures decreases by a factor of Õ(1/d). For the Ŷbad structures,
something even more dramatic happens: most of them scatter internally by round 5, in the
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sense that if we choose a random vertex in a random Ŷbad structure, then the expected size
of the component of this vertex within the Ŷbad structure shrinks to Õ(1). The analysis after
round 2 becomes more tricky, since the structures lose their independence. For example,
although the number of Ẑ(0)/B̂-structures decreases, the weight of the arrow Â→ Ẑ(0)/B̂

does not decrease because neighbours of Â-vertices are biased towards remaining unstable.
However, we can prove that some weights decrease as one would expect for random edges,
namely for the edges between Ŷbad and Ẑ(0)/B̂, and the edges that go out of Ŷbad. The
meta-graph after round 5 can be found in Figure 2.

Ŷbad

size: 1
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Â

size: 1
#: n/d2

1
d

1

1
d

1
d2 d
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Figure 2 Meta-graph after round 5. The first value in a node S indicates, given a random vertex
v in a random structure S0 of type S, the size of the connected component of v induced by unstable
vertices in S0. The weight of the edge from S to T indicates how many edges into T -structures there
are in expectation from this connected component. Again, all bounds remain valid if we choose v as
a random vertex as seen from structures of some type T ′. The second value in a node S indicates
the number of unstable vertices in structures of type S. All values are upper bounds and suppress
any polylog(d) factors. Compared to round 2, only a Õ(1/d)-fraction of the nodes in Ŷbad and in
Ẑ(0)/B̂ remain unstable. This decreases the weights from Ybad and Z/B into Ybad and Z/B by a
factor of 1/d, but not the weights from X̂bad or Â into these sets, because the target nodes of these
edges are biased towards remaining unstable. Moreover, the remaining Ŷbad-structures are scattered
into connected components of expected size Õ(1), which decreases the weights of all outgoing edges
from Ŷbad by 1/d2. There are no cycles in which the weights multiply to strictly more than one, and
every cycle with a product of one is a combination of the cycles X̂bad → X̂bad, X̂bad ↔ Ŷbad and
X̂bad ↔ Ẑ(0)/B̂.

After round 5, there are still some cycles for which the weights do not multiply to o(1), in
particular the loop at X̂bad and the cycles X̂bad ↔ Ẑ(0)/B̂ and X̂bad ↔ Ŷbad. To deal with
those, we use the fact that a typical leaf v of an X̂bad-structure sees neighbours in Ŷbad and
in Ẑ(0)/B̂ after round 2, but these do not see further unstable neighbours in round 3 and 4
with probability 1− Õ(1/d). In this case, we show that the leaf v stabilizes by round 20, and
we may decrease the weights from X̂bad to Ŷbad and to Ẑ(0)/B̂ accordingly (Figure 3). In
the remaining meta-graph, all walks accumulate decreasing factors except for the loop for
X̂bad. However, since there are only Õ(n/d4) vertices in X̂bad structures, we can show that
even the union of the connected components in G′ of all these structures has size Õ(n/d4).
For all vertices outside of this union, a long path in G′ from such a vertex induces a long
walk in the meta-graph, which is unlikely. Thus almost all vertices are either among the
Õ(n/d4) vertices of X̂bad components, or are in components of diameter less than K, for a
suitable constant K. For the latter one, we show that they stabilise after K further rounds
if the vertices are not contained in any cycles of length at most 2K.
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Â

size: 1
#: n/d3

1
d

1

1
d

1
d2 d
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Figure 3 Meta-graph after round 20. Values have the same meaning as in Figure 2. Compared to
Figure 2, the Xbad-structures have decreased by a 1/d factor in component size and in the number of
unstable vertices, and the number of outgoing edges from X̂bad to Ŷbad and to Ẑ(0)/B̂ has decreased
by a factor of 1/d. The only remaining cycle in which the labels multiply to one is the loop at X̂bad.

