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Abstract
We introduce a natural generalization of the Erdős-Rényi random graph model in which random
instances of a fixed motif are added independently. The binomial random motif graph G(H, n, p) is
the random (multi)graph obtained by adding an instance of a fixed graph H on each of the copies of
H in the complete graph on n vertices, independently with probability p. We establish that every
monotone property has a threshold in this model, and determine the thresholds for connectivity,
Hamiltonicity, the existence of a perfect matching, and subgraph appearance. Moreover, in the first
three cases we give the analogous hitting time results; with high probability, the first graph in the
random motif graph process that has minimum degree one (or two) is connected and contains a
perfect matching (or Hamiltonian respectively).
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1 Introduction

In the late 1950’s Gilbert [11] and Erdős and Rényi [6] introduced two of the most fundamental
models for generating random graphs: the binomial random graph G(n, p), generated by
independently adding an edge between each pair of vertices in the complete graph on n

vertices with probability p, and the the uniform random graph G(n,m), which is a uniformly
chosen graph from all graphs on n vertices with m edges. Since, the extensive study of these
simple constructions has influenced a variety of fields including combinatorics, computer
science, and statistical physics (see [9, 4, 12] for surveys).
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66:2 Thresholds in Random Motif Graphs

Detailed analysis of the model has led to the development of plethora of new techniques
in probability for analyzing random processes, and the model has been used to verify the
existence of structures with certain properties [1]. In computer science, the model has
been used to analyze the performance of algorithms on an “average” case, showing that NP
complete problems may be easier random instances.

The rise of data in the form of graphs (e.g. internet connections, biological networks,
social networks) has further fueled the study of random graphs. In practice, the comparison
of real world networks to the Erdős-Rényi model is a popular technique for highlighting
the non-random aspects of a network’s structure [20, 2, 17, 14]. Moreover, the model has
inspired many other models which are designed to mirror some characteristic of real-world
networks (e.g. Watts-Strogatz graphs have small diameter [18], Barabási-Albert preferential
attachment graph exhibit a power law degree distribution [3]).

In this paper we consider a natural generalization of the Erdős-Rényi model in which
random motifs are added rather than random edges. A motif is a fixed small subgraph,
such as a triangle. The motifs that are overrepresented in a network are correlated to the
function of the network [20, 2, 17, 14]. Analyzing random graphs formed as the union of
many instances of a particular motif H will give insight into the structural properties of
networks with many copies of the motif H.

We define the binomial random motif graph G(H,n, p) as the random (multi)graph
obtained by adding an instance of H on each of the

(
n

|V (H)|
)
· |V (H)|!/ aut(H) copies of H in

the complete graph on n vertices Kn, independently with probability p. Here by aut(H) we
denote the number of automorphisms of H. Note that if H is an edge, then this is exactly
G(n, p). Similarly, the uniform random motif graph Ḡ(H,n,m) is the random (multi)graph
obtained by taking the union of m uniformly chosen copies of H in Kn without replacement.

Closely related to Ḡ(H,n,m) is the random motif graph process Ḡ0(H,n), Ḡ1(H,n), ...,
ḠN (H,n). Ḡ0(H,n) is the empty graph on n vertices and for 0 ≤ i ≤ N =

(
n

|V (H)|
)
/ aut(H)

the graph Ḡi+1(H,n) is generated by adding to Ḡi(H,n) a copy of H, Hi+1, chosen uniformly
at random from all the copies of H except those in {H1, H2, ...,Hi} i.e. those that have been
added to Ḡ0(H,n) so far. Clearly Ḡm(H,n) has the same law as Ḡ(H,n,m). In addition,
by setting H to be an edge we retrieve the random graph process introduce by Erdős and
Rényi [7]. By considering the random motif graph process in place of the uniform random
motif graph model we can phrase results in a finer way (see for example Theorem 3).

In this work we show that every monotone graph property has a threshold in the
binomial random motif graph G(H,n, p). Then we determine the thresholds for connectivity,
existence of a perfect matching, Hamiltoncity and subgraph appearance. In the first three
cases we also show a hitting time result, according to which w.h.p.1 the first graph in
the random motif graph process that has minimum degree one (or two) is connected (or
Hamiltonian respectively).

1.1 Notation
Throughout we assume the motif H has no isolated vertices. For an integer r ≥ 0, denote by
mr(H) the number of its copies in Kn which intersect the set [r]. For an integer d ≥ 0 we
define the quantities δd(H) and pd(H) by

δd(H) := dd/δ(H)e − 1 and p±d (H) := lnn+ δd(H) ln lnn± x(n)
m1(H) ,

1 That is, with probability tending to 1 as n tends to infinity.
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where x(n) is any function of n satisfying 1 � x(n) � ln lnn. Note that the expected
number of added instances of H in G(H,n, p±1 (H)) is mn(H) · p±1 (H), which only depends
on n and on |V (H)|.

1.2 Results
A function p∗ = p∗(n) is a threshold for a monotone increasing property P in the random
graph G(H,n, p) if

lim
n→∞

Pr[G(H,n, p) ∈ P] =
{

0 if p/p∗ → 0,
1 if p/p∗ →∞,

as n→∞. Our first result is a generalization of a theorem by Bollobás and Thomason [5].

I Theorem 1. Every non-trivial monotone graph property has a threshold.

Given Theorem 1, a natural goal is to find the thresholds for various monotone properties.
The remaining results of this paper are dedicated towards this goal; we determine the
threshold for connectivity, the existence of a perfect matchings, Hamiltonicity, and subgraph
appearance.

A first such result, which generalizes a result in [6], shows, in particular, that the expected
number of motifs needed to make the random motif graph connected depends only on the
number of (non-isolated) vertices of the motif.

I Theorem 2. Let H be a fixed graph. Then

lim
n→∞

Pr[G(H,n, p) is connected ] =
{

0 p ≤ p−1 (H),
1 p ≥ p+

1 (H).

In fact, we show a hitting time result, according to which the hitting time of connectivity
equals, w.h.p., the hitting time of minimum degree one. In other words, the random motif
graph process becomes connected exactly when the last isolated vertex disappears, with high
probability.

Fix an integer n and a graph H. Let τc = min{i : Ḡi(H,n) is connected}, and for d ≥ 1
denote τd = min{i : δ(Ḡi(H,n)) ≥ d}.

I Theorem 3. Let H be a fixed graph. Then w.h.p. τc = τ1.

We remark that if the motif H is connected, every connectivity related question depends
solely on the sets of vertices on which copies of H are added, and not on the way they are
put there. Thus, we may model the question as a (binomial or uniform) random k-uniform
hypergraph, where k = |V (H)|. In this case, Theorems 2 and 3 follow immediately from
known results about (loose) connectivity in random hypergraphs (see, e.g.,[16]).

In the following two theorems we show that the existence of a perfect matching is also
dependent on the number of non-isolated vertices of the motif.

