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Preface

This volume contains the extended abstracts selected for presentation at ESA 2019, the
27th European Symposium on Algorithms, held in Munich/Garching, Germany, on 9–11
September 2019, as part of ALGO 2019. The scope of ESA includes original, high-quality,
theoretical and applied research on algorithms and data structures. Since 2002, it has had
two tracks: the Design and Analysis Track (Track A), intended for papers on the design and
mathematical analysis of algorithms, and the Engineering and Applications Track (Track B),
for submissions dealing with real-world applications, engineering, and experimental analysis of
algorithms. Information on past symposia, including locations and proceedings, is maintained
at http://esa-symposium.org.

In response to the call for papers for ESA 2019, 329 papers were submitted, 276 for
Track A and 53 for Track B (these are the counts after the removal of papers with invalid
format and after withdrawals). Paper selection was based on originality, technical quality,
exposition quality, and relevance. Each paper received at least three reviews. The program
committees selected 83 papers for inclusion in the program, 70 from track A and 13 from
track B, yielding an acceptance rate of about 25%.

The European Association for Theoretical Computer Science (EATCS) sponsored a
best paper award and a best student paper award. A submission was eligible for the best
student paper award if all authors were doctoral, master, or bachelor students at the time of
submission. The best student paper award for track A was given to Cornelius Brand for the
paper “Patching Colors with Tensors”. The best paper award for track A was given to Peyman
Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer, Manuel
Penschuck and Nodari Sitchinava for the paper “Fragile Complexity of Comparison-Based
Algorithms”. The best paper award for track B was given to Thomas Bläsius, Tobias Friedrich,
Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck and Christopher Weyand for the
paper “Efficiently Generating Geometric Inhomogeneous and Hyperbolic Random Graphs”.
No best student paper award has been given this year.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and all the external
reviewers who assisted the program committees in the evaluation process. Special thanks go
to the local organizing committee, who helped us with the organization of the conference.
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Abstract
Capacitated k-median is one of the few outstanding optimization problems for which the existence of
a polynomial time constant factor approximation algorithm remains an open problem. In a series of
recent papers algorithms producing solutions violating either the number of facilities or the capacity
by a multiplicative factor were obtained. However, to produce solutions without violations appears
to be hard and potentially requires different algorithmic techniques. Notably, if parameterized by
the number of facilities k, the problem is also W [2] hard, making the existence of an exact FPT
algorithm unlikely. In this work we provide an FPT-time constant factor approximation algorithm
preserving both cardinality and capacity of the facilities. The algorithm runs in time 2O(k log k)nO(1)

and achieves an approximation ratio of 7 + ε.
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1 Introduction

For many years approximation algorithms and FPT algorithms were developed in parallel.
Recently the two paradigms are being combined and provide intriguing discoveries in the
intersection of the two worlds. It is particularly interesting in the case of problems for which
we fail to make progress on improving the approximation ratios in polynomial time. An
excellent example of such a combination is the FPT approximation algorithm for the k-Cut
problem by Gupta et al. [17].
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1:2 Constant-Factor FPT Approximation for Capacitated k-Median

In this work we focus on the Capacitated k-Median problem, whose approximability
attracted attention of many researchers. Unlike in the case of the k-Cut problem, it is still
not clear what approximation is possible for Capacitated k-Median in polynomial time.
As shall be discussed in more detail in the following section, the best true approximation
known is O(log k) based on tree embedding of the underlying metric. The other algorithms
either violate the bound on the number of facilities or the capacity constraints.

Our main result is a (7 + ε)-approximation algorithm for the Capacitated k-Median
problem running in FPT(k) time, that exploits techniques from both – approximation and FPT
– realms. The algorithm builds on the idea of clustering the clients into ` = O(k · (logn)/ε)
locations, which is similar to the approach from the O(log k)-approximation algorithm, where
one creates O (k) clusters. This is followed by guessing the distribution of the k facilities
inside these ` clusters. Having such a structure revealed, we simplify the instance further by
rounding particular distances and reduce the problem to linear programming over a totally
unimodular matrix.

1.1 Problems overview and previous work
In the Capacitated k-Median problem (CKM), we are given a set F of facilities, each
facility f with a capacity uf ∈ Z>0, a set C of clients, a metric d over F ∪ C and an upper
bound k on the number of facilities we can open. A solution to the CKM problem is a set
S ⊆ F of at most k open facilities and a connection assignment φ : C → S of clients to open
facilities such that

∣∣φ−1(f)
∣∣ 6 uf for every facility f ∈ S. The goal of the problem is to find a

solution that minimizes the connection cost
∑
c∈C d(c, φ(c)). In the case when all the facilities

can serve at most u clients, for some integer u, we obtain the Uniform CKM problem.

Uncapacitated k-median. The standard k-median problem, where there is no restriction on
the number of clients served by a facility, can be approximated up to a constant factor [9, 2].
The current best is the (2.675 + ε)-approximation algorithm of Byrka et al. [4], which is a
result of optimizing a part of the algorithm by Li and Svensson [23].

Approximability of CKM. As already stressed, Capacitated k-Median is among few
remaining fundamental optimization problems for which it is not clear if there exist polynomial
time constant factor approximation algorithms. All the known algorithms violate either
the number of facilities or the capacities. In particular, already the algorithm of Charikar
et al. [9] gave 16-approximate solution for the uniform capacitated k-median violating the
capacities by a factor of 3. Then Chuzhoy and Rabani [10] considered general capacities and
gave a 50-approximation algorithm violating capacities by a factor of 40.

The difficulty appears to be related to the unbounded integrality gap of the standard
LP relaxation. To obtain integral solutions that are bounded with respect to the fractional
solution to the standard LP, one has to either allow the integral solution to open twice
as many facilities or to violate the capacities by a factor of two. LP-rounding algorithms
essentially matching these limits have been obtained [1, 3].

Subsequently, Li broke this integrality gap barrier by giving a constant factor algorithm
for the capacitated k-median by opening (1 + ε) · k facilities [21, 22]. Afterwards analogous
results, but violating the capacities by a factor of (1 + ε) were also obtained [5, 14].

The algorithms with (1 + ε) violations are all based on strong LP relaxations containing
additional constraints for subsets of facilities. Notably, it is not clear if these relaxations
can be solved exactly in polynomial time, still they suffice to construct an approximation
algorithm via the “round-or-separate” technique that iteratively adds consistency constraints
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for selected subsets. Although while spectacularly breaking the standard LP integrality
bound, these techniques appear insufficient to yield a proper approximation algorithm that
does not violate constraints.

The only true approximation for CKM known is a folklore O (log k) approximation
algorithm that can be obtained via the metric tree embedding with expected logarithmic
distortion [15]. To the best of our knowledge, this result has not been explicitly published,
but it can be obtained similarly to the O (log k)-approximation for Uncapacitated KM by
Charikar [7]. For the sake of completeness and since it follows easily from our framework, we
give its proof in Section 3 without claiming credit for it. This O (log k) barrier is in contrast
with other capacitated clustering problems such as facility location and k-center, for which
constant factor approximation algorithms are known [19, 12].

After our work was announced, Xu et al. [27] proposed a similar algorithm for Euclidean
Capacitated k-Means, i.e., a constant factor approximation running in time FPT(k). Both
our and their approximation ratios have been very recently improved by Cohen-Addad and
Li [11], who obtained (3 + ε) for Capacitated k-median and (9 + ε) for Capacitated
k-means in general metric spaces. They have also provided a deeper insight into the problems
basing on the framework of coresets.

1.2 Parameterized Complexity
A parameterized problem instance is created by associating an input instance with an integer
parameter k. We say that a problem is fixed parameter tractable (FPT) if every instance
(I, k) of the problem can be solved in time f(k) · |I|O(1), where f is an arbitrary computable
function of k.

We say that a problem is FPT if it is possible to give an algorithm that solves it in running
time of the required form. Such an algorithm we shall call a parameterized algorithm.

To show that a problem is unlikely to be FPT, we use parameterized reductions analogous
to those employed in the classical complexity theory. Here, the concept of W-hardness
replaces the one of NP-hardness, and we need not only construct an equivalent instance in
FPT time, but also ensure that the size of the parameter in the new instance depends only
on the size of the parameter in the original instance. In contrast to the NP-hardness theory,
there is a hierarchy of classes FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . and these containments
are believed to be strict. If there exists a parameterized reduction transforming a problem
known to be W[t]-hard for t > 0 to another problem Π, then the problem Π is W[t]-hard
as well. This provides an argument that Π is unlikely to admit an algorithm with running
time f(k) · |I|O(1).

We begin with an argument that allowing FPT time for (even uncapacitated) k-Median
should not help in finding the optimal solution and we still need to settle for approximation.

B Fact 1. The Uncapacitated k-Median problem is W[2]-hard when parameterized by k,
even on metrics induced by unweighted graphs.

Proof. Consider an instance (G, k) of the Dominating Set problem, which is W[2]-hard
when parameterized by the solution size k. Graph G induces a metric such that the distance
between two adjacent vertices equals one and otherwise the distance between vertices is the
length of the shortest path. A dominating set of size at most k exists in graph G if and only
if we can find a vertex set S of size k, such that all the other vertices are at distance 1 from
S. This is equivalent to the solution to Uncapacitated k-Median on the metric induced
by G being of size exactly |V (G)| − k. C
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Parameterized Approximation

In recent years new research directions emerged in the intersection of the theory of ap-
proximation algorithms and the FPT theory. It turned out that for some problems that
are intractable in the exact sense, parameterization still comes in useful when we want to
reduce the approximation ratio. Some examples are (2− ε)-approximation for k-Cut [17]
or f(F)-approximation for Planar-F Deletion [16] for some implicit function f . The
dependency on F was later improved, leading to O(log k)-approximations for, e.g., k-Vertex
Separator[20] and k-Treewidth Deletion [18].

On the other hand some problems parameterized by the solution size have been proven
resistant to such improvements. Chalermsook et al. [6] observed that under the assumption
of Gap-ETH there can be no parameterized approximation with ratio o(k) for k-Clique
and none with ratio f(k) for k-Dominating Set (for any function f). Subsequently
Gap-ETH has been replaced with a better established hardness assumption FPT 6= W[1] for
k-Dominating Set [25].

1.3 Organization of the paper

Our main result is stated in Theorem 16 (Section 4.3), where we present a (7 + ε)-ap-
proximation algorithm for the Non-Uniform CKM problem running in FPT(k) time.

To obtain this result we need two ingredients. The first one is a metric embedding that
reduces the problem to a simpler instance, called `-centered, which is described in Section 2.
This reduction provides a richer structure, which can be exploited to obtain the folklore
O (log k)-approximation via tree embeddings [15]. As already mentioned, similar approach
was presented by Charikar et al. [7] in their algorithm for the uncapacitated setting. For the
sake of completeness, we present this result in Appendix 3.

The second ingredient is a parameterized algorithm for the `-centered instances. Since
it is simpler in the uniform setting, we first solve it in Section 4.2 as a warm up before the
main result. This way the new ideas are being revealed gradually to the reader.

2 `-Centered instances

Suppose we work with a graph on nodes F ∪ C, on which we are given a metric d. In our
considerations the set F ∪ C will be fixed throughout, however we will be modifying the
metric over it. Consider an algorithm ALG which produces a solution ALG (d) for a metric
d. This solution can be seen as a mapping which we explicitly denote by φALG(d). Its cost in
the metric d′ equals

∑
c∈C d

′ (c, φALG(d)) which we shall briefly denote by cost
(
φALG(d), d′

)
.

The second argument is useful, when an algorithm ALG produces a solution (mapping)
ALG (d) with respect to metric d, but later on we may be interested in its cost over a different
metric. Also, let OPT (d) denote the optimum solution for the CKM problem on metric d.

In order to solve CKM, we shall invoke an algorithm for Uncapacitated KM as a
subroutine. Let ALG`unc (d) be a relaxed solution that opens up to ` > k facilities and can
break the capacity constraints. It induces a mapping which, for consistency, we shall denote
by φALG`

unc(d). Observe that in this mapping every client can be connected to the closest
open facility. Since Uncapacitated KM admits constant approximation algorithms, we can
work with solutions satisfying: cost

(
φALG

`
unc(d), d

)
= O

(
cost

(
φOPT (d), d

))
. The larger ` we

allow in the relaxation, the smaller constant we will be able to achieve in the relation above.
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Figure 1 An `-centered instance. In the upper layer there is a set S of ` vertices connected as a
clique. The rest of vertices are divided into separate clusters. Vertices in a single cluster are only
connected to their center in the set S.

Using such an algorithm for Uncapacitated KM as a subroutine, we can find a
simpler metric to work with. First we build a graph which will induce the metric. Let
F (ALG`unc (d)) be the set of facilities opened by ALG`unc (d). For each such a facility f we
create a copy vertex sf , which is at distance 0 from f . We denote the set of copies by S,
i.e., S =

{
sf
∣∣f ∈ F (ALG`unc (d))

}
. Given that we demand the distance from f to sf to be

0, we can naturally extend the metric d to the set C ∪ F ∪ S. To distinguish facilities from
F (ALG`unc (d)) from their copies S, we shall call each copy s ∈ S a center.

We build a complete graph on S and preserve the metric d therein. For every node v 6∈ S,
be it either a client from C or a facility from F , we place an edge to the closest (according to
the extended d) center sv ∈ S and set its length to d (v, sv). We call such a graph `-centered
and refer to its induced metric as d`.

I Definition 2. An instance of CKM is called `-centered if the metric, which we shall
denote by d`, is induced by a weighted graph G(F ∪ C ∪ S,E) such that
1. |S| 6 `,
2.
(
S
2
)
⊆ E, i.e., S forms a clique,

3. for every v ∈ C ∪ F there is only one edge incident to v in E, and it connects v to some
sv ∈ S.

For a center s ∈ S we shall say that all nodes from F ∪ C that are connected to s form
a cluster of s. If we consider only nodes from F , then we talk about an f -cluster of s,
denoted F (s).

The idea of preprocessing that simplifies the metric by recognizing a small number of
hubs resembles the notion of α-preserving metrics, that have been used as a tool to obtain
coresets for the related problem Balanced k-Median [13].

In the following lemma we relate the cost of embedding the optimum solution OPT (d)
from a metric d to d`.

I Lemma 3 (Embedding d into `-centered metric d`). Let ALG`unc (d) be a solution for
the Uncapacitated KM problem on metric d from which we construct the `-centered
instance. Optimal solution OPT (d) can be embedded into an `-centered metric d` with the
cost relation being

cost
(
φOPT (d), d

)
6 cost

(
φOPT (d), d`

)
6 3 · cost

(
φOPT (d), d

)
+ 4 · cost

(
φALG

`
unc(d), d

)
.
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sc

sfc

fc
c

Figure 2 Situation in Lemma 3. In the optimum solution to the CKM instance, client c is
connected to the facility fc. In the `-centered instance c resides in a cell, where sc is a center. The
center of fc is sfc .

Proof. Let c be a client connected to facility fc in the optimal solution OPT (d). Let sc
be the center closest to c within S (the `-center), and let sfc be the center closest to fc.
First let us note that d` (c, fc) = d (c, sc) + d

(
sc, sfc

)
+ d

(
sfc , fc

)
. Next we bound the terms

d
(
fc, s

fc
)
and d

(
sc, sfc

)
separately.

B Fact 4. For every client c and its facility fc from OPT we have d
(
fc, s

fc
)
6 d (fc, c) +

d (c, sc).

Proof. Since sfc is the closest `-center to the facility fc, we have that d
(
fc, s

fc
)
6 d (fc, sc).

At the same time, from the triangle inequality it follows that d (fc, sc) 6 d (fc, c) + d (c, sc).
C

B Fact 5. For each c we have d
(
sc, sfc

)
6 2 (d (fc, c) + d (c, sc)).

Proof. From the triangle inequality we know that

d
(
sc, sfc

)
6 d (sc, c) + d (c, fc) + d

(
fc, s

fc
)
.

From Fact 4 we also know that d
(
fc, s

fc
)
6 d (fc, c) + d (c, sc), and combining the two

inequalities we get d
(
sc, sfc

)
6 d (sc, c) + d (c, fc) + d

(
fc, s

fc
)
6 2 (d (fc, c) + d (c, sc)). C

These two facts imply

d` (c, fc) = d (c, sc) + d
(
sc, sfc

)
+ d

(
sfc , fc

)
6 d (c, sc) + d

(
sc, sfc

)
+ (d (fc, c) + d (c, sc)) (from Fact 4)

6 d (c, sc) + 2 (d (fc, c) + d (c, sc)) + (d (fc, c) + d (c, sc)) (from Fact 5)
= 3 · d (fc, c) + 4 · d (c, sc) ,

which implies the second inequality from the statement of Lemma 3. The first one directly
comes from the triangle inequality d (c, fc) 6 d (c, sc) + d

(
sc, sfc

)
+ d

(
sfc , fc

)
= d` (c, fc) ,

completing the whole proof. J

The next lemma is quite simple. Its proof follows from the fact that metric d` dominates
the metric d, i.e., d` (u, v) > d (u, v) for all pairs of vertices u, v ∈ C ∪ F .

I Lemma 6 (Going back from `-centered metric d` to d). Any solution for the `-centered
metric d` can be embedded back into d without any loss:

cost
(
φALG(d`), d`

)
> cost

(
φALG(d`), d

)
.



M. Adamczyk, J. Byrka, J. Marcinkowski, S.M. Meesum, and M. Włodarczyk 1:7

Blending together Lemmas 3 and 6 we can state the following lemma about reducing the
CKM problem to `-centered instances.

I Lemma 7. Suppose we are given a solution ALG`unc (d) for the Uncapacitated KM
problem on metric d which opens ` centers, but β-approximates the optimum solution
OPT kunc (d) for Uncapacitated KM problem with k centers, i.e., cost

(
ALG`unc (d) , d

)
6

β · cost
(
OPT kunc (d) , d

)
. Suppose we are given an α-approximation algorithm for the CKM

problem on `-centered instances. If so, then we can construct an α · (3 + 4β)-approximation
algorithm for CKM on general instances.

Proof. Suppose that we have an α-approximation solution for the `-centered instance with
metric d`, i.e., ALG(d`) such that

cost
(
φALG(d`), d`

)
6 α · cost

(
φOPT (d`), d`

)
.

Since OPT (d) is some solution for the `-centered instance with metric d` we have

cost
(
φALG(d`), d`

)
6 α · cost

(
φOPT (d`), d`

)
6 α · cost

(
φOPT (d), d`

)
.

And from Lemma 3 we have that

cost
(
φALG(d`), d`

)
6 α · cost

(
φOPT (d`), d`

)
6 α · cost

(
φOPT (d), d`

)
6 α

(
3 · cost

(
φOPT (d), d

)
+ 4 · cost

(
φALG

`
unc(d), d

))
.

Since solution ALG`unc (d) β-approximates the optimal solution OPT kunc (d) for Uncapaci-
tated KM with k centers on metric d, we have that

cost
(
φALG

`
unc(d), d

)
6 β · cost

(
φOPT

k
unc(d), d

)
6 β · cost

(
φOPT (d), d

)
.

The second inequality cost
(
φOPT

k
unc(d), d

)
6 cost

(
φOPT (d), d

)
follows from an obvious fact

that uncapacitated version of the problem is easier than the capacitated. Hence

cost
(
φALG(d`), d`

)
6 α

(
3 · cost

(
φOPT (d), d

)
+ 4 · cost

(
φALG

`
unc(d), d

))
6 α

(
3 · cost

(
φOPT (d), d

)
+ 4β · cost

(
φOPT (d), d

))
6 α (3 + 4β) · cost

(
φOPT (d), d

)
.

Since without any loss we can embed the solution ALG(d`) for the `-centered metric d` into
the initial metric d (Lemma 6) we obtain an α · (3 + 4β)-approximation algorithm. The
claim follows. J

3 O (log k)-approximation in polynomial time

In this section we present a folklore polynomial-time O (log k)-approximation algorithm for
CKM. Since constant-factor approximation algorithms for Uncapacitated KM exist [9],
it is a clear consequence of Lemma 7 with β being constant that it is sufficient for us to
construct an O (log k)-approximation algorithm for the k-centered instances.

A standard tool to provide such a guarantee is the Probabilistic Tree Embedding by [15].
This makes our algorithm a randomized one, but if needed, it is possible to derandomize it
using the ideas from [8].
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I Definition 8. A set of metric spaces T together with a probability distribution πT over T
probabilistically α-approximates the metric space (X, d) if
1. Every metric τ ∈ T dominates (X, d), that is, d(x, y) 6 τ(x, y) ∀x, y ∈ X.
2. For every pair of points x, y ∈ X its expected distance is not expanded by more then α,

i.e.,

Eτ∼πT [τ(x, y)] 6 α · d(x, y).

It is a well-known fact, that any metric (X, d), can be probabilistically O(log |X|)-approx-
imated by a distribution of tree metrics, such that the points in X are the leaves in the
resulting tree [15].

As described in Definition 2, our k-centered metric dk is induced by a graph composed of
two layers – the set S of k vertices connected in a clique, and the rest of vertices, F ∪ C,
each connected to only one vertex in S. Let T be a random tree embedding of the set S
(with a metric function dT ). A modified instance GT of our problem is created by replacing
the clique S with its tree approximation T .

I Lemma 9. An optimum solution for CKM on the instance GT is in expectation at most
O (log k) times larger than the optimum for the metric dk.

Proof. OPT (dk) denotes the optimum mapping of clients to k facilities in the k-centered
metric dk. Consider client c and facility f = φOPT (dk) (c). Let now sc be the center of c and
sf the center of f . The cost of connecting client c to f amounts to

dk (c, f) = dk (c, sc) + dk
(
sc, sf

)
+ dk

(
sf , f

)
in the metric dk.

The guarantee of tree embeddings gives us an upper bound on a cost of applying the
same mapping in the instance GT ,

E [dT (c, f)] = dk (c, sc) + E
[
dT
(
sc, sf

)]
+ dk

(
sf , f

)
6 dk (c, sc) +O (log k) · dk

(
sc, sf

)
+ dk

(
sf , f

)
6 O (log k) · dk (c, f) .

Which means that E
[
cost

(
φOPT (dk), dT

)]
6 O (log k) · cost

(
φOPT (dk), dGk

)
. Moreover,

OPT (dk) might not be the optimal solution for the metric dT , yet its optimal solution can
only have smaller cost:

cost
(
φOPT (dT ), dT

)
6 cost

(
φOPT (dk), dT

)
J

I Theorem 10. The CKM problem admits an O(log k)-approximation algorithm with poly-
nomial running time.

Proof. After applying the probabilistic tree embedding to the graph inducing dk – as
presented in Lemma 9 – we obtain a tree instance GT . It should come as no surprise that the
problem is polynomially solvable on trees and we explain how to find the optimum solution
on GT in Lemma 12. The assignment φOPT (dT ), which yields the minimum cost on the tree
GT , can be now used to match clients to facilities in the original instance. It does not incur
any additional cost, as

cost
(
φOPT (dT ), dT

)
> cost

(
φOPT (dT ), dk

)
> cost

(
φOPT (dT ), d

)
from the property (1) of Definition 8 and Lemma 6. Combining this with a bound on
E
[
cost

(
φOPT (dk), dT

)]
from Lemma 9 finishes the proof. J
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3.1 CKM on a tree
The second ingredient of the O(log k)-approximation for CKM is an exact algorithm solving
the problem on trees. We will now describe a simple, polynomial-time procedure for this
special case. In our algorithm we can assume, that all the clients and facilities reside in
leaves, but the principle is easy to extend to the general problem on trees. We first turn the
tree into a complete binary tree by adding dummy vertices and edges of length 0 (which may
double its size).

Suppose we have a subtree t of the tree instance, hanging on an edge et. Once we
have decided, which facilities to open inside the subtree t, we know if their total capacity
is sufficient to serve all the clients inside t. If not, then we need to route some clients’
connections to the facilities outside through the edge et. However, if the facilities we have
opened in t have enough total capacity to serve some b clients from the outside, we will
connect them through the edge et.

I Definition 11. D(t, k′, b), for subtree t, number k′ ∈ {0, . . . , k} of facilities and balance
b ∈ {−n, . . . , n}, is the minimum cost of opening exactly k′ facilities in t and routing exactly
b clients down through et (b < 0 would mean that we are routing −b clients up). The cost of
routing is counted to the top endpoint of et.

I Lemma 12. The CKM problem on trees admits a polynomial time exact algorithm.

Proof. Computing D(t, k′, b) on t with two children t1 and t2 amounts to finding k′1, k′2, b1
and b2 that minimize

D(t1, k′1, b1) +D(t2, k′2, b2),

such that b1 + b2 = b and k′1 + k′2 = k′. They can be trivially found in O (k · n) time for a
single pair 〈k′, b〉. Once k′1, k′2, b1 and b2 are found, we set

D(t, k′, b) = D(t1, k′1, b1) +D(t2, k′2, b2) + d(et) · |b|,

where d(e) is the length of the edge in our tree. For a leaf l, D(l, k′, b) is defined naturally,
depending on whether the leaf holds a client or a facility. Note, that for a leaf with a facility,
D(l, 1, b) is finite also for b smaller than the capacity of the facility, as the optimal solution
might not use it entirely. Finally, the optimum solution to the CKM problem on the entire
tree T is equal to mink′∈{1,...,k}D(T, k′, 0). J

4 Constant factor approximation

In this section we present the main result of the paper which is a (7 + ε)-approximation
algorithm for the Non-Uniform CKM problem. We precede it with a (7 + ε)-approximation
algorithm for the Uniform CKM problem to introduce the ideas gradually. Both algorithms
enumerate configurations of open facilities’ locations, and as a subroutine we need to use an
algorithm which, for a fixed configuration of k open facilities, finds the optimal assignment
of clients to facilities. This subroutine is presented in the following subsection.

4.1 Optimal mapping subroutine
We are given an `-centered metric instance (F ∪C ∪S, d`) of the k-median problem. Suppose
that we have already decided to open a fixed subset F open ⊆ F of the facilities assume
|F open| 6 k. and we look for a mapping φ : C → F open. In the uncapacitated case we
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can just assign each client to the closest facility in F open. It turns out that even in the
capacitated setting we can find the mapping φ optimally in polynomial time for a given
F open. We state the problem of finding the optimal φ as an integer program:

minimize
∑
c∈C

∑
f∈F open

d`(c, f) · xc,f (MAPPING-IP)

subject to
∑

f∈F open

xc,f = 1 ∀c ∈ C,

∑
c∈C

xc,f 6 uf ∀f ∈ F open,

xc,f ∈ {0, 1}.

In the above program xc,f = 1 represents the fact that φ(c) = f .

I Lemma 13. We can find an optimal solution to the (MAPPING-IP) in polynomial time.

Proof. The proof follows from the fact that the relaxation of the above integer program –
a program which differs from (MAPPING-IP) only with the xc,f > 0 constraints instead
of xc,f ∈ {0, 1} – has an optimal solution which is integral. To see this, observe that the
linear program is a formulation of the transportation problem. For such a linear program,
the constraint matrix is totally unimodular, which implies the integrality of an extremal
solution. See [26] for a reference. J

4.2 Uniform case
We begin with a parameterized algorithm for the uniform case. It is simpler than the general
case, as knowing the number of facilities to open in f -cluster F (s) allows us to choose
them greedily.

I Lemma 14. Uniform CKM can be solved exactly in time `k ·nO(1) on `-centered instances.

Proof. Let (F ∪ C ∪ S, d`) be the `-centered metric. Note that the f -clusters partition the
whole set of facilities, i.e., ∪s∈SF (s) = F . Let OPT (d`) be an optimal solution for the
CKM problem on d`. Every facility f ∈ F belongs to exactly one f -cluster F (s). Hence, the
f -clusters partition the set of k facilities opened by OPT (d`). Let us look at all the facilities
from a particular f -cluster F (s) opened by OPT (d`), and suppose that OPT (d`) opens ks
of facilities in F (s). Since we consider a uniform capacity case, we can assume without loss
that these ks open facilities from F (s) are exactly the ones that are closest to s.

Therefore, if we know what is the number of facilities that OPT (d`) opens in each
f -cluster, then we would know what the exact set of open facilities in OPT (d`) is due to
the greediness in each f -cluster. To find out this allocation we can simply enumerate over all
possibilities. We just need to scan over all configurations (ks)s∈S where

∑
s ks = k. Since

there are k facilities to open, and each of them can belong to one of ` f -clusters F (s), there
are at most `k possible configurations. Of course some configurations may not be feasible
since it may happen that ks > |F (s)|, but these can be simply ignored.

For each configuration (ks)s∈S we need to find the optimal mapping of clients to the set
of open facilities that preserves their capacities. Let F

(
(ks)s∈S

)
be the set of open facilities

induced by configuration (ks)s∈S , that is, where we greedily open ks facilities in f -cluster
F (s). Given F

(
(ks)s∈S

)
, to find the optimal mapping we use the polynomial time exact

algorithm from Lemma 13 with F open = F
(
(ks)s∈S

)
.

Once we know the optimal assignment for each configuration, we can simply take the
cheapest one, knowing that it is the optimal one. This proves the lemma. J
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This lemma suffices to obtain a (7 + ε)-approximation for Uniform CKM with a
reasoning that we will present in Theorem 16 in full generality.

4.3 Non-uniform case
I Lemma 15. Non-Uniform CKM can be solved with approximation ratio (1 + ε) in time(
O
(
` · 1

ε ln n
ε

))k
nO(1) on `-centered instances.

Proof. We begin with guessing the largest distance in d` between a client and a facility
that would appear in the optimal solution – let us denote this quantity as D. There are at
most O(n2) choices for D, and from now we assume that it is guessed correctly. Note that
D 6 cost (OPT (d`), d`) and D > d(f, sf ) for all facilities opened by OPT (d`).

Consider the set of facilities F (s) in the cluster of a center s. We can remove all facilities f
such that d(s, f) > D, because they cannot be a part of the optimal solution. Let us partition
remaining facilities from F (s) into buckets F0 (s) , F1 (s) , . . . , Fd log1+ε

n
ε e (s), such that

Fi (s) =


{
f ∈ F (s)

∣∣∣d (s, f) ∈
[
(1 + ε)−(i+1)

D, (1 + ε)−iD
]}

for i <
⌈

log1+ε
n
ε

⌉
{
f ∈ F (s)

∣∣∣d (s, f) ∈
[
0, (1 + ε)−d log1+ε

n
ε eD

]}
for i =

⌈
log1+ε

n
ε

⌉
The number of buckets equals log1+ε

n
ε = 1

ln(1+ε) ln n
ε = O

( 1
ε ln n

ε

)
. We modify the

metric again by setting d′`(s, f) = (1 + ε)−iD for f ∈ Fi (s). The distances within S remain
untouched. Observe that the distances can only increase.

We shall guess the structure of the solution OPT (d′`) similarly as in Lemma 14. For each
of the k facilities, we can choose its location as follows: first we choose one of the `-centers
s (` choices), and then we choose one of the Fi (s) partitions (O

( 1
ε ln n

ε

)
choices). Let us

denote the number of facilities in a particular partition Fi (s) as ks,i. We can assume that
ks,i 6 |Fi (s)| because otherwise we know that the guess was incorrect. Since d′`(s, f) is the
same for all f ∈ Fi (s), we can assume the optimal solution opens ks,i facilities with the
biggest capacities.

Once we establish the set of facilities to open, we can find the optimal assignment in
metric d′` using the polynomial time exact subroutine from Lemma 13.

The total time complexity of solving the problem exactly over d′` equals the running time
of the subroutine times the number of possible configurations, which is

(
O
(
` · 1

ε ln n
ε

))k
nO(1).

It remains to prove that the algorithm yields a proper approximation. We will show that
for any solution SOL it holds that

cost
(
φSOL, d`

)
6 cost

(
φSOL, d′`

)
6 (1 + ε) · cost

(
φSOL, d`

)
+ ε ·D. (1)

By substituting SOL = OPT (d`) we learn that there exists a solution over metric d′` of
cost at most (1 + ε) · cost

(
φOPT (d`), d`

)
+ ε ·D 6 (1 + 2ε) · cost

(
φOPT (d`), d`

)
for correctly

guessed D. Therefore the cost of the solution found by our algorithm cannot be larger.
Finally we substitute this solution as SOL to see that its cost cannot increase when returning
to metric d`. The claim will follow by adjusting ε.

The first inequality in (1) is straightforward because d′` dominates d`. Consider now
a pair (c, f = φSOL(c)), where f ∈ Fi (s). If i <

⌈
log1+ε

n
ε

⌉
, then d`(c, f) 6 d′`(c, f) 6

(1 + ε) · d`(c, f), so the cost of connecting such pairs increases at most by a multiplicative
factor (1 + ε) during the metric switch. If i =

⌈
log1+ε

n
ε

⌉
, then d′`(s, f) = εD

n . Since there
are at most n such pairs, the total additive cost increase is bounded by ε ·D. J

ESA 2019



1:12 Constant-Factor FPT Approximation for Capacitated k-Median

I Theorem 16. Non-Uniform CKM can be solved with approximation ratio (7 + ε) in
time (k/ε)O(k)nO(1).

Proof. From Lemma 15 we know that we can get a (1 + ε)-approximation algorithm for
the Non-Uniform CKM problem on `-centered instances in time

(
O
(
` · 1

ε ln n
ε

))k
nO(1).

We shall use the (1 + ε)-approximation for Uncapacitated KM by Lin and Vitter [24],
that opens at most ` =

(
1 + 1

ε

)
k · (lnn+ 1) facilities. By plugging this subroutine to find

`-centers into the Lemma 7 together with Lemma 15, we obtain a (7 + ε)-approximation
algorithm for the general Non-Uniform CKM problem with running time

O

(((
1 + 1

ε

)
k · (lnn+ 1) · 1

ε
ln n
ε

)k)
nO(1) = O

((
1

εO(1) k ln2 n

)k)
nO(1).

Finally, we use standard arguments to show that (lnn)2k 6 max(n, kO(k)). Consider two
cases. If lnn

2 ln lnn 6 k, then by inverting we know that lnn = O (k ln k), and so (lnn)2k = kO(k).
Suppose now that lnn

2 ln lnn > k. In this case

(lnn)2k
< (lnn)

ln n
ln ln n = eln lnn· ln n

ln ln n = n. J

5 Conclusions and open problems

We have presented a (7 + ε)-approximation algorithm for the CKM problem, which consists
of three building blocks: approximation for Uncapacitated KM, metric embedding into a
simpler structure, and a parameterized algorithm working on `-centered instances.

Whereas the first and the last ingredient are almost lossless from the approximation point
of view, the embedding procedure seems to be the main bottleneck for obtaining a better
approximation guarantee. One can imagine that a different technique would allow to obtain
a (1 + ε)-approximation in FPT time. We believe that finding such an algorithm or ruling
out its existence is an interesting research direction.

Another avenue for improvement is processing k-centered instances in time 2O(k)nO(1).
Such a routine would reduce the running time of the whole algorithm to single exponential.
In order to do so, one could replace the subroutine for Uncapacitated KM by Lin and
Vitter [24] with a standard approximation algorithm that opens exactly k facilities, what
would moderately increase the constant in approximation ratio.

Finally, whereas we have used the framework of `-centered instances to devise an FPT
approximation, it might be possible to explore the structure of special instances further and
find a polynomial time approximation algorithm. This could yield an improvement over the
O(log k)-approximation ratio for CKM, which remains a major open problem.
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1 Introduction

Comparison-based algorithms is a classic and fundamental research area in computer science.
Problems studied include minimum, median, sorting, searching, dictionaries, and priority
queues, to name a few, and by now a huge body of work exists. The cost measure analyzed
is almost always the total number of comparisons needed to solve the problem, either in
the worst case or the expected case. Surprisingly, very little work has taken the viewpoint
of the individual elements, asking the question: how many comparisons must each element
be subjected to?

This question not only seems natural and theoretically fundamental, but is also practically
well motivated: in many real world situations, comparisons involve some amount of destructive
impact on the elements being compared, hence, keeping the maximum number of comparisons
for each individual element low can be important. One example of such a situation is ranking
of any type of consumable objects (wine, beer, food, produce), where each comparison reduces
the available amount of the objects compared. Here, classical algorithms like QuickSort,
which takes a single object and partitions the whole set with it, may use up this pivot element
long before the algorithm completes. Another example is sports, where each comparison
constitutes a match and takes a physical toll on the athletes involved. If a comparison scheme
subjects one contestant to many more matches than others, both fairness to contestants
and quality of result are impacted. The selection process could even contradict its own
purpose – what is the use of finding a national boxing champion to represent a country at
the Olympics if the person is injured in the process? Notice that in both examples above,
quality of elements is difficult to measure objectively by a numerical value, hence one has to
resort to relative ranking operations between opponents, i.e., comparisons. The detrimental
impact of comparisons may also be of less directly physical nature, for instance if it involves
a privacy risk for the elements compared, or if bias in the comparison process grows each
time the same element is used.

I Definition 1. We say that a comparison-based algorithm A has fragile complexity f(n) if
each individual input element participates in at most f(n) comparisons. We also say that A
has work w(n) if it performs at most w(n) comparisons in total. We say that a particular
element e has fragile complexity fe(n) in A if e participates in at most fe(n) comparisons.

In this paper, we initiate the study of algorithms’ fragile complexity – comparison-based
complexity from the viewpoint of the individual elements – and present a number of upper
and lower bounds on the fragile complexity for fundamental problems.

https://arxiv.org/abs/1901.02857
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1.1 Previous work
One body of work relevant to what we study here is the study of sorting networks, propelled
by the 1968 paper of Batcher [6]. In sorting networks, and more generally comparator
networks, the notions of depth and size correspond to fragile complexity and standard worst
case complexity,1 respectively, since a network with depth f(n) and size w(n) easily can be
converted into a comparison-based algorithm with fragile complexity f(n) and work w(n).

Batcher gave sorting networks with O(log2 n) depth and O(n log2 n) size, based on clever
variants of the MergeSort paradigm. A number of later constructions achieve the same
bounds [10, 15, 16, 19], and for a long time it was an open question whether better results
were possible. In the seminal result in 1983, Ajtai, Komlós, and Szemerédi [2, 3] answered
this in the affirmative by constructing a sorting network of O(logn) depth and O(n logn)
size. This construction is quite complex and involves expander graphs [21, 22], which can be
viewed as objects encoding pseudorandomness, and which have many powerful applications
in computer science and mathematics. The size of the constant factors in the asymptotic
complexity of the AKS sorting network prevents it from being practical in any sense. It
was later modified by others [8, 12, 17, 20], but finding a simple, optimal sorting network,
in particular one not based on expander graphs, remains an open problem. Comparator
networks for other problems, such as selection and heap construction have also been studied
[5, 7, 14, 18, 23]. In all these problems the size of the network is super-linear.

As comparator networks of depth f(n) and size w(n) lead to comparison-based algorithms
with f(n) fragile complexity and w(n) work, a natural question is, whether the two models
are equivalent, or if there are problems for which comparison-based algorithms can achieve
either asymptotically lower f(n), or asymptotically lower w(n) for the same f(n).

One could also ask about the relationship between parallelism and fragile complexity.
We note that parallel time in standard parallel models generally does not seem to capture
fragile complexity. For example, even in the most restrictive exclusive read and exclusive
write (EREW) PRAM model it is possible to create n copies of an element e in O(logn) time
and, thus, compare e to all the other input elements in O(logn) time, resulting in O(logn)
parallel time but Ω(n) fragile complexity. Consequently, it is not clear whether Richard
Cole’s celebrated parallel merge sort algorithm [9] yields a comparison-based algorithm with
low fragile complexity as it copies some elements.

1.2 Our contribution
In this paper we present algorithms and lower bounds for a number of classical problems,
summarized in Table 1. In particular, we study finding the Minimum (Section 2), the
Selection problem (Section 3), and Sorting (Section 4).

Minimum. The case of the deterministic algorithms is clear: using an adversary lower bound,
we show that the minimum element needs to suffer Ω(logn) comparisons and a tournament
tree trivially achieves this bound (Subsection 2.1). The randomized case, however, is much
more interesting. We obtain a simple algorithm where the probability of the minimum element
suffering k comparisons is doubly exponentially low in k, roughly 1/22k (see Subsection 2.2).
As a result, the Θ(logn) deterministic fragile complexity can be lowered to O(1) expected or
even O(log logn) with high probability. We also show this latter high probability case is lower

1 For clarity, in the rest of the paper we call standard worst case complexity work.
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Table 1 Summary of presented results. Notation: f(n) means fragile complexity; w(n) means
work; 〈fm(n), frem(n)〉 means fragile complexity for the selected element (minimum/median) and
for the remaining elements, respectively – except for lower bounds, where it means 〈expected for the
selected, limit for remaining〉; † means holds in expectation; ‡ means holds with high probability
(1− 1/n). ε > 0 is an arbitrary constant.

Problem Upper Lower
f(n) w(n) f(n)

Minimum

Determ. O(logn) [T 2] O(n) fmin = Ω(logn) [T 2](Sec. 2)
Rand.

〈
O(log∆ n)†,O(∆ + log∆ n)†

〉
[T 9] 〈Ω(log∆ n)†,∆〉 [T 10]

(Sec. 2)
〈
O(1)†,O(nε)

〉
(setting ∆ = nε) O(n)

O( logn
log logn )† [Cor 11] Ω( logn

log logn )† [Cor 11]〈
O(log∆ n log log ∆)‡, O(n) fmin =
O(∆ + log∆ n log log ∆)‡

〉
[T 9] O(n) = Ω(log logn)‡ [T 14]

Selection

Determ. O(logn) [T 15] O(n) [T 15] Ω(logn) [Cor 3](Sec. 3)
Rand.

〈
O(log logn)†,O (

√
n)†
〉
[T 17] O(n)†

〈
Ω(log∆ n)†,∆

〉
[T 10]

(Sec. 3)
〈
O
(

logn
log logn

)†
,O(log2 n)†

〉
[T 17]

Merge Determ. O(logn) [T 24] O(n) Ω(logn) [Lem 18](Sec. 4)
Heap Determ. O(logn) [Obs 2] O(n) Ω(logn) [T 2]Constr. (Sec. 5)

bounded by Ω(log logn) (Subsection 2.3). Furthermore, we can achieve a trade-off between
the fragile complexity of the minimum element and the other elements. Here ∆ = ∆(n) is a
parameter we can choose freely that basically upper bounds the fragile complexity of the
non-minimal elements. We can find the minimum with O(log∆ n) expected fragile complexity
while all the other elements suffer O(∆ + log∆ n) comparisons (Subsection 2.3). Furthermore,
this is tight: we show an Ω(log∆ n) lower bound for the expected fragile complexity of
the minimum element where the maximum fragile complexity of non-minimum elements
is at most ∆.

Selection. Minimum finding is a special case of the selection problem where we are interested
in finding an element of a given rank. As a result, all of our lower bounds apply to this
problem as well. Regarding upper bounds, the deterministic case is trivial if we allow for
O(n logn) work (via sorting). We show that this can be reduced to O(n) time while keeping
the fragile complexity of all the elements at O(logn) (Section 3). Once again, randomization
offers a substantial improvement: e.g., we can find the median in O(n) expected work and with
O(log logn) expected fragile complexity while non-median elements suffer O(

√
n) expected

comparisons, or we can find the median in O(n) expected work and with O(logn/ log logn)
expected fragile complexity while non-median elements suffer O(log2 n) expected comparisons.

Sorting and other results. The deterministic selection, sorting, and heap construction fragile
complexities follow directly from the classical results in comparator networks [3, 7]. However,
we show a separation between comparator networks and comparison-based algorithms for the
problem of Median (Section 3) and Heap Construction (Section 5), in the sense that
depth/fragile complexity of O(logn) can be achieved in O(n) work for comparison-based
algorithms, but requires Ω(n logn) [5] and Ω(n log logn) [7] sizes for comparator networks
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for the two problems, respectively. For sorting the two models achieve the same complexities:
O(logn) depth/fragile complexity and O(n logn) size/work, which are the optimal bounds in
both models due to the Ω(logn) lower bound on fragile complexity for Minimum (Theorem 2)
and the standard Ω(n logn) lower bound on work for comparison-based sorting. However,
it is an open problem whether these bounds can be achieved by simpler sorting algorithms
than sorting networks, in particular whether expander graphs are necessary. One intriguing
conjecture could be that any comparison-based sorting algorithm with O(logn) fragile
complexity and O(n logn) work implies an expander graph. This would imply expanders,
optimal sorting networks and fragile-optimal comparison-based sorting algorithms to be
equivalent, in the sense that they all encode the same level of pseudorandomness.

We note that our lower bound of Ω(log2 n) on the fragile complexity of MergeSort
(Theorem 19) implies the same lower bound on the depth of any sorting network based
on binary merging, which explains why many of the existing simple sorting networks have
Θ(log2 n) depth. Finally, our analysis of MergeSort on random inputs (Theorem 23) shows
a separation between deterministic and randomized fragile complexity for such algorithms.
In summary, we consider the main contributions of this paper to be:

the introduction of the model of fragile complexity, which we find intrinsically interesting,
practically relevant, and surprisingly overlooked
the separations between this model and the model of comparator networks
the separations between the deterministic and randomized setting within the model
the lower bounds on randomized minimum finding

Due to space constraints, some proofs only appear in the full paper [1].

2 Finding the minimum

2.1 Deterministic Algorithms
As a starting point, we study deterministic algorithms that find the minimum among an input
of n elements. Our results here are simple but they act as interesting points of comparison
against the subsequent non-trivial results on randomized algorithms.

I Theorem 2. The fragile complexity of finding the minimum of n elements is dlogne.

Proof. The upper bound is achieved using a perfectly balanced tournament tree. The lower
bound follows from a standard adversary argument. J

Observe that in addition to returning the minimum, the balanced tournament tree can also
return the second smallest element, without any increase to the fragile complexity of the
minimum. We refer to this deterministic algorithm that returns the smallest and the second
smallest element of a set X as TournamentMinimum(X).

I Corollary 3. For any deterministic algorithm A that finds the median of n elements, the
fragile complexity of the median element is at least dlogne − 1.

Proof. By a standard padding argument with n− 1 small elements. J

2.2 Randomized Algorithms for Finding the Minimum
We now show that finding the minimum is provably easier for randomized algorithms
than for deterministic algorithms. We define fmin as the fragile complexity of the minimum
and frem as the maximum fragile complexity of the remaining elements. For deterministic
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algorithms we have shown that fmin ≥ logn regardless of frem. This is very different in the
randomized setting. In particular, we first show that we can achieve E [fmin] = O(1) and
fmin = O(1) + log logn with high probability (we later show this high probability bound is
also tight, Theorem 14).

1: procedure SampleMinimum(X) . Returns the smallest and 2nd smallest element of X
2: if |X| ≤ 8 return TournamentMinimum(X)
3: Let A ⊂ X be a uniform random sample of X, with |A| = d|X|/2e
4: Let B ⊂ A be a uniform random sample of A, with |B| =

⌊
|X|2/3

⌋
5: . The minimum is either in (i) C ⊆ X \A, (ii) D ⊆ A \B or (iii) B
6: (b1, b2) = SampleMinimum(B) . the minimum participates only in case (iii)
7: Let D = {x ∈ A \B | x < b2} . the minimum is compared once only in case (ii)
8: Let (a′1, a′2) = SampleMinimum(D) . only case (ii)
9: Let (a1, a2) = TournamentMinimum(a′1, a′2, b1, b2) . case (ii) and (iii)
10: Let C = {x ∈ X \A | x < a2} . only case (i)
11: Let (c1, c2) = TournamentMinimum(C) . only case (i)
12: return TournamentMinimum(a1, a2, c1, c2) . always

First, we show that this algorithm can actually find the minimum with expected constant
number of comparisons. Later, we show that the probability that this algorithm performs t
comparisons on the minimum drops roughly doubly exponentially on t.

We start with the simple worst-case analysis.

I Lemma 4. Algorithm SampleMinimum(X) achieves fmin ≤ 3 log |X| in the worst case.

Proof. First, observe that the smallest element in Lines 9 and 12 participates in at most one
comparison because pairs of elements are already sorted. Then the fragile complexity of the
minimum is defined by the maximum of the three cases:
(i) One comparison each in Lines 10 and 12, plus (by Theorem 2) dlog |C|e ≤ log |X|

comparisons in Line 11.
(ii) One comparison each in Lines 7, 9, and 12, plus the recursive call in line 8.
(iii) One comparison each in Lines 6, 9, and 12, plus the recursive call in line 6.

The recursive calls in lines 8 and 6 are on at most |X|/2 elements because B ⊂ A, D ⊂ A,
and |A| = d|X|/2e. Consequently, the fragile complexity of the minimum is defined by the
recurrence

T (n) ≤
{

max {3 + T (n/2), 2 + logn} if n > 8
3 if n ≤ 8 ,

which solves to T (n) ≤ 3 logn. J

I Lemma 5. Assume that in Algorithm SampleMinimum, the minimum y is in X \A, i.e.
we are in case (i). Then Pr[|C| = k | y 6∈ A] ≤ k

2k for any k ≥ 1 and n ≥ 7.

Proof. There are
(
n−1
dn/2e

)
possible events of choosing a random subset A ⊂ X of size dn/2e

s.t. y 6∈ A. Let us count the number of the events {|C| = k | y 6∈ A}, which is equivalent to
a2, the second smallest element of A, being larger than exactly k + 1 elements of X.

For simplicity of exposition, consider the elements of X = {x1, . . . , xn} in sorted order.
The minimum y = x1 6∈ A, therefore, a1 (the smallest element of A) must be one of the k
elements {x2, . . . , xk+1}. By the above observation, a2 = xk+2. And the remaining dn/2e− 2
elements of A are chosen from among {xk+3, . . . , xn}. Therefore,
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Pr[|C| = k | y 6∈ A] =
k ·
(
n−(k+2)
dn/2e−2

)(
n−1
dn/2e

) = k · (n− (k + 2))!
(bn/2c − k)!(dn/2e − 2)! ·

(dn/2e)!(bn/2c − 1)!
(n− 1)!

Rearranging the terms, we get:

Pr[|C| = k | y 6∈ A] = k · (n− (k + 2))!
(n− 1)! · (dn/2e)!

(dn/2e − 2)! ·
(bn/2c − 1)!
(bn/2c − k)!

There are two cases to consider:

k = 1 : Pr[|C| = k | y 6∈ A] = 1 · 1
(n− 1)(n− 2) · dn/2e (dn/2e − 1) · 1

≤ 1
(n− 1)(n− 2) ·

(n + 1)
2 · (n− 1)

2

= n + 1
4 · (n− 2) ≤

1
2 = k

2k
for every n ≥ 5.

k ≥ 2 : Pr[|C| = k | y 6∈ A] = k · 1∏k+1
i=1 (n− i)

· dn/2e (dn/2e − 1) ·
k−1∏
i=1

(⌊
n

2

⌋
− i
)

≤ k · 1∏k+1
i=1 (n− i)

· n + 1
2 · n− 1

2 ·
k−1∏
i=1

n− 2i

2

≤ k

2k+1 · (n + 1)(n− 1) ·
∏k−1

i=1 (n− 2i)∏k+1
i=1 (n− i)

≤ k

2k+1 · (n + 1)(n− 1) · n− 2
(n− 1)(n− 2)(n− 3)

= k

2k+1 ·
n + 1
n− 3 ≤

k

2k+1 · 2 = k

2k
for every n ≥ 7. J

I Theorem 6. Algorithm SampleMinimum achieves E [fmin] ≤ 9.

Proof. By induction on the size of X. In the base case |X| ≤ 8, clearly fmin ≤ 3, implying
the theorem.

Now assume that the calls in Line 8 and Line 6 have the property that E [f(b1)] ≤ 9
and E [f(a′1)] ≤ 9. Both in case (ii) and case (iii), the expected number of comparisons of
the minimum is ≤ 9 + 3. Case (i) happens with probability at least 1/2. In this case, the
expected number of comparisons is 2 plus the ones from Line 11. By Lemma 5 we have
Pr[|C| = k | case (i)] ≤ k2−k. Because TournamentMinimum (actually any algorithm not
repeating the same comparison) uses the minimum at most k− 1 times, the expected number
of comparisons in Line 11 is

∑bn/2c
k=1 (k − 1)k2−k ≤

∑∞
k=1(k − 1)k2−k ≤ 4. Combining the

bounds we get E [fmin] ≤ 9+3
2 + 2+4

2 = 9. J

Observe that the above proof did not use anything about the sampling of B, and also did
not rely on TournamentMinimum.

I Lemma 7. For |X| > 2 and any γ > 1: Pr
[
|D| ≥ γ|X|1/3

]
< |X| exp(−Θ(γ))
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2:8 Fragile Complexity of Comparison-Based Algorithms

Proof. Let n = |X|, a = |A| = dn/2e and b = |B| =
⌊
n2/3⌋. The construction of the set B

can be viewed as the following experiment. Consider drawing without replacement from an
urn with b blue and a− b red marbles. The i-th smallest element of A is chosen into B iff
the i-th draw from the urn results in a blue marble. Then |D| ≥ γ|X|1/3 = γn1/3 implies
that this experiment results in at most one blue marble among the first t = γn1/3 draws.
There are precisely t+ 1 elementary events that make up the condition |D| ≥ t, namely that
the i-th draw is a blue marble, and where i = 0 stands for the event “all t marbles are red”.
Let us denote the probabilities of these elementary events as pi.

Observe that each pi can be expressed as a product of t factors, at least t− 1 of which
stand for drawing a red marble, each upper bounded by 1− b−1

a . The remaining factor stands
for drawing the first blue marble (from the urn with a− i marbles, b of which are blue), or
another red marble. In any case we can bound

pi ≤
(

1− b− 1
a

)t−1
≤
(

1− b− 1
a

)γn1/3−1
= exp

(
−Θ

(
bγn1/3

a

))
.

Summing the t+ 1 terms, and observing t+ 1 < n if the event can happen at all, we get

Pr[|D| ≥ γ|X|1/3] < n · exp
(
−Θ

(
γn1/3n2/3

n/2

))
= n · exp (−Θ(γ)) . J

I Theorem 8. There is a positive constant c, such that for any parameter t ≥ c, the minimum
in the Algorithm SampleMinimum(X) participates in at most O(t+ log log |X|) comparisons
with probability at least 1− exp(−2t)2 log log |X|.

Proof. Let n = |X| and y be the minimum element. In each recursion step, we have one of
three cases: (i) y ∈ C ⊆ X \ A, (ii) y ∈ D ⊆ A \ B or (iii) y ∈ B. Since the three sets are
disjoint, the minimum always participates in at most one recursive call. Tracing only the
recursive calls that include the minimum, we use the superscript X(i), A(i), B(i), C(i), and
D(i) to denote these sets at depth i of the recursion.

Let h be the first recursive level when y ∈ C(h), i.e., y 6∈ A(h). It follows that y will not be
involved in the future recursive calls because it is in a single call to TournamentMinimum.
Thus, at this level of recursion, the number of comparisons that y will accumulate is
equal to O(1) + log |C(h)|. To bound this quantity, let k = 4 · 2t. Then, by Lemma 5,
Pr[|C(h)| > k] ≤ k2−k = 4 · 2t · 2−4·2t = 4 · 2t · 4−2t · 4−2t . Since 4x4−x ≤ 1 for any x ≥ 1,
Pr[|C(h)| > k] ≤ 4−2t for any t ≥ 0. I.e., the number of comparisons that y participates in at
level h is at most O(1) + log k = O(1) + t with probability at least 1− 4−2t ≥ 1− exp(−2t).

Thus, it remains to bound the number of comparisons involving y at the recursive levels
i ∈ [1, h − 1]. In each of these recursive levels y 6∈ C(i), which only leaves the two cases:
(ii) y ∈ D(i) ⊆ A(i) \ B(i) and (iii) y ∈ B(i). The element y is involved in at most O(1)
comparisons in lines 7, 9 and 12. The two remaining lines of the algorithm are lines 6 and 8
which are the recursive calls. We differentiate two types of recursive calls:

Type 1: |X(i)| ≤ 24t. In this case, by Lemma 4, the algorithm will perform O(t)
comparisons at the recursive level i, as well as any subsequent recursive levels.
Type 2: |X(i)| > 24t. In this case, by Lemma 7 on the set X(i) and γ = |X(i)|1/3 we get:

Pr[|D(i)| ≥ γ|X(i)|1/3] < |X(i)| exp
(
−Θ

(
|X(i)|1/3

))
< exp

(
−Θ

(
|X(i)|1/3

))
Note that since |X(i)|1/3 > 2t, by the definition of the Θ-notation, there exists a positive
constant c, such that exp

(
−Θ

(
|X(i)|1/3

))
< exp(−2t). Thus, it follows that with

probability 1− exp(−2t), we will recurse on a subproblem of size at most γ|X(i)|1/3 ≤
|X(i)|2/3. Let Gi be this (good) event, and thus Pr[Gi] ≥ 1− exp(−2t).
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Observe that the maximum number of times we can have good events of type 2 is very
limited. With every such good event, the size of the subproblem decreases significantly and
thus eventually we will arrive at a recursive call of type 1. Let j be this maximum number
of “good” recursive levels of type 2. The problem size at the j-th such recursive level is
at most n(2/3)j−1 and we must have that n(2/3)j−1

> 24t which reveals that we must have
j = O (log logn).

We are now almost done and we just need to use a union bound. Let G be the event
that at the recursive level h, we perform at most O(1) + t comparisons, and all the recursive
levels of type 2 are good. G is the conjunction of at most j + 1 events and as we have
shown, each such event holds with probability at least 1− exp(−2t). Thus, it follows that G
happens with probability 1− (j + 1) exp(−2t) > 1− 2 log logn exp(−2t). Furthermore, our
arguments show that if G happens, then the minimum will only particpate in O(t+ j) =
O (t+ log logn) comparisons. J

The major strengths of the above algorithm is the doubly exponential drop in probability
of comparing the minimum with too many elements. Based on it, we can design another
simple algorithm to provide a smooth trade-off between fmin and frem. Let 2 ≤ ∆ ≤ n

be an integral parameter. We will design an algorithm that achieves E [fmin] = O(log∆ n)
and fmin = O(log∆ n · log log ∆) whp, and frem = ∆ + O(log∆ n · log log ∆) whp. For sim-
plicity we assume n is a power of ∆. We build a fixed tournament tree T of degree ∆
and of height log∆ n on X. For a node v ∈ T , let X(v) be the set of values in the subtree
rooted at v. The following code computesm(v), the minimum value of X(v), for every node v.

1: procedure TreeMinimum∆(X)
2: For every leaf v, set m(v) equal to the single element of X(v).
3: For every internal node v with ∆ children u1, . . . , u∆ where the values
m(u1), . . . ,m(u∆) are known, compute m(v) using SimpleMinimum algorithm on input
{m(u1), . . . ,m(u∆)}.

4: Repeat the above step until the minimum of X is computed.

The correctness of TreeMinimum∆ is trivial. So it remains to analyze its fragile complexity.

I Theorem 9. In TreeMinimum∆, E [fmin] = O(log∆ n) and E [frem] = ∆+O(log∆ n). Fur-
thermore, with high probability, fmin = O

(
logn log log ∆

log ∆

)
and frem = O

(
∆ + logn log log ∆

log ∆

)
.

Proof. First, observe that E [fmin] = O(log∆ n) is an easy consequence of Theorem 6. Now
we focus on high probability bounds. Let k = c ·h log ln ∆, and h = log∆ n for a large enough
constant c. There are h levels in T . Let fi be the random variable that counts the number of
comparisons the minimum participates in at level i of T . Observe that these are independent
random variables. Let f1, . . . , fh be integers such that fi ≥ 1 and

∑h
i=1 fi = k, and let c′ be

the constant hidden in the big-O notation of Theorem 8. Use Theorem 8 h times (with n set
to ∆, and t = fi), and also bound 2 log log ∆ < ∆ to get

Pr
[
f1 ≥ c′(f1 + log log ∆) ∨ · · · ∨ fh ≥ c′(fh + log log ∆)

]
≤ ∆he−

∑
i

2fi ≤ ∆he−h2k/h

where the last inequality follows from the inequality of arithmetic and geometric means
(specifically, observe that

∑h
i=1 2fi is minimized when all fi’s are distributed evenly).
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Now observe that the total number of different integral sequences f1, . . . , fh that sum up
to k is bounded by

(
h+k
h

)
(this is the classical problem of distributing k identical balls into h

distinct bins). Thus, we have

Pr[fmin = O(k + h log log ∆)] ≤
(
h+ k

h

)
·∆h 1

eh·2k/h
≤
(
e(h+ k)

h

)h
·∆h 1

eh·2k/h

≤

(
O
(
k
h

)
·∆

e2k/h

)h
=
(
O
(
∆2)

e2c log ln ∆

)h
<

(
O(∆2)
elnc ∆

)h
<

(
∆3

∆lnc−1 ∆

)h
< ∆−ch = n−c

where in the last step we bound (ln ∆)c−1 − 3 > c for large enough c and ∆ ≥ 3. This is
a high probability bound for fmin. To bound frem, observe that for every non-minimum
element x, there exists a lowest node v such that x is not m(v). If x is not passed to
the ancestors of v, x suffers at most ∆ comparisons in v, and below v x behaves like the
minimum element, which means that the above analysis applies. This yields that whp we
have frem = ∆ +O

(
logn log log ∆

log ∆

)
. J

2.3 Randomized Lower Bounds for Finding the Minimum

2.3.1 Expected Lower Bound for the Fragile Complexity of the
Minimum.

The following theorem is our main result.

I Theorem 10. In any randomized minimum finding algorithm with fragile complexity of at
most ∆ for any element, the expected fragile complexity of the minimum is at least Ω(log∆ n).

Note that this theorem implies the fragile complexity of finding the minimum:

I Corollary 11. Let f(n) be the expected fragile complexity of finding the minimum (i.e. the
smallest function such that some algorithm achieves f(n) fragile complexity for all elements
(minimum and the rest) in expectation). Then f(n) = Θ( logn

log logn ).

Proof. Use Theorem 9 as the upper bound and Theorem 10, both with ∆ = logn
log logn , observing

that if f(n) is an upper bound that holds with high probability, it is also an upper bound on
the expectation. J

To prove Theorem 10 we give a lower bound for a deterministic algorithm A on a random
input of n values, x1, . . . , xn where each xi is chosen iid and uniformly in (0, 1). By Yao’s
minimax principle, the lower bound on the expected fragile complexity of the minimum when
running A also holds for any randomized algorithm.

We prove our lower bound in a model that we call “comparisons with additional information
(CAI)”: if the algorithm A compares two elements xi and xj and it turns out that xi < xj ,
then the value xj is revealed to the algorithm. Clearly, the algorithm can only do better
with this extra information. The heart of the proof is the following lemma which also acts as
the “base case” of our proof.

I Lemma 12. Let ∆ be an upper bound on frem. Consider T values x1, . . . , xT chosen iid
and uniformly in (0, b). Consider a deterministic algorithm A in CAI model that finds the
minimum value y among x1, . . . , xT . If T > 1000∆, then with probability at least 7

10 A will
compare y against an element x such that x ≥ b/(100∆).
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Proof. By simple scaling, we can assume b = 1. Let p be the probability that A compares y
against a value larger than 1/(100∆). Let Ismall be the set of indices i such that xi < 1/(100∆).
Let A′ be a deterministic algorithm in CAI model such that:
A′ is given all the indices in Ismall (and their corresponding values) except for the index
of the minimum. We call these the known values.
A′ minimizes the probability p′ of comparing the y against a value larger than 1/(100∆).
A′ finds the minimum value among the unknown values.

Since p′ ≤ p, it suffices to bound p′ from below. We do this in the remainder of the proof.
Observe that the expected number of values xi such that xi < 1/(100∆) is T/(100∆).

Thus, by Markov’s inequality, Pr[|Ismall| ≤ T/(10∆)] ≥ 9
10 . Let’s call the event |Ismall| ≤

T/(10∆) the good event. For algorithm A′ all values smaller than 1/(100∆) except for
the minimum are known. Let U be the set of indices of the unknown values. Observe
that a value xi for i ∈ U is either the minimum or larger than 1/(100∆), and that |U | =
T − |Ismall| + 1 > 9

10T (using ∆ ≥ 1) in the good event. Because A′ is a deterministic
algorithm, the set U is split into set F of elements that have their first comparison against a
known element, and set W of those that are first compared with another element with index
in U . Because of the global bound ∆ on the fragile complexity of the known elements, we
know |F | < ∆ · |Ismall| ≤ ∆T/(10∆) = T/10. Combining this with the probability of the
good event, by union bound, the probability of the minimum being compared with a value
greater than 1/(100∆) is at least 1− (1− 9

10 )− (1− 8
9 ) ≥ 7/10. J

Based on the above lemma, our proof idea is the following. Let G = 100∆. We would like
to prove that on average A cannot avoid comparing the minimum to a lot of elements. In
particular, we show that, with constant probability, the minimum will be compared against
some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 . Our lower bound
then follows by an easy application of the linearity of expectations. Proving this, however, is
a little bit tricky. However, observe that Lemma 12 already proves this for i = 1. Next, we
use the following lemma to apply Lemma 12 over all values of i, 1 ≤ i ≤ logG n

2 .

I Lemma 13. For a value b with 0 < b < 1, define pk =
(
n
k

)
bi(1 − b)n−k, for 0 ≤ k ≤ n.

Choosing x1, . . . , xn iid and uniformly in (0, 1) is equivalent to the following: with probability
pk, uniformly sample a set I of k distinct indices in {1, . . . , n} among all the subsets of
size k. For each i ∈ I, pick xi iid and uniformly in (0, b). For each i 6∈ I, pick xi iid and
uniformly in (b, 1).

Proof. It is easy to see that choosing x1, . . . , xn iid uniformly in (0, 1) is equivalent to
choosing a point X uniformly at random inside an n dimensional unit cube (0, 1)n. Therefore,
we will prove the equivalence between (i) the distribution defined in the lemma, and (ii)
choosing such point X.

Let Q be the n-dimensional unit cube. Subdivide Q into 2n rectangular region defined
by the Cartesian product of intervals (0, b) and (b, 1), i.e., {(0, b), (b, 1)}n (or alternatively,
bisect Q with n hyperplanes, with the i-th hyperplane perpendicular to the i-th axis and
intersecting it at coordinate equal to b).

Consider the set Rk of rectangles in {(0, b), (b, 1)}n with exactly k sides of length b and
n − k sides of length 1 − b. Observe that for every choice of k (distinct) indices i1, . . . , ik
out of {1, . . . , n}, there exists exactly one rectangle r in Rk such that r has side length b at
dimensions i1, . . . , ik, and all the other sides of r has length n− k. As a result, we know that
the number of rectangles in Rk is

(
n
k

)
and the volume of each rectangle in Rk is bk(1− b)k.

Thus, if we choose a point X randomly inside Q, with probability pk it will fall inside a
rectangle r in Rk; furthermore, conditioned on this event, the dimensions i1, . . . , ik where r
has side length b is a uniform subset of k distinct indices from {1, . . . , n}. J
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Remember that our goal was to prove that with constant probability, the minimum will
be compared against some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 .
We can pick b = G−i+1 and apply Lemma 13. We then observe that it is very likely that
the set of indices I that we are sampling in Lemma 13 will contain many indices. For
every element xi, i ∈ I, we are sampling xi independently and uniformly in (0, b) which
opens the door for us to apply Lemma 12. Then we argue that Lemma 12 would imply
that with constant probability the minimum will be compared against a value in the range
(b/G, b) = (G−i, G−i+1). The lower bound claim of Theorem 10 then follows by invoking the
linearity of expectations.

We are ready to prove that the minimum element will have Ω(log∆ n) comparisons
on average.

Proof of Theorem 10. First, observe that we can assume n ≥ (100, 000∆)2 as otherwise we
are aiming for a trivial bound of Ω(1).

We create an input set of n values x1, . . . , xn where each xi is chosen iid and uniformly
in (0, 1). Let G = 100∆. Consider an integer i such that 1 ≤ i < logG n

2 . We are going to
prove that with constant probability, the minimum will be compared against a value in the
range (G−i, G−i+1), which, by linearity of expectation, shows the stated Ω(log∆ n) lower
bound for the fragile complexity of the minimum.

Consider a fixed value of i. Let S be the set of indices with values that are smaller than
G−i+1. Let p be the probability that A compares the minimum against an xj with j ∈ S
such that xj ≥ G−i. To prove the theorem, it suffices to prove that p is lower bounded by
a constant. Now consider an algorithm A′ that finds the minimum but for whom all the
values other than those in S have been revealed and furthermore, assume A′ minimizes the
probability of comparing the minimum against an element x ≥ G−i (in other words, we pick
the algorithm which minimizes this probability, among all the algorithms). Clearly, p′ ≤ p.
In the rest of the proof we will give a lower bound for p′.

Observe that |S| is a random variable with binomial distribution. Hence E [|S|] =
nG−i+1 >

√
n where the latter follows from i < logG n

2 . By the properties of the binomial
distribution we have that Pr

[
|S| < E[|S|]

100

]
< 1

10 . Thus, with probability at least 9
10 , we will

have the “good” event that |S| ≥ E[|S|]
100 ≥

√
n

100 .
In case of the good event, Lemma 13 implying that conditioned on S being the set of values

smaller than G−i+1, each value xj with j ∈ S is distributed independently and uniformly in
the range (0, G−i+1). As a result, we can now invoke Lemma 12 on the set S with T = |S|.
Since n ≥ (100, 000∆)2 we have T = |S| ≥

√
n

100 ≥
100,000∆

100 . By Lemma 12, with probability
at least 7

10 , the minimum will be compared against a value that is larger than G−i.
Thus, by law of total probability, it follows that in case of a good event, with probability

7
10 the minimum will be compared to a value in the range (G−i, G−i+1). However, as the
good event happens with probability 9

10 , it follows that with probability at least 1−(1− 7
10 )−

(1− 9
10 ) = 6

10 , the minimum will be compared against a value in the range (G−i, G−i+1). J

2.3.2 Lower bound for the fragile complexity of the minimum whp.
With Theorem 8 in Subsection 2.2, we show in particular that SampleMinimum guarantees
that the fragile complexity of the minimum is at most O(log logn) with probability at least
1− 1/nc for any c > 1. (By setting t = 2 log logn).
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Here we show that this is optimal up to constant factors in the fragile complexity.

I Theorem 14. For any constant ε > 0, there exists a value of n0 such that the following
holds for any randomized algorithm A and for any n > n0: there exists an input of size n such
that with probability at least n−ε, A performs ≥ 1

2 log logn comparisons with the minimum.

Proof. We use (again) Yao’s principle and consider a fixed deterministic algorithm A
working on the uniform input distribution, i.e., all input permutations have probability 1/n!.
Let f = 1

2 log logn be the upper bound on the fragile complexity of the minimum. Let
k = 2f =

√
logn and let S be the set of the k smallest input values. Let π be a uniform

permutation (the input) and π(S) be the permutation of the elements of S in π. Observe
that π(S) is a uniform permutation of the elements of S. We reveal the elements not in S to
A. So, A only needs to find the minimum in π(S). By Theorem 2 there is at least one “bad”
permutation of S which forces algorithm A to do log k = f comparisons on the smallest
element. Observe log k! < log kk = k log k =

√
logn 1

2 log logn. Observe that there exists a
value of n0 such that for n > n0 the right hand side is upper bounded by ε logn, so k! ≤ nε,
for n > n0. Hence, the probability of a “bad” permutation is at least 1/k! > n−ε. J

3 Selection and median

The (n, t)-selection problem asks to find the t-th smallest element among n elements of the
input. The simplest solution to the (n, t)-selection problem is to sort the input. Therefore, it
can be solved in O(logn) fragile complexity and O(n logn) work by using the AKS sorting
network [2]. For comparator networks, both of these bounds are optimal: the former is shown
by Theorem 2 (and in fact it applies also to any algorithm) and the latter is shown in the
full version of this paper [1].

In contrast, in this section we show that comparison-based algorithms can do better:
we can solve Selection deterministically in Θ(n) work and Θ(logn) fragile complexity,
thus, showing a separation between the two models. However, to do that, we resort to
constructions that are based on expander graphs. Avoiding usage of the expander graphs or
finding a simpler optimal deterministic solution is an interesting open problem (see Section 6).
Moreover, in Subsection 3.2 we show that we can do even better by using randomization.

3.1 Deterministic selection
I Theorem 15. There is a deterministic algorithm for Selection which performs O(n)
work and has O(logn) fragile complexity.

Proof sketch. It suffices to just find the median since by simple padding we can generalize
the solution for the (n, t)-selection problem.

We use ε-halvers that are the central building blocks of the AKS sorting network. An
ε-halver approximately performs a partitioning of an array of size n into the smallest half and
the largest half of the elements. More precisely, for anym ≤ n/2, at most εn of them smallest
elements will end up in the right half of the array, and at most εn of the m largest elements
will end up in the left half of the array. Using expander graphs, a comparator network
implementing an ε-halver of constant depth can be built [2, 4]. We use the corresponding
comparison-based algorithm of constant fragile complexity.

The idea is to use ε-halvers to find roughly n
logn elements with rank between (1 + α)n2

and (2− α)n2 and also roughly n
logn elements with rank between αn2 and (1− α)n2 , for some

constant 0 < α < 1. This is done by repeatedly using ε-halvers but alternating between
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Figure 1 Illustration of the alternating division process using ε-halvers.

selecting the left half and the right half (Figure 1). Using these, we filter the remaining
elements and discard a constant fraction of them. Then we recurse on the remaining elements.
The details are a bit involved, as we have to guarantee that no element accumulates too
many comparisons throughout the recursions. We have to do some bookkeeping as well as
some additional ideas to provide this guarantee. Details can be found in the full version
of the paper [1]. J

I Corollary 16. There is a deterministic algorithm for partition which performs O(n) work
and has O(logn) fragile complexity.

Proof. At the end of the Selection algorithm, the set of elements smaller (larger) than
the median is the union of the respective filtered sets (sets L and R in the proof in the full
version of the paper [1]) and the first (last) half of the sorted set in the base case of the
recursion. Again, simple padding generalizes this to (n, t)-partition for arbitrary t 6= n

2 . J

3.2 Randomized selection
In the full paper [1], we present the details of an expected work-optimal selection algorithm
with a trade-off between the expected fragile complexity fmed(n) of the selected element and
the maximum expected fragile complexity frem(n) of the remaining elements. In particular,
we obtain the following combinations:

I Theorem 17. Randomized selection is possible in expected linear work, while achieving
expected fragile complexity of the median E [fmed(n)] = O(log logn) and of the remaining
elements E [frem(n)] = O(

√
n), or E [fmed(n)] = O

(
logn

log logn

)
and E [frem(n)] = O(log2 n).

4 Sorting

Recall from Section 1 that the few existing sorting networks with depth O(logn) are all based
on expanders, while a number of O(log2 n) depth networks have been developed based on
binary merging. Here, we study the power of the mergesort paradigm with respect to fragile
complexity. We first prove that any sorting algorithm based on binary merging must have
a worst-case fragile complexity of Ω(log2 n). This provides an explanation why all existing
sorting networks based on merging have a depth no better than this. We also prove that the
standard mergesort algorithm on random input has fragile complexity O(logn) with high
probability, thereby showing a separation between the deterministic and the randomized
situation for binary mergesorts. Finally, we demonstrate that the standard mergesort
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algorithm has a worst-case fragile complexity of Θ(n), but that this can be improved to
O(log2 n) by changing the merging algorithm to use exponential search. The omitted proofs
can be found in the full paper [1].

