
Report from Dagstuhl Seminar 19102

3D Morphable Models
Edited by
Bernhard Egger1, William Smith2, Christian Theobalt3, and
Thomas Vetter4

1 MIT – Cambridge, US, egger@mit.edu
2 University of York, GB, william.smith@york.ac.uk
3 MPI für Informatik – Saarbrücken, DE, theobalt@mpi-inf.mpg.de
4 Universität Basel, CH, thomas.vetter@unibas.ch

Abstract
3D Morphable Models is a statistical object model separating shape from appearance variation.
Typically, they are used as a statistical prior in computer graphics and vision. This report
summarizes the Dagstuhl seminar on 3D Morphable Models, March 3-8, 2019. It was a first
specific meeting of a broader group of people working with 3D Morphable Models of faces and
bodies. This meeting of 26 researchers was held 20 years after the seminal work was published
at Siggraph. We summarize the discussions, presentations and results of this workshop.
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A total of 45 people was invited to this seminar in the first round of invitations. The
seminar was fully booked after the first round and 26 researchers from academia and industry
participated in the seminar. 21 researchers presented their work in around 15-30 minutes
presentations, an abstract of each presentation is included in this report. Besides those
presentations participants where presenting their shared data and software in a specific slot.
We collected this information in a list of shared resources which we made publicly available1.
This overview and exchange was one of the aims we had initially in mind when organizing the
workshop. In the beginning of the workshop we collected ideas for discussions in our flexible
sessions, those ideas are also contained in this report. We then structured the seminar fixing

1 https://github.com/3d-morphable-models/curated-list-of-awesome-3D-Morphable-Model-software-
and-data
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the topics of discussion for the flexible sessions. The summaries of those discussions are also
contained in this report. One slot was reserved for a joint group discussion on upcoming
ethical concerns on the methods we are developing. This interesting and well organized
discussion was an initiative from the participants and not foreseen by the organizers. Another
bigger discussion was around the topic of how to compare different approaches and how to
establish a benchmark. We did not completely converge on a final solution but we identified
currently available benchmarks and we discussed how a gold-standard benchmark would look
like. Another aim of the workshop was to initiate an edited book or a survey paper with
broad support. Arising from the workshop a group of 13 junior and senior researchers started
to work on a joint survey and perspective paper on 20 years of Morphable Face Models.
Discussions and presentations were followed by vivid discussions on current challenges and
future research directions. To future nurture the ideas of the seminar we started a google
group for discussions, sharing news and exchanging students 2. The group would like to meet
again at Dagstuhl in 2022. The program was more dense than expected and we would like to
have more time for discussions in groups after a set of talks. We would like to highlight 5
main discussion points:

To what degree of detail we need to model in 3D and physically adequate, what can we
learn from semi-supervised or unsupervised 2D data?
Is the model depending on the application or is there a golden standard model that is
able to fit all applications?
The current revolution of deep learning in computer vision enables a lot of novel strategies
and speeds up the models, however, other challenges in modeling, synthesis and inverse
rendering remain and new deep learning specific challenges are introduced.
What are the ethical implications of the models and systems we are building?
How will the field develop in the next 20 years? Which challenges should we focus on?

We started the seminar with a short introduction of everybody. The homework was to
introduce themself with at most one slide and prepare one important question, challenge or
goal you would like to discuss during the seminar.

Thabo Beeler: Non-Linear Morphable Models. How to get off Model in a meaningful
way?
Florian Bernard: Deeper integration of models of human knowledge and algorithms
into learning systems. What are potential perspectives? How to best approach this?
Michael J. Black: What’s next? Increasing realism? Deep representations? Something
else?
Volker Blanz: Expressive model also reproduces non-face structures! How to discrimin-
ate between face and non-face? Future: better regularization, rely on trained regressors,
recognize glasses ?
Bernhard Egger: What to model? What to learn?
Victoria Fernandez Abrevaya: How far are we from closing the gap between high-
quality and low-quality capture devices, and can we use 3DMM for this?
Patrik Huber: What is missing to reliably reconstruct realistic 3D faces from mostly
uncontrolled 2D footage?
Ron Kimmel: Geometry is the art of finding the “right” parametrization. Deep Learning
is a technology that exploits convenient parametric spaces (CNN) for classification. Any
hope for unification? Is translating geometry into algebra the answer?

