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—— Abstract

We give new algorithms in the annotated data streaming setting — also known as verifiable
data stream computation — for certain graph problems. This setting is meant to model outsourced
computation, where a space-bounded verifier limited to sequential data access seeks to overcome
its computational limitations by engaging a powerful prover, without needing to trust the prover.
As is well established, several problems that admit no sublinear-space algorithms under traditional
streaming do allow protocols using a sublinear amount of prover/verifier communication and
sublinear-space verification. We give algorithms for many well-studied graph problems including
triangle counting, its generalization to subgraph counting, maximum matching, problems about the
existence (or not) of short paths, finding the shortest path between two vertices, and testing for an
independent set. While some of these problems have been studied before, our results achieve new
tradeoffs between space and communication costs that were hitherto unknown. In particular, two of
our results disprove explicit conjectures of Thaler (ICALP, 2016) by giving triangle counting and
maximum matching algorithms for n-vertex graphs, using o(n) space and o(n?) communication.
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1 Introduction

A major philosophical message of theoretical computer science is that a computationally
bounded entity can greatly expand its space of tractable problems with access to a more
powerful entity, without having to trust the latter. The celebrated IP = PSPACE [28] and
PCP Theorems [3, 4] are perhaps the best known such results. In the realm of space-efficient
computations on large data streams, there is a growing trend towards results of this flavor [26].
In this case, the powerful entity (henceforth named Prover) is often thought of as a cloud
computing service that is free of the space limitations that the computationally bounded
data streaming process (henceforth named Verifier) is subject to. This work designs new
algorithms for graph computations on data streams in such Verifier/Prover models and proves
some related complexity-theoretic results.

Early works on such “prover-enhanced data streaming algorithms” considered the annot-
ated streams model [10, 22], where Prover reads the input data stream together with Verifier
and, during stream processing and/or at the end, supplies Verifier with a proof (streamed
to him) that convinces him of the correct answer to what he wants to compute on the
stream. Subsequent works [11, 14] considered a more general model of streaming interactive
proofs (SIPs), where the communication between Verifier and Prover is more general, rather
? Amit Chakrabarti .and Prantar Ghosh;
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than one way. Several recent works in the annotated stream and the SIP models have
focused on basic algorithmic problems on graphs [2, 13, 29|, often giving sublinear-space
algorithms for problems that provably do not admit sublinear solutions in the basic (sans
prover) streaming setting.

In this work, we give new algorithms in the annotated streaming setting for certain graph
problems, including triangle counting, its generalization to subgraph counting, maximum
matching, problems about the existence (or not) of short paths, finding the shortest path
between two vertices, and testing for an independent set. Two of our results provide
“unexpected” new upper bounds, disproving published conjectures [29] asserting that such
bounds would be unattainable.

1.1 Our Results and Techniques

Background and Motivation. Suppose that we wish to compute a function f(o) on an input
stream o consisting of tokens from some universe. For instance, for a graph computation, o
could be a stream of vertex pairs (u,v) specifying the input graph’s edges, or it could be a
stream of edge insertions and/or deletions to an evolving (multi)graph. Following established
terminology [10], an online scheme is a protocol between Prover and Verifier wherein they
observe o together and, after each token appears, Prover provides zero or more bits of “help”
to Verifier (as specified by the protocol). After o is fully consumed, if Prover has followed
the protocol faithfully, Verifier is very likely to output f(c); otherwise, he is very likely to
“reject.” If Verifier does all his work using at most O(v) bits of working memory and Prover
sends at most O(h) bits of help, we call this an (h,v)-scheme.! A scheme is interesting if we
can use h > 0 to achieve a value of v asymptotically smaller than what is feasible or known
for a basic streaming algorithm, where h = 0.

All interesting schemes from previous work in fact use the prover in a more restricted way:
Verifier processes all of o on his own and then interacts with Prover. This work continues
the tradition. There is practical motivation for building this restriction into the model of
computation. Think of a cloud computing service where compute cycles are available only at
certain times of day, or need to be booked in advance, whereas the client needs to access and
process the input earlier, when it is made available to him. In such a setting, a scheme is
most useful if the client can do its own processing first and wait for its time slot with the
cloud service to finalize its computation.

Further, we focus only on schemes, which feature a single streamed message from Prover
to Verifier, rather than the more general setting of SIPs, which allow rounds of interaction.
This too is practically motivated: the cloud service need not dedicate a chunk of time
to interact with the client, but need only promise that it will perform its portion of the
computation by an agreed-upon deadline, at which time the client will download the “proof”
it has constructed. In view of this latter style of computation, we also consider multi-pass
schemes, where Verifier may use a “few” passes over its input o and later receive a single
streamed message from Prover, after which he produces his output. Most of our schemes will
be single-pass (and we shall call them simply “schemes”), but in a few cases, we will give
multi-pass schemes when they can achieve provably better costs than single-pass schemes.

Setup and Terminology. All problems studied in this paper involve an input graph, mul-
tigraph, or digraph G = (V, E) on the vertex set [n] := {1,2,...,n}. We shall reserve the

1 We will drop the qualifier “online” and simply call our protocols “schemes” because we will not be
considering the more powerful setting of “prescient schemes” [10] in this paper.
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basic term “graph” for simple, undirected graphs. The input is described either as a stream
of edges (the default case) or as a stream of edge insertions and deletions: the latter type of
stream is called a dynamic or turnstile graph stream. For an (h,v)-scheme to be interesting
we at least require v = o(n?). If we also have h = o(n?), we call it a sublinear scheme. If we
have v = o(n) while h = o(n?), we call it a frugal scheme. This is an especially interesting
setting of parameters, because most interesting graph problems provably require 2(n) space
in the basic streaming setting [15]. A frugal scheme shows that one can beat this space
bound with the aid of only a sublinear-length proof. Recall that while & > v is allowed, the
proof must be processed using only O(v) space.

For an (h,v)-scheme we refer to h as its hcost (short for “help cost”) and v as its vcost
(short for “verification cost”). We use the notation [h,v]-scheme as a shorthand for an
(O(h),0(v))-scheme.2 An [n, n]-scheme is called a semi-streaming scheme.

Subgraph Counting. The literature on graph streaming contains many works on the central
problem of triangle counting (henceforth, TRIANGLECOUNT): given a multigraph G as a
dynamic stream, compute T', the number of triangles in G [6, 7, 18, 25, 29]. In Section 3,
we study this and the more general problem of subgraph-counting (SUBGRAPHCOUNTY,)
[7, 19, 20, 29], where the goal is to compute Ty, the number of copies of a fixed, k-sized
graph H, where k is a constant. In the basic streaming model, computing T" or Ty exactly
is impossible in sublinear space and it becomes necessary to approximate. In contrast, we
design a family of (o(n?), o(n))-schemes for TRIANGLECOUNT that give exact answers. Such
a frugal scheme had been conjectured not to exist [29]. We extend our ideas to give sublinear
(0(n?), 0(n?))-schemes for SUBGRAPHCOUNT}.