I Lemma 18. Merging of two sorted sequences A and B has fragile complexity at least
blog2 |A|c+ 1.

I Theorem 19. Any binary mergesort has fragile complexity Ω(log2 n).

Proof. The adversary is the same as in the proof of Lemma 21, except that as scapegoat
element for a merge of A and B it always chooses the scapegoat from the larger of A and
B. We claim that for this adversary, there is a constant c > 0 such that for any node v in
the mergetree, its scapegoat element has participated in at least c log2 n comparisons in the
subtree of v, where n is the number of elements merged by v. This implies the theorem.

We prove the claim by induction on n. The base case is n = O(1), where the claim is
true for small enough c, as the scapegoat by Lemma 18 will have participated in at least one
comparison. For the induction step, assume v merges two sequences of sizes n1 and n2, with
n1 ≥ n2. By the base case, we can assume n1 ≥ 3. Using Lemma 18, we would like to prove
for the induction step

c log2 n1 + blogn2c+ 1 ≥ c log2(n1 + n2). (1)

This will follow if we can prove

log2 n1 + logn2

c
≥ log2(n1 + n2) . (2)

The function f(x) = log2 x has first derivative 2(log x)/x and second derivative 2(1−log x)/x2,
which is negative for x > e = 2.71 . . . . Hence, f(x) is concave for x > e, which means that
first order Taylor expansion (alias the tangent) lies above f , i.e., f(x0)+f ′(x0)(x−x0) ≥ f(x)
for x0, x > e. Using x0 = n1 and x = n1 +n2 and substituting the first order Taylor expansion
into the right side of (2), we see that (2) will follow if we can prove

logn2

c
≥ 2 logn1

n1
n2 ,

which is equivalent to

logn2

n2
≥ 2c logn1

n1
. (3)

Since n1 ≥ n2 and (log x)/x is decreasing for x ≥ e, we see that (3) is true for n2 ≥ 3 and c
small enough. Since log(3)/3 = 0.366 . . . and log 2/2 = 0.346 . . . , it is also true for n2 = 2
and c small enough. For the final case of n2 = 1, the original inequality (1) reduces to

log2 n1 + 1
c
≥ log2(n1 + 1) . (4)

Here we can again use concavity and first order Taylor approximation with x0 = n1 and
x = n1 + 1 to argue that (4) follows from

1
c
≥ 2 logn1

n1
.

which is true for c small enough, as n1 ≥ 3 and (log x)/x is decreasing for x ≥ e. J
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I Theorem 20. Standard MergeSort with linear merging has a worst-case fragile complexity
of Θ(n).

I Lemma 21. Standard MergeSort has fragile complexity Ω(log2 n).

Proof. In MergeSort, when merging two sorted sequences A and B, no comparisons
between elements of A and B have taken place before the merge. Also, the sorted order of
A∪B has to be decided by the algorithm after the merge. We can therefore run the adversary
argument from the proof of Lemma 18 in all nodes of the mergetree of MergeSort. If the
adversary reuses scapegoat elements in a bottom-up fashion – that is, as scapegoat for a
merge of A and B chooses one of the two scapegoats from the two merges producing A and
B – then the scapegoat at the root of the mergetree has participated in

Ω(
logn∑
i=0

log 2i) = Ω(
logn∑
i=0

i) = Ω(log2 n)

comparisons, by Lemma 18 and the fact that a node at height i in the mergetree of standard
MergeSort operates on sequences of length Θ(2i). J

I Observation 1. Consider two sorted sequences A = (a1, . . . , an) and B = (b1, . . . , bn). In
linear merging, the fragile complexity of element ai is at most ` + 1 where ` is the largest
number of elements from B that are placed directly in front of ai (i.e. bj < . . . < bj+`−1 < ai).

I Lemma 22. Let X = {x1, . . . , x2k} be a finite set of distinct elements, and consider
a random bipartition XL, XR ⊂ X with |XL| = |XR| = k and XL ∩ XR = ∅, such that
Pr [xi ∈ XL] = 1/2. Consider an arbitrary ordered set Y = {y1, . . . , ym} ⊂ X with m ≤ k.
Then Pr [Y ⊆ XL ∨ Y ⊆ XR] < 21−m.

Proof.

Pr [Y ⊆ XL ∨ Y ⊆ XR] = 2
m∏
i=1

Pr [ yi ∈ XL | y1, . . . yi−1 ∈ XL ] = 2(2k)−mk!
(k −m)! ≤ 2 · 2−m.

J

I Theorem 23. Standard MergeSort with linear merging on a randomized input permuta-
tion has a fragile complexity of O(logn) with high probability.

Proof. Let Y = (y1, . . . , yn) be the input-sequence, π−1 be the permutation that sorts Y and
X = (x1, . . . , xn) with xi = yπ−1(i) be the sorted sequence. Wlog we assume that all elements
are unique2, that any input permutation π is equally likely3, and that n is a power of two.

Merging in one layer. Consider any merging-step in the mergetree. Since both input
sequences are sorted, the only information still observable from the initial permutation is
the bi-partitioning of elements into the two subproblems. Given π, we can uniquely retrace
the mergetree (and vice-versa): we identify each node in the recursion tree with the set of
elements it considers. Then, any node with elements XP = {y`, . . . , y`+2k−1} has children

XL =
{
xπ(i)

∣∣ ` ≤ π(i) ≤ `+ k − 1
}

= {y`, . . . , y`+k−1} ,
XR =

{
xπ(i)

∣∣ `+ k ≤ π(i) ≤ `+ 2k − 1
}

= {y`+k, . . . , y`+2k−1} .

2 If this is not the case, use input sequence Y ′ = ((y1, 1), . . . , (yn, n)) and lexicographical compares.
3 If not shuffle it before sorting in linear time and no fragile comparisons.
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Hence, locally our input permutation corresponds to an stochastic experiment in which we
randomly draw exactly half of the parent’s elements for the left child, while the remainder
goes to right.

This is exactly the situation in Lemma 22. Let Ni be a random variable denoting the
number of comparisons of element yi in the merging step. Then, from Observation 1 and
Lemma 22 it follows that Pr [Ni = m+1] ≤ 2−m. Therefore Ni is stochastically dominated
by Ni � 1+Yi where Yi is a geometric random variable with success probability p = 1/2.

Merging in all layers. Let Nj,i be the number of times element yi is compared in the
j-th recursion layer and define Yj,i analogously. Due to the recursive partitioning argument,
Nj,i and Yj,i are iid in j. Let NT

i be the total number of comparisons of element i, i.e.
NT
i � log2 n+

∑log2 n
j=1 Yj,i. Then a tail bound on the sum of geometric variables (Theorem

2.1 in [13]) yields:

Pr
[∑log2 n

j=1
Yj,i ≥ λE

[∑log2 n

j=1
Yj,i

]
= 2λ log2 n

]
[13]
≤ exp

(
−1

2
2 lnn
ln 2 [λ−1− log λ]

)
= n−2,

where we set λ ≈ 3.69 in the last step solving λ− log λ = 2 log 2. Thus, we bound the
probability Pr

[
NT
i ≥ (1+2λ) log2 n

]
≤ n−2.

Fragile complexity. It remains to show that with high probability no element exceeds the
claimed fragile complexity. We use a union bound on NT

i for all i:

Pr
[
max
i
{NT

i } = ω(logn)
]
≤ nPr

[
NT
i = ω(logn)

]
≤ 1/n . J

I Theorem 24. Exponential merging of two sequences A = (a1, . . . , an) and B = (b1, . . . , bn)
has a worst-case fragile complexity of O(logn).

I Corollary 25. Applying Theorem 24 to standard MergeSort with exponential merging
yields a fragile complexity of O(log2 n) in the worst-case.

5 Constructing binary heaps

I Observation 2. The fragile complexity of the standard binary heap construction algorithm
of Floyd [11] is O(logn).

The above observation is easy to verify (shown in the full paper [1]). We note that
this fragile complexity is optimal by Theorem 2, since Heap Construction is stronger
than Minimum. Brodal and Pinotti [7] showed how to construct a binary heap using a
comparator network in Θ(n log logn) size and O(logn) depth. They also proved a matching
lower bound on the size of the comparator network for this problem. This, together with
Observation 2 and the fact that Floyd’s algorithm has work O(n), gives a separation between
work of fragility-optimal comparison-based algorithms and size of depth-optimal comparator
networks for Heap Construction.

6 Conclusions

In this paper we introduced the notion of fragile complexity of comparison-based algorithms
and we argued that the concept is well-motivated because of connections both to real world
situations (e.g., sporting events), as well as other fundamental theoretical concepts (e.g.,
sorting networks). We studied the fragile complexity of some of the fundamental problems and
revealed interesting behavior such as the large gap between the performance of deterministic
and randomized algorithms for finding the minimum. We believe there are still plenty of
interesting and fundamental problems left open. Below, we briefly review a few of them.
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The area of comparison-based algorithms is much larger than what we have studied.
In particular, it would be interesting to study “geometric orthogonal problems” such
as finding the maxima of a set of points, detecting intersections between vertical and
horizontal line segments, kd-trees, axis-aligned point location and so on. All of these
problems can be solved using algorithms that simply compare the coordinates of points.
Is it possible to avoid using expander graphs to obtain simple deterministic algorithms to
find the median or to sort?
Is it possible to obtain a randomized algorithm that finds the median where the median
suffers O(1) comparisons on average? Or alternatively, is it possible to prove a lower
bound? If one cannot show a ω(1) lower bound for the fragile complexity of the median,
can we show it for some other similar problem?
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Abstract
We present the first universal reconfiguration algorithm for transforming a modular robot between
any two facet-connected square-grid configurations using pivot moves. More precisely, we show
that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining n modules
between any two given configurations. Our algorithm uses O(n2) pivot moves, which is worst-case
optimal. Previous reconfiguration algorithms either require less restrictive “sliding” moves, do
not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of
configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do
have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that
they can have an exponential number of connected components. But forbidding the local pattern
throughout the configuration is far from necessary, as we show that just a constant number of added
modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify
three different models of natural pivot moves that preserve facet-connectivity, and show separations
between these models.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Reconfiguration, geometric algorithm, pivoting squares, modular robots

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.3

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.07880.

Funding Hugo A. Akitaya: Supported by NSF CCF-1422311 and CCF-1423615.
Esther M. Arkin: Partially funded by NSF (CCF-1526406).
Erik D. Demaine: Supported in part by NSF ODISSEI grant EFRI-1240383 and NSF Expedition
grant CCF-1138967.
Belen Palop: Partially supported by MTM2015-63791-R (MINECO/FEDER).
Irene Parada: Supported by the Austrian Science Fund (FWF): W1230.

© Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin
Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6827-2200
mailto:hugo.alves_akitaya@tufts.edu
https://orcid.org/0000-0002-4038-4913
mailto:esther.arkin@stonybrook.edu
mailto:mirela.damian@villanova.edu
https://orcid.org/0000-0003-3803-5703
mailto:edemaine@mit.edu
mailto:vida.dujmovic@uottawa.ca
mailto:flatland@siena.edu
mailto:Matias.Korman@tufts.edu
mailto:belen.palop@uva.es
https://orcid.org/0000-0003-3147-0083
mailto:iparada@ist.tugraz.at
https://orcid.org/0000-0002-9294-9947
mailto:andre.vanrenssen@sydney.edu.au
https://orcid.org/0000-0003-0203-256X
mailto:vera.sacristan@upc.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.3
https://arxiv.org/abs/1908.07880
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Universal Reconfiguration of Facet-Connected Modular Robots by Pivots

André van Renssen: Supported by JST ERATO Grant Number JPMJER1201, Japan.
Vera Sacristán: Partially supported by MTM2015-63791-R (MINECO/FEDER) and Gen. Cat.
DGR 2017SGR1640.

Acknowledgements This research started at the 32nd Bellairs Winter Workshop on Computational
Geometry in 2017. We want to thank all participants for the fruitful discussions on the topic. We
would also like to thank the reviewers for their insightful and valuable comments.

1 Introduction

Shape shifting is a powerful idea in science fiction: T-1000 robots (from Terminator 2:
Judgement Day), Changelings (from Star Trek: Deep Space 9 ), Symbiotes (from Venom),
Mystique (from X-Men), and Metamorphagi (from Harry Potter) all have the ability to
transform their shape nearly arbitrarily. How can we make shape shifting into science?

Modular robots [5, 19, 22] are perhaps the best answer to this question. The idea to
build a single “robot” out of many small units called modules, each of which can attach
and detach from each other, move relative to each other, communicate with each other,
and compute. Modular robots offer extreme adaptability to changing environment or user
needs, in particular by reconfiguring the modules into exponentially many effective shapes
of the overall robot. Modularity also offers a practical future for manufacturing (identical
modules can be mass-produced, making them relatively cheap) makes robots easy to repair
by just replacing the broken modules, and makes it possible to re-use components from one
robot/task to another.

For computational geometry, modular robots offer exciting challenges: what shapes can
a modular robot self-reconfigure into, and what are good algorithms for reconfiguration?
According to [19], the main difficulties in self-reconfiguration are the physical motion con-
straints of the modules themselves, connectivity requirements for the robot to hold together,
collisions between moving and/or static modules, and “deadlocks” where no module can
move or some module gets “trapped” within the configuration.

The wide diversity of mecatronic solutions to modular robots can be characterized from
a geometric viewpoint by three key properties: (1) the lattice, (2) connectivity requirement,
and (2) allowed moves.

Lattice. Most modular robots follow a space-filling lattice structure (e.g., squares or
hexagons in 2D, or cubes in 3D), to simplify both reconfiguration and the characterization of
possible shapes. Pure lattice modular robots [13, 6, 10, 17, 2, 20] have one robot per lattice
element and always remain on the lattice, while hybrid modular robots [14, 18, 16, 23] also
allow units move out of the lattice. We focus here on the well-studied square lattice, though
we suspect our results can be generalized to cube lattices.

Connectivity requirement. A modular robot generally needs to be connected at all times
while reconfiguring, so that the modules do not fall apart. The most common and practical
constraint is that the modules are always facet-connected, meaning a connected facet-adjacency
graph where vertices represent modules and edges represent adjacencies by shared facets
(edges in 2D). The exception is that the moving module is excluded from this graph during
each move, meaning that other modules must be facet-connected while the moving module
may briefly disconnect during the move. A weaker connectivity constraint, considered in
some theoretical research [4, Ch. 4], is that the robot is connected via shared vertices.
In such case, reconfiguration is always possible. We focus here on the more challenging
facet-connectivity constraint.
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Allowed moves. One of the most popular models is sliding squares/cubes [8, 7, 1], illustrated
in Figure 1 left. In this case, modules live in a square or cube lattice, move by sliding relative
to each other, and require facet-connectivity. For this model, universal reconfiguration is
possible between any two facet-connected configurations, in any dimension [7, 1].

a

s s

a

s′ s′
a

s s

a

s′ s′

Figure 1 Two ways a module a starting above module s can move to the adjacent lattice position,
above module s′. Left: sliding. Right: pivoting. Pivoting requires more free space to execute.

We focus here on a more challenging model, pivoting squares/cubes [21, 20, 4], illustrated
in Figure 1 right. In this case, modules live in a square or cube lattice, move by rotating
relative to each other, and require facet-connectivity. The key difference is that a module
needs two additional squares/cubes of empty space in order to pivot, whereas a slide just
needs the destination square/cube to be empty. Unfortunately, some configurations are rigid
in this model, meaning that no module can move without disconnecting the robot.

Rigid configurations appear also in the sliding square model when the sliding capability is
restricted to turning corners [12]. However, in this model the existence of free space around
the modules does not guarantee reconfigurability, while in the pivoting squares model it does,
as we will discuss.

As a consequence, all known reconfiguration algorithms for pivoting squares/cubes are
somehow partial. One algorithm follows some heuristics without a termination guarantee
[3] (see also [11] for heuristics for hexagons). A recent algorithm guarantees reconfiguration
by forbidding one or more local patterns in both the start and goal configurations [20],
essentially preventing narrow holes in the shape. (A similar result was obtained for hexagons
[15].) These assumptions severely restrict the possible shapes that can be reconfigured, to
a o(1) fraction. The absence of such local patterns though is far from being necessary for
reconfigurability. In 3D, some further strong conditions are added, such as that every hole
must be orthogonally convex [20].

Our results. Our main result is that universal reconfiguration is possible if we allow the
addition of a constant number of (five) extra “helper” modules, which we call musketeer
modules.1 The key is that these musketeer modules are not considered part of the initial
or target shape, and thus we are free to place them where we like (in particular, along the
external boundary of the robot). Surprisingly, this small amount of additional freedom is
enough to achieve universal reconfiguration. In fact, we prove in Section 4 that five musketeer
modules are both sufficient and sometimes necessary to solve any reconfiguration under our
strategy. Our algorithm is based on the old idea of following the right-hand rule to escape a
maze [9]. The number of pivots it makes is O(n2), which is optimal in the worst case by an
earth-moving lower bound: each robot may need to move a distance of Θ(n).

This result can be seen as proving connectivity of the reconfiguration graph Gn,k, where
vertices represent facet-connected configurations of n modules and edges represent valid pivot
moves, with the addition of k ≥ 5 musketeer modules. With k = 0 musketeers, Gn,k is known
to be disconnected. Surprisingly, there have been no (successful) attempts to understand

1 The Three Musketeers is a story about four musketeers. This paper is a story about five musketeers.
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the structure of this reconfiguration graph. In Section 3, we analyze the structure of this
reconfiguration graph. Specifically, we prove that Gn,0 can have an exponential number of
connected components of exponential size, and in some models, can have an exponential
number of singleton connected components (rigid configurations); while in other models, the
reconfiguration graph cannot have any singleton connected components.

The other main contribution of this paper is to precisely define a variety of natural models
for pivot moves. Pivoting is naturally defined as the rotation of one module about one of its
vertices that is shared with a (static) module. But there are some subtleties in this definition
depending on exactly which modules must be facet-connected at what times. (Obviously,
for example, the moving module is not facet-connected to the others during the move.) In
Section 2, we define three nested models, each at least as powerful as the previous, and
in Section 3, we prove strict separations between these models. Our analysis of connected
components in the reconfiguration space (in Section 3) also consider the effects of these
different models. We conclude with open problems in Section 5.

2 Models and Definitions

2.1 Pivot Moves
In a square grid, the fact that two squares may share a vertex without actually sharing an
edge opens a wider range of possibilities for the pivoting move. Refer to Figure 2. The most
restrictive set of moves (Set 1 in Figure 2) requires module a to be facet-adjacent to module
s and to rotate about one of the two vertices of the edge they share. Such move can be a 90◦
or a 180◦ rotation, depending on whether or not s has a neighboring module s′ adjacent to it
through the other edge of s incident to the rotation center, and of course, requires the goal
grid position to be empty and some intermediate positions to be (at least partially) clear.
These cells are depicted in white in Figure 2.

The authors of [20] propose an expanded set of moves (Set 2 in Figure 2) that allows
module a to rotate 90◦ about module s even when s′ is not present, as long as module a is
again facet-adjacent to another module t at the end of the move. Since their reconfiguration
algorithm relies on reversible moves, this implies allowing also the reverse move: module
a can rotate 90◦ about a vertex of another module s incident to a, without requiring s to
be facet-adjacent to a, as long as a is facet-adjacent to some module before performing the
move and after performing the move. We call this enlarged set the leapfrog set of moves.

If the previous move is allowed (i.e., if it is feasible for a given modular robot prototype), it
seems natural to allow concatenating more than one of such moves, i.e., to allow concatenating
consecutive rotations about vertices incident to the pivoting module. It is easy to prove
that such concatenation cannot involve more than two pivots before the moving module
becomes facet-adjacent to another module. Indeed, if a module a is facet-adjacent to a
module s1, after at most two such moves it necessarily becomes adjacent to a module s2 (Set
3 in Figure 2). We call this complete set the monkey set of moves.

2.2 Reconfiguration Problem
Consider a configuration C of n robot modules in a given grid. The facet-adjacency graph of
C has a node for each module, and an edge between a pair of nodes if the corresponding
modules are facet-adjacent. Throughout this paper we will often refer to the facet-adjacency
graph simply as the adjacency graph. We will say that a configuration C is facet-connected if
the facet-adjacency graph of C is connected.
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Figure 2 The possible sets of moves for a pivoting module a about a module s, in a square grid.

Applying a pivot move from one of the three sets of moves described in the previous
section to a facet-connected configuration C, means applying one of the moves to a module in
C, in such a way that the configuration (without the pivoting module) stays facet-connected
before, after, and during the move, and the pivoting module does not collide with any other
module. Note that this implies that even deleting the moving module the configuration is
still facet-connected. Reconfiguring C consists of applying a concatenation of such moves.

The (universal) reconfiguration problem asks whether it is possible to reconfigure any
facet-connected configuration of n modules in a given grid into any other configuration with
the same number of modules.

For any positive integer n, the reconfiguration graph Gn has a node for each facet-
connected configuration with n modules, and an edge between two nodes if the corresponding
configurations can be reconfigured into each other through a single pivoting move. We call
rigid any configuration in which no module can move, i.e., any configuration that is an
isolated node of Gn, forming a connected component that is a singleton. We call locked
any configuration that cannot be reconfigured into a straight strip of modules, i.e., any
configuration belonging to a connected component of Gn that does not contain a strip.
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Figure 3 Left: a rigid configuration of edge-connected pivoting squares. Right: A configuration
that can be reconfigured into a strip, in spite of containing instances of the three forbidden patterns.

3 Reconfiguration Graph

Figure 3 (left) shows an example of a configuration that is rigid under the largest possible
set of pivoting moves (set 3 in Figure 2). In [20] it is proved that reconfiguration for set 2 of
pivoting moves (leapfrog moves) is possible between two facet-connected configurations of
the same number of squares, provided that they are both admissible shapes. Admissibility
is defined in terms of forbidden patterns: a facet-connected configuration of squares is
admissible if it does not contain any of the patterns depicted in Figure 4. However, this local
separation condition is certainly not necessary, as proves the example in Figure 3 (right).

(Γ)
Corner bottleneck

(I)
Corridor bottleneck

(Z)
Wide bottleneck

Figure 4 The three forbidden patterns for facet-connected pivoting squares; solid squares represent
modules, and ×-ed squares represent empty spaces.

These results raise several natural questions for facet-connected pivoting squares: Are the
three sets of moves equivalent? In particular, is reconfigurability between admissible shapes
also guaranteed when using the most restrictive set of pivoting moves? This latter question
has been answered positively by the results from [20]. Although not explicitly stated, the
reconfiguration algorithm from [20] uses only restrictive moves.

Several other interesting questions are open. Can the admissible condition be relaxed
when using the largest set of pivoting moves? Do there exist rigid configurations that contain
only one type of pattern? If so, are they rigid with respect to all three sets of pivoting moves?
What can we say about the reconfiguration graph Gn for the different sets of pivoting moves?
We try to answer these questions in the remaining of this section. Due to space constraints,
the proofs of the propositions in this section are omitted.

We start by showing that the three sets of moves for pivoting squares are not equivalent,
as they produce three different reconfiguration graphs.

I Proposition 1. The monkey set of moves for pivoting squares (set 3) is stronger than the
leapfrog set (set 2), and the leapfrog set is stronger than the restrictive set (set 1). That is,
the resulting reconfiguration graph Gn has strictly fewer connected components for set 3 than
for set 2, and fewer connected components for set 2 than for set 1.
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Let us now discuss the differences between the three forbidden patterns. From a purely
geometric viewpoint, pattern Γ produces a (corner) bottleneck along the boundary of a
configuration that is narrower than the one produced by pattern I (corridor bottleneck).
This one is in turn narrower than the one produced by pattern Z (wide bottleneck). The
next propositions show how the presence or the absence of each of such patterns influences
reconfiguration under each of the 3 sets of pivoting moves.

Pattern Γ : Corner Bottleneck

We start by showing that pattern Γ alone suffices to make a configuration rigid, regardless of
the set of pivoting moves used (restrictive, leapfrog, or monkey).

I Proposition 2. Let Gn be the reconfiguration graph of facet-connected pivoting squares. If
only pattern Γ is allowed, while patterns I and Z are forbidden, the number of connected
components of Gn that are singletons and the number of connected components of Gn of
exponential size are both exponential, regardless of the set of pivoting moves used.

Pattern I : Corridor Bottleneck

The forbidden pattern I is weaker than pattern Γ in the sense that it suffices to make a
configuration rigid for the sets of moves 1 and 2 (restrictive and leapfrog) but, if the entire
set 3 of moves is allowed, pattern I alone cannot make a configuration rigid, as we will see.

I Proposition 3. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under sets 1 and 2 of pivoting moves (restrictive and leapfrog). If only pattern I is allowed, and
patterns Γ and Z are forbidden, the number of connected components of Gn that are singletons
and the number of connected components of Gn of exponential size are both exponential.

In contrast, if the entire set of monkey-pivoting moves is allowed, then no configuration
can be rigid if it only contains instances of pattern I (and no instance of patterns Γ and Z).

I Proposition 4. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under the entire set 3 of monkey-pivoting moves. If only pattern I is allowed, and patterns Γ
and Z are forbidden, then Gn contains no singleton components.

Pattern Z : Wide Bottleneck

The forbidden pattern Z is weaker than the forbidden patterns Γ and I in the sense that no
configuration can be rigid if it contains only instances of pattern Z.

I Proposition 5. Let Gn be the reconfiguration graph of facet-adjacent pivoting squares. If
only pattern Z is allowed, and patterns Γ and I are forbidden, then Gn contains no singleton
components, regardless of the set of pivoting moves allowed.

However, there can be locked configurations containing only instances of pattern Z.

I Proposition 6. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under pivoting set of moves 1. If only pattern Z is allowed, and patterns Γ and I are forbidden,
the number of connected components of Gn of exponential size is exponential.
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4 Universal Reconfiguration Algorithm with O(1) Musketeers

In this section, we aim for the important practical goal of universal reconfiguration, that is,
connectivity of the reconfiguration graph. We have seen that the local separation condition
(while sufficient) is too strong: Robot configurations can contain many instances of the
forbidden patterns and still be reconfigurable. On the other hand, we proved that as soon as
the local separation condition is relaxed, the reconfiguration graph breaks into at least an
exponential number of connected components of exponential size.

In what follows, we propose and analyze a new approach for reconfiguring arbitrary
facet-connected configurations (which may contain an arbitrary number of instances of the
forbidden patterns). Our strategy is based on the addition of O(1) musketeer modules, i.e.,
modules that can freely move around the boundary of our robot configuration and will be
used as helpers in certain situations. These modules are not necessarily part of the specified
initial or target configuration.

4.1 Preliminaries: Outer Shell
Let C be an arbitrary facet-connected configuration of pivoting squares. We start introducing
a few definitions.

Let G be the facet-adjacency graph of C, and G the facet-adjacency graph of the lattice
cells that are not occupied by a module of C. Each bounded connected component of G

is a hole of the robot configuration C. The only unbounded connected component of G

is the exterior of C. The boundary of C is the set of lattice cells that are empty and are
facet-adjacent to (at least) one module of C. If the configuration has holes, we define its
external boundary as the subset of the boundary contained in the unbounded connected
component of G.

I Lemma 7. Let C be an arbitrary and static facet-connected configuration of pivoting
squares. Let m be an active module attached to C, North of the topmost rightmost module
of C. Using the monkey set of moves (set 3) m can pivot along the external boundary of
C following the right-hand rule and return to its initial position. If only the leapfrog set of
moves (set 2) is allowed, this is not always possible.

The proof of this lemma is omitted due to space constraints.
It is worth noticing that the proof of Lemma 7 does not require the use of diagonal monkey

jumps, but only of straight monkey jumps. This is relevant form a practical viewpoint,
since it allows our results to be applied to a larger class of modular robots. For example,
the hardware systems modeled in [3, 20] can performs straight monkey jumps, but not
diagonal ones.

We can now define the outer shell of a facet-connected configuration C of pivoting squares
to be the subset of the external boundary of C formed by the lattice cells eventually occupied
by any active robot module m initially positioned North of the topmost-rightmost module in
C, in its right-hand rule traversal of the boundary of C, described in Lemma 7. Figure 5
illustrates this concept.

4.2 Algorithm Overview
Our reconfiguration algorithm transforms any initial facet-connected configuration C of
pivoting squares into any goal configuration with the same number of modules.

In order to simplify the algorithm’s description, we use an intermediate canonical config-
uration, say a strip, and describe the transformation from the initial shape to the strip. The
reconfiguration from the strip to the final shape is obtained by reversing the steps of the
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Figure 5 A robot configuration (in gray) and its associated outer shell (striped in pink).

algorithm. The strip can be built from any lexicographically best positioned module of the
configuration. For example, we will grow a horizontal strip to the left of the bottommost of
the leftmost modules of the configuration.

The strategy behind the algorithm is simple. It consists of sequentially choosing a module
from the configuration that is not a cut vertex of its facet-adjacency graph, and make it
pivot, following the right-hand rule, along the outer shell, until it reaches the tip of the strip
and stops. The problem of this strategy, as we saw in Section 3, is that the reconfiguration
graph is not connected, even under the extended set of monkey moves. In order to overcome
this problem, the algorithm uses musketeer modules. Any module from the canonical strip
can serve as a musketeer module. We will prove that five musketeer modules are sufficient
and sometimes necessary to solve any reconfiguration based on our strategy. Because the
canonical strip is initially empty, it may be necessary to add musketeer modules to the strip
if fewer than needed are available (this may happen at most once).

4.3 Algorithm Details
The description of the algorithm and the proof of its correctness make use of a potential
function. If m is a module located in the lattice position with coordinates (x, y), the potential
function at m is defined as Φ(m) = (x+y, x). The potential being a two-dimensional function,
we sort its values lexicographically. The maximum potential Φmax (minimum potential Φmin)
of a configuration is the lexicographically largest (smallest) potential of all its modules. Note
that, whenever we use the term configuration, we refer to the facet-connected component
that includes all modules other than the ones in the canonical strip.

Given any configuration, we define NE and SW as being the modules with highest and
lowest potential, respectively. Notice that in any configuration C, both NE and SW are
facet-adjacent to the outer shell of C.

4.3.1 Musketeer Modules
I Definition 8. We say that a module m is outer-free in a configuration C if it is facet-
adjacent to the outer shell and it can pivot clockwise, without disconnecting the robot.

The first step of the algorithm is to look for an outer-free module, and pivot it to the
tip of the strip. This step is repeated until no further outer-free modules exist in the initial
configuration. If at that point the configuration is a strip, the algorithm ends.

Otherwise, all the modules in the strip may be used as musketeer modules, one at at
time, starting from the tip of the strip, pivoting them to the positions where they are needed,
as described in next Section 4.3.2. Since our algorithm may require five such modules, it
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S
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sm−1

m

b g

sk sk−1

b1

g1

R

Figure 6 Top: 3× 3 square S in its initial position s0. The outer thick line indicates the path
traversed by the center of S. Dots correspond to the center positions where S is adjacent to a
boundary edge. Bottom: the rectangular union R of S centered at sk and at sk−1.

may be necessary to add extra modules to the strip (or anywhere in the configuration where
they are outer-free) in order to complete the necessary set of musketeer modules. This can
be done at this stage or on the fly, as needed. This second option may be preferable in some
cases, as not all configurations require as many as five musketeer modules.

4.3.2 Bridging Procedure
In this section we describe an operation necessary in some situations when there are no
outer-free modules in the configuration. Let m be the NE module, i.e., the maximum potential
module of a given configuration C. Trivially, there can be no modules of C located North,
North-East, or East of m, i.e., in positions (0, 1), (1, 1), or (1, 0) relative to m. Therefore,
the degree of m in the facet-adjacency graph can only be 1 or 2. Since m is not outer-free, it
must be a cut vertex and have degree 2. Let b1 and g1 respectively be its counterclockwise
and clockwise facet-adjacent modules (see Figure 6). We color the two connected components
of C connected by m blue and green, so that b1 is blue and g1 is green. One important
procedure of our algorithm, which we call bridging, is the act of using musketeer modules to
connect the green and blue components so that m becomes outer-free.

I Observation 9. The outer shell has two green-blue changes of color, one happening at m.

Consider a grid-aligned 3×3 square S centered at the lattice cell of coordinates s0 = (2, 1),
relative to m (see top of Figure 6). Translate S orthogonally clockwise one unit at a time
along the boundary of the configuration until it reaches s0 again. Ignoring the positions
where S is not adjacent to a boundary edge (i.e., the positions of S where one of its corners
coincides with a convex corner of C), let si be the i-th position of the center of S along its
boundary traversal, and let sm = s0. Refer to Figure 6. Since m is the maximum potential
module of the configuration, S is empty of modules at position s0 and all subsequent positions,
and it does not share edges with the blue component when centered at s0, while at sm−2 it
is facet-adjacent to the blue module b1. Let sk be the first position of S along its boundary
traversal where S becomes facet-adjacent to a blue module. Since S travels along the
boundary of the configuration, the rectangular union R of S centered at sk and at sk−1
should also be facet-adjacent to a green module (see bottom of Figure 6).

The algorithm pivots the musketeer modules clockwise, following the right-hand rule
along the outer shell of the configuration, and brings them to the vicinity of sk to connect
the blue and green components, thus forming a cycle containing m.
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Let g and b be the closest pair of respectively green and blue modules facet-adjacent to
rectangle R, and let d be the L1 distance between them. The bridging procedure depends on
the value of d. It is easy to see that d can only be 2, 3, 4, 5, or 6. In the full version of this
paper we prove the following lemma:

I Lemma 10. Let m be the NE module, i.e., the maximum potential module of a given
configuration C. The bridging procedure for m uses O(n) pivoting operations and at most
five musketeer modules, and does not change the maximum and minimum potential of the
configuration. After the procedure ends, m is still the NE module of the modified configuration,
but no longer a cut vertex of its facet-adjacency graph.

Notice also that the bound of five musketeer modules for bridging is tight: Figure 7 shows
an example requiring five musketeer modules for bridging.

m

b g

Figure 7 A rigid configuration that requires the addition of five musketeer modules for bridging.

4.3.3 Reconfiguration Step
We now need to guarantee that module m is able to move and thus it can pivot along the
outer shell of C and join the canonical strip. This is clear when m is disjoint from the
neighborhood of m. We also want to show that we can liberate and send to the canonical
strip either the musketeers used or at least as many modules as musketeers used. In the
full version of this paper we extend the analysis of the neighborhood of m, and for each of
the possible cases we show that either invoking the bridging procedure or explicitly placing
musketeer modules we can guarantee that.

Progress of the reconfiguration is measured in terms of the potential gap ∆Φ = Φmax −
Φmin of the configuration and the size of C (recall that C includes all modules that are not
part of the canonical strip). In all the different cases we show that a reconfiguration step
decreases the potential gap and/or the size of C.

4.4 Algorithm Pseudocode
Algorithm 1 solves the reconfiguration problem by combining the operations described in the
previous sections:

I Theorem 11. The reconfiguration algorithm (Algorithm 1) transforms a facet-connected
configuration C with n modules into a canonical strip of the same size, using O(n2) monkey-
move pivoting steps, which is worst-case optimal, and adding at most five extra modules.

Proof. The input to the algorithm is a configuration C of size n and potential gap ∆Φ = O(n).
Each step of the innermost loop uses O(n) pivoting operations to take an outer-free module to
the end of the strip, thus decreasing the size of C by one. Each reconfiguration step uses O(n)
pivoting steps to decrease either the potential gap or the size of C, leaving it facet-connected
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Algorithm 1 Reconfiguring an arbitrary facet-connected configuration into a canonical
strip.

Data: An arbitrary facet-connected configuration C with n modules
Result: A canonical strip of modules of length n

while there are still modules in C do
while there exist outer-free modules do

pick one outer-free module and pivot it all the way to the tip of the strip;
end
if the strip has fewer than five modules then

make the strip five modules long by adding musketeer modules;
end
invoke the reconfiguration step;

end

(and never increasing the potential gap). Because the size of C never increases, the length
of the canonical strip never decreases. This means that the strip can have fewer than five
modules only once and the conditional does not affect the complexity of the algorithm. We
conclude that the algorithm terminates after O(n) iterations in total. Because each iteration
takes O(n) pivoting steps, the total number of pivoting steps is O(n2). Optimality comes
from the Ω(n2) pivoting steps required to reconfigure a vertical strip into a horizontal one. J

5 Conclusion and Open Problems

This paper addresses the problem of reconfiguring a facet-connected grid configuration of n

modules into any other configuration of n modules under three increasingly more flexible
sets of pivoting moves, namely restrictive, leapfrog and monkey. Previous results solve this
problem under the leapfrog set of moves, as long as the initial and final configurations satisfy
a strong local separating condition imposed by three forbidden patterns. We show that there
exist robot configurations with many instances of the three forbidden patterns that are still
reconfigurable, so the local separation condition is not necessary. On the other hand, we show
that as soon as the local separation condition is relaxed, the reconfiguration graph breaks
into an exponential number of connected components of exponential size. To overcome this
obstacle we introduce a new pivoting move, called monkey, and a natural reconfiguration
approach that does not depend on local features, but uses up to five extra modules that can
freely move around the boundary of the robot configuration. These extra modules are used
to unlock intermediate locked configurations so that progress can be made towards the target
configuration. We show that our approach uses O(n2) monkey-pivoting moves to reconfigure
any source configuration with n pivoting modules into any given target configuration.

We leave open the question of whether universal reconfiguration can be accomplished under
the more restrictive set of leapfrog pivoting moves using a constant number of extra modules.

Another question is whether our approach generalizes to three or higher dimensions. For
example, when the slice graphs (where the vertices are the slices of the configuration cut
along an axis and the edges connect slices with facet-adjacent modules) of the source and
target configurations are both paths, we should be able to reconfigure each to a strip of
modules, one slice at a time, similar to our 2-dimensional approach does. We conjecture
that a similar approach will also work for general 3-dimensional configurations, potentially
after increasing the number of musketeer modules to bridge larger gaps introduced by the
higher dimensionality.
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Abstract
Graph spanners are well-studied and widely used both in theory and practice. In a recent break-
through, Chechik and Wulff-Nilsen [11] improved the state-of-the-art for light spanners by construct-
ing a (2k − 1)(1 + ε)-spanner with O(n1+1/k) edges and Oε(n1/k) lightness. Soon after, Filtser and
Solomon [19] showed that the classic greedy spanner construction achieves the same bounds. The
major drawback of the greedy spanner is its running time of O(mn1+1/k) (which is faster than [11]).
This makes the construction impractical even for graphs of moderate size. Much faster spanner
constructions do exist but they only achieve lightness Ωε(kn1/k), even when randomization is used.

The contribution of this paper is deterministic spanner constructions that are fast, and achieve
similar bounds as the state-of-the-art slower constructions. Our first result is an Oε(n2+1/k+ε′

)
time spanner construction which achieves the state-of-the-art bounds. Our second result is an
Oε(m+ n logn) time construction of a spanner with (2k − 1)(1 + ε) stretch, O(log k · n1+1/k) edges
and Oε(log k · n1/k) lightness. This is an exponential improvement in the dependence on k compared
to the previous result with such running time. Finally, for the important special case where k = logn,
for every constant ε > 0, we provide an O(m+ n1+ε) time construction that produces an O(logn)-
spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known
sub-quadratic construction of such a spanner for any k = ω(1).

To achieve our constructions, we show a novel deterministic incremental approximate distance
oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require
the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent
attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed
in advance, which is critical as our spanner algorithm chooses which edges to insert based on the
answers to distance queries. We believe our new oracle is of independent interest.
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1 Introduction

A fundamental problem in graph data structures is compressing graphs such that certain
metrics are preserved as well as possible. A popular way to achieve this is through graph
spanners. Graph spanners are sparse subgraphs that approximately preserve pairwise shortest
path distances for all vertex pairs. Formally, we say that a subgraph H = (V,E′, w) of an
edge-weighted undirected graph G = (V,E,w) is a t-spanner of G if for all u, v ∈ V we have
dH(u, v) ≤ t · dG(u, v), where dX is the shortest path distance function for graph X and w is
the edge weight function. Under such a guarantee, we say that our graph spanner H has
stretch t. In the following, we assume that the underlying graph G is connected; if it is not,
we can consider each connected component separately when computing a spanner.

Graph spanners originate from the 80’s [24, 25] and have seen applications in e.g. synchron-
izers [25], compact routing schemes [30, 26, 8], broadcasting [18], and distance oracles [32].

The two main measures of the sparseness of a spanner H is the size (number of edges) and
the lightness, which is defined as the ratio w(H)/w(MST (G)), where w(H) resp. w(MST (G))
is the total weight of edges in H resp. a minimum spanning tree (MST) of G. It has been
established that for any positive integer k, a (2k − 1)-spanner of O(n1+1/k) edges exists for
any n-vertex graph [3]. This stretch-size tradeoff is widely believed to be optimal due to a
matching lower bound implied by Erdős’ girth conjecture [16], and there are several papers
concerned with constructing spanners efficiently that get as close as possible to this lower
bound [31, 5, 28].

Obtaining spanners with small lightness (and thus total weight) is motivated by applica-
tions where edge weights denote e.g. establishing cost. The best possible total weight that
can be achieved in order to ensure finite stretch is the weight of an MST, thus making the
definition of lightness very natural. The size lower bound of the unweighted case provides
a lower bound of Ω(n1/k) lightness under the girth conjecture, since H must have size and
weight Ω(n1+1/k) while the MST has size and weight n−1. Obtaining this lightness has been
the subject of an active line of work [2, 7, 14, 11, 19]. Throughout this paper we say that a
spanner is optimal when its bounds coincide asymptotically with those of the girth conjecture.
Obtaining an efficient spanner construction with optimal stretch-lightness trade-off remains
one of the main open questions in the field of graph spanners.

Light spanners. Historically, the main approach of obtaining a spanner of bounded lightness
has been through different analyses of the classic greedy spanner. Given t ≥ 1, the greedy
t-spanner is constructed as follows: iterate through the edges in non-decreasing order of
weight and add an edge e to the partially constructed spanner H if the shortest path distance
in H between the endpoints of e is greater than t times the weight of e. The study of this
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spanner algorithm dates back to the early 90’s with its first analysis by Althöfer et al. [2].
They showed that this simple procedure with stretch 2k − 1 obtains the optimal O(n1+1/k)
size, and has lightness O(n/k). The algorithm was subsequently analyzed in [7, 14, 19] with
stretch (1 + ε)(2k − 1) for any 0 < ε < 1. Recently, a break-through result of Chechik and
Wulff-Nilsen [11] showed that a significantly more complicated spanner construction obtains
nearly optimal stretch, size and lightness giving the following theorem.

I Theorem 1 ([11]). Let G = (V,E,w) be an edge-weighted undirected n-vertex graph and
let k be a positive integer. Then for any 0 < ε < 1 there exists a (1 + ε)(2k − 1)-spanner of
size O(n1+1/k) and lightness Oε(n1/k).1

Following the result of [11] it was shown by Filtser and Solomon [19] that this bound is
matched by the greedy spanner. In fact, they show that the greedy spanner is existentially
optimal, meaning that if there is a t-spanner construction achieving an upper bound m(n, t)
resp. l(n, t) on the size resp. lightness of any n-vertex graph then this bound also holds for the
greedy t-spanner. In particular, the bounds in Theorem 1 also hold for the greedy spanner.

Efficient spanners. A major drawback of the greedy spanner is its O(m · (n1+1/k +n logn))
construction time [2]. Similarly, Chechik and Wulff-Nilsen [11] only state their construction
time to be polynomial, but since they use the greedy spanner as a subroutine, it has the same
drawback. Adressing this problem, Elkin and Solomon [15] considered efficient construction
of light spanners. They showed how to construct a spanner with stretch (1 + ε)(2k − 1), size
Oε(kn1+1/k) and lightness Oε(kn1/k) in time O(km+ min(n logn,mα(n))). Improving on
this, a recent paper of Elkin and Neiman [13] uses similar ideas to obtain stretch (1+ε)(2k−1),
size O(log k · n1+1/k) and lightness O(kn1/k) in expected time O(m+ min(n logn,mα(n))).

Several papers also consider efficient constructions of sparse spanners, which are not
necessarily light. Baswana and Sen [5] gave a (2k − 1)-spanner with O(kn1+1/k) edges in
O(km) expected time. This was later derandomized by Roditty et al. [27] (while keeping
the same sparsity and running time). Recently, Miller et al. [23] presented a randomized
algorithm with O(m+n log k) running time and O(log k ·n1+1/k) size at the cost of a constant
factor in the stretch O(k).

It is worth noting that for super-constant k, none of the above spanner constructions
obtain the optimal O(n1+1/k) size or O(n1/k) lightness even if we allow O(k) stretch. If we
are satisfied with nearly-quadratic running time, Elkin and Solomon [15] gave a spanner
with (1 + ε)(2k − 1) stretch, Oε(n1+1/k) size and Oε(kn1/k) lightness in O(kn2+1/k) time by
extending a result of Roditty and Zwick [28] who got a similar result but with unbounded
lightness. However, this construction still has a factor of k too much in the lightness. Thus,
the fastest known spanner construction obtaining optimal size and lightness is the classic
greedy spanner – even if we allow O(k) stretch or o(kn1/k) lightness.

We would like to emphasize that the case k = logn is of special interest. This is the point
on the tradeoff curve allowing spanners of linear size and constant lightness. Prior to this
paper, the state of the art for efficient spanner constructions with constant lightness suffered
from distortion at least O(log2 n). See the discussion after Corollary 5 for further details.

A summary of spanner algorithms can be seen in Table 1.

1 Oε notation hides polynomial factors in 1/ε.
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Table 1 Table of related spanner constructions. In the top of the table we list non-efficient
spanner constructions. In the middle we list known efficient spanner construction. In the bottom
we list our contributions. Results marked ∗ are different analyses of the greedy spanner. Results
marked # are randomized. Lightness complexities marked ∗∗ appear in the full version [1] and W
denotes the maximum edge weight of the input graph. The bounds hold for any constant ε, ε′ > 0.

Stretch Size Lightness Construction Ref

(2k − 1) O
(
n1+1/k

)
O (n/k) O

(
mn1+1/k

)
[ADD+93][2]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
kn1/k

)
O
(
mn1+1/k

)
[CDNS92][7]∗

(2k − 1) O(n1+1/k) Ω(W ) ∗∗ O
(
kn2+1/k

)
[RZ11][28]

(2k − 1) O
(
kn1+1/k

)
Ω
(
n1+1/k

) ∗∗ O
(
kmn1/k

)
[TZ05][31]#

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
kn1/k

)
O
(
kn2+1/k

)
[ES16][15]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k · k/ log k

)
O
(
mn1+1/k

)
[ENS15][14]∗

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
nΘ(1) [CW18][11]

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O
(
mn1+1/k

)
[FS16][19]∗

(2k − 1) O
(
kn1+1/k

)
Ω(W ) ∗∗ O (km) [BS07,RTZ05][5, 27]

(2k − 1)(1 + ε) O
(
kn1+1/k

)
O
(
kn1/k

)
O (km+ n logn) [ES16][15]

O(k) O(log k · n1+1/k) Ω(W ) O(m+ n · log k) [MPVX15][23]#
(2k − 1)(1 + ε) O(log k · n1+1/k) O

(
k · n1/k

)
O(m+ n · logn) [EN17][13]#

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
Ω(W ) O(m) Theorem 7

(2k − 1)(1 + ε) O
(
log k · n1+1/k

)
O
(
log k · n1/k

)
O(m+ n · logn) Theorem 3

(2k − 1)(1 + ε) O
(
n1+1/k

)
O
(
n1/k

)
O(n2+1/k+ε′

) Theorem 2
O(k) O

(
n1+1/k

)
O
(
n1/k

)
O
(
m+ n1+ε′+1/k

)
Theorem 4

O(logn)/δ O (n) 1 + δ O
(
m+ n1+ε′

)
Corollary 5

1.1 Our results
We present the first spanner obtaining the same near-optimal guarantees as the greedy
spanner in significantly faster time by obtaining a (1 + ε)(2k − 1) spanner with optimal size
and lightness in Oε(n2+1/k+ε′) time. We also present a variant of this spanner, improving the
running time to O(m+ n logn) by paying a log k factor in the size and lightness. Finally, we
present an optimal Oε(logn)-spanner which can be constructed in O(m+ n1+ε) time. This
special case is of particular interest in the literature (see e.g. [4, 22]). Furthermore, all of
our constructions are deterministic, giving the first subquadratic deterministic construction
without the additional dependence on k in the size of the spanner. As an important tool,
we introduce a new deterministic approximate incremental distance oracle which works in
near-linear time for maintaining small distances approximately. We believe this result is of
independent interest.

More precisely, we show the following theorems.

I Theorem 2. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
any positive integer k, and ε, ε′ > 0 where ε arbitrarily close to 0 and ε′ is a constant, one
can deterministically construct an (1 + ε)(2k − 1)-spanner of G with Oε(n1+1/k) edges and
lightness Oε(n1/k) in O(n2+1/k+ε′) time.

I Theorem 3. Given a weighted undirected graph G = (V,E,w) with m edges and n

vertices, a positive integer k ≥ 640, and ε > 0, one can deterministically construct a
(2k − 1)(1 + ε)-spanner of G with Oε(log k · n1+1/k) edges and lightness Oε

(
log k · n1/k) in

time O (m+ n logn).
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Note that in Theorem 3 we require k to be larger than 640. This is not a significant limitation,
as for k = O(1) [15] is already optimal.

Our O(logn)-spanner is obtained as a corollary of the following more general result.

I Theorem 4. Given a weighted undirected graph G = (V,E,w) with m edges and n

vertices, any positive integer k and constant ε′ > 0, one can deterministically construct an
O(k)-spanner of G with O(n1+1/k) edges and lightness O(n1/k) in O(m+ n1+ε′+1/k) time.

We note that the stretch O(k) of Theorem 4 (and Corollary 5 below) hides an exponential
factor in 1/ε′, thus we only note the result for constant ε′. Bartal et. al. [4] showed that given
a spanner construction that for every n-vertex weighted graph produces a t(n)-stretch spanner
with m(n, t) edge and l(n, t) lightness in T (n,m) time, then for every parameter 0 < δ < 1
and every graph G, one can construct a t/δ-spanner with m(n, t) edges and 1 + δ · l(n, t)
lightness in T (n,m) + (m) time. Plugging k = logn and using this reduction we get

I Corollary 5. Let G = (V,E,w) be a weighted undirected n-vertex graph, let ε′ > 0 be
a constant and δ > 0 be a parameter arbitrarily close to 0. Then one can construct a
spanner of G with:
1. O(logn)/δ stretch, O(n) edges and 1 + δ lightness in time O(m+ n1+ε′).
2. O(logn log logn)/δ stretch, O(n log logn) edges and 1+δ lightness in time O(m+n logn).

Corollary 5 above should be compared to previous attempts to efficiently construct a spanner
with constant lightness. Although not stated explicitly, the state of the art algorithms of
[15, 13], combined with the lemma from [4], provide an efficient spanner construction with
1 + δ lightness, O(n log logn) edges and only O(log2 n/δ) stretch.

We emphasize, that Corollary 5 is the first sub-quadratic construction of spanner with
optimal size and lightness for any non-constant k.

In order to obtain Theorem 4 we construct the following deterministic incremental
approximate distance oracle with near-linear total update time for maintaining small distances.
We believe this result is of independent interest, and discuss it in more detail in the related
work section below and in Section 3.

I Theorem 6. Let G be a graph that undergoes a sequence of m edge insertions. For any
constant ε′ > 0 and parameter d ≥ 1 there exists a data structure which processes the m
insertions in total time O(m1+ε′ · d) and can answer queries at any point in the sequence of
the following form. Given a pair of nodes u, v, the oracle gives, in O(1) time, an estimate
d̂(u, v) such that d̂(u, v) ≥ d(u, v) and if d(u, v) ≤ d then d̂(u, v) = O(1) · d(u, v).

Theorem 6 assumes that ε′ is constant; the O-notation hides a factor exponential in 1/ε′ for
both total update time and stretch whereas the query time bound only hides a factor of 1/ε′.

We also obtain the following sparse, but not necessarily light, spanner in linear time as a
subroutine in proving Theorem 3.

I Theorem 7. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k, and ε > 0, one can deterministically construct a (2k − 1)(1 + ε)-spanner
of G with Oε(n1+1/k · log k) edges in time O(m).

1.2 Related work
Closely related to graph spanners are approximate distance oracles (ADOs). An ADO is
a data structure which, after preprocessing a graph G, is able to answer distance queries
approximately. Distance oracles are studied extensively in the literature (see e.g. [31, 33, 9,
10]) and often use spanners as a building block. The state of the art static distance oracle
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is due to Chechik [10], where a construction of space O(n1+1/k), stretch 2k − 1, and query
time O(1) is given. Our distance oracle of Theorem 6 should be compared to the result of
Henzinger, et al. [21], who gave a deterministic construction for incremental (or decremental)
graphs with a total update time of Oε(mn logn), a query time of O(log logn) and stretch
1 + ε. For our particular application, we require near-linear total update time and only good
stretch for short distances, which are commonly the most troublesome when constructing
spanners. It should be added that Henzinger et al. give a general deterministic data structure
for choosing centers, i.e., vertices which are roots of shortest path trees maintained by the
data structure. While this data structure may be fast when the total number of centers is
small, we need roughly n centers and it is not clear how this number can be reduced. Having
this many centers requires at least order mn time with their data structure.

To achieve our fast update time bound, we are interested in trading worse stretch for
distances above parameter d for construction time. Roditty and Zwick [29] gave a randomized
distance oracle for this case, however their construction does not work against an adaptive
adversary as is required for our application, where the edges to be inserted are determined by
the output to the queries of the oracle (see Section 3 for more discussion on this). Removing
the assumption of a non-adaptive adversary in dynamic graph algorithms has seen recent
attention at prestigious venues, e.g. [34, 6]. Our new incremental approximate distance
oracle for short distances given in Theorem 6 is deterministic and thus is robust against
such an adversary, and we believe it may be of independent interest as a building block in
deterministic dynamic graph algorithms.

For unweighted graphs, there is a folklore spanner construction by Halperin and Zwick [20]
which is optimal on all parameters. The construction time is O(m), it has O(n1+1/k) edges and
2k−1 stretch. In Section 6 we will use this spanner as a building block in proving Theorem 3.

2 Preliminaries

Consider a weighted graph G = (V,E,w), we will abuse notation and refer to as E both a set
of edges and the graph itself. dG will denote the shortest path metric (that is dG(v, u) is the
weight of the lightest path between v, u in G. Given a subset V ′ of V , G[V ′] is the induced
graph by V ′. That is it has V ′ as it vertices, E ∩

(
V ′

2
)
as its edges and w as weight function.

The diameter of a vertex set V ′ in a graph G′ diamG′(V ′) = maxu,v∈V ′ dG′(u, v) is the
maximal distance between two vertices in V ′ under the shortest path metric induced by G′.
For a set of edges A with weight function w, the aspect ratio of A is maxe∈A w(e)/mine∈A w(e).
The sparsity of A is simply |A| its size.

We will assume that k = O(logn) as the guarantee for lightness and sparsity will not be
improved by picking larger k. Instead of proving (1 + ε)(2k − 1) bound on stretch, we will
prove only (1 +O(ε))(2k − 1) bound. This is good enough, as Post factum we can scale ε
accordingly. By Oε we denote asymptotic notation which hides polynomial factors of 1/ε,
that is Oε(f) = O(f) · poly( 1

ε ).

3 Paper overview

General framework. Theorems 2 to 4 are generated via a general framework. The framework
is fed two algorithms for spanner constructions: A1, an algorithm suitable for graphs with
small aspect ratio, and A2, an algorithm that returns a sparse spanner, but with potentially
unbounded lightness. We consider a partition of the edges into groups according to their
weights. For treating most of the groups we use exponentially growing clusters, partitioning
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the edges according to weight. Each such group has bounded aspect ratio, and thus we
can use A1. Due to the exponential growth rate, we show that the contribution of all the
different groups is converging. Thus only the first group is significant. However, with this
approach we need a special treatment for edges of small weight. This is, as using the previous
approach, the number of clusters needed to treat light edges is unbounded. Nevertheless,
these edges have small impact on the lightness and we may thus use algorithm A2, which
ignores this property.

The main work in proving Theorems 2 to 4 is in designing the algorithms A1 and A2
described briefly below.

Approximate greedy spanner. The major time consuming ingredient of the greedy spanner
algorithm is its shortest path computations. By instead considering approximate shortest
path computations we significantly speed this process up. We are the first to apply this
idea on general graphs, while it has previously been applied by [12, 19] on particular graph
families. Specifically, we consider the following algorithm: given some parameters t < t′,
initialize H ← ∅ and consider the edges (u, v) ∈ E according to increasing order of weight. If
dH(u, v) > t′ · w(u, v) the algorithm is obliged to add (u, v) to H. If dH(u, v) < t · w(u, v),
the algorithm is forbidden to add (u, v) to H. Otherwise, the algorithm is free to include the
edge or not. As a result, we will get spanner with stretch t′, which has the same lightness
and sparsity guarantees of the greedy t-spanner. Note however, that the resulting spanner is
not necessarily a subgraph of any greedy spanner.

We obtain both Theorem 2 and Theorem 4 using this approach via an incremental
approximate distance oracle. It is important to note that the edges inserted into H using
this approach depend on the answers to the distance queries. It is therefore not possible to
use approaches that do not work against an adaptive adversary such as the result of Roditty
and Zwick [29], which is based on random sampling. Furthermore, this is the case even if we
allow the spanner construction itself to be randomized. In order to obtain Theorem 2, we use
our previously described framework coupled with the “approximately greedy spanner” using
an incremental (1 + ε)-approximate distance oracle of Henzinger et al. [21]. For Theorem 4,
we present a novel incremental approximate distance oracle, which is described below. This
is the main technical part of the paper and we believe that it may be of independent interest.

Deterministic distance oracle. The main technical contribution of the paper and key
ingredient in proving Theorem 4 is our new deterministic incremental approximate distance
oracle of Theorem 6. The oracle supports approximate distance queries of pairs within some
distance threshold, d. In particular, we may set d to be some function of the stretch of the
spanner in Theorem 4. Similar to previous work on distance oracles, we have some parameter,
k, and maintain k sets of nodes ∅ = Ak−1 ⊆ . . . ⊆ A0 = V , and for each u ∈ Ai we maintain
a ball of radius r ≤ di. Here, di is a distance threshold depending on the parameter d and
which set Ai we are considering, and r is chosen such that the total degree of nodes in the
ball of radius r from u is relatively small. The implementation of each ball can be thought of
as an incremental Even-Shiloach tree. The set Ai+1 is then chosen as a maximal set of nodes
with disjoint balls. Here we use the fact that the vertices in Ai+1 are centers of disjoint balls
in Ai to argue that Ai+1 is much smaller than Ai. The decrease in size of Ai+1 pays for an
increase in the maximum ball radius di at each level. The ball of a node u may grow in size
during edge insertions. In this case, we freeze the ball associated with u, shrink the radius r
associated with u, and create a new ball with the new radius. Thus, for each Ai we end up
with O(log d) different radii for which we pick a maximal set of nodes with disjoint balls. For

ESA 2019



4:8 Constructing Light Spanners Deterministically in Near-Linear Time

each node ui ∈ Ai we may then associate a node ui+1 ∈ Ai+1 whose ball intersects with ui’s.
We use these associated nodes in the query to ensure that the path distance we find is not
“too far away” from the actual shortest path distance. Consider a query pair (u, v). Then
the query algorithm iteratively finds a sequence of vertices u = u0 ∈ A0, u1 ∈ A1, ..., ui ∈ Ai;
di is picked such that if v is not in the ball centered at ui with radius di then the shortest
path distance between u and v is at least d and the algorithm outputs ∞. Otherwise, the
algorithm uses the shortest path distances stored in the balls that it encounters to output
the weight of a uv-path (u = u0) u1  . . . ui  v as an approximation of the shortest
path distance between u and v.

Almost linear spanner. Chechik and Wulff-Nilsen [11] implicitly used our general framework,
but used the (time consuming) greedy spanner both as their A2 component and as a sub-
routine in A1. We show an efficient alternative to the algorithm of [11]. For the A2 component
we provide a novel sparse spanner construction (Theorem 7, see paragraph below). For A1,
we perform a hierarchical clustering, while avoiding the costly exact diameter computations
used in [11]. Finally, we replace the greedy spanner used as a sub-routine of [11] by an
efficient spanner that exploits bounded aspect ratio (see Lemma 13). This spanner can be
seen as a careful adaptation of Elkin and Solomon [15] analyzed in the case of bounded
aspect ratio. The idea here is (again) a hierarchical partitioning of the vertices into clusters
of exponentially increasing size. However, here the growth rate is only (1 + ε). Upon each
clustering we construct a super graph with clusters as vertices and graph edges from the
corresponding weight scale as inter-cluster edges. To decide which edges in each scale add
to our spanner, we execute the extremely efficient spanner of Halperin and Zwick [20] for
unweighted graphs.

Linear time sparse spanner. As mentioned above we provide a novel sparse spanner
construction as a building block in proving Theorem 3. Our construction is based on
partitioning edges into Oε(log k) “well separated” sets E1, E2, . . ., such that the ratio between
w(e) and w(e′) for edges e, e′ ∈ Ei is either a constant or at least k. This idea was previously
employed by Elkin and Neiman [13] based on [23]. For these well-separated graphs, Elkin
and Neiman used an involved clustering scheme based on growing clusters according to
exponential distribution, and showed that the expected number of inter-cluster edges, in all
levels combined, is small enough. We provide a linear time deterministic algorithm with
an arguably simpler clustering scheme. Our clustering is based upon the clusters defined
implicitly by the spanner for unweighted graphs of Halperin and Zwick [20]. In particular,
we introduce a charging scheme, such that each edge added to our spanner is either paid
for by a large cluster with many coins, or significantly contributing to reduce the number of
clusters in the following level.

4 A framework for creating light spanners efficiently

In this section we describe a general framework for creating spanners, which we will use
to prove our main results. The framework is inspired by a standard clustering approach
(see e.g. [15] and [11]). The spanner framework takes as input two spanner algorithms for
restricted graph classes, A1 and A2, and produces a spanner algorithm for general graphs.
The algorithm A1 works for graphs with unit weight MST edges and small aspect ratio, and
A2 creates a small spanner with no guarantee for the lightness. The main work in showing
Theorems 2, 3, and 4 is to construct the algorithms, A1 and A2, that go into Lemma 8 below.
The framework is described in the following lemma. The proof appears in the full version [1].
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I Lemma 8. Let G = (V,E) be a weighted graph with n nodes and m edges and let k > 0
be an integer, g > 1 a fixed parameters and ε > 0. Assume that we are given two spanner
construction algorithms A1 and A2 with the following properties:

A1 computes a spanner of stretch f1(k), size Oε(s1(k)·n1+1/k) and lightness Oε(l1(k)·n1/k)
in time T1(n,m, k) when given a graph with maximum weight gk, where all MST edges
have weight 1. Moreover, T1 has the property that

∑∞
i=0 T1

(
n
gik ,mi, k

)
= O (T1(n,m, k)),

where
∑
imi = m+O(n).

A2 computes a spanner of stretch f2(k) and size Oε(s2(k) · n1+1/k) in time T2(n,m, k).
Then one can compute a spanner of stretch max((1 + ε)f1(k), f2(k)), size Oε((s1(k) +
s2(k))n1+1/k), and lightness Oε((l1(k) + s2(k)) · n1/k) in time O(T1(n,m, k) + T2(n,m, k) +
m+ n logn).

5 Efficient approximate greedy spanner

In this section we will show how to efficiently implement algorithms A1 and A2 of Lemma 8
in order to obtain Theorems 2 and 4. We do this by implementing an “approximate-greedy”
spanner, which uses an incremental approximate distance oracle to determine whether an
edge should be added to the spanner or not.

We first prove Theorem 4 and then show in Section 5.2 how to modify the algorithm to
give Theorem 2. We will use Theorem 6 as a main building block, but defer the proof of this
theorem to Section 8. Our A1 is obtained by the following lemma giving stretch O(k) and
optimal size O(n1+1/k) and lightness O(n1/k) for small weights.

I Lemma 9. Let G = (V,E,w) be an undirected graph with m = |E| and n = |V | and
integer edge weights bounded from above by W . Let k be a positive integer and let ε′ > 0
be a constant. Then one can deterministically construct an O(k)-spanner of G with size
O(n1+1/k) and lightness O(n1/k) in time O

(
m+ kWn1+1/k+ε′

)
.

We note that Lemma 9 above requires integer edge weights, but we may obtain this by simply
rounding up the weight of each edge losing at most a factor of 2 in the stretch. Alternatively
we can use the approach of Lemma 12 in Section 5.2 to reduce this factor of 2 to (1 + ε).

Our A2 will be obtained by the following lemma, which is essentially a modified imple-
mentation of Lemma 9.

I Lemma 10. Let G = (V,E,w) be an edge-weighted graph with m = |E| and n = |V |. Let
k be a positive integer and let ε′ > 0 be a constant. Then one can deterministically construct
an O(k)-spanner of G with size O(n1+1/k) in time O

(
m+ kn1+1/k+ε′

)
.

Combining Lemma 8 of Section 4 with Lemmas 9 and 10 above immediately gives us a
spanner with stretch O(k), size O(n1+1/k) and lightness O(n1/k) in time O(m+ n1+1/k+ε′′)
for any constant ε′′ > 0. This is true because we may assume that k ≤ γ logn for any
constant γ > 0, and thus by picking γ and ε′ accordingly we have that the running time
given by Lemma 8 can be bounded by

O
(
m+ kWn1+1/k+ε′

+ kn1+1/k+ε′
)

= O
(
m+ kgkn1+1/k+ε′

)
= O

(
m+ n1+1/k+ε′′

)
.
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5.1 Details of the almost-greedy spanner
Set ε = 1 2. Our algorithm for Lemma 9 is described below in Algorithm 1. It computes
a spanner of stretch c1(1 + ε)(2k − 1), where c1 = O(1) is the stretch of our incremental
approximate distance oracle in Theorem 6. Let t = c1(1 + ε)(2k − 1) throughout the section.
The proof of Lemma 9 is postponed to the full version [1].

Algorithm 1 Approximate-Greedy.

input :Graph G = (V,E,w), Parameters ε, k
output : Spanner H

1 Create H = (V, ∅)
2 Initialize incremental distance oracle (Theorem 6) on H with d = t ·W
3 for (u, v) ∈ E in non-decreasing order do
4 if d̂H(u, v) > t · w(u, v) then
5 Add (u, v) to H

6 return H

Next, we sketch the proof Lemma 10, by explaining how to modify the proof of Lemma 9.

Proof of Lemma 10. Recall that c1 is defined as the constant stretch provided by Theorem 6.
We use Algorithm 1 with the following modifications: (1) we pick d = c1(2k − 1), (2) when
adding an edge to the distance oracle we add it as an unweighted edge, (3) we add an edge
if its endpoints are not already connected by a path of at most d edges according to the
approximate distance oracle.

The stretch of the spanner follows by the same stretch argument as in Lemma 9 and the
fact that we consider the edges in non-decreasing order. To see that the size of the spanner
is O(n1+1/k) consider an edge (u, v) added to H by the modified algorithm. Since (u, v) was
added to H we know that the distance estimate was at least c1(2k − 1). It thus follows from
Theorem 6 that u and v have distance at least 2k in H and therefore H has girth at least
2k + 1. It now follows that H has O(n1+1/k) edges by a standard argument. The running
time of this modified algorithm follows directly from Theorem 6. J

5.2 Near-quadratic time implementation
The construction of the previous section used our result from Theorem 6 to efficiently
construct a spanner losing a constant factor exponential in 1/ε in the stretch. We may
instead use the seminal result of Even and Shiloach [17] to obtain the same result with
stretch (1 + ε)(2k − 1) at the cost of a slower running time as detailed in Theorem 2. Below
is described a version of the result of [17] which we will use.

I Theorem 11 ([17]). There exists a deterministic incremental APSP data structure for
graphs with integer edge weights, which answers distance queries within a given threshold d
in O(1) time and has total update time O(mnd).

Here, the threshold means that if the distance between two nodes is at most d, the data
structure outputs the exact distance and otherwise it outputs∞ (or some other upper bound).

2 In Section 5.2 we let 0 < ε < 1 here to be arbitrary small parameter.
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To obtain Theorem 2 we use the framework of Section 4. For the algorithm A2 we may
simply use the deterministic spanner construction of Roditty and Zwick [28] giving stretch
2k − 1 and size O(n1+1/k) in time O(kn2+1/k). For A1 we will show the following lemma.

I Lemma 12. Let G = (V,E,w) be an undirected graph with m = |E| and n = |V |, edge
weights bounded from above by W and where all MST edges have weight 1. Let k be a positive
integer. Then one can deterministically construct a (1 + ε)(2k − 1)-spanner of G with size
Oε(n1+1/k) and lightness Oε(n1/k) in time Oε(m logn+ kWn2+1/k).

Proof sketch. The final spanner will be a union of two spanners. Since Theorem 11 requires
integer weights. We therefore need to treat edges with weight less than 1/ε separately. For
these edges we use the algorithm of Roditty and Zwick [28] to produce a spanner with stretch
2k − 1, size O(n1+1/k) and thus total weight O(n1+1/k/ε).

For the remaining edges with weight at least 1/ε we now round up the weight to the
nearest integer incurring a stretch of at most a factor of 1 + ε. We now follow the approach
of Algorithm 1 using the incremental APSP data structure of Theorem 11 and a threshold in
line 4 of (1+ε)(2k−1) ·w(u, v) instead. We use the distance threshold d = (1+ε)(2k−1) ·W .

The final spanner, H, is the union of the two spanners above. The stretch, size and
lightness of the spanner follows immediately from the proof of Lemma 9. For the running
time, we add in the additional time to sort the edges and query the distances to obtain a
total running time of

Oε(m logn+ d · |E(H)| · |V (H)|) = Oε

(
m logn+ kWn2+1/k

)
. J

Now, recall that W = gk, where k ≤ logn and g > 1 is a fixed parameter of our choice. By
picking g such that g2k ≤ nε′ we get a running time of O(n2+1/k+ε′) for A1. Theorem 2 now
follows from Lemma 8.

6 Almost Linear Spanner

Our algorithm builds on the spanner of Chechik and Wulff-Nilsen [11]. Here we first describe
their algorithm and then present the modifications. Chechik and Wulff-Nilsen implicitly used
our general framework, and thus provide two different algorithms ACW

1 and ACW
2 . ACW

2 is
simply the greedy spanner algorithm.

ACW
1 starts by partitioning the non-MST edges into k buckets, such that the ith bucket

contains all edges with weight in [gi−1, gi). The algorithm is then split into k levels with the
ith bucket being treated in the ith level. In the ith level, the vertices are partitioned into
i-clusters, where the i-clusters refine the (i− 1)-clusters. Each i-cluster has diameter O(kgi)
and contains at least Ω(kgi) vertices. This is similar to the (i, ε)-clusters in Section 4 with
the modification of having two types of clusters, heavy and light. A cluster is heavy if it has
many incident i-level edges and light otherwise. For a light cluster, we add all the incident
i-level edges to the spanner directly. For the heavy clusters, Chechik and Wulff-Nilsen [11]
create a special auxiliary cluster graph and run the greedy spanner on this to decide which
edges should be added.

To bound the lightness of the constructed spanner, they show that each time a heavy
cluster is constructed the number of clusters in the next level is reduced significantly. Then,
using a clever potential function, they show that the contribution of all the greedy spanners
is bounded. It is interesting to note, that in order to bound the weight of a single greedy
spanner, they use the analysis of [14]. Implicitly, [14] showed that on graphs with O(poly(k))
aspect ratio, the greedy (1 + ε)(2k − 1)-spanner has Oε(n1/k) lightness and O(n1+1/k) edges.
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There are three time-consuming parts in [11]: 1) The clustering procedure iteratively
grows the i-clusters as the union of several (i− 1)-clusters, but uses expensive exact diameter
calculations in the original graph. 2) They employ the greedy spanner several times as a
subroutine during ACW

1 for graphs with O(poly(k)) aspect ratio. 3) They use the greedy
spanner as ACW

2 .
In order to handle 1) above we will grow clusters purely based on the number of nodes in

the (i− 1)-clusters (in similar manner to (i, ε)-clusters), thus making the clustering much
more efficient without losing anything significant in the analysis. To handle 2) We will use
the following lemma in place of the greedy spanner.

I Lemma 13. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k, ε > 0, such that all the weights are within [a, a · ∆), and the MST
have weight O(na). One can deterministically construct a (2k − 1)(1 + ε)-spanner of G with
Oε(n1+ 1

k ) edges and lightness Oε
(
n

1
k · log (∆)

)
in time O (m+ n logn)).

The core of Lemma 13 already appears in [15], while here we analyze it for the special
case where the aspect ratio is bounded by ∆. The main ingredient is an efficient spanner
construction by Halperin and Zwick [20] for unweighted graphs. The proof of Lemma 13 is
deferred to the full version [1]. Replacing the greedy spanner by Lemma 13 above is the sole
reason for the additional log k factor in the lightness of Theorem 3.

Imitating the analysis of [11] with the modified ingredients, we are able to prove the
following lemma, which we will use as A1 in our framework.

I Lemma 14. Given a weighted undirected graph G = (V,E,w) with m edges and n vertices,
a positive integer k ≥ 640, and ε > 0, such that all MST edges have unit weight, and all
weights bounded by gk, one can deterministically construct a (2k − 1)(1 + ε)-spanner of G
with Oε(n1+1/k) edges and lightness Oε

(
log k · n 1

k

)
in time O (m+ nk)).

To address the third time-consuming part we instead use the algorithm of Theorem 7 as
A2. Replacing the greedy algorithm by Theorem 7 is the sole reason for the additional log k
factor in the sparsity of Theorem 3.

Combining Lemma 14, Theorem 7 and Lemma 8 we get Theorem 3. The proof of
Lemma 14 deferred to the full version [1].

7 Proof of Theorem 7

The basic idea in the algorithm of Theorem 7, is to partition the edges E of G into Oε(log k)
sets E1, E2, . . . , such that the edges in Ei are “well separated”. That is, for every e, e′ ∈ Ei,
the ratio between w(e) and w(e′) is either a constant or at least k. By hierarchical execution
of a modified version of [20], with appropriate clustering, we show how to efficiently construct
a spanner of size O(n1+1/k) for each such “well separated” graph. Thus, taking the union of
these spanners, Theorem 7 follows. The details appear in the full version [1].