2 https://groups.google.com/forum/#!forum/3d-morphable-models
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Tatsuro Koizumi: How to evaluate and assure the robustness of neural network-based
reconstruction? How to improve the stability of self-supervised training?
Adam Edward Kortylewski: Can we resolve the limitations of Deep Learning with
Generative Object Models?
Yeara Kozlov: Can physically based face modeling be replaced by machine learning?
Andreas Morel-Forster: Fast posterior estimation – A contradiction?
Nick Pears: How to build deeper, wider models?
Gerard Pons-Moll: Is the Euclidean 3D space the right space to model humans,
clothing and hair?
Emanuele Rodolà: Can we make inverse spectral geometry useful in practice?
Sami Romdhani: How to combine Deep Learning and 3D Equations to generate images?
Javier Romero: How can Deep Nets learn from unstructured, uncalibrated views?
Shunsuke Saito: Is there an unified representation to represent digital human without
explicitly having prior for each component?
William Smith: Self-supervision: holy grail or just re-discovering gradient descent-based
analysis-by-synthesis? How do we make sure the gradients of our losses are really useful
(Appearance loss: meaningless when far from good solution, Landmark loss: ambiguous
(and not self-supervised), Rasterization: not differentiable)?
Ayush Tewari: How can we build high quality 3D morphable models from 2D data?
Christian Theobalt: Can we build a 4D Real World Reconstruction Loop? Ethical,
Privacy, Security Questions of Parametric/Morphable Model Building and Reconstruction
Algorithms
Thomas Vetter: Did we learn much about this optimization problem (inverse render-
ing)?
Stefanie Wuhrer: How to effectively learn parametric human models from captured
data using minimal supervision?
Michael Zollhöfer: What is the best representation for deep learning-based 3D recon-
struction and image synthesis?
Silvia Zuffi: How to model skin dynamics from video?

After the individual introductions, we discussed those ideas in discussion groups to
identify points to discuss during the seminar. The following list is the unfiltered result of our
brainstorming on open questions and challenges.

Where to spend the next 20 years? Perfection: finer detail? Move it: Movement, new
representation, new goals, new data? Break it: hair, clothing, new representation, new
goals, new data?
Why aren’t we focusing on fixing the obvious errors?
Optimization: Why aren’t we doing more to understand our objective function and adopt
the algorithms?
How to predict distributions instead of point estimates?
How much detail to model vs. overfitting?
How to evaluate Photorealism?
Should vision people be more aware of graphics standard for photorealism?
Is it important to understand?
Do we need correspondences to build 3D models and predictions?
How to learn 3D from 2D?
How to adapt models over time (without calibration)?
How to deal with multi-view and video in CNNs?
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Which courses/skills are required?
Use for society?
What to leave for industry?
What is the role of academia within industry (collaboration vs. isolation)?
Representations (beyond triangle meshes) to deal with category discontinuities, e.g.
smooth surface vs. hair
Evaluation of shape and appearance reconstruction
Connections between deep learning and parametric models
Role of axiomic models in learning
Comparability: Benchmark and metrics
Future prediction of motion
Self-supervision
Differentiable inverse rendering
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3 Overview of Talks

3.1 Shape Synthesis with Local-Global Tensors
Thabo Beeler (Disney Research – Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Thabo Beeler, Mengjiao Wang, Derek Bradley, Stefanos Zafeiriou

Global 3DMMs are extremely popular due to their simplicity and robustness. This robustness,
however, comes at the price of flexibility as 3DMMs can only represent data that is ‘within
model’. For something that exhibits as much variation as the human face, this effectively
means that only coarse scale features and coarse scale deformation may be captured by a
global 3DMM. We explore the idea to couple such a global 3DMM with local 3DMMs in
order to enrich the expressive power of the statistical model whilst not sacrificing too much
of the robustness. We demonstrate our proposed coupling of global/local tensor models on
the task to synthesize expressions for a person that are both expressive and preserve the
identity of the subject, starting from just a neutral scan of the subject.

3.2 Combinatorial Non-Rigid Shape-to-Image Matching
Florian Bernard (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Florian Bernard, Frank R. Schmidt, Johan Thunberg, Daniel Cremers
Main reference Florian Bernard, Frank R. Schmidt, Johan Thunberg, Daniel Cremers: “A Combinatorial Solution

to Non-Rigid 3D Shape-to-Image Matching”, CoRR, Vol. abs/1611.05241, 2016.
URL https://arxiv.org/abs/1611.05241

We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to
3D image data. To this end, we model the shape as a triangular mesh and allow each triangle
of this mesh to be rigidly transformed to achieve a suitable matching to the image. By
penalizing the distance and the relative rotation between neighboring triangles, our matching
compromises between image and shape information. We resolve two major challenges:
Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable
graph-theoretic approach. Secondly, we propose an efficient discretization of the unbounded
6-dimensional Lie group SE(3). In contrast to existing local (gradient descent) optimization
methods, we obtain solutions that do not require a good initialization and that are within a
bound of the optimal solution.

3.3 Expressive human body models for communication and interaction
Michael J. Black (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Michael J. Black

Bodies in computer vision have often been an afterthought. Human pose is often represented
by 10-12 body joints in 2D or 3D. This is inspired by Johannson’s moving light display
experiments, which showed that some human actions can be recognized from the motion of
the major joints of the body. The joints of the body, however, do not capture everything
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all that we need to understand human behavior. In our work we have focused on 3D body
shape, represented as a triangulated mesh. Shape gives us more information about a person
related to their health, age, fitness, and clothing size. But shape is also useful because our
body surface is critical to our physical interactions with the world. We cannot interpenetrate
objects and they cannot interpenetrate us. Consequently we developed the SMPL body
model, which is widely used in research and industry. It is simple, efficient, posable, and
compatible with most graphics packages. It is also differentiable and easy to integrate into
optimization or deep learning methods. While popular, SMPL has drawbacks for representing
human actions and interactions. Specifically, the face does not move and the hands are rigid.
To facilitate the analysis of human actions, interactions and emotions, we have developed
a new 3D model of human body pose, hand pose, and facial expression that we estimate
from a single monocular image. To achieve this, we use thousands of 3D scans to train a
unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated
hands and an expressive face. We estimate the parameters of SMPL-X directly from images.
Specifically, we estimate 2D image features bottom-up and then optimize the SMPL-X model
parameters to fit the the features top-down. This is a step towards automatic expressive
human capture from monocular RGB data.