I Theorem 4. Let H be a fixed graph, and assume that n is even. Then,

lim
n→∞

Pr[G(H,n, p) has a perfect matching ] =
{

0 p ≤ p−1 (H),
1 p ≥ p+

1 (H).

Let τM = min{i : Ḡi(H,n) has a perfect matching}. The analogue hitting time result is
also true.

APPROX/RANDOM 2019



66:4 Thresholds in Random Motif Graphs

I Theorem 5. Let H be a fixed graph, and assume that n is even. Then w.h.p. τM = τ1.

Theorem 6 establishes that the thresholds for minimum degree 2 and for Hamiltonicity are
the same. Theorem 7 shows the hitting time version of that result.

I Theorem 6. Let H be a fixed graph. Then

lim
n→∞

Pr[G(H,n, p) is Hamiltonian ] =
{

0 p ≤ p−2 (H),
1 p ≥ p+

2 (H).

Let τH := min{i : Ḡi(H,n) is Hamiltonian}.

I Theorem 7. Let H be a fixed graph. Then w.h.p. τH = τ2.

Next, we describe the threshold for the appearance of a subgraph S. If S appears in a
random motif graph, then S is a subgraph of some configuration of b copies of H whose
union contains a vertices. For such an (a, b) covering of S, we call a subset of the covering
containing b′ copies of H whose union contains a′ vertices an (a′, b′) subset. The threshold
for the appearance of S depends on γ̄, the maximum over all covering configurations of the
minimum ratio a′/b′ for all subsets of the covering configuration. Definition 15 formally
describes γ̄.

I Theorem 8. Let H be a fixed graph, let S be a fixed graph, and set v = |V (H)| and
γ̄ = γ̄(S,H). Then

lim
n→∞

Pr
[
S ⊆ Ḡ(H,n,m)

]
=
{

0 m� nv−γ̄

1 m� nv−γ̄ .

The number of excess edges of a connected graph S, or simply its excess, is defined to be
exc(S) = |E(S)| − |V (S)|+ 1. In particular, trees have excess 0. We say that S is unicyclic
if its excess is 1, or complex if its excess is at least 2. The following theorem gives a simple
description of γ̄ when the motif H is a path, which allows us to deduce how the copies of
H fit together to form a copy of S at the threshold when S first appears. If S is a tree, a
minimal set of edge disjoint copies of H typically forms S. If S is complex, each copy of the
path H typically contributes a single edge to S. If it is unicyclic, it may be formed by any
edge disjoint configuration of paths H.

I Theorem 9. Let H be a path of length v − 1 and let S be a connected graph. Let β be the
minimum number of edge-disjoint copies of H whose union contains S as a subgraph. Let
η = minX⊆S |V (X)|

|E(X)| . Then

γ̄ =


v − 1 + 1/β exc(S) = 0,
v − 1 exc(S) = 1,
v − 2 + η exc(S) ≥ 2.

In the case where the motif is a long path, this result establishes a connection between
the threshold for the appearance of subgraphs in random motif graphs and the threshold
for the appearance of subgraphs in the trace of a random walk on the complete graph Kn

(studied in [13]). Let S be a connected graph and β be the minimum number of paths in
any edge-disjoint decomposition of S into paths. If H is longer than the maximum length
path in such a minimum edge-disjoint path decomposition, then the threshold implied by
Theorem 9 matches the threshold for the appearance of S in the trace of a random walk on
the complete graph [13].
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This should not come as a surprise; by noticing that when the motif is a long path,
the random motif graph model approximates the trace model, in the following sense. One
may sequentially “cut” the (lazy) simple random walk into chunks with buffers of length 1.
We delete loops created by the trace of each chunk, and we enforce the condition that the
remaining edges span a path of length ` (which is fixed but large). Hence the trace of each
such chunk is an independent copy of a path of length `. Thus we may couple the trace model
and the random motif model such that the trace model will include the random motif model
plus some loops plus a small number of buffer edges (which gets smaller as ` gets larger).

Viewing this analogy this way, we may use Theorems 8 and 9 to reprove the main theorems
of [13] for the case where the base graph is complete.

2 Existence of thresholds for monotone properties

Proof of Theorem 1. Assume that P is a monotone increasing property and let H1, H2, ...,

Hm0(H) be the copies of H that are spanned by Kn. Observe that

Pr[G(H,n, p) ∈ P] =
m0(H)∑
i=0

∑
S∈(m0(H)

i )
pi(1− p)(

n
|V (H)|)−iI

( ⋃
j∈S

Hj ∈ P
)

is a polynomial in p. In addition, since P is increasing, it is increasing. Therefore we may
define p1/2 by

Pr
[
G(H,n, p1/2) ∈ P

]
= 1

2 .

We will show that p1/2 is a threshold for P. For two random graphs G,G′ we write G ⊆ G′
if G,G′ can be coupled such that G is a subgraph of G′.

First let p = ω(n)p1/2 where ω(n) → ∞ as n → ∞ and let k ∈ N. Let Gi(H,n, p1/2)
be distributed as a G(H,n, p1/2) for i ∈ [k]. Then, by considering the probability of no
appearance of a fixed copy of H, we have that the graph ∪i∈[k]Gi(H,n, p1/2) is distributed
as G(H,n, (1− (1− p1/2)k)). Thereafter 1− (1− p1/2)k ≤ kp1/2 implies,⋃

i∈[k]

Gi(H,n, p1/2) = G(H,n, (1− (1− p1/2)k)) ⊆ G(H,n, kp1/2).

Hence,

Pr
[
G(H,n, ω(n)p1/2) ∈ P

]
= 1− Pr

[
G(H,n, ω(n)p1/2) /∈ P

]
≥ lim
k→∞

1− Pr
[
G(H,n, kp1/2) /∈ P

]
≥ 1− lim

k→∞

k∏
1=i

Pr
[
Gi(H,n, p1/2) /∈ P

]
= 1.

Now assume that p = p1/2/ω(n) for some ω(n)→∞ as n→∞ and let k ∈ N. Similarly
to before, if we let Gi(H,n, p1/2/ω(n)) to be distributed as a G(H,n, p1/2/ω(n)) for i ∈ [k]
then, we have that⋃

i∈[k]

Gi(H,n, p1/2/ω(n)) = G(H,n, (1− (1− p1/2/ω(n))k))

⊆ G(H,n, kp1/2/ω(n)) ⊆ G(H,n, p1/2).

APPROX/RANDOM 2019



66:6 Thresholds in Random Motif Graphs

Hence,

1
2 = Pr

[
G(H,n, p1/2) ∈ P

]
= 1− Pr

[
G(H,n, p1/2) /∈ P

]
≥ lim
k→∞

1− Pr
[
G(H,n, kp1/2/ω(n)) /∈ P

]
≥ 1− lim

k→∞

k∏
1=i

Pr
[
Gi(H,n, p1/2/ω(n)) /∈ P

]
= 1− Pr

[
Gi(H,n, p1/2/ω(n)) /∈ P

]k
.