Maximum Matching. Determining o’'(G), the cardinality of a maximum-sized matching
in G, is a central problem in graph algorithms and has received a lot of attention in the
recent literature on streaming algorithms [5, 12, 15, 16, 21, 24]. In Section 4, we consider this
problem (henceforth, MAXMATCHING) for multigraphs given by dynamic streams. As with
TRIANGLECOUNT, we give a frugal scheme for MAXMATCHING, which had been conjectured to
be impossible [29]. In the process, we present a frugal scheme for the subproblem of verifying
that the purported connected components of a graph are indeed disconnected from each other,
which might be of independent interest for future work on connectivity-related problems.

Independent Sets and Length-Three Paths. In Section 5, we study the independent set
testing problem (INDSETTEST), where we are given a multigraph G and a set U C V' (also
streamed and interleaved with the edge stream arbitrarily) and we must determine whether
or not U is independent. We also study the sT-3PATH problem, where G (which might be
a digraph) has two designated vertices vy and v; and we must determine whether G has a
path of length at most 3 from vs to v;. By results from prior work, any (h,v)-scheme for
these problems must have total cost h + v = Q(n). We therefore design two-pass schemes for
these problems, achieving h 4+ v = O(n?/3). In fact, we obtain a more general tradeoff, giving
a two-pass [t2, s]-scheme for any parameters t,s with ts = n. Our schemes instantiate a
protocol for the abstract problem CROSSEDGECOUNT, which asks for a count of the number
of edges in G from U CV to W C V, where these sets U and W are also streamed.

2 The notation O(-) hides factors polynomial in logn.
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In each case, we can design ordinary (one-pass) schemes with the same complexity
parameters under a natural assumption on the way the stream is ordered, and these schemes
still beat the space bound achievable by basic (sans prover) streaming algorithms.

Short Paths and Shortest Path. Finally, in Section 6, we consider shortest path problems,
perhaps the most basic problem in classic graph algorithms. We study the ST-KPATH problem,
which is to detect whether or not G has a path of length at most k from v to v;, where
k, vs, and v; are prespecified. We first present a [kn, n]-scheme for ST-KPATH. This gives
a semi-streaming scheme for detecting short (of length polylogarithmic in n) paths, which
is optimal in terms of total cost. It also implies a [kn,n]-scheme for ST-SHORTESTPATH
problem — where k is the length of the shortest path from vs to v; — which is to find the
shortest path between vertices vs; and v;, and output NO if none exists. For directed graphs
of small (polylogarithmic in n) diameter, it implies a semi-streaming scheme for checking
s, t-connectivity. Note that these problems require {2(n?) space in the basic data streaming
model, even for constant k or constant-diameter graphs [15].

Targeting a different cost regime, we generalize our result for ST-3PATH from Section 5 to
obtain multi-pass (h, v)-schemes for ST-KPATH with total cost h + v = o(n), for constant k.
To be precise, we present a [k/2]-pass [n'~1/* n'=1/kF]-scheme for ST-KPATH.

Our Techniques. Similar to past work in the area of streaming verification — indeed,
hearkening back to classic interactive proof protocols [23, 28] — our schemes make heavy
’ i.e., they recast the underlying problem in terms of evaluating
certain polynomials and exploit the encoding properties of polynomials (as captured in the
Schwartz-Zippel Lemma) to protect the verifier from a cheating prover. Also as in past work,
we use what we call the shaping technique, where we conceptually shape a data vector into
an array with two or more dimensions. This seemingly innocuous trick allows us to consider
input data as a table of values of a multivariate polynomial and we can use the “separation”
afforded by these multiple variables to divide up work between Verifier and Prover.

use of “arithmetization,’

The novelty in our algorithms comes from a twist on the shaping technique that was
hitherto unexploited. At a high level, almost all earlier annotation schemes or SIPs for graph
problems viewed the edge stream as a flat vector (a characteristic vector in the case of graphs
or a frequency vector in the case of multigraphs). We crucially exploit the fact that the index
set of this vector has additional structure: it consists of pairs of vertices and these vertices
are very meaningful entities in the context of graph problems. Simply put, we exploit graph
structure more fully in our use of the shaping technique.

Another novel feature of our schemes is that they involve Prover sending multivariate
polynomials; their correctness analysis then involves the full multivariate strength of the
Schwartz-Zippel Lemma. In all past work on interactive proofs and schemes, Prover only
sent univariate polynomials (and the corresponding analyses used the more basic statement
that a nonzero, degree-d, univariate polynomial has at most d roots). Thus, our scheme
designs can be seen as exploiting the power of arithmetization more fully.

1.2 Related Work

The annotated data streaming model of computation was motivated in part by the need to
develop a theory to capture ideas such as the stream punctuations of Tucker et al. [30] and
the stream outsourcing framework of Yi et al. [31]. Chakrabarti et al. [10] formulated the
model and provided the first theoretical results, focusing largely on the traditional statistical
problems of frequency moments and heavy hitters, but also giving a handful of basic results
for graph problems. Other early works in the same model include Klauck and Prakash [22]
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and Chakrabarti et al. [9]. Cormode et al. [14] generalized the model to SIPs, which allow
a few interactive rounds of communication between Verifier and Prover; this generalized
setting was studied further in Chakrabarti et al. [11] and Abdullah et al. [2]. We refer the
reader to the expository article of Mitzenmacher and Thaler [26] for a more detailed survey
of this area.

We turn to graph computations and the specific problems studied in this work. For
simplicity, we state complexities in terms of n alone, rather than using both m and n (m
being the number of edges of the input graph). Cormode et al. [13] gave annotated data
stream algorithms (schemes, in our terminology) for many canonical graph problems, often
exploiting linear programming formulations of the problems. In particular, they gave an
[n?,1]-scheme For MAXMATCHING. For a weighted version of ST-SHORTESTPATH, on simple
graphs (not multigraphs) they gave [h, v]-schemes with hv > dn? and h > dn, where d is the
maximum distance to any node reachable from v,. Contrast this with our [kn,n]-scheme for
unweighted multigraphs, where k is the length of the shortest vy, v4-path.

Thaler [29] studied the problems TRIANGLECOUNT, MAXMATCHING, and SUBGRAPH-
COUNTy. He gave semi-streaming schemes for the first two. In the same paper, he explicitly
conjectured that these two problems would not admit frugal schemes: he imagined that
achieving vcost = o(n) would bump up the hcost to (n?). Our results here disprove these
conjectures. For SUBGRAPHCOUNTy, Thaler gave a [k®n, kn]-SIP with k& — 2 rounds of
interaction. We achieve sublinear cost with just a single Prover-to-Verifier message. Sublinear
schemes for SUBGRAPHCOUNT}, were hitherto unknown for any k& > 3.