3.4 Morphable Texture Coordinates
Volker Blanz (Universität Siegen, DE)

License Creative Commons BY 3.0 Unported license
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In 3D Morphable Models, the assignment of texture and surface structures to vertices is
usually permanent. The talk presents a method that slides textures and displacement maps
along the surface. It proposes a linear model of texture coordinates and is illustrated on the
example of eyeball rotation.

3.5 Modeling, Reconstruction, and Animation of 3D Faces
Timo Bolkart (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Timo Bolkart, Anurag Ranjan, Soubhik Sanyal, Michael J. Black, Haiwen Feng, Daniel Cudeiro,
Cassidy Laidlaw

Learned 3D representations of human faces are useful for computer vision problems such
as 3D face reconstruction from images, as well as graphics applications such as character
generation and animation.

Traditional models learn a linear or multilinear latent representation of a face. Due to
this linearity, they cannot capture extreme deformations and non-linear expressions. Our
convolutional mesh autoencoder (CoMA) [1] applies spectral graph convolutions to the mesh
surface and introduces mesh sampling operations to enable a hierarchical mesh representation
that captures non-linear shape and expression variations in multiple scales. Compared
to traditional methods, CoMA requires 75% fewer parameters and reaches a 50% lower
reconstruction error.
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Second, we present RingNet [3] to reconstruct 3D faces from single images without any
2D-to-3D supervision. Our key observation is that an individual’s face shape is constant
across images, regardless of expression, pose, lighting, etc. RingNet leverages multiple images
of a person and automatically detected 2D face features. It uses a novel loss that encourages
the face shape to be similar when the identity is the same and different for different people.
We achieve invariance to expression by representing the face using the statistical FLAME
model [2]. Once trained, our method takes a single image and outputs the parameters of
FLAME, which can be readily animated.

Audio-driven facial animation from audio has been widely explored, but achieving realistic,
human-like performance is still unsolved. This is due to the lack of available 3D datasets,
models, and standard evaluation metrics. We introduce a novel 3D speech dataset (12
subjects, 40 sentences each) and train a model that animates 3D faces from speech. Our
learned Voice Operated Character Animation model (VOCA) [4] takes any speech signal as
input (from any language) and then animates a wide range of adult faces, not seen during
training. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or
any scenario when the speaker, speech, or language is not known in advance.

References
1 A. Ranjan, T. Bolkart, S. Sanyal, M. J. Black, Generating 3D faces using Convolutional

Mesh Autoencoders, ECCV 2018.
2 T. Li, T. Bolkart, M. J. Black, H. Li, J. Romero, Learning a model of facial shape and

expression from 4D scans, Siggraph Asia 2017.
3 S. Sanyal, T. Bolkart, H. Feng, M. J. Black, Learning to Regress 3D Face Shape and

Expression from an Image without 3D Supervision, CVPR 2019.
4 D. Cudeiro, T. Bolkart, C. Laidlaw, A. Ranjan, M. J. Black, Capture, Learning, and

Synthesis of 3D Speaking Styles, CVPR 2019.

3.6 Attributes, Illumination and Occlusion
Bernhard Egger (MIT – Cambridge, US)
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Main reference Bernhard Egger: “Semantic Morphable Models” PhD Thesis, University of Basel, 2017.
URL https://doi.org/10.5451/unibas-006722192

In my presentation, I was talking about research challenges that were otherwise not covered
in the seminar. For occlusions, we proposed a joint segmentation and model adaptation
framework [1]. To initialize this hard optimization task we rely on a RANSAC based robust
illumination estimation. An illumination prior from real-world images is estimated and arises
as a nice side product. We also built a first joint shape, albedo and attribute model using
Copula Component Analysis and use it for both Analysis and Synthesis [2, 3]. I proposed
that all in our community should focus on obvious problems like occlusions.

References
1 Bernhard Egger, Sandro Schönborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-

Forster, Clemens Blumer, Thomas Vetter: Occlusion-Aware 3D Morphable Models and
an Illumination Prior for Face Image Analysis. International Journal of Computer Vision
126(12): 1269-1287 (2018)

2 Bernhard Egger, Dinu Kaufmann, Sandro Schönborn, Volker Roth, Thomas Vetter: Cop-
ula Eigenfaces – Semiparametric Principal Component Analysis for Facial Appearance
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Modeling 11th International Conference on Computer Graphics Theory and Applications
(GRAPP), February 27-29, 2016

3 Bernhard Egger, Dinu Kaufmann, Sandro Schönborn, Volker Roth, Thomas Vetter: Copula
Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined
Color, Shape and Attribute Model In International Joint Conference on Computer Vision,
Imaging and Computer Graphics (pp. 95-112). Springer, Cham (2016, February). Commu-
nications in Computer and Information Science book series (CCIS, volume 693), 2017