8 Deterministic Incremental Distance Oracles for Small Distances

In this section, we present a deterministic incremental approximate distance oracle which
can answer approximate distance queries between vertex pairs whose actual distance is below
some threshold parameter d. This oracle will give us Theorem 6 and finish the proof of
Theorem 4. In fact, we will show the following more general result. Theorem 6 follows
directly by setting k = 1/ε in the theorem below.
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I Theorem 15. Let G = (V,E) be an n-vertex undirected graph that undergoes a series of
edge insertions. Let G have positive integer edge weights and set E = ∅ initially. Let ε > 0
and positive integers k and d be given. Then a deterministic approximate distance oracle
for G can be maintained under any sequence of operations consisting of edge insertions and
approximate distance queries. Its total update time is Oε(m1+1/k(3 + ε)k−1d(k + log d) logn)
where m is the total number of edge insertions; the value of m does not need to be specified
to the oracle in advance. Given a query vertex pair (u, v), the oracle outputs in O(k logn)
time an approximate distance d̃(u, v) such that d̃(u, v) ≥ d(u, v) and such that if d(u, v) ≤ d
then d̃(u, v) ≤ (2(3 + ε)k−1 − 1)d(u, v).

As discussed in Section 3, a main advantage of our oracle is that, unlike, e.g., the incremental
oracle of Roditty and Zwick [29], it works against an adaptive adversary. Hence, the sequence
of edge insertions does not need to be fixed in advance and we allow the answer to a distance
query to affect the future sequence of insertions. This is crucial for our application since the
sequence of edges inserted into our approximate greedy spanner depends on the answers to
the distance queries.

We assume in the following that m ≥ n; if this is not the case, we simply extend the
sequence of updates with n − m dummy updates. We will present an oracle satisfying
Theorem 15 except that we require it to be given m in advance. An oracle without this
requirement can be obtained from this as follows. Initially, an oracle is set up with m = n.
Whenever the number of edge insertions exceeds m, m is doubled and a new oracle with this
new value of m replaces the old oracle and the sequence of edge insertions for the old oracle
are applied to the new oracle. By a geometric sums argument, the total update time for the
final oracle dominates the time for all the previous oracles. Hence, presenting an oracle that
knows m in advance suffices to show the theorem.

Before describing our oracle, we need some definitions and notation. For an edge-weighted
tree T rooted at a vertex u, let dT (v) denote the distance from u to v in T , where dT (v) =∞
if v /∈ V (T ). Let r(T ) = maxv∈V (T ) dT (v). Given a graph H and W ⊆ V (H), we let
degH(W ) =

∑
v∈W degH(v) and given a subgraph S of H, we let degH(S) = degH(V (S)).

For a vertex u in an edge-weighted graph H and a value r ≥ 0, we let BH(u, r) denote the
ball with center u and radius r in H, i.e., BH(u, r) = {v ∈ V (H)|dH(u, v) ≤ r}. When H is
clear from context, we simply write B(u, r).

We use a superscript (t) to denote a dynamic object (such as a graph or edge set) or
variable just after the t’th edge insertion where t = 0 refers to the object prior to the first
insertion and t = m refers to the object after the final insertion. For instance, we refer to G
just after the t’th update as G(t).

In the following, let ε, k, and d be the values and let G = (V,E) be the dynamic graph
of Theorem 15. For each i ∈ {0, . . . , k − 1}, define mi = 2m(i+1)/k and let di be the smallest
power of (1+ε) of value at least (3+2ε)id. For each u ∈ V and each t ∈ {0, . . . ,m}, let d(t)

i (u)
be the largest power of (1 + ε) of value at most di such that degG(t)(B(t)(u, d(t)

i (u))) ≤ mi.
We let B(t)

i (u) = B(t)(u, d(t)
i (u)) and let T (t)

i (u) be a shortest path tree from u in B(t)
i (u).

Note that T (t)
i (u) need not be uniquely defined; in the following, when we say that a tree is

equal to T (t)
i , it means that the tree is equal to some shortest path tree from u in B(t)

i (u).
The data structure in the following lemma will be used as black box in our distance

oracle. One of its tasks is to efficiently maintain trees T (t)
i (u). The proof of Lemma 16 is

deferred to the full version [1].

I Lemma 16. Let U ⊆ V be a dynamic set with U (0) = ∅ and let i ∈ {0, . . . , k − 1} be
given. There is a deterministic dynamic data structure which supports any sequence of update
operations, each of which is one of the following types:
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Insert-Edge(u, v): this operation is applied whenever an edge (u, v) is inserted into E,
Insert-Vertex(u): inserts vertex u into U .
Let tmax denote the total number of operations and for each vertex u inserted into U , let
tu denote the update in which this happens. The data structure outputs in each update
t ∈ {1, . . . , tmax} a (possibly empty) set of trees T (t)

i (u) rooted at u for each u ∈ U (t)

satisfying either t > tu and d(t)
i (u) < d

(t−1)
i (u) or t = tu and d(t)

i (u) < di. For each such
tree T (t)

i (u), r(T (t)
i (u)) ≤ (1 + ε)d(t)

i (u) ≤ di and degG(t)(T (t)
i (u)) > mi. Total update time

is O(m) +Oε(|U (tmax)|midi logn).
At any point, the data structure supports in O(1) time a query for the value d(t)

i (u) and
in O(logn) time a query for the value dTi(u)(v) and for whether v ∈ V (Ti(u)), for any query
vertices u ∈ U and v ∈ V .

The construction and analysis of the distance oracle appear in the full version [1].
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Abstract
A string UU for a non-empty string U is called a square. Squares have been well-studied both from a
combinatorial and an algorithmic perspective. In this paper, we are the first to consider the problem
of maintaining a representation of the squares in a dynamic string S of length at most n. We present
an algorithm that updates this representation in no(1) time. This representation allows us to report
a longest square-substring of S in O(1) time and all square-substrings of S in O(output) time. We
achieve this by introducing a novel tool – maintaining prefix-suffix matches of two dynamic strings.

We extend the above result to address the problem of maintaining a representation of all runs
(maximal repetitions) of the string. Runs are known to capture the periodic structure of a string,
and, as an application, we show that our representation of runs allows us to efficiently answer
periodicity queries for substrings of a dynamic string. These queries have proven useful in static
pattern matching problems and our techniques have the potential of offering solutions to these
problems in a dynamic text setting.
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1 Introduction

A string UU , where U is not empty, is called a square or a tandem repeat. Squares are a
fundamental construct in word combinatorics, and algorithms for finding all squares have
been sought as early as the 1980’s [15, 10, 37]. The problem turned out to be central in
computational biology causing much algorithmic work to have taken place since then [12, 27].
The approximate version is also of great interest [36, 19, 41, 40].

A run is a periodic fragment of the text that cannot be extended to either direction
without increasing its period. Kolpakov and Kucherov, in their seminal paper [35], showed
that there are O(n) runs in a text of length n, and presented an algorithm to compute them
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in O(n) time. After a long line of research, the breakthrough result of Bannai et al. [11]
showed that a string of length n can have at most n runs. Runs have been used as an
algorithmic tool, for example, for extracting the k-powers in a string (note that a square is a
2-power) and for efficient computation of the periods of substrings of a string [17, 33, 34].

Due to the importance, both theoretical and practical, of squares and runs, it is surprising
that the problem of computing or maintaining them in a dynamic text has not been studied.
Of course, one can re-run a square/run detection algorithm after every change in the text,
but this is clearly a very inefficient way of handling the problem.

In the 1990’s the active field of dynamic graph algorithms was started, with the motive
of answering questions on graphs that dynamically change over time. For an overview
see [18]. Recently, there has been a growing interest in dynamic pattern matching. This
natural interest grew from the fact that the biggest digital library in the world - the web - is
constantly changing, as well as from the fact that other big digital libraries - genomes and
astrophysical data, are also subject to change through mutation and time, respectively.

Historically, there has been much interest in dynamic string matching algorithms. Amir
and Farach [7] introduced dynamic dictionary matching, which was later improved by Amir et
al. [8]. Idury and Scheffer [29] introduced an automaton-based dynamic dictionary algorithm.
Gu et al. [26] and Sahinalp and Vishkin [39] developed a dynamic indexing algorithm, where a
dynamic text is indexed. Further progress in dynamic indexing and dictionary matching was
achieved by Ferragina et al. [20, 21] and Mehlhorn et al. [38]. Pattern matching algorithms
where the text is dynamic and the text is static were also considered [2, 9].

In the last few years there was a resurgence of interest in dynamic string matching. In
2017 a theory began to develop with its nascent set of tools. Bille et al. [13] investigated
dynamic relative compression and dynamic partial sums. Amir et al. [5] considered the
longest common factor (LCF) problem in the case of one revertible edit (see also [1]). Special
cases of the dynamic LCF problem were discussed by Amir and Boneh [3]. An algorithm
for the fully dynamic LCF problem was presented by Amir et al. [6]. (A similar line of
work has taken place for the problem of maintaining a longest palindrome in a dynamic
string [23, 24, 6, 4].) Gawrychowski et al. [25] settled the complexity of maintaining a
dynamic collection of strings under operations: concatenate, split, makestring, lexicographic
comparison, and finding the longest common prefix of two strings.

We continue this line of work by considering squares and runs in a dynamic string. We
present our algorithms for the case where the allowed update operations are substitutions.
We first show our techniques in the setting of the following problem.

Dynamic Longest Square
Input: A string S.
Query: For given index i (and character α), set S[i] = α and compute LS(S).

Our contributions. We make a step forward in the exciting area of dynamic pattern
matching. We give efficient dynamic solutions for a number of important problems:
1. Fully dynamic pattern matching in a text and pattern where the text length is twice the

pattern length. In fact, to our knowledge, this is the first known algorithm that does not
require Ω(occ) time to report all pattern occurrences, i.e. it may report them in time
smaller than their number, by reporting occurrences via an arithmetic progression.

2. Dynamic maintenance of the longest square in a text in no(1) time per string update,
after an Õ(n)-time preprocessing and using Õ(n) space. 1

1 The Õ(·) notation suppresses logO(1) n factors.
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3. Dynamic maintenance of all runs in a text within the same complexities. It is noteworthy
that although a single substitution can destroy/create Ω(n) squares/runs, we can maintain
a compact representation of them in subpolynomial time.

4. We conclude by showing that our representation of runs can be employed to efficiently
maintain k-powers in a dynamic text and answer queries about periodicity of substrings,
adapting the static solutions of Crochemore et al. [17]. Detecting internal periodicities has
proven useful in several static string matching applications, thus our dynamic algorithm
can potentially help the dynamic version of such problems. An overview of the literature
for internal queries in static texts can be found in [32].

We introduce a new technique, which we expect will be a powerful tool in other dynamic
string matching problems, that of dynamically maintaining prefix-suffix matches. This
enabled us to efficiently maintain all runs in a dynamic string, which, in turn, enabled the
applications presented in this paper.

2 Preliminaries

We begin with basic definitions and notation generally following [16]. Let S = S[1]S[2] · · ·S[n]
be a string of length |S| = n over an integer alphabet Σ. For two positions i and j on S,
we denote by S[i . . j] = S[i] · · ·S[j] the fragment of S that starts at position i and ends at
position j (it is the empty string ε if j < i). A string Y , of length m with 0 < m ≤ n, is a
substring of S if there exists a position i in S such that Y = S[i . . i+m− 1]. In this case
we say that there exists an occurrence of Y in S, or, more simply, that Y occurs in S at
(starting) position i. A substring is called proper if it is shorter than the whole string. A
fragment S[1 . . j], j < n, is called a prefix of S, and, analogously, a fragment S[i . . n], i > 1,
is called a suffix. A fragment of S that is neither a prefix nor a suffix of S is called an infix.
A string B that occurs both as a proper prefix and a proper suffix of S is called a border
of S. A positive integer p is called a period of S if S[i] = S[i + p] for all i = 1, . . . , n − p.
String S has a period p if and only if it has a border of length n− p. We refer to the smallest
period per(S) of S as the period of the string and, analogously, to the longest border as the
border of the string. A string S is periodic if per(S) ≤ |S|/2.

By ST and Sk we denote the concatenation of strings S and T and k copies of the string
S, respectively. A string of the form S2 for some S ∈ Σ+ is called a square and a string of
the form Sk is called a k-power.

A run (also known as maximal repetition) is a periodic fragment R = S[a . . b] which
cannot be extended to the left nor to the right without increasing the period p = per(R),
that is, S[a− 1] 6= S[a+ p− 1] and S[b− p+ 1] 6= S[b+ 1]. The number of runs in a string
of length n is at most n [11] and all runs can be computed in O(n) time [35].

By lcpstring(S, T ) we denote the longest common prefix of S and T , by lcp(S, T ) we denote
|lcpstring(S, T )|, and by lcp(r, t) we denote lcp(S[r . . n], S[t . . n]). The longest common suffix
lcs is defined analogously. We refer to queries returning lcp(r, s) or lcs(r, s) as longest common
extension queries (LCE queries).

It is known that by maintaining Karp-Rabin fingerprints [31] for the substrings of length
2j starting at a positions i = 1 (mod 2j) for all 1 ≤ j ≤ logn one can obtain the following
lemma. (More involved solutions with better complexities in the O-notation can be obtained
by applying for instance the results of [25], cf. [6].)

I Lemma 1. A dynamic string can be maintained with Õ(1)-time per edit operation so that
LCE queries can be answered in Õ(1) time, using Õ(n) space.
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3 An Õ(n2/3)-time algorithm

In this section we present an algorithm that reports a longest square LS(S) in time Õ(n2/3)
after each substitution operation. We actually present two algorithms, one for each of the
cases of LS(S) being short or long. Let m, which is to be chosen later, be the distinguishing
threshold between those cases. We can assume that m is a power of 2.

Main idea. In order to handle the case of LS(S) being short, we split our text into O(n/m)
overlapping fragments of length 2m. Each substitution operation affects only two of these
fragments, and we thus just recompute the longest square in them in O(m) time. As for
the case that the LS(S) UU is long, we note that the first occurrence of U must contain a
fragment of length m/4 for some i = 1 (mod m/4). The idea is to use such fragments as
anchors and maintain all of their occurrences in the string using dynamic renaming. Then
for every such fragment and every occurrence of it we would like to check whether there is
any square UU that contains them “aligned” in the two occurrences of U . We show how to
process fragments that have many occurrences efficiently by exploiting periodicity.

3.1 |LS(S)| ≤ m

Preprocessing. We split the string S into overlapping fragments, each of length 2m, starting
at positions i = 1 + j ·m for j = 0, 1, . . . dn/me. (Note that the last two fragments could be
shorter than 2m.) We use a linear-time algorithm ([17, 28]) to compute all squares in each
of these fragments, requiring time O(m · n/m) = O(n) in total. For each fragment, we will
maintain a representative longest square-substring, which is chosen arbitrarily in case of ties.
We store the representatives of all fragments in a max heap, with their lengths being the
keys. The max heap can be built in time O(n).

Query. Every position of the string is contained in at most two fragments. After each
substitution operation we use a linear-time algorithm to recompute all squares in the affected
fragments, requiring time O(m). We then update the heap in time O(logn) by deleting
the previous representatives (to which we have stored pointers) and inserting the new ones.
We then simply retrieve the longest element in the max heap in O(1) time. The overall
query-time complexity is O(m+ logn).

Correctness. The correctness of the described algorithm follows directly from the observa-
tion that each substring of S of length at most m is fully contained in at least one of the
O(n/m) 2m-length fragments.

3.2 |LS(S)| ≥ m = 4k

Let us start with an observation.

I Observation 2. In a square-substring UU of S, with |U | ≥ 2k, the first occurrence of U
contains S[i . . i+ k − 1] for some i = 1 (mod k).

This observation guarantees that long square-substrings of S can be identified using
the O(n/k) fragments starting at positions i = 1 (mod k) as anchors. To this end, we
maintain names for all k-length fragments of the string, such that two fragments of S have
the same name if and only if they are equal. We first briefly describe the renaming technique,
originating from [30], and then show how to use it in the dynamic setting.
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The renaming technique. We recursively (consistently) rename pairs of letters of a string
S. Let us consider the original string S = S0 as the string at level 0 and the resulting
string Sλ after λ iterations of renaming as the string at level λ. At level λ, the letter of
Sλ at position i corresponds to S[i . . i+ 2λ − 1]; in other words Sλ[i] = Sλ[j] if and only if
S[i . . i+ 2λ − 1] = S[j . . j + 2λ − 1].

Given string Sλ we rename as follows. We consider the multiset V of all pairs pλ(i) =
(Sλ[i], Sλ[i+ 2λ − 1]) and radix sort them in O(n) time. We then assign a distinct integer
identifier f(v) from {1, . . . , n} to each distinct element of V . Finally, we set Sλ+1[i] = f(pλ(i)).
This process terminates after logn iterations and thus requires time O(n logn) in total.

Dynamic renaming. We only maintain log k levels of renaming, i.e. strings S0, . . . , Slog k.
We maintain the different pairs of letters at each level λ in a balanced binary search tree
(bBST) Bλ; each node of Bλ stores the name given to this pair and a counter of its occurrences
in the string. We also maintain a bBST Cλ storing the letters from {1, . . . , n} that are not
currently used to rename pairs at this level. Each substitution affects at most k k-length
fragments. We update their names in a bottom up manner in time O(k logn) as follows. For
each affected pair of letters at a level λ that changed, for example, from (a, b) to (a, c), we
search for (a, b) in Bλ and decrement its counter. In addition, if the counter reaches 0, the
name given to this letter is now free and we update Cλ accordingly. We then search for (a, c)
in Bλ and, (a) if we find it, we increment the counter and use the stored name, (b) else we
insert (a, c) to Bλ and assign to this pair of letters the smallest element of Cλ.

In addition, for each name a of a k-length fragment (i.e. letter at level λ = log k) we
store the positions of its occurrences in Sλ in a predecessor data (bBST) structure Pa. We
can perform insertions and deletions as well as perform predecessor/successor queries in
Pa in O(logn) time each. Below, after a brief discussion on periodicity, we will present a
modification on Pa in order to compactly store the occurrences of a.

Computing squares. We would like to pair each of the k-length fragments starting at a
position i = 1 (mod k), with name a, with all of its other occurrences in S, which can be
retrieved from the predecessor structure Pa. Let j 6= i be the position of such an occurrence,
and denote such a pair as (i, j). We can assume without loss of generality that i < j; the
other case is symmetric. For each pair, we want to check whether a square S[a . . b] = UU ,
such that a ≤ i < j ≤ b and j − i = |U |, exists. We call each such square an (i, j)-square.
Observation 2 guarantees that every square of length at least m = 4k will be identified in
this manner. The following lemma shows how to perform the described check efficiently.

I Lemma 3. Given two positions i < j, we can check whether an (i, j)-square exists and
report all (i, j)-squares compactly in time Õ(1).

Proof. The following observation essentially reduces computing all (i, j)-squares to answering
two LCE queries. Inspect Figure 1 for an illustration.

I Observation 4. An (i, j)-square UU , where i is the t-th letter of the first occurrence of U
exists if and only if lcs(i, j) ≥ t and lcp(i, j) ≥ |U | − t+ 1.

Now 1 ≤ t ≤ |U | and t = i − a + 1, where a is the starting position of such a square.
Hence a = i + 1 − t for 1 ≤ t ≤ |U | such that lcs(i, j) ≥ t and lcp(i, j) ≥ |U | − t + 1 are
the starting positions of all (i, j)-squares. Equivalently, the (i, j)-squares are the fragments
S[a . . a + 2|U | − 1], for i + 1 − min{lcs(i, j), |U |} ≤ a ≤ min{i + lcp(i, j) − |U |, i}. We
employ Lemma 1 to efficiently answer LCE queries. J
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S
a i j b

lcs(i, j) lcp(i, j)

Figure 1 The setting in the proof of Lemma 3. The two occurrences of U in an (i, j)-square UU

are denoted by dashed rectangles. The two equal k-length fragments starting at positions i and j

are denoted by gray rectangles.

Aperiodic k-length substrings. If the k-length fragment S[i . . i+ k − 1] to be processed is
aperiodic, it occurs O(n/k) times in S. We can thus afford to employ Lemma 3 for each pair
(i, j), where j 6= i is a position where S[i . . i+ k − 1] occurs. The time required to process
S[i . . i+ k − 1] is thus Õ(n/k).

Periodic k-length substrings. If the k-length substring is periodic then we cannot process
each pair individually as there could be Ω(n) of them. To overcome this, we exploit periodicity
to process the pairs in batches. The lemma below follows directly from the periodicity lemma,
which states that if a string has a period p and a period q, such that p+ q ≤ n+ gcd(p, q),
then gcd(p, q) is also a period of this string [22].

I Fact 5. The distance between the starting positions of two consecutive occurrences of a
periodic string Y with period p in a string S is either p or greater than |Y |/2.

We now present an algorithm to process a k-length substring Y with period p that occurs
more than 3n/k times in S. We can treat periodic substrings that occur fewer than 3n/k
times with the algorithm for the aperiodic ones. Note that this is in fact necessary, as we
cannot afford to compute the period of each relevant substring. Instead, we identify periodic
substrings that occur frequently as follows. Remember that we have stored the positions
where a k-length fragment Y with name a occurs in a predecessor data structure Pa. Then,
in light of Fact 5, if Y occurs more than 3n/k times, two of its occurrences will have to be
at distance per(Y ). We will identify this by checking the distance of each newly inserted
element in the predecessor data structure with its predecessor and successor. If it happens
to be below |Y |/2, we store this distance, which is per(Y ), as satellite information in Pa.

We call a set of positions A = {j + t · p|t = 0, . . . , r} a p-cluster of Y in S if p = per(Y ),
S[a . . a+ k− 1] = Y for all a ∈ A and S[j − p . . j − p+ k− 1] 6= Y 6= S[j + (t+ 1)p . . j + (t+
1)p+ k − 1]. It follows directly from Fact 5 that there are O(n/k) p-clusters of Y in S. We
maintain these p-clusters by storing p-cluster A as an arithmetic progression (minA, p, |A|)
with key minA in Pa. We merge p-clusters if needed by using predecessor/successor queries
in Pa upon insertions, and similarly split p-clusters if needed upon deletions.

I Observation 6. Let Y be a periodic string. An occurrence of Y in S is a fragment of
exactly one run R with per(R) = per(Y ). We say that R extends Y . The p-cluster containing
this occurrence of Y corresponds to the occurrences of Y in R.

I Lemma 7. Given a periodic fragment Y and p = per(Y ), the run R that extends Y can be
computed using a constant number of LCE queries. R = S[i− a+ 1 . . i+ p+ b− 1], where
a = lcs(i, i+ p) and b = lcp(i, i+ p).

We next show how to process the pairs yielded by each of the p-clusters in Õ(1) time.

I Theorem 8. Given a position i in S, where Y occurs, and a p-cluster A of Y in S, we can
compute a longest (i, j)-square over all j ∈ A in time Õ(1). In particular, if i 6∈ A, we return
a superset of all (i, j)-squares for j ∈ A that are of length at least 4k in a compact form.
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S
i je1 e2

Figure 2 An illustration of the setting in Case 1 in the proof of Theorem 8. As before, the two
occurrences of U in an (i, j)-square UU are denoted by dashed rectangles and the two equal k-length
fragments starting at positions i and j are denoted by gray rectangles.

Proof. If it so happens that i ∈ A, then the longest (i, j)-square can be easily retrieved as it
must lie entirely within the run R = S[a . . b] corresponding to A. Let r = b− a (mod 2p). It
can be readily verified that either S[a+ r . . b] or S[a . . b− r] is a longest (i, j)-square over all
j ∈ A. (See also [17].)

In the other case, that is i 6∈ A, we first compute the unique run R1 = S[s1 . . e1] that
extends the occurrence of Y at position i, and similarly the run R2 = S[s2 . . e2] corresponding
to the occurrences of Y in A. This can be done in time Õ(1) by performing a constant
number of LCE queries, cf. Lemmas 7 and 1.

Our assumption that i < j implies that s1 < s2. Let UU be an (i, j)-square with j ∈ A.
We have the following cases for the occurrence of U in which S[e1 + 1] lies.

1. The first occurrence, in which case the endpoints S[e1] and S[e2] of the two runs must be
aligned (i.e. be at distance |U |), since lcp(i, j) > e1 + 2 − i. In other words, S[e1] and
S[e2] must both occur as the t-th letter of an occurrence of U in the square for some t –
inspect Figure 2 for an illustration. In this case we compute the longest (e1, e2)-square
(or all (e1, e2)-squares) in Õ(1) time using Lemma 3.

2. The second occurrence, in which case, the situation is more interesting. We have the
following two subcases.
a. If e1 + 1 < s2, by an argument symmetric to that for the first case, the starting

points S[s1] and S[s2] of the two runs must be aligned – one can think of Figure 2
reversed. As in Case 1, we can compute the longest (all) (s1, s2)-square(s) in Õ(1)
time using Lemma 3.

b. Else, we have that the first and second occurrences of U are fragments of runs R1 and
R2, respectively.

We now look into the structure yielded by the condition in Case 2b and show how to
compute and represent all (possibly many) squares that satisfy it, and are essentially defined
by runs R1 and R2, efficiently.

I Definition 9. For two runs R1 and R2, with period per(R1) = per(R2) = p that overlap,
we define sq(R1, R2) to be the set of squares UU of length at least 4p such that the first and
second occurrences of U lie entirely within R1 and R2, respectively.

In what follows, we show how to compute sq(R1, R2), which is a superset of the (i, j)-
squares of length at least k for j ∈ A since 4p ≤ 4k/2 ≤ 2k. We obtain a constant number of
arithmetic progressions that represent all such squares. Let us start with an example that
captures the structure of sq(R1, R2).

I Example 10. Consider string (baa)4a(baa)3. There are two runs with period p = 3,
namely R1 = S[1 . . 12] and R2 = S[12 . . 22]. See Figure 3 for an illustration and for the
squares that satisfy the condition of Case 2b. One can see that we can get Ω(n) such squares
for a string of length O(n), by extending this paradigm and considering string (baa)na(baa)n.
This example shows that a single substitution can create/destroy Ω(n) squares; think of first
setting S[n+ 1] := c and then S[n+ 1] := a.
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b a a b a a b a a b a a a b a a b a a b a a

Figure 3 The two runs with period 3 are represented by black. The squares UU of length at
least 4p, such that the two occurrences of U are fully contained in the two runs are shown in red
and blue, partitioned with respect to the first letter of the second occurrence of U .

B Claim 11. Let us suppose that we are given two runs R1 = S[s1 . . e1] and R2 = S2[s2 . . e2],
with per(R1) = per(R2) = p, such that R1[f . . f + p − 1] = R2[1 . . p − 1] for some given
f ≤ s1 + p − 1 and such that s1 ≤ s2 ≤ e1 ≤ e2. We can compute a representation of
sq(R1, R2) in O(1) time.

Proof. The following fact implies that Example 10 resembles the structure of the problem.

I Fact 12 ([32]). Two runs with period p cannot overlap by more than p− 1 positions.

Due to the condition that the first and second occurrences of U must be fragments of
runs R1 and R2, respectively, we have that the second occurrence of U can only start at one
of the positions in C = {s2, . . . , e1 + 1}, where |C| ≤ p by Fact 12. Let us consider some
c ∈ C and characterize all squares S[a . . b] = UU with c = a+ |U | and |U | ≥ 2p.

S[c − p . . c − 1] is a rotation of S[c . . c + p − 1], i.e. there exists some δ < p such that
S[c− p . . c− 1] = S[c+ δ . . c+ p− 1]S[c . . c+ δ − 1]. In particular, δ = s2 − f (mod p).
|U | must equal t · p+ δ in order for the two occurrences of U to start at the same offset

mod p from f and s2; this is necessary, since otherwise we would have two different rotations
of R2[1 . . p−1] matching, which is impossible as it would imply that per(R2) < p. In addition,
all |U |’s of the form t · p + δ for t ≥ 2 and for which the two occurrences of U lie entirely
within runs R1 and R2, respectively, define valid squares. We can thus compute all these
squares in O(1) time and represent them as an arithmetic progression with respect to |U |.

I Example 13 (Continued.). For position 12 of (baa)4a(baa)3, the blue a in Figure 3, we
have δ = 1 and hence the squares UU that we obtain with this as starting position of the
second occurrence of U are for |U | = 1 + 3t, for t = 2, 3.

Iterating over c ∈ C in increasing order, we only have to (a) shift all squares by 1 position
each time, and (b) identify the – at most two – shifts that yield an increment/decrement
in the length of the arithmetic progression due to one more/less square being allowed after
the shift. We can infer the values of c for which we must increment/decrement in O(1) time
from the endpoints of the two runs and δ. These values, p, and the arithmetic progression
for c = s2 are our representation of sq(R1, R2). C

We can straightforwardly extract the longest (i, j)-square for j ∈ A if it is of length at
least k from this representation, and this concludes the proof of the theorem. J

To summarize, we spend Õ(k) time for the dynamic renaming and then process each of
the O(n/k) fragments starting at positions i = 1 (mod k) in time Õ(n/k), using Lemma 3
and Theorem 8. The overall time complexity of this algorithm is thus Õ(n2/k2 + k).



A. Amir, I. Boneh, P. Charalampopoulos, and E. Kondratovsky 5:9

Wrap-up. By setting m = 4k = n2/3 and combining the algorithms for LS(S) ≤ m and
LS(S) ≥ m we obtain the following result.

I Theorem 14. Dynamic Longest Square queries can be answered in time Õ(n2/3),
using Õ(n) space, after an Õ(n)-time preprocessing.

4 An no(1)-time algorithm

Main Idea. If we manage to get rid of the O(m) time dedicated to renaming in the algorithm
for computing long squares, we can then recursively obtain faster algorithms. This can be
achieved by using our fastest o(m) query-time dynamic algorithm for each updated 2m-length
fragment for the case that LS(S) ≤ m instead of recomputing them in O(m) time using the
static algorithm. We would then obtain a faster algorithm, and could plug this in turn for
the case that LS(S) ≤ m; and so on.

Towards the goal of getting rid of renaming, we first observe that it is wasteful to keep
track of the occurrences of all k-length substrings of S. It would be sufficient to keep track
of the occurrences of each k-length substring that occurs at a position i = 1 (mod k). This
could be solved by maintaining O(n/m) instances of dynamic pattern matching with pattern
S[i . . i+ k − 1], for each i = 1 (mod k), and text S. (Note that both the pattern and the
text would have to be dynamic.) The main complication stems from the need to maintain
p-clusters efficiently. To the best of our knowledge, the known pattern matching algorithms
in the dynamic setting require Ω(occ) time to report the occ occurrences of the pattern in
the text after each update, which is unsatisfactory in our case.

2-1 Dynamic Pattern Matching. A further observation, is that we can reduce the problem
to an even easier one by applying the standard trick as follows. For every substring of length
k occurring at a position i = 1 (mod k), we maintain a dynamic pattern matching instance
with every substring of length 2k starting at a position i = 1 (mod k). Note that every
possible occurrence of the k-length fragments of interest is contained in one (and at most
two) of these 2k-length fragments. At first glance, it may seem like this partition will be less
efficient to maintain because now instead of O(n/k) instances of dynamic pattern matching
we have O((n/k)2) instances of 2-1 Dynamic Pattern Matching – to be formally defined
soon. However, this is actually lossless, since every change in S only affects O(n/k) such
instances. Let us formally define the problem in scope.

2-1 Dynamic Pattern Matching
Given two strings P and T with |T | = 2|P | = 2n, return all occurrences of P in T after
each substitution operation on either of P , T .

We want to exploit the constant ratio between the lengths of the pattern and the text to
obtain an efficient algorithm for 2-1 Dynamic Pattern Matching. We further reduce this
problem to another, simpler one. A partition of the text T to its n-length prefix and suffix,
analogously partitions any occurrence of P at some position i. Specifically, this occurrence is
partitioned to the prefix P [1 . .m] of P , corresponding to the suffix T [i . . n] of T [1 . . 2n] and
the suffix P [m+ 1 . . n] of P , corresponding to the prefix T [n+ 1 . . i+ n− 1] of T [n+ 1 . . 2n].
Thus, if we know all the prefixes of P that are suffixes of T [1 . . n], we can extend each of
them in order to compute all the occurrences of P in T . (This will be a bit more involved as
they will be given as arithmetic progressions, see Lemma 20.) We call a prefix of P that is a
suffix of T a prefix-suffix match of P and T .
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4.1 Dynamic Prefix-Suffix
We now focus on the following problem.

Dynamic Prefix-Suffix
Given two strings P and S of the same length n, report all the prefixes of P that are
suffixes of S, after each substitution operation on either of P , S.
We partition each of P and S to bn/mc m-length fragments and possibly an extra shorter

fragment. Specifically, we partition P to P1, P2, . . . , Pdn/me with P = P1P2 · · ·Pdn/me and S
to Sdn/me, Sdn/me−1, . . . , S1 with S = Sdn/meSdn/me−1 · · ·S1. Fragments Pdn/me and Sdn/me
are allowed to be of length less than m.

I Observation 15. Let X be a prefix of P that is also a suffix of S. Let x = d|X|/me
and r = |X| (mod m). Every pair of fragments (Pi, Sj) that satisfies i + j − 1 = x, will
satisfy that the prefix of length r of Pi will be equal to the suffix of the same length of Sj.
(Inspect Figure 4 for an illustration.)

r|X|

P1 P2 P3 P4 P5 P6
P

S6 S5 S4 S3 S2 S1

S

Figure 4 An illustration of the setting in Observation 15 with x = 5.

Algorithm. Relying on Observation 15, we design a recursive algorithm. For every 1 ≤ x ≤
dn/me we will maintain an instance of Dynamic Prefix-Suffix between some pair (Pi, Sj)
that satisfies i + j − 1 = x. Namely, for a given x, we will consider the pair (Pdye, Sbyc),
where y = (x+ 1)/2. It can be readily verified that dye+ byc − 1 = x. Note that each Pi, Sj
is in at most two of the considered pairs. Hence, each update in P or S results in no more
than 2 such pairs being affected.

The prefix-suffix matches of each pair (Si, Pj) are witnesses for possible prefix-suffix
matches between P and S. All O(|Si|) = O(m) witnesses of a given pair can be confirmed
with a logarithmic number of LCE queries, exploiting periodicity – the details are omitted
due to space constraints.

We efficiently maintain the prefix-suffix matches for all relevant pairs using predecessor
structures, analogously to how we maintained all starting positions of the occurrences of a
substring corresponding to some name in Section 3, relying on the following lemma.

I Lemma 16 (cf. [34, 6]). The prefixes of a string P that are suffixes of a string S, with
|P |, |S| = O(n), of lengths between 2j and 2j+1 − 1 form an arithmetic progression. If it
has at least three elements, all these prefix-suffix matches have the same period, equal to the
difference of the progression.

Given a change, we recursively update the witnesses for the two affected pairs. At each
level of the recursion, we confirm all witnesses. This is necessary since a witness that was
not affected by the last substitution and was not an instance of a prefix-suffix match between
P and S may have just become a prefix-suffix match between P and S due to the last
substitution. The opposite case is possible as well.
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After obtaining all the prefix-suffix matches we iterate over them to merge consistent
periodic clusters as follows. For every j ∈ {1, . . . , dlogne}, we group the prefix-suffix matches
of lengths s ∈ [2j−1, . . . , 2j − 1] and represent them as an arithmetic progression, relying on
Lemma 16. The merging is necessary for the output of the algorithm to be in a compact form
at every level of the recursion. It should also then be clear that the arithmetic progressions
the algorithm returns are non-overlapping, as there is a unique such progression for the
elements of length between 2j−1 and 2j − 1 for each j.

Complexity. The time complexity is T (n) = 2T (m) + Õ(dn/me) = 2T (bn/kc) + Õ(k) for
k = dn/me. 2T (m) for updating the two affected pairs and Õ(n/m) for confirming and
merging all witnesses. We omit the proof of the following fact.

I Fact 17. If T (n) = 2T (bn/kc) + c1k logc2 k for all n ≥ N0, where k =
⌈
2
√

logn
⌉
, c1, c2

are constants, and T (C) = O(1) for all C = O(1), then T (n) = no(1).

We arrive at the following theorem for Dynamic Prefix-Suffix.

I Theorem 18. A representation of all prefix-suffix matches as O(logn) arithmetic progres-
sions of their ending positions in P can be maintained with no(1) time per substitution.

By maintaining a Dynamic Prefix-Suffix instance for S = P we obtain the following
corollary, as prefix-suffix matches correspond to borders of S.

I Corollary 19. The period of a string |S| can be maintained with |S|o(1) time per substitution.

4.2 Wrap-up and complexity
The proof of the following lemma, which uses Theorem 18 as a black box, is omitted due to
space constraints.

I Lemma 20. 2-1 Dynamic Pattern Matching can be solved with no(1) time per substitu-
tion, reporting the starting positions of all occurrences of P in T as an arithmetic progression.

For the computation of long squares, after each substitution we proceed as follows.
1. We update each of the O(n/k) affected 2-1 Dynamic Pattern Matching instances in

f(k) = ko(1) time, employing Lemma 20.
2. We apply Lemma 3 and Theorem 8 a total of O(n2/k2) times.

The Õ(n2/k2) term dominates the time complexity if n/k ≥ f(k). We note that f is an
increasing function and hence it suffices to have k ≤ n/f(n).

Let us express the complexity of our best algorithm for Dynamic Longest Square as
nαf(n) logβ n, for α < 1 with nα ≥ (f(n))2 and for β being the maximum of the powers of
logn hidden by the Õ(·) notation in Lemma 3 and Theorems 8 and 14. (Thus Theorem 14
shows an O(n2/3 logβ n)-time algorithm.) Then, for k = (n2/f(n))1/(α+2), we have that

O(n2/k2 logβ n+ kαf(k) logβ n) = Õ(n2α/(α+2)((f(n))2/α+2 + (f(n))α+1/α+2) logβ n) =

Õ(n2α/(α+2)f(n) logβ n).

Note that this k satisfies the condition k ≤ n/f(n), since

k = (n2/f(n))1/(α+2) ≤ n/f(n)⇐⇒ f(n) ≤ nα/(α+1),

and the latter holds due to our assumptions on the value of α.
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One can show by induction that g(2t)(1) = 1/t for g(x) = 2x/(2+x); note that g(1) = 2/3.
We can thus construct an algorithm requiring time arbitrarily close to Õ((f(n))3) = no(1)

time per update, recursively, since we can obtain an Õ(ngt+1(1)f(n))-time algorithm by using
the Õ(ngt(1)f(n))-time algorithm for short squares. We thus arrive at the following result.

I Theorem 21. Dynamic Longest Square queries can be answered in time no(1), using
Õ(n) space, after an Õ(n)-time preprocessing.

5 Maintaining all runs and applications

In this section, we first discuss how to modify the algorithm to maintain all runs instead of
computing the longest square. Afterwards, by adapting the solutions of [17] for the static
setting, we show several types of queries that can be answered with our representation of
runs. In particular, we show how to maintain the number of all k-powers in no(1) time and
report the longest k-power in S for some fixed k within the same time complexity. All –
possibly Θ(n2) – k-powers can be reported in a compact way in Õ(runs) time, where runs
denotes the number of runs in S. Finally, we show how to answer the following queries in
Õ(1) time: given a fragment determine if it is periodic, and, if so, compute its period.

We start by describing how to maintain all runs in the Õ(n2/3)-time solution.
For short runs, we use the O(m)-time algorithm of [35]. For each 2m-length fragment,

we only maintain runs that do not touch its endpoints, as we do not want to maintain a
run that may extend to other fragments. (We only waive this restriction for runs that are
suffixes/prefixes of S and are of length smaller than m.) This is sufficient as every run R such
that |R| < m will be fully contained in one (and at most two) of the 2m-length fragments.
Upon a substitution we just recompute the runs for the two affected fragments.

As for runs of length at least m = 4k, we recompute all of them. Let us first amend
Observation 2 as follows.

I Lemma 22. A run R = S[a . . b], of length at least 4k, contains a fragment S[i . . i+ k− 1],
for some i = 1 (mod k), that also occurs at position i+ per(R).

Proof. The first 2k-length fragment of the run must appear again somewhere in the run
(otherwise it is not even a square). This fragment, being of length 2k, must contain a
fragment S[i . . i + k − 1] with i = 0 (mod k) and i ≤ a + k − 1. S[i . . i + k − 1] will
certainly occur at position i+ per(R), since i+ per(R) + k− 1 ≤ a+ k− 1 + |R|/2 + k− 1 ≤
a+ |R|/4− 1 + |R|/2 + |R|/4− 1 ≤ b. J

We then proceed as in Section 3. We first define the (i,j)-run to be the unique run R
containing S[i . . j], in which the difference between i and j is consistent with the period of the
run; formally, j = i (mod p), where p = per(R). Now observe that every run R that is longer
than 4k is an (i, j)-run for some i = 0 (mod k) and some j for which S[i . . i+k] = S[j . . j+k]
due to Lemma 22; in particular, the smallest such j is j = i+ per(R).

Observation 4 can be modified analogously as follows.

I Observation 23. An (i, j)-run R, exists if and only if lcs(i, j) + lcp(i, j) ≥ |j − i|+ 1. If
R exists it is S[i− lcs(i, j) + 1 . . j + lcp(i, j)− 1].

The above observation allows us to efficiently process names with less than 3n/k occur-
rences in S. As for names corresponding to k-length substrings with more occurrences, the
proof of Theorem 8 shows that we can process the k-length substring S[i . . i+ k − 1] with a
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p-cluster A of its occurrences as follows. If i ∈ A we are done as we simply report the run
with period p corresponding to A. Otherwise, using the notation of the proof of Theorem 8,
we compute the (e1, e2)-run and the (s1, s2)-run if we are in Case 1 or 2a.

Note that a run S[a . . b] may be identified multiple times. We remove duplicates and
store S[a . . b] as (a, b, p), where p is the minimum j − i for which this run was obtained as
the (i, j)-run; by Lemma 22 we have that p = per(S[a . . b]).

Case 2b is again more tricky. We adapt our solution for squares (see Theorem 8) in order
to compute and maintain such runs compactly using arithmetic progressions.

I Observation 24. All elements of sq(R1, R2) of equal length are extended by the same run.

We denote the elements of sq(R1, R2) of length 2|U | by G|U |.

I Lemma 25. If the minimum starting position among the elements of G|U | is u > s1 and
the maximum ending position is v < e2, then the run extending the elements of G|U | is
R = S[u . . v] and per(R) = |U |.

Proof. We have u+ |U | = s2 since u > s1. If the run extending the squares of G|U | started
at some position smaller than u, this would imply S[u− 1 . . s2− 2] = S[s2− 1 . . s2 + |U | − 2],
which in turn would imply that the right hand side of the equation is a string with period p.
This would contradict R2 being a run. The argument for the other side is symmetric.

As for arguing that per(R) = |U |, let us assume for the sake of contradiction that it has
a period q < |U |. Then, as |U | is also a period of R, the periodicity lemma implies that
q′ = gcd(|U |, q) ≤ |U |/2 is also a period of R.

We can apply the periodicity lemma again, since p is also a period of U and p+ q′ ≤ |U |.
We then have that p′ = gcd(p, q′) < |p|/2 is a period of S[s2 . . s2 + |U | − 1] and a divisor of
p. This is a contradiction as S[s2 . . s2 + p− 1] is a primitive string, i.e. is not of the form T k

for a string T and k > 1, since otherwise p′ < p would also be a period of R2. J

We maintain all such runs runs(R1, R2) compactly as a constant number of arithmetic
progressions with respect to |U |; one for each of the at most three distinct group sizes.

Only two groups of squares may contain a square that starts in the first position of R1 or
ends in the last position of R2. These groups of squares are the only ones such that the run
extending them may not be fully contained in S[s1 . . e2]. This could be the case for example
if we had a run R3 with the same period and appropriate overlap with R2. We compute the
run extending a square of each of the at most two relevant groups using LCE queries and
maintain these runs explicitly.

All (explicitly or compactly represented) runs are stored in a way that allows for efficient
deletion, using a key with respect to their origin, i.e. the substring at some level of the
recursion for which they were computed. After each substitution, the algorithm computes a
all the relevant runs for the substring that contains the updated position at each level of
the recursion from scratch. Thus, for every substring for which we recompute runs, we first
delete all runs that have this substring as key.

I Theorem 26. We can maintain all runs R = S[a . . b] of a string of length n, as triplets
(a, b, per(R)) and arithmetic progressions with no(1) time per operation, using Õ(n) space,
after Õ(n)-time preprocessing.
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5.1 Application I: k-powers
Let us recall that a k-power is a string of the form Uk for some non-empty string U . The
authors of [17] show that given a run R as (a, b, p), one can compute in O(1) time:
1. a longest substring Uk of R with per(R) | |U |;
2. the number of all fragments S[a . . b] = V k, with per(R) | |V |, that lie entirely within R.

For any fixed k ≥ 3, we can maintain the longest k-power by storing a heap keeping the
longest that each explicitly stored run contributes and maintain the count on the number
of k-powers (not distinct) in S within the time complexities of Theorem 26. Note that
by Lemma 25 and the fact that v − u ≤ 2|U |+ p and |U | ≥ 2p, where u, v, p and |U | are
as in the statement of that lemma, we have that the runs stored as arithmetic progressions
do not contribute any k-powers for k ≥ 3. Finally, we can extract all – possibly Θ(n2) –
non-distinct k-powers in Õ(runs) time in a compact form from the runs [17].
I Remark 27. As for maintaining the O(n) distinct k-powers efficiently, we should first be
able to group runs by their Lyndon roots (the Lyndon root of a run R is the lexicographically
smallest rotation of a per(R)-length substring of R). It is not clear how to amend our solution
to maintain the runs in this way.

5.2 Application II: 2-Period Queries

2-Period Queries
Given a fragment S[i . . j] of S, decide whether S[i . . j] is periodic and, if so, compute its
period.

2-Period Queries in a static string. 2-Period Queries were introduced in [17], while
general internal period queries were intoduced in [33]. The authors of [34] showed how to
optimally answer 2-Period Queries in O(1) time after O(n)-time preprocessing. In these
works, it is shown, that in order to answer the query for S[i . . j] it suffices to find the run R
that extends S[i . . j], or conclude that there is no such run. In other words, it suffices to
find the run R with the smallest period among the runs fully containing S[i . . j]. Then, if
per(R) < (j − i)/2, the fragment is periodic with period per(R) and otherwise it is not.

To the best of our knowledge there is no prior work on answering internal period queries
in a dynamic string. In what follows we sketch the proof of the following result – the details
are omitted due to space constraints.

I Theorem 28. 2-Period Queries can be answered in Õ(1) time in a string S of length n,
with each substitution operation processed in time no(1), after an Õ(n)-time preprocessing.
The required space is Õ(n).

In order to compute the run with the smallest period that contains S[i . . j], the authors
of [17] show that it is enough to be able to answer orthogonal range minimum queries in
2-d, over the following collection of points: for each run (a, b, p) we have point (a, b) with
weight p. The desired run then corresponds to the point with minimum weight in the
rectangle [1, i]× [j, n]. A restricted version of the main result of [14], is that one can maintain
a collection of O(n) points in [n]d, for any constant d, with Õ(1) time per update, such
that orthogonal range emptiness queries can be answered in Õ(1) time. We note that 2-d
orthogonal range minimum queries reduce to 3-d orthogonal range emptiness queries via
binary search. We maintain this data structure over the runs that are maintained explicitly,
see Theorem 26. The above discussion covers the case that the run extending S[i . . j] has
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been stored explicitly. In particular, following our discussion in Section 5.1, we are already
able to answer 3-Period Queries, i.e. whether a substring S[i . . j] has period at most
|j − i|/3, and if so, return this period.

As for 2-Period Queries, we now provide the intuition for handling the case that the
run of minimum period that contains S[i . . j] is stored implicitly. We want to check all runs
extending some square UU ∈ sq(R1, R2) that is a prefix of S[i . . j], for some runs R1, R2.
Note that our definition of sq(R1, R2) implies that per(U) = per(R1) ≤ |U |/2; i.e. R1 extends
U . The following lemma implies that we can only have a logarithmic number of such squares.

I Lemma 29 ([32, Corollary 5.1.3]). Let U1, U2, U3 be periodic fragments of a text T , all
starting at the same position, and being extended by runs R1, R2 and R3, respectively. If
blog |U1|c = blog |U2|c = blog |U3|c, then the three runs R1, R2 and R3 cannot be all distinct.

For every set runs(R1, R2), we add the point (s1, e2, p) in an initially empty 3-d grid – we
use the same notation as above. We report all relevant points using 3-d dynamic orthogonal
range reporting queries, again employing [14]. In particular, we first retrieve the points in
the range [1, i]× [j, n]× [1, |j − i|/4]. There are O(logn) of them due to the above lemma.
Then, for each point, corresponding say to runs(R1, R2), we compute in Õ(1) time the run of
smallest period in runs(R1, R2) containing S[i . . j]. In particular it is the run of minimum
length in runs(R1, R2) containing S[i . . j] by Lemma 25.

6 Concluding remarks

We believe that, with due care, our algorithm can be adapted to handle insertions and
deletions – the details are omitted due to space constraints. We leave open the questions
of whether the runs of a string (or other information sufficient for answering 2-Period
Queries in Õ(1) time) can be maintained with Õ(1) time per update and whether period
queries for aperiodic substrings can be answered efficiently in a dynamic string.
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Abstract
Given two strings S and T , each of length at most n, the longest common substring (LCS) problem
is to find a longest substring common to S and T . This is a classical problem in computer science
with an O(n)-time solution. In the fully dynamic setting, edit operations are allowed in either of the
two strings, and the problem is to find an LCS after each edit. We present the first solution to this
problem requiring sublinear time in n per edit operation. In particular, we show how to find an LCS
after each edit operation in Õ(n2/3) time, after Õ(n)-time and space preprocessing. 1

This line of research has been recently initiated in a somewhat restricted dynamic variant by
Amir et al. [SPIRE 2017]. More specifically, they presented an Õ(n)-sized data structure that returns
an LCS of the two strings after a single edit operation (that is reverted afterwards) in Õ(1) time.
At CPM 2018, three papers (Abedin et al., Funakoshi et al., and Urabe et al.) studied analogously
restricted dynamic variants of problems on strings. We show that the techniques we develop can
be applied to obtain fully dynamic algorithms for all of these variants. The only previously known
sublinear-time dynamic algorithms for problems on strings were for maintaining a dynamic collection
of strings for comparison queries and for pattern matching, with the most recent advances made by
Gawrychowski et al. [SODA 2018] and by Clifford et al. [STACS 2018].

As an intermediate problem we consider computing the solution for a string with a given set of
k edits, which leads us, in particular, to answering internal queries on a string. The input to such a
query is specified by a substring (or substrings) of a given string. Data structures for answering
internal string queries that were proposed by Kociumaka et al. [SODA 2015] and by Gagie et al.
[CCCG 2013] are used, along with new ones, based on ingredients such as the suffix tree, heavy-path
decomposition, orthogonal range queries, difference covers, and string periodicity.
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1 Introduction

Given two strings S and T , each of length at most n, the longest common substring (LCS)
problem, also known as the longest common factor problem, is to find a longest substring
common to S and T . This is a classical problem in theoretical computer science. Knuth had
conjectured that the LCS problem was in Ω(n logn). In 1973 Weiner solved it in the optimal
O(n) time [49] designing a data structure that was later called the suffix tree (see also [21]).
Knuth declared Weiner’s algorithm the “Algorithm of the Year” [11]. Since O(n) time is
optimal for this problem, a series of studies have been dedicated in improving the working
space [37, 44]. The LCS problem has also been studied under Hamming and edit distance.
We refer the interested reader to [1, 43, 47, 16, 46, 12] and references therein.

In [43], Starikovskaya mentions that an answer to the LCS problem “is not robust and
can vary significantly when the input strings are changed even by one character”, implicitly
posing the following question: Can we compute an LCS after editing S or T in o(n) time?

I Example 1. The length of an LCS of S and T below is doubled when substitution S[4] := a
is performed. The next substitution, T [3] := b, halves the length of an LCS.

S = caabaaa

T = aaaaaab

S[4] := a S = caaaaaa

T = aaaaaab

T [3] := b S = caaaaaa

T = aabaaab

This question poses the challenge of dynamically updating the suffix tree in the presence of
edit operations (i.e. insertions, deletions and substitutions), which remains the main obstacle
for answering this type of questions.

Amir et al. [8] introduced a restricted dynamic variant, where any single edit operation is
allowed and is reverted afterwards. We call this problem LCS after One Edit. Amir et
al. presented an Õ(n)-sized data structure that can be constructed in Õ(n) time supporting
Õ(1)-time computation of an LCS, after one edit operation is applied on S. This work
initiated a new line of research on analogously restricted dynamic variants of problems
on strings [26, 27, 48]. Abedin et al. [3] improved the complexities of the data structure
proposed by Amir et al. [8] by logO(1) n factors. Two other restricted variants of the dynamic
LCS problem were considered by Amir and Boneh in [5]. In both variants substitutions
were allowed in one of the strings; one was of decremental nature and in the other one the
complexity was parameterized by the period of the static string.

In this paper we make substantial progress: we show a strongly sublinear-time solution
for the general version of the problem, namely, the fully dynamic case of the LCS problem.
Given two strings S and T , the problem is to answer the following type of queries in an
on-line manner: perform an edit operation (substitution, insertion, or deletion) on S or on T
and then return an LCS of the new S and T . We call this problem Fully Dynamic LCS.

Below we mention some of the known results on dynamic problems on strings.

Dynamic Pattern Matching. Finding all occ occurrences of a pattern of length m in a
static text can be performed in the optimal O(m+ occ) time using suffix trees, which can be
constructed in linear time [49, 21]. In the fully dynamic setting, the problem is to compute
the new set of occurrences when allowing for edit operations anywhere on the text. A
considerable amount of work has been carried out on this problem [31, 22, 23]. The first
data structure with polylogarithmic update time and time-optimal queries was shown by
Sahinalp and Vishkin [41]. The update time was later improved by Alstrup et al. [4] at the
expense of slightly suboptimal query time. The state of the art is the data structure by
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Gawrychowski et al. [29] supporting time-optimal queries with O(log2 n) time for updates.
Clifford et al. [18] have recently shown upper and lower bounds for variants of exact matching
with wildcard characters, inner product, and Hamming distance.

Dynamic String Collection with Comparison. The problem is to maintain a dynamic
collection W of strings of total length n supporting the following operations: adding a string
to W, adding the concatenation of two strings from W to W, splitting a string from W and
adding the two residual strings in W , and returning the length of the longest common prefix
of two strings from W. This line of research was initiated by Sundar and Tarjan [45]. Data
structures supporting updates in polylogarithmic time were presented by Mehlhorn et al. [40]
and Alstrup et al. [4]. Finally, Gawrychowski et al. [30] proposed an optimal solution.

Longest Palindrome and Longest Lyndon Substring. A string is called palindrome if it
the same as its reverse. A string is called Lyndon if it is smaller lexicographically than all its
suffixes [38]. Computing a longest palindrome and a longest Lyndon substring of a string
after a single edit have been recently studied in [26] (see also [27]) and in [48], respectively.

Maintaining Repetitions. Squares are strings of the form XX. In [7], the authors show
how to maintain squares in a dynamic string S of length n in no(1) time per operation. A
modification of this algorithm, with the same time complexity per operation, allows them
to determine in Õ(1) time whether a queried substring of S is periodic, and if so, compute
its period.

Our Results. We give the first fully dynamic algorithm for the LCS problem that works
in strongly sublinear time per edit operation in any of the two strings. Specifically, for two
strings, each of length up to n, it computes an LCS after each edit operation in Õ(n2/3) time
after Õ(n)-time and space preprocessing. To ease the comprehension of the algorithm for
Fully Dynamic LCS, we first show a solution of an auxiliary problem called LCS after
One Substitution per String, where a single substitution is allowed in each of the strings
and is reverted afterwards, with Õ(1)-time queries after Õ(n)-time and space preprocessing.

Notably, we showcase the applicability of our techniques to other string problems in
the fully dynamic setting. We present a fully dynamic algorithm for computing a longest
repeat of a string S of length n, i.e. a longest substring occurring more than once in S, in
Õ(n2/3) time. We also present a fully dynamic algorithm for computing a longest palindrome
substring of a string S requiring Õ(

√
n) time per edit. Finally, we present a fully dynamic

algorithm, requiring Õ(
√
n) time per edit, for computing a longest Lyndon substring of string

S as well as maintaining a representation of the Lyndon factorization of S that allows us to
efficiently extract the t-th element of the factorization in Õ(1) time.

Our data structure is randomized due to the use of data structures for dynamic strings [30]
and internal pattern matching [35]; the latter can be derandomized [34].

Roadmap. Section 2 provides the necessary definitions and notation used throughout as
well as the standard algorithmic toolbox for string processing and the general scheme of our
approach. In Section 3 we show an optimal, up to polylogarithmic factors, solution for LCS
after One Substitution per String. In Section 4 we show our main result: a solution
for Fully Dynamic LCS. Some technical details, including details on several special cases
of internal LCS queries, are omitted in this version. A brief overview of our fully dynamic
algorithms for computing the longest repeat, the longest palindrome, and the longest Lyndon
substring of a string is provided in Section 5. We conclude this work in Section 6.
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2 Preliminaries

Strings. Let S = S[1]S[2] . . . S[n] be a string of length |S| = n over an integer alphabet
Σ = {1, . . . , nO(1)}. The elements of Σ are called characters. For two positions i and j on S,
we denote by S[i . . j] = S[i] . . . S[j] the substring of S that starts at position i and ends at
position j (it is empty if i > j). A substring of S is represented in O(1) space by specifying
the indices i and j. A prefix S[1 . . j] is denoted by S(j) and a suffix S[i . . n] is denoted by
S(i). A substring of S is called proper if it is shorter than S. We denote the reverse string of
S by SR = S[n]S[n− 1] . . . S[1]. By ST , Sk, and S∞ we denote the concatenation of strings
S and T , k copies of string S, and infinitely many copies of string S, respectively. If a string
B is both a proper prefix and a proper suffix of string S, then B is called a border of S. A
positive integer p is called a period of S if S[i] = S[i+ p] for all i = 1, . . . , n− p. String S
has a period p if and only if it has a border of length n− p. We refer to the smallest period
as the period of the string and, analogously, to the longest border as the border of the string.

The suffix tree T (S) of string S is a compact trie representing all suffixes of S. The suffix
tree of a string of length n over an integer alphabet can be constructed in O(n) time and
space [21]. By lcpstring(S, T ) we denote the longest common prefix of S and T , by lcp(S, T )
we denote |lcpstring(S, T )|, and by lcp(r, s) we denote lcp(S(r), S(s)). Further by lcsstring(S, T )
we denote the longest common suffix of S and T . An O(n)-sized lowest common ancestor
data structure can be constructed over the suffix tree of S in O(n) time [14], supporting
lcp(r, s)-queries in O(1) time. A symmetric construction on SR (the reverse of S) can answer
the so-called longest common suffix (lcs) queries in the same complexity. The lcp and lcs
queries are also known as longest common extension (LCE) queries.

General Scheme and Relation to Internal Pattern Matching. The scheme of our approach
for most of the considered dynamic problems on strings is as follows. Let the input be
a string S of length n (in the case of the LCS problem, this can be the concatenation of
the input strings S and T separated by a delimiter). We construct a data structure that
answers the following type of queries: given k edit operations on S, compute the answer to a
particular problem on the resulting string S′. Assuming that the data structure occupies
O(sn) space, answers queries for k edits in time O(qn(k)) and can be constructed in time
O(tn) (sn ≥ n and qn(k) ≥ k is non-decreasing with respect to k), this data structure can be
used to design a dynamic algorithm that preprocesses the input string in time O(tn) and
answers queries dynamically under edit operations in amortized time O(qn(κ)), where κ is
such that qn(κ) = (tn + n)/κ, using O(sn) space. The query time can be made worst-case
using time slicing: for sn, tn = Õ(n) and qn(k) = Õ(k) we obtain a fully dynamic algorithm
with Õ(

√
n)-time queries, whereas for qn(k) = Õ(k2) the query time is Õ(n2/3).

A k-substring of a string S is a concatenation of k strings, each of which is either a
substring of S or a single character. A k-substring of S can be represented in O(k) additional
space using a doubly-linked list if the string S itself is stored. The string S after k subsequent
edit operations can be represented as a (2k + 1)-substring due to the following lemma.

I Lemma 2. Let S′ be a k-substring of S and S′′ be S′ after a single edit operation. Then
S′′ is a (k + 2)-substring of S. Moreover, S′′ can be computed from S′ in O(k) time.

Proof. Let S′ = F1 . . . Fk where each Fi is either a substring of S or a single character. We
traverse the list of substrings until we find the substring Fi such that the edit operation takes
place at the j-th character of Fi. As a result, Fi is decomposed into a prefix and a suffix,
potentially with a single character inserted in between in case of insertion or substitution.
The resulting string S′′ is a (k + 2)-substring of S. J
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Thus the fully dynamic version reduces to designing a data structure over a string S
of length n that computes the result of a specific problem on a k-substring F1 . . . Fk of S.
For the considered problems we aim at computing the longest substring of S that satisfies
a certain property. Then there are two cases. Case 1: the sought substring occurs inside
one of the substrings Fi (or each of its two occurrences satisfies this property in case of the
LCS and the longest repeat problems). Case 2: it contains the boundary between some two
substrings Fi and Fi+1. Case 1 requires to compute the solution to a certain problem on a
substring or substrings of a specified string. This is the so-called internal model of queries;
this name was coined by Kociumaka et al. in [35]. We call Case 2 cross-substring queries.
Due to string periodicity, certain internal queries arise in cross-substring queries as well.

3 LCS After One Substitution Per String

Let us now consider an extended version of the LCS After One Edit problem, for simplicity
restricted to substitutions.

LCS after One Substitution per String
Input: Two strings S and T of length at most n
Query: For given indices i, j and characters α and β, compute LCS(S′, T ′) where S′ is
S after substitution S[i] := α and T ′ is T after substitution T [j] := β

To solve this problem we consider three cases depending on whether an occurrence of the
LCS contains any of the changed positions in S and T . We prove the following result.

I Theorem 3. LCS after One Substitution Per String can be computed in Õ(1)
time after Õ(n)-time and space preprocessing.

3.1 LCS Contains No Changed Position
We use the following lemma for a special case of internal LCS queries. Its proof is deferred
to the full version. In the fully dynamic algorithm a less restrictive approach is necessary.

I Lemma 4. Let S and T be two strings of length at most n. After O(n log2 n)-time and
O(n logn)-space preprocessing, an LCS between any prefix or suffix of S and prefix or suffix
of T can be computed in O(logn) time.

It suffices to apply internal LCS queries of Lemma 4 four times: each time for one of
S(i−1), S(i+1) and one of T (j−1), T(j+1).

3.2 LCS Contains a Changed Position in Exactly One of the Strings
We use the following lemma that encapsulates one of the main techniques of [8]. It involves
computing so-called ranges of substrings in the generalized suffix array of S and T and it
relies on a result by Fischer et al. [24].

I Lemma 5. Let S and T be strings of length at most n. After O(n log logn)-time and
O(n)-space preprocessing, given two substrings P and Q of S or T , we can compute:
(a) a substring of T equal to PQ, if it exists, in O(log logn) time;
(b) the longest substring of T that is a prefix (or a suffix) of PQ in O(logn log logn) time.

We now show how to compute the longest substring that contains the position i in S,
but not the position j in T (the opposite case is symmetric). We first use Lemma 5(b) to
compute two substrings, U and V , of T in O(logn log logn) time:

U is the longest substring of T that is equal to a suffix of S[1 . . i− 1];
V is the longest substring of T that is equal to a prefix of αS[i+ 1 . . |S|].
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S′

i
α

i` ir

T ′

j
β

j` jr

Figure 1 Occurrences of an LCS of S′ and T ′ containing both changed positions are denoted by
dashed rectangles. Occurrences of U at which an LCS is aligned are denoted by gray rectangles.

Our task then reduces to computing the longest substring of UV that crosses the boundary
between U and V and is a substring of T (j−1) or of T(j+1). We can compute it using the
following type of queries.

Three Substrings LCS
Input: A string T
Query: Given three substrings U , V , and W of T , compute the longest substring XY
of W such that X is a suffix of U and Y is a prefix of V

Indeed, it suffices to ask two Three substrings LCS queries: one with W = T (j−1)

and one with W = T(j+1).
A solution to a special case of Three Substrings LCS queries with W = T was already

implicitly presented by Amir et al. in [8]. It is based on the heaviest induced ancestors
(HIA) problem on trees, introduced by Gagie et al. [28], applied to the suffix tree of T . We
generalize the HIA queries and use them to answer general Three Substrings LCS queries.
The data structure for answering our generalization of HIA queries turns out to be one of the
most technical parts of the paper. It relies on the construction of multidimensional grids for
pairs of heavy paths (in heavy-path decompositions [42]) of the involved trees. Each query
can be answered by interpreting the answer of O(log2 n) orthogonal range maximum queries
over such grids.

I Lemma 6. Let T be a string of length at most n. After Õ(n)-time preprocessing, we can
answer Three Substrings LCS queries in Õ(1) time.

3.3 LCS Contains a Changed Position in Each of the Strings
A Prefix-Suffix Query gets as input two substrings X and Y of a string S of length n and
an integer d and returns the lengths of all prefixes of X of length between d and 2d that
are suffixes of Y . It is known that such a query returns an arithmetic sequence and if it
has at least three elements, then its difference equals the period of all the corresponding
prefixes-suffixes. Moreover, Kociumaka et al. [35] show that Prefix-Suffix Queries can be
answered in O(1) time using a data structure of O(n) size, which can be constructed in O(n)
time. By considering X = Y = U , this implies the two respective points of the lemma below.

I Lemma 7.
(a) For a string U of length m, the set Br(U) of border lengths of U between 2r and 2r+1− 1

is an arithmetic sequence. If it has at least three elements, all the corresponding borders
have the same period, equal to the difference of the sequence.

(b) [35] Let S be a string of length n. For any substring U of S and integer r, the arithmetic
sequence Br(U) can be computed in O(1) time after O(n)-time and space preprocessing.
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S′

i

αY R
2 X1P1P1P1

u

3p

T ′ XR
2 PR

2 P
R
2 P

R
2 Y1

j

β

3p
u− 3p

Figure 2 A border of length u is denoted by dark gray rectangles. An LCS aligned at a border
of length u− 3p, which is in the same arithmetic sequence, is denoted by the dashed rectangle.

We next show an algorithm that finds a longest string S′[i` . . ir] = T ′[j` . . jr] such that
i` ≤ i ≤ ir and j` ≤ j ≤ jr for the given indices i, j. Let us assume that i− i` ≤ j − j`; the
symmetric case can be treated analogously. We have that U def= S′[i+ 1 . . i` + j − j` − 1] =
T ′[j` + i− i` + 1 . . j − 1] as shown in Figure 1. (U = ε can correspond to i− i` = j − j` or
i− i` + 1 = j− j`, so both these cases need to be checked.) Note that these substrings do not
contain any changed position. Any such U is a prefix of S(i+1) and a suffix of T (j−1); let U0
denote the longest such string. Then, the possible candidates for U are U0 and all its borders.
For a border U of U0, we say that lcsstring(S′(i), T ′(j−|U |−1))U lcpstring(S′(i+|U |+1), T

′
(j)) is

an LCS aligned at U . We compute U0 in time O(logn) by asking Prefix-Suffix Queries for
X = S(i+1), Y = T (j−1) in S#T and d = 2r for all r = 0, 1, . . . , blog jc. We then consider
the borders of U0 in arithmetic sequences of their lengths; see Lemma 7. If an arithmetic
sequence has at most two elements, we compute an LCS aligned at each of the borders in
O(1) time by the above formula using LCE queries. Otherwise, let p be the difference of the
arithmetic sequence, ` be its length, and u be its maximum element. Further let:

X1 = S′(i+u+1), Y1 = T ′(j), P1 = S′[i+ u− p+ 1 . . i+ u],

XR
2 = T ′(j−u−1), Y R

2 = S′(i), PR
2 = T ′[j − u . . j − u+ p− 1].

The setting is presented in Figure 2. It can be readily verified (inspect Figure 2) that a
longest common substring aligned at the border of length u−wp, for w ∈ [0, `−1], is equal to

lcs(XR
2 (PR

2 )w, Y R
2 ) + u−wp+ lcp(Pw

1 X1, Y1) = lcp(Pw
2 X2, Y2) + lcp(Pw

1 X1, Y1) + u−wp

which we further denote by g(w). Thus, a longest LCS aligned at a border whose length is
in this arithmetic sequence is max`−1

w=0 g(w). The following observation facilitates efficient
evaluation of this formula.

I Observation 8. For any strings P,X, Y , the function f(w) = lcp(PwX,Y ) for integer
w ≥ 0 is piecewise linear with at most three pieces. Moreover, if P,X, Y are substrings of a
string S, then the exact formula of f can be computed with O(1) LCE queries on S.

Proof. Let a = lcp(P∞, X), b = lcp(P∞, Y ), and p = |P |. Then:

f(w) =


a+ wp if a+ wp < b

w + lcp(X,Y [aw + 1 . . |Y |]) if a+ wp = b

b if a+ wp > b.

Note that a can be computed from lcp(P,X) and lcp(X,X[p+1 . . |X|]), and b analogously.
Thus if P,X, Y are substrings of S, five LCE queries on S suffice. J
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By Observation 8, g(w) can be expressed as a piecewise linear function with O(1) pieces.
Moreover, its exact formula can be computed using O(1) LCE queries on S′#T ′, hence, in
O(1) time using LCE queries. This allows to compute max`−1

w=0 g(w) in O(1) time. Each
arithmetic sequence is processed in O(1) time. The global maximum that contains both
changed positions is the required answer. Thus the query time in this case is O(logn) and
the preprocessing requires O(n) time and space.

By combining the results of Sections 3.1 to 3.3, we arrive at Theorem 3.

4 Fully Dynamic LCS

In this section we assume that the sought LCS has length at least 2. The case that it is of unit
or zero length can be easily treated separately. We use the following auxiliary problem that
generalizes LCS after One Substitution per String into the case of k edit operations:

(k1, k2)-Substring LCS
Input: Two strings S and T of length at most n
Query: Compute LCS(S′, T ′) where S′ = F1 . . . Fk1 is a k1-substring of S, T ′ =
G1 . . . Gk2 is a k2-substring of T , and k1 + k2 = k

As in Section 3, we consider three cases listed below. The main difference in the approach
takes place in the first case since the most general internal LCS queries are probably hard to
answer. Indeed, this query can be reduced via a binary search to O(logn) two-range-LCP
queries of Amir et al. [10]. With their Theorem 6, we can construct a data structure of
size O(n) in O(n

√
n) time that allows for Õ(

√
n)-time queries. We cannot use this data

structure in our scheme though due to its high preprocessing cost. In fact, Amir et al. [10]
show that the two-range-LCP data structure problem is at least as hard as the Set Emptiness
problem: preprocess a collection of sets of total cardinality n so that queries of whether the
intersection of two sets is empty can be answered efficiently. The best known O(n)-sized data
structure for this problem has O(

√
n/w)-query-time, where w is the size of the computer

word. The reduction of [10] can be adapted to show that answering general internal LCS
queries is at least as hard as answering Set Emptiness queries. In light of this, in the first
case, we develop a different global approach to circumvent answering such queries.

1. An LCS does not contain any position (or boundary between positions) in S or T where
an edit took place. As it was mentioned before, this problem probably cannot be solved
efficiently in the language of k-substrings. Instead, we compute such an LCS via an
inherently dynamic algorithm for the Decremental LCS problem. See Section 4.1.

2. An LCS contains at least one position where an edit operation took place in exactly one
of the strings. This corresponds to the (k1, k2)-Substring LCS problem when an LCS
contains the boundary between some substrings of exactly one of S′ and T ′. We compute
such an LCS by combining the techniques of Section 3.2 with a sliding window approach.
See Section 4.2.

3. An LCS contains at least one position where an edit operation took place in both of the
strings. This corresponds to the (k1, k2)-Substring LCS problem when an LCS contains
the boundary between some substrings in both of S′ and T ′. We compute such an LCS
by building upon the techniques of Section 3.3 and employing efficient LCE queries for
k-substrings. See Section 4.3.
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4.1 Decremental LCS
We use the following convenient formulation of the problem, where the only letter that can
be inserted or substituted in S (resp. in T ) is # /∈ Σ, (resp. $ /∈ Σ), with # 6= $. An insertion
in S in Fully Dynamic LCS corresponds to an insertion of a #, while both deletions
and substitutions correspond to substitutions with a #. T is treated similarly. We call the
problem of reporting an LCS after each such operation Decremental LCS.

We first consider the case where the sought LCS (in the fully dynamic case) is of length
bounded by d; we call this problem d-Bounded-Length LCS.

Before we proceed to describe a solution to this problem we discuss how to answer LCE
queries efficiently in a dynamic string. We resort to the main result of Gawrychowski et
al. [30] to obtain the following lemma.

I Lemma 9. A string S of length n can be preprocessed in O(n) time and space so that
k = O(n) edit operations and m = O(n) lcp queries, in any order, can be processed in
O(logn) time each, using O(k logn+m logn) space in total.

I Lemma 10. d-Bounded-Length LCS can be solved in O(d log2 n) time per operation
after Õ(n)-time preprocessing, using Õ(n+ kd) space for k performed operations.

Proof. Let U and V be the multisets of d-length substrings and the d− 1 suffixes of length
smaller than d of S and T , respectively. We will maintain balanced BSTs BX , with respect to
the lexicographical order, containing the elements of X, for X = U, V , stored as substrings.
We can search in these balanced BSTs in O(log2 n) since a comparison in it is an lcp query,
which requires O(logn) by Lemma 9, possibly followed by a character comparison. Each
node of BX will maintain a counter denoting its multiplicity in X. Let Y = U ∪ V ; we do
not use Y in the algorithm, we just introduce it for conceptual convenience.

I Observation 11. The length of the LCS of length at most d is equal to the maximum lcp
between pairs of consecutive substrings in (the sorted) Y that originate from different strings.

During preprocessing, we compute the lcp of all pairs described in Observation 11 and
store them in a max heap H. To each element of the heap, we store a pointer from the nodes
u ∈ BU , v ∈ BV it originates from.

Each edit in S or T yields O(d) deletions and O(d) insertions of substrings in each of U ,
V and Y . We first perform deletions and then insertions. For each such operation, we have
to check if it destroys or creates a pair of consecutive elements in (the sorted) Y , originating
from different strings. We observe that upon the insertion/deletion of a string P , only pairs
involving P , predU (P ), predV (P ), succU (P ) and succV (P ) may be involved, where pred, succ
are predecessor and successor with respect to the lexicographical order. These elements can
be identified in O(log2 n) time. The max heap can then be updated using a constant number
of LCE queries and heap updates. By Lemma 9, LCE queries (and heap updates) require
O(logn) time each. Finally, we return the maximum element of the heap. J

We now focus on the harder case that the sought LCS is of length at least d.
Let S′ and T ′ be the strings S and T after p operations; for some p ≤ k. For a position i,

by succ#
S′(i) we denote the smallest position j ≥ i such that S′[j] = #. If no such position

exists, we set succ#
S′(i) = |S′|+ 1. Similarly, by pred#

S′(i) we denote the greatest position
j ≤ i such that S′[j] = #, or 0 if no such position exists. Similarly we define succ$

T ′(i) and
pred$

T ′(i). Such values can be computed in O(logn) time if the set of replaced positions is
stored in a balanced BST (note that positions of # and $ can be shifted due to insertions).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h(4, 11) = 4 h(4, 11) = 4

Figure 3 An example of a 6-cover S20(6) = {2, 3, 5, 8, 9, 11, 14, 15, 17, 20}, with the elements
marked as black circles. For example, we may have h(4, 11) = 4 since 4 + 4, 11 + 4 ∈ S20(6).