6 Finishing the proof

For the last part of the proof, we fix a label, and show that this label cannot take over the
complete graph. We only give the proof under the following simplifying assumption, and
defer the full proof to the journal version. More precisely, we will assume that the label is
`max, the maximum label, and after round 100 we change the labels of all unstable vertices
and all vertices whose label appears in a cycle of length at most 200 to `max. This gives the
label class of `max a considerable boost after round 100, but it also simplifies the setting. In
particular, since every other vertex v is stable and not in a cycles of length at most 200, the
definition of stable implies that all neighbours of v have either the label of v, the label `max,
or other mutually distinct labels. Moreover, after round 100 they have at least one neighbour
of the same label, so they can only change their label to `max. This remains true inductively,
since if a vertex v loses its neighbours of the same label, then those neighbours change their
label to `max, and thus v also changes its label to `max. Thus the only possible change in the
remaining graph is that vertices change their label to `max.

Let us first estimate the number of vertices that have or receive label `max after round 100.
There are at most Õ(n/d4) unstable vertices by Lemma 13. Moreover, at this point no label
class has swallowed more than its 100-neighbourhood, which has size O(d100) = Õ(n/d4)
whp (Lemma 2). Consider some δ > 0. By choosing ε = ε(δ) sufficiently small, if follows
from Lemma 4 that the number of vertices that are contained in cycles of length at most 200
is O(nδ). Since each label class has at most size O(d100), the number of vertices with labels
that appear in such cycles is O(d100nδ) = Õ(n/d4), if we choose δ sufficiently small. Thus
after round 100 the label class of `max has size Õ(n/d4). In the following, we will show that
with high probability, the structure of Gn,p is such that no set of this size can take over all
the stable vertices in the graph.

First we argue that in order to take over a certain set of stable vertices S from one of
the stable trees, there needs to be a certain number of edges going from S to the vertices
holding label `max. Let T ⊆ V be the set of vertices that initially (i.e., after the relabelings
in round 100) have label `max, and denote for each ` 6= `max by V` the set of vertices with
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label ` at this time. Now fix some later point in time t. Let T ′ ⊇ T be the set of vertices
with label `max at round t, and for each ` 6= `max, let S` = V` ∩ T ′ be the set of vertices with
label ` that have been taken over by `max by round t. Then we claim that

e(T ′ \ T, T ) + e(T ′ \ T ) ≥ |T ′ \ T |+
∑

`∈L, 6̀=`max

(e(S`, V` \ S`) + e(S`)). (1)

To prove (1), let us assume that v1, v2, . . . , vk is the order in which the vertices of T ′ \ T
acquire the label `max, where we break ties arbitrarily. For an index i ≤ k, let `i be the label
of vi and let Ti := T ∪ {v1, . . . , vi−1}. Note that

e(vi, T ′) = e(vi, Ti) + e(vi, T ′ \ Ti).

Moreover, when vi changes its label then all vertices in V`i
\ Ti still have label `i. Hence, vi

can only change its label if e(vi, Ti) ≥ e(vi, V`i
\ Ti) + 1, where the “+1” comes from the fact

that the vertex v considers its own label as well when taking the majority. Hence,

e(vi, T ′) = e(vi, Ti) + e(vi, T ′ \ Ti)
≥ e(vi, V`i \ Ti) + 1 + e(vi, T ′ \ Ti)
= 1 + e(vi, V`i

)− e(vi, {v1, . . . , vi−1} ∩ V`i
) + e(vi, T ′ \ Ti).