3.7 Interaction between invariant structures for shape analysis
Ron Kimmel (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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A classical approach for surface classification is to find a compact algebraic representation for
each surface that would be similar for objects within the same class and preserve dissimilarities
between classes. Self functional maps were suggested by Halimi and the lecturer as a surface
representation that satisfies these properties, translating the geometric problem of surface
classification into an algebraic form of classifying matrices. The proposed map transforms
a given surface into a universal isometry invariant form defined by a unique matrix. The
suggested representation is realized by applying the functional maps framework to map the
surface into itself. The idea is to use two different metric spaces of the same surface for which
the functional map serves as a signature. As an example we suggested the regular and the
scale invariant surface laplacian operators to construct two families of eigenfunctions. The
result is a matrix that encodes the interaction between the eigenfunctions resulted from two
different Riemannian manifolds of the same surface. Using this representation, geometric
shape similarity is converted into algebraic distances between matrices. I will also comment
on some of our efforts to migrate geometry into the arena of deep learning, in a sense learning
to understand.

3.8 Can we resolve the limitations of deep learning with generative
object models?

Adam Edward Kortylewski (Johns Hopkins Univ. – Baltimore, US)

License Creative Commons BY 3.0 Unported license
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This talk describes major limitations of current deep learning approaches to facial image
analysis such as the lack of generalization from biased training data and the sensitivity
to partial occlusion. I will discuss the relevant work of our group leveraging synthetically
generated face images for overcoming those limitations [1, 2, 3]. Towards the end of the talk,
I will hypothesize that integrating generative object models – such as 3DMMs – into deep
neural networks would provide a means for overcoming those limitations.

References
1 Kortylewski, A., Egger, B., Schneider, A., Gerig, T., Morel-Forster, A., Vetter, T. (2018).

Empirically analyzing the effect of dataset biases on deep face recognition systems. In Pro-
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ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(pp. 2093-2102).

2 Kortylewski, A., Schneider, A., Gerig, T., Egger, B., Morel-Forster, A., Vetter, T.
(2018). Training deep face recognition systems with synthetic data. arXiv preprint
arXiv:1802.05891.

3 Kortylewski, A., Egger, B., Schneider, A., Gerig, T., Morel-Forster, A., Vetter, T. (2019).
Analyzing and Reducing the Damage of Dataset Bias to Face Recognition with Synthetic
Data. Conference on Computer Vision and Pattern Recognition (CVPR) Workshops

3.9 Data Driven Inversion of Faces
Yeara Kozlov (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Yeara Kozlov

Facial animation is one of the most challenging problems in computer graphics, and it is
often solved using linear heuristics like blend-shape rigging. More expressive approaches like
physical simulation have emerged, but these methods are very difficult to tune, especially
when simulating a real actor’s face. We propose to use a simple finite element volume for
face animation and present an instrument free, non-intrusive method for recovering the
required simulation parameters. Our method involves reconstructing a very small number of
head poses of the actor in 3D, where the head poses span different configurations of force
directions due to gravity. Our algorithm can then automatically recover both the gravity-free
rest shape of the face as well as the spatially-varying physical material stiffness such that a
simulation will match the captured targets as closely as possible. We present preliminary
results and discuss the challenges in using our method on faces.

3.10 Inside and Outside the Scanner Room: On How to Capture and
Model People from Data.

Gerard Pons-Moll (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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The research community has made significant progress in modeling people’s faces, hands
and bodies from data, and currently several models are publicly available. The standard
approach is to capture data coming from 3D/4D scanners and learn models from it. Such an
approach provides a very useful first step, but it does not scale to the real world. If we want
to learn rich models that include clothing, interactions of people, and interactions with the
environment geometry, we require new approaches that learn from ubiquitous data such as
plain RGB-images and video. In this talk, I will describe some of our works on capturing
and learning models of human pose, shape, soft-tissue, and clothing from 3D scans as well as
from plain video. I will conclude the talk outlining the next challenges in building digital
humans and perceiving them from sensory data.
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3.11 Isospectralization, or How to Hear Shape, Style, and
Correspondence

Emanuele Rodolà (Sapienza University of Rome, IT)
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Main reference Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael Bronstein, Emanuele
Rodolà: “Isospectralization, or how to hear shape, style, and correspondence”. to appear in Proc.
CVPR 2019, Long Beach, CA, USA, 2019.