We say that a set S(d) ⊆ Z+ is a d-cover if there is a constant-time computable function
h such that for i, j ∈ Z+ we have 0 ≤ h(i, j) < d and i+ h(i, j), j + h(i, j) ∈ S(d).

I Lemma 12 ([39, 15]). For each d ∈ Z+ there is a d-cover S(d) such that S(d) ∩ [1, n] is
of size O( n√

d
) and can be constructed in O( n√

d
) time.

The intuition behind applying the d-cover in our string-processing setting is as follows
(inspect also Figure 3). Consider a position i on S and a position j on T . Note that
i, j ∈ [1, n]. By the d-cover construction, we have that h(i, j) is within distance d and
i+ h(i, j), j + h(i, j) ∈ S(d). Thus if we want to find a longest common substring of length
at least d, it suffices to compute longest common extensions to the left and to the right of
only positions i′, j′ ∈ S(d) (black circles in Figure 3) and then merge these partial results
accordingly.

For this we use the following auxiliary problem that was introduced in [16].
Two String Families LCP
Input: A compact trie T (F) of a family of strings F and two sets P,Q ⊆ F2

Output: The value maxPairLCP(P,Q), defined as
maxPairLCP(P,Q)=max{lcp(P1, Q1) + lcp(P2, Q2) : (P1, P2) ∈ P and (Q1, Q2) ∈ Q}

An efficient solution to this problem was shown in [16] (and, implicitly, in [20, 25]).

I Lemma 13 ([16]). Two String Families LCP can be solved in O(|F|+N logN) time,
where N = |P|+ |Q|.

I Lemma 14. Decremental LCS can be solved in Õ(n2/3) time per query, using Õ(n+
kn2/3) space, after Õ(n)-time preprocessing for k performed operations.

Proof. Let us consider an integer d ∈ [1, n]. For lengths up to d, we use the algorithm for
the Bounded-Length LCS problem of Lemma 10. If this problem indicates that there
is a solution of length at least d, we proceed to the second step. Let A = S(d) ∩ [1, n] be a
d-cover of size O(n/

√
d) (see Lemma 12).

We consider the following families of pairs of strings: P = { (S[pred#
S′(i − 1) + 1 . . i −

1])R, S[i . . succ#
S′(i)−1]) : i ∈ A } and Q = { (T [pred$

T ′(i−1)+1 . . i−1])R, T [i . . succ$
T ′(i)−

1]) : i ∈ A}. We define F as the family of strings that occur in the pairs from P and Q.
Then maxPairLCP(P,Q) equals the length of the sought LCS, provided that it is at least d.

Note that |P|, |Q|, |F| are O(n/
√
d). A compact trie T (F) can be constructed in

O(|F| log |F|) time by sorting all the strings (using lcp-queries) and then a standard left-to-
right construction; see [19]. Thus we can use the solution to Two String Families LCP
which takes Õ(n/

√
d) time. We set d = bn2/3c to obtain the stated complexity. J

4.2 One-Sided Cross-Substring Queries
We show a solution with Õ(k2)-time queries after Õ(n)-time preprocessing by building upon
the techniques from Section 3.2.
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S′
a1
β

a2
α

p p+ `− 1

T ′

b1

α

b2

β
b3

γ
q q + `− 1

Figure 4 Occurrences of an LCS of S′ and T ′ crossing the boundaries in both are denoted by
dashed rectangles. The starting positions fi+1 and gj+1 minimize the formula |(fi+1−p)−(gj+1−q)|.
Hence the gray rectangle, denoting U , is a prefix of S′[fi+1 . . fi+2−1] and a suffix of T ′[gj . . gj+1−1].
We thus process it as a border while processing (Fi, Fi+1) and (Gj , Gj+1) and hence find this LCS.

We present an algorithm that computes, for each i = 1, . . . , k1, the longest substring
of S′ that contains the first character of Fi, but not of Fi−1 and occurs in Gp for a given
p ∈ {1, . . . , k2} in Õ(k) time. These are the possible LCSs that cross the substring boundaries.

Let us start by a global part of the computation. For convenience let us assume that
F0 = Fk1+1 are empty strings. For an index i ∈ {1, . . . , k1}, by next(i) we denote the greatest
index j ≥ i − 1 for which Fi . . . Fj is a substring of T . These values are computed using
a sliding-window-based approach. We start with computing next(1). To this end, we use
Lemma 5(a) for subsequent substrings F1, F2, . . . as long as their concatenation is a substring
of T . This takes O(k log logn) time. Now assume that we have computed next(i) and we
wish to compute next(i + 1). Obviously, next(i + 1) ≥ next(i). Let j = next(i). We start
with Fi+1 . . . Fj which is represented as a substring of T . We keep extending this substring
by Fj+1, Fj+2, . . . using Lemma 5(a) as before as long as the concatenation is a substring of
T . In total, computing values next(i) for all i = 1, . . . , k1 takes Õ(k) time.

Let us now fix i and let j = next(i). We use Lemma 5(b) to find the longest prefix Pi of
(Fi . . . Fj)Fj+1 that occurs in T ; it is also the longest prefix of Fi . . . Fk1 that occurs in T by
the definition of next(i). Then Lemma 5(b) can be used to compute the longest suffix Qi of
Fi−1 that occurs in T . For each i it takes time Õ(1) time to find Pi and Qi after Õ(n) time
and space preprocessing.

We then compute the sought result for given i ∈ {1, . . . , k1} and p ∈ {1, . . . , k2} by a
Three Substrings LCS query for U = Qi, V = Pi, and W = Gp. With Lemma 6 this
takes Õ(k2) time in total after Õ(n) time and space preprocessing.

4.3 Two-Sided Cross-Substring Queries

We show a solution with O(k2 log3 n)-time queries after O(n logn)-time preprocessing by
combining the ideas presented in Section 3.3 and efficient LCE queries in the dynamic setting
(cf. Lemma 9). We consider each pair of boundaries between pairs (Fi, Fi+1) and (Gj , Gj+1),
for 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2 − 1. We process the prefixes of Fi+1 that are suffixes of
Gj as in Section 3.3 (the symmetric case is treated analogously).

We next argue that we do not miss any possible LCS by only considering such prefix-
suffix pairs of Fi+1 and Gj . Let fi and gi be the starting positions of Fi and Gj in S′

and T ′, respectively. An LCS S′[p . . p + ` − 1] = T ′[q . . q + ` − 1] of this type will be
reported when processing the pairs (Fi, Fi+1) and (Gj , Gj+1), satisfying p ≤ fi+1 ≤ p+ `− 1,
q ≤ gj+1 ≤ q + ` − 1, for which |(fi+1 − p) − (gj+1 − q)| is minimal. Without loss of
generality assume fi+1 − p ≤ gj+1 − q. Then, S′[fi+1 . . p+ gj+1 − q − 1] is a prefix of Fi+1
and T ′[q+ fj+1 − p+ 1 . . gj+1 − 1] is a suffix of Gj and hence it is a prefix-suffix that will be
processed by our algorithm; see Figure 4.
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We assume that k = O(
√
n), which is sufficient for our main result. We consider

k1 × k2 = O(k2) pairs (Fi, Fi+1), (Gj , Gj+1) and, by the analysis in Section 3.3, the time
required for processing each of them (i.e. finding the longest prefix-suffix and then considering
all its borders in O(logn) batches) is bounded by the time required to answer O(logn) LCE
queries, which can be answered in time O(k2 logn) by Lemma 9. By Lemma 9 we have
that k2 = O(n) LCE queries over a k-substring of S, can be performed in O(k2 logn) time,
using this much extra space, after O(n)-time preprocessing. Hence the total time required is
O(k2 log3 n) after Õ(n)-time preprocessing.

4.4 Main Result

By combining the results of Sections 4.1 to 4.3 we obtain the following.

I Lemma 15. (k1, k2)-Substring LCS queries can be answered in Õ(n2/3 +k2) time, where
k = k1 + k2 = O(

√
n), using a data structure that can be constructed in Õ(n) time.

We now formalize the time slicing deamortization technique for our purposes.

I Lemma 16. Assume that there is a data structure D over an input string of length n
that occupies O(sn) space, answers queries for k-substrings in time O(qn(k)) and can be
constructed in time O(tn). Assume that sn ≥ n and q(k, n) ≥ k is non-decreasing with respect
to k. We can then design an algorithm that preprocesses the input string in time O(tn) and
answers queries dynamically under edit operations in worst-case time O(qn(κ)), where κ is
such that qn(κ) = (tn + n)/κ, using O(sn) space.

By plugging Lemma 15 into Lemma 16 we arrive at our main result.

I Theorem 17. Fully Dynamic LCS on two strings, each of length up to n, can be solved
in Õ(n2/3) time per operation, using Õ(n) space, after Õ(n)-time preprocessing.

5 Applications

We present three applications of our techniques. The fully dynamic algorithm for computing
the longest repeat is very similar to the fully dynamic algorithm for LCS.

Another application is a fully dynamic algorithm for the longest palindrome substring
which extends the results of [26, 27]. We consider two cases. In the internal case, in which
the longest palindrome occurs between edited positions, we use range queries on the set
of maximal palindrome substrings of a string (which is known to have linear size). In the
cross-substring case, we use the known fact that the lengths of suffix palindromes of a string
can be represented as a logarithmic number of arithmetic progressions which lets us use
string periodicity similarly as in Section 3.3. We remark that a more efficient algorithm for
computing the longest palindrome in a dynamic string has recently been proposed [6].

The authors of [48] presented algorithms for computing a representation of a Lyndon
factorization of a prefix of a string and of a suffix of a string in Õ(1) time after Õ(n)
preprocessing. For the prefixes, their solution is based on the Lyndon representations of
prefixes of a Lyndon string, whereas for the suffixes, it is based on the structure of a Lyndon
tree (originally due to [13]). In order to devise our fully dynamic algorithm, we carefully
combine these two approaches to obtain general internal computation of a representation of
a Lyndon factorization in the same time bounds.
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6 Final Remarks

We anticipate that the techniques presented in this paper to obtain fully dynamic algorithms
for several classical problems on strings are applicable in a wider range of problems on strings.

The significance of our results is additionally highlighted by the following argument.
It is known that finding an LCS when the strings have wildcard characters [2] or when
k = Ω(logn) mismatches are allowed [36] in strongly subquadratic time would refute the
Strong Exponential Time Hypothesis (SETH) [33, 32] (on the other hand, pattern matching
with wildcard characters can be solved in Õ(n) time [17] and with k mismatches in Õ(n

√
k)

time [9]). It is therefore unlikely that a fully dynamic algorithm with strongly sublinear-time
queries exists for these problems: such an algorithm could be trivially applied as a black box
to solve the problems in their static setting in strongly subquadratic time, refuting SETH.

This research could inspire more work on the lower bound side of dynamic problems.
The currently known hardness (and conditional hardness) results for dynamic problems on
strings have been established for dynamic pattern matching [18, 30]. It would be interesting
to investigate (conditional) lower bounds for the dynamic problems considered in this paper.
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Abstract
We study the classic Maximum Independent Set problem under the notion of stability introduced by
Bilu and Linial (2010): a weighted instance of Independent Set is γ-stable if it has a unique optimal
solution that remains the unique optimal solution under multiplicative perturbations of the weights
by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal
solution exactly. In this work, we solve stable instances of Independent Set on several classes of
graphs: we improve upon previous results by solving Õ(∆/

√
log ∆)-stable instances on graphs of

maximum degree ∆, (k − 1)-stable instances on k-colorable graphs and (1 + ε)-stable instances on
planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the
Sherali-Adams hierarchy.

For general graphs, we present a strong lower bound showing that there are no efficient algorithms
for O(n 1

2 −ε)-stable instances of Independent Set, assuming the planted clique conjecture. To
complement our negative result, we give an algorithm for (εn)-stable instances, for any fixed ε > 0.
As a by-product of our techniques, we give algorithms as well as lower bounds for stable instances
of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to
Vertex Cover. Furthermore, we prove a general structural result showing that the integrality gap of
convex relaxations of several maximization problems reduces dramatically on stable instances.

Moreover, we initiate the study of certified algorithms for Independent Set. The notion of a
γ-certified algorithm was introduced very recently by Makarychev and Makarychev (2018) and it
is a class of γ-approximation algorithms that satisfy one crucial property: the solution returned is
optimal for a perturbation of the original instance, where perturbations are again multiplicative up
to a factor of γ ≥ 1 (hence, such algorithms not only solve γ-stable instances optimally, but also
have guarantees even on unstable instances). Here, we obtain ∆-certified algorithms for Independent
Set on graphs of maximum degree ∆, and (1 + ε)-certified algorithms on planar graphs. Finally,
we analyze the algorithm of Berman and Fürer (1994) and prove that it is a

(
∆+1

3 + ε
)
-certified

algorithm for Independent Set on graphs of maximum degree ∆ where all weights are equal to 1.
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1 Introduction

The Maximum Independent Set problem (simply MIS from now on) is a central problem
in theoretical computer science and has been the subject of extensive research over the
last few decades. As a result we now have a thorough understanding of the worst-case
behavior of the problem. In general graphs, the problem is n1−ε-hard to approximate,
assuming that P 6= NP [34, 48], and n/2(logn)3/4+ε-hard to approximate, assuming that
NP 6⊆ BPTIME(2(logn)O(1)) [37]. On the positive side, the current best algorithm is due to
Feige [27] achieving a Õ(n/ log3 n)-approximation (the notation Õ hides some poly(log logn)
factors). In order to circumvent the strong lower bounds, many works have focused on special
classes of graphs, such as bounded-degree graphs (see, e.g., [1, 5, 10, 11, 21, 31, 32, 33]),
planar graphs ([7]) etc. In this work, we build upon this long line of research and study MIS
under the beyond worst-case framework introduced by Bilu and Linial [17].

In an attempt to capture real-life instances of combinatorial optimization problems, Bilu
and Linial proposed a notion of stability, which we now instantiate in the context of MIS
(from now on, we will always assume weighted instances of MIS).

I Definition 1 (γ-perturbation [17]). Let G = (V,E,w), w : V → R>0, be an instance of
MIS. An instance G′ = (V,E,w′) is a γ-perturbation of G, for some parameter γ ≥ 1, if for
every u ∈ V we have wu ≤ w′u ≤ γ · wu.

I Definition 2 (γ-stability [17]). Let G = (V,E,w), w : V → R>0, be an instance of MIS.
The instance G is γ-stable, for some parameter γ ≥ 1, if:
1. it has a unique maximum independent set I∗,
2. every γ-perturbation G′ of G has a unique maximum independent set equal to I∗.
Equivalently, G is γ-stable if it has an independent set I∗ such that w(I∗ \ S) > γ ·w(S \ I∗)
for every feasible independent set S 6= I∗ (we use the notation w(Q) :=

∑
u∈Q wu for Q ⊆ V ).

This definition of stability is motivated by the empirical observation that in many real-life
instances, the optimal solution stands out from the rest of the solution space, and thus
is not sensitive to small perturbations of the parameters. This suggests that the optimal
solution does not change (structurally) if the parameters of the instance are perturbed (even
adversarially). Observe that the smaller the so-called stability threshold γ is, the less severe
the restrictions imposed on the instance are; for example, γ = 1 is the case where we only
require the optimal solution to be unique. Thus, the main goal in this framework is to
recover the optimal solution in polynomial time, for as small γ ≥ 1 as possible. An “optimal”
result would translate to γ being 1 + ε, for small ε > 0, since assuming uniqueness of the
optimal solution is not believed to make the problems easier (see, e.g., [47]), and thus ε
is unlikely to be zero. We note that perturbations are scale-invariant, and so it suffices
to consider perturbations that only scale up. Moreover, we observe that an algorithm for
γ-stable instances of MIS solves γ-stable instances of Minimum Vertex Cover, and vice versa.

Stability was first introduced for Max Cut [17], but the authors note that it naturally
extends to other problems, such as MIS, and, moreover, they prove that the greedy algorithm
for MIS solves ∆-stable instances on graphs of maximum degree ∆. The work of Bilu and
Linial has inspired numerous works on stable instances of various optimization problems; we
give an overview of the literature in the next page.
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Prior works on stability have also studied robust algorithms [42, 4]; these are algorithms
that either output an optimal solution or provide a polynomial-time verifiable certificate
that the instance is not γ-stable (see Section 2 for a definition). Motivated by the notion
of stability, Makarychev and Makarychev [41] recently introduced an intriguing class of
algorithms, namely γ-certified algorithms.

I Definition 3 (γ-certified algorithm [41]). An algorithm for MIS is called γ-certified, for
some parameter γ ≥ 1, if for every instance G = (V,E,w), w : V → R>0, it computes
1. a feasible independent set S ⊆ V of G,
2. a γ-perturbation G′ = (V,E,w′) of G such that S is a maximum independent set of G′.
Equivalently, Condition (2) can be replaced by the following: γ ·w(S \ I) ≥ w(I \S) for every
independent set I of G.

We highlight that a certified algorithm works for every instance; if the instance is γ-stable,
then the solution returned is the optimal one, while if it is not stable, the solution is within
a γ-factor of optimal. Hence a γ-certified algorithm is also a γ-approximation algorithm.

Motivation. Stability is especially natural for problems where the given objective function
may be a proxy for a true goal of identifying a hidden correct solution. For MIS, a natural
such scenario is applying a machine learning algorithm in the presence of pairwise constraints.
Consider, for instance, an algorithm that scans news articles on the web and aims to extract
events such as “athlete X won the Olympic gold medal in Y”. For each such statement, the
algorithm gives a confidence score (e.g., it might be more confident if it saw this listed in
a table rather than inferring it from a free-text sentence that the algorithm might have
misunderstood). But in addition, the algorithm might also know logical constraints such
as “at most one person can win a gold medal in any given event”. These logical constraints
would then become edges in a graph, and the goal of finding the most likely combination of
events would become a MIS problem. Stability would be natural to assume in such a setting
since the exact confidence weights are somewhat heuristic, and the goal is to recover an
underlying ground truth. It is also easy to see the usefulness of a certified algorithm in this
setting. Given a certified algorithm that outputs a γ-perturbation, the user of the machine
learning algorithm can further test and debug the system by trying to gather evidence for
events on which the perturbation puts higher weight.

Related Work. There have been many works on the worst-case complexity of MIS and
the current best known algorithms give Õ(n/ log3 n)-approximation [27], and Õ(∆/ log ∆)-
approximation [31, 33, 36]), where ∆ is the maximum degree. The problem has also
been studied from the lens of beyond worst-case analysis. For random graphs with a
planted independent set, MIS is equivalent to the classic planted clique problem. Inspired
by semi-random models of [18], Feige and Killian [28] designed SDP-based algorithms for
computing large independent sets in semi-random graphs. Finally, there has been work on
MIS under noise [40, 12].

The notion of Bilu-Linial stability goes beyond random/semi-random models and proposes
deterministic conditions that give rise to non worst-case, real-life instances. The study of this
notion has led to insights into the complexity of many problems in optimization and machine
learning. For MIS, Bilu [15] analyzed the greedy algorithm and showed that it recovers
the optimal solution for ∆-stable instances of graphs of maximum degree ∆. The same
result is also a corollary of a general theorem about the greedy algorithm and p-extendible
independence systems proved by Chatziafratis et al. [22]. On the negative side, Angelidakis
et al. [4] showed that there is no robust algorithm for n1−ε-stable instances of MIS on general
graphs (unbounded degree), assuming that P 6= NP.
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The work of Bilu and Linial has inspired a sequence of works about stable instances
of various combinatorial optimization problems. There are now algorithms that solve
O(
√

logn log logn)-stable instances of Max Cut [16, 42], (2− 2/k)-stable instances of Edge
Multiway Cut, where k is the number of terminals [42, 4], and 1.8-stable instances of
symmetric TSP [45]. There has also been extensive work on stable instances of clustering
problems (usually called perturbation-resilient instances) with many positive results for
problems such as k-median, k-means, and k-center [6, 9, 8, 4, 25, 23, 26, 30], and more
recently on MAP inference [38, 39].

Our results. We explore the notion of stability in the context of MIS and significantly
improve our understanding of its behavior on stable instances; we design algorithms for
stable instances on different graph classes, and also initiate the study of certified algorithms
for MIS. More specifically, we obtain the following results.

Planar graphs: We show that on planar graphs, any constant stability suffices to solve
the problem exactly in polynomial time. More precisely, we provide robust and certified
algorithms for (1 + ε)-stable instances of planar MIS, for any fixed ε > 0. To obtain these
results, we utilize the Sherali-Adams hierarchy, demonstrating that hierarchies may be
helpful for solving stable instances.
Graphs with small chromatic number or bounded degree: We provide robust
algorithms for solving (k − 1)-stable instances of MIS on k-colorable graphs (where the
algorithm does not have access to a k-coloring of the graph) and (∆−1)-stable instances of
MIS on graphs of maximum degree ∆. Both results are based on LPs. For bounded-degree
graphs, we then turn to combinatorial techniques and design a (non-robust) algorithm for
Õ(∆/

√
log ∆)-stable instances; this is the first algorithm that solves o(∆)-stable instances.

Moreover, we show that the standard greedy algorithm is a ∆-certified algorithm for
MIS, whereas for unweighted instances, the algorithm of Berman and Fürer (1994) is a(∆+1

3 + ε
)
-certified algorithm.

General graphs: For general graphs, we show that solving o(
√
n)-stable instances is

hard assuming the hardness of finding maximum cliques in a random graph. To the best
of our knowledge, this is only the second case of a lower bound for stable instances of a
graph optimization problem that applies to any polynomial-time algorithm and not only
to robust algorithms [42, 4] (the first being the lower bound for Max k-Cut [42]). We
complement this lower bound by giving an algorithm for (εn)-stable instances of MIS on
graphs with n vertices, for any fixed ε > 0.
Convex relaxations and stability: We present a structural result for the integrality
gap of convex relaxations of maximization problems on stable instances: if the integrality
gap of a relaxation is α, then it is at most min

{
α, 1 + 1

β−1

}
for (αβ)-stable instances,

for any β > 1. This result demonstrates a smooth trade-off between stability and the
performance of a convex relaxation, and also implies (1 + ε)-estimation algorithms1 for
O(α/ε)-stable instances.
Node Multiway Cut: We give the first results on stable instances of Node Multiway
Cut, a strict generalization of the well-studied (under stability) Edge Multiway Cut
problem [42, 4]. In particular, we give a robust algorithm for (k − 1)-stable instances,
where k is the number of terminals, and show that all negative results on stable instances
of MIS directly apply to Node Multiway Cut.

1 An α-estimation algorithm returns a value that is within a factor of α from the optimum, but not
necessarily a corresponding solution that realizes this value.
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Organization of material. Section 2 provides definitions and related facts. Section 3
contains the algorithms for stable instances of MIS on bounded-degree, small chromatic
number and planar graphs. Section 4 contains our results for stable instances on general
graphs. Section 5 demonstrates how the performance of convex relaxations improves as
stability increases. Section 6 contains various certified algorithms for MIS. Due to space
constraints, the results for the Node Multiway Cut problem are omitted and can be found in
the full version of the paper [3]. The same applies to all proofs that have been omitted.

2 Preliminaries and definitions

Given a γ-stable instance, our goal is to design polynomial-time algorithms that recover the
unique optimal solution, for as small γ ≥ 1 as possible. A special class of such algorithms that
is of particular interest is the class of robust algorithms, introduced by Makarychev et al. [42].

I Definition 4 (robust algorithm [42]). Let G = (V,E,w), w : V → R>0, be an instance of
MIS. An algorithm A is a robust algorithm for γ-stable instances if:
1. it always returns the unique optimal solution of G, when G is γ-stable,
2. it either returns an optimal solution of G or reports that G is not stable, when G is not

γ-stable.

Note that a robust algorithm is not allowed to err, while a non-robust algorithm is allowed
to return a suboptimal solution, if the instance is not γ-stable. We now present a useful
lemma about stable instances of MIS that is used in several of our results. From now on, we
denote the neighborhood of a vertex u of a graph G = (V,E) as N(u) = {v : (u, v) ∈ E},
and the neighborhood of a set S ⊆ V as N(S) = {v ∈ V \ S : ∃u ∈ S s.t. (u, v) ∈ E}.

I Lemma 5. Let G = (V,E,w) be a γ-stable instance of MIS whose optimal independent set
is I∗. Then, for any v ∈ I∗, the induced instance G̃ = G[V \ ({v} ∪N(v))] is γ-stable, and
its unique maximum independent set is I∗ \ {v}.

Regarding certified algorithms (see Definition 3), it is easy to observe the following.

I Observation 6 ([41]). A γ-certified algorithm for MIS satisfies the following:
1. returns the unique optimal solution, when run on a γ-stable instance,
2. is a γ-certified algorithm for Vertex Cover, and vice versa,
3. is a γ-approximation algorithm for MIS (and Vertex Cover).

We stress that not all algorithms for stable instances are certified, so there is no equivalence
between the two notions. Some examples (communicated to us by Yury Makarychev [43])
include the algorithms for stable instances of TSP [45], Max Cut (the GW SDP with triangle
inequalities), and clustering. All these algorithms solve stable instances but are not certified.
Thus, designing a certified algorithm is, potentially, a harder task than designing an algorithm
for stable instances.

From now on, if an algorithm for MIS only returns a feasible solution S, it will be
assumed to be “candidate” γ-certified that also returns the perturbed weight function w′
with w′u = γ · wu for u ∈ S and w′u = wu, otherwise.

3 Stable instances of MIS on special classes of graphs

In the next few sections, we obtain algorithms for stable instances of MIS on several natural
classes of graphs, by using convex relaxations and combinatorial techniques.
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3.1 Convex relaxations and robust algorithms
The starting point for the design of robust algorithms via convex relaxations is the structural
result of Makarychev et al. [42], that gives sufficient conditions for the integrality of convex
relaxations on stable instances. We now introduce a definition and restate their theorem in
the setting of MIS.

I Definition 7 ((α, β)-rounding). Let x : V → [0, 1] be a feasible fractional solution of a
convex relaxation of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu.

A randomized rounding scheme for x is an (α, β)-rounding, for some parameters α, β ≥ 1, if
it always returns a feasible independent set S, such that the following two properties hold for
every vertex u ∈ V :
1. Pr[u ∈ S] ≥ 1

α · xu,
2. Pr[u /∈ S] ≤ β · (1− xu).

I Theorem 8 ([42]). Let x : V → [0, 1] be an optimal fractional solution of a convex relaxation
of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu. Suppose that

there exists an (α, β)-rounding for x, for some α, β ≥ 1. Then, x is integral for (αβ)-stable
instances.

The theorem suggests a simple robust algorithm: solve the relaxation, and if the solution is
integral, report it, otherwise report that the instance is not stable (observe that the rounding
scheme is used only in the analysis).

3.2 A robust algorithm for (k − 1)-stable instances of MIS on
k-colorable graphs

In this section, we give a robust algorithm for (k − 1)-stable instances of MIS on k-colorable
graphs by utilizing Theorem 8 and the standard LP for MIS. For a graph G = (V,E,w), the
standard LP has an indicator variable xu for each vertex u ∈ V , and is given below.

(LP) max :
∑
u∈V

wuxu s.t.: xu + xv ≤ 1 ∀(u, v) ∈ E, and xu ∈ [0, 1] ∀u ∈ V.

The corresponding polytope is half-integral [46], and so we always have an optimal solution
x with xu ∈

{
0, 1

2 , 1
}
for every u ∈ V . This is useful for designing (α, β)-rounding schemes,

as it allows us to consider randomized combinatorial algorithms and easily present them as
rounding schemes.

The crucial observation that we make is that the rounding scheme in Theorem 8 is only
used in the analysis and is not part of the algorithm, and so it can run in super-polynomial
time. We also note that the final (polynomial-time) algorithm does not need to have a
k-coloring of the graph. Let G = (V,E,w) be a k-colorable graph, and let x be an optimal
half-integral solution. Let Vi = {u ∈ V : xu = i} for i ∈ {0, 1/2, 1}. We consider the rounding
scheme of Hochbaum [35] (see Algorithm 1). We use the notation [k] = {1, ..., k}.

Algorithm 1 Hochbaum’s k-colorable rounding scheme.
1. Compute a k-coloring f : V1/2 → [k] of the induced graph G[V1/2].
2. Pick j uniformly at random from the set [k], and set V (j)

1/2 := {u ∈ V1/2 : f(u) = j}.
3. Return S := V

(j)
1/2 ∪ V1.
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I Theorem 9. Let G = (V,E,w) be a k-colorable graph. Given an optimal half-integral
solution x, the rounding scheme of Algorithm 1 is a

(
k
2 ,

2(k−1)
k

)
-rounding for x.

Proof. The set S is feasible, as there is no edge between V1 and V1/2 and f is a valid
coloring. For u ∈ V0, we have Pr[u ∈ S] = 0 = xu and Pr[u /∈ S] = 1 = 1 − xu. For
u ∈ V1, we have Pr[u ∈ S] = 1 = xu and Pr[u /∈ S] = 0 = 1 − xu. Let u ∈ V1/2. We have
Pr[u ∈ S] ≥ 1

k = 2
k · xu and Pr[u /∈ S] ≤ 1− 1

k = 2(k−1)
k · (1− xu). The result follows. J

Theorems 8 and 9 now imply the following theorem, which is tight.

I Theorem 10. The standard LP for MIS is integral for (k−1)-stable instances of k-colorable
graphs.

3.3 Algorithms for stable instances of MIS on bounded-degree graphs
Throughout this section, we assume that all graphs have maximum degree ∆. The only
result (prior to our work) for stable instances on such graphs was using the greedy algorithm
and was given by Bilu [15].

Algorithm 2 The greedy algorithm for MIS.
1. Let S := ∅ and X := V .
2. while (X 6= ∅):

Set S := S ∪ {u} and X := X \ ({u} ∪N(u)), where u := arg maxv∈X{wv}.
3. Return S.

I Theorem 11 ([15]). The greedy algorithm (see Algorithm 2) solves ∆-stable instances of
MIS on graphs of maximum degree ∆.

We first note that, since the maximum degree is ∆, the chromatic number is at most ∆+1,
and so Theorem 10 implies a robust algorithm for ∆-stable instances, giving a robust analog
of Bilu’s result. In fact, we can slightly improve upon that by using Brook’s Theorem [20],
which states that the chromatic number is at most ∆, unless the graph is complete or an
odd cycle. We can then prove following theorem.

I Theorem 12. There exists a robust algorithm for (∆− 1)-stable instances of MIS, where
∆ is the maximum degree.

We now turn to non-robust algorithms and present an algorithm that solves o(∆)-stable
instances, as long as the weights are polynomially-bounded integers. The core of the algorithm
is a procedure that uses an α-approximation algorithm as a black-box in order to recover the
optimal solution, when the instance is stable. Let G = (V,E,w) be a graph with n = |V |
and w : V → {1, ..., poly(n)}. Let A denote an α-approximation algorithm for MIS. We will
give an algorithm for γ-stable instances with γ =

⌈√
2∆α

⌉
. Note that we can assume that

α ≤ ∆ and γ ≤ ∆. These assumptions hold for the rest of this section. Algorithm 3 is the
main algorithm, and it uses Algorithm 4 as a subroutine.

To prove the algorithm’s correctness, we need some lemmas (see the full version [3]
for their proofs).

I Lemma 13. Let G = (V,E,w) be γ-stable, with wu ≥ 1, for every u ∈ V . If w(V ) ≤ γ,
then E = ∅.
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Algorithm 3 Algorithm for γ-stable instances, where γ =
⌈√

2∆α
⌉
.

Bounded-Alg(G(V,E,w)):
1. If w(V ) ≤ γ, then return V .
2. Run α-approximation algorithm A on G to get an independent set I.
3. Let S := PURIFY(G, I, γ).
4. Let S′ := Bounded-Alg(G[V \ (S ∪N(S))]).
5. Return S ∪ S′.

Algorithm 4 The PURIFY procedure.
INPUT: Graph G = (V,E,w), independent set I ⊆ V and factor γ ≥ 1.
1. Create a bipartite unweighted graph G0 = (L ∪R,E0), where L contains γ · w(u) copies

of each u ∈ I and R contains w(v) copies of each v ∈ V \ I. The set E0 is defined as
follows: if (u, v) is an edge in G with u ∈ I and v /∈ I, then add edges from each copy of
u in L to each copy of v in R.

2. Compute a maximum cardinality matching M of G0.
3. Return the set of all vertices u ∈ I that have at least one unmatched copy in L w.r.t. M .

The above lemma justifies Step 1 of Algorithm 3.

I Lemma 14. Let G = (V,E,w) be γ-stable, and let I∗ be its maximum independent set.
Then w(I∗) > γ

2∆ · w(V ).

I Lemma 15. Let G = (V,E,w) be a γ-stable instance, let I∗ be its maximum independent
set and let I ′ be an α-approximate independent set. Then I∗ ∩ I ′ 6= ∅.

We now analyze the PURIFY procedure (Algorithm 4).

I Lemma 16. Let G be a γ-stable instance that is given as input to the PURIFY procedure
(see Algorithm 4), along with an α-approximate independent set I, and let I∗ be its maximum
independent set. If I 6= I∗, then the set S returned by the procedure always satisfies the
following two properties:
1. S 6= ∅,
2. S ⊆ I∗.

Proof. We first prove Property (1). Let’s assume that S = ∅. This means that all vertices
in L are matched. By construction, this implies that γ · w(I) ≤ w(V \ I). Since I is an
α-approximation, we have that γ ·w(I) ≥ γ

α ·w(I∗) > γ·γ
2∆αw(V ) ≥ 2∆α

2∆αw(V ) = w(V ), where
the second inequality is due to Lemma 14. We conclude that w(V \ I) > w(V ), which is a
contradiction. Thus, S 6= ∅.

We turn to Property (2). Let A = I \ I∗ and B = I∗ \ I. Let A0 ⊆ L be the copies of
the vertices of set A in G0, and let B0 ⊆ R be the copies of the vertices of set B in G0. We
will show that for every Z ⊆ A0, we have |N(Z) ∩B0| ≥ |Z|. To see this, let Z ⊆ A0, and
let I(Z) ⊆ A be the distinct vertices of A whose copies (not necessarily all of them) are
included in Z. Since the instance is γ-stable, this implies that the weight of the neighbors
F ⊆ B of I(Z) in I∗ is strictly larger than γ · w(I(Z)). By construction, we have that
|Z| ≤ γ · w(I(Z)), and the number of vertices in G0 corresponding to vertices of F is equal
to w(F ). Moreover, all of these w(F ) vertices are connected with at least one vertex in Z,
which means that w(F ) = |N(Z) ∩B0|. This implies that |N(Z) ∩B0| > |Z|. Thus, Hall’s
condition is satisfied, and so there exists a perfect matching between the vertices of A0 and
(a subset of the vertices of) B0.
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We observe now that the neighbors of all vertices in B0 are only vertices in A0 and not in
L \A0. This means that any maximum matching matches all vertices of A0 (otherwise, we
could increase the size of the matching by matching all vertices in A0). Thus, S ⊆ I ∩ I∗. J

Putting everything together, and by using the Õ(∆/ log ∆)-approximation algorithm of
Halldórsson [31] or Halperin [33] as a black-box, it is easy to prove the following theorem.

I Theorem 17. Algorithm 3 correctly solves
⌈√

2∆α
⌉
-stable instances in polynomial time.

In particular, there is an algorithm that solves Õ(∆/
√

log ∆)-stable instances.

3.4 Robust algorithms for (1 + ε)-stable instances of MIS on planar
graphs

In this section, we design a robust algorithm for (1 + ε)-stable instances of MIS on planar
graphs. Theorem 10 already implies a robust algorithm for 3-stable instances of planar MIS,
but we will use the Sherali-Adams hierarchy (denoted as SA from now on) to reduce this
threshold down to 1 + ε, for any fixed ε > 0. In particular, we show that O(1/ε) rounds
of SA suffice to optimally solve (1 + ε)-stable planar instances. We will not introduce the
SA hierarchy formally, and we refer the reader to the many available surveys about it (see,
e.g., [24]). The t-th level of SA for MIS has a variable YS for every subset S ⊆ V of size
at most |S| ≤ t + 1, whose intended value is YS =

∏
u∈S xu, where xu is the indicator of

whether u belongs to the independent set. The relaxation has size nO(t), and thus can be
solved in time nO(t).

Our starting point is the work of Magen and Moharrami [40], which gives a SA-based
PTAS for MIS on planar graphs, inspired by Baker’s technique [7]. In particular, [40] gives a
rounding scheme for the O(t)-th round of SA that returns a (1 +O(1/t))-approximation. In
this section, we slightly modify and analyze their rounding scheme, and prove that it satisfies
the conditions of Theorem 8. For that, we need a theorem of Bienstock and Ozbay [14]. For
any subgraph H of a graph G = (V,E), let V (H) denote the set of vertices contained in H.

I Theorem 18 ([14]). Let t ≥ 1 and Y be a feasible vector for the t-th level SA relaxation of
the standard Independent Set LP for a graph G. Then, for any subgraph H of G of treewidth
at most t, the vector (Y{u})u∈V (H) is a convex combination of independent sets of H.

The above theorem implies that the t-th level SA polytope is equal to the convex hull of all
independent sets of the graph, when the graph has treewidth at most t.

The rounding scheme of Magen and Moharrami [40]. Let G = (V,E,w) be a planar
graph and {YS}S⊆V :|S|≤t+1 be an optimal t-th level solution of SA. We denote Y{u} as yu, for
any u ∈ V . We first fix a planar embedding of G. V can then be naturally partitioned into
sets V0, V1, ..., VL, for some L ∈ {0, ..., n− 1}, where V0 is the set of vertices in the boundary
of the outerface, V1 is the set of vertices in the boundary of the outerface after V0 is removed,
and so on. Note that for any edge (u, v) ∈ E, we have u ∈ Vi and v ∈ Vj with |i − j| ≤ 1.
We will assume that L ≥ 4, since, otherwise, the graph is at most 4-outerplanar and the
problem can then be solved optimally [7].

Following [7], we fix a parameter k ∈ {1, ..., L}, and for every i ∈ {0, ..., k − 1}, we define
B(i) =

⋃
j≡i(mod k) Vj . We now pick an index j ∈ {0, ..., k − 1} uniformly at random. Let

G0 = G[V0 ∪ V1... ∪ Vj ], and for i ≥ 1, Gi = G[
⋃ik+j
q=(i−1)k+j Vq], where for a subset X ⊆ V ,

G[X] is the induced subgraph on X. Observe that every edge and vertex of G appears in
one or two of the subgraphs {Gi}, and every vertex u ∈ V \B(j) appears in exactly one Gi.
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Magen and Moharrami observe that for every subgraph Gi = (V (Gi), E(Gi)), the set
of vectors {YS}S⊆V (Gi):|S|≤t+1 is a feasible solution for the t-th level SA relaxation of the
graph Gi. This is easy to see, as the LP associated with Gi is weaker than the LP associated
with G (on all common variables), since Gi is a subgraph of G, and this extends to SA as
well. We need one more observation: a k-outerplanar graph has treewidth at most 3k − 1
(see [19]). By construction, each Gi is a (k+1)-outerplanar graph. Thus, by setting t = 3k+2,
Theorem 18 implies that the vector {yu}u∈V (Gi) can be written as a convex combination of
independent sets of Gi. Let pi be the corresponding distribution of independent sets of Gi,
implied by {yu}u∈V (Gi).

We now consider the following rounding scheme. For each Gi, we (independently) sample
an independent set Si of Gi according to pi. Each vertex u ∈ V \B(j) belongs to exactly one
Gi and is included in the final independent set S if u ∈ Si. A vertex u ∈ B(j) might belong
to two different graphs Gi, Gi+1, and is included in S only if u ∈ Si ∩ Si+1. The algorithm
then returns S.

Before analyzing the algorithm, we note that standard tree-decomposition based argu-
ments show that the rounding is constructive (i.e. polynomial-time; this fact is not needed
for the algorithm for stable instances of planar MIS, but will be used when designing certi-
fied algorithms).

I Theorem 19. The above randomized rounding scheme always returns a feasible independent
set S, such that for every vertex u ∈ V ,
1. Pr[u ∈ S] ≥ k−1

k · yu + 1
k · y

2
u,

2. Pr[u /∈ S] ≤
(
1 + 1

k

)
· (1− yu).

Proof. It is easy to see that S is always a feasible independent set. We now compute
the corresponding probabilities. Since the marginal probability of pi on a vertex u ∈ Gi
is yu, for any fixed j, for every vertex u ∈ V \ B(j), we have Pr[u ∈ S] = yu, and
for every vertex u ∈ B(j), we have Pr[u ∈ S] ≥ y2

u. Since j is picked uniformly at
random, each vertex u ∈ V belongs to B(j) with probability exactly equal to 1

k . Thus,
we conclude that for every vertex u ∈ V , we have Pr[u ∈ S] ≥ k−1

k · yu + 1
k · y

2
u, and

Pr[u /∈ S] ≤ 1−
(
k−1
k · yu + 1

k · y
2
u

)
= 1− yu + yu

k · (1− yu) ≤
(
1 + 1

k

)
· (1− yu). J

The above theorem implies that the rounding scheme is a
(

k
k−1 ,

k+1
k

)
-rounding. The following

theorem now is a direct consequence of Theorems 8 and 19.

I Theorem 20. For every ε > 0, the SA relaxation of
(
3
⌈ 2
ε

⌉
+ 5
)

= O(1/ε) rounds is
integral for (1 + ε)-stable instances of MIS on planar graphs.

4 Stable instances of MIS on general graphs

In this section, we study stable instances of general graphs. We present a strong lower bound
on any algorithm (not necessarily robust) that solves o(

√
n)-stable instances. We complement

this lower bound with an algorithm that solves (εn)-stable instances in time nO(1/ε).

4.1 Computational hardness of stable instances of MIS

We show that for general graphs it is unlikely to obtain efficient algorithms for solving
γ-stable instances for small values of γ. Our hardness reduction is based on the planted clique
conjecture [29, 44], which states that finding o(

√
n) sized planted independent sets/cliques

in the Erdős-Rényi graph G
(
n, 1

2
)
is computationally hard. Let G

(
n, 1

2 , k
)
denote the
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distribution over graphs obtained by sampling a graph from G
(
n, 1

2
)
and then picking a

uniformly random subset of k vertices and deleting all edges among them. The conjecture is
formally stated below.

I Conjecture 21. Let 0 < ε < 1
2 be a constant. Suppose that an algorithm A receives an

input graph G that is either sampled from the ensemble G
(
n, 1

2
)
or G

(
n, 1

2 , n
1
2−ε
)
. Then, no

A that runs in time polynomial in n can decide, with probability at least 4
5 , which ensemble

G was sampled from.

Our lower bound follows from the observation that planted random instances are stable
up to high values of γ, and this suffices to imply our main result.

I Theorem 22. Let ε > 0 be a constant and consider a random graph G on n vertices
generated by first picking edges according to the Erdős-Rényi model G(n, 1

2 ), followed by
choosing a set I of vertices of size n

1
2−ε, uniformly at random, and deleting all edges

inside I. Then, with probability 1− o(1), the resulting instance is a Θ(n 1
2−ε/ logn)-stable

instance of MIS.

Proof. Let G = (V,E) be the resulting graph (we assume that all weights are set to 1).
We start by stating two well-known properties of the graph G that hold with probability
1− o(1) ([2]).
1. For each vertex u ∈ V \ I, we have |N(u) ∩ I| ≥ 1

2 · n
1
2−ε (1± o(1)).

2. The size of the maximum independent set in the graph G[V \I] is at most d2(1±o(1)) logne.

Consider any other independent set S 6= I. By Property 1, we have that |I \ S| ≥
1
2n

1
2−ε(1− o(1)). By Property 2, we must have that |S \ I| ≤ 2(1 ± o(1)) logn. Hence,

|S| < |I| and furthermore, |I \ S| > γ · |S \ I| for γ = n
1
2 −ε

4 logn . We conclude that the instance

is
(
n

1
2 −ε

4 logn

)
-stable. J

4.2 An algorithm for (εn)-stable instances
In this section, we design an algorithm for (εn)-stable instances on graphs of n vertices,
that runs in time nO(1/ε); thus, ε > 0 is assumed to be constant. Due to space constraints,
we only give an informal description of the algorithm for the special case of (n/2)-stable
instances; the algorithm then naturally generalizes to (n/k)-stable instances, for any integer
k ≥ 2. The base case (i.e., k = 1) uses the greedy algorithm.

We start by observing that either the chromatic number is at most n/2, in which case the
LP is integral, or there are more than n/2 vertices of degree at least n/2. In the latter case, we
check whether each of these high-degree vertices belongs to the optimal solution, by removing
each such vertex and its neighborhood, one at a time, and using the algorithm recursively.
Since their neighborhoods are large, we end up with graphs with at most n/2 vertices, which
are still (n/2)-stable if the removed vertex belongs to the optimal solution; thus, the recursion
succeeds on them (in particular, the greedy algorithms solves such instances). Finally, if
none of these high-degree vertices belongs to the optimal solution, then we remove all of
them, and end up again with a graph with at most n/2 vertices that is (n/2)-stable; the
recursive call again solves that instance. By returning the best of all computed solutions, we
are guaranteed to recover the optimal solution.

I Theorem 23. There exists an algorithm that solves (nk )-stable instances of MIS on graphs
of n vertices in time nO(k).
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5 Stability and integrality gaps of convex relaxations

In this section, we state a general theorem about the integrality gap of convex relaxations
of maximization problems on stable instances. In particular, we show that, even if the
conditions of Theorem 8 are not satisfied, the integrality gap still significantly decreases as
stability increases.

I Theorem 24. Consider a relaxation for MIS that assigns a value xu ∈ [0, 1] to each vertex
u of a graph G = (V,E,w), and its objective function is

∑
u∈V wuxu. Let α be its integrality

gap, for some α > 1. Then, its integrality gap is at most min{α, 1 + 1
β−1} on (αβ)-stable

instances, for any β > 1.

The proof is somewhat similar in spirit to the lemmas and analysis used for Algorithm 3.
We stress that the above result is inherently non-constructive. Nevertheless, it suggests
estimation algorithms for stable instances of MIS, such as the following, which is is a direct
consequence of Theorem 24 and the results of [31, 33].

I Corollary 25. For any fixed ε > 0, the Lovasz θ-function SDP has integrality gap at most
1 + ε on Õ

(
1
ε ·

∆
log ∆

)
-stable instances of MIS of maximum degree ∆.

We note that the theorem naturally extends to many other maximization graph problems,
and is particularly interesting for relaxations that require super-constant stability for the
recovery of the optimal solution (e.g., the Max Cut SDP has integrality gap 1 + ε for
(2/ε)-stable instances although the integrality gap drops to exactly 1 for Ω(

√
logn · log logn)-

stable instances).
In general, such a theorem is not expected to hold for minimization problems, but, in our

case, MIS gives rise to its complementary Minimum Vertex Cover problem, and it turns out
that we can prove a very similar result for Minimum Vertex Cover as well.

6 Certified algorithms for MIS

In this section, we initiate the systematic study of certified algorithms for MIS, introduced
by Makarychev and Makarychev [41].

6.1 Certified algorithms using convex relaxations
An important observation that [41] makes is that an approach very similar to the one used
for the design of algorithms for weakly-stable instances [42] can be used to obtain certified
algorithms. More formally, they prove the following theorem.

I Theorem 26 ([41]). Let x : V → [0, 1] be an optimal fractional solution of a convex
relaxation of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu. Suppose

that there exists a polynomial-time (α, β)-rounding for x. Then, there exists a polynomial-time
(αβ + ε)-certified algorithm for MIS on instances with integer polynomially-bounded weights
(for ε ≥ 1/poly(n) > 0).

We now combine Theorem 19 with Theorem 26 and obtain the following theorem.

I Theorem 27. There exists a polynomial-time (1 + ε)-certified algorithm for MIS on planar
graphs with integer polynomially-bounded weights (for ε ≥ 1/poly(n) > 0).
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6.2 Combinatorial certified algorithms
In this section, we study several combinatorial algorithms for MIS and prove that they are
certified. The first result is about the greedy algorithm.

I Theorem 28. The greedy algorithm (see Algorithm 2) is a ∆-certified algorithm for MIS on
graphs of maximum degree ∆. More generally, the greedy algorithm is a ∆-certified algorithm
for any instance of a ∆-extendible system.

Moreover, we introduce a variant of the greedy algorithm for MIS that is a
√

∆2 −∆ + 1-
certified algorithm; the improvement over the greedy is moderate for small values of ∆.
Finally, we show that the algorithm of Berman and Fürer [13] is

(∆+1
3 + ε

)
-certified, when

all weights are 1. We acknowledge that the restriction to unweighted graphs limits the
scope of the algorithm, but we consider this as a first step towards obtaining (c∆)-certified
algorithms, for c < 1.

I Theorem 29. The Berman-Fürer algorithm ([13]) is a
(∆+1

3 + ε
)
-certified algorithm for

MIS on graphs of maximum degree ∆, when all weights are equal to 1.

Let G = (V,E,w) be a graph of maximum degree ∆, n = |V |, where wu = 1 for every
u ∈ V . We say X is an improvement of I, if both I and I ⊕X are independent sets, the
subgraph induced by X is connected and I ⊕X is larger than I. (The operator ⊕ denotes
the symmetric difference.)

The algorithm starts with a feasible independent set I ′ and iteratively improves the
solution by checking whether there exists an improvement X with size |X| ≤ σ. If so, it
replaces I by I ⊕X and repeats. Otherwise, if no such improvement exists, it outputs the
current independent set I. Assuming that ∆ is a constant, the algorithm runs in polynomial
time as long as σ = O(logn).

I Lemma 30 ([13]). If ∆ is a constant and σ = O(logn), the algorithm runs in polynomial
time.

The main result can be presented as follows. Along with Definition 3, it implies The-
orem 29.

I Lemma 31. Let I be the independent set returned by the algorithm with σ = 32k∆4k logn
and let S 6= I be any feasible independent set. Then, we have |S \ I| ≤

(∆+1
3 + ε

)
· |I \ S|,

where ε = 1
3k .

Proof. Let S̄ = S \ I and Ī = I \ S. First, we observe that every u ∈ S̄ has at least one
neighbor in Ī, otherwise, we could improve I by adding a new vertex from S̄. We now
consider the set T = {u ∈ S̄ : |N(u) ∩ I| = 1} ⊆ S̄. In words, T is the set of elements in S̄
that have exactly one neighbor in I. We also define J = {v ∈ Ī : N(v)∩ T 6= ∅} to be the set
of elements of Ī that have at least one neighbor in T . We will show that |T | ≤ |J |.

To prove this, let’s assume that |T | > |J |. Then, by the pigeonhole principle, we must have
at least one vertex v ∈ J that is connected to at least two vertices u1, u2 ∈ T . This implies
that replacing v with u1 and u2 would be an improvement. Thus, we get a contradiction.
Now let I0 = Ī \ J and S0 = S̄ \ T . The final step of the proof is a direct consequence
of Lemma 3.5 of [13], that states that if there is no improvement over I of size at most
σ = 32k∆4k logn, then for ε = 1/(3k), |S0| ≤

(∆+1
3 + ε

)
|I0|. Recall that we have already

proved |T | ≤ |J |. Therefore,

|S \ I| = |S0|+ |T | ≤
(

∆ + 1
3 + ε

)
|I0|+ |J |

≤
(

∆ + 1
3 + ε

)
(|I0|+ |J |) =

(
∆ + 1

3 + ε

)
|I \ S|. J
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Abstract
In the Anchored Rectangle Packing (ARP) problem, we are given a set of points P in the unit
square [0, 1]2 and seek a maximum-area set of axis-aligned interior-disjoint rectangles S, each of
which is anchored at a point p ∈ P . In the most prominent variant – Lower-Left-Anchored Rectangle
Packing (LLARP) – rectangles are anchored in their lower-left corner. Freedman [19, Unsolved
Problem 11, page 345] conjectured in 1969 that, if (0, 0) ∈ P , then there is a LLARP that covers an
area of at least 0.5. Somewhat surprisingly, this conjecture remains open to this day, with the best
known result covering an area of 0.091 [11]. Maybe even more surprisingly, it is not known whether
LLARP – or any ARP-problem with only one anchor – is NP-hard.

In this work, we first study the Center-Anchored Rectangle Packing (CARP) problem, where
rectangles are anchored in their center. We prove NP-hardness and provide a PTAS. In fact, our
PTAS applies to any ARP problem where the anchor lies in the interior of the rectangles. Afterwards,
we turn to the LLARP problem and investigate two different resource-augmentation settings: In
the first we allow an ε-perturbation of the input P , whereas in the second we permit an ε-overlap
between rectangles. For the former setting, we give an algorithm that covers at least as much area
as an optimal solution of the original problem. For the latter, we give an (1− ε)-approximation.
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8:2 On the Complexity of Anchored Rectangle Packing

1 Introduction

The lower-left-anchored rectangle packing (LLARP) problem was first posed in 1969 by
Freedman [19]: Given the unit square U := [0, 1]2 in the plane and a finite set of points P ⊆ U ,
find a maximum-area set of axis-aligned and interior-disjoint rectangles S, such that for
each p ∈ P , there is exactly one (possibly trivial) rectangle R ∈ S that has p in its lower-left
corner. It was conjectured [19, 20] that the area covered is at least 0.5 as long as (0, 0) ∈ P .
The first and so far only result that achieves a constant lower bound covers an area of at
least 0.091 [11].

A natural generalization of the LLARP problem looks at anchors different from the
lower-left corner. Such an anchoring can be defined by a pair (α, β) ∈ [0, 1]2. The (α, β)-
ARP problem then looks for a maximum-area rectangle set as above but with rectangles
anchored in the relative position (α, β) (see Section 2). For example, (0, 0)-ARP is LLARP,
while (1/2, 1/2)-ARP requires all rectangles to have a p ∈ P at their center. We refer to the
latter as center-anchored rectangle packing (CARP) problem.

Our Contribution. Even though the formulation of LLARP and Freedman’s conjecture [19],
date back to 1969 it is still not even known whether its decision variant is NP-hard. This
is why, in this work, we focus on the complexity of related ARP problems and introduce a
resource augmentation setting for LLARP.

When looking at the complexity of CARP, a difference that stands out compared to
LLARP is that CARP allows one to simulate “non-expandable” points: By putting four
points at the corners of a tiny ε-sized square, none of their rectangles’ side lengths can
exceed ε. One can think of these four points as one input point that cannot be used as an
anchor but still restricts the expansion of other rectangles. These non-expandable points turn
out to be a valuable asset, as they can be used to build walls and inject additional geometry
into the problem. We exploit this in an elaborate construction that encodes maximum
independent set into a CARP instance, proving NP-hardness of CARP (cf. Section 4). The
construction of non-expandable points seems difficult or even impossible for LLARP and is
the main obstacle in transferring our NP-hardness proof to that setting.

The NP-hardness is complemented by a polynomial-time approximation scheme (PTAS),
which extends also to any anchoring (α, β) ∈ (0, 1)2. The PTAS is based on a carefully
constructed input instance for a related problem called maximum weight independent set of
rectangles (MWISR) and the usage of a known PTAS in a resource augmentation setting of
MWISR (cf. Section 3).

With respect to the classical LLARP problem, we initiate the investigation of the problem
with resource augmentation. We study two such settings. In the first, the algorithm is
allowed to slightly perturb the input points. In the second, the rectangle set produced by
the algorithm may have some (bounded) overlap. In both cases, the resulting solution is
compared to an optimal solution without these augmentations. For the first setting, we
develop an algorithm that produces an anchored rectangle set of total area no less than
that of an optimal solution of LLARP without resource augmentation (cf. Section 5). Our
analysis is combinatorial in nature and consists of transforming the optimal solution to a
feasible solution for a perturbed instance by using a specific linear program with totally
unimodular incidence matrix. For the second setting, we provide an algorithm that covers at
least (1− ε) times the area of an optimal solution (cf. Section 5). Our algorithm is based on
the one for the first setting.
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Further Related Work. The best known polynomial time algorithm for the LLARP problem
is due to Dumitrescu and Tóth [11] and covers an area of at least 0.091. Since the optimal
solution cannot cover more than an area of 1 (the whole unit square), their analysis also
implies a 0.091-approximation. In the setting where, instead of arbitrary rectangles, squares
must be used, Balas et al. [5] achieve an approximation ratio of 1/3. They also consider a
setting where the algorithm can choose for each rectangle from multiple anchors (the four
corners), giving a (7/12− ε)-approximation algorithm, where ε = |P |−1, and a QPTAS for
rectangles, as well as a 9/47-approximation algorithm and a PTAS for squares. The QPTAS
and PTAS extend to the lower-left anchored variants. Recently, Akitaya et al. [4] gave the
first NP-hardness result for an ARP variant where only squares may be packed and each
square can be anchored at any of its four corners. They also show that, for any instance
consisting of finitely many input points inside U , the union of all feasible anchored square
packings covers an area of at least 1/2. Finally, if rectangles can be anchored at any of their
four corners but input points are restricted to the boundary of U , Biedl et al. [9] give a
polynomial-time algorithm (based on maximum independent set for a specific class of graphs).

ARP problems fall within the more general setting of packing axis-aligned and interior-
disjoint rectangles in a rectangular container. This setting captures several important and
well studied optimization problems. See, for example, the (NP-hard) problems 2D-knapsack
and strip packing [2, 6], as well as maximum area independent set of rectangles [3, 7, 8].
Similar problems have also been formulated by Radó and Rado [16, 13, 14, 15]. These
problems differ from ARP in that the size of the packed objects is part of the input and not
controllable and, in some cases, there is no anchoring of the rectangles.

2 Preliminaries

We start with some general notation. Consider a point p ∈ R2 and an axis-aligned rectan-
gle R ⊆ R2 with its lower-left corner in (x, y) ∈ R2. Let w and h denote the width and height
of R, respectively. For a pair (α, β) ∈ [0, 1]2 (called anchoring), we say R is (α, β)-anchored
in p if p = (x+ α · w, y + β · h). We also say that p (α, β)-spans R. If the anchoring (α, β)
is clear from the context we omit it. We use A (R) = w · h to denote the area of rectan-
gle R. Similarly, given a set S of rectangles we define A (S) as the area of

⋃
R∈S R. We

use U = [0, 1]2 to denote the unit square. If not stated otherwise, any rectangle is assumed
to be axis-aligned.

The Anchored Rectangle Packing Problem. We now define the anchored rectangle packing
(ARP) problem with respect to an anchoring (α, β) ∈ [0, 1]2. An instance consists of a finite
set P ⊆ U of n points. A valid rectangle set (also solution) S for the ARP instance P is
a set of interior-disjoint rectangles that contains one (possibly zero-sized) rectangle Rp for
each p ∈ P such that Rp is (α, β)-anchored in p and does not contain any point from P \ { p }
in its interior. The goal is to find a solution S for P that covers as much area as possible.
We use S∗ARP(P ) to denote a valid rectangle set of maximum area OPTARP(P ) := A(S∗ARP(P ))
and omit ARP and/or P if it is clear from context.

We will mostly consider two specific anchorings. When using the anchoring (0, 0), we
refer to the problem by the name lower-left-anchored rectangle packing (LLARP). When
the anchoring is (1/2, 1/2), we refer to the problem by the name center-anchored rectangle
packing (CARP).

ESA 2019
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for the anchoring (1/2, 1/2).

3 A PTAS for ARP with Fractional Anchorings

In the following, we give a PTAS for the anchored rectangle packing problem for any
anchoring (α, β) ∈ (0, 1)2. It is based on a result for maximum weight independent set
of rectangles (MWISR)1 that uses resource augmentation similar to that in Theorem 8.
An instance of MWISR consists of a set of n axis-aligned, weighted rectangles. The goal
is to compute a maximum-weight subset of pairwise interior-disjoint rectangles. In the
relaxed variant δ-MWISR (for fixed δ > 0), rectangles must be non-overlapping only after
shrinking them by a factor of 1 − δ. Here, Adamaszek et al. [1] give an algorithm that,
in time n(δε)−O(1/ε) , computes a solution which is within a (1 + ε)-factor of the optimum
MWISR. While the original algorithm considers shrinking only around the rectangles’
centers, this can be generalized such that it also works when shrinking around an arbitrary
anchoring (α, β) ∈ (0, 1)2. However, this does not generalize to anchors on the boundaries
(in particular, not to LLARP), since [1] requires shrinking around a rectangle’s center, this
way the shrunken rectangle would no longer contain its anchor.

I Theorem 1. For any fixed anchoring (α, β) ∈ (0, 1)2, the anchored rectangle packing
problem admits a polynomial-time approximation scheme.

Proof. Consider an instance P ⊆ U of (α, β)-ARP with n input-points and fix ε > 0. Denote
by ε′, δ positive constants which we fix later and define N := dlog1−δ(δ/n)e+ 1.

For each point pair p, p′ ∈ P , there are at most two inclusion-wise maximal rectangles
that are anchored in p and have p′ on their boundary, one where p′ is on the left (right) side
of the rectangle and one where p′ is on its bottom (top) side. Thus, there are at most 2n
inclusion-wise maximal rectangles that are anchored in a point p ∈ P and at most 2n2

overall. For any such maximal rectangle Rmax, construct N2 candidate rectangles (Ri,jmax)N−1
i,j=0

by scaling (around the anchor) by a factor of (1− δ)i along the horizontal and (1− δ)j

along the vertical axis. Denote the set of all such candidate rectangles by C. See Figure 1
for an illustration.

In order to obtain a (1 + ε)-approximation for the ARP instance P , we first apply the
algorithm for δ-MWISR [1] to the MWISR instance (C,A) (i.e., all candidate rectangles
weighted by their area). This yields a rectangle set S ′ with A (S ′) ≥ (1 + ε′)−1 ·OPTMWISR,

1 A similar connection to MWISR has recently been used [5] to obtain a PTAS for packing squares and a
QPTAS for packing rectangles when the anchors are allowed to lie in any of the four corners (and may
be different for each rectangle).
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where OPTMWISR denotes the area covered by an optimal solution for the instance (C,A) of
MWISR. Note that each rectangle R ∈ S ′ is anchored in some point p ∈ P . By definition
of δ-MWISR, scaling each rectangle in S ′ by a factor of 1− δ in each dimension around its
anchor produces a set S of pairwise interior-disjoint rectangles with

A (S) ≥ (1− δ)2(1 + ε′ )−1 ·OPTMWISR . (1)

Moreover, since the scaling happens around the anchors, the rectangles are still anchored in
their associated input-points. It follows that, after possibly adding some trivial rectangles,
the set S is a solution for the ARP instance P . Note that for fixed δ and ε′, the total time
spent to obtain S is polynomial in n. The bottleneck here is the computation of S ′
from the |C| ≤ 2n2 · N2 candidate rectangles. By [1, Theorem 1], this can be done
in time n(δε′)−O(1/ε′)

.
We now bound the area OPTARP of an optimal (α, β)-ARP solution S∗ARP in terms

of OPTMWISR. To this end, fix a rectangle R∗p ∈ S∗ARP with anchor point p ∈ P . This rectan-
gle is contained in at least one maximal candidate rectangle Rmax. Let i, j ∈ { 0, 1, . . . , N − 1 }
be maximal such that R∗p ⊆ Ri,jmax and note that A

(
R∗p
)
≤ A (Rmax) · (1− δ)i+j . We say

that R∗p is negligible if i = N − 1 or j = N − 1. For each non-negligible R∗p ∈ S∗ARP,
define Rp := Ri+1,j+1

max and denote by S ′′ the set of all such rectangles. We consider the
contribution of non-negligible and negligible rectangles to OPTARP separately.

By construction, the contribution of non-negligible rectangles is at most (1− δ)−2 ·A (S ′′).
Furthermore, since S ′′ ⊆ C and as the rectangles in S ′′ are pairwise non-overlapping
(as a shrunken subset of an ARP solution), S ′′ is a solution to the MWISR instance C.
This implies that A (S ′′) ≤ OPTMWISR, which bounds the contribution of non-negligible
rectangles to OPTARP by (1− δ)−2 ·OPTMWISR.
To bound the contribution of negligible rectangles, fix a negligible R∗p ∈ S∗ARP and
note that A

(
R∗p
)
≤ A (Rmax) · (1− δ)N−1 ≤ OPTMWISR ·(1− δ)N−1 ≤ OPTMWISR ·δ/n,

where the penultimate inequality holds since {Rmax } is a valid MWISR solution. Since
there are at most n negligible rectangles in S∗ARP, they contribute at most δ ·OPTMWISR.

Combined, we get that OPTARP ≤
(
δ + (1− δ)−2) · OPTMWISR. Using Equation (1),

this implies

A (S) ≥ (1− δ)2(1 + ε′)−1 ·
(
δ + (1− δ)−2

)−1
·OPTARP = (1 + ε)−1 ·OPTARP, (2)

where the equality holds for small enough δ and appropriately chosen ε′. J

4 CARP is NP-Complete

In the decision variant of the center-anchored rectangle packing problem, we are given a
value A > 0 and a finite point set P ⊆ U . The goal is to decide whether there is a valid
rectangle set S for P that covers an area of at least A. In this section we prove that this
problem is NP-complete.

A useful observation is that if the input set contains four points in the corners of a
tiny square with side length δ > 0, then these points restrict the expansion of other points’
rectangles but cannot expand their own rectangles beyond side length 2δ (see Figure 2a). This
enables us to build walls that encode the graph structure of a suitable variant of maximum
independent set (MIS).

I Theorem 2. The center-anchored rectangle packing problem is NP-complete.

ESA 2019
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δ

δ

δ/2

p

W

(a) Building a wall W to the north of
point p by adding four wall points.

(b) Two node gadgets directly connected via a path gadget.
The left node gadget is contracted, the right one expanded.

Figure 2 Illustrations of the wall construction and a normalized solution for a pair of node
gadgets.

The problem is easily seen to be in NP. Thus, the main challenge in proving Theorem 2
lies in the aforementioned reduction. Since the gadgets used in the construction as well
as their interplay are somewhat involved, we give a high-level overview in Section 4.1. In
Section 4.2, we describe in more detail how a suitable CARP instance is constructed from a
given MIS instance. The analysis of this construction is given in Section 4.3.

4.1 Overview of the Reduction
The reduction is from the problem maximum independent set in 3-regular planar graphs
(MIS3P), which is known to be NP-hard [12]. Given a MIS3P instance G, we use a result
by Tamassia [18] to construct an orthogonal embedding of G. We then replace each node of G
by a node gadget and each edge by a series of path gadgets. The number of path gadgets per
edge corresponds (roughly) to the number of turns that it takes in the orthogonal embedding.

Gadgets & Rectangle Sets. Figure 2b illustrates the gadgets via a simple example where
two node gadgets are directly2 connected by a path gadget. Black dots represent the normal
input points used to form center-anchored rectangles. Black lines represent walls built by
placing four δ-spaced wall points at the orthogonal projections of each normal input point
onto its closest wall in each direction. The horizontally striped blue areas connecting node
gadget and path gadget are called conflict areas. The vertically striped blue areas at the
entrance to the inner parts of the node gadget are called compensation areas. The shaded
areas represent a valid example rectangle set for the (non-wall) input points. Diagonally
striped red areas remain uncovered in the depicted solution.

Note that the rectangle sets of the two node gadgets in the depicted solution differ from
one another. If, in a given solution, the points of a node gadget span rectangles exactly as in
the right part of Figure 2b we say the node gadget is expanded. In particular, an expanded
node gadget covers all three adjacent conflict areas. In the left part of Figure 2b, we see

2 In our actual constructions, node gadgets are always connected via a chain of several path gadgets.
Figure 2b neglects this technical detail in order to keep the illustration simple and instructive.
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one possible example of a so called contracted node gadget. Such contracted node gadgets
neither cover a neighboring conflict area (which is then covered by the adjacent path gadget),
nor the neighboring compensation area (which is then not covered at all). A central part of
our construction is that the latter case (where we loose an area of size b2) happens only if
the adjacent path gadget leads to another contracted gadget.

Normalized Solutions & Structural Properties. Our construction allows to prove the
existence of a well-structured, almost optimal solution. We call a solution normalized if each
wall point is assigned a (δ × δ)-square. In a normalized solution, non-wall points cannot
expand their rectangles beyond adjacent walls. Additionally, we show the following properties.

Lemma 4: There is a normalized solution approximating an optimal solution up to a factor
of 1−O

(
δ/ε2). Choosing δ suitably small allows us to consider normalized solutions only.

Lemma 5: We call a solution normalized with oriented paths if the rectangles spanned by
non-wall points are such that any series of connected path gadgets is alternatingly covered
by “big” and “small” rectangles. An optimal normalized solution can be transformed into
one with oriented paths without decreasing the covered area.
Lemma 6: Given an optimal normalized solution with oriented paths, one can transform
the rectangles spanned by non-wall points of node gadgets such that each node gadget is
either expanded or contracted. This transformation changes only rectangles spanned by
node gadgets and does not decrease the covered area.

From this, we obtain a bijection between normalized solutions S with oriented paths and only
either expanded or contracted node gadgets and independent sets I ⊆ V (G). Nodes u ∈ I
correspond to expanded node gadgets and nodes u 6∈ I to contracted node gadgets.

Covered Area & Size of Independent Set. We derive a formula for the area covered by S
in terms of the size |I| of the independent set. When a contracted node gadget does not
cover one (or multiple) of its compensation areas, we charge these areas to the neighboring
conflict area (which has the same size, b2). See Figure 3 for in illustration of compensation
and conflict areas. By this charging, the area covered by the inner part of any node gadget
(whether expanded or contracted) differs only by the number of covered ε-stripes (small
diagonally striped red areas within the node gadgets of size O(ε · b)� b2). For each path
gadget, we always loose an area of size 3b2 at one of the two ends. Additionally, for each
series of path gadgets connecting two contracted node gadgets, we loose an area b2 of one of
the conflict areas (using the charging).

Thus, ignoring negligible areas from the ε-stripes and wall-points, S covers an area of
size A (S) = AG + 3|I| · b2. While AG depends only on the graph G and its embedding, the
second term stems from an independent set node being the only means of covering both
critical areas of an incident edge. Thus, a solution covering the maximum area yields a
maximum independent set and vice versa.

4.2 Construction of the CARP Instance

We start by formalizing the ideas of walls, depicted as black lines in our images. Fix a
small δ > 0 (whose value we specify later) and consider a point set P , a point p ∈ P , and
a wall W (an axis aligned line segment), which is closest either in x- or y-direction. We
modify P by adding four wall points that form an (axis aligned) square of side length δ on
the (w.r.t. p) opposite side of the wall W . We do this in such a way that p and two of the
wall points lie on a straight line and the wall point closer to p is at a distance of δ/2 to W .
See Figure 2a for an illustration.

ESA 2019
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Figure 3 Detailed illustration of node and path gadgets with the respective side lengths. Conflict
areas are horizontally striped. Compensation areas are vertically striped.

I Observation 3. Consider a valid solution for P after adding the four wall points for p. The
rectangles spanned by p and by the wall points cannot transgress the wall by more than δ/2.
Moreover, the rectangles spanned by the four wall points cover an area3 of at most 4δ2.

Gadgets. We now formally describe the node gadgets (representing nodes of the MIS3P
instance) and the path gadgets (representing edges of the MIS3P instance). Figure 3a shows
the details of a node gadget. Each input point is restricted by at most four walls. A node
gadget has three outgoing paths each connected to a path gadget (corresponding to an
incident edge). Figure 3b shows the details of a path gadget. Path gadgets are connected
either to other path gadgets via a 90◦ turn (the crossings in the figure) or to a node gadget.
There are two global parameters, the width of a path b and a small value ε > 0. We choose
the former such that we can fit each gadget into a small tile whose size depends on the
MIS3P instance, and we choose the latter small enough to ensure that certain non-coverable
areas of node gadgets are negligible. A path gadget gi has two additional parameters, di > 0
(roughly the length of the straight edge it represents) and ai := di/4− b (specifying the exact
placement of the non-wall points depending on di).

Orthogonal Embedding & Connecting the Gadgets. Next, consider an MIS3P instance G
(i.e., a 3-regular planar graph) consisting of n nodes. We embed G in a (4n+ 2)× (4n+ 2)
grid. This can be done in polynomial time (a simple application of a result from [18]). We
then partition the unit square U into a grid of equal-sized tiles of width and height 1/(4n+2).
Depending on how the embedding behaves at a grid point (i, j) ∈ { 1, . . . , 4n+ 2 }2, we
construct tile (i, j) from a suitable blueprint:

Grid point contains a node: Use an appropriate rotation of the tile in Figure 4a.
Grid point contains an edge bend: Use an appropriate rotation of the tile from Figure 4b.
Grid point contains part of an edge: Insert tiles to form a straight path of width b, either
from south to north or from east to west (determined by the orientation of the edge part).

3 While the rectangles may cover all of the square formed by the wall points, an area of size δ2, precisely 3
4

of each rectangle’s area lies outside this square. Thus, the total covered area is at most δ2 + 3δ2.
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(b) Bend inside a tile connecting two path gadgets.

Figure 4 Two tiles used in our hardness construction. Further tiles include rotations of these as
well as straight horizontal and vertical paths. Both sides of each tile have size 64b+ 2ε.

Note that outgoing path gadgets always leave a tile at the center of a tile boundary and that
all parts are properly connected.

It remains to fix the parameters δ, b, and ε. These are chosen such that all parts of a
node gadget tile (Figure 4a) fit exactly into the 1/(4n+ 2)× 1/(4n+ 2) tiles and δ � ε� b.
The chosen lengths (Figure 3) guarantee that tile parts do not overlap. Our analysis also
requires 2ai ≥ b (or, equivalently, di ≥ 6b) for every path gadget gi. One can easily verify
that this is the case (see Section 4.2).

We now bound the size of the constructed CARP instance PG for a graph G consisting
of n nodes. Each tile of a node gadget contains 38 points. For each bend tile we add 2 points.
Since there are n nodes and at most 3n+ 2 bends [18, Lemma 7], the instance P contains
at most 44n + 4 non-wall points. For each non-wall point we add at most 16 wall points.
Thus, the size of P is bounded by 704n+ 64 = Θ (n), implying that PG can be constructed
in polynomial time.