Rearranging the above gives,

Pr
[
Gi(H,n, p1/2/ω(n)) /∈ P

]
≥ lim
k→∞

(
1
2

)1/k
= 1. J

3 Connectivity

Proof of Theorem 2. If p ≤ p−1 (H) then by Theorem 19 the minimum degree of G(H,n, p)
is w.h.p. 0, hence it is not connected.

Suppose p ≥ p+
1 (H). In fact, for the argument below, we only assume that p = (lnn±

o(lnn))/m1(H) (and the conclusion will follow by monotonicity). Let k denote the number
of vertices of H. For r = 1, . . . , n/2 denote by Sr the number of connected components of
size r in G(H,n, p). Note that for r ≥ k, if a set of cardinality r is a connected component,
then there exist d(r − 1)/(k − 1)e copies of H inside the set which appear in G(H,n, p), and
there are no edges between it and its complement, so none of the q = qr(H) copies of H that
intersect that set appear. By Lemma 17,

qp ∼ rfk(r/n) · lnn ≥ (1 + o(1))k lnn.

Let η = k!/ aut(H) and suppose r ≥ k. By Lemma 18 and by the union bound there exist
constants c, c′, C > 0 depending only on H such that

Pr[Sr > 0] ≤
(
n

r

)(
η
(
r
k

)⌈
r−1
k−1

⌉)pd r−1
k−1e(1− p)q ≤

(en
r

)reη(rk)p⌈
r−1
k−1

⌉
d

r−1
k−1e

e−qp

≤
[
C · n

r
· r · p(r−1)/(r(k−1))n−(1+o(1))k/r

]r
=
[
C · polylogn · n1/r−(1+o(1))k/r

]r
= o(1).

It follows that

Pr[G(H,n, p) is not connected] ≤
n/2∑
r=1

Pr[Sr > 0]

= Pr[S1 > 0] +
n/2∑
r=k

Pr[Sr > 0] = Pr[S1 > 0] + o(1),

but according to Theorem 19 (for p ≥ p+
1 (H)), there are no isolated vertices w.h.p., and the

result follows. J
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Note that a consequence of this proof is that for p = (lnn± o(lnn))/m1(H), with high
probability, every connected component is of cardinality 1 or at least n/2. This means that
w.h.p. there exists a unique “giant” component of linear size, and the rest of the vertices are
isolated. The next lemma, whose proof uses a simple second moment argument, estimates
the number of these isolated vertices for p− = (lnn− ln lnn)/m1(H).

I Lemma 10. The number of isolated vertices in G(H,n, p−) is w.h.p. at most 2 lnn.

Proof. Let D0 be the number of isolated vertices in G(H,n, p−). First,

E[D0] = n(1− p−)m1(H) ∼ ne−p−·m1(H) = ne− lnn+ln lnn = lnn.

Moreover,

E
[
D2

0
]

= E[D0] + n(n− 1)(1− p−)m2(H).

Denote L := 2m1(H)−m2(H). Thus

E
[
D2

0
]
≤ E[D0] + E[D0]2(1− p−)−L,

and since (1− p−)−L − 1 ∼ Lp−, we have that

Var[D0] ≤ E[D0] + E[D0]2((1− p−)−L − 1) ≤ E[D0] + (L+ 1)p− E[D0]2.

Thus, noting that Lp− = o(1),

Pr[D0 ≥ 2 lnn] = Pr[|D0 − E[D0]| ≥ (1 + o(1)) E[D0]]

≤ (1 + o(1))
(

E[D0]−1 + (L+ 1)p−
)

= o(1). J

Proof of Theorem 3. Denote p± = (lnn ± ln lnn)/m1(H) and m± = p± · mn(H). By
asymptotic equivalence of the binomial and the uniform models (see, e.g., [12]*Section 1.4)
we have that w.h.p. G(H,n,m−) has a unique giant component, and the rest of the connected
components are isolated vertices, whose number is at most 2 lnn. Denote the set of these
isolated vertices by V0. Together with Theorem 2 we also conclude that w.h.p.

m− ≤ τ1 ≤ τc ≤ m+.

We may thus couple Ḡ(H,n,m−), Ḡ(H,n, τ1), Ḡ(H,n, τc) and Ḡ(H,n,m+) such that

Ḡ(H,n,m−) ⊆ Ḡ(H,n, τ1) ⊆ Ḡ(H,n, τc) ⊆ Ḡ(H,n,m+),

by starting with Ḡ(H,n,m−) and adding M = m+ − m− random copies of H to create
Ḡ(H,n,m+). Note that if none of these M edges is fully contained in V0 (and the coupling
succeeds) then τ1 = τc. Thus, there exist positive constants C1, C2 such that,

Pr[τ1 < τc] ≤ o(1) +M ·
C1
(|V0|
k

)
mn(H)−m+

≤ o(1) + C2 ·
mn(H) ln lnn

m1(H) · ln2 n

mn(H) = o(1). J

4 Hamiltoncity and Perfect Matchings

The proof of Theorems 7 and 5 can be given in parallel, using the same techniques and tools.
For clarity though, in this section we focus mainly on proving Theorem 7 and we give a
sketch of the proof of Theorem 5 in the appendix.

APPROX/RANDOM 2019



66:8 Thresholds in Random Motif Graphs

For proving our Hamiltonicity result we use the standard technique of Posa’s rotations.
We define Small to be the vertices of significantly smaller degree than the expected one and
we set Large to be the rest of the vertices. We first show that small to medium subsets of
Large expand and that the vertices in Small are well spread. This is done in the context
of Lemmas 11 and 12, 13 respectively. We use these properties of Small and Large in
order to prove all the the ingredients needed to apply the Posa’s rotations, which we gather
in Lemma 14.

Let p0 := (lnn− 2 ln lnn)/m1(H) and recall that p±2 = (lnn+ r2 ln lnn± ω(1))/m1(H),
r2 = b2/δ(H)− 1c. W.h.p. (see [9]) we can couple G(H,n, p0), G(H,n, p−2 ), Ḡ(H,n, τ2) and
G(H,n, p+

2 ) such that
(i) G(H,n, p0) ⊂ G(H,n, p−2 ) ⊂ Ḡ(H,n, τ2) ⊂ G(H,n, p+

2 ) and
(ii) there are (1+o(1))(p−2 −p0) r!

aut(H)
(
n
r

)
> n ln lnn/2r copies of H in G(H,n, p−2 ), hence

in Ḡ(H,n, τ2), that are not present in G(H,n, p0).

Observe that the above coupling and Theorem 7 imply Theorem 6. In addition a similar
coupling and Theorem 5 imply Theorem 4.