The question whether one can recover the shape of a geometric object from its Laplacian
spectrum (‘hear the shape of the drum’) is a classical problem in spectral geometry with
a broad range of implications and applications. While theoretically the answer to this
question is negative (there exist examples of iso-spectral but non-isometric manifolds) little
is known about the practical possibility of using the spectrum for shape reconstruction and
optimization. In this talk, I will introduce a numerical procedure called isospectralization [1],
consisting of deforming one shape to make its Laplacian spectrum match that of another.
By implementing isospectralization using modern differentiable programming techniques,
we showed that the practical problem of recovering shapes from the Laplacian spectrum is
solvable. I will finally exemplify the applications of this procedure in some of the classical
and notoriously hard problems in geometry processing, computer vision, and graphics such
as shape reconstruction, style transfer, and non-isometric shape matching.
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3.12 Deep 3D Morphable Models
Sami Romdhani (IDEMIA, FR)
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Recently, Generative Adversarial Networks (GANs) have addressed a lot of attention. Indeed,
this is because they are capable to generate synthetic face images at an unprecedented level
of realism and quality. One of the main limitation of the GANs, though, is their inability to
let the user control the type of face image generated. For instance, even though a face with
some pose or some illumination can be generated, there is no control over these parameters.
Hence, it is not possible to generate a face image of a random individual at different poses or
different illumination conditions. This is, however, something that the 3D Morphable Model
does very well, by leveraging the 3D equations grounded in physics. Hence, there is a need
to build a generator that can synthesize highly realistic images as GAN can, while giving
control over semantic parameters such as pose or expression, as 3D MM can.
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3.13 Deep Learning from Unstructured, Uncalibrated Views
Javier Romero (Amazon Research – Barcelona, ES)
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It is said that one of the most important professors in our field once described the three main
problems in computer vision to be correspondences, correspondences, and correspondences.
Deep networks have attacked successfully the problem of extracting correspondences between
two images in a number of problems (optical flow, stereo matching, etc). However, there is still
little work on deep networks producing coherent output (keypoint estimation, segmentation)
representations when presented with unstructured, non-calibrated multiview RGB data. This
work probably requires deep networks to either consume some notion of correspondences or
producing it internally in a way that its estimations are preserved across them. In a world in
which it is common to have multiple images or videos from a particular object of interest, it
is important to let neural networks exploit effectively this input. I would like to present this
challenging, unsolved question to the audience of the workshop, with the focus on extracting
key points and dense registrations of people from multiple images.

3.14 Top-Down Human Digitization In the Wild
Shunsuke Saito (USC – Los Angeles, US)
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3D morphable models have been a popular choice for compact facial shape and appearance
representation for two decades. However, extending such representation to non-parametric
structures such as hair and clothed human bodies poses a significant challenge due to their
immense variation in shape and topology. To this end, we introduce an effective and unified
data representation based on deep learning that can represent the entire human body,
including the face, hair, body, and clothing. I will present several possible representations
for human digitization and show several highlights of our recent progress on high-fidelity
geometry/texture using deep convolutional neural networks. I will also discuss the pros and
cons when inferring both parametric and non-parametric data when modeling humans.

3.15 Three Ambiguities
William Smith (University of York, GB)
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Joint work of William Smith, Anil Bas, Ye Yu, Chao Zhang, Behrend Heeren, Martin Rumpf

The problem of providing a physical explanation of an image, i.e. inverse rendering geometry,
reflectance and illumination from a single image, is an ill-posed problem. In this talk, I
will consider three specific ambiguities that arise. First, when using a morphable model to
solve the shape-from-correspondence problem (e.g. fitting a model to landmarks) there is a
nonlinear subspace of 3D shapes that all project to the given 2D positions. In particular, this
is significant when camera calibration is unknown and hence distance from the camera to
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object is unconstrained. Second, the general task of single image inverse rendering is highly
ambiguous. For example, the shaded versus painted hypothesis and ambiguity between
low-frequency lighting and texture effects. I described InverseRenderNet, a self-supervised
deep neural network that learns this task by exploiting a prior on natural illumination and
multiview supervision to ensure photometric invariants are consistently estimated across
lighting. Third, I considered the problem of dealing with rigid body motion superposed
on top of nonlinear shape deformation. Building a statistical model of the intrinsic shape
variation, invariant to how the shapes are aligned requires RBM-invariant modeling. I
proposed a hybrid statistical/physical model that uses the discrete shell energy as a local
distance measure and time-discrete principal geodesic analysis to build the statistical model.

References
1 Anil Bas and William AP Smith. What does 2d geometric information really tell us about

3d face shape? arXiv preprint arXiv:1708.06703, 2017.
2 Behrend Heeren, Chao Zhang, Martin Rumpf, and William Smith. Principal geodesic

analysis in the space of discrete shells. Computer Graphics Forum (Proceedings of SGP),
37(5):173–184, 2018.

3 William AP Smith. The perspective face shape ambiguity. In Perspectives in Shape Analysis,
pages 299–319. Springer, 2016.

4 Ye Yu and William AP Smith. Inverserendernet: Learning single image inverse rendering.
In Proc. CVPR, 2019.

3.16 Building 3D Morphable Face Models from Videos
Ayush Tewari (MPI für Informatik – Saarbrücken, DE)
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Seidel, Patrick Pérez, Michael Zollhöfer, Christian Theobalt: “FML: Face Model Learning from
Videos”. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, USA 2019.