4.3 Analysis of the Constructed CARP Instance
Fix a MIS3P instance G = (V,E) consisting of n nodes and let PG denote the construction
from the previous section. Let W ⊆ PG be the set of all wall points in PG. Recall that a
solution S for the CARP instance PG is called normalized if all points in W span (δ × δ)-
rectangles. Note that in such a solution the rectangles spanned by points from PG \W cannot
overlap the walls. An optimal normalized solution is a normalized solution of maximum size.
In the following, we state the key results of the analysis. Due to space constraints, we do not
give the proofs in all detail here. For the complete proofs, we refer the reader to the full
version of this paper.

Our first lemma shows that there exists a normalized solution that approximates an
optimal solution up to a factor of 1−O

(
δ/ε2).

I Lemma 4. There exists a normalized solution for CARP on the instance PG of area at
least

(
1− 2δ/ε2) ·OPTCARP(PG).

The next pair of lemmas form the center of our arguments. They show the existence of
optimal normalized solutions exhibiting useful structural properties for both the path and
node gadgets.

ESA 2019



8:10 On the Complexity of Anchored Rectangle Packing

I Lemma 5. There exists an optimal normalized solution in which the two rectangles spanned
by a path gadget gi’s two non-wall points have width (or, depending on orientation, height) b,
and one of them has height (width) 2ai, the other one 2(ai + 4b). In particular, the rectangles
of each path gadget cover exactly one of the gadget’s two conflict areas.

I Lemma 6. There exists an optimal normalized solution such that the following holds:
Each node gadget is either contracted or expanded.
No two adjacent node gadgets are expanded.
For each pair of contracted adjacent node gadgets there is a (uniquely identified) uncovered
area of size b2 inside one of the node gadgets.

The previous two lemmas hold simultaneously. NP-hardness follows from these results as
described in Section 4.1.

5 Resource Augmentation

In this section, we investigate the lower-left-anchored rectangle packing problem. We
study two different types of resource augmentation. In the first type, which we call
perturbation-augmentation, each solution rectangle does not need to be anchored exactly
in the corresponding point but instead its anchor may be up to an ε distance away
from that point (see Figure 5, center). We define an ε-grid Γ = (V,L) as a set of
points V = { (x, y) ∈ U | x = ε · kx ∧ y = ε · ky ∧ kx, ky ∈ N } together with a family of
grid-cells L = { [x, x+ ε]× [y, y + ε] ⊆ U | (x, y) ∈ V }. The perturbation-augmentation al-
lows us to focus on solutions where all vertices of rectangles are points on an ε-grid Γ, thereby
allowing us to enumerate all possible sets of interior-disjoint, axis-aligned rectangles with
vertices in V . We call such a solution a grid-point solution. We show that (i) there exists a
polynomial-time algorithm that finds the optimal grid-point solution and (ii) the optimal
grid-point solution covers at least as much area as an optimal (unrelaxed) solution.

Before formally stating the theorem, we introduce some notation. Let dist∞(x, y) denote
the distance of two points x, y ∈ R2 in the `∞-norm. For a set X ⊆ R2 and a point y ∈ R2,
we write dist∞(y,X) = infx∈X dist∞(y, x) and X = R2\X for the set’s complement. We
say that a set of interior-disjoint rectangles {Rp}p∈P is ε-valid, if dist∞(p, `(Rp)) < ε

and dist∞
(
p,Rp

)
< ε for all p ∈ P , where `(Rp) denotes the lower-left corner of Rp.

I Theorem 7. For every ε > 0 and a finite point-set P ⊆ U , there exists a polynomial time
algorithm that computes an ε-valid set of interior-disjoint rectangles that cover an area of at
least OPTLLARP(P ).

The second type of resource augmentation we call overlap-augmentation. It relaxes the
condition that the rectangles need to be disjoint. More specifically, each pair of rectangles is
allowed to overlap by a thin strip of width at most δ. Note that this implies that a rectangle
may also contain input points as long as they are no more than a δ-distance away from
the boundary (see Figure 5, right).

Again, we require additional definitions. A set of rectangles {Rp}p∈P is called a δ-LLARP,
if the rectangle Rp is lower-left-anchored in p and supx∈Rp′

dist∞
(
x,Rp

)
< δ, for all p′ ∈ P .

We show that we can transform an ε-valid grid-point solution into a δ-LLARP while only
losing a small fraction of the covered area.4

4 Naturally, any area that is covered by multiple rectangles is counted only once.
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ε

ε δ

δ
δ

Figure 5 An optimal lower-left-anchored rectangle packing (left), and illustrations of the two
kinds of resource augmentation that are used in the paper.

I Theorem 8. For every ε > 0 and a finite point-set P ⊆ U , there exists a polynomial time
algorithm that outputs an ε

11 -LLARP that covers an area of at least (1−ε) ·OPTLLARP(P ).

Algorithm 1 Algorithm using resource augmentation of the perturbation-type.

1: Γ← ε-grid in U , H ← ∅
2: for every configuration C in Γ do
3: if C is ε-valid for P then
4: for every grid-point solution S := {Rq}q∈C of LLARP(C) do
5: H ← H∪ {S}
6: return S ∈ H maximizing A (S)

Proof of Theorem 7. Let Γ = (V,L) be an ε-grid in U and denote by k the number of
grid-cells. Without loss of generality, assume that all points of P lie in the interior of one of
the O

(
ε−2) grid-cells. A grid configuration on Γ is a subset of the grid points C ⊆ V . We say

that a grid configuration C on Γ is ε-valid for P if there is a surjective mapping ϕ : P → C,
such that dist∞(p, ϕ(p)) ≤ ε. Note that any LLARP for an ε-valid configuration C for P
can be extended to an ε-valid solution for P by adding degenerate rectangles anchored
at points in C.

Algorithm 1 enumerates all grid configurations on Γ that are ε-valid for P . Then, for
each configuration C, it computes all grid-point solutions {Rq}q∈C of LLARP(C). Among
all enumerated solutions, we keep one that maximizes the covered area.

First, we show that the running time of this algorithm is polynomial. Note that any
grid cell has four grid points as its vertices. Since any point p ∈ P lies in the interior
of some grid cell L ∈ L, an ε-valid grid configuration must contain at least one of the
four vertices of L. Thus, we can construct any ε-valid grid configuration by choosing for
each grid cell L ∈ L and each input point p ∈ P ∩ L, a vertex of L as its image in the
mapping ϕ. However, since whenever multiple rectangles are anchored in the same point at
most one can be non-degenerate, in each L ∈ L it suffices to decide on one of at most 15
cell configurations L ∩ C using either 0, 1, 2, 3, or 4 of the grid cell’s vertices. In particular,
any number of contained input points larger than 3, yields the same set of possible cell
configurations. Thus, by counting the number of input points contained in each grid cell (in
time O(n)) and then enumerating at most 15k grid configurations, we obtain all ε-valid grid
configurations. For each such configuration C, we obtain all corresponding ε-valid grid-point
solutions by picking for each q ∈ C one of the O(ε−2) grid points above and to the right of q
as the upper-right corner of the rectangle and checking interior disjointness. This amounts
to at most O(ε−2ε−2) solutions per grid configuration. Thus, in total, the running time of
Algorithm 1 is linear in n and doubly exponential in 1

ε .
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

ε

X(Ri)={x8, x9, x10}

Figure 6 A row B of the ε-grid F and the corresponding rectangles of S∗B .

It remains to show that the computed grid-point solution covers at least as much area
as an optimal lower-left-anchored rectangle packing S∗LLARP(P ) = {R1, R2, . . . , Rn} without
resource augmentation. We transform S∗LLARP(P ) to a grid-point solution by “snapping” the
corners of its rectangles to Γ. We do this by first snapping the lower-left and upper-right
corners of each rectangle to either of the horizontal grid-lines directly above and below the
corner in question. Afterwards, the same is done analogously for the vertical grid-lines, which
we omit in our discussion.

Consider one row of the grid, say B = [0, 1]× (y, y + ε), for (x, y) ∈ V (see Figure 6). We
describe how the lower-left and upper-right corners within this row can be snapped up or down
without reducing the total area. Partition the row horizontally into segments x1, x2, . . . , xr
in-between the x-coordinates of corners of the rectangles S∗B := {Ri}mi=1 ⊆ S∗LLARP(P ) that
have a corner in the row. We associate a variable hi ∈ [0, 1] with each rectangle Ri denoting
the height of Ri ∩ B relative to the height of B. Snapping the rectangles in this row can
be seen as rounding each such variable hi either up to 1 or down to 0 (i.e., expanding the
rectangle to span the full row height or collapsing it such that it does not appear in the row
anymore). We aim to do this in a manner, which neither introduces overlaps nor decreases the
covered area. This snapping problem is represented by the following integer linear program.

max
∑

i=1,...,m
hi · w(Ri) (3)

s.t.
∑

i : xj ∈X(Ri)

hi ≤ 1 for j = 1, . . . , r (4)

hi ∈ {0, 1} for i = 1, . . . ,m . (5)

Here, w(Ri) denotes the width of rectangle Ri, and the set X(Ri) consists of all segments xi
intersecting Ri. The objective function (3) maximizes the covered area while constraints
in (4) ensure that (in an integer solution) rectangles do not overlap. The binary constraints
in (5) force the rectangles to either span the entire height or nothing of the row. We note
that the linear program is inspired by a similar one for the demand flow problem [10].

It is easy to verify that S∗B corresponds to a feasible solution for the linear programming
relaxation of (3)–(5) and thus lower bounds the optimal value of the LP-relaxation. Since
the sets X(Ri) contain consecutive line segments, the LP satisfies the consecutive ones
property [17]. Therefore, constraints (4) yield a totally unimodular matrix and the LP
is integral [17]. It follows, that there is an integral solution that solves the relaxed linear
program optimally and induces a partial snapping of area at least OPTLLARP(P ). Repeating
this argument for all rows and columns of Γ yields a grid-point solution with an area of at
least OPTLLARP(P ). J
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Algorithm 2 Algorithm using resource augmentation of the overlap-type.

1: Compute SI = Algorithm 1 (P, ε22 )
2: for all Rp ∈ SI do
3: R′p ← the rectangle spanned by p and u(Rp) + ( ε22 ,

ε
22 )

4: if u(R′p) /∈ U then
5: u(R′p)← arg minx∈U ||x− u(R′p)||
6: return SII = {R′p}p∈P

Proof of Theorem 8. We show that Algorithm 2 satisfies the conditions of Theorem 8, that
is it runs in polynomial time and outputs a ε

11 -LLARP of area at least (1−ε) ·OPTLLARP(P ).
In comparison to the previous case, input points cannot be moved, but the rectangles may
somewhat overlap.

Consider the ε
22 -valid solution SI = {Rp}p∈P of Algorithm 1 with input (P, ε22 ). In

constructing SI, we move the input-points p ∈ P to grid-points qp ∈ F spanning Rp, the
upper-right corner of which we denote by u(Rp). We transform the solution of Algorithm 1
to obtain an ε

11 -LLARP.
Shift each u(Rp) up and to the right by ε

22 to obtain u(Rp)′. The transformed solution S ′I
consists of the rectangles uniquely defined by the lower-left corners p ∈ P and their cor-
responding upper-right corners u(Rp)′. Since dist∞(p, qp) < ε

22 , moving u(Rp) by ( ε22 ,
ε

22 )
ensured that transforming the solution did not decrease its size. The overlap of rectangles is
bounded by 2 · ε22 = ε

11 .
However, moving the solution may cause some rectangles to protrude from the unit

square. We prune this excess area, by moving the respective upper-right corners back into
the square to obtain our final solution SII. Due to this pruning, we lose an area of size
at most 2· ε22 = ε

11 ≤ ε ·OPTLLARP(P ), where the inequality follows from the lower bound
of 1

11 on OPTLLARP(P ) [11]. This implies, that A (SII) ≥ (1− ε) ·OPTLLARP(P ). J

OPTLLARP Algorithm 1 Algorithm 2

Figure 7 Algorithms Algorithm 1 and Algorithm 2 applied to a simple instance.
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Abstract
This work describes a new algorithm for creating a superposition over the edge set of a graph,
encoding a quantum sample of the random walk stationary distribution. The algorithm requires
a number of quantum walk steps scaling as Õ(m1/3δ−1/3), with m the number of edges and δ the
random walk spectral gap. This improves on existing strategies by initially growing a classical seed
set in the graph, from which a quantum walk is then run.

The algorithm leads to a number of improvements: (i) it provides a new bound on the setup
cost of quantum walk search algorithms, (ii) it yields a new algorithm for st-connectivity, and
(iii) it allows to create a superposition over the isomorphisms of an n-node graph in time Õ(2n/3),
surpassing the Ω(2n/2) barrier set by index erasure.
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1 Introduction and Summary

Sampling from the stationary distribution of a random walk is a common and valuable tool
in the design of algorithms [32]. It underlies the Markov chain Monte Carlo paradigm, and
plays a central role in a wide range of approximation algorithms for graph problems. In this
work we investigate the quantum counterpart of this task - generating quantum samples
from the random walk stationary distribution. Given query access to some graph G = (V, E)
with m edges, we wish to create the quantum state

|π〉 = 1√
m

∑
(i,j)∈E

|i, j〉 , (1)

which is a superposition over the edges of the graph. Measuring the first register of this state,
and discarding the second register, indeed returns the random walk stationary distribution.
Creating such a quantum sample of a classical stationary distribution forms a crucial primitive
for a range of algorithms: the so-called “setup cost” in quantum walk search algorithms
[28, 25] refers to the cost of generating a state such as |π〉, quantum algorithms for speeding
up MCMC [2, 33, 39, 30] build on the possibility of efficiently creating quantum samples, and
a number of quantum algorithms for solving graph problems [38, 23] require the generation
of a superposition over the edges of a graph.

We develop a new quantum algorithm for creating the quantum sample (1), given only
local query access to the graph. Our algorithm improves the query and time complexity of
the folklore approach to quantum sampling from Õ(m1/2δ−1/2) to Õ(m1/3δ−1/3). We do
so by growing a classical seed set from the initial node. This incurs a payoff in the space
complexity, increasing it from Õ(1) to Õ(m1/3δ−1/3). As a demonstration of our algorithm,
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we discuss a new approach to solving st-connectivity: generate a superposition over the
connected components of s and t, and compare these states. This approach generalizes the
notorious quantum state generation strategy for solving graph isomorphism. Concerning the
latter, we show that our algorithm allows to create a superposition over the isomorphisms
of a given n-vertex input graph in Õ(2n/3) steps. This surpasses the Ω(2n/2) index erasure
barrier by Ambainis et al [6]. In a similar way we can create a superposition over the elements
of a black box group in Õ(2n/3) steps, where 2n is the number of group elements.

1.1 Query Model

We assume throughout this work that we only have “local” query access to the graph
G = (V, E): we are give an initial node j ∈ V , and we can query for its degree and neighbors.
Such queries fall under the so-called adjacency array model [20] or bounded degree model [21]
(although we do not assume the degree is bounded), which is very natural when studying
random walk algorithms. However, departing from these models, and justifying the term
“local”, we will not assume direct access to or prior knowledge about V , apart from the initial
node. For comparison, in [20] the node set V is given as a list, and in [21] access to uniformly
random nodes is assumed. In this sense our work is more in line with graph exploration
algorithms as considered e.g. in [34], or more recently in [17].

Since our algorithm strongly builds on the use of quantum walks, we will alternatively
express the complexity of our results as a function of the number of quantum walk steps.
Also in such case the denominator “local” query access is justified, since a single quantum
walk step from a certain node only accesses the neighbors of that node.

1.2 Quantum Walk Sampling Algorithm

Our algorithm builds on the folklore approach to creating |π〉, discussed in e.g. [31, 39, 30, 29].
Starting from some initial state |j〉 localized on a node j ∈ V , this approach combines quantum
phase estimation and amplitude amplification on the quantum walk operator associated to
the graph. We detail this scheme in Section 2.2. The scheme requires Õ(m1/2δ−1/2) QW
steps on the graph, where δ is the random walk spectral gap, and the factor m1/2 stems from
the small projection of the initial state onto |π〉.

In the present work we improve on this scheme by initially doing some “classical work”:
we first use classical means to grow a seed set around the initial vertex. Briefly ignoring
the δ-dependency, we grow the set to have size Θ(m1/3). We can then use a special data
structure to generate and reflect around a quantum superposition over this set, which now
has a Ω(m−1/3) overlap with the target state. Reinvoking the folklore scheme from this state
then allows to retrieve |π〉, now only requiring Õ(m1/3) queries. This approach leads to the
following result.

I Theorem 1. Given a lower bound γ ≤ δ on the spectral gap, it is possible to create the
quantum state |π〉 using Õ(m1/3γ−1/3) time, space and QW steps.

Apart from the log-factors, the combined dependency on m and δ is optimal. Indeed it is
tight on e.g. the cycle graph, which has m = n and δ = n−2, giving an Õ(n) steps algorithm.
Since the diameter of the cycle is Ω(n), this is optimal when assuming local query access.
We also note that, if in addition we are given a bound D ≥ dM on the maximum degree
(in e.g. the array model this is always given), then we can implement our algorithm using
Õ(m1/3γ−1/3D1/3) degree and neighbor queries.
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The algorithm gives a direct bound on the so-called setup cost of quantum walk search
algorithms in the MNRS framework [28] as a function of the update cost (i.e., the cost
of implementing a quantum walk step). The increased space complexity of our algorithm,
Õ(m1/3δ−1/3) as compared to Õ(1) for the folklore approach, is very similar to the payoff in
space versus time or query complexity in the collision finding algorithm of Brassard et al [15]
and the element distinctness algorithm of Ambainis [4].

1.3 Application to st-connectivity
Our QW sampling algorithm yields a new approach for solving st-connectivity, somewhat
similar to the approach taken by Watrous in [38]: generate a superposition over the edges
in the connected components of s resp. t, and compare the resulting states. As we prove
in Proposition 9, this requires Õ(m1/3γ−1/3) QW steps, where γ is a lower bound on the
spectral gaps of the connected components of s and t. Our algorithm outperforms the existing
quantum algorithms for st-connectivity [20, 13, 12, 23] on for instance sparse graphs with a
good spectral gap.

The approach generalizes a well-known strategy to solving graph isomorphism on a
quantum computer [2] (called “component mixing” in [27]): generate superpositions over the
isomorphisms of each graph, and compare the resulting states. In [6], Ambainis et al aimed
to prove a lower bound on this approach by abstracting it to the so-called index erasure
problem. For this generalized problem, they prove a lower bound of Ω(2n/2). They argue
that the same bound holds for creating a superposition over graph isomorphisms, be it under
the condition that the algorithm makes no use of the structure of the problem. We show that,
by exploiting the structure of the problem, we can indeed use our quantum walk sampling
algorithm to surpass this bound. Thereto we consider the graph whose node set consists
of isomorphisms of the input graph, and whose edge set arises from performing pairwise
transpositions on the nodes (i.e., on the adjacency matrices of the isomorphisms). Using our
quantum walk sampling algorithm on this graph yields the following corollary.

I Corollary 2. Given an n-node input graph g, it is possible to create a superposition over
the isomorphisms of g in Õ(2n/3) steps.

Completing the associated st-connectivity algorithm, we find an Õ(2n/3) quantum algorithm
for graph isomorphism. Using the existing quantum algorithms for st-connectivity, this
approach would require Ω(2n/2) steps. Clearly the improved performance still falls terribly
short of current (classical) algorithms for graph isomorphism, most notably the quasi-
polynomial algorithm by Babai [10], yet it provides a clear demonstration of how the readily
accessible structure of the problem allows to surpass the index erasure bound.

A similar strategy exists for solving the group non-membership problem on a quantum
computer, as proposed by Watrous [37], requiring to generate a superposition over the
elements of a finite black box group. Using the random walk algorithm by Babai [9] for
generating uniformly random group elements, we can similarly generate this superposition in
Õ(2n/3) steps, when 2n is the number of group elements.

1.4 Open Questions
This work leaves open a number of questions and possible applications, some of which we
summarize below:

Quantum sampling for general Markov chains or stoquastic Hamiltonians. In this work
we only consider the quantum sampling problem for random walks. Generalizing our
approach to more general Markov chains could lead to improvements on quantum MCMC

ESA 2019
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algorithms [2, 33], or the preparation of many body ground states [30] and Gibbs states
[36]. The main bottleneck to such generalization seems to be the classical construction of
seed sets which have an appropriate overlap with the goal quantum state. Even more
generally, one could consider the preparation of ground states of Hamiltonians. For
e.g. the special case of stoquastic Hamiltonians, which are known to have a nonnegative
ground state, it should be possible to construct a seed set with improved overlap with
the ground state.
Faster quantum fast-forwarding. In former work by the author [8], a quantum algo-
rithm was proposed for quantum sampling a t-step Markov chain. If the Markov chain
has transition matrix P , and is started from a node i, the algorithm has complexity
Õ(‖P t |i〉 ‖−1 t1/2) ∈ Õ(m1/2 t1/2). Using ideas from the present work, it seems very fea-
sible that we can improve this complexity to Õ(‖P t |i〉 ‖−2/3 t1/2) ∈ Õ(m1/3 t1/2). Rather
than using a breadth-first search to grow the seed set, as in the present work, it seems
more suitable to use random walk techniques as in [34, 7]. As a byproduct, this would
yield an improved quantum expansion tester, combining the speedups of [5] and [8].
Quantum search in

√
HT . Our algorithm does not suffer from the so-called “symmetry

barrier” in quantum algorithms: we can go from |j〉 to |π〉 more easily then from |π〉 to
|j〉. Indeed, if for instance the underlying graph is an expander, then the former takes
O(n1/3) queries, whereas the latter takes Ω(n1/2) queries by the search lower bound.
An open problem related to this is the following: given an initial node s in a graph, can we
find a node t in O(HT 1/2

s,t ) QW steps, with HTs,t the hitting time from s to t? Currently
the best algorithm for this problem is by Belovs [12], which solves it in O(CT 1/2

s,t ), with
CTs,t = Hs,t + Ht,s the commute time between s and t. Since the commute time is
symmetric between s and t, this obeys the aforementioned symmetry barrier. However,
the commute time can be much larger than the hitting time from s to t, hence the open
question of whether we can improve this performance to O(HT 1/2

s,t ), thereby necessarily
breaking this symmetry e.g. by using our techniques.

1.5 Outline
In Section 2 we discuss the graph and query model (Section 2.1), and provide the necessarily
preliminaries on random walks and quantum walks (Section 2.2). In Section 3 we propose an
algorithm for growing a classical seed set (Section 3.1), we discuss the data structure (Section
3.2), and we propose our QW sampling algorithm (Section 3.3). Finally in Section 4 we
discuss the application of our QW sampling algorithm for solving st-connectivity (Section 4.1),
and we demonstrate it for the special case of graph isomorphism testing (Section 4.2).

2 Preliminaries: Queries and Walks

2.1 Graph and Query Model
Throughout the paper we assume local query access to an undirected graph G = (V, E), with
E a subset of the ordered pairs V × V, such that (i, j) ∈ E ⇔ (j, i) ∈ E . We denote |V| = n

and |E| = m. For any S ⊆ V, we let E(S) denote the set of edges starting in S, i.e.,

E(S) = {(i, j) ∈ E | i ∈ S}.

For any i ∈ V, we let d(i) = |E({i})| denote the degree of i, the maximum degree dM =
maxi∈V d(i), and d(S) = |E(S)| =

∑
i∈S d(i) denotes the total degree of a set S ⊆ V. A

single query consists of either of the following:
degree query: given i ∈ V, return degree d(i)
neighbor query: given i ∈ V, k ∈ [d(i)], return k-th neighbor of i
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As an alternative query model we will also consider the quantum walk model, or so-called
MNRS framework, as proposed in [28] in the context of quantum walk search. The model
associates abstract costs to different operations1:

setup cost: the cost of preparing the quantum sample |π〉 = m−1/2∑
(i,j)∈E |i, j〉

update cost: the cost of implementing a quantum walk step. See Section 2.2 for details.
For search problems an additional checking cost is considered, yet this will not be relevant
here. In [16] it is proven that the update cost or quantum walk step for a node i can be
simulated using O(d(i)1/2) degree and neighbor queries. From our work it follows that the
setup cost can be simulated using Õ(m1/3δ−1/3) QW steps, or Õ(m1/3d

1/3
M δ−1/3) degree and

neighbor queries.

2.2 Random Walks and Quantum Walks
From some initial seed vertex j ∈ V, we can use degree and neighbor queries to implement
a random walk over V. The transition matrix P describing such a walk is defined by
P (i, j) = 1/d(i) if (i, j) ∈ E , and P (i, j) = 0 elsewhere. If the graph is connected and
nonbipartite, then the random walk converges to its stationary distribution π, defined by
π(i) = d(i)/m for any i ∈ V. If we order the eigenvalues of P (with multiplicities) as
1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1, then the rate at which the walk converges to π is bounded by
the spectral gap δ = 1−max{|λ2|, |λn|} [26].

Quantum walks (QWs) form an elegant quantum counterpart to random walks on graphs.
Following the exposition in [28], they are naturally defined over a vector space associated to
the edge set

HE = spanC
{
|i, j〉 | (i, j) ∈ E

}
.

A quantum walk over HE is now defined as the unitary operator W = SRE , where RE is a
reflection around the subspace spanC{|ψi〉 | i ∈ V}, with

|ψi〉 = 1√
d(i)

∑
(i,j)∈E

|i, j〉 ,

and S represents the swap operator defined by S |i, j〉 = |j, i〉. The cost of implementing
the QW operator W is called the update cost, but can alternatively be implemented using
O(d1/2

M ) degree and neighbor queries, and Õ(1) elementary operations.
The spectrum of W is carefully tied to the spectrum of the original random walk

matrix P , as was seminally proven by Szegedy in [35] and Magniez et al in [28]. For the
purpose of this work, we abstract the following lemma. We say that W has a phase gap
∆ if for every eigenvalue eiθ 6= 1 of W it holds that |θ| ≥ ∆. We also recall the state
|π〉 = m−1/2∑

(i,j)∈E |i, j〉.

I Lemma 3 ([35, 28]). Let P be the random walk transition matrix having spectral gap δ.
Then the quantum walk operator W has a phase gap ∆ ∈ Θ(

√
δ), and |π〉 is the unique

eigenvalue-1 eigenvector in the subspace spanC{|ψi〉 | i ∈ V}.

From this lemma, combined with the quantum algorithms for phase estimation and
amplitude amplification, we can derive the folklore approach to quantum walk sampling,
discussed in for instance [31, 39, 30, 29]. Since we will use it as a subroutine, we summarize
it below. For a general subset S ⊆ V, we denote the state |S〉 = d(S)−1/2∑

(i,j)∈E(S) |i, j〉.

1 They actually consider a more general model, associated to a reversible Markov chain over G. We
consider the special case where the Markov chain is a random walk.
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I Proposition 4. Given an initial set S ⊆ V and a lower bound γ ≤ δ, there exists
a quantum routine that generates a state ε-close to |π〉. The routine finishes and out-
puts a success flag after an expected number of O(d(S)−1/2m1/2γ−1/2 log ε−1) calls to W ,
O(d(S)−1/2m1/2) reflections around |S〉, and requires an additional O(log ε−1 log2 γ−1) time
and space complexity.

Proof. Let the operator U be defined by the amplified quantum phase estimation algorithm,
as used in [28, Theorem 6]. For some integer k, this operator maps an initial state |S〉
to the state

U |S〉 |0〉 = 〈π|S〉 |π〉 |0〉+ |Γ〉 ,

where |Γ〉 is such that ‖(I ⊗ |0〉 〈0|) |Γ〉 ‖ ≤ 2−k. The operator U can be implemented
using O(k∆−1) ∈ O(kγ−1/2) calls to W and W †, and O(k log2 γ−1) additional space and
elementary gates.

On this state we can invoke the amplitude amplification scheme from [14, Theorem 3]
to retrieve the projection of U |S〉 |0〉 on the image of I ⊗ |0〉 〈0|, which is 2−k-close to |π〉.
This requires an expected number of Θ(| 〈S|π〉 |−1) calls to U , U† and the reflection operator
I ⊗ (2 |0〉 〈0| − I). We prove the proposition by choosing k ∈ Θ(log ε−1) and noting that
| 〈S|π〉 | = d(S)1/2m−1/2. J

On a general graph, and starting from some initial node S = {i}, this scheme requires
Õ(d(i)−1/2m1/2γ−1/2) ∈ Õ(m1/2γ−1/2) QW steps, or Õ(m1/2d

1/2
M γ−1/2) degree and neigh-

bor queries.

3 Quantum Walk Sampling

In this section we elaborate our scheme for quantum walk sampling. We separately address
the process for growing a seed set, the data structure that we require, and their combination
with the folklore QW sampling routine.

3.1 Growing a Seed Set

We propose the below Algorithm 1 to grow a seed set in the graph. It is a variation on the
breadth-first search algorithm, returning an edge set of given size.

I Lemma 5. If M ≤ m, then Algorithm 1 outputs a subset E ⊆ E with |E| ≥M . Its time
and space complexity, and degree and neighbor query complexity, are Õ(M).

Proof. Assuming the lists are ordered, any of the list and queue operations (enqueueing,
dequeueing, adding an element, outputting the size of a list, searching an element in a list)
takes polylogarithmic time. As a consequence, the time complexity will be determined up to
log-factors by the number of for-loops before the algorithm terminates.

In every for-loop an edge is considered. Since the edges are directed, every edge is
encountered at most once, at which point it is added to E. Since the algorithm terminates
when |E| = M , this implies that the algorithm terminates after less than M for-loops. J

Alternatively we can output the node set S ⊆ V . Since E ⊆ E(S), we have that d(S) ≥M .
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Algorithm 1 Breadth-First Edge Search.
Input: initial node i and query access to a connected graph G, integer M
Do:
1: create lists S = ∅ and E = ∅, and queue B = (i)
2: while B 6= ∅ do
3: i← dequeue(B), add(S ← i)
4: for all j s.t. (i, j) ∈ E do
5: if j /∈ S then
6: add(E ← {(i, j), (j, i)})
7: if |E| ≥M then terminate and output E
8: if j /∈ B then enqueue(B ← j)

3.2 Kerenidis-Prakash Data Structure
After growing the seed set S ⊆ V , we wish to use it as a resource for our QW sampling algo-
rithm. Specifically we will require the generation of and reflection around the superposition
|S〉 over edges starting in S. By naive query access to the database containing S, this requires
a time complexity Ω(d(S)1/2) per generation or reflection, which follows from the bound on
index erasure [6]. Since our QW sampling algorithm will require Ω(m1/3) such operations,
the total time complexity for d(S) ∈ Θ(m1/3) would become Ω(m1/2), thus providing no
speedup on the time complexity as compared to the folklore approach. To remedy this, we
use a more efficient data structure proposed by Kerenidis and Prakash [24] in their quantum
recommendation algorithm. We extract the following result, abstracted from their Theorem
15 (by setting m = 1, n = n2 and inputting entries (1, (i, j), 1) for all (i, j) ∈ S).

I Theorem 6 (Kerenidis-Prakash [24]). Assume we have query access to a set S ⊆ V. There
exists a classical data structure to store the set S with the following properties:

the size of the structure is O(|S| log2(m)),
the time and query complexity to fill the structure is O(|S| log2(m)),
having quantum access to the data structure we can perform the mapping U : |0〉 → |S〉
and its inverse U† in time polylog(m).

This easily implies the ability to reflect around |S〉 in time polylog(m): we can rewrite
the reflection 2 |S〉 〈S| − I = U(2 |0〉 〈0| − I)U†, so that it comes down to implementing U ,
U† and a reflection around the basis state |0〉.

3.3 QW Sampling Algorithm
Building on the seed set and data structure, we can now propose our quantum sampling
algorithm for creating the state |π〉 in Õ(m1/3δ−1/3) time, space and quantum walk steps.

I Theorem 7 (Quantum Walk Sampling). If we choose γ ≤ δ then Algorithm 2 returns a
state ε-close to |π〉. The algorithm requires expected space, time and quantum walk steps in

Õ(m1/3γ−1/3 log ε−1).

Proof. The correctness of the algorithm follows from Proposition 4. By this proposition we
know that if γ ≤ δ and the algorithm terminates, and hence the routine from Proposition 4
finished, then it effectively outputs a state ε-close to |π〉. The complexity of the algorithm
for a fixed M is also easily bounded: the complexity of steps 2 and 3 is both Õ(M1/3γ−1/3),

ESA 2019



9:8 Quantum Walk Sampling by Growing Seed Sets

Algorithm 2 Quantum Walk Sampling.
Input: parameters γ and ε; initial node i and query access to a graph G
Do:
1: for M = 1, 2, 4, . . , 2k, . . . do
2: use BFS to grow a seed set S with d(S) ∈ Ω(M1/3γ−1/3)
3: load S in data structure
4: apply the routine from Proposition 4 on |S〉

if the routine finishes after Õ(M1/3γ−1/3 log ε−1) steps
then terminate algorithm and return its output
else abort the routine and continue for-loop

which follows from Lemma 5 resp. Theorem 6. Step 4 is automatically terminated after
Õ(M1/3γ−1/3 log ε−1) steps, which by Proposition 4 directly bounds the number of calls toW
and reflections around |S〉. By Theorem 6 the complexity of implementing a single reflection
around |S〉 is Õ(1). The total complexity for a fixed M is therefore Õ(M1/3γ−1/3 log ε−1).

What remains to bound is the M -value at which the algorithm terminates. From
Proposition 4 we know that if the number of steps M1/3γ−1/3 log ε−1 is sufficiently large, i.e.,

M1/3γ−1/3 log ε−1 ∈ Ω(| 〈π|S〉 |−1γ−1/2 log ε−1), (2)

then the routine finishes with probability Ω(1). From the fact that |π〉 = m−1/2∑
(i,j)∈E |i, j〉

and d(S) ∈ Ω(M1/3γ−1/3) it holds that | 〈π|S〉 | ∈ Ω(M1/6γ−1/6m−1/2). As a consequence,
if M ≥ m then | 〈π|S〉 | ∈ Ω(m−1/3γ−1/6) and hence (2) will hold, such that the routine will
finish with probability Ω(1). The expected number of for-loops is therefore logm + O(1),
with the total complexity scaling as

Õ

(
γ−1/3 log ε−1

logm+O(1)∑
k=0

2k/3
)
∈ Õ(m1/3γ−1/3 log ε−1). J

Alternatively we are interested in bounding the algorithm in terms of classical queries.
We can naively substitute every quantum walk step for Õ(

√
dM ) degree and neighbor queries,

yielding a complexity Õ(m1/3d
1/2
M γ−1/3). However, if we are given an upper bound D ≥ dM ,

we can improve this complexity by slightly increasing the size of the seed set. We note that in
the array model [20] the degrees are assumed to be known beforehand, so we exactly know dM .

I Corollary 8. Given an initial node i, a lower bound γ ≤ δ and an upper bound D ≥ dM , we
can generate a state ε-close to |π〉 in expected space, time, and degree and neighbor queries in

Õ(m1/3D1/3γ−1/3 log ε−1).

Proof. We adapt Algorithm 2 as follows: we slightly increase the size of the seed set in step 2
to Ω(M1/3D1/3γ−1/2), and limit the number of steps in step 4 to Õ(M1/3D−1/6γ−1/3 log ε−1).
Following the proof of Theorem 7, the algorithm then terminates after

Õ(m1/3D1/3γ−1/3 log ε−1)

classical steps and queries, and Õ(m1/3D−1/6γ−1/3) QW steps. Now we can substitute each
QW step with Õ(

√
dM ) degree and neighbor queries, yielding the claimed complexity. J
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4 Application: st-Connectivity

4.1 General Algorithm
Let δ(s) and δ(t) denote the spectral gaps of the connected components of s resp. t.

I Proposition 9. Given s, t ∈ V and a lower bound γ ≤ δ(s), δ(t), we can decide st-connectivity
with probability 1− ε in Õ(m1/3γ−1/3 log ε−1) QW steps. If we are also given an upper bound
D ≥ dM , then we can do so in Õ(m1/3D1/3γ−1/3 log ε−1) degree and neighbor queries.

Proof. Given γ we can create an (ε′ = 1/4)-approximation |ψs〉 (resp. |ψt〉) of the super-
position |π(s)〉 (resp. |π(t)〉) over the edges of the connected component of s (resp. t) in
Õ(m1/3γ−1/3) QW steps. If we also have D, then we can do so in Õ(m1/3d

1/3
M γ−1/3) degree

and neighbor queries.
If s and t are connected, then | 〈ψs|ψt〉 | ≥ 1−ε′2, whereas if they are not, then | 〈ψs|ψt〉 | ≤

2ε′. We can distinguish these cases by performing the SWAP-test [2] between these states,
using a single copy of both states, and O(1) additional gates. If s and t are connected,
then the test returns 1 with probability (1− | 〈ψs|ψt〉 |)/2 ≤ ε′2/2 = 1/32, if s and t are not
connected, the test returns 1 with probability (1− | 〈ψs|ψt〉 |)/2 ≥ 1/2− ε′ = 1/4. Repeating
this scheme O(log ε−1) times then allows to decide st-connectivity with probability 1− ε. J

This approach best compares to the following classical scheme: use Θ̃(n1/2) indepen-
dent random walks of length Θ(γ−1) from s and t to gather samples from the stationary
distributions on the connected components of s resp. t. If s and t are connected then with
constant probability the sample sets will overlap, which follows from the birthday paradox.
This scheme requires Õ(n1/2γ−1) random walk steps, or equivalently, neighbor queries. It
lies at the basis of the graph expansion tester by Goldreich and Ron [22], and the subsequent
work on testing closeness of distributions [11] and clusterability of graphs [18].

In Table 1 we compare the query complexity of our approach to the existing quantum
algorithms for st-connectivity. If no promise is given on negative instances (such as in [23]
in the form of a capacitance Cs,t), then all former algorithms require Ω(n1/2) queries when
maximized over all (s, t)-pairs of the graph. As a consequence, for the graph isomorphism
problem treated in the next section, they all have a Ω(2n/2) complexity. Our approach
however has a Õ(2n/3) complexity.

4.2 Graph Isomorphism
We consider some given n-node graph g, described by its adjacency matrix. To this graph we
can associate a new regular graph G(g) = (V, E) with nodes V = {σ(g) | σ ∈ Sn}, consisting
of permutations of the original graph nodes, and edges E = {(h, σi,j(h)) | h ∈ V, i, j ∈ [n]},
corresponding to all possible transpositions of two elements. We can easily prove the following.

I Lemma 10. The random walk on G(g) has a spectral gap δ ∈ Ω(n−1 log−1 n).

Proof. If |V| = n! (i.e., g 6= σ(g) if σ 6= 1), this graph is isomorphic to the Cayley graph
derived from the symmetric group with generators given by transpositions. The mixing time
of a random walk on this graph is O(n logn) by a result of Diaconis and Shashahani [19],
implying a lower bound on its spectral gap δ ∈ Ω(n−1 log−1 n).

If |V| < n!, the graph is effectively an edge contraction of the random transposition graph.
Following Aldous and Fill [3, Proposition 4.44], a random walk on this graph is an induced
chain of the random walk on the symmetric group, in particular having a spectral gap lower
bounded by the spectral gap of the original walk. J
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Table 1 Query complexity of st-connectivity using different quantum algorithms in different
models. The array model measures the number of degree and neighbor queries; the adjacency model
measures the number of pair queries (e.g., “are i and j neighbors?”); the QW model measures
the number of QW steps. The quantities ds,t and Rs,t denote the length of the shortest path and
the effective resistance, respectively, between s and t. The quantity Cs,t denotes the capacitance
between s and t in negative instances, i.e., if s and t are disconnected then Cs,t quantifies “how”
disconnected they are.

query complexity model

Dürr et al [20] Θ(n) array

Dürr et al [20] Θ(n3/2) adjacency

Belovs-Reichardt [13] O(m1/2 d
1/2
s,t ) adjacency

Belovs [12] O(m1/2R
1/2
s,t ) ∈ O(m1/2 δ−1/2) QW

Jarret et al [23] O(R1/2
s,t C

1/2
s,t ) adjacency

folklore QW sampling O(m1/2 δ−1/2) QW

this work Õ(m1/3 δ−1/3) QW

this work Õ(m1/3 δ−1/3 d
1/3
M ) array

Next we show how to implement a QW step on G(g) in Õ(1) steps. By Theorem 7
we can then create a superposition over the edges of G(g) (or, equivalently, its nodes) in
time Õ(m1/3) = Õ(2n/3), and by Proposition 9 we can solve st-connectivity (i.e. graph
isomorphism) in the same time.

I Lemma 11. Implementing a quantum walk on G(g) takes time Õ(1).

Proof. Since we may have multi-edges, corresponding to permutations that leave the input
graph invariant, we will slightly alter the QW to take place on a node+coin space (as in
e.g. [1, 4]) rather than on the edge space. The relevant spectral properties from Lemma 3
however remain unchanged, as is easily seen by following for instance the proof of [25]. We
define the QW node+coin space, associated to the input graph g, as spanC{|σ(g), i, j〉 | σ ∈
Sn, i, j ∈ [n]}, with Sn the symmetric group of permutations. Similarly to Section 2.2, the QW
operator W = SRE consists of a reflection RE around a subspace spanC{|ψσ(g)〉 | σ ∈ Sn},
now defined as

|ψσ(g)〉 = 1
n

∑
i,j∈[n]

|g, i, j〉 ,

and the shift operator S defined by S |g′, i, j〉 = |σi,j(g′), i, j〉. Each of these operators can
be implemented in Õ(1) steps. J
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Abstract
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1 Introduction

1.1 Our results
The k-nearest neighbor (k-NN) problem has been an object of intense research, both from
theoretical and applied computer scientists. There exist many implementations of k-NN data
structures that perform very well in specific scenarios (see the related work section), but all
implementations that we are aware of suffer from one or more of the following drawbacks:

Not scalable to large, high-dimensional data sets.
Not runtime-robust in the sense that query time may degrade to that of a linear search
even for input distributions that are known to allow search in sublinear time.
Not recall-robust in the sense that there are input distributions that obtain low (less
than 50%) recall.
Performance bounds only hold for well-chosen values of certain parameters that depend
on the data set as well as the query distribution.

PUFFINN combines several insights from recent theoretical research on k-NN data
structures into a data structure that addresses these drawbacks. Our contributions are
as follows:
1. we present a parameterless and universal locality-sensitive hashing-based (LSH) imple-

mentation that solves the k-NN problem with probabilistic guarantees (Section 3)
2. we prove the correctness of an adaptive query mechanism building on top of the LSH

forest data structure described by Bawa et al. in [5] (Section 3)
3. we describe an adaptive filtering approach to decrease the number of expensive distance

computations (Section 4)
4. we propose a difficult dataset for the 1-NN problem that exposes weaknesses in known

heuristics (Section 5)
5. we provide a detailed experimental study of our approach, evaluating design choices

and relating it to the performance of other state-of-the-art approaches to k-NN search
(Section 5)

Prior to this work, only subsets of these ideas have been implemented. Our main
contribution on the theoretical side is that we make certain heuristics, such as the query
algorithm described in [5], rigorous. While some ideas of adaptive query algorithms have
been discussed before [18], they made assumptions on the data and query distribution; our
methods work for k-NN search in its full generality. On the practical side, we shed light
on the empirical performance of theoretical ideas with regard to possible speed-ups of an
LSH implementation. Our final implementation is parameterless in the sense that it only
requires the user to specify the space available for the data structure and the required
quality guarantee. Our implementation is competitive to state-of-the-art k-NN algorithms;
in particular, it is as performant as previous LSH solutions that are not parameterless and
do not provide guarantees on the quality of the result.

1.2 Related work
There exist many fundamentally different approaches to nearest neighbor search. Popular
techniques range from approximate tree-based methods, such as kd-trees [6] and M -trees [14]
with an early stopping criterion [33], to random projection trees [16], to graph-based ap-
proaches [24, 21], and finally hashing-based approaches, for example using LSH [20]. Each
paradigm comes with performant implementations and we will introduce some of them in
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Section 5 when we are evaluating our implementation. Since the focus of the present paper
is designing a provably correct LSH implementation we will focus on existing methods in
this realm. See the benchmarking paper by Aumüller et al. [4] for a more detailed overview
over other approaches and their performance on real-world datasets.

Locality-sensitive hashing. LSH was introduced by Indyk and Motwani in [20]. We sketch
the basic idea here. An LSH data structure consists of several independent repetitions of
space partitions using LSH functions. An LSH function maps a data point to a hash code
such that closer points are more likely to collide than far away points. In the LSH framwork,
K ≥ 1 locality-sensitive hash functions are concatenated to increase the gap between the
collision probability of “close” points and “far away” points. For solving the (c, r)-near
neighbor problem [20], a certain concatenation length K is fixed according to the number
of points in the data set, the approximation factor c, and the strength of the hash family
at hand. From the value K and the hash family one can compute how many repetitions L
(using independent hash functions) have to be made to guarantee that a close point is found
with constant probability. The theoretical literature on LSH has mostly focused on solving
the approximate near neighbor problem which can be be used to solve the approximate
nearest neighbor problem through a reduction [19]. In this paper we use LSH to solve the
exact k-nearest neighbor problem with probabilistic guarantees.

LSH implementations. Implementations of LSH evolved over the years with new advances
in the theory of LSH. One of the first popular implementations, dubbed E2LSH [2], was
tailored for Euclidean space and included automatic parameter tuning of the K parameter
based on subsampling the dataset. From this K parameter, other parameter such as the
number of repetitions are derived. It solves the problem of reporting all points within a
distance r (specified during preprocessing) from the query and uses potentially large space
on large datasets [2]. The multiprobing approach introduced by Dong et al. in [18] allowed
for implementations in which the space parameter can be fixed as in our approach. Their
parameter tuning relies on the assumption that there is a certain distance distribution
between queries and data points. LSHkit was the first implementation using this idea [17].
A new LSH family for angular distance on the unit sphere motivated the development of
the FALCONN library [1]. It contains highly optimized routines for efficient hash function
computation, and supports multiprobing.

None of these approaches give guarantees on the query procedure if the query set is
different with respect to distance distributions from the one seen during index building. Our
data structure can be seen as a modified version of the LSH forest introduced by Bawa et
al. in [5]. Instead of using a single hash length K, an individual repetition is a trie built
on the hash codes of the data points. Our query algorithm replaces the heuristic candidate
collection of a predefined size with a rigorous termination criterion.

The cost of evaluating an LSH function differs widely. It ranges from O(1) time for the
bitsampling approach in Hamming space [20], over O(d) for random hyperplane hashing [10],
to O(d2) for cross-polytope LSH [1]. For the latter, the authors of [1] proposed a heuristic
version that decreases the running time to O(d log d). Another approach to reduce hashing
time is to build a hashing oracle that returns the necessary KL hash function values necessary
to query the LSH data structure, but builds those from a smaller set of independent hash
functions. Christiani [12] described two approaches that reduce the amount of independent
hash functions needed to produce these hash values from KL to K

√
L (using tensoring as

in [3]) or O(log2 n) (using the pooling approach in [15]). While the E2LSH framework uses a
variant of tensoring, we are not aware of an implementation using the pooling strategy.

ESA 2019
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Another idea that is currently missing in existing LSH implementations is the use of
sketches, i.e., small representations of the original data points that allow to estimate the
distance between two data points via their sketches. Christiani [12] describes how to use
sketches when solving the near neighbor problem, but we are not aware of existing LSH-based
implementations using this idea. We remark that sketching is a well-known technique and
refer to the survey [27].

Auto Tuning Approaches. Apart from the approaches mentioned above, FLANN [26] and
the implementation of vantage point trees in nmslib [8] are two non-LSH based nearest
neighbor search that promise to tune the data structure to guarantee a certain quality
criterion. This criterion is usually the recall of the query, i.e., the fraction of true nearest
neighbor among the points returned by the implementation.

FLANN contains a collection of tree-based methods. For auto-tuning, it takes a small
sample of the data structure and builds indexes in a certain parameter space. It then queries
the data structure with points from the data set and picks, among all the indexes that achieve
at least the recall the user wishes for, the one with fastest query times. The auto tuning
employed by nmslib for the vantage point tree implementation follows the same principles
and explores a certain parameter space based on a model of the data set to be indexed. Both
approaches require that the query and data set distribution are not too different. We will
see in the experiments that both of the approaches do not satisfy the recall guarantees, even
on real-world datasets.

2 Preliminaries

2.1 Problem Definition
We assume a distance space (X,dist) with distance measure dist : X× X→ R≥0.

I Definition 1. Given a dataset S ⊆ X and an integer k ≥ 1, the (k, δ) nearest neighbor
problem ((k, δ)-NN) is to build a data structure, such that for every query q ∈ X, the query
algorithm returns a set of k distinct points, each one being with probability at least 1 − δ
among the k points in S closest to q.

An algorithm solving the (k, δ)-NN problem guarantees an expected recall of (1− δ)k, which
is usually the quality measure in the context of nearest neighbor search algorithms.

2.2 Locality-Sensitive Hashing
I Definition 2 (LSH Family [20, 10]). A locality-sensitive hash (LSH) family H is family of
functions h : X → R, such that for each pair x, y ∈ X and a random h ∈ H, for arbitrary
q ∈ X, whenever dist(q, x) ≤ dist(q, y) we have p(q, x) := Pr[h(q) = h(x)] ≥ Pr[h(q) = h(y)].

Traditionally, LSH families are used in the LSH framework to solve the (c, r)-near neighbor
problem.

While the theory provided in this paper applies to every distance space that encompasses
an LSH family, we set our focus on solving the k-NN problem on the d-dimensional unit
sphere under angular distance, which is equivalent to cosine similarity and inner product
similarity on unit length vectors. By using the Gaussian kernel approximation method of
Rahimi and Recht [29] as described by Christiani in [11], our results extend to the whole
Euclidean space.
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Random hyperplane (HP) LSH described by Charikar in [10] and Cross-Polytope (CP)
LSH introduced by Terasawa and Tanaka [31] and analyzed by Andoni et al. in [1] are two
different LSH schemes under this distance measure. A single HP LSH function produces a
single bit. It works by choosing a random d-dimensional vector a = (a1, . . . , ad) where each
ai is an independent standard normal random variable. The hash code of a point x is 1 if
the inner product between a and x is at least 0, and 0 otherwise. A single CP LSH function
applies a random rotation of x on the unit sphere and then maps it to the index of the
closest vector out of the 2d signed standard basis vectors. Technically, it can be thought of
as choosing d random hyperplanes a1, . . . , ad and mapping x to the index of the hyperplane
with the largest absolute inner product, separating the two cases that the inner product is
negative or not.

3 Data Structure

This section describes the basic ideas of the data structure used in our implementation. Due
to space reasons we only highlight the basic data structure and some of its properties. The
full description with all proofs can be found in the extended version of this paper. Note
that the implementation has many differences to this clean version. These differences are
discussed in Section 4.

3.1 Description
In this section we will assume that we can perform distance computations and evaluate
locality-sensitive hash functions in constant time. Our data structure will be parameterized
by integers L,K ≥ 1 and will consist of a collection of L LSH tries of max depth K. This
data structure is known as an LSH Forest [5]. Here we use a variant of the LSH tries
with bounded depth and for completeness we include a brief description and statement of
relevant properties.

LSH tries. We index the LSH tries by j = 1, . . . , L. The jth LSH trie is built from the set of
strings {(h1,j(x), . . . , hK,j(x)) | x ∈ S} where hi,j ∼ H. The trie is constructed by recursively
splitting the set of points S on the next (ith) character until |S| ≤ i or i = K + 1 at which
point we create a leaf node in the trie that stores references to the points in S. Internal nodes
store pointers to its children in a hash table where the keys are locality-sensitive hash values.

Query algorithm. Let Si,j(q) denote the subset of points in S that collide with q when we
consider the first i hash values used in the construction of the jth trie. That is, Si,j(q) =
{x ∈ S | h1,j(q) = h1,j(x) ∧ · · · ∧ hi,j(q) = hi,j(x)}. For our query algorithm we wish to
retrieve the points in each trie that collide with our query point in a bottom-up fashion,
starting at depth i = K. Define Πi,j(q) = Si,j(q) \ Si+1,j(q) where SK+1,j(q) = ∅.

I Fact 1. LSH tries have expected construction time O(nK) and use O(n) words of space.
For i ∈ {0, 1, . . . ,K} we can retrieve a set S′

i,j(q) ⊇ Si,j(q) with |S′

i,j(q)| ≤ |Si,j(q)|+ i using
time O(|Si,j(q)|+ i). After having retrieved S′

i,j(q) we can retrieve S′

i−1,j(q) using additional
time O(|Πi−1,j(q)|).

The query algorithm is described in Algorithm 1. During a query we search through the
LSH Forest starting with the buckets Si,j(q) at depth i = K and moving up one level once
the L LSH tries have been explored at the current level. While searching we use a data
structure PQ to keep track of the top-k closest points seen so far. We stop the search once

ESA 2019
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Algorithm 1 adaptive-kNN(q, k, δ).

1 PQ ← empty priority queue of (point,dist) of unique points
2 for i← K,K − 1, . . . , 0 do
3 for j ← 1, 2, . . . , L do
4 for x ∈ Πi,j(q) do

/* We abbreviate x′k ← PQ.max() for ease of notation */
5 if dist(q, x′k) ≥ dist(q, x) then
6 PQ.insert(x, dist(q, x)) // Remove largest entry if PQ contains

more than k elements.
7 end
8 end
9 if i = 0 or (PQ.size() == k and j ≥ ln(1/δ)/p(q, x′k)i) then

10 return PQ
11 end
12 end
13 end

we have searched sufficiently many tries at a depth where our current k-nearest neighbor
candidate would have been found with probability at least 1 − δ. This stopping criterion
ensures that we always search far enough to find the true k-nearest neighbor with probability
at least 1− δ.

Insertions (Line 6) and retrieval of the k-largest distance (Lines 5 and 9) can be done in
expected amortized time O(1) by using an array of size 2k which is updated after each k
insertions. For simplicity the algorithm is described as a double for-loop that iterates over the
sets Πi,j(q) in a bottom-up fashion. Using LSH tries Algorithm 1 would be implemented by
using a straight-forward bottom-up traversal of the tries with properties described in Fact 1.

We proceed by proving that Algorithm 1 solves the (k, δ)-NN problem as well as providing
running time bounds. The idea behind an adaptive kNN algorithm with guarantees following
the approach of Algorithm 1 can be attributed to Dong et al. [18]. Christiani et al. [13] show
how a different stopping criteria gives a self-tuning algorithm in the regime where δ = 1/n.
To the best of our knowledge both the following proof of correctness (although simple) and
the running time bound for Algorithm 1 is new.

I Lemma 3. adaptive-kNN(q, k, δ) returns a set of k points, each one being with probability
at least 1− δ among the closest k points to q.

Proof. As introduced in Definition 2, we use the short notation p(q, x) := Pr[h(q) = h(x)]
under the random LSH hash function choice h. Let x1, . . . , xk be the k closest neighbors of
q in S. First, observe that at any stage the algorithm maintains the invariant “PQ.size() <
k or p(q, x′k) ≤ p(q, xk)”. This is true because at any point, the k-th closest point x′k identified
by the algorithm satisfies dist(q, x′k) ≥ dist(q, xk). Together with the montonicity of the
collision probability of LSH, cf. Definition 2, the invariant holds. Thus, the algorithm cannot
terminate until j′ tries have been searched at level i′ where either j′ ≥ ln(1/δ)/p(q, xk)i′ or
i′ = 0. In the first case the probability of not finding a kNN of q is at most (1−p(q, xk)i′)j′ ≤ δ.
In the case of i′ = 0 the query algorithm degrades to a linear scan and we are guaranteed to
report the true kNNs. J
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Next, we connect the expected running time of Algorithm 1 to the optimal expected running
time of an algorithm that knows optimal parameter choices for i and j. We will use
OPT (L,K, k, δ) to denote the optimal expected query time that can be achieved with the
natural algorithm that solves kNN queries on the LSH Forest by searching j tries at depth i
where i and j are chosen to minimize the query time. In our expression for the expected
the query time we use a unit cost model that counts hash function evaluations and distance
computations. To ensure that each point in the kNN set is reported with probability at least
1− δ we search j = ln(1/δ)/p(q, xk)i tries. The expected cost of searching one LSH trie at
depth i is i+

∑
x∈P p(q, x)i.

OPT (L,K, k, δ) = min
{

ln(1/δ)
p(q, xk)i

(i+
∑
x∈P

p(q, x)i) | 0 ≤ i ≤ K, ln(1/δ)
p(q, xk)i

≥ L

}
.

We obtain the following lemma with a proof provided in the extended version of this paper.
I Lemma 4. Let 0 < δ ≤ 1/2 then with probability 1−δ we have that adaptive-kNN(q, k, δ)
terminates in expected time O(OPT (L,K, k, δ/k) + L(K + k)).

3.2 Reducing the Number of LSH Evaluations
In [12], Christiani provides a uniform framework encompassing previous ad-hoc solutions [15,
3] to reduce the amount of hash function evaluations when solving the approximate near
neighbor problem. In the extended version of this paper we describe how these techniques
can be applied when solving the k-NN problem. In particular, each method requires an
adaption of Algorithm 1 and comes with their own stopping criterion. We provide a succinct
description of the methods next.

Tensoring. Assume that K is an even integer and L is an even power of two. Form two
collections of

√
L tuples of K/2 LSH functions. Each trie in the LSH forest is now indexed

by j1, j2 ∈ {1, . . . ,
√
L}. The K LSH functions used in the (j1, j2)st trie are taken by

interleaving the K/2 functions in the j1st tuple of the first collection and the j2nd tuple of
the second collection. This allows us to construct L LSH tries of max depth K using only√
LK independent functions.

Pooling. Form a pool of m independent LSH functions that will be shared among LSH
tries. For each LSH trie in the LSH Forest we independently sample a random subset of K
LSH functions from the pool that we use in place of fully random LSH functions. The LSH
pool can be viewed as a randomized construction of a smaller LSH family from our original
LSH family. As m increases LSH functions sampled without replacement from the pool will
work almost as well as independent samples from the LSH family.

3.3 Sketching for faster distance computations
Locality-sensitive hashing can be used to produce 1-bit sketches for efficient similarity
estimation [10, 23]. The idea is to use a random hash function to hash the output of a
locality-sensitive hash function to a single bit, and then packing w such bits into a w-bit
machine word. We can use word parallelism (alternatively table lookups) to count the number
of collisions between w = Θ(logn) such sketches in O(1) time, allowing us to efficiently
estimate the similarity between points in our original space. Depending on the LSH scheme
used and the distribution of distances between the query point and the data, using 1-bit
sketches can replace many of the expensive distance computations performed by the query
algorithm with cheaper distance estimations through sketching. See [30, 12] for more details
on sketching in the context of the ANN problem.

ESA 2019
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Figure 1 Overall structure of our implementation.

4 Implementation Overview

4.1 Overall structure

Figure 1 presents an overview over our data structure. Deviating from the pointer-based trie
data structure described in Section 3, we use an array of indices sorted by hash code, which
improves both cache- and space-efficiency. Additionally, a sketching-based filtering approach
is used to reduce the number of distance computations carried out during a query. In the
following, we make the implementation precise.

A query is answered in rounds, starting at the maximum considered prefix length. A single
round works as follows: Repetitions are inspected one after the other. In each repetition,
all (new) candidates sharing the hash prefix with the query point are retrieved. For each
such candidate point, a sketch is chosen and checked against the corresponding sketch of
the query point. Let τ denote a threshold value that we will discuss how to set later. If
the Hamming distance between candidate and query sketch is less than τ , the data point
passes the filter, the distance computation is carried out, and the point with its distance
to the query is inserted into the accumulator buffer. Once this buffer is full we discard all
points not belonging to the top-k. While this can be done in time O(k), we found that
an implementation based on sorting was faster for the values of k we considered. The
termination criterion is checked after all repetitions are inspected. If the criterion is satisfied,
the algorithm returns the indices of the top-k points in the accumulator, otherwise the prefix
length is decreased by one and a new round starts.

The following subsections make this process more detailed and discuss engineering choices
in the case of angular distance on unit length vectors.

4.2 Engineering choices

Vector storage. We normalize the query vector and all data vectors, which means that all
dot products will be between -1 and 1. This allows storing vectors in a fixed point format
represented using 16-bit integers. Such a representation enables AVX2-enabled instructions
that allow 16 multiplications at once. To use the AVX instructions, all vectors are stored in
a 1-dimensional array with padding to ensure 256-bit alignment.
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Retrieving candidate points. The jth LSH repetition is represented as a sorted array of
tuples of the form (h≤i,j(p),pos(p)), where pos(p) is the index of p ∈ S in the original dataset,
and h≤i,j(p) is the hash code of p under hash functions h1,j ◦ · · · ◦ hi,j . We view the hash
code as a bitstring. Before retrieving candidates, we first find the tuple with the longest
common prefix with the hash of the query vector. This is achieved using binary search, where
we tabulate the lexicographic position of each 13-bit prefix to speed up the search.

Each time more candidates are requested, all tuples whose hash code has a common
prefix of length at least i are considered. Each iteration decrements i in order to increase the
number of considered vectors. Since the vectors are stored in sorted order, all tuples with a
common prefix of length i are stored adjacent to the tuples with common prefixes of length
i+ 1. Furthermore, they are all stored on the same side, depending on whether the removed
bit was a 0 or 1. This means that the range of considered vectors can be updated efficiently.

Every access in the array is done in a segment of size B = 12, regardless of whether the
prefix matches or not. This costs almost no time, because the random memory access is the
expensive part, and only improves quality. A discussion of suitable values of B is provided
in the extended version of this paper.

Filtering candidate points. The filtering step is an additional measure to reduce the number
of distance computations. Fix a point p ∈ S. During the index building phase, we store
M 64-bit sketches s1(p), . . . , sM (p) obtained via HP LSH. If p is retrieved as a candidate,
retrieve a sketch s′(p) using a pseudorandom transformation of the repetition number j.
Next, compute the Hamming distance between s′(p) and s′(q). If the distance is at most
τ ∈ {0, . . . , b}, p passes the filter and is inserted into the accumulator. A challenge in the
context of k-NN queries is that the algorithm does not know the distance to the k-th nearest
neighbor. This means that the threshold has to be adapted according to the points inspected
so far. We set threshold τ dynamically according to the probability that a vector with
Hamming distance τ or less has a dot product larger than the smallest dot product in the
current top-k.

Computing distances. The accumulator takes care of the candidate points that pass the
filter step. It de-duplicates the candidate list and keeps track of the top-k points found so
far. The accumulator consists of a buffer of size 2k, which contains the current top-k indices,
along with their dot products, and a buffer of size k, which contains points that passed the
filter along with their dot products. Once this buffer is full, the top-k list is updated.

4.3 Locality-sensitive Hash Functions
Supported LSH Functions. The supported hash functions relevant for the paper are HP
LSH [10] and CP LSH [1].1 For the latter, the implementation encompasses both the exact
version and the pseudorandom version with three applications of the fast Hadamard transform,
see [1] for more details. We always regard hash functions as producing an `-bit string as
its output. For HP LSH, we have ` = 1, for CP LSH, we have ` = dlog 2de. In case the
algorithm did not terminate after exploring all L repetitions, decreasing the prefix length
by one always means that we disregard the last bit of the hash. This is to avoid a sudden
increase in the number of collisions in the case of CP LSH. This is theoretically sound since
the termination criteria from Section 3 only need a lower bound on the collision probability
at a certain prefix-length, which can be estimated for individually bit lengths of CP LSH.

1 PUFFINN is generic to the LSH family, but some engineering choices are different for other similarity
measures, such as set similarity. At the moment, PUFFINN also support (b-bit) MinHash [9, 23].
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Estimating Collision Probabilities. Recall from Section 3 that evaluating the collision
probability of two points at a certain distance is a key ingredient in the query algorithm.
While such a formula is easy to derive for HP LSH, we only know of the asymptotic behavior
of collision probabilities for CP LSH [1]. To overcome this obstacle, we find a Monte Carlo
estimate on the collision probability of unit vectors with inner product α,−1 ≤ α ≤ 1, by
enumerating different values of α in a window of size .05. For a fixed distance, we consider
two points x = (1, 0, . . . , 0) and y = (α,

√
1− α2, 0, . . . , 0),2 draw 1 000 random CP hash

functions, count the number of collisions, and tabulate the estimate. As mentioned above,
we always consider bit strings, so the probability estimation for CP LSH is made for all bit
lengths up to ` = dlog 2de.

In the query procedure, we round the distance down to the closest distance value for
which we have tabulated an estimate and use that to bound the collision probability. The
evaluation in the next section will show that this yields a negligible loss in quality compared
to an exact variant using HP LSH.

5 Experimental Evaluation

Implementation and Experimental Setup. PUFFINN is implemented in C++ and comes
with a wrapper to the Python language. Experiments were run on 2x 14-core Intel Xeon
E5-2690v4 (2.60GHz) with 512GB of RAM using Ubuntu 16.10 with kernel 4.4.0. It is com-
piled using g++ with the compiler flags -std=c++14 -Wall -Wextra -Wno-noexcept-type
-march=native -O3 -g -fopenmp. Index building was multi-threaded, queries were an-
swered sequentially in a single thread. The experiments were conducted in the ann-benchmarks
framework from [4]. The code, raw experimental results, and the Jupyter notebook used for
the evaluation are available at https://github.com/puffinn/esa-paper.

Quality and Performance Metrics. As quality metric we measure the individual recall of
each query, i.e., the fraction of points reported by the implementation that are among the
true k-NN. As performance metric, we record individual query times. We usually report on
the throughput, i.e., the average number of queries that can be answered in one second. In
plots, the throughput is dubbed QPS for queries per second.

Parameter Choices. PUFFINN has two parameters: the space a user is willing to allocate
for the index, and the expected recall that should be achieved. We run PUFFINN with
expected recall values in the set {.1, .2, .5, .7, .9, .95}. As space parameters, we use the
doubling range 512 MB to 32 GB. We always retrieve the ten nearest neighbors.

Objectives of the Experiments. Our experiments are tailored to answer the following
high-level questions (HL-Q):
(HL-Q1) Given the choices of sketching and hash function evaluation methods described in

the previous two sections, how do they compare to each other w.r.t. empirical performance
(Sections 5.1–5.3)?

(HL-Q2) Can a parameterless method compete with implementations that have parameters
tuned to the data and query workload (Section 5.5)?

2 By spherical symmetry, the collision probabilities are the same for all pairs of points with inner product α.

https://github.com/puffinn/esa-paper
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Table 1 Datasets under consideration.

Dataset Data Points/Query Points Dimensions

GLOVE [28] 1 183 514/10 000 100
GLOVE-2M [28] 2 196 018/10 000 300
GNEWS-3M [25] 3 000 000/10 000 300
SYNTHETIC 1 000 000/ 1 000 300

To answer these questions, we will consider the following implementation-level questions
(IL-Q):
(IL-Q1) What is the influence of the filtering approach to the quality/QPS (Section 5.1)?
(IL-Q2) What is the influence of the update threshold τ to quality and QPS (Section 5.1)?
(IL-Q3) How does the space parameter influence the QPS (Section 5.2)?
(IL-Q4) How does the hash function and evaluation strategy influence performance (Sec-

tion 5.3)?

Real-World Datasets. Table 1 gives an overview of the datasets used in the experiments.
Cosine similarity is usually used in the context of word embeddings, so we use three real-
world datasets that originate from two different word embedding algorithms. Unless stated
otherwise, all experiments are carried out on Glove-1M.

Synthetic Dataset. We describe a synthetic data set and query distribution that, as we
will see, is challenging for many heuristic nearest neighbor implementations. For a fixed
d ≥ 1, we construct a dataset over R3d as follows. For each i ∈ {1, . . . , n− 1}, let yi and zi

be two d-dimensional vectors of expected length
√

1/2 where each coordinate is sampled
independently from N (0, 1/2d). Define xi = (0d, yi, zi). Let v and w be two more random
vectors of expected length

√
1/2. Finally, set xn = (v, w, 0d). We define m query vectors

as follows: For each i ∈ {1, . . . ,m}, let qi = (v, 0d, ri), where ri is a random vector of
length

√
1/2.

This construction has the property that xn is the nearest neighbor of every query.
Furthermore, all data points have unit length in expectation. The distance from each qi to xn

is expected to be 1 (or equivalently E[〈qi, xn〉] = 1
2 ), whereas the distance to all other points

is around
√

2 (i.e., E[〈qi, xj〉] = 0). In the experiment, we choose n = 1 000 000 and d = 100.

Other approaches. We compare PUFFINN to the following implementations: FALCONN,
a state-of-the-art LSH implementation using the theory developed in [1]; ONNG, a recent
graph-based approach described in [21]; ANNOY, the best-performing implementation of
a random-projection forest [7]; IVF, a k-means clustering based approach [22]; FLANN, a
collection of different approaches with tuning of recall value [26]; VantagePointTree [32] as
implemented in NMSlib [8] with recall guarantees.

These approaches stood out in the benchmarking paper from Aumüller et al. [4] as
performing best on many datasets. We use the same parameter space as in [4] to test the
performance of the different implementations. For each implementation, we report the best
results achieved via a grid search over the (usually large) parameter space. We refer to that
paper or the original papers for more details on these approaches. Except from FLANN and
VantagePointTree, no other implementation allows to specify a guarantee on recall.
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Figure 2 Left: Influence of setting the threshold of sketches to 1 + ε times the expected difference
at the distance of the k-th closest point found so far. Expected recall values: 0.1, 0.2, 0.5, 0.7, 0.9,
0.95, space: 1GB. Right: Difference between filtering/no filtering, space: 4GB.

5.1 Filtering Approach
We evaluate the filtering approach in two directions. First, we report on the quality-
performance trade-off of different update strategies. Second, we benchmark the architecture
against a “no filtering” approach. Experiments were done using a collection of 32 sketches
using 64 bits each.

Figure 2 (top) reports on the influence of setting the passing threshold of the filtering
step dynamically to a fraction of τ = 1 + ε of the expected difference3 for a point at the
distance of the current k-th nearest neighbor. A ε-value of 0.0, 0.1, and 0.2 give good results
in this empirical setting. Above 0.1 there is almost no gain in quality but a huge drop in
QPS. Setting the threshold below the expectation results in a large loss in quality. For the
remainder of the experiments, we set the threshold to the expectation, i.e., we use δ = 0.

Figure 2 (bottom) allows us to see the difference between using resp. not using the
filtering approach. For low recall values, the filtering approach increases the QPS by a factor
of roughly 1.5. For example, the filtering approach can answer around 1 400 QPS at recall .5,
without filtering this number drops to 900. At high recall, the difference is more pronounced.
A recall of 97% is achieved with 122 QPS using filtering and the same recall is achieved
at around 50 QPS without filtering. We can see a clear difference in the achieved quality
between the two variants. The sketching approach usually decreases the recall for a fixed
expected recall by .08 (for low recall) to .03 (for high recall). However, the recall is still
above the guarantee in both cases.

5.2 Influence of the Index Size
We turn our focus to the third implementation-level question: How does the index size
influence the performance? We note that the index size includes the whole data structure,
including storage of the original dataset and the hash functions. Figure 3 reports on the
quality-performance trade-off achieved by the implementation for different index sizes. We

3 The expected difference is just 64 times the probability that two points at distance rk collide under a
random hyperplane.
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Figure 3 Influence of index size to quality-performance trade-off.

observe that larger index sizes provide better performance, but the influence is diminishing at
more than 4 GB. A small index yields a small number of repetitions, which means that the
algorithm has to explore many levels in the data structure. For a recall of .9, increasing the
amount of space from 512 MB to 2 GB increases the QPS from 12 to roughly 200. Doubling
the allotted space to 4GB results in around 300 QPS, which is roughly the same for 8 GB
as well. We can see that the achieved recall is above the set guarantee threshold for all
tested index sizes. (Each data point corresponds to a recall value from the set of tested
recall values.)

5.3 Choice of Hash Function and Evaluation Strategy
We start by evaluating different hash evaluation strategies. We implemented the following
three different evaluation strategies in PUFFINN: independent, tensor, and pool. For the
pooling strategy, we set up a pool containing 3072 bits. In the following, we fix the hash
function used to be CP LSH using fast Hadamard transform. Figure 4 shows a comparison
between the three evaluation strategies for different index sizes. As we can see, tensoring is
never better than the pooling strategy. Furthermore, independent gives better performance
for a fixed quality for large index sizes, but takes more time for initializing the hash values
at low recall. We note that when using the exact CP LSH, there is a huge difference
between independent and pooling, in particular for large index sizes. For example, CP
using independent hash functions achieves not more than 80 QPS for the 8 GB index in
the right plot in Figure 4. For all of these reasons, we fix the implementation to use the
pooling strategy.

We turn our focus to the choice of hash function. Figure 5 gives an overview of three
different index sizes using the pooling strategy for hash function evaluation. On the smallest
index, HP LSH works well, in particular for high recall. If there is space for more repetitions,
CP LSH becomes the method of choice, and FHT-CP is a bit faster than the exact method.

5.4 Summary of Implementation Choices
In light of our first high-level question, we observed that sketching provides a good performance
increase at negligible cost. The larger the index size, the faster PUFFINN can answer queries.
However, it works well on small index sizes as well. We fixed the pooling strategy as the
evaluation strategy since it was much faster than tensoring and allows to use exact methods
such as CP LSH when FHT-CP does not satisfy the guarantees one wishes for.
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Figure 4 Comparison of hash evaluation strategies. Left: 512 MB, center: 2 GB, right: 8 GB.
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Figure 5 Hash function comparison (pooling). Left: 512 MB, center: 1 GB, right: 4 GB.

5.5 Comparison to Other Approaches

We turn our focus on comparing PUFFINN to other approaches on real-world and synthetic
datasets (HL-Q2). Figure 6 gives an overview of the performance-quality trade-off achieved
by state-of-the-art k-NN approaches on three real-world dataset and a synthetic one. Among
the implementations that support automatic parameter tuning, PUFFINN is usually by a
large factor the fastest implementation. We remark that the automatic parameter tuning of
FLANN failed to build an index within 6 hours on three out of the four datasets and was
disregarded on those.

PUFFINN managed to obtain at least recall .95 on every dataset, whereas the tuning of
the VPTree failed to achieve high recall on GNEWS-3M. PUFFINN shows better performance
than FALCONN for most of the performance-quality space. It is comparable in performance
to ANNOY on most of the real-world datasets, and is particular competitive in the high-recall
setting. On real-world datasets, IVF and in particular ONNG show better performance than
PUFFINN except for very high recall. This is an indicator that graph-based approaches
perform best on these real-world datasets (for good manual parameter choices).

On the synthetic dataset, only LSH-based approaches achieve high recall at high QPS.
VPTree and ONNG manage recall close to 1, but are more than a factor 10 slower than
PUFFINN. IVF and ANNOY fail to achieve recall higher than 40% on the synthetic dataset.