We now define the sets Small, Large based on the degrees of the vertices in G(H,n, p0).
Let Large = {v ∈ V : v intersects at least ln lnn copies of H in G(H,n, p0)} and Small =
V \ Large.

I Lemma 11. W.h.p. every S ⊂ Large of size at most n/30r satisfies |N(S)| ≥ 10|S|.

I Lemma 12. W.h.p. for every pair u, v ∈ Small there do not exist ` ≤ 6 copies of H in
G(H,n, p+

2 ) that span a connected subgraph containing both u, v. Hence w.h.p. every pair
u, v ∈ Small is at distance at least 7 in G(H,n, p+

2 ).

I Lemma 13. W.h.p. for every v ∈ V there exists at most one copy of H in G(H,n, p+
2 ),

hence in Ḡ(H,n, τ2), that intersect both {v} and Small \ {v}.

Now we generate Ḡ(H,n, τ2) as follows. We first generate G′0 = G(H,n, p0). Then
we randomly permute the copies of H not appearing in G′0, let them be H1, H2, ..... We
also let S0 = ∅. We define the sequences G′0, G′1, ... and S0, S1, ... in the following way. At
step i ∈ N we query Hi whether it is incident to a vertex in Small. If it is then we set
Si = Si−1 and G′i = G′i−1 ∪Hi. Otherwise we set Si = Si−1 ∪ {Hi} and G′i = G′i−1. Let
t∗ = min{i : δ(G′i) = 2} and St∗ = {Hi1 , Hi2 , ...,Hiw}.

Given the sequence G′0, G′1, ..., G′t∗ and the set St∗ = {Hi1 , Hi2 , ...,Hiw} we define the
graph sequence F0, ..., Fw by F0 = G′t∗ and Fj = Fj−1 ∪Hij for 1 ≤ j ≤ w. Observe that St∗
consists of all copies of H in {H1, ...,Ht∗} that have not been added to G′0, equivalently the
copies ofH that are not incident to Small. Thus Fw = G′t∗∪

(⋃w
j=1Hij

)
= G′0∪

(⋃t∗
i=1Hi

)
=

Ḡ(H,n, τ2).

I Lemma 14. W.h.p. the following hold:
i) w ≥ n ln lnn/2r − n,
ii) every S ⊂ V of size at most n/30r satisfies |N(S)| ≥ 2|S| in F0,
iii) F0 is connected,
iv) for every 1 ≤ j ≤ w, ε > 0, and every set Qj consisting of εn2 edges not present in Fj

there exist a constant Cε > 0 such that the probability that Qj intersects E(Hij+1) is at
least Cε.

We are now ready to apply Posa’s rotations . For that assume that Fj is not Hamiltonian
and consider a longest path in Fj , Pj , j ≥ 0. Let x, y be the end-vertices of Pj . Given yv
where v is an interior vertex of Pj we can obtain a new longest path P ′j = x..vy..w where w
is the neighbor of v on Pj between v and y. In such a case we say that P ′j is obtained from
Pj by a rotation with the end-vertex x being the fixed end-vertex.
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Let Endj(x;Pj) be the set of end-vertices of longest paths of Fj that can be obtained
from Pj by a sequence of rotations that keep x as the fixed end-vertex. Thereafter for
z ∈ Endj(x;Pj) let Pj(x, z) be a path that has end-vertices x, z and can be obtain form Pj by
a sequence of rotations that keep x as the fixed end-vertex. Observe that for z ∈ Endj(x;Pj)
and z′ ∈ Endj(z;Pj(x, z)) there exists a z-z′ path Pz,z′ of length |Pj | that can be obtained
from Pj via a sequence of Posa rotations. Thus we can conclude that {z, z′} does not belong
to Fj . Indeed assume that {z, z′} ∈ E(Gi). Then we can close Pz,z′ into a cycle Cz,z′ that is
not Hamiltonian. Since Fj is connected there is an edge e spanned by V (Cz,z′)×V \V (Cz,z′).
E(Cz,z′) ∪ {e} spans a path of length |Pj |+ 2 contradicting the maximality of Pj . Similarly
if {z, z′} ∈ E(Hij+1) then Fj+1 is either Hamiltonian or it contains a path that is longer
than Pj . At the same time it follows (see [9]*Corollary 6.7) that

|N(End(x, Pj))| < 2|End(x, Pj)|.

Moreover for every z ∈ Endj(x;Pj)

|N(End(z, Pj(x, z)))| < 2|End(z, Pj(x, z))|.

As a consequence of Lemma 11, we have that |End(x, Pj)| ≥ n/30r and |End(z, Pj(x, z))|
≥ n/30r for every z ∈ Endj(x;Pj). Let Ej = {{z, z′} : z ∈ Endj(x;Pj) and z′ ∈
Endj(z;Pj(x, z))}. Then |Ej | ≥ (n/30r)2/2.

Now let Yj be the indicator of the event {Ej ∩ E(Hij+1) 6= ∅} and set Z =
∑w
j=1 Yi. From

Lemma 14 iv) we have Pr[Yj = 1] ≥ Cε (here ε = 1/2(30r)2). In the event that Gw is not
Hamiltonian, Z ≤ n while Yj is a Bernoulli(Cε) random variable for 1 ≤ j ≤ w . Since
w ≥ n ln lnn/2r − n we have Pr[Bin(w,Cε) ≤ n] = o(1). Hence w.h.p. Fw = Ḡ(H,n, τ2) is
Hamiltonian and the hitting time for Hamiltonicity equals the hitting time for minimum
degree 2.

5 Subgraph appearance

In G(n, p) there is only one way for a specified subgraph to appear on a fixed set of vertices:
all the edges in the subgraph must be present. In the case of random motif graphs, there are
multiple ways to place motifs so that a specified subgraph appears on a fixed set of vertices.
For example, in a random two-path graph, a triangle may appear on {1, 2, 3} if (i) the paths
(1, 2, 3) and (3, 1, z) are present or (ii) the paths (1, 2, x), (2, 3, y) and (3, 1, z) are present. In
order to pin down the threshold for subgraph appearance, it is necessary to understand the
various motif configurations that cause the subgraph to appear and their relative probabilities.
The following definition provides the notation to describe such configurations.

I Definition 15. Let V be a set of vertices. Let S be a fixed graph on a subset of the vertices
of V . Let H1, H2, . . . Hb be copies H also defined on subsets of vertices of V .
(a) We say {H1, H2, . . . Hb} is an (a, b) covering of S if (i) S ⊆

⋃b
j=1Hj , (ii) |V (

⋃b
j=1Hj)| =

a, and (iii) for each ` ∈ [b], S 6⊆
⋃b
j=1Hj \H`.