Reconstructing the 3D geometry and appearance of faces from monocular images is challenging,
as it requires inverting the image formation process. Parametric face models (3DMMs), built
using limited 3D scan data are used to constrain this ill-posed problem. However, these
models lack details and can only represent a very limited subset of identities. I will talk about
building large-scale face models just from videos, which allows for reconstruction in-the-wild.
The presented method learns to reconstruct all faces in a large video dataset while building
a low dimensional 3D face model at the same time. Models built from videos can generalize
better across identities, compared to classical morphable models, due to the abundance of
video data on the internet. I will talk about how this idea can be used for building higher
quality and detailed 3D morphable models of faces.
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3.17 To Optimize, To Learn, Or to Integrate
Christian Theobalt (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Christian Theobalt

URL http://gvv.mpi-inf.mpg.de/

Reconstructing models of the real world in motion from sparse or even single camera images
is a focus of research in my group Graphics, Vision and Video at the Max-Planck-Institute for
Informatics in Saarbruecken. In particular, reconstructing the space-time coherent geometry,
deformation, material and illumination of the scene is of interest. Using our work on
monocular face performance capture, I discuss several classes of algorithms developed for
models of the world in motion from a single color camera. In particular, I visited model-based
analysis-by-synthesis approaches, learning-based regression or classification approaches, as
well as new algorithms we developed that deeply integrate model-based and deep learning-
based algorithms in an end-to-end trainable manner. I also discuss the pros and cons of
the different classes of methods and opened up the question of how the deeply integrated
approaches could be able to drive a real-world reconstruction loop.
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3.18 Probabilistic Morphable Models
Thomas Vetter (Universität Basel, CH)
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Probabilistic Morphable Models extend the classical Morphable Model approach in two terms.
First the shape and texture variability of the models is formalized as Gaussian Process and
second, the model to target registration utilizes data-driven Markov Chain Monte Carlo
optimization. The step from PCA based representations to Gaussian Processes unifies several
different deformations models, such as spline, free-form or data based to a single formal
description. This is of conceptual importance since it connects the rich field of Gaussian
Processes to the Morphable Model approach. On the practical side, it is now sufficient
to implement only a single software framework for a whole class of different deformation
models. The second novelty, the stochastic optimization framework aims for two main
improvements. The model fitting problem is inherently difficult since its non-convexity and
the high dimensional parameter space. The model fitting starts in general by some initial
parameter guess. But the local optima problem makes it necessary to consider a certain
uncertainty of these initialization steps to avoid that a bad initial guess hinders to overall
optimization. Another shortcoming of previous methods is that the optimization results
only in a single “optimal” value but does not inform about the quality of the result or
similar results. We propose to compute the full posterior parameter distribution for a given
target image. This leads to a full Bayesian Approach for model to image registration. We
propose to compute an approximation of the full posterior based on a stochastic optimization
framework using Metropolis-Hastings Filtering. This approach does not only inform about
the certainty of the solution it also enables an easy approach to integrate uncertain guesses
for the initialization of the optimization procedure. Overall our Probabilistic Morphable
Model technique is a fully probabilistic approach enabling Bayesian inference on images.
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3.19 Building 3D Morphable Models with Minimal Supervision
Stefanie Wuhrer (INRIA – Grenoble, FR)
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3D Morphable Models (3DMMs) are commonly used in many virtual and augmented reality
applications. Recently, a number of static and dynamic databases of 3D face scans have been
published, whose acquisition was facilitated by increasingly affordable 3D face scanners. In
spite of this progress, building high-quality 3DMMs that can benefit from these datasets
remains challenging in practice as the raw 3D face scans need to be registered. We are
interested in models that decouple different factors of variation (e.g. identity, expression
or age), and in this case, the data additionally needs to be labeled. As inaccuracies in
the registrations and labeling directly deteriorate the quality of the resulting 3DMM, these
steps are often completed with manual interaction in practice. The goal of our work is to
build 3DMMs with minimal supervision. To achieve this, we have developed groupwise
methods that take advantage of the full training database. I will present our works that
allow to improve registration accuracy by taking advantage of the minimum description
length principle [1]. We will further discuss how autoencoders [2] and generative adversarial
networks [3] can be used to efficiently train from datasets that combine existing 3D face
databases where only sparse label information is available. For the second part of this
presentation, I will give an outlook on upcoming challenges. A first challenging problem
is to learn models of dynamic 3D face deformations. In this scenario, minimal supervision
is critical. A second open problem we will discuss is how to model correlations between
different dynamically deforming body parts, such as face and tongue movements.
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3.20 Learning 2D and 3D Deep Generative Models
Michael Zollhöfer (Stanford University, US)
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Generative 2D rendering-to-video translation networks that take renderings of parametric
model instances as input enable to bridge the domain gap between synthetic computer
graphics and real imagery. With the ability to freely control the underlying parametric
face model, we are able to demonstrate a large variety of video rewrite applications. For
instance, we can reenact the full head using interactive user-controlled editing and realize
high-fidelity visual dubbing. While this approach of bridging the domain gap in 2D screen
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space enables several existing applications, it has limited generalization capabilities and
does not easily scale to large head rotations. We address this lack of 3D understanding of
such generative neural networks by introducing a persistent 3D feature embedding. At its
core, our approach is based on a Cartesian 3D grid of embedded features that learn to make
use of the underlying 3D scene structure. Our approach thus combines insights from 3D
geometric computer vision with recent advances in learning image-to-image mappings based
on adversarial loss functions.
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3.21 Modeling Animal Shape
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I will present our recent work on modeling animal shape, the SMAL model. SMAL model
is a 3D articulated model that can represent animals including lions, tigers, horses, cows,
hippos, dogs. We learn the model from a small set of 3D scans of toy figurines in arbitrary
poses that we align to a common template using a novel approach. From the aligned toys,
brought into a reference pose, we learn a linear shape space over a large variety of animal
species.