To come back to our second high-level question: It is possible to compete with state-of-
the-art implementations of k-NN using a parameterless method with guarantees. PUFFINN
is easy to use and achieves performance comparable to many of its competitors. Among
LSH variants, it is as fast as FALCONN which does not give guarantees. This means
that our engineering choices allowed an LSH implementation with theoretical guarantees
that come “for free”.
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Abstract

Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be
expressed as subset maximization problems: One is given a ground set N = {1, . . . , n}, a collection
F ⊆ 2N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R+. The
task is to choose a set S ∈ F that maximizes p(S). We consider the multistage version (Eisenstat et
al., Gupta et al., both ICALP 2014) of such problems: The profit function pt (and possibly the set
of feasible solutions Ft) may change over time. Since in many applications changing the solution
is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between
good per-time solutions and stable solutions taking into account an additional similarity bonus. As
similarity measure for two consecutive solutions, we consider either the size of the intersection of the
two solutions or the difference of n and the Hamming distance between the two characteristic vectors.

We study multistage subset maximization problems in the online setting, that is, pt (along with
possibly Ft) only arrive one by one and, upon such an arrival, the online algorithm has to output
the corresponding solution without knowledge of the future.

We develop general techniques for online multistage subset maximization and thereby characterize
those models (given by the type of data evolution and the type of similarity measure) that admit a
constant-competitive online algorithm. When no constant competitive ratio is possible, we employ
lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost
matching lower and upper bounds on the best achievable one.
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1 Introduction

In a classical combinatorial optimization setting, given an instance of a problem one needs
to find a good feasible solution. However, in many situations, the data may evolve over
time and one has to solve a sequence of instances. The natural approach of solving every
instance independently may induce a significant transition cost, for instance for moving a
system from one state to another. This cost may represent, e.g., the cost of turning on/off
the servers in a data center [17, 8, 4, 1], the cost of changing the quality level in video
streaming [16], or the cost for turning on/off nuclear plants [24]. Gupta et al. [15] and
Eisenstat et al. [13] proposed a multistage model where given a time horizon t = 1, 2, . . . , T ,
the input is a sequence of instances I1, I2, . . . , IT , (one for each time step), and the goal is
to find a sequence of solutions S1, S2, . . . , ST (one for each time step) reaching a trade-off
between the quality of the solutions in each time step and the stability/similarity of the
solutions in consecutive time steps. The addition of the transition cost makes some classic
combinatorial optimization problems much harder. This is the case for instance for the
minimum weighted perfect matching problem in the off-line case where the whole sequence
of instances is known in advance. While the one-step problem is polynomially-time solvable,
the multistage problem becomes hard to approximate even for bipartite graphs and for only
two time steps [5, 15].

In this work, we focus on the online case, where at time t no knowledge is available for
instances at times t+ 1, . . . , T . When it is not possible to handle the online case, we turn
our attention to the k-lookahead case, where at time t the instances at times t+ 1, . . . , t+ k

are also known. This case is of interest since in some applications like in dynamic capacity
planning in data centers, the forecasts of future demands may be very helpful [18, 19]. Our
goal is to measure the impact of the lack of knowledge of the future on the quality and the
stability of the returned solutions. Indeed, our algorithms are limited in their knowledge of
the sequence of instances. Given that the number of time steps is given, we compute the
competitive ratio of the algorithm after time step T : As we focus on maximization problems,
we say that a (deterministic) algorithm is (strictly) α-competitive (with competitive ratio α)
if its value is at least 1

α times the optimal value on all instances.
As it is usual in the online setting, we consider no limitations in the computational

resources available. This implies that at every time step t, where instance It is known, we
assume the existence of an oracle able to compute the optimal solution for that time step.
Notice also that our lower bounds do not rely on any complexity assumptions. Some recent
results are already known for the online multistage model [6, 15], however all these results
are obtained for specific problems. In this work, we study multistage variants of a broad
family of maximization problems. The family of optimization problems that we consider is
the following.

I Definition 1 (Subset Maximization Problems). A Subset Maximization problem P is a
combinatorial optimization problem whose instances I = (N, p,F) consist of

A ground set N ;
A set F ⊆ 2N of feasible solutions such that ∅ ∈ F ;
A non-negative weight p(S) for every S ∈ F .

The goal is to find S∗ ∈ F such that p(S∗) = max{p(S) : S ∈ F}.

We will consider that the empty set is always feasible, ensuring that the feasible set of
solutions is non empty. This is a very general class of problems, including the maximization
Subset Selection problems studied by Pruhs and Woeginger in [23] (they only considered
linear objective functions). It contains for instance graph problems where N is the set of
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vertices (as in any maximization induced subgraph problem verifying some property) or the
set of edges (as in matching problems). It also contains classical set problems (knapsack,
maximum 3-dimensional matching,. . . ), and more generally 0-1 linear programs (with non
negative profits in the objective function).

Given a problem in the previous class, we are interested in its multistage version [15, 13].
The stability over time of a solution sequence is classically captured by considering a transition
cost when a modification is made in the solution. Here, dealing with maximization problems,
we will consider a transition bonus B for taking into account the similarity of two consecutive
solutions. In what follows, we will use the term object to denote an element of N (so an
object can be a vertex of a graph, or an edge,. . . , depending on the underlying problem).

I Definition 2 (Multistage Subset Maximization Problems). In a Multistage Subset Maximiz-
ation problem P, we are given

a number of steps T ∈ N, a set N of n objects;
for any t ∈ T , an instance It of the optimization problem. We will denote:
pt the objective (profit) function at time t
Ft ∈ 2N the set of feasible solutions at time t

B ∈ R+ a given transition profit.
the value of a solution sequence S = (S1, . . . , ST ) is

f(S) =
T∑
t=1

pt(St) +
T−1∑
t=1

b(St, St+1)

where b(St, St+1) is the transition bonus for the solution between time steps t and t+ 1.
We will use the term profit for pt(St), bonus for the transition bonus b(St, St+1), and
value of a solution S for f(S);
the goal is to determine a solution sequence of maximum value.

The fact that T is known may be regarded as rather uncommon the field of online
algorithms. At the end of Subsection 1.2, we relate it to our results and justify it.

There are two natural ways to define the transition bonus. We will see that these two
ways of measuring the stability induce some differences in the competitive ratios one can get.

I Definition 3 (Types of transition bonus). If St and St+1 denote, respectively, the solutions
for time steps t and t+ 1, then we can define the transition bonus as:

Intersection Bonus: B times |St ∩ St+1|: in this case the bonus is proportional to the
number of objects in the solution at time t that remain in it at time t+ 1.
Hamming Bonus: B times |St ∩St+1|+ |St ∩St+1|. Here we get the bonus for each object
for which the decision (to be in the solution or not) is the same between time steps t and
t+ 1. In other words, the bonus is proportional to |N | minus the number of modifications
(Hamming distance) in the solutions.

Note that by scaling profits (dividing them by B), we can arbitrarily fix B = 1. So from
now on, we assume B = 1.

In this article, we will consider two possible ways for the data to evolve.

I Definition 4 (Types of data evolution). Static Set of Feasible Solutions (SSFS): only
profits may change over time, so the structure of feasible solutions remains the same:
Ft = F for all t.
General Evolution (GE): any modification in the input sequence is possible. Both the
profits and the set of feasible solutions may change over time. In this latter model, for
knapsack, profits and weights of object (and the capacity of the bag) may change over
time; for maximum independent set edges in the graph may change,. . . .

ESA 2019



11:4 Online Multistage Subset Maximization Problems

1.1 Related Work
A series of papers consider the online or semi-online settings, where the input changes
over time and the algorithm has to modify (re-optimize) the solution by making as few
changes as possible (see [3, 9, 12, 14, 20, 21] and the references therein). The multistage
model considered in this paper has been introduced in Eisenstat et al. [13] and Gupta et
al. [15]. Eisenstat et al. [13] studied the multistage version of facility location problems.
They proposed a logarithmic approximation algorithm. An et al. [2] obtained constant
factor approximation algorithms for some related problems. Gupta et al. [15] studied the
Multistage Maintenance Matroid problem for both the offline and the online settings.
They presented a logarithmic approximation algorithm for this problem, which includes
as a special case a natural multistage version of Spanning Tree. They also considered
the online version of the problem and they provide an efficient randomized competitive
algorithm against any oblivious adversary. The same paper also introduced the study of the
Multistage Minimum Perfect Matching problem for which they proved that it is hard
to approximate even for a constant number of stages. Bampis et al. [5] improved this negative
result by showing that the problem is hard to approximate even for bipartite graphs and
for the case of two time steps. When the edge costs are metric within every time step they
proved that the problem remains APX-hard even for two time steps. They also showed that
the maximization version of the problem admits a constant factor approximation algorithm,
but is APX-hard. Olver et al. [22] studied a multistage version of the Minimum Linear
Arrangement problem, which is related to a variant of the List Update problem [25],
and provided a logarithmic lower bound for the online version and a polylogarithmic upper
bound for the offline version.

The Multistage Max-Min Fair Allocation problem has been studied in the offline
and the online settings in [6]. This problem corresponds to a multistage variant of the
Santa Klaus problem. For the off-line setting, the authors showed that the multistage
version of the problem is much harder than the static one. They provided constant factor
approximation algorithms for the off-line setting. For the online setting they proposed a
constant competitive ratio for SSFS-type evolving instances and they proved that it is not
possible to find an online algorithm with bounded competitive ratio for GE-type evolving
instances. Finally, they showed that in the 1-lookahead case, where at time step t we know
the instance of time step t+ 1, it is possible to get a constant approximation ratio.

Buchbinder et al. [11] and Buchbinder, Chen and Naor [10] considered a multistage
model and they studied the relation between the online learning and competitive analysis
frameworks, mostly for fractional optimization problems.

1.2 Summary of Results and Overview
The contribution of our paper is a framework for online multistage maximization problems
(comprising different models), a characterization of those models in which a constant com-
petitive ratio is achievable, and almost tight upper and lower bounds on the best-possible
competitive ratio for these models. The focus here is on deterministic algorithms.

We increase the complexity of the considered models over the course of the paper. We
start with the arguably simplest model: Considering a static set of feasible solutions clearly
restricts the general model of evolution; while such a straightforward comparison between
the Hamming and intersection bonus is not possible, the Hamming bonus seems simpler in
that, compared to the intersection model, there are (somewhat comparable) extra terms
added on the profit of both the algorithm and the optimum. As we show in Subsection 2.1,
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Table 1 Our bounds on the best-possible competitive ratio c? for the different models. The
Landau symbol is with respect to T →∞.

static set of feasible solutions general evolution

Hamming bonus
2− o(1) ≤ c? ≤ 2 1 +

√
2 ≤ c? ≤ 3 + o(1)

Theorems 6 and 5 Theorems 12 and 10

Intersection bonus
2 ≤ c? ≤ 2 + o(1)

c? =∞
c? = 4 for 1-lookahead

Theorems 9 and 8 Theorems 14, 16, and 15

there is indeed a simple 2-competitive algorithm: At each time t, it greedily chooses the set
St that either maximizes the transition bonus w.r.t. St−1 (that is, choosing St = St−1, which
is possible in this model) or maximizes the value pt(St). We complement this observation
with a matching lower bound only involving two time steps.

We then toggle the transition-bonus model and the data-evolution model separately and
show that constant competitive ratios can still be achieved. First, in Subsection 2.2, we
consider intersection bonus. We show that, after modifying the profits (internally) to make
larger solutions more profitable, a (2 + 1/(T − 1))-competitive algorithm can be achieved
by a greedy approach again. We also give an (almost matching) lower bound of 2 again.
Next, we toggle the evolution model. In Subsection 3.1, we adapt the greedy algorithm from
Subsection 2.1 by reweighting to obtain a (3 + 1/(T − 1))-competitive algorithm using a
more complicated analysis. We complement this result with a lower bound of 1 +

√
2.

In Subsection 3.2, we finally consider the general-evolution model with intersection
bonus, where we give a simple lower bound showing that a constant-competitive ratio is
not achievable. This lower bound relies on forbidding to choose any item in the second step
that the algorithm chose in the first step. We circumnavigate such issues by allowing the
algorithm a lookahead of one step and present a 4-competitive algorithm for that setting.
A similar phase transition has been observed for a related problem [6], but our algorithm,
based on a doubling approach, is different. We also give a matching lower bound of 4 on the
competitive ratio of any algorithm in the same setting. We summarize all results described
thus far in Table 1.

We note that the lower bounds mentioned for the Hamming model are only shown for a
specific fixed number of time steps, and that in general there is no trivial way of extending
these bounds to a larger number of time steps. One may however argue that the large-T
regime is in fact the interesting one for both practical applications and in theory, the latter
because the effect of having a first time step without bonus vanishes. At the end of the
respective sections, we therefore give asymptotical lower bounds of 3/2 and roughly 1.696
for the cases of a static set of feasible solutions and general evolutions, respectively. These
bounds are non-trivial, but we do not know if they are tight.

It is plausible that the aforementioned upper bounds can be improved if extra assumptions
on characteristics of the objective function and the sets of feasible solutions are made. In
Subsubsection 3.1.2, we show that already very natural assumptions suffice: Assuming that
at each time the feasible solutions are closed under taking subsets and the objective function
is subadditive, we give a (21/8 + o(1))-competitive algorithm for the model with a general
evolution and Hamming bonus, improving the previous (3 + o(1))-competitive ratio. Our
lower bounds for general evolution and Hamming bonus in fact fulfill the extra assumptions.
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We observe that all our algorithms except for the one discussed in Subsection 2.1 require
that T is known in that their behavior in the last step is different from the behavior in
the steps before. This assumption is crucial: In all these models, there are examples in
which one can in the first time step choose either a small profit or a potentially large
bonus not knowing if there is another timestep to realize the bonus. Such examples imply
a superconstant lower bound on the competitive ratio in these models. This justifies our
assumption that T is known.

In Section 4, we summarize our results and mention directions for future research that
we consider interesting.

Due to space constraints, some proofs only appear in the full version [7].

2 Model of a Static Set of Feasible Solutions

We consider here the model of evolution where only profits change over time: Ft = F
for any t. We first consider the Hamming bonus model and show a simple 2-competitive
algorithm. We will then show that a (asymptotic) competitive ratio of 2 can also be achieved
in the intersection bonus model using a more involved algorithm. In both cases, this ratio 2
is shown to be (asymptotically) optimal.

2.1 Hamming-Bonus Model
I Theorem 5. In the SSFS model with Hamming bonus, there is a 2-competitive algorithm.

Proof. We consider the very simple following algorithm. At each time step t, the algorithm
computes an optimal solution S∗t with associated profit pt(S∗t ). At t = 1 we fix S1 = S∗1 . For
t > 1, if pt(S∗t ) > n then fix St = S∗t , otherwise fix St = S∗t−1 (which is possible thanks to
the fact that the set of feasible solutions does not change).

Let f∗ be the optimal value. Since any solution sequence gets profit at most pt(S∗t ) at time
t, and bonus at most n between two consecutive time steps, we get f∗ ≤

∑T
t=1 p(S∗t )+n(T−1).

By construction, at time t > 1, either the algorithm gets profit pt(S∗t ) when pt(S∗t ) > n,
or bonus (from t− 1) n when n ≥ pt(S∗t ). So in any case the algorithm gets profit plus bonus
at least pt(S∗

t )+n
2 . At time 1 it gets profit at least p1(S∗1 ). So

f(S1 . . . , ST ) ≥ p1(S∗1 ) +
T∑
t=2

pt(S∗t )
2 + n(T − 1)

2 ≥ f∗

2 ,

which completes the proof. J

I Theorem 6. Consider the SSFS model with Hamming bonus. For any ε > 0, there is no
(2− ε)-competitive algorithm, even if there are only 2 time steps.

Proof. We consider a set N = {1, 2, . . . , n} of n = 1 +
⌈ 1
ε

⌉
objects, T = 2 time steps,

and an additive profit function. There are three feasible solutions: S0 = ∅, S1 = {1} and
S2 = {2, . . . , n}. At t = 1, all the profits are 0. Let us consider an online algorithm A. We
consider the three possibilities for the algorithm at time 1:

At time 1, A chooses S0: at time 2 we give profit 1 to all objects. If A takes no object at
time 2, it gets profit 0 and bonus n. If it takes S1, it gets profit 1 and bonus n− 1. If it
takes S2, it gets profit n− 1 and bonus 1, so in any case the computed solution has value
n. The solution consisting of taking S2 at both time steps has profit n− 1 and bonus n,
so value 2n− 1.
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At time 1, A chooses S1: at time 2 we give profit 0 to object 1, and profit 1 to all other
objects. Then, if the algorithm takes S0 (resp, S1, S2), at time 2 its gets value n−1 (resp,
n, n− 1) while the solution consisting of taking S2 at both time steps has value 2n− 1.
At time 1, A chooses S2: at time 2 we give profit n to object 1, and 0 to all other objects.
Then if the algorithm takes S0 (resp, S1, S2) at time 2 its gets value 1 (resp, n, n), while
the solution consisting of taking S1 at both time steps has value 2n.

In any case, the ratio is at least 2n−1
n = 2− 1

n > 2− ε. J

We complement this lower bound with an asymptotical result for large T ; the proof is
provided in the full version.

I Theorem 7. Consider the SSFS model with Hamming bonus. For every ε > 0, there is a Tε
such that, for each number of time steps T ≥ Tε, there is no (3/2− ε)-competitive algorithm.

2.2 Intersection-Bonus Model
In the intersection-bonus model things get harder since an optimal solution S∗t may be of
small size and then gives very small (potential) bonus for the next step. As a matter of fact,
the algorithm of the previous section has unbounded competitive ratio in this case: take a
large number n of objects, F = 2N , and at time 1 all objects have profit 0 up to one which
has profit ε. The algorithm will take this object (instead of taking n− 1 objects of profit 0)
and then potentially get bonus at most 1 instead of n− 1.

Thus we shall put an incentive for the algorithm to take solutions of large size, in order
to have a chance to get a large bonus. We define the following algorithm called MP-Algo
(for Modified Profit algorithm). Informally, at each time step t, the algorithm computes
an optimal solution with a modified objective function p′t. These modifications take into
account (1) the objects taken at time t− 1 (2) an incentive to take a lot of objects. Formally,
MP-Algo works as follows:
1. At t = 1: let p′1(S) = p1(S) + |S|. Choose S1 as an optimal solution for the problem with

modified profits p′1.
2. For t from 2 to T − 1: let p′t(S) = pt(S) + |S ∩ St−1| + |S|. Choose St as an optimal

solution for the problem with modified profit function p′t.
3. At t = T : let p′T (S) = pT (S) + |S ∩ ST−1|. Choose ST as an optimal solution with

modified profit function p′T .
The cases t = 1 and t = T are specific since there is no previous solution for t = 1, and no
future solution for t = T .

I Theorem 8. In the SSFS model with intersection bonus, MP-Algo is
(

2
1−1/(T−1)

)
-compe-

titive.

Proof. Let (Ŝ1, . . . , ŜT ) be an optimal sequence. Since St is optimal with respect to p′t, for
t = 2, . . . , T − 1 we have:

p′t(St) = pt(St) + |St ∩ St−1|+ |St| ≥ p′t(Ŝt) ≥ pt(Ŝt) + |Ŝt|. (1)

Since St−1 is also a feasible solution at time t, we have:

p′t(St) = pt(St) + |St ∩ St−1|+ |St| ≥ pt(St−1) ≥ 2|St−1|. (2)

Similarly, at t = T p′T (S) = pT (S) + |S ∩ St−1| so

pT (ST ) + |ST ∩ ST−1| ≥ pT (ŜT ), (3)
pT (ST ) + |ST ∩ ST−1| ≥ |ST−1|. (4)
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At t = 1, p′t(S) = pt(S) + |S|, so

p1(S1) + |S1| ≥ p1(Ŝ1) + |Ŝ1|. (5)

Now, note that |St ∩ St−1| is the transition bonus of the computed solution between t− 1
and t. By summing Equation (1) for t = 2, . . . , T − 1, Equation (3) and Equation (5), we
deduce:

f(S1, . . . , ST ) +
T−1∑
t=1
|St| ≥

T∑
t=1

pt(Ŝt) +
T−1∑
t=1
|Ŝt|.

Since in the optimal sequence the transition bonus between time t and t+ 1 is at most |Ŝt|,
we get:

f(S1, . . . , ST ) +
T−1∑
t=1
|St| ≥ f(Ŝ1, . . . , ŜT ). (6)

Now we sum Equation (2) for t = 2, . . . , T − 1 and Equation (4):

f(S1, . . . , ST ) +
T−1∑
t=2
|St| ≥ 2

T−1∑
t=2
|St−1|+ |ST−1|.

From this we easily derive:

f(S1, . . . , ST ) ≥
T−2∑
t=2
|St|. (7)

By summing Equations (6) and (7) we have 2f(S1, . . . , ST ) ≥ f(Ŝ1, . . . , ŜT )− |ST−1|. The
competitive ratio follows from the fact that f(Ŝ1, . . . , ŜT ) ≥ (T − 1)|ST−1| (since ST−1 is
feasible for all time steps). J

We note that competitive ratio 2 can be derived with a similar analysis when the number
of time steps is 2 or 3. In the full version, we show a matching asymptotical lower bound.

I Theorem 9. Consider the SSFS model with intersection bonus. For any ε > 0 and number
of time steps T = d1/εe, there is no (2− ε)-competitive algorithm.

3 Model of General Evolution

We consider in this section that the set of feasible solutions may evolve over time. We will
show that in the Hamming bonus model, we can still get constant competitive ratios, though
ratios slightly worse than in the case where only profits could change over time. Then, we
will tackle the intersection bonus model, showing that no constant competitive ratio can be
achieved. However, with only 1-lookahead we can get a constant competitive ratio.

3.1 Hamming-Bonus Model
In this section we consider the Hamming bonus model. We first show in Section 3.1.1 that
there exists a

(
3 + 1

T−1

)
-competitive algorithm. Interestingly, we then show in Section 3.1.2

that a slight assumption on the problem structure allows to improve the competitive ratio.
More precisely, we achieve a 21/8 (asymptotic) competitive ratio if we assume that the
objective function is subadditive (so including the additive case) and that a subset of a
feasible solution is feasible. These assumptions are satisfied by all the problems mentioned
in introduction. We finally consider lower bounds in Section 3.1.3.
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3.1.1 General Case
We adapt the idea of the 2-competitive algorithm working for the Hamming bonus model
for a static set of feasible solutions (Section 2.1) to the current setting where the set of
feasible solutions may change. Let us consider the following algorithm BestOrNothing: at
each time step t, BestOrNothing computes an optimal solution S∗t with associated profit
pt(S∗t ) and compares it to 2 times the maximum potential bonus, i.e to 2n. It chooses S∗t
if the associated profit is at least 2n, otherwise it chooses St = ∅. A slight modification is
applied for the last step T .

In the full version, we define the algorithm formally and prove an upper bound on the
competitive ratio achieved by this algorithm.

I Theorem 10. In the GE model with Hamming bonus, BestOrNothing is
(

3 + 1
T−1

)
-

competitive.

3.1.2 Improvement for Sub-additivity and Subset Feasibility
In this section we assume that the problem have the following two properties:

subset feasibility: at any time step, every subset of a feasible solution is feasible.
sub-additivity: for any disjoint S, S′, any t, pt(S ∪ S′) ≤ pt(S) + pt(S′).

Note that this implies that, if a feasible set X is partitioned into (disjoint) subsets X1, . . . , Xh,
then X1, . . . , Xh are feasible and pt(X) ≤

∑
i pt(Xi).

We exploit this property to devise algorithms where we partition the set of objects and
solve the problems on subinstances. As a first idea, let us partition the set of objects into
into 3 sets A,B,C of size (roughly) n/3; consider the algorithm which at every time step t
computes the best solutions SAt , SBt , SCt on each subinstance on A, B and C, and chooses
St as the one of maximum profit between these 3 solutions. By sub-additivity and subset
feasibility, the algorithm gets profit at least 1/3 of the optimal profit at each time step.
Dealing with bonuses, at each time step the algorithm chooses a solution included either
in A, or in B, or in C so, for any t < T , at least one set among A,B and C is not chosen
neither at time t nor at time t + 1, and the algorithm gets transition bonus at least n/3.
Hence, the algorithm is 3-competitive.

We now improve the previous algorithm. The basic idea is to remark that if for two
consecutive time steps t, t+ 1 the solution St and St+1 are taken in the same subset, say A,
then the bonus is (at least) 2n/3 instead of n/3. Roughly speaking, we can hope for a ratio
better than 1/3 for the bonus. Then the algorithm makes a trade-off at every time step: if
the profit is very high then it will take a solution maximizing the profit, otherwise it will do
(nearly) the same as previously. More formally, let us consider the algorithm 3-Part. We
first assume that n is a multiple of 3. A parameter x ∈ R+ will be defined later.

1. Partition N in three subsets A,B,C of size n/3.
2. For t ∈ {1, . . . , T}: compute a solution S∗t maximizing pt(S)

Case (1): If pt(S∗t ) ≥ xn: define St = S∗t
Otherwise (pt(S∗t ) ≤ xn): compute solutions with optimal profit SAt , SBt , SCt included
in A, B and C. Let at, bt and ct the respective profits.

Case (2): if t ≥ 2 and Case (1) did not occur at t− 1, do:
If St−1 ⊆ A (resp. St−1 ⊆ B, St−1 ⊆ C), compute max{at+2n/3, bt+n/3, ct+n/3}
(resp. max{at + n/3, bt + 2n/3, ct + n/3}, max{at + n/3, bt + n/3, ct + 2n/3}) and
define St as SAt , SBt or SCt accordingly.
Case (3) (t = 1 or Case (1) occurred at t− 1) do:
∗ Define St as the solution with maximum profit among SAt , SBt , SCt .
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If N is not a multiple of 3, we add one or two dummy objects that are in no feasible
solutions (at any step).

In the full version, we prove an upper bound on the competitive ratio of this algorithm.

I Theorem 11. Consider the GE model with Hamming bonus. Under the assumption of
subset feasibility and sub-additivity, 3-Part is (21/8 +O(1/T + 1/n))-competitive.

3.1.3 Lower Bounds
We complement the algorithmic results with a lower bound for two time steps and an
asymptotical one, which we both prove in the full version. Interestingly, these bounds are
also valid for the latter restricted setting with subset feasibility and sub-additivity.

I Theorem 12. Consider the GE model with Hamming bonus and T = 2 time steps. For
any ε > 0, there is no (1 +

√
2− ε)-competitive algorithm.

I Theorem 13. Consider the GE model with Hamming bonus. For every ε > 0, there is a
Tε such that, for each number of time steps T ≥ Tε, there is no (α− ε)-competitive algorithm
where α = 6· 3

√
9+
√

87
3
√

6·(9+
√

87)2− 3√36
≈ 1.696.

3.2 Intersection-Bonus Model
We now look at the general-evolution model with intersection bonus. This model is different
from the ones considered before: We first give a simple lower bound showing that there is no
constant-competitive algorithm.

I Theorem 14. In the GE model with intersection bonus, there is no c-competitive algorithm
for any constant c.

Proof. We consider an instance with no profit. Let T = 2, N = {1, 2}, and F1 = {∅, {1}, {2}},
that is, there are two items, and at time 1 it is only forbidden to take both of them. Assume
w.l.o.g. that the algorithm does not pick item 2 at time 1. Then picking item 1 becomes
infeasible at time 2 while picking item 2 remains feasible. Then the algorithm achieves 0
profit and bonus while the optimum can achieve a bonus of 1. J

Note that in this model, by adding dummy time steps giving no bonus and no profit, the
previous lower bound extends to any number of time steps. This lower bound motivates
considering the 1-lookahead model: at time t, besides It, the algorithm knows the instance
It+1. It shall decide the feasible solution chosen at time t. We consider an algorithm based
on the following idea: at some time step t, the algorithm computes an optimal sequence
of 2 solutions (S∗t,1, S∗t,2) of value z∗t for the subproblem defined on time steps t and t+ 1.
Suppose it fixes St = S∗t,1. Then, at time t + 1, it computes (S∗t+1,1, S

∗
t+1,2) of value z∗t+1.

Depending on the values z∗t and z∗t+1, it will either choose to set St+1 = S∗t,2, confirming its
choice at t (getting in this case value z∗t for sure between time t and t+ 1), or change its
mind and set St+1 = S∗t+1,1 (possibly no value got yet, but a value z∗t+1 if it confirms this
choice at t+ 2). When a choice is confirmed (St = S∗t,1 and St+1 = S∗t,2), then the algorithm
starts a new sequence (fix St+2 = S∗t+2,1,. . . ).

More formally, let (S∗t,1, S∗t,2) be an optimal solution of the subproblem defined on time
steps t and t+ 1, and denote z∗t its value (including profits and bonus between time t and
t + 1). To avoid unnecessary subcases, we consider at time T (S∗T,1, S∗T,2) where ST,2 = ∅
and z∗T is the profit of the optimal solution for the single time step T , S∗T,1. Then consider
the algorithm Balance which:
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1. At time t = 1 compute (S∗1,1, S∗1,2) and fix S1 = S∗1,1.
2. For t = 2 to T : compute (S∗t,1, S∗t,2).

Case (1): If at t− 1 the algorithm chose St−1 equal to S∗t−2,2 (i.e., Case (3) occurred),
then fix St = S∗t,1.
Case (2): Otherwise, if z∗t > 2z∗t−1, then fix St = S∗t,1.
Case (3): Otherwise fix St = S∗t−1,2.

I Theorem 15. In the GE model with intersection bonus and 1-lookahead, Balance is a
4-competitive algorithm.

Proof. Let V be the set of time steps in which Case (3) occurred. In the proof, intuitively
we partition the time period into periods which end at some time t ∈ V , and prove the
claimed ratio in each of these sub-periods.

Formally, let u, v (u < v) be two time steps in V such that w 6∈ V for any u < w < v. Note
that since Case (3) occurred at time u, Case (1) occurred at u+ 1, so u 6= v− 1, and Case (2)
occurred at time u+2, . . . , v−1. So z∗t > 2z∗t−1 for t = u+2, . . . , v−1. By an easy recurrence,
this means that, for all t ∈ {u + 1, . . . , v − 1}, we have z∗t < z∗v−1/2v−1−t. By taking the
sum, we get

∑v−1
t=u+1 z

∗
t < 2z∗v−1. Since Case (3) occurred at v, z∗v ≤ 2z∗v−1. Finally:

v∑
t=u+1

z∗t ≤ 4z∗v−1.

Now, at each time v for which case (3) occurred, we choose Sv = S∗v−1,2. As previously said,
Case (3) did not occur at v − 1, so we choose Sv−1 = S∗v−1,1. Then the algorithm gets value
at least z∗v−1 for these two time steps. In other words f(S1, . . . , ST ) ≥

∑
v∈V z

∗
v−1. Consider

first the case where T ∈ V (case (3) occurred at time T ). Then we get a partition of the
time steps into subintervals ending in v ∈ V . So

T∑
t=1

z∗t ≤ 4
∑
v∈V

z∗v−1 ≤ 4f(S1, . . . , ST ).

Let (Ŝ1, . . . , ŜT ) be an optimal solution. We have pt(Ŝt) + pt+1(Ŝt+1) + b(Ŝt, Ŝt+1) ≤ z∗t . So
f(Ŝ1, . . . , ŜT ) ≤

∑T−1
t=1 z∗t , and:

f(Ŝ1, . . . , ŜT ) ≤
T∑
t=1

z∗t ≤ 4f(S1, . . . , ST ).

Note that this is overestimated, each pt(Ŝt) appears two times in the sum.
Now, if T 6∈ V , then T −1 ∈ V : indeed, Case (2) cannot occur at time T (since z∗t ≤ z∗t−1).

So we have in this case:
T−1∑
t=1

z∗t ≤ 4
∑
v∈V

z∗v−1 ≤ 4f(S1, . . . , ST ).

But again since f(Ŝ1, . . . , ŜT ) ≤
∑T−1
t=1 z∗t , we have

f(Ŝ1, . . . , ŜT ) ≤
T−1∑
t=1

z∗t ≤ 4f(S1, . . . , ST ).

This completes the proof. J
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In the full version, we prove a matching lower bound. The idea of the proof of the
matching lower bound is as follows: As can be seen from the proof of Theorem 15, the
estimate on the profit has slack for the 4-competitive algorithm. We give a construction in
which there is no profit and in which the bonus when not “committing” to the solution from
the previous time step is geometrically increasing over time; otherwise the bonus is 0. As it
turns out, however, when the factor is 2 in each time step, we cannot show a lower bound of
4 in case the algorithm does not commit until the last time step. Interestingly, if we use the
minimum factor to show a lower bound of 4− ε in case the algorithm commits at any time
step but the last, we can find a large-enough time horizon such that, in case the algorithm
commit only in the last time step, we can also show a lower bound of 4− ε.

I Theorem 16. Consider the GE model with intersection bonus. For any ε > 0, there is a
Tε such that, for each number of time steps T ≥ Tε, there is no 4− ε competitive ratio.

4 Conclusion

In this paper, we have developed techniques for online multistage subset maximization
problems and thereby settled the achievable competitive ratios in the various settings almost
exactly. Disregarding asymptotically vanishing terms in the upper bounds, what remains
open is the exact ratio in the general-evolution setting with Hamming bonus (shown to be
between 1 +

√
2 and 3 in this paper) and exact bounds for the models with Hamming bonus

when T →∞. Furthermore, it is plausible that the ratios can be improved for (classes of)
more specific problems.

We emphasize that we have focussed on deterministic algorithms in this work. Indeed,
some of our bounds can be improved by randomization (assuming an oblivious adversary):

In the general-evolution model with Hamming bonus assuming sub-additivity and subset
feasibility, there is a simple randomized (2 + o(1))-competitive algorithm (along the lines
of the algorithms in Subsubsection 3.1.2): Initially partition N uniformly at random into
two equal-sized sets (up to possibly one item) A and B. At each time, select the optimal
solution restricted to A. Again, the algorithm is (2 + o(1))-competitive separately on
both profit and bonus.
While the strong lower bound without lookahead in the general-evolution model with
intersection bonus still holds, we can get a simple 2-competitive algorithm for lookahead
1: Initially flip a coin to interpret the instance as a sequence of length-2 instances either
starting at time 1 or 2. Thanks to lookahead 1, the length-2 instances can all be solved
optimally. The total value of all these length-2 instances adds up to at least the optimal
value, and the expected value obtained by the algorithm is half of that.

While we believe that we have treated various of the most natural ways of defining
value in multistage subset maximization problems, other ways can be thought of, to some
of which our results extend. For instance, Theorem 5 also works for time-dependent or
object-dependent bonus without major modifications (whereas, e.g., Theorem 8 does not).

We have not worried about computational complexity in this work (and therefore neither
about the representation of the set of feasible solutions); indeed, often we use an oracle
providing the optimal solution to instances of a potentially hard problem. However, we
mention that, if only an approximation algorithm to the problem at hand was known, we
would be able to obtain similar online algorithms whose competitive ratio would depend on
the approximation guarantee of the approximation algorithm.
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Abstract
In this paper, we consider the colorful k-center problem, which is a generalization of the well-known k-
center problem. Here, we are given red and blue points in a metric space, and a coverage requirement
for each color. The goal is to find the smallest radius ρ, such that with k balls of radius ρ, the
desired number of points of each color can be covered. We obtain a constant approximation for
this problem in the Euclidean plane. We obtain this result by combining a “pseudo-approximation”
algorithm that works in any metric space, and an approximation algorithm that works for a special
class of instances in the plane. The latter algorithm uses a novel connection to a certain matching
problem in graphs.
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1 Introduction

In the k-center problem, we are given a finite metric space (P, d), where P is a set of n
points, and d : P × P → R+ is the associated distance function. We are also given an
integer 1 ≤ k ≤ n. The goal is to find a subset C ⊆ P of centers, where |C| = k, so as to
minimize maxp∈P minc∈C d(p, c), the maximum distance of a point from its nearest center.
Geometrically, we want to find the smallest radius ρ such that P can be covered by k balls
of radius ρ (centered at points in P ).

It is well known that k-center is NP-hard; furthermore, it is also NP-hard to approximate
the optimal radius to within a 2− ε factor, for any ε > 0. This is easily seen via a reduction
from the minimum dominating set problem [16]. On the other hand, it is possible to obtain
a tight approximation ratio of 2 [11, 15]. A simple greedy algorithm of [11] achieving this
starts with C containing an arbitrary point in P ; in each of the subsequent k − 1 iterations,
it finds a point p ∈ P that maximizes d(p, C) := minc∈C d(p, c), and adds that point to C.

In the k-center with outliers problem, we are given an additional parameter 1 ≤ p ≤ n.
The goal is to find the smallest radius ρ such that at least p points of P can be covered
by k balls of radius ρ. Thus, we allow up to n− p points to remain uncovered, and these
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would be “outliers.” Intuitively, in comparison to k-center, an algorithm for solving this
problem has to also figure out which p points to cover. Nevertheless, Charikar et al. [6], who
introduced this problem, gave a simple 3-approximation using a greedy algorithm. Their
algorithm guesses the optimal radius ρ; then, for k iterations, it finds the ball of radius ρ
that covers the maximum number of yet uncovered points, expands it by a factor of 3, and
adds it to the solution. More recently, the approximation guarantee was improved to 2, using
LP-rounding techniques [4, 13]. Note that this approximation guarantee is tight, in light of
the 2− ε hardness result mentioned earlier.

We now introduce the colorful k-center problem, which is studied in this article. As
in k-center, the input consists of a set P of n points in a metric space, and an integer
k. Furthermore, we are given a partition {P1, P2, . . . , Pc} of P into c color classes, and
a coverage requirement 0 ≤ ti ≤ |Pi| for each color class 1 ≤ i ≤ c. The goal is to find
the smallest radius ρ such that using k balls of radius ρ, centered at points of P , we can
simultaneously cover at least ti points from each class Pi. When we have only one color class,
that is, when c = 1, we obtain the k-center with outliers problem. In much of this article, we
focus on the case with two color classes, where c = 2. In this case, we call the colors red and
blue; we denote P1 and P2, respectively, by R (red points) and B (blue points), and denote
the coverage requirements t1 and t2, respectively, by r and b. The motivation for studying
this problem is as follows. Each color class can be thought of as a certain demographic with
a specific coverage requirement, which must be satisfied by the k balls chosen in the solution.

Even with two colors, the colorful k-center is quite challenging. The greedy algorithm for
k-center with outliers [6] has no obvious generalization: with two color classes, what do we
optimize when adding the next ball to our solution? The LP-based approaches for k-center
with outliers do not generalize either – as we point out (in Example 5), the natural LP has
an unbounded integrality gap.

Chakrabarty et al. [4] study a closely related problem called non-uniform k center. As
input to this problem, we are given a set P of points in a metric space, λ distinct radii
r1 > · · · > rλ ≥ 0 and corresponding integers t1, . . . , tλ. The goal is to find the smallest
dilation β ≥ 0 such that P can be covered by a collection of balls formed by including, for
each 1 ≤ i ≤ λ, ti balls of radius β · ri. When λ = 1, we get the regular k-center problem.
When λ is unbounded, the problem is hard to approximate to within any constant factor;
when λ = 2, one can get an O(1)-approximation; and when λ is a constant greater than 2, it
is open as to whether an O(1)-approximation is possible [4].

As Chakrabarty et al. [4] observe, there is a close relationship between k-center with
outliers and non-uniform k-center with λ = 2. In fact, it can be shown that the two problems
are equivalent up to an O(1)-approximation factor. While the relationship between the
colorful k-center with c color classes and non-uniform k-center with c+ 1 distinct radii is not
known to be as close for c ≥ 2, the study of the latter problem is one motivation that led us
to the colorful k-center problem.

1.1 Other Related Work
The k-means and k-median are classic NP-hard clustering problems that are closely related to
the k-center problem. Like the k-center problem, these problems have been extensively studied,
resulting in different approaches guaranteeing constant factor approximations. More recently,
the outlier versions of these problems were also studied; constant factor approximations were
obtained for k-median with outliers [8, 19] and k-means with outliers [19]. A polynomial
time bicriteria (1 + ε)-approximation using at most k(1 + ε) centers for any ε > 0 is known in
low dimensional Euclidean spaces, and metric spaces with constant doubling dimension [10].
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Facility location with outliers, which is referred to as Robust Facility Location, is a gener-
alization of the uncapacitated Facility Location problem; various constant approximations
are known for the latter problem. The Robust Facility Location problem was introduced
in [6], who gave a 3-approximation. The approximation guarantee was later improved by
Jain et al. [18] to 2.

A colorful version of vertex cover is studied in [1], and colorful versions of the Set
Cover and Facility Location-type problems were considered in [17]. In these problems, the
cardinality of the cover (or its weight) shows up in the objective function, unlike in k-center,
where the number of centers/balls k is a “hard restriction”. These problems therefore have a
different flavor.

Finally, k-center and k-median have been generalized in an orthogonal direction, where
there are additional constraints on the centers [12, 7, 5]. Again, the issues studied in these
generalizations tend to be quite different from the ones we confront here.

1.2 Our Results
We study the colorful k-center problem when the number of colors is a constant. Our main
result is a randomized polynomial time algorithm that, with high probability, outputs an
O(1)-approximation in the Euclidean plane. (As k-center is APX-hard even in the plane [9],
we cannot hope for a PTAS.)

To describe our approach, we focus on the case with two colors. We first design a
pseudo-approximation algorithm that outputs a 2-approximation, but with k + 1 centers
instead of k. This result holds in any metric space, not just the Euclidean plane. To obtain
it, we preprocess the solution to a natural LP-relaxation into a solution for a simpler LP,
using ideas from [4, 13]. We then note that a basic feasible solution to the simple LP opens
at most k + 1 centers fractionally. A pseudo-approximation for k-median with outliers was
an important step in the recent work of Krishnaswamy et al. [19].

The pseudo-approximation allows us to reduce the colorful k-center problem to a special
case where the balls in the optimal solution are separated – the distance between any two
balls is much greater than their radii. Designing an O(1)-approximation for this special case
is challenging, even in the plane. For instance, partitioning into small subproblems by using
a grid (such as in [14]) or other type of object does not work, because any such partitioning
may intersect balls in the optimal solution, and we have a hard bound k on the number
of balls allowed.

We solve separated instances in the plane by reducing to exact perfect matching on
graphs. In this problem, we are given a graph in which each edge has a red weight and a
blue weight, both non-negative integers. Given integers wr and wb, the goal is to determine
if the graph has a perfect matching whose red and blue weights are, respectively, exactly wr
and wb. This problem can be solved in randomized polynomial time, provided the weights
are bounded by a polynomial in the input size; see [3, 21]. To our knowledge, this connection
of geometric clustering and covering to exact matching is a novel one.

In its current form, the reduction from separated instances of colorful k-center to exact
matching does not work even in R3. Nevertheless, we are hopeful that this work will lead
to an O(1)-approximation to colorful k-center in dimensions 3 and higher, and indeed in
any metric space.

Organization. We describe our pseudo-approximation in Section 2 and our O(1)-approxima-
tion for the Euclidean plane in Section 3. In both these sections, we focus on the case where
the number of colors is 2. We address the extension of the planar result to multiple color
classes in Section 4.

ESA 2019
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Find a feasible solution (x, z) such that:∑
i∈B(j,ρ)

xi ≥ zj , ∀j ∈ P (1)

∑
i∈P

xi ≤ k, (2)∑
j∈R

zj ≥ r, (3)

∑
j∈B

zj ≥ b, (4)

zj , xi ∈ [0, 1], ∀i, j ∈ P (5)

Figure 1 The feasibility LP, parameterized by ρ.

2 Pseudo-approximation via LP Rounding

Recall that an instance of colorful k-center is a metric space (P = R tB, d), where R,B are
non-empty, disjoint sets of red and blue points respectively. We are also given red and blue
coverage requirements 1 ≤ r ≤ |R| and 1 ≤ b ≤ |B|, respectively. A solution (C,D), where
C,D ⊆ P , is said to be feasible, if (i) |C| ≤ k, (ii) |D ∩ R| ≥ r, and (iii) |D ∩ B| ≥ b. The
cost of a solution is defined as maxj∈D d(j, C). Any point in the set D is said to be covered
by the solution. The goal of the colorful k-center problem is to find a feasible solution of the
minimum cost.

In this section, we describe a pseudo-approximation algorithm for the colorful k-center
problem. That is, we show how to find a solution of cost at most 2 ·OPT using at most k+ 1
centers, where OPT is the cost of an optimal solution. This result is achieved in two steps.
In the first step, we use the natural LP relaxation for the decision version of the colorful
k-center problem, to partition the points in P into disjoint clusters using a simple greedy
procedure. We also obtain a related fractional solution during this clustering procedure. We
use this to show that a much simpler LP with a small number of constraints has a feasible
solution, even though there may not exist an integral feasible solution using at most k centers.
Nevertheless, we use the simplicity of the LP to show that there exists a solution using at
most k + 1 centers.

Let ρ denote our “guess” for the optimal cost. Note that the optimal cost must be one
of the O(n2) interpoint distances, therefore there are O(n2) choices for ρ. We state the
feasibility LP, parameterized by ρ, in Figure 1. It is easy to see that an optimal solution
satisfies all the constraints when the guess ρ is correct (i.e., when ρ ≥ OPT ). Therefore,
henceforth, we assume that ρ = OPT .

Now, we find a feasible fractional solution (x′, z′) for this LP, and use it to show that a
related, but a much simpler LP is feasible. To this end, we use the following “greedy clustering”
procedure (see Algorithm 1), which also computes a modified LP solution (x̃, z̃). Let P ′
denote the set of unclustered points, initialized to P . We also initialize S, the collection of
cluster-centers, to the empty set. In each iteration, we find a point j ∈ P ′ with the maximum
zj . We set z̃j = x̃j ← min{1,

∑
i∈B(j,ρ) x

′
i} – note that the sum is over all points in the ball

B(j, ρ), as opposed to the points in B(j, ρ) ∩ P ′. Let Cj denote the set of unclustered points
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Algorithm 1 Clustering Algorithm.

1: S ← ∅, P ′ ← P

2: while P ′ 6= ∅ do
3: j ∈ P ′ be a point with maximum z′j ; let S ← S ∪ {j}
4: x̃j ← min{1,

∑
i∈B(j,ρ) x

′
i}; z̃j ← x̃j

5: Cj ← B(j, 2ρ) ∩ P ′
6: For all j′ 6= j ∈ Cj , set x̃j′ ← 0, z̃j′ ← z̃j
7: P ′ ← P ′ \ Cj
8: end while

within distance 2ρ from j. We refer to the set Cj as a cluster. We set z̃j′ ← z̃j for all other
points j′ ∈ Cj \ {j}. Finally, we remove the points in Cj from P ′ and repeat this process
until all points are clustered, i.e., P ′ becomes empty.

For any point i ∈ S, let Ri := R ∩ Ci and Bi := B ∩ Ci denote the sets of red and blue
points in the “cluster” Ci respectively. Additionally, for any i ∈ S, let ri and bi denote the
sizes of the sets Ri and Bi respectively. We start with a few simple observations that are
immediate from the description of the procedure.

I Observation 1.

1. The “clusters” {Ci}i∈S partition the point set P . Therefore, {Ri}i∈S partition the red
points R, and {Bi}i∈S partition the blue points B,

2. For any two distinct i, i′ ∈ S, d(i, i′) > 2ρ,

3. For any j ∈ P , there is at most one i ∈ S, such that d(i, j) ≤ ρ.

The following observation follows from the greedy nature of the clustering procedure.

I Observation 2. For any point j1 ∈ P , let j ∈ S be the point in S such that j1 ∈ Cj . Then,
z̃j = z̃j1 ≥ z′j1

Proof. Notice that, z̃j1 = z̃j = min{1,
∑
i∈B(j,ρ) x

′
i}. There are two cases to consider.

z̃j1 = z̃j = 1 ≥ z′j1
, where the inequality follows from the constraint (5) of the LP.

Otherwise, z̃j =
∑
i∈B(j,ρ) x

′
i. In this case, z̃j =

∑
i∈B(j,ρ) x

′
i ≥ z′j ≥ z′j1

. Here, the first
inequality follows from constraint (1) of the LP, and the second inequality follows from the
fact that in the iteration when j1 was removed from P ′, j ∈ P ′ was chosen to be a point
with the maximum z′-value in line 3. J

The next two claims help us construct a feasible solution to a simplified LP, to be
introduced later.

B Claim 3.

1.
∑
i∈S rix̃i ≥ r

2.
∑
i∈S bix̃i ≥ b
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12:6 A Constant Approximation for Colorful k-Center

maximize
∑
i∈S

rixi

subject to
∑
i∈S

bixi ≥ b (6)∑
i∈S

xi ≤ k, (7)

xi ∈ [0, 1], ∀i ∈ S (8)

Figure 2 The Simplified LP.

Proof. We prove the first part of the claim – the second part is analogous.∑
i∈S

rix̃i =
∑
i∈S
|Ri| · x̃i

=
∑
i∈S

∑
j′∈Ri

z̃i (For any i ∈ S, x̃i = z̃i by construction)

≥
∑
i∈S

∑
j′∈Ri

z′j′ (For any j′ ∈ Ri ⊆ Ci, z̃i ≥ z′j′ from Observation 2)

=
∑
j∈R

z′j (Property 1 of Observation 1)

≥ r (By constraint (3))

C

B Claim 4.
∑
i∈S x̃i ≤ k

Proof.∑
i∈S

x̃i ≤
∑
i∈S

∑
i′∈B(i,ρ)

x′i′ (x̃i ≤
∑
i′∈B(i,ρ) x

′
i′)

≤
∑
i′∈P

x′i′ (From Property 3 of Observation 1)

≤ k (By constraint (2))

C

2.1 A Simplified Problem
Recall that the clusters {Cj}j∈S are disjoint, and have radius 2ρ. Now, if we can find a
collection of k clusters from this set, that cover at least r red points and b blue points, then
this immediately leads to a 2-approximation. Unfortunately, it is not always possible to
find such a collection. However, in the following, we show that we can find a collection of
k + 1 clusters that satisfies the coverage requirements of both colors. The LP in Figure 2 is a
relaxation of the problem of finding at most k clusters that satisfy the coverage requirements
of both colors.

Note that Claims 3 and 4 imply that the fractional solution (x̃) constructed above is a
feasible solution for this LP, and has objective value at least r. However, there may not exist
a feasible integral solution that uses at most k clusters from the set {Ci}i∈S . The following
example illustrates this.
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I Example 5. In the following figure, we have two clusters C1 and C2. Red points are shown
as boxes, whereas blue points are shown as dots. C1 consists of 3 red points and 1 blue point,
whereas C2 contains 3 blue points and 1 red point. Suppose that k = 1 and the coverage
requirements of each color class is 2. Now, assigning x1 = x2 = 0.5 yields a fractional solution
that satisfies the coverage requirements of each color class. However, assuming that the
distance between two clusters is very large compared to the radii, 2ρ, it can be seen that
there is no feasible integral solution of cost at most a constant multiple of 2ρ.

C1 C2

Nevertheless, we show in the following that there exists a feasible solution that uses at
most k + 1 clusters. First, we need the following classical result from linear algebra (see
Lemma 2.1.4 in [20]).

I Lemma 6 ([20]). In any extreme point feasible solution (or equivalently, a basic feasible
solution) to a linear program, the number of linearly independent tight constraints is equal to
the number of variables.

Furthermore, an extreme point optimal solution can be computed in polynomial time.
Now, we find such an optimal solution (x∗) to the simplified LP. It follows from Claim 3 that
its objective value is at least r. We prove the following lemma, which is a simple consequence
of Lemma 6.

I Lemma 7. The number of x∗-variables in an extreme point optimal solution that are strictly
fractional, is at most 2. Therefore, the number of strictly positive variables is at most k + 1.

Proof. Let m := |S| denote the number of variables. From Lemma 6, it follows that the
number of linearly independent tight constraints is equal to m. Note that, even though there
are 2m + 2 constraints in the LP, at most m + 2 constraints can be simultaneously tight.
Now, even if constraints (6) and (7) are tight, it follows that number of tight constraints
from (8) is at least m− 2. That is, the number of strictly fractional variables is at most 2.

If there are k variables that are equal to 1, then constraint (7) is tight, and there are
no strictly fractional variables. Otherwise, the number of variables equal to 1, is at most
k − 1. Along with at most 2 strictly fractional variables, the number of positive variables is
at most k + 1. J

Note that the red and blue coverage can only increase while rounding up the fractional
variables to 1. If there is exactly one fractional variable, we round it up, giving a 2-
approximation using exactly k centers. Otherwise, let x∗1, x∗2 be the two fractional variables,
corresponding to clusters C1, C2 respectively. Note that, although the fractional solution
satisfies both red and blue coverage, adding only C1 or C2 to the solution may not satisfy
coverage demands for both colors – recall Example 5. Therefore, we include both clusters in
the solution, resulting in a pseudo-approximation of cost at most 2ρ, using at most k + 1
centers. We summarize the result of this section in the following theorem.

I Theorem 8. There exists a polynomial time algorithm to find a 2-approximation for the
colorful k-center problem (with two colors) in any metric space, using at most k + 1 centers.
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12:8 A Constant Approximation for Colorful k-Center

This theorem generalizes readily to an arbitrary number of color classes c ≥ 2. Having
c color classes corresponds to having c − 1 constraints instead of constraint (6) in the
corresponding Simplified LP. As we now have constraints corresponding to c− 1 color classes,
we obtain the following lemma for the Simplified LP, the proof of which goes along the same
lines as that of Lemma 7.

I Lemma 9. The number of x∗-variables in an extreme point optimal solution that are
strictly fractional, is at most c. Therefore, the number of strictly positive variables is at most
k + c− 1.

Therefore, if we round up these fractional variables, we get a pseudo-approximation of
cost at most 2 · ρ, using at most k + c− 1 centers.

3 A Constant Approximation Algorithm in R2

In this section, we describe a constant approximation algorithm for the colorful k-center
problem with two color classes, red and blue, where the set of points lies in the Euclidean
plane. Recall that P = R t B denotes the input set of n points, and r and b the red and
blue coverage requirements. Our algorithm consists of two subroutines which we describe
in the following two subsections. The two subroutines are intended to handle two different
types of instances. In order to describe these instances we need the following definitions.

I Definition 10. Let α > 0 be a parameter. A set S of balls of radius ρ′ is α-separated if
the distance between the centers of every two balls in S is greater than α · ρ′. An instance of
colorful k-center is α-separated if the set of balls in some optimal solution is α-separated.

The first subroutine (described in Section 3.1) gives a 2(α+ 1)-approximation algorithm
for instances that are not α-separated. The second subroutine (described in Section 3.2)
gives a (0.5α + 2)-approximation algorithm for α-separated instances where α > 4/γ for
some absolute constant γ > 0, which is defined below.

Therefore for a large enough constant α, we get a max{2(α+ 1), 0.5α+ 2}-approximation
algorithm for the colorful k-center problem with two color classes. From the geometric
arguments in Section 3.2 that determine α, it is apparent that taking α = 8+ ε′ for any ε′ > 0
is sufficient. Therefore, the approximation guarantee of our algorithm is 17 + ε for any ε > 0.

3.1 Handling Non-Separated Instances
If an instance is not α-separated, we can use the pseudo-approximation algorithm of Section
2 to immediately get a 2(α+ 1)-approximation algorithm. This is formalized in the following
lemma. It is worth pointing out that this subroutine does not require the set of points to be
in R2 – it works for any metric.

I Lemma 11. If an instance is not α-separated then we get a 2(α+ 1)-approximate solution
to the colorful k-center problem in polynomial time.

Proof. Let the optimal radius be ρ. Since the instance is not α-separated, there are two
balls in some optimal solution whose centers are within distance α · ρ of each other. Let
C1 and C2 be two such balls in the optimal solution. We replace C1 with a ball of radius
(α+ 1)ρ centered at the same point as C1. This allows us to remove C2 without violating
any of the coverage requirements (since the new ball replacing C1 covers all points originally
covered by C2). This means that there exists a feasible solution using k− 1 centers with cost
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(α+ 1)ρ. Therefore, if we run the pseudo-approximation algorithm of the previous section
with number of centers being k − 1, we will get a solution using at most k centers having
cost 2(α+ 1)ρ, which proves the lemma. J

3.2 Reduction of Separated Instances to Exact Perfect Matching
Let us assume that the instance we are given is α-separated for some α > 4/γ for some
absolute constant γ > 0. From the proof of Lemma 12, it will be clear that taking α > 8
is sufficient. The α-separability of the instance helps us design a (0.5α+ 2)-approximation
algorithm for this problem in R2. We do this by reducing the problem to the Exact Perfect
Matching problem [22, 2]. In the exact perfect matching problem we are given an edge-
weighted graph G = (V,E) and a target weight W . The goal is to find a perfect matching
in G having weight exactly W . The result in [3, 21] gives a randomized pseudo-polynomial
algorithm for exact perfect matching. In other words, their algorithm runs in polynomial
time if the largest edge weight in the input graph is bounded by a polynomial in |V |. We
now describe our reduction from the k-center problem to exact perfect matching.

We first assume that we have guessed correctly the radius ρ of an optimal solution to the
given instance. We cover R2 with a grid of equilateral triangles of side length ` = 0.5αρ. See
Figure 3 for an illustration. Consider the following three lines through the origin: L1 is the
x-axis, L2 has angle 60 degrees with L1, and L3 has angle 120 degrees with L1. The grid of
side length ` can be formally defined as the arrangement of the collection of lines parallel to
L1, L2, and L3, with two adjacent parallel lines having distance

√
3`/2. We can interpret

the grid as an infinite graph where the edges are the sides of each atomic triangle in the grid
and the vertices are the intersection points of the edges.

Define the Voronoi region of an edge e as the set of points that are at least as close to e
as any other edge. It is easy to see that the Voronoi region of e is a rhombus whose four end
points are the two end points of e and the centroids of the two triangles sharing the edge e.
We are interested in the extended Voronoi region of an edge e which is the Minkowski sum of
the Voronoi region of e and a ball of radius ρ centered at the origin.

I Lemma 12. The extended Voronoi regions of two edges e and e′ intersect each other iff e

and e′ share a common vertex.

Proof. The reverse direction of the lemma is trivial, so we focus on the forward direction.
Take two edges e and e′ that are not incident on a common vertex. Note that their Voronoi
regions do not intersect (see Figure 3). Thus, there is an absolute constant γ > 0 such that
the distance between the closest pair of points, one in each region, is at least γ · ` = γ · 0.5αρ.
Therefore, if α > 4/γ, the distance between the two Voronoi regions is greater than 2ρ. 1

Thus, the extended Voronoi regions of e and e′ do not intersect because each Voronoi region
“expands” by only an additive factor of ρ. J

For each edge define P (e) as the set of points in P that lie in the extended Voronoi region
of e. Let G′ = (V ′, E′) be the graph where E′ is the set of all grid edges such that P (e) 6= ∅,
and V ′ is the set consisting of the endpoints of edges in E′. Define N = 2 max{n, |V ′|}, note
that N = O(n) because each point can belong to at most six triangles. The weight of an
edge e ∈ E′ is set to we = N2 · be + re where be and re are the number of blue and red points
respectively in P (e).

1 With simple geometric calculations, one can show that γ = 1/2, which implies that α > 8.
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e

`

Figure 3 Here, we show a triangular grid of side ` = 0.5αρ. We also show the Voronoi region of
the edge e (the area inside the dash-dotted rhombus around e), and the extended Voronoi region of
e (the area inside the lightly shaded object). We also show the Voronoi regions of the “neighboring
edges” that do not share a vertex with e as dashed rhombuses. Notice that the Voronoi regions (resp.
extended Voronoi regions, not shown for simplicity) of the neighboring edges do not intersect with
the Voronoi region (resp. extended Voronoi region) of e. We use this fact in the proof of Lemma 12.
Notice that, the extended Voronoi region of e contains 2 red points and 4 blue points. Therefore, we
will set the weight of the edge to be 4 ·N2 + 2.

I Lemma 13. There exists a matching in G′ with k edges and with weight exactly b′ ·N2 + r′

for some |B| ≥ b′ ≥ b and |R| ≥ r′ ≥ r.

Proof. Let S∗ be the set of balls in an optimal solution that is α-separated. For each ball
Ci ∈ S∗, 1 ≤ i ≤ k, let ei be any edge (from the infinite grid) such that the center of Ci lies
in the Voronoi region of ei. Note that the extended Voronoi region of ei contains Ci, and
thus ei ∈ E′. We claim that if i 6= j, then (a) ei 6= ej , and (b) ei and ej are not incident on
a common vertex of V ′. If either (a) or (b) does not hold, the distance between the centers
of Ci and Cj is at most 0.5αρ + 0.5αρ = αρ, which violates the fact that the instance is
α-separated. Therefore the set M = {ei|1 ≤ i ≤ k} is a matching of k edges in G.

If we set b′ and r′ to be the total number of blue and red points in the extended Voronoi
regions of the k edges, then we have a matching of weight b′ · N2 + r′ in G. Since the
extended Voronoi regions cover all the points covered by S∗, we have b′ ≥ b and r′ ≥ r which
finishes the proof. J

We now define a graph G such that perfect matchings in G correspond to matchings with
k edges in G′. To construct G = (V,E), we start with G′ and add |V ′| − 2k auxiliary vertices
that are connected to all vertices of G′ with edges of weight zero. We can do this because
Lemma 13 implies that |V ′| ≥ 2k. Now G obeys the following property that is easy to prove.

I Observation 14. Any matching in G′ of weight W having exactly k edges can be extended
to a perfect matching in G of weight exactly W . Conversely, from any perfect matching in G
with weight exactly W , we can obtain a matching in G′ with k edges and weight exactly W .
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Using Lemma 13 and Observation 14 we get the following Corollary.

I Corollary 15. There exists a perfect matching in G of weight exactly b′ ·N2 + r′ for some
|B| ≥ b′ ≥ b and |R| ≥ r′ ≥ r.

We now show how to go from a perfect matching in G to a cover for the input instance.

I Lemma 16. If G has a perfect matching of weight exactly W = b′N2 +r′, with 0 ≤ b′ ≤ |B|
and 0 ≤ r′ ≤ |R|, then we can place exactly k balls of radius (0.5α+ 2)ρ that cover at least r′
red points and at least b′ blue points.

Proof. Suppose G has a perfect matching M of weight W . Using Observation 14, we recover
a matching M ′ in G′ with k edges and weight W . For e ∈ M ′, let be = |P (e) ∩ B| and
re = |P (e) ∩R|. Thus, the weight we for each edge e is beN2 + re. It follows that(∑

e∈M ′

be

)
N2 +

(∑
e∈M ′

re

)
= W = b′N2 + r′.

By our choice of N , both r′ and
∑
e∈M ′ re are strictly less than N2. It follows that∑

e∈M ′ re = r′ = W mod N2, and furthermore
∑
e∈M ′ be = b′. Furthermore, since M ′ is a

matching, by Lemma 12, the extended Voronoi regions of the edges in M ′ do not intersect.
Thus, ∪e∈M ′P (e) contains exactly r′ red points and b′ blue points.

For each e ∈M ′ such that P (e) 6= ∅, we place a ball of radius (0.5α+ 2)ρ centered at
any point in P (e). These at most k balls cover all points in

⋃
e∈M ′ P (e). This is because the

distance between any two points in P (e) for an edge e is at most (0.5α+ 2)ρ. This finishes
the proof of the lemma. J

We are now ready to state our algorithm for our α-separated instance of colorful k-center,
assuming that we know the optimal radius ρ. We construct the graph G and check if it has a
perfect matching of weight exactly W = b′ ·N2 + r′, for each b ≤ b′ ≤ |B| and r ≤ r′ ≤ |R|.
For the check, we invoke the algorithm of [3]. Corollary 15 ensures that for at least one of
these guesses for W , an exact perfect matching does exist, and the algorithm of [3] returns
it.2 Once we find an exact perfect matching solution for any of these weight values, we
convert it into a (0.5α+ 2)-approximate solution by invoking the algorithm of Lemma 16.
This completes our algorithm.

As we do not know the optimal radius for the given input instance, we will run the
above algorithm for each choice of ρ from the set of O(n2) interpoint distances induced by
P . Fix a particular choice of ρ. If there exists a feasible solution with balls of radius ρ that
is α-separated, then the above algorithm will return a feasible solution with cost at most
(0.5α+ 2) · ρ. If there is no feasible solution with balls of radius ρ that is α-separated, then
the above algorithm may not return a feasible cover.

Overall, we simply return the minimum cost feasible solution that we encounter after
applying the above algorithm for all choices of ρ. This is a (0.5α + 2)-approximation for
α-separated instances.

I Remark 17. We note that the algorithm described here generalizes to any constant number
of color classes, in the following sense. Suppose we have an input instance for which there
exists an α-separated solution of cost ρ′, for some ρ′. In particular, we do not assume that ρ′

2 The algorithm of [3] is actually a randomized Monte-Carlo algorithm, and thus has an error probability
that can be made arbitrarily small. For the sake of exposition, we ignore this eventuality of error, except
in the statement of our final result.
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is the optimal cost for the input instance. Then the algorithm computes a feasible solution
of cost at most (0.5α + 2) · ρ′. Note that in this case, for any edge e of the graph G′, the
weight of each edge will be of the form

∑
i≥0 Pi(e)N2i where Pi(e) is the number of points

of color class i in the extended Voronoi region of that edge.

3.3 Combining Separated and Non-Separated Cases
We do not know if a given instance of colorful k-center is α-separated or not. Therefore,
we do not know which subroutine to use. So we run both the subroutines and return the
solution with the lowest cost. We conclude with our main result.

I Theorem 18. There is a randomized polynomial time algorithm that, given any instance
of colorful k-center in the plane with two colors, outputs, with high probability, an O(1)-
approximate solution.

4 Multiple Color Classes in the Plane

So far we have only considered two color classes for the sake of keeping the exposition simple.
We now sketch an extension to the colorful k-center problem in the plane with c color classes
for any integer constant c.

For a given instance in the plane, fix the optimal set of balls S∗, and assume it has cost
ρ. Let S be any maximal α-separated subset of S∗. That is, for each pair of balls in S, the
distance between the centers is greater than α · ρ, whereas for every ball B ∈ S∗ \ S, there is
a ball B′ ∈ S, such that the distance between the centers of B and B′ is at most α · ρ. Let
S̄ = S∗ \ S. We consider two cases:

Case 1: |S̄| ≥ c− 1

Notice that if we expand each ball in S to have radius (α+ 1) · ρ, and discard the balls in S̄,
we obtain a feasible solution with at most k− (c− 1) balls and cost (α+ 1) · ρ. For this case,
running the pseudo-approximation algorithm on the original input, but with the number of
centers set to k − (c− 1), will give us a solution with k balls and cost 2(α+ 1) · ρ.

Case 2: |S̄| ≤ c− 2

We guess the balls in S̄. Because |S̄| ≤ c − 2, and there are O(n2) choices for ρ, we have
O(nc) possibilities to guess from. After guessing S̄, we remove the points covered by S̄, and
decrease the coverage requirement for each color class by the number of points of that color
class covered by S̄. For this residual instance, S is an α-separated solution with k− |S̄| balls
and cost ρ. If we run the algorithm of Section 3.2 on this residual instance, allowing k − |S̄|
centers, we obtain a cover with k − |S̄| balls and cost at most (0.5α+ 2) · ρ. We output the
union of this cover and S̄. This is a feasible solution to the original problem with k balls
and cost O(ρ).

The overall running time of the algorithm is nO(c).

5 Open Problems

One question raised by our work is whether an O(1)-approximation for colorful k-center (with
a constant number of colors) can be obtained in Rd for d ≥ 3, or indeed in an arbitrary metric
space. Another question is whether one can obtain an O(1)-approximation for non-uniform
k-center in the plane (with a constant number of distinct radii).
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1 Introduction

Homotopy theory lies at the heart of algebraic topology. In an attempt to make the concept
of homotopy equivalence more amenable to combinatorial methods, Whitehead developed
what turned out to be a combinatorial refinement of the theory, called simple-homotopy
theory. Simple-homotopy theory considers sequences of elementary homotopy equivalences
defined on simplicial complexes (or, more generally, CW complexes): an elementary collapse,
which takes a face of a complex contained only in a single proper coface and removes both
faces, and its inverse operation, called an elementary expansion. Two simplicial complexes are
then said to be of the same simple-homotopy type if one can be transformed into the other by
a sequence of elementary collapses and expansions. Complexes of the same simple-homotopy
type are homotopy equivalent, but the converse is not always true [18], the obstruction
being an element of the Whitehead group of the fundamental group. However, Whitehead
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proved that all homotopy-equivalent complexes with a trivial fundamental group are in
fact of the same simple-homotopy type [19], and thus in this particular case the notions of
simple-homotopy and homotopy coincide.

A presentation of the fundamental group can be read off from a two-dimensional complex
such that the presentation is balanced and describes the trivial group if and only if this complex
is contractible [12]. Since the decidability of the triviality problem for balanced presentations
is open [4], the same is also true for the decidability of contractibility of 2-complexes. Hence,
the decidability of the existence of a simple-homotopy equivalence from a 2-complex to a
point is also open. In contrast, the problem of deciding whether a given complex has trivial
fundamental group is famously undecidable already for 2-complexes through its connection
to the word problem, see, for instance, [5]. It follows that sequences of elementary collapses
and expansions proving simple-homotopy equivalence between a 2-complex and a point can
be expected to be long, if not unbounded. Nonetheless, understanding these sequences offers
a great reward: the statement that any contractible 2-complex contracts to a point using
only expansions up to dimension three is equivalent to a weaker variant [13, p. 34–35] of the
Andrews–Curtis conjecture [1, 20].

In this article, motivated by the aforementioned problems, we investigate the com-
putational (parametrized) complexity of a number of variants of the problem of deciding
contractibility. More precisely, we focus on the problem of deciding whether a given 2-complex
admits a simple-homotopy to a 1-complex using at most p expansions, called Erasibility
Expansion Height. In addition, we consider a variant, called Ordered Erasibility
Expansion Height, which requires that all expansions come at the very beginning of
the sequence. It is worth noting that Erasibility Expansion Height and Ordered
Erasibility Expansion Height are equivalent for CW complexes for which one can readily
swap the order of expansions and collapses [13, p. 34]. However, for simplicial complexes,
the ordered and unordered expansion heights may differ.

In Section 5.1, we prove that Erasibility Expansion Height is W[P]-hard, see
Theorem 8. The proof uses a reduction from Axiom Set. The same reduction also
establishes W[P]-hardness of Ordered Erasibility Expansion Height. Note that a
reduction from Axiom Set is also used by the third author and others in [6] to establish
W[P]-hardness of a parametrized version of Optimal Morse Matching. However, unlike
in [6], the use of combinatorial and topological properties of the dunce hat is a key ingredient
of the reduction used in this paper. In particular, there is only one gadget in the reduction –
a subdivision of the so-called modified dunce hat [3], see Figure 2. In this sense the techniques
used in this paper are also related to recent work by the first and second author in [3], where
they show hardness of approximation for some Morse matching problems.

In Section 5.2, we show that Erasibility Expansion Height and Ordered Erasibil-
ity Expansion Height are both in W[P], and hence also W[P]-complete, see Theorems 8,
13 and 14. Both results rest on the key observation that a 2-complex is erasable if and only
if greedily collapsing triangles yields a 1-dimensional complex (Proposition 11), as shown by
Tancer [17, Proposition 5].

In Section 6 we show that, as a consequence of the above reduction, the problem of deciding
whether a 2-complex can be shown to be simple-homotopy equivalent to a 1-complex using
only 3-dimensional expansions, called Erasibility 3-Expansion Height, is NP-complete,
see Theorem 17.
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2 Definitions and Preliminaries

2.1 Simplicial complexes
A (finite) abstract simplicial complex is a collection K of subsets of a finite ground set V
such that if τ is an element of K, and σ is a nonempty subset of τ , then σ is an element
of K. The ground set V is called the set of vertices of K. Since simplicial complexes are
determined by their facets, we sometimes present simplicial complexes by listing their facets.
A subcomplex of K is a subset L ⊆ K which is itself a simplicial complex. Given a subset
W ⊆ V of the vertices of K, the induced subcomplex on W consists of all simplices of K that
are subsets of W .

The elements of K are referred to as its faces. The dimension of a face is defined to be
its cardinality minus one, and the dimension of K equals the largest dimension of its faces.
For brevity, we sometimes refer to a d-dimensional simplicial complex as a d-complex and
to a d-dimensional face as a d-face. The 0-, 1-, and 2-faces of a d-complex K are called its
vertices, edges, and triangles respectively. Faces of K which are not properly contained in
any other face are called facets. An (m− 1)-face σ ∈ K which is contained in exactly one
m-face τ ∈ K is called free.

The star of a vertex v of complex K, written starK(v), is the subcomplex consisting of
all faces of K containing v, together with their faces. If a map φ : V → W between the
vertex sets of two simplicial complexes K and L, respectively, sends every simplex σ ∈ K to
a simplex φ(σ) ∈ L, then the induced map f : K → L, σ 7→ φ(σ), is said to be simplicial.

2.2 Simple-homotopy
We introduce the basic notions of simple-homotopy used in the present paper. The general
concept of simple-homotopy can be understood independently from the notion of homotopy.
In this sense this article aims to be self-contained. For further reading on homotopy theory
we refer to [11].

In short, a simple-homotopy equivalence is a refinement of a homotopy equivalence. It
can be described purely combinatorially with the help of the following definition.

I Definition 1 (Elementary collapses and expansions). Let K0 be a simplicial complex, and let
τ, σ ∈ K0 be an m-face and an (m− 1)-face respectively such that σ ⊂ τ , and σ is free in K0.

We say that K1 = K0 \ {τ, σ} arises from K0 by an elementary collapse of dimension m
or elementary m-collapse, denoted by K0 ↘ K1. Its inverse, the operation K0 = K1 ∪ {τ, σ}
is called an elementary expansion of dimension m or elementary m-expansion, written
K0 ↗ K1. If the complex is implicit from context, we denote elementary collapses by ↘τ

σ

and elementary expansions by ↗τ
σ. An elementary collapse or an elementary expansion is

sometimes referred to as an elementary move, or simply a move.
If there exists a sequence of elementary collapses turning a complex K0 into K1 we write

K0 ↘ K1 and say that K0 collapses to K1. If K1 is one-dimensional, we say that K0 is
erasable. If K1 is merely a point we call K0 collapsible.

Finally, we write K0 ↗ K1 to indicate a sequence of expansions and say that K0
expands to K1.

It follows that an expansion ↗τ
σ can only be performed in a simplicial complex K if

all codimension 1 faces of τ except for σ are already in K. Hence, let τ be an m-face of
a simplicial complex K, and let σ be one of its (m − 1)-faces. An (m-dimensional) horn
H(τ, σ) associated to the pair (τ, σ) is the simplicial complex generated by the (m− 1)-faces
of τ apart from σ.

ESA 2019
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All m-expansions and m-collapses with m > 1 leave the vertex set unchanged.

I Definition 2 (Simple-homotopy equivalence, simple-homotopy graph). Two simplicial com-
plexes K and L are said to be simple homotopy equivalent or of coinciding simple-homotopy
type, written K�↘L, if there exists a sequence S of elementary moves turning one into the
other. In this case, we write S : K�↘L.

The dimension of a simple-homotopy equivalence is the maximum of the dimensions of
K, L and of any elementary expansion or collapse in the sequence.