(b) Let k(a, b) be the number of unique configurations of (a, b) coverings, i.e. the number
of ways to place b copies of H on a vertices such that conditions (i)-(iii) of (a) hold.
Enumerate the possible configurations of (a, b) coverings with values in [k(a, b)]. For
i ∈ [k(a, b)], an (a, b, i) covering of S is an (a, b) covering with configuration i.

(c) We say the set {F1, F2, . . . Fb′} (with precisely b′ elements) is an (a′, b′) subset of an
(a, b, i) covering {H1, H2, . . . Hb} if (i) {F1, F2, . . . Fb′} ⊆ {H1, H2, . . . Hb}, and (ii)
|V (
⋃b′
`=1 F`)| = a′.

APPROX/RANDOM 2019
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(d) Let I(S,H) = {(a, b, i) | there exists an (a, b) covering of S by H and i ∈ [k(a, b)]}.
(e) For (a, b, i) ∈ I(S,H), let

D(a, b, i) = {(a′, b′) | there exists an (a′, b′) subset of the (a, b, i) covering}.

(f) For (a, b, i) ∈ I(S,H), let γ(a, b, i) = min(a′,b′)∈D(a,b,i)
a′

b′ and denote

γ̄ = max
(a,b,i)∈I(S,H)

γ(a, b, i).

Proof of Theorem 8. Let G ∼ Ḡ(H,n,m). We say that an instance of the subgraph S in
G is an (a, b, i) instance if the placed graphs H1, . . . Hb that contribute at least one edge to
S form an (a, b, i) covering of S. Let Xab

i denote the number of (a, b, i) instances of S in G.
Let Z =

∑
(a,b,i)∈I(S,H)X

ab
i be the total number of instances of the subgraph S in G.

First we use the first moment method to show that if m� nv−γ̄ , then the probability
that S occurs as a subgraph is o(1). It suffices to show that for all (a, b, i) ∈ I(S,H),
E
[
Xab
i

]
= o(1) since

Pr[Z > 0] ≤ E[Z] =
∑

(a,b,i)∈I(S,H)

Xab
i ,

and |I(S,H)| is a constant independent of n.
We now compute E

[
Xab
i

]
for a fixed triple (a, b, i) ∈ I(S,H). Let {F1, . . . Fb′} be an

(a′, b′) subset of the configuration (a, b, i) with a′/b′ = γ(a, b, i). Let Y be the number of
instances of F =

⋃b′
i=1 Fb′ in G formed by the configuration {F1, . . . Fb′}. Since an (a, b, i)

instance of S contains an instance of the configuration {F1, . . . Fb′}, Xab
i ≤ Y . The number

of ways to select a′ vertices is at most na′ . The probability that a labeled copy of H is placed
on a specified set of vertices is m/nv. We compute

E
[
Xab
i

]
≤ E[Y ] ≤ cna

′
(m
nv

)b′
= c

(
nγ(a,b,i)−vm

)b′
≤ c

(
nγ̄−vm

)b′
,

where c is a constant depending only on the number of automorphisms of S and the
number of automorphisms of the configuration {F1, . . . Fb′}. It follows that for m� nγ̄−v,
E
[
Xab
i

]
= o(1), as desired.

Next we use the second moment method to show that if m � nv−γ̄ then S appears
as a subgraph almost surely. It suffices to show that there exists some (a, b, i) ∈ I(S,H)
such that Xab

i is almost surely positive. Let (a, b, i) be such that γ̄ = γ(a, b, i). We apply
Corollary 4.3.5 of [1] to show that Xab

i is almost surely positive. Let Xab
i =

∑
j Aj where Aj

is an indicator random variable for the event that there is an (a, b, i) instance of S formed by
a configuration of H1, H2, . . . Hb each present on a specified set of vertices. Fix A`, and let

∆∗ =
∑
j∼`

Pr[Aj |A`],

where j ∼ ` indicates that Aj and A` are not independent. By 4.3.5 of [1], if E
[
Xab
i

]
→∞

and ∆∗ = o(E
[
Xab
i

]
), then Xab

i > 0 almost surely.
First we show that E

[
Xab
i

]
→∞. We compute as above

E
[
Xab
i

]
≥ c′na

(m
nv

)b
= c′

(
na/b−vm

)b
≥ c′

(
nγ̄−vm

)b
where c′ is a constant depending only on the number of automorphisms of S and the number
of automorphisms of the configuration {H1, . . . Hb}. It follows that if m � nv−γ̄ then
E
[
Xab
i

]
→∞.
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Finally, we show ∆∗ = o(E
[
Xab
i

]
). Observe that under the assumption m� nv−γ̄ ,

∆∗ =
∑

(a′,b′)∈D(a,b,i)

cna−a
′
(m
nv

)b−b′
=

∑
(a′,b′)∈D(a,b,i)

cE
[
Xab
i

] (
n−a

′/b′+vm−1
)b′

≤ c′ E
[
Xab
i

] (
n−γ(a,b,i)+vm−1

)b
= c′ E

[
Xab
i

] (
nv−γ̄m−1)b = o

(
E
[
Xab
i

])
. J

6 Conclusion

6.1 The value of the random motif model
The study of random motif graphs has the potential to strengthen the impact of the Erdős-
Rényi construction. In the context of analyzing real-world networks with an overrepresented
motif, random motif graphs may be a more insightful null hypothesis model to compare
against to identify non-random structure. For instance by studying subgraphs counts of
random H motif graphs one can determine if some larger motif pattern is a byproduct of
having many copies of H or is itself some novel aspect of the network structure. Moreover,
it is possible that a random motif graph may be used to establish the existence of a graph
with some extremal property of interest. Finally, random motif graphs can be used as an
alternate definition of average case for analyzing algorithms under the assumption that the
input has some motif structure.

6.2 Future directions: understanding threshold behavior more broadly
We have established that random motif graphs behave similarly to traditional Erdős-Rényi
random graphs with respect to thresholds and hitting times for monotone properties. Does
similar behavior appear when we consider random graphs formed by randomly adding
primitive subgraphs H whose size scales with n, the number of vertices of the random graph?
Instead of taking H to be a fixed motif, H could be a path, cycle, matching or clique whose
size depends on n, for example. Some of these cases were in fact studied in several contexts.
For example, the union of d ≥ 3 random perfect matchings is contiguous to the random
d-regular graph, and is sometimes easier to analyze [19]. Moreover, we can consider the
class of models where H itself is chosen from some probability distribution. In several cases,
this has been studied as well. For instance, [10] and [8] consider the case when H is the
uniform spanning tree, and [15] considers the case when H is an Erdős-Rényi random graph
with constant density and size dependent on n. Further study of these models is a first step
toward delineating a larger family of random graphs that exhibit Erdős-Rényi like threshold
and hitting time behaviors.
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kα .