4 Working groups

4.1 Discussion: The Ehics and Regulation of Photo-realistic Human
Generation

Michael J. Black (MPI für Intelligente Systeme – Tübingen, DE)
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Advances in 3DMMs and related technologies have created the ability to synthesize images of
people that are indistinguishable from real images, to manipulate photos of people to change
identity or expression, and to edit videos to change what people are saying. Photo-realistic
face generation and manipulation have the ability to change our perception of history and
our perception of each other. By doing so, it has the power to change behavior and the
future. There are both positive and negative applications of this technology and the question
is if and how it should be regulated. In this session, we explored several case studies at
different levels from regulating the research, the technology, the output of the technology,
particular uses, and users themselves. As an outcome of this session, there are plans to
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write a position paper and to possibly organize a Dagstuhl seminar focused on the ethical
questions that would bring together people with different levels of expertise from science,
business, government, history, psychology, sociology, law enforcement, and ethics.

4.2 Discussion: 3D Morphable Models – 10 Years Perspective
Patrik Huber (University of Surrey, GB)
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In this session, the topic was to discuss where our field might be in 10 years time. The
discussion was started with a comment that recent work done in Unity by Vicon, puppeteering
a Chinese woman, involved a lot of manual work, but the results are much better than
what our computer vision algorithms can currently produce. In 10 years time, we can
perhaps achieve such quality with computer vision algorithms and with much fewer manual
intervention. Another way would be to look at the question from the future and ask ourselves
what the additional value is that our tech can provide. Simple answers would be that there
are many uses in health care, for example, entertainment specifically for elderly or lonely
people, or to detect when a person falls – and then we could work towards reliable algorithms
for these tasks.

It was pointed out that in vision, we would like to understand images. We work hard to
generate priors for image analysis or generation, here with the 3D morphable models. We
can model the world in the way we understand it from physics (which would be the more
traditional way with morphable models and a rendering pipeline), or, being done more and
more recently, model it with some sort of function that we don’t fully understand anymore
(which would correspond to many of today’s deep-learning based approaches). Traditionally,
we have been able to understand each parameter of our models and have an intuition about
them, and they were not just abstract latent variables of a neural network. One big question,
therefore, is how we will create priors in the future: Will we have machines creating priors
automatically, or will we still teach the machines? One general point of the audience was
that we are likely to continue the “black-box-way”, but develop the tools to understand those
more abstract models and latent spaces much better. There will likely also be a process to
record and diagnose failures of those systems, and then improve them accordingly – much
like in today’s complex airplane systems, where it is also nigh impossible to test for all
potentially occurring events. It was further pointed out how good of a representation linear
models and PCA specifically are. One needs only a small number of data points to represent
quite complex things, and there will always be cases where only few data is available, so
those simple models are unlikely to disappear.

It was also briefly discussed how in the last few years, the community got a lot better
at optimization, for example, 3D human pose estimation. A lot of information can be
estimated already with a few sparse points, for example, facial landmarks or body joints.
One important and continuing research direction is selecting descriptive features of an object,
where currently neural networks do a very good job at learning the feature selection. In
that case, the prior is contained in the training data (often with biases we may and may not
be aware of), which ties back to the earlier discussion about learning priors and whether
we will still be using “manual” priors in a few years time. In essence, where a few decades
ago students were tweaking optimization parameters, in a very similar way, we are today
tweaking optimization parameters of neural networks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Bernhard Egger, William Smith, Christian Theobalt, and Thomas Vetter 35

A final point discussed was that most current research only tackles one specific task,
like face or full-body reconstruction, in isolation. There is research starting to emerge that
combines those individual tasks, and it has been brought up whether to put together those
individual methods is only an engineering task, or whether it is a fundamental research
question that also requires new methods and models. It is also still an unanswered question
whether we can use the same technology, for example, full-body models, to model the whole
world. We are currently learning all these specialized models, which coincides with the
mental models that exist in our brains, but at some points, we have to put those separate
bits together. In our brains we have hierarchical concepts that we seamlessly relate and
connect with each other – for example a chair can be seen as a global object, with many
different varieties, and if we inspect a chair much closer, we might go down to the level of the
materials that the chair consists of, which is a different generic concept. This is something
that we will likely have to address more deeply in the computer vision community. Currently,
most of those models that we are using are also “forward-only”, meaning they are trained
once, and then when deployed, are not able to adapt or learn new things.

The discussion didn’t come to too much of a conclusion, but the audience would probably
agree that learning priors from data will continue to be a hot topic in the next 10 years,
and models and algorithms for specific tasks will be put together to yield a more holistic
reconstruction of human bodies including detailed reconstruction of their faces, hands, and
clothing, up to a level that is currently only achievable by computer graphics with laboursome
manual work.