The graph whose nodes are simplicial complexes, and two nodes are adjacent if their
corresponding complexes are related by an elementary collapse is called simple-homotopy
graph. Naturally, its connected components are in one-to-one correspondence with simple-
homotopy types.

Two simplicial complexes of the same simple-homotopy type are homotopy equivalent,
but the converse is not true, see, for instance, [18]. For simple-homotopy equivalent simplicial
complexes we know the following.

I Theorem 3 (Wall [17], Matveev [13, Theorem 1.3.5]). Let K and L be two simplicial
complexes of the same simple-homotopy type and of dimension at most m > 2. Then there
exists a simple-homotopy equivalence of dimension at most m+ 1, taking one to the other.

For the case m = 2, Theorem 3 is still open and known as the (topological or geometric)
Andrews–Curtis conjecture [2, 13, 15]. On the other hand, it is known that any contractible
2-complex is also simple-homotopy equivalent to a point [19]. Hence, any pair of contractible
2-complexes can be connected by a simple-homotopy equivalence of dimension at most four –
but determining whether we can always decide if such a simple-homotopy equivalence exists is
an open question [4], equivalent to the triviality problem for balanced group presentations [12].

2.3 Parametrized complexity
Parametrized complexity, as introduced by Downey and Fellows in [7], is a refinement of
classical complexity theory. The theory revolves around the general idea of developing
complexity bounds for instances of a problem not just based on their size, but also involving
an additional parameter, which might be significantly smaller than the size. Specifically, we
have the following definition.

I Definition 4 (Parameter, parametrized problem). Let Σ be a finite alphabet.
1. A parameter of Σ∗, the set of strings over Σ, is a function ρ : Σ∗ → N, attaching to every

input w ∈ Σ∗ a natural number ρ(w).
2. A parametrized problem over Σ is a pair (P, ρ) consisting of a set P ⊆ Σ∗ and a

parametrization ρ : Σ∗ → N.

In this article we consider the complexity class W[P] for parametrized problems, following
the definition by Flum and Grohe [8].

I Definition 5 (Complexity Class W[P]). Let Σ be an alphabet and ρ : Σ∗ → N a parametriza-
tion. A nondeterministic Turing machine M with input alphabet Σ is called ρ-restricted if
there are computable functions f, h : N→ N and a polynomial p (with coefficients in the set
of natural numbers) such that on every run with input x ∈ Σ∗ the machine M performs at
most f(k) · p(|x|) steps, at most h(k) · log |x| of them being nondeterministic, where k := ρ(x).
W[P] is the class of all parametrized problems (P, ρ) that can be decided by a ρ-restricted
nondeterministic Turing machine.



U. Bauer, A. Rathod, and J. Spreer 13:5

3 Problems

In this article we consider the following parametrized problems.

I Problem 1 (Erasibility Expansion Height).
Instance: A 2-dimensional simplicial complex K and a natural number p.
Parameter: p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using at most p expansions?

I Problem 2 (Ordered Erasibility Expansion Height).
Instance: A 2-dimensional simplicial complex K and a natural number p.
Parameter: p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using first at most p expansions, followed by a sequence of only collapses?

In Section 5, we establish W[P]-completenes for Erasibility Expansion Height and
Ordered Erasibility Expansion Height.

The hardness proof works via a parametrized reduction using the Axiom Set problem,
which is a classical NP-complete problem [9, p. 263] that is well-known to be W[P]-complete
with respect to the appropriate parameter [7, p. 473].

I Problem 3 (Axiom Set).
Instance: A finite set S of sentences, an implication relation R consisting of pairs

(U, s) where U ⊆ S and s ∈ S, and a positive integer p ≤ |S|.
Parameter: p.
Question: Is there a set S0 ⊆ S, called an axiom set, with |S0| ≤ p and a positive

integer n such that if we recursively define

Si := Si−1 ∪ {s ∈ S | ∃U ⊆ Si−1 : (U, s) ∈ R}

for 1 ≤ i ≤ n, then Sn = S?

I Remark 6. Note that every instance of Axiom Set can be reduced in polynomial time
to an instance for which every sentence must occur in at least one implication relation:
First iteratively remove all sentences from the instance which do not feature in at least one
implication relation. Then, for each of them, reduce p by one (note that each of them must
necessarily be an axiom). It follows that solving the reduced instance is equivalent to solving
the original instance.

Similarly, note that if there exists an implication (U, s) ∈ R, s ∈ U , we can simply omit
it and, if this deletes s from the instance altogether, decrease p by one.

In Section 6, we show that the following variants of the expansion height problem are
NP-complete.

I Problem 4 (Erasibility 3-Expansion Height).
Instance: A finite 2-dimensional simplicial complex K and a natural number p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using at most p expansions, all of which are 3-expansions?

I Problem 5 (Ordered Erasibilty 3-Expansion Height).
Instance: A finite 2-dimensional simplicial complex K and a natural number p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using first at most p expansions, all of which are 3-expansions, followed by
a sequence of only collapses?

ESA 2019
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4 Contractibility and collapsibility for 2-complexes

The main gadget used in the proof of our main result, Theorem 8, is based on the simplest
2-dimensional contractible complex which is not collapsible to a point – the dunce hat. Hence,
before we describe our main gadget in detail, we start this section by briefly discussing
minimal triangulations of the dunce hat, and a variant that is collapsible through a unique
free edge, the modified dunce hat.

4.1 The dunce hat
In the category of CW complexes, the dunce hat can be obtained by identifying two boundary
edges of a triangle to build a cone and then gluing the third edge along the seam of the first
gluing. The resulting complex does not have a collapsible triangulation. On the other hand,
the dunce hat is known to be contractible [21].

The smallest simplicial complexes realizing this construction have 8 vertices, 24 edges and
17 triangles. There are seven such minimal triangulations of the dunce hat [16]. One such
triangulation, denoted by D, is shown in Figure 1. The dunce hat D has two horns, namely
H({2, 7, 8}, {1, 2, 7, 8}) and H({3, 5, 6}, {1, 3, 5, 6}), and hence admits two 3-expansions,
namely ↗{1,2,7,8}{2,7,8} and ↗{1,3,5,6}{3,5,6} respectively. They are shown by the shaded areas in
Figure 1.

4 8

76
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1

1 3 2 1

3 2

2 3

6

5

4

7

3

13

2

1

2

2

Figure 1 Left: The 8-vertex triangulation D of the dunce hat. The two expansions turning it
collapsible are highlighted. Right: The 7-vertex triangulation P of the modified dunce hat.

Note that after any of these two expansions we obtain a collapsible complex: After the
expansion ↗{1,2,7,8}{2,7,8} and the collapses ↘{1,2,7,8}{1,7,8} , ↘{1,2,7}{1,7} , and ↘{1,2,8}{1,8} , the edge {1, 2}
becomes free and thus D becomes collapsible. Similarly, starting with ↗{1,3,5,6}{3,5,6} , one may
perform the collapse ↘{1,3,5,6}{1,5,6} and proceed in an analogous way. In particular, this shows
that the dunce hat has the simple-homotopy type of a point, and in fact can be made
collapsible by using a single expansion.

4.2 The modified dunce hat
Rather than working with the dunce hat directly, we base the construction of our gadget for
the proof of Theorem 8 on the modified dunce hat [10]. More precisely, we “insert” a free
edge into the dunce hat. For instance, Figure 1 depicts a triangulation of the modified dunce
hat, which we denote by P, with {1, 3} as the unique free edge. This particular triangulation
of the modified dunce hat uses only 7 vertices, 19 edges, and 13 triangles. The modified
dunce hat has previously been used as a gadget to show hardness of approximation for
Morse matchings [3].
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If we assume that P is part of a larger complex K, in which edge {1, 3} is glued to
triangles not lying in P, then {1, 3} is not free. In this case, the triangles of P can be
collapsed away in essentially two distinct ways. Either, at some point in a simple-homotopy
on K, the edge {1, 3} becomes free and thus the triangles of P collapse, or the triangles of P
become collapsible by performing one of two possible 3-expansions on P. Looking at the
latter case in more detail, we have the following sequences of expansions and collapses:

↗{1,2,5,6}{2,5,6} , ↘{1,2,5,6}{1,5,6} , ↘{1,2,5}{1,5} , ↘{1,2,6}{1,6}

and

↗{2,3,6,7}{2,6,7} , ↘{2,3,6,7}{3,6,7} , ↘{2,3,6}{3,6} , ↘{2,3,7}{3,7} .

In the first case, the edge {1, 2} is freed, in the second case, the edge {2, 3} is freed. Both
sequences can be extended to a collapsing sequence of the entire complex P.

4.3 The main gadget
Our gadget for the proof of Theorem 8 is a subdivided version of the modified dunce hat P
from Section 4.2. More precisely, it is determined by two positive integers m and `, denoted
by Pm,`, and can be constructed from the complex P in essentially two steps.

1. Subdivide the edge {1, 3} of P (m− 1) times, thereby introducing vertices x1, . . . xm−1.
Relabel 1→ x0 and 3→ xm to obtain m free edges fi = {xi−1, xi}, 1 ≤ i ≤ m.

2. Remove the edge {4, 6} and place ` vertex-disjoint copies of the disk

{{cj , aj , yj}, {cj , yj , zj}, {cj , zj , bj}, {dj , aj , yj}, {dj , yj , zj}, {dj , zj , bj}},

1 ≤ j ≤ `, inside the 4-gon in the center of P bounded by 4, 5, 6, and 7. Triangulate the
remaining space in the interior of the 4-gon. This creates edges ej = {yj , zj}, 1 ≤ j ≤ `,
with pairwise vertex disjoint stars disjoint to 4, 5, 6, and 7 (now {4, 6} reappears as
a path from 4 to 6, and thus Pm,` is in fact a proper subdivision of P). See Figure 2
for an illustration.

One key property of Pm,` is that we do not subdivide any faces of P near to the two
available 3-expansions. As a result, again, assuming that Pm,` is part of a larger complex K
where all free edges of Pm,` are glued to other triangles of K outside of Pm,` and thus are
not free, the triangles of Pm,` can be collapsed according to the following observation:
I Remark 7. Let K be a two-dimensional simplicial complex such that Pm,` is a subcomplex
whose vertices do not span any other faces of K (i.e., Pm,` is an induced subcomplex
of K), and K�↘L where L is a 1-complex. Then, at least one of the following three
statements holds true at some point in K�↘L, enabling us to eventually collapse away all
the triangles of Pm,`.
1. one of the edges fi ∈ Pm,` becomes free;
2. one of two 3-expansions on Pm,` : ↗{1,2,5,6}{2,5,6} or ↗{2,3,6,7}{2,6,7} is performed;
3. multiple expansions result in a complex in which all the triangles of Pm,` can be collapsed.
In other words, if one of the edges fi ∈ Pm,` does not become free at some point in K�↘L,
then one is forced to use 3-expansions (either directly on Pm,`, or after performing additional
expansions) to collapse away the triangles of Pm,`.

In Section 5.1 we use this gadget to reduce an instance A = (S,R, p) of Axiom Set
to Erasibility Expansion Height: Every sentence s ∈ S is associated with one copy of
Pm,`, the edges fi correspond to implications (U, s) ∈ R, and the edges ej correspond to
whenever s ∈ U for some implication (U, u) ∈ R.
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Figure 2 The main gadget of the construction Pm,`.

5 Parametrized complexity of Erasibility Expansion Height

In this section, we first prove that Erasibility Expansion Height and Ordered Era-
sibility Expansion Height are W[P]-hard by a reduction from Axiom Set, a prob-
lem known to be W[P]-complete. We then show that the two problems are also con-
tained in W[P].

5.1 W[P]-hardness of expansion height problems
I Theorem 8. Erasibility Expansion Height and Ordered Erasibility Expansion
Height are W[P]-hard problems.

The following lemma is used to assemble the gadgets in our reduction into a simplicial
complex K.

I Lemma 9 (Munkres, [14, Lemma 3.2]). Let C be a finite set, let K be a simplicial complex
with set of vertices V , and let f : V → C be a surjective map associating to each vertex of
K a color from C. The coloring f extends to a simplicial map g : K → Kf where Kf has
vertex set C and is obtained from K by identifying vertices with equal color.

If for all pairs v, w ∈ V , f(v) = f(w) implies that their stars starK(v) and starK(w) are
vertex disjoint, then, for all faces τ, σ ∈ K we have that

τ and g(τ) have the same dimension, and
g(τ) = g(σ) implies that either τ = σ or τ and σ are vertex disjoint in K.

Lemma 9 provides a way of gluing faces of a simplicial complex by a simplicial quotient
map obtained from vertex identifications, and tells us when this gluing does not create
unwanted identifications.

Proof of Theorem 8. We want to reduce Axiom Set to Erasibility Expansion Height.
Fix an instance A = (S,R, p) of Axiom Set such that every sentence s ∈ S is subject to

at least one implication (U, s) ∈ R and such that (U, s) ∈ R implies s 6∈ U . By Remark 6,
this is not a restriction, since every instance of Axiom Set can be reduced to such an
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instance in polynomial time. For every sentence s ∈ S, take a copy Ps of the gadget Pm,` to
model s, where ` ≥ 0 is the number of implications (U, u) ∈ R with s ∈ U and m ≥ 1 is the
number of implications (U, s) ∈ R. Thus, for all values ` ≥ 0 and m ≥ 1 the gadget Pm,` is
a simplicial complex without any unintended identifications. Denote the free edges of Ps by
fsi = {xsi−1, x

s
i}, 1 ≤ i ≤ m, and its edges of type ej by esj = {ysj , zsj}, 1 ≤ j ≤ `.

For a fixed s ∈ S, endow the set of implications (U, s) ∈ R of s with an arbitrary order
(U1, s), . . . , (Um, s). Similarly, for a fixed u ∈ S, order the set of implications in R containing
u arbitrarily as (U1, s1), . . . , (U `, s`). Now for every (Ui, s) ∈ R and every u ∈ Ui = U j (i.e.,
sj = s), glue the edge fsi = {xsi−1, x

s
i} of the gadget Ps to the edge euj = {yuj , zuj } of Pu by

identifying xsi−1 with yuj and xsi with zuj .
Performing these identifications for all implications in R yields a complex, which we

denote by K. Note that, fixing s ∈ S, and 0 ≤ i ≤ m, the only vertices to which xsi can
possibly be identified to in K are yuj , zuj (1 ≤ j ≤ `).

More precisely, using the orderings from above for vertex xsi , let (Ui, s) and (Ui+1, s)
be the i-th and (i+ 1)-st implication of s in R (if i ∈ {0,m} there is only one implication
to consider) and denote their sentences by u1, . . . , ur and u1, . . . , ut, where r = |Ui| and
t = |Ui+1|. Moreover, let Ui (resp. Ui+1) be the jf -th (resp. jg-th) implication where the
sentence uf (resp. ug) occurs, for 1 ≤ f ≤ r (resp. 1 ≤ g ≤ t). Then xsi is identified with zuf

jf

(1 ≤ f ≤ r) and yug

jg (1 ≤ g ≤ t).
Now since every fixed edge of type euj is only identified with one edge of type fsi , those

vertices are not identified with any other vertices of K. Since, by construction, the set of
the vertex stars of zuf

jf
(1 ≤ f ≤ r), yug

jg (1 ≤ g ≤ t), and xsi are pairwise vertex disjoint, we
can apply Lemma 9 to ensure that no unwanted identifications occur in building up K. In
particular, every gadget Ps is a subcomplex of K via the canonical isomorphism given by
the gluing map.

We now show that the following three statements are equivalent for our complex K:
(a) there exists a simple-homotopy equivalence turning K into a 1-dimensional complex

using first at most p expansions, followed by a sequence of only collapses,
(b) there exists a simple-homotopy equivalence K�↘L turning K into a 1-dimensional

complex L using at most p expansions, and
(c) there exists an axiom set S0 ⊂ S for A = (S,R, p) using at most p elements.

We trivially have that (a) =⇒ (b).
In order to show that (c) =⇒ (a), assume that there exists an axiom set S0 ⊂ S of size p,

and perform one 3-expansion on each gadget Pu with u ∈ S0. As described in Section 4.3,
these expansions admit all triangles of these gadgets to collapse. This, in turn, frees all edges
fsi where s ∈ S has an implication (U, s) ∈ R with U ⊂ S0. Consequently, all triangles of
such gadgets Ps can be collapsed. Since S0 is an axiom set, repeating this process eventually
collapses away all tetrahedra and triangles, leaving a 1-complex.

In order to show that (b) =⇒ (c), we start with a few definitions. For a complex K ′
with K�↘K ′, we say that a gadget Ps ⊆ K is touched with respect to a simple-homotopy
sequence S : K�↘K ′ if at some point in the simple-homotopy sequence one of the triangles
of Ps is removed. Otherwise Ps is said to be untouched. Note that even if all triangles of Ps

are present in K ′, Ps might still be touched. Being touched or untouched is a property of
the sequence S : K�↘K ′, not of the complex K ′.

We build the axiom set S0 ⊂ S for A = (S,R, p) in the following way: A sentence s ∈ S is
in S0 if and only if a triangle in Ps is removed by a 3-collapse of the given simple-homotopy
sequence S : K�↘L. We first inductively prove a claim about

Sk = {s ∈ S | Ps is touched by a 3-collapse in the first k moves of K�↘L}.
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We first inductively prove a claim about

Sk = {s ∈ S0 | Ps is by a 3-collapse in the first k moves of K�↘L}.

B Claim 10. For s ∈ S, if the gadget Ps is touched by the first k elementary moves in
S : K�↘L, then s is implied by sentences in Sk.

Proof. First note that all gadgets are untouched in K and S0 = ∅.
By induction hypothesis, if a gadget Ps is touched by one of the first k − 1 moves in

S : K�↘L, then s is implied by sentences in Sk−1.
The induction claim is trivially true if Ps is touched in the first k − 1 moves, or if Ps

is touched by a 3-collapse in the k-th move (s ∈ Sk \ Sk−1), causing the sentence s to be
included in S0.

So, suppose that this is not the case. That is, suppose that Ps is untouched in the
length k−1 prefix S ′ : K�↘K ′ of S : K�↘L and touched by a 2-collapse in the k-th move.
This implies that Sk = Sk−1 and that Ps is a subcomplex of K ′ and one of the edges fsi must
be free in K ′. Now let Pu1 ,Pu2 , . . . ,Puq

be the set of other gadgets containing triangles glued
to fsi in the original complex K (that is, there is an implication ({u1, u2, . . . , uq}, s) ∈ R).
Since none of these triangles are present in K ′, all gadgets Pu1 ,Pu2 , . . . ,Puq

must be touched
in S ′ : K�↘K ′. Thus, either they were touched by a 3-collapse and their corresponding
sentences are part of Sk−1, or they were touched by a 2-collapse and, by the induction
hypothesis, their corresponding sentences are implied by sentences in Sk. It follows that s is
implied by sentences in Sk = Sk−1, proving the claim. C

By assumption, K is simple homotopy equivalent to a 1-complex L. That is, S ′ : K�↘L

eventually removes all triangles from K. Hence, every sentence s ∈ S is touched as a result
of a 2-collapse or a 3-collapse. Let m be the number of elementary moves needed to reach
L starting from K. Then, by Claim 10, Sm = S0 is the desired axiom set. Also, since a
sentence s is included in S0 only if a triangle belonging to gadget Ps is removed as part
of a 3-collapse, and since a triangle belonging to gadget Ps does not belong to any other
gadget Pu for u 6= s, S0 cannot contain more elements than the number of 3-collapses (and
hence 3-expansions).

Finally, we infer W[P]-hardness of Erasibility Expansion Height and Ordered
Erasibility Expansion Height from the above equivalence and the W[P]-hardness of
Axiom Set [7, p. 473]. J

5.2 W[P]-membership of Erasibility Expansion Height
We now show that Ordered Erasibility Expansion Height and Erasibility Expan-
sion Height are in W[P] by describing suitable nondeterministic algorithms for deciding
both problems. We begin with a well-known fact about checking collapsibility of 2-complexes.

I Proposition 11 (Tancer [17], Proposition 5). Let K be a 2-complex that collapses to a
1-complex L and to another 2-complex M . Then M also collapses to a 1-complex.

I Remark 12. The proposition above implies that we can collapse an input 2-complex K
greedily until no more 2-collapses are possible, and if K collapses to a 1-complex L, the
algorithm is guaranteed to terminate with a 1-complex as well.

I Theorem 13. Ordered Erasibility Expansion Height is in W[P].
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Proof. Let K be a simplicial complex with n simplices. First, note that if there exists a
simple homotopy sequence S taking K to a 1-complex with p expansions that all come at
the beginning of the sequence, then there also exists a simple homotopy sequence SM taking
K to a 1-complex where p expansions are followed by collapses such that, for each d, all
collapses of dimension d+ 1 are executed before collapses of dimension d. This follows from
observing that, for any two d-collapses ↘τ

σ and ↘β
α, if the d-collapse ↘τ

σ is executed before
the d-collapse↘β

α in S, then the same can be carried out in SM. Also, in any simple homotopy
sequence S that takes K to a 1-complex, for every d > 2, the number of d-expansions equals
the number of d-collapses in S. This follows from a simple inductive argument starting with
highest dimensional moves.

Denoting the total number of d-collapses, d > 2, in S by q ≤ p, it follows that, if there
exists a simple homotopy sequence S with p expansions that come at the beginning, then
there exists a simple homotopy sequence SM with p expansions in the beginning followed by
q collapses that gives rise to a 2-complex K ′ with O(n3) faces. The faces can be as many
as O(n3) since M does not guess any 2-collapses. Furthermore, if K is erasable through the
simple homotopy sequence S, then K ′ is also erasable, once again, because the 2-collapses of
S can be carried out in the same order in SM. Hence, the non-deterministic Turing machine
M can now be described as follows:
1. Guess p expansions and q collapses non-deterministically to obtain a complex K ′.
2. Deterministically check if K ′ is erasable.
By Remark 12, erasability of K ′ can be deterministically checked in time polynomial in n.

Since any simplex in the desired simple homotopy sequence has at most n+ p vertices,
the number of bits required to encode a single vertex is O(log(n + p)). Also, because the
dimension of the faces involved in expansions and collapses is certainly in O(p), and since
an expansion or a collapse can be fully described by a pair of simplices, the number of bits
required to encode an expansion or a collapse is O(p log(n+ p)). Hence, in order to guess
p + q moves, it suffices for M to guess O(p2 · log(n + p)) bits in total since q ≤ p. Now,
assuming n, p ≥ 2, we have

p2 log(n+ p) ≤ p2 log(np) = p2 log(n) + p2 log(p) ≤ p2(1 + log(p)) log(n).

Hence, for sufficiently large n and p, the number of bits guessed by M is bounded by a
function of the form f(p) logn. Thus, M is a p-restricted Turing machine, and Ordered
Erasibility Expansion Height is in W[P]. J

I Theorem 14. Erasibility Expansion Height is in W[P].

Proof. Assume that there exists a simple homotopy that takes K to a 1-complex using no
more than p expansions. The Turing machine M needs to generate one such sequence. Below,
we show that, in order to achieve this, M does not have to guess an entire simple homotopy
sequence, but only a subsequence, and the remaining part of the sequence can be found
deterministically by M.

Given a 2-dimensional complex K with n faces, M first nondeterministically guesses p
expansions and p collapses, and the order in which they are to be executed. These moves are
referred to in the following as prescribed moves. While these moves are meant to appear in
a specified order, they need not appear consecutively. The moves that are not prescribed
are computed deterministically by M. A simple homotopy sequence of K, that takes K to a
1-complex, in which all the prescribed moves occur as a subsequence, is called a sequence
compatible with the prescribed moves. By assumption, there exists a set of prescribed moves
for which a compatible sequence exists.
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In order to give a description of M, we introduce some additional terminology. Let Sjq be
an intermediate simple homotopy sequence computed by M, such that the first j prescribed
moves guessed by M form a subsequence of Sjq , q is the total number of moves in Sjq , and
Sjq is a prefix of a set of sequences S compatible with the prescribed set of moves. Let
K�↘Kj

q be the complex obtained by executing the moves in Sjq . Then, a collapse ↘τ
σ in

Kj
q is valid for this prefix if appending the collapse still leaves a compatible prefix. That

is, Sjq appended with the collapse ↘τ
σ (giving Sjq+1) continues to be a prefix of at least one

compatible sequence S ∈ S. A collapse that is not valid is said to be forbidden.
Note that labelling vertices of a complex C by natural numbers determines a lexicographic

order on the simplices of C. The lexicographic order <C on simplices of C can be extended
to a lexicographic order ≺ on collapses as follows: If (↘τ

σ), (↘β
α) are two collapses in C, then

(↘τ
σ) ≺ (↘β

α) if σ <C α.
The Turing machine M for deciding Erasibility Expansion Height can be described

as follows:
1. Guess 2p prescribed moves non-deterministically.
2. Execute 2-collapses in lexicographic order until no more 2-collapses are valid.
3. Repeat until all prescribed moves have been executed:

a. Execute the next prescribed move.
b. Execute 2-collapses in lexicographic order until no more collapses are valid.

Let S be a sequence compatible with an ordered set of prescribed moves X (of cardinality
2p), and let SM be a simple homotopy sequence computed by M as above such that X is
a subsequence of SM. Now, let σ be a free edge associated with a 2-collapse ↘τ

σ in Sjq for
some j and q, where Sjq is a subsequence of SM. If there exist future prescribed moves
including cofaces of σ, then the next prescribed move including cofaces of σ that is not an
expansion involving σ is denoted by m1. Similarly, if there exist future prescribed moves
including cofaces of τ , then the next prescribed move including cofaces of τ that is not an
expansion involving τ is denoted by m2. Note that m2 cannot come before m1 but we may
have m1 = m2. Then, the 2-collapse ↘τ

σ is forbidden if and only if m1 exists and is not
preceded by a future prescribed expansion involving σ or m2 exists, and is not preceded by
a future prescribed expansion involving τ . It follows that, for each free edge, checking if a
collapse is forbidden (or valid) can be done deterministically in time polynomial in p. To see
this note that the most expensive atomic operation is to check if a simplex (of dimension 1 or
2) is a face of a simplex that is at most p dimensional, and the number of prescribed moves
is at most 2p. Altogether, the set of valid collapses can be computed in time polynomial in n
and p, which can also be lexicographically ordered in polynomial time.

Finally, let K ′ denote the complex obtained from K by the sequence SM. Then, the
following claim establishes the effectiveness of the greedy strategy employed by M.

B Claim 15. If there exists a simple homotopy sequence with at most p expansions that
takes K to a 1-complex, then there exists an execution branch of the Turing machine that
terminates successfully, i.e., the complex K ′ obtained by M is a 1-complex.

Proof. Let S be a simple homotopy sequence with p expansions that takes K to a 1-complex.
Let Xe be the ordered set of expansions in S. Thus, |Xe| = p. Moreover, let X+

e (X+
c )

denote the d-expansions (d-collapses) in S with d > 2. As in Theorem 13, by a simple
inductive argument starting from the highest dimension it can be shown that |X+

c | = |X+
e |.

To the p expansions of S, we associate a set Xc of collapses of S as follows: If |X+
c | < p,

then let X−c be an arbitrary set of d-collapses in S with d ≤ 2, and |X−c | = p− |X+
c |. Now,

let Xc = X+
c ∪X−c , so that |Xc| = p. Finally, let the ordered set X of prescribed moves be

the set containing all elements of Xc ∪Xe seen as a subsequence of S.
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We assume that the non-deterministic Turing machine M correctly guesses the speci-
fied sequence of prescribed moves X. It now suffices to show the following claim about
the sequence SM. C

B Claim 16. SM is compatible with the prescribed moves X, and SM takes K to a 1-complex
if S takes K to a 1-complex.

Proof. Let K�↘Kj denote the complex obtained from S after executing the j-th prescribed
move in S. We show that there exists a complex Kj

M obtained from SM after executing the
j-th prescribed move in SM. Also, let T j (T jM ) denote the set of 2-simplices of Kj (Kj

M).
First observe that, K0

M = K exists and that T 0
M = T 0. We now show that the following

claim is inductively true: T jM ⊂ T j for all j ∈ [1, 2p]. Suppose we make the induction
hypothesis that T j−1

M ⊂ T j−1 for some j ∈ [1, 2p]. Then, the set of forbidden collapses for S
and SM are the same until the j-th move in X can be reached. Let τ1 be the first 2-face of
Kj−1 that is removed as part of a 2-collapse after j− 1 prescribed moves have been executed
in S. Without loss of generality, assume that the 2-collapse that removes τ1 is non-prescribed.
Then, there exists an edge σ1 ⊂ τ1 such that τ1 is the unique coface of σ1 in Kj−1. By
induction hypothesis, since T j−1

M ⊂ T j−1 the same is also true for Kj−1
M . Since M greedily

removes every valid collapse it can (in lexicographic order), at some appropriate lexicographic
index, τ1 is also removed from Kj−1

M (possibly along with σ1). Now, let τ1, τ2, . . . , τq−1 be
the first q − 1 2-faces removed from Kj−1 (as part of non-prescribed collapses). Assume
that τ1, τ2, . . . , τq−1 have also been removed from Kj−1

M . By the same reasoning as before,
if τq is the q-th face to be removed from Kj−1

M (as part of non-prescribed collapses), then
τq may also be removed from SM as part of a valid collapse. Hence, by induction, T jM ⊂ T j
for all j ∈ [1, 2p].

Finally, since by assumption, K2p collapses to a 1-complex, by applying arguments
analogous to the induction above, the same is true for K2p

M since T 2p
M ⊂ T 2p. C

Since given a 2-complex with n faces, M non-deterministically guesses 2p moves, as
in Theorem 13, the number of bits guessed by M is bounded by f(p) log(n), where f(p) =
O(p2(1 + log(p))). Hence, M is a p-restricted Turing machine, and Erasibility Expansion
Height is in W[P]. J

6 NP-completeness of Erasibility 3-Expansion Height

Note that the parametrized reduction from Axiom Set to Erasibility Expansion Height
(and Ordered Erasibility Expansion Height) is also a polynomial-time reduction (or
Karp reduction) from Axiom Set to Erasibility 3-Expansion Height (and Ordered
Erasibilty 3-Expansion Height), since the complexity of reduction is independent of the
parameter p and depends only on the size of the input complex. This observation leads us to
the following result.

I Theorem 17. The decision problems Erasibility 3-Expansion Height and Ordered
Erasibilty 3-Expansion Height are NP-hard.

Proof. Since the Axiom Set problem is known to be NP-hard [9], it follows that Erasi-
bility 3-Expansion Height and Ordered Erasibilty 3-Expansion Height are also
NP-hard. J

For the rest of the section, we assume that K is a 2-complex K with n faces and m

vertices. The total number of simplices that one can encounter in any simple homotopy
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sequence of K using only 3-expansions is at most M = O(m4). (Note that the ground set
of K is fixed since we do not allow 1-expansions). Hence, the total number of elementary
moves that may be available at any given point in the sequence is bounded by O(M). That
is, p itself is bounded by O(M).

I Theorem 18. Erasibility 3-Expansion Height is in NP.

Proof. The non-deterministic algorithm M for deciding Erasibility 3-Expansion Height
first guesses at each point in the simple homotopy sequence starting with K, one elementary
move (out of at most O(M) available moves), and constructs a new complex from the move.
The total number of moves made by M is bounded by (n+2p−1

2 ). Finally, M checks if the
final complex is a 1-complex. J

I Theorem 19. Ordered Erasibilty 3-Expansion Height is in NP.

Proof. The non-deterministic algorithmM for deciding Ordered Erasibilty 3-Expansion
Height first guesses at most p 3-expansions followed by an equal number of 3-collapses,
resulting in a 2-complex K ′ with n faces. From Remark 12, the erasability of K ′ can be
deterministically checked in time polynomial in n, proving the claim. J
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Abstract

We study a multi-modal route planning scenario consisting of a public transit network and a transfer
graph representing a secondary transportation mode (e.g., walking or taxis). The objective is
to compute all journeys that are Pareto-optimal with respect to arrival time and the number of
required transfers. While various existing algorithms can efficiently compute optimal journeys in
either a pure public transit network or a pure transfer graph, combining the two increases running
times significantly. As a result, even walking between stops is typically limited by a maximal
duration or distance, or by requiring the transfer graph to be transitively closed. To overcome these
shortcomings, we propose a novel preprocessing technique called ULTRA (UnLimited TRAnsfers):
Given a complete transfer graph (without any limitations, representing an arbitrary non-schedule-
based mode of transportation), we compute a small number of transfer shortcuts that are provably
sufficient for computing all Pareto-optimal journeys. We demonstrate the practicality of our approach
by showing that these transfer shortcuts can be integrated into a variety of state-of-the-art public
transit algorithms, establishing the ULTRA-Query algorithm family. Our extensive experimental
evaluation shows that ULTRA is able to improve these algorithms from limited to unlimited transfers
without sacrificing query speed, yielding the fastest known algorithms for multi-modal routing. This
is true not just for walking, but also for other transfer modes such as cycling or driving.
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1 Introduction

Research on efficient route planning algorithms has seen remarkable advances in the past dec-
ades. For many types of transportation networks, queries can be solved in a few milliseconds,
even on a continental scale [3]. However, combining schedule-based (i.e., public transit) and
non-schedule-based (e.g., walking, cycling, driving) transportation modes and solving the
resulting multi-modal routing problem is still a challenge [26]. In this work, we consider a
multi-modal problem that augments public transit with a transfer graph, which represents
an arbitrary non-schedule-based mode of transportation that can be used for transferring
between public transit stops. Given a source and target vertex in the transfer graph and a
departure time, we want to compute all Pareto-optimal journeys regarding travel time and
number of used public transit trips.

Related Work. Most algorithms for public transit routing either impose technical restrictions
on the included transfers or have only been evaluated on networks featuring very sparse
transfer graphs. Algorithms that were only evaluated for limited transfers include the
graph-based techniques in [23] and [18], frequency-based search [5], Transfer Patterns [2]
and its accelerated version, Scalable Transfer Patterns [4], Public Transit Labeling [11], and
SUBITO [9]. A common restriction, employed by CSA [14, 15], RAPTOR [13], and their
corresponding speedup techniques ACSA [25, 15] and HypRAPTOR [12], is to require that
the transfer graph is transitively closed. This eliminates the need to search within the transfer
graph, as every possible destination can be reached with a single edge. To ensure a reasonably
sized transfer graph, transfers are typically limited by a maximal duration (e.g., 15 minutes
of walking) or distance before the transitive closure is computed. As shown in [26], choosing
a higher limit for the maximal transfer duration increases the size of the resulting transitively
closed graph significantly. A limit of only 20 minutes on the maximal transfer duration already
leads to a graph that is unsuitable for practical applications. A special case is Trip-Based
Routing [27], which precomputes transfers between pairs of trips. This precomputation
involves enumerating all possible transfers and then using a limited set of pruning rules to
omit some, but not all unnecessary transfers. Trip-Based Routing was only evaluated for
transitively closed transfer graphs and likely has prohibitively high preprocessing times on
unrestricted transfer graphs.

Using a restricted transfer graph is often justified with the argument that long transfers
are rarely useful. However, experiments performed in [26, 22] show that unrestricted walking
often significantly reduces the travel time of optimal journeys. This effect is likely even
stronger for faster transportation modes, such as bicycle or car. The only algorithms that
can handle unrestricted transfer graphs so far are multi-modal techniques such as MCR [10]
and UCCH [16]. These techniques work by interleaving a public transit routing algorithm
with Dijkstra’s algorithm [17] on a contracted transfer network. Accordingly, they are fairly
slow compared to pure public transit algorithms. Most recently HLRaptor and HLCSA [22]
have been published. Here, RAPTOR/CSA are interleaved with Hub Labeling queries [1]
instead of Dijkstra. While requiring more than an hour of preprocessing, this significantly
improves query times. However, it is still not as efficient as pure public transit algorithms.

Our Contribution. Preliminary experiments [24] have shown that the impact of unrestricted
transfers in Pareto-optimal journeys depends heavily on their position in the journey:
Initial transfers, which connect the source to the first public transit vehicle, and final
transfers, connecting the final vehicle to the target, are fairly common and often have a
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large impact on the travel time. In contrast, intermediate transfers between public transit
trips are only occasionally relevant for optimal journeys. This suggests that the number
of unique paths in the transfer graph that occur as intermediate transfers of a Pareto-
optimal journey is small. Using this insight, we propose a new preprocessing technique
called ULTRA (UnLimited TRAnsfers), which computes a set of shortcut edges representing
these paths. The preprocessing step is carefully engineered to ensure that the number of
shortcuts remains small. Combined with efficient one-to-many searches for the initial and
final transfers, these shortcuts are sufficient to answer all queries in the network correctly.
ULTRA shortcuts can be used without adjustment by any algorithm that previously required
a transitively closed transfer graph. Our experiments show that this enables unrestricted
multi-modal queries with roughly the same performance as restricted queries. In particular,
ULTRA-CSA is the first efficient multi-modal variant of CSA. Source code for ULTRA and
our experiments is available at https://github.com/kit-algo/ULTRA.

2 Preliminaries

In this section we establish the basic notation and terminology used in this work. Moreover,
we introduce the RAPTOR and Bucket-CH algorithms, on which our work is founded.

Public Transit Network. A public transit network is a 4-tuple (S, T ,R, G) consisting of
a set of stops S, a set of trips T , a set of routes R, and a directed, weighted transfer
graph G = (V, E). Every stop in S defines a location in the network where passengers
can board or disembark a vehicle (such as buses, trains, ferries, etc.). Furthermore, we
associate with each stop v ∈ S a non-negative departure buffer time τbuf(v), which defines
the minimum amount of time that has to pass after arriving at the stop before a vehicle can
be boarded. A trip T = 〈v0, . . . , vk〉 ∈ T is a sequence of at least two stops which are served
consecutively by the same vehicle. For each stop v in the sequence, τarr(T, v) denotes the
arrival time of the vehicle at v, and τdep(T, v) denotes its departure time. This, of course,
implies that τarr(T, v) ≤ τdep(T, v) holds for every trip T and stop v. The i-th stop of a
trip T is denoted as T[i]. The set of routes R defines a partition of the trips such that two
trips are part of the same route if they have the same stop sequence and do not overtake
each other. A trip Ta ∈ T overtakes the trip Tb ∈ T if two stops u, v ∈ S exist such that Ta
arrives at or departs from u before Tb and Ta arrives at or departs from v after Tb.

The transfer graph G = (V, E) consists of a set of vertices V with S ⊆ V, and a set
of edges E ⊆ V × V. For each edge e = (u, v) ∈ E we define the transfer time τθ(e) as
the time required to transfer from u to v. The notion of transfer time carries over to
paths P = (v1, . . . , vk) in G, using the definition τθ(P ) :=

∑k−1
i=1 ((vi, vi+1)). Unlike in

restricted walking scenarios, we require no special properties for the transfer graph G. It
does not need to be transitively closed, it may be strongly connected, and transfer times
may represent walking, cycling, or some other non-schedule-based mode of travel.

Journeys. A trip leg Tij is a subsequence of the trip T, representing a passenger boarding
the trip T at the i-th stop and disembarking at the j-th stop. The departure time of Tij

is the departure time at the first stop of the trip leg, i.e., τdep(Tij) := τdep(T,T[i]). Sim-
ilarly, the arrival time is defined as τarr(Tij) := τarr(T,T[j]). An intermediate transfer ϑ
between two trip legs Tija and Tmnb is a path in the transfer graph such that: (1) the path ϑ
begins with the last stop of Tija , (2) the path ends with the first stop of Tmnb , and (3) the
transfer time of the path is sufficient to reach Tmnb . The transfer time is sufficient if after
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vacating Tija and transferring to the departure stop of Tmnb , there is still sufficient buffer time
to enter Tmnb . We can express this formally as τarr(Tija ) + τθ(ϑ) + τbuf(Tmnb [m]) ≤ τdep(Tmnb ).
An initial transfer ϑ before a trip leg Tij is a path in G from the source s to the first
stop of Tij . Correspondingly, a final transfer ϑ after a trip leg Tij is a path in G from
the last stop of Tij to the target t. We use the term transfer on its own to denote the
union of all transfer types, or if the actual type of the transfer can be deduced from context.
We define a journey J = 〈ϑ0,Tij0 , . . . ,T

mn
k−1, ϑk〉 as an alternating sequence of transfers

and trip legs. Note that some or all of the transfers may be empty. The departure time
of the journey is defined as τdep(J) := τdep(Tij0 )− τbuf(T0[i])− τθ(ϑ0) and the arrival time
as τarr(J) := τarr(Tmnk−1) + τθ(ϑk). The number of trips used by the journey is k. A jour-
ney J (weakly) dominates a journey J ′ if τdep(J) ≥ τdep(J ′), τarr(J) ≤ τarr(J ′), and J does
not use more trips than J ′. For strict domination, at least one criterion must be strictly better.
A journey J is called Pareto-optimal if no other journey exists that dominates J .

In our journey definition, the departure buffer time at a stop models the time required to
reach the right platform and board a trip, regardless of how the stop was reached. Many
other works on public transit routing instead use a minimum transfer time, which only needs
to be observed if the stop was reached directly via a trip instead of a transfer. This is
reasonable for settings with direct transfers between stops, where the buffer time can simply
be included in the transfer time. When allowing arbitrary transfers, however, it can lead to
inconsistencies. For instance, given a stop with minimum transfer time τ , if a path starting
and ending at this stop with a transfer time less than τ exists, then taking that path would
allow passengers to circumvent the minimum transfer time.

Algorithms. Since our algorithm is strongly influenced by the RAPTOR algorithm family,
we now introduce the basic concepts of these algorithms. The RAPTOR [13] algorithm can
be used to solve one-to-one and one-to-many queries on a public transit network with limited
transfers. The algorithm operates in rounds, where the i-th round finds all journeys using
exactly i trips. For this, each round extends journeys found in the previous round by one
trip, which can be done via a single scan of all routes in the network. An extension of this
algorithm for multi-modal scenarios with unlimited transfers is MCR [10]. In this algorithm
the RAPTOR rounds are alternated with Dijkstra’s algorithm on a contracted transfer
graph, in order to propagate arrival times through the transfer graph. Another extension,
rRAPTOR [13], can be used to answer range queries, which ask for all Pareto-optimal
journeys that depart within a given time interval. The rRAPTOR algorithm operates in
iterations, where every iteration handles a possible departure time using the basic RAPTOR
algorithm. The possible departure times are handled in descending order, and the data
structures used by RAPTOR are not cleared in between iterations. As a result, journeys found
by the current iteration are implicitly pruned by journeys that depart later and neither arrive
later nor have more trips. This property of the rRAPTOR algorithm is called self-pruning.

Besides public transit routing algorithms, we also require efficient one-to-many algorithms
for the transfer graph. Especially the Bucket-CH [21, 19, 20] algorithm is useful for our
purposes. This algorithm is based on Contraction Hierarchies (CH) [19, 20] and operates
in three phases. First the CH is computed, requiring only the graph. Second, given the set
of targets, a bucket containing distances to the targets is computed for every vertex. This
is done by adding every target to the buckets of all vertices in its reverse CH search space.
Finally, the distance from a source to all targets is computed by performing the forward part
of a CH search. For each vertex v in the forward search space, the bucket is evaluated by
combining the distance to v with the distance from v to the targets in the bucket.
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3 Shortcut Computation

Our preprocessing technique aims at finding a small number of transfer shortcuts that
are sufficient to answer every point-to-point query correctly. This is achieved if for every
Pareto-optimal journey there exists a journey with the same departure time, arrival time,
and number of trips that uses only the precomputed shortcuts to transfer between trips.
Next, we present a high-level overview of the ULTRA preprocessing, followed by an in-depth
description of important algorithmic details.

3.1 Overview

The basic idea of ULTRA is as follows. We enumerate all possible journeys that use exactly
two trips and require neither an initial nor a final transfer. The transfers between the two
trips of these journeys are then considered as candidates for shortcuts. For each of these
candidate journeys, we check if there is another journey that dominates it. If this is the
case, we can replace the candidate journey with the dominating journey without losing
Pareto-optimality. Note that if the candidate journey is contained in a longer journey, then
it still can be replaced without affecting the Pareto-optimality of the longer journey. We call
such a dominating journey a witness since its existence proves that the candidate shortcut is
not needed. Unlike the candidate journey, the witness journey can make use of the transfer
graph before the first trip or after the second trip. If no witness is found, then the candidate
shortcut is added to the resulting shortcut graph.

A naive implementation of this idea would be to first enumerate all candidate journeys
and subsequently search for witnesses. However, this would be impractical due to the sheer
number of possible journeys. We therefore propose to interweave the candidate enumeration
and the witness search, with the goal of eliminating as many candidates as early as possible.
Pseudocode for the result of these considerations is given by Algorithm 1. The algorithm
resembles invoking rRAPTOR [13] once per stop, restricted to the first two rounds per
iteration. Remember that the original rRAPTOR algorithm already answers one-to-all range
queries. Restricting this algorithm to the first two rounds enables an efficient enumeration of
candidate journeys. Moreover, many dominated candidates are eliminated early on, due to
self-pruning. We will now continue with a detailed discussion of Algorithm 1, showing step
by step what has changed in comparison to the original rRAPTOR and how this helps with
computing the transfer shortcuts.

3.2 Implementation Details

A first important difference is due to the fact that rRAPTOR requires a transitively closed
transfer graph. As we want to allow arbitrary transfer graphs, we replace the RAPTOR that
is invoked in every iteration of rRAPTOR with MR-∞, the variant of MCR that optimizes
arrival time and number of used trips. Because of this change, the relaxation of transfers in
lines 8 and 11 is not done by relaxing outgoing edges of updated stops. Instead, Dijkstra’s
algorithm is performed in order to propagate arrival times found by the preceding route
scanning step. Furthermore, MCR would also use Dijkstra’s algorithm in order to collect
all routes reachable from the source stop in line 6. In the context of rRAPTOR this leads
to many redundant computations, as the source stop does not change between iterations.
We therefore compute distances from the source stop to all other stops once in line 3, again
using Dijkstra’s algorithm. These distances can then be used in line 6.
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Algorithm 1 ULTRA transfer shortcut computation.

Input: Public transit network (S, T ,R, G), with unrestricted transfer
graph G= (V, E)

Output: Shortcut graph G′ = (S, E ′)

1 for each s ∈ S do
2 Clear all arrival labels and Dijkstra queues
3 d(s, ∗)← Compute distances from s to all stops in G using Dijkstra
4 D ← Collect departure times of trips at s
5 for each τdep ∈ D in descending order do // rRAPTOR iteration
6 Collect routes reachable from s at τdep // first RAPTOR round
7 Scan routes
8 Relax transfers
9 Collect routes serving updated stops // second RAPTOR round

10 Scan routes
11 C ← Relax transfers, thereby collecting unwitnessed candidates
12 E ′ ← E ′ ∪ C

Departure Time Collection. In line 4, standard rRAPTOR would collect all departure
events that are reachable from the source stop s. However, given a transfer graph without
any restrictions, this could possibly be every departure event in the network. Since we are
primarily interested in finding candidate journeys, which do not have initial transfers, we
collect only those departure events which depart directly at the source stop s. However, in
order to find witness journeys, we still need to explore initial transfers in line 6. A naive
implementation would check for each stop v reachable from s and for each route containing
the stop v whether a trip that was not scanned in a previous iteration can be reached
given the departure time τdep at s.

A more efficient approach combines lines 4 and 6 into a single operation. For this, we first
sort all departure triplets (v, τdep, r) of departure stop v, departure time τdep, and route r
by their corresponding departure time at the source, τdep − τbuf(v)− d(s, v). Afterwards, we
iterate through this sorted list in descending order of departure time. If the next triplet to
be processed has a departure stop v 6= s, then its route is added to a set R′. In the case that
the next triplet actually has the source stop s as departure stop v, we proceed with lines 6
through 12. Now the routes that have to be collected in line 6 are exactly the routes in R′.
Thus we simply scan all routes in R′ and then reset R′ = ∅ for the next iteration.

Limited Transfer Relaxation. Another part of ULTRA that differs from rRAPTOR is the
final relaxation of transfers in line 11. This is the part of the algorithm where we actually
determine the candidate journeys for which have not found a witness. As usual, relaxing
the transfers is done by Dijkstra’s algorithm, initialized with the arrival times from the
preceding route scanning step. Whenever a stop is settled during this execution of Dijkstra’s
algorithm, we look at the corresponding journey and check whether it is a candidate journey,
i.e., does not require initial or final transfers. If so, we know that there is no witness journey
dominating this candidate, because otherwise the search would have reached the stop via this
witness journey instead. Thus, we extract the intermediate transfer of the found candidate
journey and add it as an edge to the shortcut graph.

We further increase the practical performance of our algorithm by adding a stopping
criterion to the final transfer relaxation in line 11. For this purpose, we count the number
of stops which were newly reached via a candidate journey in the preceding route scanning
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step. Whenever such a stop is settled in line 11, we decrease our counter. Once the counter
reaches zero, we can stop settling further vertices as we know that no more candidates can
be found in this iteration. We can apply a similar stopping criterion to the intermediate
transfer relaxation in line 8. In this case, we count the stops which were reached via a route
directly from s, without an initial transfer, since only these stops can later become part of a
candidate journey. As in line 11, we can stop settling vertices as soon as no such stops are
left in the Dijkstra queue. This does not affect the correctness of the algorithm, as we still
process all candidates. However, it might cause some witnesses to be pruned and thus lead
to superfluous shortcuts in the result. To counteract this, we take the arrival time τarr of the
last stop representing a candidate that is settled. Instead of stopping the transfer relaxation
immediately, we continue until the queue head has an arrival time greater than τarr + τ̄ for
some parameter τ̄ (which we call witness limit). With these changes, the only remaining
part of the algorithm that performs an unlimited search on the transfer graph is the initial
transfer relaxation in line 3, which is only done once per source stop.

The success of our pruning rule for the transfer relaxation in lines 8 and 11 depends
on the presence of candidate journeys in the Dijkstra queues. Fewer candidate journeys
could therefore lead to an earlier application of the pruning rule. We exploit this by further
restricting the notion of candidate journeys. As before, a candidate journey must not contain
any initial or final transfers. In addition, we now require that the intermediate transfer of a
candidate journey is not contained in the set of already computed transfer shortcuts.

Cyclic Witnessing. Since witnesses are only required to dominate candidate journeys weakly,
there may be journeys J, J ′ that dominate each other. If J has an initial transfer of length > 0,
then J without the initial transfer is not dominated by J ′ extended by the reverse initial
transfer. Therefore, the shortcut required by J will be added. Thus, cyclic domination is
only problematic between journeys with initial transfers of length 0. We prevent this by
temporarily contracting groups of stops with transfer distance 0 during the preprocessing.

Transfer Graph Contraction. As shown for MCR [10], the transfer relaxation is often the
bottleneck of multi-modal routing algorithms. Since ULTRA only needs to compute journeys
between stops, rather than arbitrary vertices of the transfer graph, only transfers that start
and end at stops are relevant. Therefore, any overlay graph that preserves the distances
between all stops can be used instead of the transfer graph in our preprocessing algorithm. An
easy way of obtaining such an overlay graph is to construct a partial CH that only contracts
vertices that do not correspond to stops of the public transit network. This, of course, leads
to a suboptimal contraction order and thus makes it infeasible to contract all vertices that
are not stops. As done in many other algorithms [6, 16, 10, 8, 7], we therefore stop the
contraction once the uncontracted core graph surpasses a certain average vertex degree.

Parallelization. Finally, we observe that ULTRA allows for trivial parallelization. Our
algorithm searches for candidate journeys once for every possible source stop (line 1 of
Algorithm 1). As these searches are mostly independent of each other, we can distribute
them to parallel threads and combine the results in a final sequential step. Only the usage of
the restricted candidate notion introduces a dependence between the searches for different
source stops. As this is only a heuristic performance optimization, we simply relax the notion
of candidate journeys again, only requiring that no shortcut representing the intermediate
transfer has been found by the same thread yet.
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Algorithm 2 Query algorithm, using transfer shortcuts computed by ULTRA.

Input: Public transit network (S, T ,R, G), shortcut graph G′= (S, E),
Bucket-CH of G, source vertex s, departure time τdep, and target vertex t

Output: All Pareto-optimal journeys from s to t for departure time τdep
1 d(s, ∗)← Run Bucket-CH query from s

2 d(∗, t)← Run reverse Bucket-CH query from t

3 G′′ ← G′

4 for each v ∈ S do
5 Add edge (s, v) to G′′ with travel time d(s, v)
6 Add edge (v, t) to G′′ with travel time d(v, t)
7 Run black box public transit algorithm on (S ∪ {s, t}, T ,R, G′′)

3.3 Proof of Correctness

Before continuing with the query algorithms, we want to justify that ULTRA computes a
shortcut graph that is sufficient to answer all queries correctly. For contradiction we assume
that a journey J = 〈ϑ0,Tij0 , . . . ,T

mn
k−1, ϑk〉 exists that requires an intermediate transfer not

contained in the shortcut graph and cannot be replaced with a journey of equal travel
time and number of trips that solely uses transfers from the shortcut graph. In this case,
the journey J must contain at least two trips, since otherwise it would not contain any
intermediate transfers. Since the journey contains two or more trips, it can be disassembled
into candidate journeys 〈Tij0 , ϑ1,Tgh1 〉, 〈T

gh
1 , ϑ2,Tpq2 〉, . . . , 〈T

uv
k−2, ϑk−1,Tmnk−1〉. As J requires

a transfer not contained in the shortcut graph, at least one of these candidates must also
contain a transfer not contained in the shortcut graph. Let Jc = 〈Tghx , ϑx+1,Tpqx+1〉 be such a
candidate journey. Since the main loop of ULTRA is executed for every stop in the network,
it was also executed for the source stop Tx[g] of this candidate journey. Derived from the
correctness of rRAPTOR, we know that for a given source stop our algorithm computes
Pareto-optimal arrival labels for all stops reachable with two trips or less. Thus we also
reached the target stop Tx+1[q] of the candidate journey. The journey J ′ corresponding
to the target’s arrival label is in this case either the candidate journey or a journey that
dominates the candidate journey. In the first case, we have added the transfer ϑx+1 of
the candidate journey to the shortcut graph. In the second case, the candidate journey Jc
can be replaced by the journey J ′ corresponding to the target’s arrival label, leading to a
journey that is not worse than the original journey and does not require the missing transfer.
Therefore both cases contradict our assumption.

4 Query Algorithms

The shortcuts obtained by ULTRA can in principle be combined with any public transit query
algorithm that normally requires a transitively closed transfer graph, such as RAPTOR [13],
CSA [14, 15], or Trip-Based Routing [27]. The basic idea of the query algorithm is to simply
use one of the above algorithms together with our precomputed shortcut graph instead of
the original transfer graph. However, our shortcut graph only represents transfers between
two trips, and does not provide any information for transferring from the source to the first
trip or from the last trip to the target. In this section we describe how the public transit
algorithms can be modified in order to handle initial and final transfers efficiently.
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Basic Query Algorithm. Our approach is based on the observation that for initial and
final transfers one endpoint of the transfer is fixed. All initial transfers start at the source
vertex, and all final transfers end at the target vertex. Therefore, we can use two additional
one-to-many queries (one of them performed in reverse) to cover initial and final transfers.
These queries have to be performed on the original transfer graph, where they compute
the distances from the source to all stops and from all stops to the target. While any
one-to-many algorithm might be used to perform this task, we decided to use Bucket-CH,
as it is one of the fastest known one-to-many algorithms and allows for optimization of
local queries. Pseudocode for the resulting query algorithm using Bucket-CH and our
transfer shortcuts is shown in Algorithm 2.

Our algorithm begins with performing the two Bucket-CH queries from the source and
target stop in lines 1 and 2. Afterwards a temporary copy of the shortcut graph G′′ is
initialized. In lines 5 and 6, this temporary graph is complemented with edges from the
source to all other stops and edges from all stops to the target, using the distances obtained
from the Bucket-CH queries. Finally, a public transit algorithm is invoked as a black box on
the public transit network with the temporary graph instead of the shortcut graph in line 7.
The temporary graph is sufficient for the query to yield correct results, as it contains edges
from the source to any possible first stop, all edges required to transfer between trips, and
edges from any possible last stop to the target. Since there are no additional requirements
on the black box public transit algorithm, it is easy to see that any existing public transit
algorithm can be used with our shortcuts.

Running Time Optimizations. We can further improve the performance of this query
algorithm in practice by introducing some adjustments. First, we observe that we actually
do not need edges from the source to every other stop. If the distance d(s, v) from s to a
stop v is greater than the distance d(s, t) from s to t, every journey that requires a transfer
from s to v is dominated by simply transferring directly from s to t. Thus, we do not need
to add the edge (s, v) to the temporary graph. The same argument can be made for edges
from some stop u to the target t if the distance d(u, t) is greater than d(s, t). Moreover, if
we know that a stop v is further away from the source than the target, then we do not even
need to compute the actual distance d(s, v). We can use this fact to prune the search space
of the Bucket-CH queries in lines 1 and 2. For this purpose, we first perform a standard
bidirectional CH query from source to target that stops settling vertices from the forward (re-
spectively backward) queue if the corresponding key is greater than the tentative distance
from the source to the target. As a result we obtain the distance d(s, t), as well as the partial
forward (backward) CH search space from s (t), containing no vertices that have a greater
distance from s (to t) than d(s, t). We then perform the second phase of the Bucket-CH
query (i.e., scanning the buckets) only for the vertices in the partial search spaces of the CH
query. Furthermore, we store the entries in each bucket sorted by the distance to their target.
Thus we can stop scanning through the bucket of a vertex u once we reach a stop v within
the bucket with d(s, u) + d(u, v) ≥ d(s, t). Doing so can drastically improve local queries, as
we do not need to look at all stops, but only at stops that are close to the source or target.

If we do not treat the underlying public transit algorithm as a black box, we can further
improve practical performance by omitting the construction of the temporary graph G′′.
Instead of adding edges from s to stops v, we can directly initialize the tentative arrival
times used by most public transit algorithms with τdep + d(s, v). Instead of adding edges
to t, we try to update the tentative arrival time at the target with the arrival time at v
plus d(v, t) whenever the arrival time at v is updated.
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Table 1 Sizes of the used public transit networks and their transfer graphs (full and transitive).

Network Stops Routes Trips Stop events Vertices Full edges Tran. edges

Switzerland 25 426 13 934 369 534 4 740 929 604 167 1 847 140 4 687 016
Germany 244 055 231 089 2 387 297 48 495 169 6 872 105 21 372 360 22 645 480

5 Experiments

All algorithms were implemented in C++17 compiled with GCC version 7.3.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3
cache. The shortcut preprocessing was performed in parallel on all 16 cores. The transfer
graph contraction and the queries were performed on a single core.

Networks. We evaluated our technique on the public transit networks of Switzerland and
Germany, which were previously used in [26]. The Switzerland network was extracted from a
publicly available GTFS feed1 and consists of two successive business days (30th and 31st of
May 2017). The Germany network is based on data from bahn.de for Winter 2011/2012,
comprising two successive identical days. For both networks, stops and connections outside
of the country borders were removed. As unrestricted transfer graphs, we used the road
networks of Switzerland and Germany, including pedestrian zones and stairs, which were
obtained from OpenStreetMap2 data. Vertices with degree one and two were contracted unless
they coincided with stops. Unless stated otherwise, we used walking as the transfer mode,
assuming a walking speed of 4.5 km/h on each edge. To obtain transitively closed transfer
graphs (for comparison with standard RAPTOR and CSA), we inserted an edge between all
stops for which the distance in the transfer graph lies below a certain threshold (15 minutes
for Switzerland, 8 minutes for Germany) and then computed the transitive closure. An
overview of the networks is given in Table 1.

5.1 Preprocessing
In this section we evaluate the performance of the ULTRA preprocessing phase, including
the transfer graph contraction and the shortcut computation.

Core Degree and Witness Limit. The two main parameters influencing the performance of
the ULTRA preprocessing are the average vertex degree of the contracted transfer graph and
the witness limit τ̄ . Figure 1 shows the impact of these two parameters on the Switzerland
network. The lowest preprocessing times are achieved with a core degree of 14. While the
actual shortcut computation still becomes slightly faster for higher core degrees, this is offset
by the increased time required to contract the transfer graph. Contracting up to a core
degree of 14 took 1:29 minutes and yielded a graph with 32 683 vertices and 466 331 edges. By
contrast, the witness limit τ̄ only has a minor impact on the number of computed shortcuts,
with a difference of fewer than 600 shortcuts between τ̄ = 0 and τ̄ =∞. For all following
experiments, we chose a witness limit of 15 minutes, yielding 139 669 shortcuts for Switzerland.

1 http://gtfs.geops.ch/
2 http://download.geofabrik.de/

bahn.de
http://gtfs.geops.ch/
http://download.geofabrik.de/
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Figure 1 Impact of core degree and witness limit on the running time of the preprocessing al-
gorithm and the number of computed shortcuts, measured on the Switzerland network. Preprocessing
time includes both contracting the transfer graph and computing the shortcuts.

For the Germany network, we chose to contract up to a core degree of 20, since the share
of the core computation in the overall preprocessing time decreases as the network size
increases. Contraction took 24:56 minutes and produced a core graph with 314 021 vertices
and 6 280 440 edges. As before, we used a witness limit of 15 minutes for the shortcut
computation, which yielded 2 077 374 shortcuts.

Parallelization. We used all 16 cores of our machine in parallel to accelerate the shortcut
computation. On the Switzerland network this reduced the shortcut computation time
from 2:02:55 hours sequentially to 9:35 minutes, which corresponds to a speedup of 12.8.
Thus, we obtain a total preprocessing time of 11:05 minutes, including the time for the
contraction, which was not parallelized. This yields an overall speedup for the preprocessing
phase of 11.2. For the Germany network the sequential shortcut computation would take
several days, while computing the shortcuts in parallel using all 16 cores took 10:53:35 hours.

Transfer Speed. In order to test the impact of the used transfer mode on the shortcut com-
putation, we changed the transfer speed in the Switzerland network from 4.5 km/h to different
values between 1 km/h and 140 km/h. We considered two ways of applying the transfer speed:
In the first version, we did not allow the transfer speed on an edge to exceed the speed limit
given in the road network. This allowed us to model fast transfer modes such as cars fairly real-
istically. In the second version, we ignored speed limits and assumed a constant speed on every
edge. Thus, we can analyze to which extend the effects observed in the first version are caused
by the speed limit data. Figure 2 (left side) reports the number of computed shortcuts meas-
ured for each configuration. In all measurements, the preprocessing time remained below 15
minutes. A peak in the number of shortcuts is reached between 10 and 20 km/h, which roughly
corresponds to the speed of a bicycle. If speed limits are ignored, the number of shortcuts then
starts decreasing again for higher transfer speeds and reaches a plateau at around 188 000 short-
cuts. If speed limits are obeyed, the number of shortcuts eventually rises again and reaches
the overall peak at 140 km/h, which was the highest speed limit observed in the network.
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Figure 2 Impact of transfer speed, measured on the Switzerland network with a core degree
of 14 and a witness limit of 15 minutes. Left: Number of computed shortcuts. Speed limits in the
network were obeyed for the red lines and ignored for the green lines. For the two lines at the
bottom, shortcuts were only added to the result if the source and target stop for which they were
found were connected by a path in the transfer graph. Right: Query performance of MR-∞ and
ULTRA-RAPTOR, averaged over 10 000 random queries. Speed limits were obeyed. Query times
are divided into route collecting/scanning, transfer relaxation, and remaining time.

For low to medium transfer speeds, the results conformed with our expectations. As the
transfer speed increases, it becomes increasingly feasible to cover large distances in the trans-
fer graph quickly, making it possible to transfer between trips that are further away from each
other. Accordingly, new shortcuts appear between these trips. However, once the transfer
speed becomes competitive with the public transit vehicles, we would expect the number of
shortcuts to decrease sharply as it eventually becomes preferable to avoid the public transit
network altogether and transfer directly from source to target. The reason why this decrease
is not observed in our measurements is that not all stops in our network instances are connec-
ted to the transfer graph. Consider what happens in the shortcut computation for journeys
between stops s and t that are isolated from each other and the rest of the transfer graph. In
this case, a direct transfer is not possible, regardless of the transfer speed. In fact, unless there
is a route that serves both s and t, any optimal journey from s to t will include at least two
trips. If a transfer is necessary between these two trips, then the journey is an nondominated
candidate journey and a shortcut is added for the corresponding transfer. In our Switzerland
network, 625 stops are isolated from the transfer graph, usually as a result of incomplete
or imperfect data. To assess the impact of these stops on the number of computed shortcuts,
we repeated our experiments, this time not adding shortcuts to the result if the source and
target stop of the corresponding candidate journey were not connected in the transfer graph.
This resulted in much fewer shortcuts, especially for high transfer speeds. If speed limits
are ignored, the amount of necessary shortcuts becomes negligible at around 60 km/h and
eventually reaches 0. If speed limits are obeyed, the number of shortcuts stagnates at 17 000.

Overall, these experiments show that our shortcut computation remains feasible regardless
of the speed of the used transfer mode. Moreover, if the network does not include many
stops that are isolated from the transfer graph, transferring between stops is most useful for
transfer speeds between 10 and 20 km/h.
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Table 2 Query performance for RAPTOR, MR-∞, and ULTRA-RAPTOR. Query times are
divided into phases: initial transfers, collecting routes, scanning routes, and relaxing transfers.
All results are averaged over 10 000 random queries. RAPTOR (marked with ∗) only supports
stop-to-stop queries with transitive transfers, instead of vertex-to-vertex queries on the full graph.

Network Algorithm Full
graph

Scans [k] Time [ms]

Routes Edges Init. Collect Scan Relax Total

Switzerland
RAPTOR∗ ◦ 27.2 3 527 0.0 3.7 6.4 7.8 18.4
MR-∞ • 34.9 769 11.6 5.9 8.2 12.3 39.3
ULTRA-RAPTOR • 37.7 148 1.6 4.9 7.9 1.9 16.7

Germany
RAPTOR∗ ◦ 480.4 25 798 0.0 166.9 178.0 85.1 436.5
MR-∞ • 555.8 12 571 191.1 250.7 202.2 272.2 944.1
ULTRA-RAPTOR • 610.6 2 224 26.8 204.5 202.9 37.0 477.8

5.2 ULTRA Queries
To evaluate the impact of our shortcuts on the query performance, we tested them with two
public transit algorithms, RAPTOR and CSA. For each algorithm, we compared three query
variants: one using our ULTRA approach, one using a transitively closed transfer graph, and
one using a multi-modal variant of the algorithm on an unrestricted transfer graph.

RAPTOR Queries. In the case of RAPTOR, we used the MR-∞ variant of MCR as the
multi-modal algorithm, employing the same core graph that was used by the ULTRA pre-
processing. The results of our comparison are shown in Table 2. Using ULTRA-RAPTOR
drastically reduces the time consumption for exploring the transfer graph compared to MR-∞,
from 50–60% of the overall running time to 10–20%. The reason for this is that both scanning
the initial/final transfers and relaxing the intermediate transfers are an order of magnitude
faster in ULTRA-RAPTOR compared to MR-∞. For the initial and final transfers, the
Core-CH search of MR-∞ is replaced by a Bucket-CH query in ULTRA-RAPTOR. Similarly,
ULTRA-RAPTOR uses shortcuts for relaxing the intermediate transfers whereas MR-∞
performs a Dijkstra search in the core graph. Overall, ULTRA-RAPTOR is twice as fast
as MR-∞ and has a similar running time to RAPTOR with transitive transfers. Note that
comparing the running times of RAPTOR and ULTRA-RAPTOR has to be done with
caution, as they were measured for a different set of queries. Hence, our shortcut technique
enables RAPTOR to use unrestricted transfers without incurring the performance loss that
is associated with MCR.

CSA Queries. For CSA, incorporating unrestricted transfers efficiently is more challenging.
Since no multi-modal variant of CSA has been published thus far, we implemented a naive
multi-modal version of CSA, which we call MCSA, as a baseline for our comparison. This
algorithm alternates connection scans with Dijkstra searches on the contracted core graph,
in a similar manner to MCR. Query times for all three CSA variants are reported in
Table 3. Note that CSA solves an easier problem than RAPTOR, since it only minimizes
the arrival time and not the number of transfers. When using a transitive transfer graph,
it is thus approximately three times as fast as RAPTOR. With unrestricted transfers, we
observe that MCSA is slower than MR-∞. This is because alternating between connection
scans and Dijkstra searches causes MCSA to lose the main performance advantage of CSA,
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Table 3 Query performance for CSA, MCSA, and ULTRA-CSA. Query times are divided
into two phases: initialization including initial transfers (Init.), and connection scans including
intermediate transfers (Scan). All results are averaged over 10 000 random queries. CSA (marked
with ∗) only supports stop-to-stop queries with transitive transfers, instead of vertex-to-vertex
queries on the full graph.

Network Algorithm Full
graph

Scans [k] Time [ms]

Connections Edges Init. Scan Total

Switzerland
CSA∗ ◦ 126.7 1 307 0.2 5.0 5.1
MCSA • 88.0 5 337 12.9 48.4 61.3
ULTRA-CSA • 87.3 52 1.8 3.1 4.9

Germany
CSA∗ ◦ 2 620.3 6 216 2.9 162.1 165.1
MCSA • 1 568.2 118 026 233.6 1462.5 1696.1
ULTRA-CSA • 1 562.5 665 25.7 116.8 142.5

which is its high memory locality. When using ULTRA-CSA, however, this advantage is
restored because only a few shortcut edges have to be relaxed after scanning each connection.
Overall, ULTRA-CSA is only slightly slower than transitive CSA and about three times
as fast as RAPTOR with shortcuts, making it the only efficient multi-modal variant of
CSA known so far. Moreover, our query times for ULTRA-RAPTOR and ULTRA-CSA are
significantly faster than those reported for the state-of-the-art techniques HLRaptor and
HLCSA [22], by a factor of 3.6 and 11.1, respectively. With respect to preprocessing time
and space consumption, HL-based techniques are also outperformed by ULTRA.

In addition to overall performance, we also measured how query times for RAPTOR are
impacted by the transfer speed. Results are shown in Figure 2 (right side). The performance
gains for ULTRA-RAPTOR compared to MR-∞ are similar for all transfer speeds, and in
fact slightly better for higher speeds. In all cases, the entire query time for ULTRA-RAPTOR
is similar to or lower than the time that MR-∞ takes for the route scanning phases only.

6 Conclusion

We developed a technique which significantly speeds up the computation of Pareto-optimal
journeys in a public transit network with an unrestricted transfer graph. We achieved this by
efficiently computing shortcuts that provably represent all necessary transfers. Parallelization
enables fast precomputation, taking a few minutes on the network of Switzerland. Our
evaluation showed that the number of computed shortcuts is low, regardless of the underlying
transfer mode. The shortcuts can be used without adjustments by any public transit algorithm
that previously required a transitively closed transfer graph. For RAPTOR and CSA, we
showed that using shortcuts leads to similar query times as using a transitively closed transfer
graph. Consequently, shortcuts enable the computation of unrestricted multi-modal journeys
without incurring the performance losses of existing multi-modal algorithms. In particular,
combining shortcuts with CSA yields the first efficient multi-modal variant of CSA.

For future work, we would like to develop a shortcut-based query algorithm that can answer
many-to-many queries. It would also be interesting to adapt our shortcut precomputation
to scenarios with additional Pareto criteria, such as walking distance or cost. Furthermore,
it should be possible to extend the ULTRA approach to more complicated transfer modes,
including bike or car sharing.
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A valid edge-coloring of a graph is an assignment of “colors” to its edges such that no two incident
edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that
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Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard
variant of the streaming model where the output is also reported in a streaming fashion. The
main challenge is that the algorithm cannot “remember” all the reported edge colors, yet has to
output a proper edge coloring using few colors.
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1 Introduction

Given a graph G(V,E), an edge coloring of G is an assignment of “colors” to the edges in E
such that no two incident edges receive the same color. The goal is to find an edge coloring
that uses few colors. Edge coloring is among the most fundamental graph problems and has
been studied in various models of computation, especially in distributed and parallel settings.

Denoting the maximum degree in the graph by ∆, it is easy to see that ∆ colors are
necessary in any proper edge coloring. On the other hand, Vizing’s celebrated theorem
asserts that ∆ + 1 colors are always sufficient [39]. While determining whether a graph
can be ∆ colored is NP-hard, a ∆ + 1 coloring can be found in polynomial time [5, 21].
These algorithms are, however, highly sequential. As a result, in restricted settings, it is
standard to consider more relaxed variants of the problem where more colors are allowed
[2, 8, 20, 24, 25, 27, 29, 32, 34, 35, 36].

In this paper, we study edge coloring in large-scale graph settings. Specifically, we focus
on the Massively Parallel Computations (MPC) model and the Graph Streaming model.

1.1 Massively Parallel Computation
The Model. The MPC model [10, 26, 31] is a popular abstraction of modern parallel
frameworks such as MapReduce, Hadoop, Spark, etc. In this model, there are N machines,
each with a space of S words1 that all run in parallel. The input, which in our case is the
edge-set of graph G(V,E), is initially distributed among the machines arbitrarily. Afterwards,
the system proceeds in synchronous rounds wherein the machines can perform any arbitrary
local computation on their data and can also send messages to other machines. The messages
are then delivered at the start of the next round so long as the total messages sent and
received by each machine is O(S) for local machine space S. The main parameters of interest
are S and the round-complexity of the algorithm, i.e., the number of rounds it takes until
the algorithm stops. Furthermore, the total available space over all machines should ideally
be linear in the input size, i.e., S ·N = O(|E|).

Related Work in MPC. We have seen a plethora of results on graph problems ever since
the formalization of MPC. The studied problems include matching and vertex cover [1, 6, 14,
17, 22, 33, 12, 15], maximal independent set [22, 28, 12, 15], vertex coloring [7, 16, 28, 37, 38],
as well as graph connectivity and related problems [3, 4, 13, 30, 9]. (This is by no means a
complete list of the prior works.)

We have a good understanding of the complexity of vertex coloring in the MPC model,
especially if the local space is near linear in n: Assadi et al. [7] gave a remarkable algorithm
that using Õ(n) space per machine, finds a (∆ + 1) vertex coloring in a constant number of
rounds. The algorithm is based on a sparsification idea that reduces the number of edges
from m to O(n log2 n). But this algorithm alone cannot be used for coloring the edges, even
if we consider the more relaxed (2∆− 1) edge coloring problem which is equivalent to (∆ + 1)
vertex coloring on the line graph. The reason is that the line-graph has O(m) vertices where
here m is the number of edges in the original graph. Therefore even after the sparisification
step, we have Õ(m) vertices in the graph which is much larger than the local space available
in the machines.

1 Throughout the paper, the stated space bounds are in the number of words that each denotes
O(log n) bits.
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Not much work has been done on the edge coloring problem in the MPC model. The only
exception is the algorithm of Harvey et al. [28] which roughly works by random partitioning
the edges, and then coloring each partition in a different machine using a sequential (∆ + 1)
edge coloring algorithm. The choice of the number of partitions leads to a trade-off between
the number of colors used and the space per machine required. The main shortcoming of
this idea, however, is that if one desires a ∆ + Õ(∆1−Ω(1)) edge coloring, then a strongly
super linear local space of n∆Ω(1) is required.