For the TRIANGLECOUNT problem, Chakrabarti et al. [10] gave an [h, v]-scheme for any
h,v with hv = n3, and also an [n?, 1]-scheme. For the same problem, Abdullah et al. [2]
gave a (log2 n, log? n)-SIP that uses logn rounds of interaction, and a (nl/”Y log n,log n)-SIP
with v = O(1) rounds of interaction. The latter paper also studied MAXMATCHING, giving a
(p +n/"" logn,logn)-SIP with v rounds of interaction, where ' is a linear function of -,
and p is the weight of an optimal matching (weighted or unweighted).

Guruswami and Onak [17] show a space lower bound of Q(n!'+(1/k) /EOM) for sT-KPATH
(where k is even) in k/2 — 1 passes in the basic streaming model. In contrast, our results
show that, for any k, with the help of a prover, one can get a total cost of O(n'~'/*) in
[k/2] passes.

2 Preliminaries

For a positive integer n, we denote the set {1,2,...,n} by [n] and the set {—n, —n+1,...,n—
1,n} by [n]. The ring of polynomials in variables X7, ..., X} with coefficients in the ring R
is denoted by R[X1,...,Xk]. If S is a finite set, we write r €g S to say that r is a random
element drawn uniformly from S. In an undirected graph G = (V, E), the ith neighborhood
of a vertex v is the set of vertices u such that there is a walk of length ¢ from v to u. We
denote this set by N;(v). We put N(v) := Ny(v) and N[v] := Ny(v) U {v}.

Following Chakrabarti et al. [10], an annotated data streaming algorithm, a.k.a. scheme,
is a pair A = (h,B), where h is a help function and B is a data stream algorithm that
computes a function f of an input x € U™, where U is some universe. We see hh as an
m-tuple (b1, ..., bHm), where b; : U* — {0,1}* is the annotation provided to B after the ith
stream update x;, depending on the elements seen so far, i.e. x1,...,x;. Thus, B sees the
annotated stream x" := (21, b1 (1), T2, h2(21, ), . . ., Zon, B (T1, ..., 21)). Using a random
string R, it processes this annotated stream, giving an output out(B;x", R). We say that A
is a d-error scheme if

(completeness) for all x € U™: Prglout(B;x", R) # f(x)] < 6; and
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(soundness) for all x € U™, §' = (b}, b5, ..., b)) € ({0,1})™:
Prg[out(B; Xh/uR) ¢ {f(x), L} <9,
where “1” is a special symbol indicating that B rejects the annotation (proof) provided,
having detected cheating. When § is left unspecified, we assume a default value of 1/3. The
heost (help cost) of A is maxxeym Y, |hi(x)|, and the vcost (verification cost) is the space
usage of B.

The scheme A is said to be an (h, v)-scheme (resp. [h,v]-scheme) if its hcost is O(h) (resp.
O(h)) and its vcost is O(v) (resp. O(v)). The sum hcost + vcost is called the total cost of A.
In the context of problems on n-vertex graphs, an (o(n?), o(n?))-scheme is called a sublinear
scheme, an [n, n]-scheme is called a semi-streaming scheme and an (o(n?), o(n))-scheme is
called a frugal scheme.

A multi-pass scheme — more precisely, a p-pass scheme with p > 2 — is a scheme A = (h, B)
where B makes p — 1 passes over the input x followed by a final pass over the annotated
stream x”. As discussed in Section 1.1, all schemes and multi-pass schemes we design in this
work have the feature that the entire annotation h(x) arrives only after B is done processing
the plain stream x. That said, the negative results in this work do not require the scheme to
be restricted in this way.

Let f be a k-dimensional array with dimensions (si,...,s) each of whose entries is an
integer in [M]. Equivalently, we have a function f: [s1] x -+ X [sx] = [M]. For a finite
field F of sufficiently large characteristic,® we define the F-extension of f to be the unique
polynomial f(Xi,...,X.) € F[Xy,..., X},] such that

for all (zy,...,x3) € [s1] X - - [s&], we have f(x1,...,xx) = f(x1,...,21), and

for all i € [k], we have degy, f<si—1.

Note that f can be described explicitly using Lagrange interpolation:

f(Xy,... . Xp) = > Flur, oy ug) Ouy g (X1, Xg), where (1)

(U1,eeyup)E[s1] X+ X [SK]
k

Ourris X Xe) = [T (= 2) (X — ). (2)

1=1xz;€[s;]\{us}

In particular, if f is built up from a stream of pointwise updates, where the jth update adds
Aj to entry (ui,...,ux); of the array, then

f(Xy,..., X)) = ZAj Sutr o)y (X1, -, Xi) - (3)
J

This leads to the following fact that we use in all our protocols. For details and a thorough
discussion, including implementation considerations, see Cormode et al. [14].

» Fact 1. Given a point (p1,...,pr) € F¥ and a stream of pointwise updates to an array with
dimensions (s1,...,8) that is initially all-zero, we can keep track of the value f(p1,...,pk)
using O(log |F|) space, performing O(k) field arithmetic operations after each update.

We record results proved in Chakrabarti et al. [9, 10] that can be seen as generaliz-
ing the Aaronson-Wigderson protocol for Merlin-Arthur communication complexity of set
disjointness [1].

3 We need the characteristic to be at least max{s1,..., sy, 2M + 1} to avoid “wrap around problems,”
i.e., to ensure that all integers in each [s;] as well as all integers in [M] have distinct images under the
ring homomorphism from Z to F.
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» Fact 2 (SUBSET and INTERSECTION schemes; Prop. 4.1 of [10] and Thm. 5.3 of [9]). Consider
a stream consisting of elements of two sets S, T C [N] interleaved arbitrarily. Then, for any
h,v with hv > N, there are [h,v]-schemes to compute |S NT| and to determine whether
S C T. For the latter problem, there is a [(h,v]-scheme handling the more general setting
where S and T are multisets updated dynamically by the stream and the multiplicity of each
element is at most {.

» Fact 3 (Schwartz-Zippel Lemma). For a nonzero polynomial P(X4,...,X,)€ F[X1,..., X,]
of total degree d, where F is a finite field, Pr(., . . )ezen [P(r1,...,m0) = 0] < d/|F].

3 Subgraph Counting

We begin by describing a frugal scheme for TRIANGLECOUNT and then extend our ideas to
obtain a sublinear scheme for the more general problem SUBGRAPHCOUNT. Throughout, we
assume that the input is an n-vertex multigraph G = (V, E) with adjacency matrix A, built
up through a stream of edge insertions and deletions.

3.1 Triangle Counting

Let T = T(G) be the number of triangles in G taking edge multiplicities into account, i.e.,
two triangles are considered distinct iff their corresponding sets of edges are distinct. Then,

67 = Z Ay vy Avgvs Avgo, - (4)

v1,v2,03EV

Let ¢t and s be integer-valued parameters such that ts = n. Using a canonical bijection, we
represent each vertex v € V' by a pair of integers (z,y) € [t] x [s]. This transforms the matrix
A into a 4-dimensional array a, given by a(x1,y1, Z2,y2) = Ay,v,- Let @ be the F-extension
of a for a sufficiently large finite field F to be chosen later. Equation (4) now gives

6T = Z p(w1,z2,23), where (5)
z1,22,23E[t]

P(X1. X0, X3) = Y a(X1,y1, Xo, ) a(Xa, v, Xs,3) a( X3, y3, X1, 91) - (6)
Y1,Y2,Y3€|[s]

Note that, for each i € {1,2,3}, we have degy, p < 2t — 2. Thus, the number of monomials

in p is at most (2t — 1)® < 8¢3 and the total degree degp < 6t — 6 < 6t.
Our scheme for triangle counting operates as follows.