4.3 Discussion: Representation Group 1
Adam Edward Kortylewski (Johns Hopkins Univ. – Baltimore, US)
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We discussed the properties of good representations and found that this is highly dependent
on the down-stream task. An open research question is whether universal representations
can be learned that suit multiple-down stream tasks (see Multi-task learning literature).
Finally, it is important to be aware of a trade-off in the properties of representations w.r.t
the interpretability of the representation. An interpretable representation is likely not the
most efficient possible. This trade-off should be taken into account in the discussion on
interpretable representations.
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4.4 Discussion: Representation Group 2
Yeara Kozlov (ETH Zürich, CH)
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The representations used in computer graphics and vision influence the available toolset and
the problems the community chooses to address. A good representation would have the
following properties: semantic, compact, complete, has specificity, is differentiable, unique
and allow for high-quality rendering. A representation that might be useful to solve technical
problems might not be able to give insight into the problem of vision and vice-versa. It was
suggested that the community should revisit historical representations such that we can deal
with challenging problems that are not currently addressed.

4.5 Discussion: Levels of Detail for Modeling
Javier Romero (Amazon Research – Barcelona, ES)
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We talked about three topics related to levels of detail. One discussion was focused on
geometry statistics at different levels of detail. Classic 3D Morphable models have done a
good job in fitting and sampling low-frequency details but typically fail at modeling high
frequencies. Adversarial nets, one of the current solutions to increase details in reconstructions,
exploits exactly the differences between real crisp data and smooth models by encouraging the
generator to make them indistinguishable. There are also classic solutions to increase detail
in models, like multilinear wavelet models (https://arxiv.org/pdf/1401.2818.pdf). These
models have shown good fitting power but are not suitable for sampling. A second discussed
topic was the dependency between the level of detail and the task to be solved. Hollywood
movies require a great level of detail to achieve photorealism. However, synthetic data
generated for training deep networks probably have very different requirements. It has been
shown that one of the important aspects of synthetic data for this problem is the blending
between foreground and background (https://arxiv.org/pdf/1710.10710.pdf), but it’s unclear
what is important for more fine-grained tasks like a detailed 3D reconstruction of faces and
bodies. Intuitively, it seems like reconstruction would benefit from material estimation in the
synthetic assets, but maybe not to the level of subsurface scattering or facial microstructures.
Finally, a third topic we discussed is the perceived level of detail by humans. The field focuses
on capturing and reproducing high frequencies in the face with high accuracy, although it
is unclear how much of that detail can be kept in memory by us humans. An individual
would still be recognizable even when rendered with the wrinkles from a different person,
as soon as the wrinkles are consistent with his age and general facial features. This maybe
suggests adversarial functions that try to push generators for consistency rather than precise
high-frequency matching.
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4.6 Discussion: Academia and Industry
Shunsuke Saito (USC – Los Angeles, US)
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In this session, we discussed the current issues and future of relationship between industry
and academia. Throughout the discussion, we all agreed that we should actively seek the
collaboration on the premise that society should support different interests. The main
discussion point is three-fold: 1) openness vs protectionism 2) human resource 3) education.
First, while academia prefers openness to facilitate knowledge creation as community, industry
tends to keep knowledge within a company to keep superiority in the market. Therefore
it is essential to incentivize industry to release their knowledge and data (e.g., making a
challenge/competition on open questions in a conference). Another short-term solution is to
encourage targeted collaboration, where a company provides a specific university or group
with their proprietary data to solve open questions together. Such collaboration can benefit
both academia and industry by bringing another aspect to the problems. Secondly regarding
human resources, it has been increasingly difficult for universities to hire not only competitive
students but also senior researchers due to large gap in terms of monetary rewards. However,
given the fact that internet bubble in early 90s created the exact same situation between
industry and academia, we conclude that we should learn how to handle the situation from
the history rather than finding out a solution from scratch. Lastly, industry has been more
influential on academia by occupying committee members of a conference or creating new
demand in the market, which creates pressure on universities to change the curriculum. To
avoid conflict of interest and encourage diversity in research, the entire research community
may need to take responsibility on educating junior researchers by providing guideline on
this matter including paper review. In conclusion, we view siblings as an ideal form of
relationship between industry and academia, where they can play in harmony but do not
always seek the same interest.

4.7 Discussion: Inverse Rendering
Ayush Tewari (MPI für Informatik – Saarbrücken, DE)
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The goal of inverse rendering is to estimate parameters of a forward rendering model.
Estimating these rendering parameters from a single image is difficult, because of the
ambiguities between different parameters. Priors (for e.g. 3D Morphable Models) of different
objects help in resolving many of these ambiguities. Certain applications like image editing
might not require accurate estimation of different parameters. In that case, we can make
strong assumptions about the world. However, the accurate inverse can be required for
other applications. Differentiable rendering is the key to solve inverse rendering problems.
However, rendering techniques are usually non-differentiable. Occlusions and gradients
around the boundary of the 3D surface lead to non-differentiability of the rendering function.
Rasterization techniques are fast but cannot deal with transparency and complex light effects.
Ray tracing can deal with these phenomena but is typically slower. However, with faster
hardware and better software, differentiable raytracing could be widely used in the near
future.
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