Proof. Observe that for r ≥ 0,

mr(H) =
((

n

k

)
−
(
n− r
k

))
· k!

aut(H) ,

thus

mr(H)
rm1(H) =

(
n
k

)
−
(
n−r
k

)
r
((
n
k

)
−
(
n−1
k

)) ∼ nk − (n− r)k

r(nk − (n− 1)k) = 1− (1− α)k

r(1− (1− n−1)k) ∼
1− (1− α)k

kα
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For r ≥ 1, denote by qr(H) the number of copies of H that intersect [r] but that are not
contained in [r].

I Lemma 17. For r = r(n), if k = |V (H)| and α = r/n then qr(H) ∼ rm1(H)· 1−(1−α)k−αk

kα .

Proof. Observe that for r ≥ 0,

qr(H) =
((

n

k

)
−
(
n− r
k

)
−
(
r

k

))
· k!

aut(H) ,

thus

qr(H)
rm1(H) =

(
n
k

)
−
(
n−r
k

)
−
(
r
k

)
r
((
n
k

)
−
(
n−1
k

)) ∼ nk − (n− r)k − rk

r(nk − (n− 1)k)

= 1− (1− α)k − αk

r(1− (1− n−1)k) ∼
1− (1− α)k − αk

kα
. J

For convenience we define for α ∈ [0, 1] and k ≥ 1,

fk(α) = 1− (1− α)k − αk

kα
.

I Lemma 18. For 2 ≤ k ≤ r we have that rfk(r/n) ≥ (1 + o(1))k.

Proof. Write gk(α) = fk(α) · kα = 1− (1− α)k − αk. Observe that it is strictly increasing
in (0, 1/2). Note also that

n · gk
(
k

n

)
= n− ne−k

2/n − o(1) ∼ k2.

It follows that
kr

n
· fk

( r
n

)
= gk

( r
n

)
≥ gk

(
k

n

)
∼ k2

n
,

so rfk(r/n) ≥ (1 + o(1))k. J

B Minimum degree

I Theorem 19. With high probability

δ(G(H,n, p−d )) < d and δ(G(H,n, p+
d )) ≥ d.

Proof. Let δ = δ(H). It suffices to show that with high probability for ` ∈ Z≥0

Pr
[
δ(G(H,n, p−`·δ)) > (`− 1)δ

]
= o(1) (1)

and

Pr
[
δ(G(H,n, p+

`·δ)) < `δ
]

= o(1). (2)

Proof of (1): Let p = p−`·δ. For v ∈ V let Iv = I{d(v) = (`− 1)δ} and Z =
∑
v∈V Iv.

E[Z] ≥ (1− o(1))n
(
n− 1
vH − 1

)`−1
p`−1(1− p)m1(H)−`+1

≥ C1n(pn(vH−1))`−1e−(p+4p2)(m1(H)−`+1)

≥ C2n(logn)`−1e− logn−(`−1) log logn+ω(1) ≥ eω(1)/2.

APPROX/RANDOM 2019



66:14 Thresholds in Random Motif Graphs

In addition,

E
[
Z2] =

∑
u,v∈V

Pr[Iv ∧ Iu]

≤ E[Z]2 +
∑

u6=v∈V
Pr[Iu ∧ Iv ∧ {u, v lie on the same copy of H}]

≤ E[Z]2 +
(
n

2

)(
n− 2
r − 2

)
r!

aut(H)p(1− p)
(1−o(1))2m1

= E[Z]2 + nm1p(1− p)m1−1C3(1− p−2 )(1−o(1))m1 = E[Z]2 + o(1) E[Z]

= (1 + o(1)) E[Z]2.

Chebyshev’s inequality give us,

Pr[|Z − E[Z]| ≥ E[Z]/2] ≤
E
[
Z2]− E[Z]2

0.25 E[Z]2
= o(1).

Hence with high probability there exist vertices of degree (`− 1)δ.

Proof of (2): Let p = p+
`·δ. Let E1 be the event that in G(H,n, p) there exists a vertex of

degree d ≤ `δ that lies on more than ` copies of H. In the event E1 there exists a vertex v
and a vertex set S of size d such that all the neighbors of v lie in S and at least `+ 1 copies
of H intersect S ∪ {v}, each in at least δ + 1 vertices. Therefore,

Pr[E1] ≤ n
(
n

d

)
[1− p](

n−d−1
vH−1 )

((
d+ 1
δ + 1

)(
n− δ − 1
vH − δ − 1

))`+1
p`+1

≤ e−p·(
n−d−1
vH−1 )nd+1−δ(`+1)[nvH−1p]`+1

≤ e−(1+o(1))p·m1(H)(log2 n)δd(H)+1 = o(1).

In the event ¬E1 the number of vertices of degree less than `δ is bounded by the number of
vertices that are covered by at most `− 1 copies of H. Thus

Pr
[
δ(G(H,n, p+

`·δ)) < `δ
]
≤ Pr[E1] + n

`−1∑
i=0

(
m1(H)

i

)
pi(1− p)m1(H)−i

≤ `n(m1(H)p)`−1e−pm1(H)+p` + o(1)

≤ `n[2 logn]`−1e− logn−(`−1) log logn−ω(1) + o(1) = o(1). J

C Proofs of lemmas for Hamiltoncity

Proof of Lemma 11. If there exists S ⊂ Large of size n19/20 ≤ |S| ≤ n/30r such that
|N(S)| < 10|S| then there exist sets A,B of size n19/20 ≤ s ≤ n/30r and n− 11s respectively
such that no copy of H, H ′ satisfies |A ∩H ′| = 1 and |B ∩H ′| = r − 1 (take S = A and B
to be any subset of V \ (S ∪N(S)) of size n− 11s). The probability of such event occurring
is bounded above by

n/30r∑
s=n19/20

(
n

s

)(
n− s
10s

)
(1− p0)

r!
aut(H) ·s(n−11s

r−1 )

≤
n/30r∑

s=n19/20

[
en

s
·
(
en

10s

)10
e−p0

r!
aut(H) ·(n−11s

r−1 )
]s
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. . . ≤
n/30r∑

s=n19/20

[(
n

s

)11
e
− ln n−2 ln ln n

(n−1
r−1) ·(n−11s

r−1 )]s

≤
n/30r∑

s=n19/20

[(
n

s

)11( ln2 n

n

)(1− 11s
n )···(1− 11s−r+2

n−r+2 )]s

≤
n/30r∑

s=n19/20

[(
n

s

)11( ln2 n

n

)1− 12sr
n
]s
≤

n/30r∑
s=n19/20

[
n11/20

(
ln2 n

n

)18/30]s
= o(1).