Stream processing. Verifier starts by picking ry, 79,73 €g F. As the edge stream arrives, he
maintains the three 2-dimensional arrays a(ry,w, re, 2), a(ra, w,rs, 2), and a(rs, w,r1, 2),
for all (w, z) € [s] x [s] (using Fact 1). At the end of the stream, he uses these arrays to
compute p(ry,re,r3), using Equation (6).

Help message. Prover sends Verifier a polynomial p(X7, X5, X3) that she claims equals
p(X1, X2, X3); in particular, for each i € {1,2,3}, degy, p < 2t — 2. She streams the
coefficients of p one at a time, according to some canonical ordering of the possible
monomials.

Verification and output. As p is streamed in, Verifier computes the check value C :=
p(r1,72,73) and the result value T .= %Zzl,zg,mge[t] p(x1, 2, x3). If he finds that C #
p(r1,72,73), he outputs L. Otherwise, he believes that p = p and accordingly, based on
Equation (5), outputs 7" as the answer.

The analysis of this scheme is along now-standard lines.
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Error probability. Clearly, if Prover is honest (i.e., p = p), then the output is always correct.
So the scheme errs only when p # p but Verifier’s check passes. This means that the
random point (ry,72,73) € F? is a root of the nonzero polynomial p — p, which has total
degree at most 6t. By the Schwartz-Zippel Lemma (Fact 3), the probability of this event
is at most 6¢/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. The number of bits used to describe the polynomial p is the
hcost. As noted, the polynomial p has O(#3) many coefficients, each of which is an element
of F, and hence has size O(logn). So the hcost is O(t?). The Verifier maintains three
s X s arrays, where each entry is an element of F. Hence, the vcost is O(s?). Therefore,
we get a [t3, s?]-scheme for triangle counting, for parameters ¢, s with ts = n. Setting
t =n® for a € (1/2,2/3), we get a (o(n?), o(n))-scheme, which is frugal.

The result in this section is captured in the theorem below.

» Theorem 4. For any parameters t,s with ts = n, there is a [t3, s*]-scheme for TRIANGLE-
COUNT. In particular, there is an (o(n?),0(n))-scheme for TRIANGLECOUNT.

This disproves Thaler’s conjecture [29], which stated that TRIANGLECOUNT has no frugal
scheme.

3.2 Generalization to Counting Copies of an Arbitrary Subgraph

Now we consider the SUBGRAPHCOUNT,, problem. Let H be a fixed k-vertex graph. The
goal is to determine Ty = T (G), the number of copies of H in the n-vertex multigraph
G given by an input stream: n is growing whereas k = O(1). As before, we take edge
multiplicities into account.

Fix a numbering of the vertices of H as 1,2,...,k. Write ¢ ~ j to denote {i,j} €
E(H) Ni < j. To generalize Equation (4), note that the expression []; ; Ay,.; counts the
number of copies of H occurring amongst vertices vy, ..., v, in G where i € V/(H) is mapped
to v; € V', provided that vy, ..., vy are distinct. This subtlety of explicitly requiring the v;s
to be distinct did not arise for TRIANGLECOUNT because Ay, v, Avyvs Avgw, 1S zero unless
v1, Vg, v3 are distinct. To enforce the distinctness condition in our more general setting, define
an n X n Boolean matrix B by By, = 1 iff u # v. Then, defining ay to be the number of
automorphisms of H,

CVHT‘H - Z HAvivj H Bvivj . (7)

v1,... 0k EV \irg i#j€[k]

As before, we shape V into [t] x [s] for parameters ¢ and s with ts = n. This turns the
2-dimensional matrices A, B into 4-dimensional arrays a, b, which in turn have F-extensions
a,b. Equation (7) gives

agTy = Z p(z1,...,2E), where (8)
ZT1,..., XK E[t]

(X1, X)) = Y [TaXi, i X5, 05) IT o, X5.u5) | - 9)
Y1, Yk €[s] \i~J i#j€[k]
For each i € [k], degy, p < 2(k —1)(t — 1) = O(t). So the total degree degp = O(t) and p
has at most O(t*) monomials. This leads to a scheme for subgraph counting that naturally
generalizes our earlier scheme for triangle counting. We sketch the salient features and
the analysis.
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Stream processing. Verifier picks 71, ...,7; €r F and maintains (using Fact 1) O(k?) = O(1)
many s X s arrays: a(r;,w,r;,z) for each i ~ j € [k] and b(ry,w, 7}, 2) for each i # j € [k],
where (w,z) € [s] x [s]. The b arrays do not depend on the input stream and can be
computed once and for all. At the end of the stream, he computes p(ry,...,rg) with the
help of these values, using Equation (9).

Help message. Prover sends a polynomial p(X7, ..., X}) that she claims to be p(X7, ..., Xj).
She streams the O(t*) coefficients of j, using some canonical ordering of the monomials.

Verification and output. Verifier computes the check value C := p(rq,...,7x) and the result
value Ty = ag' Der,apely D@1, ). He outputs L if €' # p(r1,...,rx). Else,
believing p = p, he outputs Ty as the answer, in view of Equation (8).

Error probability. By a Schwartz-Zippel Lemma (Fact 3) argument as before, the error
probability is at most deg p/|F| = O(t)/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. The hcost is O(t*), by the bound on the number of monomials
in p. Verifier stores O(1) many s x s arrays, leading to a vcost of O(s?).

In summary, we obtain a [t¥, s?]-scheme for counting copies of a fixed k-vertex subgraph H,
for all choices of parameters t, s with ts = n. Setting t = n?/*+2) and s = n*/(#+2) gives a
scheme where both these costs are O(n?#/(*+2)) which is o(n?) for constant k. Thus, we get
the following theorem.