Now we sum both sides over all 1 ≤ i ≤ k. Note that summing over e(vi, T ′) yields
e(T ′ \ T, T ) + 2e(T ′ \ T ) since edges in T ′ \ T are counted twice. Likewise, summing over
e(vi, V`i

) yields
∑
` 6=`max

(e(S`, V` \S`) + 2e(S`)), and summing over e(vi, {v1, . . . , vi−1}∩V`i
)

yields
∑
` 6=`max

e(S`). Finally, summing over e(vi, T ′ \ Ti) yields e(T ′ \ T ). Thus, summing
and canceling e(T ′ \ T ) yields

e(T ′ \ T, T ) + e(T ′ \ T ) ≥ k +
∑

`∈L, 6̀=`max

(e(S`, V` \ S`) + e(S`)),

which implies (1) as k = |T ′ \ T |.
Note that the term e(T ′ \ T, T ) + e(T ′ \ T ) on the left hand side counts the number of

edges by which the label class of `max increases when it grows from T to T ′, while the term
e(S`, V` \ S`) + e(S`) counts the number of edges within V` which have at least one endpoint
in S`. So basically (1) says that in order to recruit k vertices, the label class is “charged” at
least k +

∑
` 6=`max

e(S`, V` \ S`) + e(S`) edges. It is easy to check that the minimal ratio of
charged edges per recruited vertex is attained if S` = V` is of size 2 for all ` 6= `max, in which
case the ratio is 3/2 (three edges for two vertices).

Hence, in order to take over a set S of size k we need at least 3k/2 edges in S ∪ V`max .
However, a sparse Gn,p does not have sets of this density of order Θ(n/d3), as the following
lemma shows.

I Lemma 14 (Lemma 4.2 in [11]). Consider Gn,p with 1� d = np = o(n). Let β = 3
2−

1
2 log(d) ,

and set s = n
3d3 . Then with high probability no set of s vertices spans at least βs edges.

We may thus conclude the proof by contradiction as follows. Assume that `max would
take over the graph. After round 100, it has size s0 = Õ(n/d4), so at some later point the
label class must have size s = n/(2d3). At this point, the number of edges in the label
class is at least 3

2 (s − s0) = (1 − Õ(1/d)) 3
2s ≥ βs, where β is as in Lemma 14. This is a

contradiction to Lemma 14. Hence, the assumption must be wrong and `max cannot take
over the graph. In fact, the proof shows that the label class of `max cannot grow to any size
larger than O(n/d3).
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7 Conclusion

We have shown that Max-LPA does not reach consensus onGn,p if p = O(n−1+ε). Consequently
it fails to identify communities in planted network models. This disproves a conjecture by
Kothapalli, Pemmarajum, and Sardeshmukh. Our result is obtained by combining a careful
local analysis of the process with suitable global properties of the network.

For the Max-LPA process, it is natural to assume that there is some threshold α such that
for any small δ > 0 we have that for p = Ω(n−α+δ) the Max-LPA process reaches consensus
on Gn,p with high probability, while for p = O(n−α−δ) it does not reach consensus with high
probability. Assuming such an α exists, it follows from our result that α ≤ 1− ε; from [17]
we know that α ≥ 1/4.

We conducted some experiments, which seem to suggest α = 4/5. Our experimental
data was obtained by doing a binary search where in every step we ran the algorithm on 32
independent Gn,p. If the majority of the runs converged with a unique label (modulo isolated
vertices) then we decreased the value of p for the following run, otherwise we increased it.
We stopped when the change in the probability was small enough. To visualize the data
we plot it on a log-log-scale, with basis 2 for the log. In this setting the exponent becomes
a linear factor. We computed a linear regression of the log-log-data (i.e., the line which
minimizes the sum of the square-distances of the log-log data points), and obtained the
line log2(d) = 0.19964 log2(n) + 0.4652. Since the leading constant is very close to 0.2, this
suggests that the correct threshold might be d = Θ(n1/5) and thus p = Θ(n−4/5).
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log2(n)

lo
g 2

(d
)

Figure 4 Our experimental data with a linear regression. We plot an experimental evaluation of
the threshold d such that the Max-LPA converges in 50% of the cases with a unique label, on a log-log
scale. The experimental data is extremely well described by a line with slope ≈ 0.2, suggesting that
the threshold satisfies d = Θ(n1/5).
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