Now assume that there exists a set S ⊂ Large of size at most n19/20 that satisfies |N(S)| <
10|S|. Since every vertex in S is in at least ln lnn copies of H and every copy of H
covers r vertices we have that S intersects at least |S| ln lnn/11 copies of H. Each of
those copies is spanned by S ∪ N(S). Therefore there exists a set W ⊇ S ∪ N(S) of size
w = |W | = 11|S| ≤ 11n19/20 that intersects at least |W | ln lnn

11r copies of H each, in at least 2
vertices. Since every vertex in Large has ln lnn neighbors |W | ≥ ln lnn. The probability
that such a set exists is bounded by

11n19/20∑
w=ln lnn

(
n

w

)(
r!
(
w
2
)(

n
r−2
)

w ln lnn/11r

)
p
w ln lnn/11r
0

≤
11n19/20∑
w=ln lnn

nw
(

11er3wnr−2

ln lnn

)w ln lnn/11r
p
w ln lnn/11r
0

≤
11n19/20∑
w=ln lnn

[
n11r/ ln lnn · 11er3wnr−2

ln lnn · p0

]w ln lnn/11r

≤
11n19/20∑
w=ln lnn

(
n11r/ ln lnn · w logn

n

)w ln lnn/11r
= o(1). J

Proof of Lemma 12. For u ∈ V and Q ⊂ V let S(u,Q) be the event that in G(H,n, p0) u
intersects at most ln lnn copies of H that do not intersect Q. For 0 ≤ |Q| ≤ 6,

Pr[S(u,Q)] ≤ Pr
[
Bin
(

r!
aut(H)

(
n− 7
r − 1

)
, p0

)
≤ ln lnn

]
≤ n−0.9.

Let B be the event that for some u, v ∈ Small there exist ` ≤ 6 copies of H in G(H,n, p+
2 )

that span a connected subgraph containing both u, v. If B occurs then we can find a set
Q = {v = v0, v1, ..., v`−1, v` = u} such that i) the events S(v,Q \ {v}), S(u,Q \ {u}) occur
and ii) there exist H1, ...,H` in G(H,n, p+

2 ) such that Hi ∩ Q = {vi−1, vi}. Since all the
aforementioned events are independent

Pr[B] ≤
6∑
`=1

∑
Q={v0,v1,...,v`}

Pr[S(v0, Q \ {v0}] ·
((

n− 2
r − 2

)
r!

aut(H)p
+
2

)`
· Pr[S(v`, Q \ {v`}]

≤
6∑
`=1

n`+1 · n−0.9 ·
(
C3 lnn
n

)`
· n−0.9 = o(1). J
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Proof of Lemma 13. Lemma 12 implies that w.h.p. there do not exist v ∈ V and u,w ∈
Small, u 6= w such that in G(H,n, p+

2 ) v and u are in a copy of H and v and w are in a
copy of H. The probability that there exist v ∈ V , u ∈ Small \ {v} that are both contained
in more than one copy of H in G(H,n, p+

2 ) is bounded by

∑
v,u∈V

Pr[S(u, {v})]
((

n− 2
r − 2

)
r!

aut(H)p
+
2

)2
≤ C4n

−0.9 log2 n = o(1). J

Proof of Lemma 14.
1. Recall that we can couple G(H,n, p0), Ḡ(H,n, τ2) such that G(H,n, p0) ⊂ Ḡ(H,n, τ2)

w.h.p. and there are at least n ln lnn/2r copies of H in Ḡ(H,n, τ2) that are not present
in G(H,n, p0). From Lemma 13 it follows that w.h.p. each of those copies that spans a
vertex in Small also spans a unique vertex in V \ Small. Hence w ≥ n ln lnn/2r − n.

2. Let S ⊂ V , |S| ≤ n/30r and set Ss = S ∩ Small, SL = S ∩ Large. Lemma 11 implies
that |N(SL)| ≥ 10|SL|. In the case |SL| ≥ |Ss| we have

|N(S)| ≥ |N(SL) \ Ss| ≥ 10|SL| − |N(SL) ∩ Ss| ≥ 10|SL| − |Ss| ≥ 9|SL| ≥ 2|S|.

Next assume |SL| < |Ss|. Lemma 12 implies that no two vertices in Small are within
distance 2 in G(H,n, p+

2 ), hence their neighborhoods are disjoint. Also F0 has minimum
degree 2. Therefore |N(Ss)| ≥ 2|Ss|. Now let SL = S1 ∪ S2 where S2 consists of all the
vertices in SL that are within distance 2 from Ss and S1 = SL \ S2. If |S1| ≥ |S2| then
since Ss and S1 have disjoint neighborhoods we have that

|N(S)| ≥ |N(Ss) \ S2|+ |N(S1) \ S2| ≥ 2|Ss|+ 10|S1| − 2|S2| ≥ 2|S|.

Otherwise |Ss| > |SL| and |S2| > |S1|. For v ∈ Ss let NS2(v) be the set of vertices
in S2 that are within distance 2 from v, hence ∪v∈Ss

NS2(v) = |S2|. Lemma 12 states
that no two vertices in Small are within distance 6, thus for v, u ∈ Ss, v 6= u the sets
N(NS2(v)), N(NS2(u)) are disjoint. In addition since NS2 ⊂ SL and |SL| ≤ |S| ≤ n/30r,
Lemma 11 implies that |N(NS2(v))| ≥ 10|NS2(v)| for all v ∈ Ss. Thus

|N(S)| ≥
∑
v∈Ss

|N(NS2(v) ∪ {v})|

≥
∑
v∈Ss

[10|NS2(v)| − |{v}|] · INS2 (v)6=∅ + |N(v)|INS2 (v)=∅

≥
∑
v∈Ss

2 = 2|Ss| ≥ |S|.

3. Assume that there exists a set S ⊂ V such that S is a connected component of F0
and let s = |S|. F0 has minimum degree 2 therefore s ≥ 3. Let SL = S ∩ Large and
Ss = S ∩ Small. Lemma 13 implies that every vertex in SL can be adjacent to at most 1
vertex in Small hence |SL| ≥ |Ss|. Thereafter Lemma 11 implies that |S| > n/30r since
otherwise

|N(S)| ≥ |N(SL)| − |Ss| ≥ 10|SL| − |SL| > 0.

Finally the probability that there exists a connected component of size n/30r ≤ s ≤ n/2
in G(H,n, p0) ⊂ F0 is bounded by

0.5n∑
s=n/30r

(
n

s

)
(1− p0)

r!
aut(H) ·s(n−s

r−1) ≤
0.5n∑

s=n/30r

[
en

s
· e−C5 lnn

]s
= o(1).
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4. First we show that w.h.p. |Small| ≤ n0.1. Indeed by Markov’s inequality,

Pr
[
|Small| > n0.1] ≤ n−0.1 · nPr

[
Bin
(

r!
aut(H)

(
n− 1
r − 1

)
, p0

)
≤ ln lnn

]
= o(1).