» Theorem 5. For any parameters t,s such that ts = n, there is a [t*,s?]-scheme for
SUBGRAPHCOUNT), where k is a constant. In particular, there is a sublinear scheme for
SUBGRAPHCOUNTy, with total cost O(n?*/(F+2)),

4 Maximum Matching

We now turn to the MAXMATCHING problem, again giving a frugal scheme. Our input is
an edge stream of an n-vertex graph G = (V, E) and we would like to determine o/ (G), the
cardinality of a maximum matching in G. We follow the broad outline of the semi-streaming
scheme for MAXMATCHING by Thaler [29]. That scheme has two parts. In the first part,
Prover convinces Verifier that o/(G) > k, for some integer k. In the second part, she convinces
him that o/(G) < k. For the former, Prover simply provides a suitable matching M and
convinces Verifier that M C E using the SUBSET scheme from Fact 2. For the latter, Prover
uses the Tutte-Berge formula [8], which states that

o (G) = % min (|U| +|V| —odd(G\U)) : (10)

Ucv
where odd(G \ U) denotes the number of connected components in G\ U with an odd number
of vertices. The most challenging part of the scheme is evaluating odd(G \ U), which involves
the sub-problem of verifying whether all the connected components of a graph (as claimed
by the Prover) are disconnected from each other. Thaler comments that this is the part that
acts as a barrier in reducing the vcost to o(n) without increasing the hcost to Q(n?). We
present a novel frugal scheme for this sub-problem. The rest of the protocol solves the same
sub-problems as the aforementioned paper. Most of their sub-schemes for these sub-problems,
however, were trivial for O(n) space. We need schemes for the same problems that use only
o(n) space and hence require more work. We describe our protocol below.

To convince the Verifier that the size of a maximum matching in G is k, Prover proves
that it is (a) at least k, and (b) at most k. For (a), she simply sends (as a stream) a set M of
k edges that constitutes a matching of G. Verifier can easily check using O(logn) space that
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the set has size k. Next, he needs to check that M C FE, and that M is indeed a matching.
For the former, we can use Fact 2 and get an [h, v]-scheme, where v is the o(n) value we are
aiming for and h = n?/v. To verify that M is a matching, we check whether every vertex
in M appears exactly once in this stream. Treating M as a stream of vertices, we can do
this as follows: First, compute F3, the second frequency moment of the stream, using an
[h, v]-scheme where v is the o(n) vcost we want, and h = n/v ([10], Theorem 4.1). Next,
verify that it equals 2k (this happens iff all 2k elements are distinct).

For (b), we apply Equation (10). Prover sends U* C V and claims that k = 1/2- (JU*| +
|V| —odd(G \ U*)). To check this, Verifier just needs to compute odd(G \ U*). We do this
in the following way.

Let [C] be the set of C' connected components of G\ U*. For ¢ € [C] and u € G\ U*,
Prover sends an array L of pairs (¢, u) such that u € ¢. The array L is sorted in non-decreasing
order of ¢, i.e., she first sends the vertices in connected component 1, followed by those in
component 2, and so on. If L is indeed as Prover claims, then odd(G \ U*) is equal to the
number of components ¢ that arrive with odd number of vertices in L. Since L is sorted with
respect to ¢, Verifier can count this number easily using O(logn) space. He can verify that
the vertices in the tuples of L constitute G\ U*, and that no vertex u is repeated in different
tuples of L, using frugal schemes implied by the standard protocols mentioned above.

Thus, it only remains to verify that L is as claimed. For this, we need to check whether
the following two properties hold:

(i) For each c € [C], the vertices in G \ U* that are claimed to be in component ¢ are all
connected in G\ U*.

(ii) For every pair (u,v) of vertices in G\ U* that are claimed to be in different components,
we have (u,v) € E.

For Property (i), Prover sends a spanning tree for each connected component ¢ and

1=a]_scheme, for any « € [0, 1]

Verifier can check if all of them are valid using an [n'*® n
([10], Theorem 7.7) so as to get the desired o(n) vcost.
Checking Property (ii) is the most challenging part. We give a novel protocol for this
part that uses o(n) vcost and o(n?) hcost. Slightly abusing notation, consider the array L in
the form of a C x |G\ U*| matrix, such that L., =1 if u € ¢, and L., = 0 otherwise. Denote
the ones’ complement of this matrix by L. Let A be the adjacency matrix of G'\ U*. Finally,
let v denote the total number of cross edges that go between two connected components in

G\ U*. Then, we have

27 = E Lcuichuv . (11)
ce[C]
u,weG\U™

Property (ii) is satisfied iff v = 0. Recalling that C'= O(n) and |G\ U*| = O(n), we note
that Equation (11) has a similar form as that of Equation (4). Thus, it can be exploited
in essentially the same way as the [t?, s?]-scheme for TRIANGLECOUNT, for parameters t, s
with ts = n. Once again, setting ¢t = n® for « € (1/2,2/3), we get a frugal scheme.

The next theorem summarizes the result in this section.

» Theorem 6. For any parameterst, s withts = n, there is a [t3, s?]-scheme for MAXMATCH-
ING. In particular, there is an (o(n?),o(n))-scheme for MAXMATCHING.

This disproves yet another conjecture of Thaler [29], which stated that MAXMATCHING has
no frugal scheme.
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5 Counting Cross-edges and its Applications to Other Problems

Consider the problems INDSETTEST and ST-3PATH defined in Section 1.1. The key task
underlying these problems is counting the number of edges crossing between two subsets U and
W of V that arrive in some adversarial streaming order along with the edges: for INDSETTEST,
U and W are the same set; for ST-3PATH, they are (closed) neighborhoods of the designated
vertices vgs and v¢. This is precisely the abstract problem of CROSSEDGECOUNT. Clearly, a
scheme for this problem can be used as a subroutine to solve INDSETTEST and ST-3PATH.

Any one-pass (h,v)-scheme for CROSSEDGECOUNT, INDSETTEST, or ST-3PATH must
have hv > n? and hence, total cost h +v = Q(n). In Appendix A.1, we outline how these
lower bounds are obtained. We therefore consider two-pass schemes for these problems. In
particular, we design such a scheme for CROSSEDGECOUNT with total cost O(nQ/S) and
apply it to obtain similar bounds for other graph problems. In Appendix A.2, we discuss
these applications. We also note that our schemes can be implemented in one pass each,
under natural assumptions on the way the stream is ordered; see Appendix A.3.

5.1 Two-pass Scheme for CrossEdgeCount

We now design a two-pass scheme for CROSSEDGECOUNT, aiming for total cost o(n).

Let v = v(U, W, G) denote the number of Cross-edges between U and W in a (directed or
undirected) graph G. Formally, it is the number of ordered pairs (u,w) € U x W such that
(u,w) € E. Note that, in an undirected graph, v counts an edge (u,w) with multiplicity 2
whenever u,w € U NW. For some applications (e.g., counting number of 3-walks in an
undirected graph), we do need to count them with multiplicity. We discuss later how we can
remove this multiplicity if needed.

We describe a scheme that works even on turnstile graph streams, i.e., a stream of the
vertices in U and W intermixed with updates to edge multiplicities. Let L and F denote the
characteristic vectors of the sets U and W respectively and let A be the (weighted) adjacency
matrix of G. Then,

Y= Z LuAu,wa . (12)
uelU,weW

Let ¢t and s be integer parameters such that ts = n. As usual, using a canonical bijection, we
represent each vertex v € V' by a pair of integers (z,y) € [t] x [s]. As a result, the vectors L, F'
transform into 2-dimensional arrays ¢, f given by ¢(x,y) = L, and f(x,y) = F,. As before,

the adjacency matrix A turns into a 4-dimensional array a, such that a(x1,y1, Z2,y2) = Ay, v,-
Let ¢, f and a be F-extensions of ¢, f and a respectively, for a sufficiently large finite field F.

Now, Equation (12) yields

v = Z p(x1,x2), where (13)
x1,T2€[t]

X1, Xo) = Y UX1, ) @(Xy, 1, Xo,y2) f(X2,02). (14)
y1,Y2€|[s]

For i € {1,2}, degy, p = 2t — 2. Thus, it follows that the number of monomials in p is at
most O(¢?), and the total degree of p is O(t).

We are now ready to design a two-pass scheme for CROSSEDGECOUNT.
Stream processing. Verifier first chooses r1,75 €g F. For y € [s], define

g(y) = Z d(rhyaery/)f(TQay/) (15)

y'E€[s]
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Thus,

T17T2 Z Zrlv (16)
yE(s

Pass 1. Only process the vertices in L and F in the stream. Maintain (using Fact 1) two
s-dimensional vectors: £(r1,y) and f(rs,y), where y € [s].

Pass 2. Only process the edges in the stream. We want to maintain the s-dimensional
vector g(y) so that we can compute p(ry,72) using Equation (16). Suppose that the
jth edge update (x1,y1,x2,y2); adds A; to that edge’s multiplicity. This results in
updates to several entries of @, but we want to use only O(s) space, so we cannot
afford to maintain @ directly. Instead, for each j € [m], let g; and @; denote the values
of g and a (respectively) after the jth stream update. Then

g](y) = Z f T2,Y a/_] Tlay7r2ay)
y'€ls]
= Z f T2,y a] 1(T15y7r2a )+A 6(&:1 Y1,%2,Y2);j (rlayar27y)) (17)
y'€ls]

=gj-1(y) + h;(y),

where Equation (17) follows from Equation (3) and

Z f r2,Y A 5(11,y1,x2,y2) (7“172%7“2,2/)- (18)
y'€ls]

Hence, after the jth update, the Verifier can compute h;(y) and maintain the vector
9(y).

Help message. After the second pass, Prover sends a polynomial p(X;, Xs) (as a stream of
coefficients) that she claims equals p(X7, X»).

Verification and output. At the end of the second pass, Verifier gets g(y)m, = g(y) for each y.
Now, he uses Equation (16) to compute the check value p(r1,r2) and the result value
q = zm’mze[t]ﬁ(xl,xg). If he finds that p(ri,72) # p(r1, r2), he outputs L. Otherwise,
he believes that p = p and exploiting Equation (13), outputs 4 as the answer.

Now, we analyze the correctness and complexity parameters of the scheme.

Error probability. The protocol errs only when p # p, but Verifier’s check passes. Then,
(r1,72) € F? must be a root of the nonzero polynomial p — p. We noted that its total
degree is O(t). Thus, the Schwartz-Zippel Lemma bounds the error probability by at
most O(t)/|F| < 1/n, for large enough choice of |F|.

Help and Verification costs. The polynomial p has O(¢?) monomials, and so, the hcost is
O(t?). Verifier stores constant many vectors of size s at a time and incurs a vcost of O(s).
Thus, we obtain a two-pass [t2, s]-scheme for CROSSEDGECOUNT, for parameters t, s

with ts = n. Setting t = n'/? and s = n?/3, we get a scheme with total cost O(n?/3).

Finally, we discuss how one can count cross-edges between U and W when they are
defined as unordered pairs. Define this problem as CROSSEDGECOUNT-UNIQ. Let 7/ be
the number of edges that « counts with multiplicity 2, i.e., the number of undirected edges
(u,w) € U x W such that u,w € UNW. Then,

v = Z LuFyAywLyFy . (19)
welUweW
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Hence, we modify the definitions of p(X;, X2) and g(y) as

p(X1, X3) = Z UX1,y10) (X1, y1) a( X1, 91, X2, y2) £(Xo, y2) F( X2, y2) - (20)
y1,Y2€[s]
g(y) = Z d(rlay7r27 ) (7"2, )f(r27 ) (21)
y'E€[s]

Then, proceeding as in CROSSEDGECOUNT, we compute 7. Thus, we can compute v and
~" in parallel and finally output v —«’ as the answer to CROSSEDGECOUNT-UNIQ.

» Theorem 7. For parameters t,s with ts = n, there are two-pass [t2,s]-schemes for
CROSSEDGECOUNT and CROSSEDGECOUNT-UNIQ. In particular, there are two-pass
schemes with total cost O(n2/3). If the vertices appear first in the stream, we need only
one pass.

6 Path Problems

In this section, we focus on path-related problems. Specifically, we study ST-KPATH for
k > 3 and the fundamental ST-SHORTESTPATH problem (defined in Section 1.1). It follows
from simple reduction from INDEXy for N = n? that a one-pass algorithm for both of these
problems requires £(n?) space in the basic (sans prover) streaming model, and a one-pass
scheme requires a total cost of Q2(n). We present a scheme for sT-KPATH for general k
that can also be used to solve ST-SHORTESTPATH. It is a semi-streaming scheme when k is
polylogarithmic in n, and hence matches the lower bound (up to polylogarithmic factors).
Next, we explore if we can break the €2(n) barrier for schemes for ST-KPATH at the cost of
allowing a few more passes over the input. We achieve this for constant k by generalizing
the protocol for ST-3PATH. We present all our schemes for undirected graphs, but they can
be very easily modified to work for directed graphs as well.

6.1 A Single-Pass Semi-Streaming Scheme for Detecting Short Paths

For sT-3PATH, it is easy to obtain a semi-streaming scheme by checking (using Fact 2)
whether the set N[vs] X N[v;] and the edge set E are disjoint. For k > 3, it’s not that direct
and requires more work. We describe the protocol below for a multigraph G.

Let A denote the adjacency matrix of the graph G and let A be the F-extension of A, for
some large finite field F. For u € N;41(vs), let d,; be the number of (in-)neighbors of u in
N;(vg). Tt follows that

> Awu). (22)

vEN, (vs)

We are now ready to describe the protocol.

Stream processing. Verifier picks 7 €z F and stores A(v,r) for each v € [n], maintaining
them dynamically as the stream arrives (Fact 1). He also stores the set Ny (vs).

Help message. At the end of the stream, Prover sends Verifier k—1 polynomials p1, .. ., pr—1,
and she claims p; = p; for each i € [k], where

> A@U). (23)
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Verifier's computation. Verifier iteratively constructs N;(vs) for ¢ € [k]. Each time after
computing N;(vs) for an 7, he checks if ¢ is in the set. If so, he stops and outputs YEs.
Otherwise, he proceeds to compute N;;1(vs). If he finds that ¢ € N;(vs) for any i € [k],
then he outputs NO. The inductive neighborhood computation is done as follows.
Assume that Verifier has the set N;(vs) for some i € [k—1]; this holds initially, since he has
stored Ni(vs). He computes p;(r) using Equation (23) and checks whether p;(r) = p;(r).
If the check passes, he believes that p; = p; and evaluates p;(u) for each u € V. By
Equation (22), p;(u) equals d,,;, which is non-zero iff u € N;;1(vs). Hence, he sets
Nit1(vs) = {u: pi(u) # 0}.