Now let Qj be a set of εn2 edges not present in Fj and Q′j be the subset of Qj consisting
of the edges that are not incident to Small. Then w.h.p. |Q′j | = (1 + o(1))εn2. Every
edge in Q′j belongs to C6n

r−2 copies of H that are no present in Fj and every copy of
H may cover at most

(
r
2
)
edges in Q′j . Therefore there exists a set Wi consisting of at

least C6n
r−2 · (1 + o(1))εn2/

(
r
2
)
distinct copies of H that intersect Q′j . Hij+1 is uniformly

distributed among the copies of H that are not present in Fj and are not incident to a
vertex in Small. Thus

Pr[iv] = Pr[Hi ∈Wi] ≥
C6n

r−2 · (1 + o(1))εn2/
(
r
2
)

nr
≥ C7ε = Cε. J

D Proof sketch of Theorems 4 and 5

To prove Theorem 5 we first indicate the edge set Q1, consisting of the edges that are incident
to vertices of degree 1. Then we delete these edges and the vertex set U1 consisting of the
vertices incident to them. Thereafter we use exactly the same techniques as above in order
to find a Hamilton cycle in the remaining graph. We use half of the edges of that cycle and
the edges in Q1 to form a perfect matching.

Given the above, the only substantial difference is that while generating Ḡ(H,n, τ1) (in
place of Ḡ(H,n, τ2)) we stop at time t∗ = min{i : δ(G′i) = 1}. The proofs of all Lemmas with
exception the proof of Lemma 14, follow in exactly the same way. For the proof of Lemma 14
we have to be slightly more cautious as we want to prove the corresponding statements for
the subgraph that is spanned by V \ U1. Thus we have to use Small \ U1 and Large \ U1
in place of Small and Large respectively.

E Proof of Theorem 9

Before proving Theorem 9, we derive an expression for a′/b′ and establish the following upper
bound on γ(a, b, i).

I Lemma 20. Consider an (a, b, i) covering of S by a path of length v − 1 and an (a′, b′)
subcovering with c′ connected components. Let Sj be the subgraph of S covered by jth connected
component of the (a′, b′) subcovering. Let fj = |E(Sj)| − |V (Sj)|+ 1 and f ′ =

∑c′

j=1 fj. Let
k be the number of duplicate edges in the (a′, b′) subcovering, i.e. k is the smallest integer
such that removing k edges from multigraph union of b′ copies of H can yield a simple graph.
Then

a′

b′
= v − 1 + c′ − f ′ − k

b′
(3)

and

γ(a, b, i) ≤
{
v − 1 + 1−f

b (a, b, i) is edge-disjoint
v − 1− f

b (a, b, i) is not edge-disjoint
(4)
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Proof. We compute a′. Note that each of the b′ copies of H contributes v vertices, however
vertices may be counted multiple times. We compute

a′ = b′v −

b′ − c′∑
j=1

1− fj

− k = b′(v − 1) + c′ − f ′ − k,

where the first term subtracted corresponds to doubling counting vertices in each connected
component and subtracting k corresponds to removing double counting for vertices adjacent
to edges of S that are covered multiple times.

By definition, γ(a, b, i) ≤ a/b. For the (a′, b′) = (a, b) subcover that is the entire (a, b, i)
cover, c′ = 1, f ′ = f and k = 0 if (a, b, i) is edge-disjoint and k ≥ 1 if (a, b, i) is not
edge-disjoint. Thus, Equation (4) follows directly from Equation (3). J

Proof of Theorem 9. We consider each case separately.

Case: f = 0. Consider an (a, b, i) covering. If (a, b, i) is edge-disjoint, then b ≥ γ. It follows
from Equation (4) that

γ(a, b, i) ≤
{
v − 1 + 1

β (a, b, i) is edge-disjoint
v − 1 (a, b, i) is not edge-disjoint.

Thus γ̄ = max(a,b,i)∈I(S,H) γ(a, b, i) ≤ v − 1 + 1/β.
Next consider an edge-disjoint cover of S by β copies of H, (a, β, i). By Equation (3), for
any (a′, b′) subcover of the (a, β, i) cover,

a′

b′
= v − 1 + c′

b′
.

This value is minimized with c′ = 1 and b′ = β, which is achieved by the (a, β) subcover
which is the whole cover. Thus γ(a, β, i) = v − 1 + 1/β, and so γ̄ ≥ v − 1 + 1/β.

Case: f = 1. By Equation (4), γ(a, b, i) ≤ v − 1 for all (a, b, i) and so it follows that
γ̄ ≤ v − 1.
Next consider an edge-disjoint cover of S, (a, b, i). By Equation (3), for any (a′, b′)
subcover of the (a, β, i) cover,

a′

b′
= v − 1 + c′ − 1

b′
.

This value is minimized with c′ = 1, which is achieved by the (a, b) subcover which is the
whole cover. Thus γ(a, b, i) = v − 1, and so γ̄ ≥ v − 1.

Case: f ≥ 2. Consider an (a, b, i) cover. By Equation (3),

γ(a, b, i) = min
(a′,b′)∈D(a,b,i)

a′

b′
= min
a′,b′,c′,k

v − 1 + c′ − f ′ − k′

b′
.

Let t′ and e′ be the number of edges and vertices of S covered by the subcover, so
e′ = t′ − c′ + f ′ + k. It follows

γ(a, b, i) = min
t′,e′,b′

v − 1 + t′ − e′

b′
. (5)

To give an upper bound on γ(a, b, i), we construct a subcover of the (a, b, i) cover as
follows. Let X be a subgraph of S with t∗ vertices and e∗ edges such that t∗/e∗ = η. Let
t′, e′, b′ correspond to the subcover that minimally covers X, and let C be the subgraph
of S covered by this subcover (so X is a subgraph of C).
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We claim that t′−e′ ≤ t∗−e∗. Note that t′−t∗ = |V (C)\V (X)| and e′−e∗ = |E(C)\E(X)|.
In each component of C \ E(X), at least one vertex is included in V (X). Since the
number of vertices in a connected component is at least the number of edges in the
connected component minus one, and at least one vertex in each connected component
is not included in V (C) \ V (X), it follows that |V (C) \ V (X)| ≥ |E(C) \ E(X)|. Thus
t′ − t∗ ≤ e′ − e∗ and the claim follows.
By considering this subcover with parameters t′, e′, b′, we obtain

γ(a, b, i) ≤ v − 1 + t′ − e′

b′
≤ v − 1 + t∗ − e∗

e∗
= v − 2 + η

since b′ ≤ e∗ and t∗ − e∗ ≤ 0. It follows that γ̄ ≤ v − 2 + η.
Finally to lower bound γ̄ we consider a cover in which there are b = |E(S)| copies of H
and each copy covers precisely one edge of S. In this case in all subcovers b′ = e′. By
Equation (5)

γ(a, b, i) = min
t′,e′,b′

v − 1 + t′ − e′

b′
= min

t′,e′
v − 2 + t′

e′
= v − 2− η.

Thus γ̄ ≥ v − 2 + η. J
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