Error probability. The protocol errs when we have p; # p; for some i, but Verifier’s check
passes. This implies that r is a root of the non-zero polynomial p; — p;. For a given ¢,
the total degree of this polynomial is at most 2n. Then, probability that r is a root is at
most 2n/|F| < 1/n?, for large enough choice of |F|. Taking a union bound over all i € [k],
we get that the probability that r is a root of p; — p; for some ¢ is at most 1/n.

Help and Verification costs. Since degree of each p; is 2n, the total hcost is O(lm) Verifier
stores A(v,r) for each v € [n], which requires O(n) space. Additionally, to compute
Nit1(vs) for some i € [k], he needs only the set N;(vy). Thus, we can store the N;(vy)
sets by reusing space repeatedly, and this requires O(n) space. Hence, the total vcost of
this protocol is O(n). Therefore, we get a [kn,n]-scheme for checking the existence of a
path of length at most k between vertices vs and v;.

» Theorem 8. Given an n-vertex (directed or undirected) multigraph G(V, E) and specified
vertices vs, vy € V, for any k < n— 1, there is a [kn,n]-scheme for sST-KPATH. In particular,
there is a semi-streaming scheme for ST-KPATH when k is polylogarithmic in n.

Application to Shortest Path. Based on the scheme in Theorem 8, we have the following
straightforward corollary.

» Corollary 9. Given a (directed or undirected) multigraph G(V, E) (with edge multiplicity
polylogarithmic in n) and specified vertices vs,vy € V, there is a [kn,n|-scheme for ST-
SHORTESTPATH, where k is length of the shortest vs, vi-path.

Proof. If there is no v, v-path, Prover sends the connected component C' that vy is in. The
Verifier first checks that C is indeed connected ([10], Theorem 7.7). Next, he verifies that
there is no edge going out from C by checking whether the set C' x (V' \ C) and the edge set
E are disjoint (Fact 2). Both of these are [n,n]-schemes.

If there is a vy, vi-path, and the shortest such path H has length &, then Prover sends it
to the Verifier, and he can check whether H is indeed a vg, v-path and that H C F using
an [n,n]-scheme, as edge multiplicity is polylogarithmic in n (Fact 2). Parallelly, he uses a
[kn, n]-scheme to verify that there is no vs, vi-path of length at most & — 1 (Theorem 8). <«

6.2 A Multi-Pass Scheme for Detecting Short Paths

In Section 5, we obtained a scheme for ST-3PATH of total cost o(n) using two passes over
the input. We investigate if the same is true for ST-KPATH (for k& > 3) if we allow “a few”
more passes. For constant k, we answer this in the affirmative as we generalize the scheme
for ST-3PATH and obtain such a scheme for ST-KPATH with [k/2] passes.

As usual, A denotes the adjacency matrix of the graph G. Let L and F be the characteristic
vectors of N[vs] and N (v;) respectively. Let x = £(G) denote the number of walks of length
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at most k from v, to v; in G. Then,

k—2
K= Z Lul (H Aui»ui+1> Fuk—l . (24)
=1

UL, Ug—1EV

Note that there is a path of length at most k from v, to v; iff K > 0. Therefore, computing x
suffices.

Let h and v be integer parameters with hv = n. Again, using a canonical bijection, we
represent each vertex u € V by a pair of integers (x,y) € [h] X [v]. The vectors L and F
become 2-dimensional arrays ¢ and f, given by ¢(z,y) = L, and f(z,y) = F,. Again, the
adjacency matrix A turns into a 4-dimensional array a, such that a(z,y,z’,y’) = Ayw. Let
l, f and @ be F-extensions of ¢, f and a respectively, for a sufficiently large finite field F.
Thus, Equation (24) gives

k= Z p(z1,...,25-1), where (25)

z1,...,xK—1€[R]

k-2
(X1, Xpo1) = Z U(X1,31) (H a(Xiayi7Xi+layi+l)> F(Xe-1,y0-1) . (26)

y1,Yy2€[v] i=1

For i € [k — 1], degy, p = 2h — 2. Therefore, the number of monomials in p is at most
O(h*~1) and the total degree is O(kh).
We present a [k/2]-pass protocol for ST-KPATH.
Stream processing. First, Verifier chooses ry,...,7x_1 €g F.
Pass 1. Process only the vertices in N;[vs] and Nj(v;) in the stream. We maintain, for
each y € [v], two vectors of size v: £(r1,y) and f(ry_1,y), where y € [s].
Pass i, for 2 < i < [k/2]. Define go(y) := £(r1,y) and gx(y) = f(rx_1,y). For each
y € [v], compute gi—1(y) == >, e @ri-1, ¥, 70,y )gi—2(y') as well as gr—iy1(y) =
> oyep) @re—is Y, Th—i1,Y ) gr—i+2(y’). The g;(y) values are updated dynamically
with the stream updates in a similar way as in the protocol for CROSSEDGECOUNT in

Section 5.1.
Help message. At the end of the final pass, Prover sends a polynomial p(X1,..., Xr_1) (as
a stream of coeflicients) that she claims equals p(X1,..., Xk_1).

Verification and output. After the final pass, Verifier computes Zye[v] 9re/21 (W) gre/21+1(Y),
which, by Equation (26), equals p(ri,...,7x—1). If he finds that it doesn’t equal
p(r1,...,7k—1), he outputs L. Otherwise, he believes that p = p and, following Equa-
tion (25), computes & := le,---,xkfle[h] p(x1,...,xx—1). He outputs YES if & > 0 and
No otherwise.

Error probability. We err only when p # p, but Verifier’s check passes. In this case,
(r1,...,75—1) € F*=1is a root of the nonzero polynomial $ — p. We noted that its
total degree is at most O(kh). By the Schwartz-Zippel Lemma (Fact 3), the probability
of this event is at most O(kh)/|F| < 1/n, when |F| is large enough.

Help and Verification costs. The number of monomials of p is O(h*~!), giving an hcost of
O(hk_l). Verifier reuses space and, during each pass, stores O(1) many v-dimensional
vectors, each entry of which is O(logn) bits long. Thus, the vcost is O(v).

This gives a [k/2]-pass [h*~!, v]-scheme for ST-KPATH, for parameters h,v with hv = n.
Setting h = n!/* 1-1/k

andv=mn , we get a scheme with total cost O(n'=1/#).

» Theorem 10. For any constant k, there is a [k/2]-pass [n*~'/* n'=1/¥]_scheme for
ST-KPATHCOUNT in a (directed or undirected) graph.
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We note the contrast between this result and that of Guruswami and Onak [17]. They
showed a lower bound of Q(n'T21/%) /EOM) for sT-KPATH in k/2 — 1 passes in the basic
(sans prover) streaming model (for even k). Our results show that using [k/2] passes, we
can obtain a scheme for the same problem with total cost of O(n'~1/).
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A Missing Details from Section 5

Here, we give the missing proofs of lower bounds for CROSSEDGECOUNT, INDSETTEST and
ST-3PATH. Then, we discuss applications of CROSSEDGECOUNT to some standard graph
problems. Finally, we show how our two-pass schemes can be made single-pass under certain
assumptions on the stream order.

A.1 One-Pass Lower Bounds

We quickly review some relevant material from communication complexity. In the INDEX y
problem, there are two players: Alice, who holds a vector x € {0,1}?V, and Bob, who holds
an index k € [N]. Their goal is to output the bit x;. To prove lower bounds for one-pass
schemes, we consider the Online Merlin—-Arthur (OMA) communication model.* Here, in
addition to Alice and Bob, there is a super-player, Merlin, who knows both their inputs, but
is not to be blindly trusted. Merlin sends a message to Bob; then Alice sends a randomized

4 Note that our semantics are slightly different from the usual definition of Merlin—Arthur where Bob is
supposed “accept” each 1-input and reject each O-input with probability at least 2/3.
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message to Bob; finally, Bob either outputs either a bit or L. If Merlin is honest, Bob
should output xj, with probability at least 2/3; if he is dishonest, Bob should output L with
probability at least 2/3.

The cost of an OMA protocol is the total number of bits communicated to Bob. The
OMA complexity of a communication game is the minimum cost of a correct OMA protocol
for it. Chakrabarti et al. [10, Theorem 3.1] showed that the OMA Complexity of INDEXy is
Q(\/N ). Our lower bounds follow from this result, using simple reductions from INDEXy to
the various graph problems.

Using a canonical bijection from [n]? to [V], Alice rewrites her input vector x € {0, 1}V
as a matrix (X;;); je[n), while Bob looks at his input index k € [N] as (y,z) € [n]®. Our
reduction creates a graph G = (V, E) on 2n vertices: the vertex set V is LW R (here, &
denotes disjoint union), where |L| = |R| = n. We denote the ith vertex of L (resp. R) by
4; (resp. 7;). The edge set E is given by {(¢;,7;) : x;; = 1}. Now, by checking if (¢,,7.) is
an independent set in G, or whether there’s a cross-edge between the sets {¢,} and {r.}, or
solving ST-3PATH in the graph G’ = (V U {vs, v}, E U {(vs, £y), (72, v:)}), Bob can solve the
INDEX y problem. Thus, a one-pass scheme that solves any of these problems must have a
total cost of Q(n). We remark that Fact 2 implies matching semi-streaming upper bounds
for each of them.

A.2 Applications of CrossEdgeCount

As we noted earlier, a scheme for CROSSEDGECOUNT can be used as a blackbox for solving a
number of other problems. These include standard problems like INDSETTEST and ST-3PATH,
as well as their generalizations or variations like the following problems.

INDUCEDEDGECOUNT: Given a graph G = (V, E) and a subset U of V, find the number
of edges in G that are induced by U.

ROOTEDTRIANGLECOUNT: Given a (directed or undirected) graph G = (V, E) and a
vertex v, € V, find the number of triangles in G that are rooted at v,..

» Corollary 11. Let t and s be parameters such that ts = n. Then each of the problems
INDUCEDEDGECOUNT, INDSETTEST, ST-3PATH, and ROOTEDTRIANGLECOUNT admits a
two-pass [t2, s]-scheme; in particular, a two-pass scheme with total cost O(n?/3).

Proof. For INDUCEDEDGECOUNT, if the input graph is undirected, then considering U and
W as the same set, solve CROSSEDGECOUNT-UNIQ. (Alternatively, solve CROSSEDGE-
CouUNT and divide the answer by two.) If the graph is directed, then solve CROSSEDGE-
COUNT.

For INDSETTEST, solve INDUCEDEDGECOUNT on U and check whether the answer
equals zero.

For sT-3PATH, use a scheme for CROSSEDGECOUNT to find the number of cross-edges
between the closed neighborhoods Nvs] and N|v] of vertices vs and v¢. This actually solves

the more general problem of counting the number of walks of length at most 3 from vy to vy.

Checking whether this number is non-zero decides ST-3PATH.

Finally, for ROOTEDTRIANGLECOUNT, if the input graph is undirected, solve INDU-
CEDEDGECOUNT on N (v,). Otherwise, solve CROSSEDGECOUNT on the out-neighborhood
N*(v,.) and in-neighborhood N~ (v,) of v,. <
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A.3 One-Pass Schemes for Certain Stream Orderings

Our two-pass solution to the CROSSEDGECOUNT problem, as well as its corollaries, allowed
the vertices and edge updates to be arbitrarily intermixed in the input stream. That said,
it is interesting to focus on a natural restriction of these problems where the vertices are
streamed first, followed by the edge updates. For the ST-3PATH problem, the corresponding
restriction is that the edges incident to vs and v; appear before any other edges in the stream;
for ROOTEDTRIANGLECOUNT, it is that the edges incident to v, appear first.

Under such a restriction on the stream ordering, our two-pass solutions natural become
one-pass, as we now note.

» Corollary 12. The schemes for CROSSEDGECOUNT and CROSSEDGECOUNT-UNIQ in
Theorem 7 and for INDUCEDEDGECOUNT, INDSETTEST, ST-3PATH, and ROOTEDTRI-
ANGLECOUNT in Corollary 11 can each be implemented in one pass under a restricted stream
ordering as noted above.

Proof. Consider the protocol described in Section 5.1. Note that the first pass processes
only vertices and the second pass processes only edges. This implies the claimed results for
CRrROSSEDGECOUNT, CROSSEDGECOUNT-UNIQ, INDUCEDEDGECOUNT, and INDSETTEST.
For sT-3PATH, note that requiring edges incident to vs and v; to arrive first is equival-
ent to the vertex sets N(vs) and N(v;) arriving first. A similar consideration applies to
ROOTEDTRIANGLECOUNT. <

It is important to note that despite the restriction on the stream ordering, the schemes
in Corollary 12 are nontrivial. Without Prover’s help, the problems remain hard, even with
multiple passes. We give the simple proof for the basic problem CROSSEDGECOUNT.

» Proposition 13. Any p-pass streaming algorithm for CROSSEDGECOUNT, with vertices
streamed before edges, requires Q(n/p) space, even for insertion-only streams.

Proof. We reduce from DISJ,,, the set-disjointness communication problem on the universe
[n]. Recall that, in DISJ,, Alice holds a set « C [n] and Bob holds a set y C [n]. Their goal
is to determine whether or not x Ny = @. This problem has randomized communication
complexity R(D1sJ1,,) = Q(n) [27].

Consider an (n+ 1)-vertex graph G where V(G) = {0,...,n} and E(G) = {{0,4} : i € y}.
Let U = {0} and W = 2. Then the number of cross edges in G from U to W is non-zero iff
Ny # . The result now follows along standard lines. <
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