Our main MPC result is the following algorithm which uses a more efficient partitioning.
The key difference is that we use a vertex partitioning as opposed to the algorithm of Harvey
et al. which partitions the edges.

I Result 1 (Theorem 1). There exists an MPC algorithm that using O(n) space per
machine and O(m) total space, returns a ∆ + Õ(∆3/4) edge coloring in O(1) rounds.

The algorithm exhibits a tradeoff between the space and the number of colors (see
Theorem 1) and can be made more space-efficient as the maximum degree gets larger. For
instance, if ∆ > nε for any constant ε > 0, it requires a strictly sublinear space of n1−Ω(1)

to return a ∆ + o(∆) edge coloring in O(1) rounds. This is somewhat surprising since all
previous non-trivial algorithms in the strictly sublinear regime of MPC require ω(1) rounds.

Our algorithm can also be implemented in O(1) rounds of Congested Clique, leading to a
∆ + Õ(∆3/4) edge coloring there. Prior to our work, no sublogarithmic round Congested
Clique algorithm was known even for (2∆− 1) edge coloring.

1.2 Streaming
The Model. In the standard graph streaming model, the edges of a graph arrive one by
one and the algorithm has a space that is much smaller than the total number of edges. A
particularly important choice of space is Õ(n) – which is also known as the semi-streaming
model [19] – so that the algorithm has enough space to store the vertices but not the edges.
For edge coloring, the output is as large as the input, thus, we cannot hope to be able to
store the output and report it in bulk at the end. For this, we consider a standard twist on
the streaming model where the output is also reported in a streaming fashion. This model is
referred to in the literature as the “W-streaming” model [18, 23]. We particularly focus on
one-pass algorithms.

Designing one-pass W-streaming algorithms is particularly challenging since the algorithm
cannot “remember” all the choices made so far (e.g., the reported edge colors). Therefore,
even the sequential greedy algorithm for (2∆ − 1) edge coloring, which iterates over the
edges in an arbitrary order an assigns an available to each color upon visiting it, cannot be
implemented since we are not aware of the colors used incident to an edge.

Our first result is to show that a natural algorithm w.h.p.2 provides an O(∆) edge
coloring if the edges arrive in a random-order.

I Result 2 (Theorem 9). If the edges arrive in a random-order, there is a one-pass Õ(n)
space W-streaming edge coloring algorithm that always returns a valid edge coloring and
w.h.p. uses (2e+ o(1))∆ ≈ 5.44∆ colors.

2 Throughout, we use “w.h.p.” to abbreviate “with high probability” implying probability at least
1− 1/ poly(n).
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If the edges arrive in an arbitrary order, we give another algorithm that requires more
colors.

I Result 3 (Theorem 10). For any arbitrary arrival of edges, there is a one-pass Õ(n)
space W-streaming edge coloring algorithm that succeeds w.h.p. and uses O(∆2) colors.

These are, to our knowledge, the first streaming algorithms for edge coloring.

2 The MPC Algorithm

In this section, we consider the edge coloring problem in the MPC model. Our main result in
this section is an algorithm that achieves the following:

I Theorem 1. For any parameter k (possibly dependent on ∆) such that n/k � logn, there
exists an MPC algorithm with O(n∆

k2 + n
k

√
∆ logn/k) space per machine and O(m) total

space that w.h.p. returns a ∆ +O(
√
k∆ logn) edge coloring in O(1) rounds.

By setting k =
√

∆ + logn, the space required per machine will be O(n) and the number
of colors would be ∆ + Õ(∆3/4). Using a reduction from [11], this also leads to an O(1)
round Congested Clique algorithm using the same number of colors.

I Corollary 2. There exists a randomized MPC algorithm with O(n) local space, as well as a
Congested Clique algorithm, that both w.h.p. find a ∆+Õ(∆3/4) edge coloring in O(1) rounds.

Moreover, assuming that ∆ = nΩ(1), by setting k = ∆0.5+ε for a small enough constant
ε ∈ (0, 1), we get the following O(1) round algorithm which requires n1−Ω(1) machine space,
which is notably strictly sublinear in n:

I Corollary 3. If ∆ = nΩ(1), there exists a randomized MPC algorithm with O(n/∆2ε) =
n1−Ω(1) space per machine and O(m) total space that w.h.p. returns a ∆ + Õ(∆0.75+ε/2) edge
coloring in O(1) rounds.

The Idea Behind the Algorithm. The first step in the algorithm is a random partitioning
of the vertex set into k groups, V1, . . . , Vk. We then introduce one subgraph for each vertex
subset, called G1, . . . , Gk, and one subgraph for every pair of groups which we denote
as G1,2, . . . , G1,k, . . . , Gk−1,k. Any such Gi is simply the induced subgraph of G on Vi.
Moreover, any such Gi,j is the subgraph on vertices Vi ∪ Vj , with edges with one point in Vi
and the other in Vj .

The general idea is to assign different palettes, i.e., subsets of colors, to different subgraphs
so that the palettes assigned to any two neighboring subgraphs (i.e., those that share a
vertex) are completely disjoint. A key insight to prevent this from blowing up the number of
colors, is that since any two edges from Gi,j and Gi′,j′ with i 6= i′ and j 6= j′ cannot share
endpoints by definition, it is safe to use the same color palette for them.

To assign these color palettes, we consider a complete k-vertex graph with each vertex vi
in it corresponding to partition Vi and each edge (vi, vj) in it corresponding to the subgraph
Gi,j . We then find a k edge coloring of this complete graph, which exists by Vizing’s theorem
since maximum degree in it is k−1. This edge coloring can actually be constructed extremely
efficiently using merely the edges’ endpoint IDs. Thereafter, we map each of these k colors to
a color palette. By carefully choosing k and the number of colors in each palette, we ensure
that: (1) The total number of colors required is close to ∆. (2) Each subgraph Gi,j can be
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properly edge-colored with those colors in its palette. (3) Each subgraph fits the memory of
a single machine so that we can put it in whole there and run the sequential edge coloring
algorithm on it.

Algorithm 1 An MPC algorithm for edge coloring.

Parameter: k.;
Output: An edge coloring of a given graph G = (V,E) with maximum degree ∆

using Ψ := ∆ + d
√
k∆ logn colors for some large enough constant d.

Independently and u.a.r. partition V into k subsets V1, . . . , Vk.;
For every i ∈ [k], let Gi be the induced subgraph of G on Vi.;
For every i, j ∈ [k] with i 6= j, let Gi,j be the subgraph of G including an edge e ∈ E
iff one end-point of e is in Vi and the other is in Vj .;

Partition [Ψ] into k+ 1 disjoint subsets C1, . . . , Ck, C
′, which we call color palettes, in

an arbitrarily way such that each palette has exactly Ψ
k+1 colors.;

for each graph Gi in parallel do
Color Gi sequentially in a single machine with palette C ′.;

end
// In what follows, we implicitly construct a k edge coloring of a complete k-vertex

graph Kk and assign palette Cα to subgraph Gi,j where α is the color of edge
(i, j) in Kk.

for each graph Gi,j in parallel do
Color Gi,j sequentially in a machine with palette Cα where
α = ((i+ j) mod k) + 1.;

end

The algorithm outlined above is formalized as Algorithm 1. We start by proving certain
bounds on subgraphs’ size and degrees.

B Claim 4. W.h.p., every subgraph of type Gi or Gi,j has maximum degree ∆
k +O(

√
∆ log n

k )
and has at most O(n∆

k2 + n
k

√
∆ logn/k) edges.

Proof. Let us start with bounding the degree of an arbitrary vertex v ∈ Vi in subgraph Gi.
The degree of vertex v in Gi is precisely the number of its neighbors that are assigned to
partition Vi. Since there are k partitions, the expected degree of v in Gi is degG(v)/k ≤ ∆/k.
Furthermore, since the assignment of vertices to the partitions is done independently and
uniformly at random, by a simple application of Chernoff bound, v’s degree in Gi should be
highly concentrated around its mean. Namely, with probability at least 1 − n−2, it holds
that degGi

(v) ≤ ∆
k +O(

√
∆ logn/k). Now, a union bound over the n vertices in the graph,

proves that the degree of all vertices in their partitions should be at most ∆
k +O(

√
∆ logn/k)

with probability 1− 1/n.
Bounding vertex degrees in subgraphs of type Gi,j also follows from essentially the same

argument. The only difference is that we have to union bound over n · k choices, as we
would like to bound the degree of any vertex v with say v ∈ Vi in k subgraphs Gi,1, . . . , Gi,k.
Nonetheless, since k ≤ n, there are still poly(n) many choices to union bound over. Thus, by
changing the constants in the lower terms of the concentration bound, we can achieve the
same high probability result.

Finally, we focus on the number of edges in each of the subgraphs. Each partition Vi has
n/k vertices in expectation since the n vertices are partitioned into k groups independently
and uniformly at random. A simple application of Chernoff and union bounds, implies that
the number of vertices in each partition Vi is at most O(nk ) w.h.p., so long as n/k � logn,
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which is the case. Since the number of edges in each partition is less than the number of
vertices times max degree, combined with the aforementioned bounds on the max degree, we
can bound the number of edges in Gi and Gi,j for any i and j by

O
(n
k

)
·O

(
∆
k

+
√

∆
k

logn
)

= O

(
n∆
k2 + n

k

√
∆
k

logn
)
,

which is the claimed bound. C

Next, observe that we use palettes C1, . . . , Ck+1, C
′, each of size Ψ

k+1 to color the subgraphs.
We need to argue that the maximum degree in each subgraph is at most Ψ

k+1 − 1 to be able
to argue that using Vizing’s theorem in one machine, we can color any of the subgraphs with
the assigned palettes. This can indeed be easily guaranteed if the constant d is large enough:

I Observation 5. If constant d in Algorithm 1 is large enough, then maximum degree of
every graph is at most Ψ

k+1 − 1, w.h.p.

Proof. We have Ψ = ∆ + d
√
k∆ logn in Algorithm 1, therefore:

Ψ
k + 1 = ∆

k + 1 + d
√
k∆ logn
k + 1 = ∆

k
+ Θ(

√
∆ logn/k),

where the hidden constants in the second term of the last equation can be made arbitrarily
large depending on the choice of constant d. On the other hand, recall from Claim 4 that
the maximum degree in any of the subgraphs is also at most ∆

k +O(
√

∆ logn/k). Thus, the
palette sizes are sufficient to color the subgraphs if d is a large enough constant. J

We are now ready to prove the algorithm’s correctness.

I Lemma 6. Algorithm 1 returns a proper edge coloring of G using ∆ + O(
√
k∆ logn)

colors.

Proof. The algorithm clearly uses Ψ = ∆ +O(
√
k∆ logn) colors, it remains to argue that

the returned edge coloring is proper. Each subgraph (of type Gi or Gi,j) is sent to a single
machine and edge-colored there using the palette that it is assigned to. Since by Observation 5,
each palette has at least ∆′ + 1 colors for ∆′ being the max degree in the subgraphs, there
will be no conflicts in the colors associated to the edges within a partition. We only need to
argue that two edges e and f sharing a vertex v that belong to two different subgraphs are
not assigned the same color. Note that all subgraphs of type Gi are vertex disjoint and all
receive the special color palette C ′, thus there cannot be any conflict there. To complete the
proof, it suffices to prove that any two subgraphs Gi,j and Gi′,j′ that share a vertex receive
different palettes. Note that in this case, either i = i′ or j = j′ by the partitioning. Assume
w.l.o.g. that i = i′ and thus j 6= j′. Based on Algorithm 1 for Gi,j and Gi′,j′ to be assigned
the same color palette, it should hold that

((i+ j) mod k) + 1 = ((i′ + j′) mod k) + 1.

Since i = i′, this would imply that (j mod k) = (j′ mod k), though this would not be possible
given that both j and j′ are in [k] and that j 6= j′. Therefore, any two subgraphs that
share a vertex receive different palettes and thus there cannot be any conflicts, completing
the proof. J

Next, we turn to prove the space bounds.
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I Lemma 7 (Implementation and Space Complexity). Algorithm 1 can be implemented with
total space O(m) and space per machine of O(n∆

k2 + n
k

√
∆ logn/k) w.h.p.

Proof. We start with an implementation that uses the specified space per machine but can
be wasteful in terms of the total space, then describe how we can overcome this problem and
also achieve an optimal total space of O(m).

We can use k +
(
k
2
)
machines, each with a space of size O(n∆

k2 + n
k

√
∆ logn/k) to assign

colors to the edges in parallel. The first m1, . . . ,mk machines will be used for edge coloring
on G1, G2, . . . , Gk respectively. The other mk+1, . . . ,mk+(k

2) machines will be used for edge
coloring on the Gi,j graphs. Lemma 4 already guarantees that each subgraph has size
O(n∆

k2 + n
k

√
∆ logn/k) w.h.p., and thus fits the memory of a single machine.

In the implementation discussed above, since the machines use Õ(n∆/k2) space and there
are O(k2) machines, the total memory can be Õ(n∆) which may be much larger than O(m).
This is because we allocate O(n∆/k2) space to each machine regardless of how much data it
actually received. Though, observe that each edge of the graph belongs to exactly one of
the subgraphs, i.e., the machines together only handle a total of O(m) data. So we must
consolidate into fewer machines. We do this by putting multiple subgraphs in each machine.

We start by recalling a sorting primitive in the MPC model which was proved in [26].
Basically, if there are N items to be sorted and the space per machine is NΩ(1), then the
algorithm of [26] sorts these items into the machines within O(1) rounds. To use this
primitive, we first label each edge e = (u, v) of the graph by its subgraph name (e.g. Gi or
Gi,j) which can be determined solely based on the end-points of the edge. After that, we
sort the edges based on these labels. This way, all the edges inside each subgraph can be
sent to the same machine within O(1) rounds while also ensuring that the total required
space remains O(m). J

The algorithm for Theorem 1 was formalized as Algorithm 1. We showed in Lemma 6
that the algorithm correctly finds an edge coloring of the graph with the claimed number of
colors. We also showed in Lemma 7 that the algorithm can be implemented with O(m) total
space and O(n∆

k2 + n
k

√
∆ logn/k) space per machine. This completes the proof of Theorem 1.

3 Streaming Algorithms

We start in Section 3.1 by describing our streaming algorithm and its analysis when the
arrival order is random. Then in Section 3.2, we give another algorithm for adversarial
order streams.

3.1 Random Edge Arrival Setting
In this section, we give a streaming algorithm for O(∆) edge coloring using Õ(n) space
where the edges come in a random stream. That is, a permutation over the edges is chosen
uniformly at random and then the edges arrive according to this permutation.

We first note that if ∆ = O(logn) then the problem is trivial as we can store the whole
graph and then report a ∆ + 1 edge coloring (even without knowledge of ∆). As such, we
assume ∆ = ω(logn).

The algorithm – formalized as Algorithm 2 – maintains a counter cv for each vertex v. At
any point during the algorithm, this counter cv basically denotes the highest color number
used for the edges incident to v so far, plus 1. Therefore, upon arrival of an edge (u, v), it is
safe to color this edge with max(cu, cv) as all edges incident to u and v have a color that is
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strictly smaller than this. Then, we increase the counters of both v and u to max(cu, cv) + 1.
It is not hard to see that the solution is always a valid coloring, in the remainder of this
section, we mainly focus on the number of colors required by this algorithm and show that
w.h.p., it is only O(∆) for random arrivals.

Algorithm 2 Edge coloring for random streams.

Result: A feasible coloring C : E → [Ψ] for a given graph G = (V,E) with maximum
degree ∆ in a random stream

cv ← 0 ∀v ∈ V ;
while (u, v) is read from stream do
C(u, v)← max(cu, cv);
cu, cv ← C(u, v) + 1;

end

We start by noting that this algorithm can actually be extremely bad if the order is
adversarial. To see this, consider a path of size n. In an adversarial stream where the edges
arrive in the order of the path, Algorithm 2 uses as many as n− 1 colors while the maximum
degree is only 2! It is easy to see why this example is very unlikely to occur in random order
streams: For a fixed path, it is very unlikely that the edges are randomly ordered in this
very specific way.

To make this intuition rigorous for general graphs, we first prove the following crucial
lemma which gives us the correct parameter to bound.

I Lemma 8. Let Ψ be the size of the longest monotone (in the order of arrival) path in the
line-graph of G. Then Algorithm 2 uses exactly Ψ colors.

Proof. Take a monotone path v1, v2, . . . , vΨ in the line-graph of G and let e1, e2, . . . , eΨ be
the edges of the original graph that correspond to these vertices respectively, i.e., e1 arrives
before e2 which arrives before e3 and so on. Since for any i, vi and vi+1 are neighbors in the
line-graph, then ei and ei+1 should share an end-point v. This means that at the time of
arrival of ei+1, we have cv ≥ C(ei) + 1 which in turn, implies C(eΨ) > C(eΨ−1) > . . . > C(e1).
Therefore, C(eΨ) ≥ Ψ.

On the other hand, suppose that there is an edge e1 = (u, v) for which C(e1) = Ψ in
Algorithm 2. This means that at least one of cu or cv equals Ψ when e1 arrives, say cu
w.l.o.g. Let e2 be the last edge incident to u that has arrived before e1. It should hold that
C(e2) = Ψ − 1. Using the same argument, for each 1 < i ≤ Ψ, we can find a neighboring
edge ei such that C(ei) = C(ei−1) − 1. This way, we end up with a sequence e1, . . . , eΨ of
edges, the path corresponding to this sequence in the line graph will be a monotone path of
length Ψ, completing the proof. J

I Theorem 9. There is a streaming edge coloring algorithm that for any graph G = (V,E)
uses at most (2e+ ε)∆ ≈ 5.44∆ colors w.h.p. for any constant ε > 0 given that the edges in
E arrive in a random order.

Proof. We first prove that Algorithm 2 gives us a feasible coloring of graph G. Consider two
edges e1 = (u, v) and e2 = (u, v′) incident to vertex u such that e1 appears earlier than e2 in
the stream. For any edge e we represent by C(e) the color assigned to that by the algorithm.
After the algorithm colors e1 with C(e1), it sets cu to C(e1) + 1. Thus, cu is at least C(e1) + 1
when e2 arrives and C(e2) ≥ C(e1) + 1 consequently. Therefore, C(e2) > C(e1) for any pair of
edges incident to a common vertex, and C is a feasible coloring.
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Next, for some constant α that we fix later, we show that the probability that an edge is
assigned a color number at least α∆ is at most n−c for some constant c ≥ 2, implying via a
union bound over all the edges that indeed w.h.p., Ψ ≤ α∆.

We showed in Lemma 8 that if the number of colors Ψ used is α∆, then there should
exist a monotone path in the line-graph with size at least α∆. Let e0, e2, . . . , eα∆ be the
corresponding edges to this path. Thus, it suffices to bound the probability of this event.
Let Π denote the set of all such paths in the line graph. For a specific path π ∈ Π, the
probability that it is monotone is 1/(α∆)!. Call this event Xπ. On the other hand, we can
upper bound the number of such paths by (2∆)α∆, i.e., |Π| ≤ (2∆)α∆. This follows from the
fact that each path should start from the corresponding vertex to e0 in the line-graph, and
that maximum degree in the line graph is 2∆− 2 (which is the upper bound on the number
of neighboring edges to each edge). Thus:

Pr[C(e0) ≥ α∆] = Pr[
∨
π∈Π

Xπ] ≤
∑
π∈Π

Pr[Xπ = 1] ≤ (2∆)α∆

(α∆)! ,

where the last inequality is obtained by replacing Pr[Xπ = 1] and |Π| by the aforementioned
bounds. Taking the logarithm of each side of the inequality, we get

ln(Pr[C(e0) ≥ α∆]) ≤ α∆ ln(2∆)− ln((α∆)!)
≤ α∆ ln(2∆)− ((α∆ + 1/2) ln(α∆)− α∆) (1)
= α∆ ln(2e/α)− 1/2 ln(α∆) (2)
≤ α∆ ln(2e/α). (3)

To obtain (1), we use Stirling’s approximation of factorials to lower-bound ln((α∆)!). Finally,
we rearranged terms to imply (2). By plugging in α = 2e(1 + ε), we get

ln(Pr[C(e0) ≥ 2e(1 + ε)∆]) ≤ 2e(1 + ε)∆ ln
(

1
1 + ε

)
= −2e(1 + ε) ln(1 + ε)∆

≤ −2e(1 + ε) ln(1 + ε) c

2e(1 + ε) ln(1 + ε) ln(n) (4)

= −c ln(n)

Since ∆ = ω(log(n)), we have ∆ > c′ ln(n) for any constant c′. Inequality (4) follows from
setting c′ = c/(2e(1 + ε) ln(1 + ε)) in ∆ > c′ ln(n), where c is the constant for which we want
to show the probability is upper-bounded by n−c. Hence,

Pr[C(e0) ≥ 2e(1 + ε)∆] ≤ n−c.

Thus, Algorithm 2 returns a feasible coloring of the input graph G using at most 2e(1 + ε)∆
colors, for any constant ε > 0 w.h.p. if the edges arrive in a random order. J

To further evaluate the performance of Algorithm 2, we implemented and ran it for
cliques of different size. The result of this experiment is provided in Table 1. The numbers
are obtained by running the experiment 100 times and taking the average number of colors
used. As it can be observed from Table 1, for cliques of size 100 to 1000, the number of
colors used by the algorithm is in range [3.3∆, 3.9∆] and it slightly increases by the size of
the graph. Our analysis, however, shows that it should never exceed 5.44∆.
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Table 1 The number of colors used by Algorithm 2 on cliques averaged over 100 trials.

Clique Size 100 200 300 400 500 600 700 800 900 1000
Colors Used 3.363∆ 3.563∆ 3.665∆ 3.717∆ 3.756∆ 3.787∆ 3.815∆ 3.838∆ 3.849∆ 3.863∆

3.2 Adversarial Edge Arrival Setting
In this section, we turn to arbitrary (i.e., adversarial) arrivals of the edges. We assume that
the adversary is oblivious, i.e., the order of the edges is determined before the algorithm
starts to operate so that the adversary cannot abuse the random bits used by the algorithm.
Having this assumption, we give a randomized algorithm that w.h.p., outputs a valid edge
coloring of the graph using O(∆2) colors while using Õ(n) space. The algorithm is formalized
as Algorithm 3. We note that this algorithm, as stated, requires knowledge of ∆. However
we later show that we can get rid of this assumption. Overall, we get the following result:

Algorithm 3 Edge coloring in the adversarial order.

Result: A feasible coloring for a given graph G = (V,E) with maximum degree ∆
for any vertex v ∈ V do

rv ← a sequence of log(n) independent random bits.
for any i ∈ [logn] do

cv,i ← 0
end

end
for any edge e = (u, v) in the stream do

Let i be the smallest index for which rv,i 6= ru,i.
if ∆2−i > logn then

if ru,i = 1 then
Assign color (cu,i, cv,i, i) to e.

else
Assign color (cv,i, cu,i, i) to e.

end
Increase both cv,i and cu,i by one.

else
Store edge e.

end
end
Color the stored edges using a new set of colors.

I Theorem 10. Given a graph G with maximum degree ∆, there exists a one pass streaming
algorithm, that outputs a valid edge coloring of the G using O(∆2) colors w.h.p., using
Õ(n) memory.

Consider two vertices v and u and their string of random bits rv and ru defined in the
algorihtm. Let du,v be the smallest index i where ru,i 6= rv,i. Upon arrival of an edge
e = (u, v), we first find i := du,v. If ∆2−i > logn, we color the edge immediately. Otherwise,
we store it. We will show that all the stored edges fit in the memory thus after reading all
the stream we can color them with a palette of at most ∆ + 1 new colors. In the algorithm,
for any vertex v and any i ∈ [logn], we define a counter cu,i. If ∆2−i > logn for any edge
e, then we immediately assign e a color which is represented by a tuple (cu,i, cv,i, i). Then,
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we increase counters cu,i and cv,i. Note that we say two colors are the same if all three
elements of them are equal. We first show that this gives us a valid coloring, which means it
does not assign the same color to two edges adjacent to the same vertex. We use proof by
contradiction. Assume that our algorithm assigns the same color to edges e1 = (u, v1) and
e2 = (u, v2) adjacent to vertex u. None of them can be from the stored edges since we color
them using a new palette. This means that du,v1 = du,v2 . Let us denote it by i. Without
loss of generality, we assume that ru,i = 1 and that in the input stream e1 arrives before e2.
Note that the first element of the colors (which are tuples) assigned to these edges is the
value of counter cu,i when they arrive. However, the algorithm increases cu,i by one after
arrival of e1 thus the colors assigned to e1 and e2 cannot be the same.

Now, it suffices to show that the total number of colors used by the algorithm is O(∆2).
Given a vertex v, and a number l ∈ [logn] let us compute an upper-bound for counter cv,i.
Let Nv be the set of neighbors of this vertex and let Nv,i be the set of neighbors like u where
dv,u = i. We know that cv,i = |Nv,i|, thus given any vertex v and i ∈ [log(n)], we need to
find a bound for |Nv,i|. Given any edge e = (v, u) the probability of e being in set Nv,i is 2−i
which means E[|Nv,i|] = deg(v)2−i where deg(v) is the degree of vertex v in the input graph.

Using a simple application of the Chernoff bound, for any vertex v, we get:

Pr
[
|Nv,i| ≥ deg(v)2−i +O

(√
deg(v)2−i logn

)]
≤ 1
nc
.

Setting c to be a large enough constant, one can use union bound and show that w.h.p., for
any vertex v and i ∈ [logn] where deg(v)2−i ≥ logn, we have |Nv,i| ≤ O(deg(v)2−i).

Having this, we conclude that for any i ∈ [logn], where ∆2−i > logn, the number of
colors used by the algorithm whose third element is i is at most O(∆22−2i) since the first
and the second element of the color can get at most O(∆2−i) different values. Therefore, the
total number of colors used for any such i is at most O

(∑
i∈[logn] ∆22−2i) = O(∆2). We

will also show that the stored edges fit in the memory and thus we can color them using
O(∆) new colors. As a result the total number of colors used is O(∆2).

To give an upper-bound for the number of stored edges we first show that the expected
number of stored edges for each vertex is O(logn). Let j := log( ∆

logn ). Recall that we store
an edge (u, v) when ∆2−du,v < logn. Thus the expected number of stored edges adjacent to
a single vertex v is at most∑

j≤i≤logn
dv2−i ≤

∑
j≤i≤logn

∆2−i ≤
∑

j≤i≤logn
log(n)2−i+j = O(logn).

To get the last equation we use the fact that ∆2−j ≤ logn. By a similar argument that
we used above (using Chernoff and Union bounds), with a high probability the total number
of stored edges is O(n logn) which can be stored in the memory. Therefore the proof of this
theorem is completed.

Knwoledge of ∆. As written, our algorithm depends on the knowledge of ∆ because we
must check ∆2−i > logn. We can get rid of this condition by keeping track of the degree
degHv of a vertex in the subgraph H we have seen so far, and then computing the max degree
degHmax. This only requires an additional O(n) space. Thereafter, instead of checking if
∆2−i > logn, we check if degHmax 2−i > logn. Whenever degHmax increases, we iterate over
all stored edges and recompute whether or not degHmax 2−i > logn. If so, we color the edge
and remove it from the buffer, else we keep it. It is easy to see that this will not exceed the
space bounds because at any timestep, we can assume the input graph was H in the first
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place. Then its max degree is ∆H = degHmax, and we can apply the same argument for the
space bounds as before, but using ∆H instead of ∆. All other parts of the proof still hold.
Therefore our algorithm does not require knowledge of ∆.

Finally, we remark that if one allows more space, then one can modify Algorithm 3 to
use fewer number of colors. Though we focused only on the Õ(n) memory regime.

4 Open Problems

We believe the most notable future direction is to improve the number of colors used in our
streaming algorithms. Specifically, our streaming algorithm for adversarial arrivals requires
O(∆2) colors. A major open question is whether this can be improved to O(∆) while also
keeping the memory near-linear in n. Also for random arrival streams, we showed that
Algorithm 2 achieves a 5.44∆ coloring and showed, experimentally, that it uses at least 3.86∆
colors. A particularly interesting open question is whether there is an algorithm that uses
arbitrarily close to 2∆ colors using Õ(n) space in random arrival streams.
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Abstract
We study quantum algorithms working on classical probability distributions. We formulate four
different models for accessing a classical probability distribution on a quantum computer, which are
derived from previous work on the topic, and study their mutual relationships.

Additionally, we prove that quantum query complexity of distinguishing two probability distribu-
tions is given by their inverse Hellinger distance, which gives a quadratic improvement over classical
query complexity for any pair of distributions.

The results are obtained by using the adversary method for state-generating input oracles and
for distinguishing probability distributions on input strings.
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1 Introduction

It is customary for a quantum algorithm to receive its input and produce its output in the
form of a classical string of symbols, quantized in the form of an oracle. This is purely classical
way to store information, and, given intrinsic quantum nature of quantum algorithms, this
might be not the best interface for many tasks. Moreover, even classical algorithms make
use of other interfaces as well. For instance, classical algorithms can receive and produce
samples from some probability distribution. In this paper we study quantum algorithms
working with classical probability distributions.

1.1 Models

We analyse previously used models of accessing classical probability distributions by quantum
algorithms. We prove and conjecture some relations between them. We give more detail in
Section 3, but for now let us very briefly introduce the models.

In one of the models, used in, e.g., [16, 18, 27, 25], the probability distribution is encoded
as a frequency of a symbol in a given input string, which the quantum algorithm accesses via
the standard input oracle. In another model, e.g., [17, 2, 6], the input probability distribution
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is given through a quantum oracle that prepares a state in the form
∑
a

√
pa|a〉. Finally, one

more model, used in [26, 20, 19], is similar but with additional state tensored with each |a〉.
This is the latter model that we champion in this paper. We find this model particularly

relevant because of our belief that an input oracle should be easily interchangeable with
a quantum subroutine, see discussion in [26]. It is relatively easy to see what it means
for a quantum algorithm to output a probability distribution: just measure one of the
registers of its final state. The latter model precisely encompasses all such subroutines. We
conjecture that this model is equivalent to the first model, see also [19], where a similar
conjecture is made.

1.2 Distinguishing two Probability Distributions

Additionally, we study the problem of distinguishing two probability distributions. This
might be the most fundamental problem one can formulate in these settings. Given two fixed
probability distributions p and q, and given an input oracle encoding one of them, the task is
to detect which one, p or q, the oracle encodes. To the best of our knowledge, this particular
problem has not been studied in quantum settings, although similar problems of testing the
distance between two distributions [16] and testing whether the input distribution is equal
to some fixed distribution [18] have been already studied.

Classically one needs Θ
(
1/dH(p, q)2) samples to solve this problem for any p and q, where

dH stands for Hellinger distance. This result is considered “folklore”, see, e.g. [7, Chapter 4].
We prove that for any p and q and for any of the models of access described above, query
complexity of this problem is Θ(1/ dH(p, q)). This constitutes quadratic improvement over
classical algorithm for any pair of distributions p and q. Moreover, our algorithm also admits
a simple low-level implementation, which is efficient assuming the distributions p and q can
be efficiently processed.

1.3 Techniques

Our main technical tool for proving the upper bound is the version of the adversary bound
for state-generating oracles, which is a special case of the adversary bound for general
input oracles [11]. It is stated in the form of a relative γ2-norm and generalises the dual
formulation of the general adversary bound [28, 29] for function evaluation, as well as for other
problems [5, 24]. The dual adversary bound has been used rather successfully in construction
of quantum algorithms, as in terms of span programs and learning graphs [9, 23, 13, 8, 22],
as in an unrelated fashion [10, 4]. Our work gives yet another application of these techniques
for construction of quantum algorithms.

Our upper bound naturally follows from the analysis of the γ2-norm optimisation problem
associated with the task. We also compare our techniques with more standard ones involving
quantum rejection sampling and amplitude amplification in the spirit of [20] and show that
our techniques give a slightly better result.

As for the lower bound, we make use of the version of the adversary bound from [12].
This is a simple generalisation of the primal version of the general adversary bound [21] for
function evaluation, and it is tailored for the task we are interested in: distinguishing two
probability distributions on input strings. Our lower bound is surprisingly simple and gives
a very intuitive justification of the significance of Hellinger distance for this problem.
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2 Preliminaries

We mostly use standard linear-algebraic notation. We use ket-notation for vectors representing
quantum states, but generally avoid it. We use A∗ to denote conjugate operators (transposed
and complex-conjugated matrices). For P a predicate, we use 1P to denote 1 if P is true,
and 0 if P is false. We use [n] to denote the set {1, 2, . . . , n}.

It is unfortunate that the same piece of notation, ⊕, is used both for direct sum of
matrices and direct sum of vectors, which is in conflict with each other if a vector, as it
often does, gets interpreted as a column-matrix. Since we will extensively use both these
operations in this paper, let us agree that � denotes direct sum of vectors, and ⊕ always
denotes direct sum of matrices. Thus, in particular, for u, v ∈ Rm, we have

u� v =



u1
...
um
v1
...
vm


and u⊕ v =



u1 0
...

...
um 0
0 v1
...

...
0 vm


.

We often treat scalars as 1× 1-matrices which may be also thought as vectors.

2.1 Relative γ2-norm
In this section, we state the relative γ2-norm and formulate some of its basic properties. All
the results are from [11].

I Definition 1 (Relative γ2-norm). Let X1, X2, Z1 and Z2 be vector spaces, and D1 and D2
be some sets of labels. Let A = {Axy} and ∆ = {∆xy}, where x ∈ D1 and y ∈ D2, be two
families of linear operators: Axy : Z2 → Z1 and ∆xy : X2 → X1. The relative γ2-norm,

γ2(A|∆) = γ2(Axy | ∆xy)x∈D1, y∈D2 ,

is defined as the optimal value of the following optimisation problem, where Υx and Φy are
linear operators,

minimise max
{

maxx∈D1‖Υx‖2
,maxy∈D2‖Φy‖

2
}

(1a)

subject to Axy = Υ∗x(∆xy ⊗ IW)Φy for all x ∈ D1 and y ∈ D2; (1b)
W is a vector space, Υx : Z1 → X1 ⊗W, Φy : Z2 → X2 ⊗W. (1c)

This is a generalisation of the usual γ2-norm, also known as Schur (Hadamard) product
operator norm [14].

In a quantum algorithm with general input oracles, the input oracle performs some
unitary operation O on some fixed Hilbert space. The algorithm can execute either O or
its inverse O−1 on some register. Each execution counts as one query. It is known that
O is equal to one Ox out of a set of possible input unitaries, where x ranges over some
set D of labels. If O = Ox, the algorithm has to perform a unitary Vx on some specified
part of its work-space. The algorithm knows in advance all possible Ox and which Vx
corresponds to each Ox, but it does not know which Ox it is given in a specific execution.
The adversary bound corresponding to this problem is γ2

(
Vx − Vy | Ox − Oy

)
x,y∈D. This

bound is semi-tight: it is a lower bound on the exact version of the problem and an upper
bound on the approximate version.
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The γ2-norm formalism is modular in the sense that the general task of implementing a
unitary can be replaced by something more specific. For instance, assume that our task is to
evaluate a function f(x). Then the adversary bound reads as γ2

(
1f(x) 6=f(y) | Ox −Oy

)
x,y∈D.

In this case, the bound is tight: it is also a lower bound on the approximate version
of the problem.

As another example, consider the standard input oracle Ox encoding a string x ∈ [q]n.
It works as Ox : |i〉|0〉 7→ |i〉|xi〉, which can be seen as a direct sum of oracles performing
transformation |0〉 7→ |xi〉. Using the modular approach, the corresponding adversary
bound becomes γ2

(
1f(x) 6=f(y) |

⊕
j 1xj 6=yj

)
x,y∈D, where

⊕
stands for direct sum of matrices

(resulting in a diagonal matrix). This is equivalent to the usual version of dual adversary for
function evaluation (up to a constant factor).

Now we consider state-generating input oracles1. In this case, the input to the algorithm
is given by a state ψ ∈ Cm, and the algorithm should work equally well for any unitary
performing the transformation O : |0〉 7→ |ψ〉. Without loss of generality, we may assume
that e0 = |0〉 is orthogonal to Cm, thus the operator O above works in Cm+1.

The corresponding γ2-object can be defined in two alternative ways:

Lψ = ψe∗0 + e0ψ
∗ or Lψ = ψ ⊕ ψ∗.

In the second expression, ψ is an m × 1-matrix and ψ∗ is a 1 × m-matrix, the resulting
matrix being of size (m+ 1)× (m+ 1). In the case of a function-evaluation problem, the
corresponding adversary bound is γ2

(
1f(x) 6=f(y) | Lψx

− Lψy

)
x,y∈D.

Let us also state the version of the adversary bound for the decision problem with
state-generating input oracles. This is the version we will use further in the paper. Assume
we have a collection of states ψx ∈ X for x ∈ D0, and a collection of states ψy ∈ X for
y ∈ D1. The task is to distinguish the two classes of states. Let D = D0 ∪D1. Using the
general case, we obtain the following version of the adversary bound.

I Theorem 2. The quantum query complexity of the decision problem with state-generating
oracles as above is equal to γ2

(
1 | Lψx

− Lψy

)
x∈D0,y∈D1

up to a constant factor.

An explicit optimisation problem for γ2
(
1 | Lψx

− Lψy

)
x∈D0,y∈D1

is given by

minimise maxz∈D
(
‖uz‖2 + ‖vz‖2)

subject to
〈
vx, (ψx − ψy)⊗ uy

〉
+
〈
(ψx − ψy)⊗ ux, vy

〉
= 1 ∀x ∈ D0, y ∈ D1;

uz ∈ W, vz ∈ X ⊗W ∀z ∈ D.
(2)

This result follows from general results of [11], see the full version of the paper, where we
also give a stand-alone implementation and analysis of the corresponding quantum algorithm.

3 Models

In this section we formally define four different models how a quantum algorithm can access
a classical probability distribution p = (pa)a∈A. These models were briefly explained in the
introduction. We would like to understand relations between them, and, ideally, prove some
equivalences between them.

1 The results below will appear in an updated version of [11] (to appear). Alternatively, refer to the full
version of the paper.
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(i) A standard input oracle encoding a string x ∈ An for some relatively large n, where pa
is given as the frequency of a in x:

pa = 1
n

∣∣∣{i | xi = a}
∣∣∣.

(ii) A standard input oracle encoding a string x ∈ An for some relatively large n, where
each xi is drawn independently at random from p.

(iii) A quantum procedure that generates the state

µp =
∑
a

√
pa|a〉 =�

a

√
pa. (3)

(iv) A quantum procedure that generates a state of the form∑
a

√
pa|a〉|ψa〉 =�

a

√
paψa, (4)

where ψa are arbitrary unit vectors.

As mentioned in the introduction, model (i) is used in [16, 18, 27, 25]. It has a down-
side that the probabilities pa must be multiples of 1/n. All other models are free from
this assumption.

Model (ii) seems like the most obvious way to encode probability distribution as a classical
string, which a quantum algorithm can later gain access to. Up to our knowledge, this
model has not been previously used. It has a downside that the distribution p is encoded
as a probability distribution over possible input strings, which is not usual for quantum
algorithms. The acceptance probability of the quantum algorithm depends both on the
randomness introduced by the algorithm and the randomness in the input.

Model (iii) is the one used in [17, 2, 6]. And model (iv) is used in [26, 20, 19]. Both of
these two models assume that the input oracle prepares a quantum state, which again is not
very common for quantum algorithms.

I Proposition 3. We have the following relations between these models.
(a) Models (i) and (ii) are equivalent assuming n is large enough. More precisely, no quantum

algorithm can distinguish models (i) and (ii) encoding the same probability distribution
unless it makes Ω(n1/3) queries.

(b) Model (iv) is more general than model (i). This means that any algorithm working in
model (iv) can be turned into an algorithm working in model (i) with the same query
complexity.

(c) Model (iv) is strictly more general than model (iii). This means there exist problems
where model (iii) allows substantially smaller query complexity than model (iv).

Proof. We leave (a) for the end of the proof, and let us start with (b). Note that using one
query to the input oracle of model (i), it is possible to prepare that state

1√
n

∑
i

|i〉|xi〉 =
∑
a∈A

[
1√
n

∑
i:xi=a

|i〉
]
⊗ |a〉,

which is a legitimate input state in model (iv) if one swaps the registers.

Now let us prove (c). It is obvious that model (iv) is more general than model (iii). To
prove that (iii) cannot simulate (iv), consider the collision problem [15]. In this problem, a
function f : [n]→ [n] is given, and one has to distinguish whether f is 1-to-1 or 2-to-1. In
terms of model (i), this boils down to distinguishing a probability distribution p which is
uniform on [n] from a probability distribution q which is uniform on half of [n].
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In model (iii), this problem can be solved in O(1) queries because the state µp as in (3)
has inner product 1/

√
2 with all µq. On the other hand, by [1, 3], quantum query complexity

of this problem in model (i) is Ω(n1/3). As model (iv) is more general than model (i), this
gives the required lower bound.

To prove (a), we show that if one can distinguish models (i) and (ii), one can distinguish
a random function from a random permutation, and the result follows from the lower bound
of Ω(n1/3) for this task from [30]. Indeed, let p be a probability distribution and let y be
a fixed string encoding p as in model (i). Let σ : [n]→ [n] be a function, and consider the
input string x given by xi = yσ(i), which can be simulated given oracle access to σ (as the
string y is fixed). If σ is a random permutation, then x is a uniformly random input string
from model (i). If σ is a random function, then x is distributed as in model (ii). J

4 Distinguishing Two Probability Distributions

Recall the definition of Hellinger distance between two probability distributions p and q on
the same space A:

dH(p, q) =
√

1
2
∑
a∈A

(√
pa −

√
qa
)2
.

Up to a constant factor, it equals ‖µp − µq‖ and 1− 〈µp, µq〉, where µp and µq are as in (3).
In this section, we prove the following result:

I Theorem 4. For any two probability distributions p and q on the same space A, and any
model of accessing them from Section 3, the quantum query complexity of distinguishing p
and q is

Θ
(

1
dH(p, q)

)
.

Note that this is quadratically better than complexity of the best classical algorithm for
every choice of p and q. Note also that for this problem model (iii) is equal in strength to
the remaining models.

The proof of main involves proving lower and upper bounds in all four models, but,
luckily, we can use relations from Proposition 3. The outline of the proof is as follows. We
prove upper bound in model (iv), which implies upper bounds in all other models as model
(iv) is the most general of them. As for the lower bounds, we prove it for model (ii), which
implies lower bounds in models (i) and (iv). For model (iii), we prove the lower bound
independently. As a bonus, we prove an upper bound in model (iii) as a warm-up for the
upper bound in model (iv).

In most of the proofs, we will use α for the angle between the vectors µp and µq. Note that

α = Θ(‖µp − µq‖) = Θ(dH(p, q)).
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4.1 Analysis in Model (iii)
In this section, we analyse the problem in model (iii).

B Claim 5. Quantum query complexity of distinguishing probability distributions p and q
in model (iii) is Θ

(
1/ dH(p, q)

)
.

Proof. Let us start with the upper bound. Let O be the input oracle, and let U be a unitary
that maps |µp〉 into |0〉 and |µq〉 into cosα|0〉 + sinα|1〉. Now use quantum amplitude
amplification on the unitary UO amplifying for the value |1〉. The algorithm can be also
made exact using exact quantum amplitude amplification.

Now let us prove the lower bound. Let Op be the input oracle exchanging |0〉 and |µp〉
and leaving the vectors orthogonal to them intact. Similarly, let Oq exchange |0〉 and |µq〉.
Simple linear algebra shows ‖Op − Oq‖ = O(α). Let AO be a query algorithm making t
queries to O and distinguishing Op from Oq. Then,∥∥AOp −AOq

∥∥ ≤ t‖Op −Oq‖ = O(tα).

As this must be Ω(1), we get that t = Ω(1/α). C

4.2 Upper Bound in Model (iv)
The aim of this section is to prove the following claim.

B Claim 6. Quantum query complexity of distinguishing probability distributions p and q
in model (iv) is O

(
1/dH(p, q)

)
.

We prove this claim by constructing a feasible solution to (2). In the full version of the
paper, we explain how to implement this algorithm time-efficiently and give a comparison to
an algorithm using more typical techniques.

Let ψ and φ be some vectors encoding p and q, respectively, as in model (iv). That is,

ψ =�
a

√
paψa, and φ =�

a

√
qaφa,

where ψa and φa are some normalised vectors. Our goal is to come up with a feasible solution
to (2) with ψx and ψy replaced by ψ and φ.

We first analyse a pair of vectors √paψa and √qaφa for a fixed a. We would like to get a
construction in the spirit of (2) that “erases” directions ψa and φa, and only depends on the
norms √pa and √qa. One way is to use the following identity:〈√

paψa,
√
paψa −

√
qaφa

〉
+
〈√

paψa −
√
qaφa,

√
qaφa

〉
= pa − qa. (5)

We combine this identity over all a, add weights ca, and re-normalise:〈
�a ca

√
paψa

4
√∑

a c
2
apa

, (ψ − φ) · 4
√∑

c2
apa

〉
+
〈

(ψ − φ) · 4
√∑

c2
aqa,
�a ca

√
qaφa

4
√∑

a c
2
aqa

〉
=
∑
a

ca(pa − qa),

which gives

γ2

(∑
a

ca(pa − qa)
∣∣∣ Lψ − Lφ)

ψ,φ
≤
√∑

a

c2
apa +

√∑
a

c2
aqa.
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Dividing by
∑
a ca(pa − qa), we get that complexity of distinguishing p from q is at most

O

(√∑
a c

2
apa +

√∑
a c

2
aqa∑

a ca(pa − qa)

)
. (6)

Using triangle inequality√∑
a

c2
a(√pa +√qa)2 ≤

√∑
a

c2
apa +

√∑
a

c2
aqa ≤ 2

√∑
a

c2
a(√pa +√qa)2,

so (6) is equivalent to

O

(√∑
a c

2
a(√pa +√qa)2∑
a ca(pa − qa)

)
.

Now it is easy to see that it is minimised to

O

(
1√∑

a(√pa −
√
qa)2

)
= O

(
1

dH(p, q)

)
when ca = (√pa −

√
qa)/(√pa +√qa).

4.3 Lower Bound in Model (ii)
We use the following version of the adversary lower bound from [12].

I Theorem 7. Assume A is a quantum algorithm that makes T queries to the input string
x = (x1, . . . , xn) ∈ D, with D = An, and then either accepts or rejects. Let P and Q be two
probability distributions on D, and px and qy denote probabilities of x and y in P and Q,
respectively. Let sP and sQ be acceptance probability of A when x is sampled from P and Q,
respectively. Then,

T = Ω
(

min
j∈[n]

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

)
, (7)

for any D ×D matrix Γ with real entries. Here, δP [[x]] = √px and δQ[[y]] = √qy are unit
vectors in RD; for j ∈ [n], the D ×D matrix ∆j is defined by ∆j [[x, y]] = 1xj 6=yj ; and

τ(sP , sQ) =
√
sP sQ +

√
(1− sP )(1− sQ) ≤ 1− |sP − sQ|

2

8 . (8)

In our case, δP = µ⊗np and δQ = µ⊗nq . We construct Γ as a tensor power G⊗n, where G
is an A×A matrix satisfying

Gµq = µp, ‖G‖ = 1, and ‖G ◦∆‖ is as small as possible,

where ∆ is the A×A matrix given by A[[a, b]] = 1a 6=b. Then,

δ∗PΓδQ = ‖Γ‖ = 1, and ‖Γ ◦∆j‖ = ‖G ◦∆‖,

and adv gives the lower bound of Ω
(
1/‖G ◦∆‖

)
.
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We construct G as follows. Recall that α is the angle between µq and µp. Then, G is
rotation by the angle α in the plane spanned by µq and µp and homothety with coefficient
cosα on its orthogonal complement. That is, in an orthonormal basis where the first two
vectors span the plane of µq and µp, we have

G =


cosα − sinα 0 · · · 0
sinα cosα 0 · · · 0

0 0 cosα · · · 0
...

...
...

. . .
...

0 0 0 · · · cosα

 .

Clearly, Gµq = µp and ‖G‖ = 1. Let G′ = G− cosα I. We have

‖G ◦∆‖ = ‖G′ ◦∆‖ ≤ 2‖G′‖ = 2 sinα = O
(
dH(p, q)

)
.

For the inequality we used that γ2(∆) ≤ 2, see [24, Theorem 3.4]. This gives the required
lower bound.

5 Summary and Future Work

In this paper we considered quantum algorithms dealing with classical probability distribu-
tions. We identified four different models, and proved various relations between them. We
conjecture that models (i), (ii) and (iv) are equivalent.

Also, we considered the problem of distinguishing two probability distributions and
obtained precise characterisation of its quantum query complexity in all four models in terms
of Hellinger distance between the probability distributions. The complexity turned out to be
exactly quadratically smaller than the classical complexity of this problem for all pairs of
distributions.

We showed that the corresponding algorithm can be implemented efficiently given that the
probability distributions p and q can be handled efficiently. We also compared our algorithm
with a more standard approach using rejection sampling and amplitude estimation.

This raises a number of interesting open problems. The first one is to prove or disprove the
conjecture that models (i) and (iv) are equivalent. Another interesting problem is to come up
with a nice γ2-characterisation of probability distribution oracles like gamma2StatePreparing
characterises state-generating oracles. Unfortunately, we do not have any hypothesis of how
this characterisation might look like. Finally, we would be interested in further quantum
algorithms based on techniques of Section 4.2.
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Abstract
In this paper, we design a framework to obtain efficient algorithms for several problems with a global
constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted
Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex
Set. For all these problems, we obtain 2O(k) · nO(1), 2O(k log(k)) · nO(1), 2O(k2) · nO(1) and nO(k) time
algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum
induced matching width. Our approach simplifies and unifies the known algorithms for each of
the parameters and match asymptotically also the running time of the best algorithms for basic
NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the
d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain
highlight the importance and the generalizing power of this equivalence relation on width measures.
We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem
parameterized by clique-width. For this latter problem, we obtain nO(k), nO(k) and n2O(k)

time
algorithm parameterized by clique-width, Q-rank-width and rank-width.
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1 Introduction

Tree-width is one of the most well-studied graph parameters in the graph algorithm community,
due to its numerous structural and algorithmic properties. Nevertheless, despite the broad
interest on tree-width, only sparse graphs can have bounded tree-width. But, many NP-hard
problems are tractable on dense graph classes. For many graph classes, this tractability
can be explained through other width measures. The most remarkable ones are certainly
clique-width [8], rank-width [18], and maximum induced matching width (a.k.a. mim-width)
[23]. We obtain most of these parameters through the notion of rooted layout (see Section 2).

These other width measures have a modeling power strictly stronger than the modeling
power of tree-width. For example, if a graph class has bounded tree-width, then it has
bounded clique-width [8], but the converse is false as cliques have clique-width at most 2
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and unbounded tree-width. While rank-width has the same modeling power as clique-width,
mim-width has the strongest one among all these width measures and is even bounded on
interval graphs [1]. Despite their generality, a lot of NP-hard problems admit polynomial
time algorithms when one of these width measures is fixed. But, dealing with these width
measures is known to be harder than manipulating tree-width.

Concerning their computations, it is not known whether the clique-width (respectively
mim-width) of a graph can be approximated within a constant factor in time f(k) · nO(1)

(resp. nf(k)) for some function f. However, for rank-width and its variant Q-rank-width [19],
there are efficient FPT algorithms for computing a decomposition approximating the width
of the input graph [19, 20].

Finding efficient algorithms parameterized by one of these width measures is by now
standard for problems based on local constraints [7, 22]. In contrast, the task is quite
complicated for problems involving a global constraint, e.g., connectivity or acyclicity. For a
long time, our knowledge on the parameterized complexity of this latter kind of problems,
with parameters the common width measures, was quite limited even for tree-width. For
a while, the FPT community used to think that for problems involving global constraints
the naive kO(k) · nO(1) time algorithm, k being the tree-width of the input graph, could not
be improved. But, quite surprisingly, in 2011, Cygan et al. introduced in [9] a technique
called Cut & Count to design Monte Carlo 2O(k) · nO(1) time algorithms for a wide range
of problems with global constraints, including Hamiltonian Cycle, Feedback Vertex
Set, and Connected Dominating Set. Later, Bodlaender et al. proposed in [5] a general
toolkit, called rank-based approach, to design deterministic 2O(k) · n time algorithms to solve
a wider range of problems.

Recently, Bergougnoux and Kanté [3] adapted the rank-based approach of [5] to obtain
2O(k) · n time algorithms, k being the clique-width of a given decomposition, for many
problems with a global constraint, e.g. Connected Dominating Set and Feedback
Vertex Set. Unlike tree-width and clique-width, algorithms parameterized by rank-width
and mim-width for problems with a global constraint, were not investigated, except for some
special cases such as Feedback Vertex Set [12, 15] and Longest Induced Path [14].

One successful way to design efficient algorithms with these width measures is through
the notion of d-neighbor equivalence. This concept was introduced by Bui-Xuan, Telle and
Vatshelle in [7]. Formally, given A ⊆ V (G) and d ∈ N+, two sets X,Y ⊆ A are d-neighbor
equivalent w.r.t. A if, for all v ∈ V (G) \A, we have min(d, |N(v)∩X|) = min(d, |N(v)∩Y |),
where N(v) is the set of neighbors of v in G. Notice that X and Y are 1-neighbor equivalent
w.r.t. A if and only if both have the same neighborhood in V (G) \ A. The d-neighbor
equivalence gives rise to a width measure, called in this paper d-neighbor-width (defined
in Section 2). It is worth noticing that the boolean-width of a layout introduced in [6]
corresponds to the binary logarithm of the 1-neighbor-width.

These notions were used by Bui-Xuan et al. in [7] to design efficient algorithms for the
family of problems called (σ, ρ)-Dominating Set problems. This family of problems was
introduced by Telle and Proskurowski in [22] (we define this family in Section 4). Many
NP-hard problems based on local constraints belong to this family, see [7, Table 1].

Bui-Xuan et al.[7] designed an algorithm that, given a rooted layout L, solve any (σ, ρ)-
Dominating Set problem in time s-necd(L)O(1) · nO(1) where d is a constant depending on
the considered problem. The known upper bounds on s-necd(L) and the algorithm of [7]
give efficient algorithms to solve any (σ, ρ)-Dominating Set problem, with parameters tree-
width, clique-width, (Q)-rank-width, and mim-width. The running times of these algorithms
are given in Table 1.
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Table 1 Upper bounds on s-necd(L)O(1) · nO(1) with L a layout and d a constant.

Tree-width Clique-width Rank-width Q-rank-width Mim-width
2O(k) · nO(1) 2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

Our contributions. In this paper, we design a framework based on the 1-neighbor equivalence
(presented in Section 3) and using some ideas of the rank-based approach of [5] to design
efficient algorithms for many problems involving a connectivity constraint. This framework
provides tools to reduce the size of the sets of partial solutions we compute at each step of a
dynamic programming algorithm. We prove that many ad-hoc algorithms for these problems
can be unified into a single algorithm that is almost the same as the one from [7] computing
a dominating set.

In Section 4, we use our framework to design an algorithm that, given a rooted layout
L, solves any connectivity variant (a solution must induce a connected graph) of a (σ, ρ)-
Dominating Set problem. This includes some well-known problems such as Connected
Dominating Set, Connected Vertex Cover or Node Weighted Steiner Tree.
The running time of our algorithm is polynomial in n and s-necd(L), with d a constant that
depends on σ and ρ. Consequently, each connectivity variant of a (σ, ρ)-Dominating Set
problem admits algorithms with the running times given in Table 1.

In Section 5, we introduce some new concepts to deal with acyclicity. We use these
concepts to deal with the AC variants2 (a solution must induce a tree) of (σ, ρ)-Dominating
Set problems. Both Maximum Induced Tree and Longest Induced Path are AC
variants of (σ, ρ)-Dominating Set problems. We prove that there exist algorithms that
solve these AC variants in the running times given in Table 1. To obtain these results,
we rely heavily on the d-neighbor equivalence. However, we were not able to provide an
algorithm whose running time is polynomial in n and s-necd(L) for some constant d. Instead,
we provide an algorithm whose behavior depends slightly on each width measure considered
in Table 1. We moreover prove that we can modify slightly this algorithm to solve any
acyclic variant (a solution must induce a forest) of a (σ, ρ)-Dominating Set problem. In
particular, this shows that we can use the algorithm for Maximum Induced Tree to solve
the Feedback Vertex Set problem.

Up to a constant in the exponent, the running times of our algorithms and their algorithmic
consequences match those of the best known algorithms for basic problems such as Vertex
Cover and Dominating Set [7, 19]. Surprisingly, our result reveal that the d-neighbor
equivalence relation can be used for problems which are not based on local constraints. This
highlights the importance and the generalizing power of this concept on many width measures.

We conclude in Section 6 and state our theorem for the computation of Max Cut
– a problem which is W[1]-hard parameterized by clique-width – whose running time is
polynomial in n and the n-neighbor width of a given rooted layout. This algorithm gives
the best known algorithms parameterized by clique-width, Q-rank-width and rank-width. It
is worth mentioning that contrary to the algorithm for Max Cut given in [11], there is no
need to assume that the graph is given with a clique-width expression as our algorithm can
be parameterized by Q-rank-width, which is always smaller than clique-width and for which
also a fast FPT (3k + 1)-approximation algorithm exists [20].

2 AC stands for “acyclic and connected”.
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17:4 Connectivity and Acyclicity Constraints Versus d-Neighbor Equivalence

Relation to previous works. Our framework can be used on tree-decomposition to ob-
tain 2O(k) · nO(1) time algorithms parameterized by tree-width for the variants of (σ, ρ)-
Dominating Set problems. Indeed, given a vertex separator S of size k, the number
of d-neighbor equivalence classes over S (resp. V (G) \ S) is upper bounded by 2k (resp.
(d+ 1)k). For this reason, we can consider our framework as a generalization of the rank-
based approach of [5]. Our framework generalizes also the clique-width adaptation of the
rank-based approach used in [3] to obtain 2O(k) · n time algorithms, k being the clique-width
of a given decomposition, for Connected (σ, ρ)-Dominating Set problem and Feedback
Vertex Set. However, the constant in the running time of the algorithms in [3, 5] are better
than those of our algorithms. Indeed, our approach is based on a more general parameter
and is not optimized neither for tree-width nor clique-width. Our framework simplifies the
algorithms in [3, 5] because contrary to [3, 5] we do not use weighted partitions to encode the
partial solutions. Consequently, the definitions of the dynamic programming tables and the
computational steps of our algorithms are simpler than those in [3, 5]. This is particularly
true for Feedback Vertex Set where the use of weighted partitions to encode the partial
solutions in [3] implies to take care of many technical details concerning the acyclicity.

The results we obtain simplify the 2O(k2) · nO(1) time algorithm parameterized by rank-
width for Feedback Vertex Set from [12], and the nO(k) time algorithms parameterized
by mim-width for Feedback Vertex Set and Longest Induced Path from [14, 15].

Concerning mim-width, we provide unified polynomial-time algorithms for the considered
problems for all well-known graph classes having bounded mim-width and for which a
layout of bounded mim-width can be computed in polynomial time [1] (e.g., interval graphs,
circular arc graphs, permutation graphs, Dilworth-k graphs and k-polygon graphs for all
fixed k). Notice that we also generalize one of the results from [17] proving that the
Connected Vertex Cover problem is solvable in polynomial time for circular arc graphs.

It is worth noticing that the approach used in [9] called Cut & Count can also be
generalized to the d-neighbor-width for any Connected (σ, ρ)-dominating set problem
with more or less the same arguments used in this paper (see the PhD thesis [2]).

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write A \B
for the set difference of A from B. We denote by N the set of non-negative integers and by
N+ the set N \ {0}. We let min(∅) := +∞ and max(∅) := −∞. Let V be a finite set. A set
function f : 2V → N is symmetric if, for all S ⊆ V , we have f(S) = f(V \ S).

Graphs. Our graph terminology is standard, and we refer to [10]. The vertex set of a graph
G is denoted by V (G) and its edge set by E(G). For every vertex set X ⊆ V (G), when the
underlying graph is clear from context, we denote by X, the set V (G) \X. An edge between
two vertices x and y is denoted by xy or yx. The set of vertices that is adjacent to x is
denoted by NG(x). For a set U ⊆ V (G), we define NG(U) :=

⋃
x∈U NG(x). If the underlying

graph is clear, then we may remove G from the subscript.
The subgraph of G induced by a subset X of its vertex set is denoted by G[X]. For

X,Y ⊆ V (G), we denote by G[X,Y ] the bipartite graph with vertex set X ∪ Y and edge
set {xy ∈ E(G) : x ∈ X and y ∈ Y }. Moreover, we denote by MX,Y the adjacency matrix
between X and Y , i.e., the (X,Y )-matrix such that MX,Y [x, y] = 1 if y ∈ N(x) and 0
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otherwise. For a graph G, we denote by cc(G) the partition {V (C) : C is a connected
component of G}. For two subsets A and B of 2V (G), we define the merging of A and B,
denoted by A

⊗
B, as

A
⊗
B :=

{
∅ if A = ∅ or B = ∅,
{X ∪ Y : X ∈ A and Y ∈ B} otherwise.

Let X ⊆ V (G). A consistent cut of X is an ordered bipartition (X1, X2) of X such that
N(X1) ∩X2 = ∅. We denote by ccut(X) the set of all consistent cuts of X.

The d-neighbor equivalence relation. Let G be a graph. The following definition is from
[7]. Let A ⊆ V (G) and d ∈ N+. Two subsets X and Y of A are d-neighbor equivalent w.r.t.
A, denoted by X ≡d

A Y , if min(d, |X ∩N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A. It is not
hard to check that ≡d

A is an equivalence relation.
For all d ∈ N+, we let necd : 2V (G) → N where, for all A ⊆ V (G), necd(A) is the number

of equivalence classes of ≡d
A. Notice that while nec1 is a symmetric function [16, Theorem

1.2.3], necd is not necessarily symmetric for d ≥ 2.
In order to manipulate the equivalence classes of≡d

A, one needs to compute a representative
for each equivalence class in polynomial time. This is achieved with the following notion of a
representative. Let G be a graph with an arbitrary ordering of V (G) and let A ⊆ V (G). For
each X ⊆ A, let us denote by repd

A(X) the lexicographically smallest set R ⊆ A such that
|R| is minimized and R ≡d

A X. Moreover, we denote by Rd
A the set {repd

A(X) : X ⊆ A}. It
is worth noticing that the empty set always belongs to Rd

A, for all A ⊆ V (G) and d ∈ N+.
Moreover, we have Rd

V (G) = Rd
∅ = {∅} for all d ∈ N+. In order to compute Rd

A, we use the
following lemma.

I Lemma 1 ([7]). For every A ⊆ V (G) and d ∈ N+, one can compute in time O(necd(A) ·
log(necd(A)) · |V (G)|2), the sets Rd

A and a data structure, that given a set X ⊆ A, computes
repd

A(X) in time O(log(necd(A)) · |A| · |V (G)|).

Graph width measures. A rooted binary tree is a binary tree with a distinguished vertex
called the root. Since we manipulate at the same time graphs and trees representing them,
the vertices of trees will be called nodes. A rooted layout of G is a pair L = (T, δ) of a
rooted binary tree T and a bijective function δ between V (G) and the leaves of T . For each
node x of T , let Lx be the set of all the leaves l of T such that the path from the root of
T to l contains x. We denote by V Lx the set of vertices that are in bijection with Lx, i.e.,
V Lx := {v ∈ V (G) : δ(v) ∈ Lx}. When L is clear from the context, we may remove L from
the superscript.

All the width measures dealt with in this paper are special cases of the following one, the
difference being in each case the used set function. Given a set function f : 2V (G) → N and
a rooted layout L = (T, δ), the f-width of a node x of T is f(V Lx ) and the f-width of (T, δ),
denoted by f(T, δ) (or f(L)), is max{f(V Lx ) : x ∈ V (T )}. Finally, the f-width of G is the
minimum f-width over all rooted layouts of G.

For a graph G, we let s-necd,mw,mim, rw, rwQ be functions from 2V (G) to N such that
for every A ⊆ V (G), s-necd(A) = max{necd(A), necd(A)}, mw(A) is the cardinality of
{N(v) ∩ A : v ∈ A}, mim(A) is the size of a maximum induced matching of the graph
G[A,A] and rw(A) (resp. rwQ(A)) is the rank over GF (2) (resp. Q) of the matrix MA,A.
The d-neighbor-width, module-width, mim-width, rank-width and Q-rank-width of G, are
respectively, its s-necd-width, mw-width, mim-width, rw-width and rwQ-width [23].
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17:6 Connectivity and Acyclicity Constraints Versus d-Neighbor Equivalence

Observe that, for every graph G, mw(G) ≤ cw(G) ≤ 2mw(G) where cw(G) is the clique-
width of G [21] , and one can moreover translate, in time at most O(n2), a given decomposition
into the other one with width at most the given bounds.

In the following, we fix G an n-vertex graph, (T, δ) a rooted layout of G, and w : V (G)→ Q
a weight function over the vertices of G. We also assume that V (G) is ordered.

3 Representative sets

In this section, we define a notion of representativity between sets of partial solutions w.r.t.
the connectivity. Our notion of representativity is defined w.r.t. some node x of T and the
1-neighbor equivalence class of some set R′ ⊆ Vx. In our algorithms, R′ will always belong to
Rd

Vx
for some d ∈ N+. Our algorithms compute a set of partial solutions for each R′ ∈ Rd

Vx
.

The partial solutions computed for R′ will be completed with sets equivalent to R′ w.r.t.
≡d

Vx
. Intuitively, the R′’s represent some expectation about how we will complete our sets of

partial solutions. For the connectivity and the domination, d = 1 is enough but if we need
more information for some reasons (for example the (σ, ρ)-domination or the acyclicity), we
may take d > 1. This is not a problem as the d-neighbor equivalence class of R′ is included
in the 1-neighbor equivalence class of R′. Hence, in this section, we fix a node x of T and a
set R′ ⊆ Vx to avoid to overload the statements by the sentence “let x be a node of T and
R′ ⊆ Vx”. We let opt ∈ {min,max}; if we want to solve a maximization (or minimization)
problem, we use opt = max (or opt = min). We use it also, as here, in the next sections.

I Definition 2 ((x,R′)-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define
best(A, Y ) := opt{w(X) : X ∈ A and G[X ∪ Y ] is connected }.

Let A,B ⊆ 2Vx . We say that B (x,R′)-represents A if, for every Y ⊆ Vx such that
Y ≡1

Vx
R′, we have best(A, Y ) = best(B, Y ).

Notice that the (x,R′)-representativity is an equivalence relation. The set A is meant to
represent a set of partial solutions of G[Vx] associated with R′ which have been computed.
If a B ⊆ A (x,R′)-represents A, then we can safely substitute A by B because the quality of
the output of the dynamic programming algorithm will remain the same. Indeed, for every
subset Y of Vx such that Y ≡1

Vx
R′, an optimum solution obtained by the union of a partial

solution in A and Y will have the same weight as an optimum solution obtained from the
union of a set in B and Y .

The following theorem presents the main tool of our framework: a function reduce that,
given a set of partial solutions A, outputs a subset of A that (x,R′)-represents A and
whose size is upper bounded by s-nec1(L)2. To design this function, we use ideas from the
rank-based approach of [5]. That is, we define a small matrix C with |A| rows and s-nec1(Vx)2

columns. Then, we show that a basis of maximum weight of the row space of C corresponds
to an (x,R′)-representative set of A. Since C has s-nec1(L)2 columns, the size of a basis of
C is smaller than s-nec1(L)2. By calling reduce after each computational step, we keep the
sizes of the sets of partial solutions polynomial in s-nec1(L).

In order to compute a small (x,R′)-representative set of a set A ⊆ 2Vx , the following
theorem requires that the sets in A are pairwise equivalent w.r.t. ≡1

Vx
. This is useful

since in our algorithm we classify our sets of partial solutions with respect to this property.
We need this to guarantee that the partial solutions computed for R′ will be completed
with sets equivalent to R′ w.r.t. ≡d

Vx
. However, if one wants to compute a small (x,R′)-

representative set of a set A that does not respect this property, then it is enough to compute
an (x,R′)-representative set for each 1-neighbor equivalence class of A. The union of these
(x,R′)-representative sets is an (x,R′)-representative set of A. In the following, ω is the
matrix multiplication exponent.
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I Theorem 3. Let R ∈ R1
Vx

and R′ ⊆ Vx. Then, there exists an algorithm reduce that, given
A ⊆ 2Vx such that X ≡1

Vx
R for all X ∈ A, outputs in time O(|A| · nec1(Vx)2(ω−1) · n2) a

subset B ⊆ A such that B (x,R′)-represents A and |B| ≤ nec1(Vx)2.

Sketch of proof. We assume w.l.o.g. that opt = max (the case opt = min is symmetric).
If R′ ≡1

Vx
∅, then, from Definition 2, it is enough to output {X} where X is a set in A of

maximum weight such that G[X] is connected.
Assume that R′ is not equivalent to ∅ w.r.t. ≡1

Vx
. Observe that, for every X ∈ A which

admits a connected component C with N(C) ∩R′ = ∅, the graph G[X ∪ Y ] is not connected
for every Y ≡1

Vx
R′. Thus, we can safely remove from A all such sets, this can be done

in time |A| · n2. Let D be the set of all subsets Y of Vx such that Y ≡1
Vx

R′ and, for all
C ∈ cc(Y ), we have N(C)∩R 6= ∅. It is easy to check that the sets in 2Vx \ D do not matter
in the (x,R′)-representativity: they will not give a solution with a set in A.

For every Y ∈ D, we let vY be one fixed vertex of Y . In the following, we denote by R
the set {(R′1, R′2) ∈ R1

Vx
× R1

Vx
}. Let C, and C be, respectively, an (A,R)-matrix and an

(R,D)-matrix such that

C[X, (R′
1, R

′
2)] :=

{
1 if ∃(X1, X2) ∈ ccut(X) such that N(X1) ∩R′

2 = ∅ ∧N(X2) ∩R′
1 = ∅,

0 otherwise.

C[(R′
1, R

′
2), Y ] :=

{
1 if ∃(Y1, Y2) ∈ ccut(Y ) such that vY ∈ Y1, Y1 ≡1

Vx
R′

1, and Y2 ≡1
Vx
R′

2,

0 otherwise.

Owing to the partial solutions we have removed from A and the definition of D, we can
prove that a basis of maximum weight of the row space of C is an (x,R′)-representative set of
A. This follows from the fact that (C ·C)[X,Y ] equals the number of consistent cuts (W1,W2)
in ccut(X ∪ Y ) such that vY ∈ W1. Consequently, (C · C)[X,Y ] = 2|cc(G[X∪Y ])|−1 and thus
(C · C)[X,Y ] is odd if and only if G[X ∪ Y ] is connected. The running time of reduce and the
size of reduce(A) follows from the size of C (i.e. |A| · nec1(Vx)2) and the fact that both C
and a basis of maximum weight of C are easy to compute. J

Now to boost up a dynamic programming algorithm P on some rooted layout (T, δ) of G,
we can use the function reduce to keep the size of the sets of partial solutions bounded by
s-nec1(T, δ)2. We call P ′ the algorithm obtained from P by calling the function reduce at
every step of computation. We can assume that the set of partial solutions Ar computed by
P and associated with the root r of (T, δ) contains an optimal solution (this will be the cases
in our algorithms). To prove the correctness of P ′, we need to prove that A′r (r, ∅)-represents
Ar where A′r is the set of partial solutions computed by P ′ and associated with r. For
doing so, we need to prove that at each step of the algorithm the operations we use preserve
the (x,R′)-representativity. The following fact states that we can use the union without
restriction, it follows directly from Definition 2 of (x,R′)-representativity.

I Fact 4. If B and D (x,R′)-represents, respectively, A and C, then B∪D (x,R′)-represents
A ∪ C.

The second operation we use in our dynamic programming algorithms is the merging
operator

⊗
. In order to safely use it, we need the following notion of compatibility that just

tells which partial solutions from Va and Vb can be joined to possibly form a partial solution
in Vx. (It was already used in [7] without naming it.)
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I Definition 5 (d-(R,R′)-compatibility). Suppose that x is an internal node of T with a

and b as children. Let d ∈ N+ and R ∈ Rd
Vx
. We say that (A,A′) ∈ Rd

Va
× Rd

Va
and

(B,B′) ∈ Rd
Vb
×Rd

Vb
are d-(R,R′)-compatible if we have (1) A∪B ≡d

Vx
R, (2) A′ ≡d

Va
B∪R′,

and (3) B′ ≡d
Vb
A ∪R′.

I Lemma 6. Suppose that x is an internal node of T with a and b as children. Let d ∈ N+ and
R ∈ Rd

Vx
. Let (A,A′) ∈ Rd

Va
×Rd

Va
and (B,B′) ∈ Rd

Vb
×Rd

Vb
that are d-(R,R′)-compatible.

Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡d
Va
A, and let B ⊆ 2Vb such that, for all

W ∈ B, we have W ≡d
Vb
B. If A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B,

then A′
⊗
B′ (x,R′)-represents A

⊗
B.

4 Connected (Co)-(σ, ρ)-Dominating Sets

Let σ and ρ be two (non-empty) finite or co-finite subsets of N. We say that a subset
D of V (G) (σ, ρ)-dominates a subset U ⊆ V (G) if, for every vertex u ∈ U ∩ D, we have
|N(u) ∩D| ∈ σ, and, for every vertex u ∈ U \D, we have |N(u) ∩D| ∈ ρ. A subset D of
V (G) is a (σ, ρ)-dominating set (resp. co-(σ, ρ)-dominating set) if D (resp. V (G) \D) (σ, ρ)-
dominates V (G). A problem is a Connected (σ, ρ)-Dominating Set if it consists in finding
a connected (σ, ρ)-dominating set of maximum (or minimum) weight. Similarly, one can
define the Connected Co-(σ, ρ)-Dominating Set problems. Examples are Connected
Perfect Dominating Set and Connected Vertex-Cover3.

Let d(N) := 0, and for a finite or co-finite subset µ of N, let d(µ) := min(max(µ),max(N\
µ)) + 1. Let d := max{1, d(σ), d(ρ)}. The definition of d is motivated by the following lemma.

I Lemma 7 ([7]). Let A ⊆ V (G). Let X ⊆ A and Y, Y ′ ⊆ A such that Y ≡d
A
Y ′. Then

(X ∪ Y ) (σ, ρ)-dominates A if and only if (X ∪ Y ′) (σ, ρ)-dominates A.

In this section, we present an algorithm that computes a maximum (or minimum)
connected (σ, ρ)-dominating set with a graph G and a layout (T, δ) as inputs. Its running
time is O(s-necd(T, δ)O(1) · n3). The same algorithm, with some little modifications, will
be able to find a minimum Steiner tree or a maximum (or minimum) connected co-(σ, ρ)-
dominating set as well.

To deal with the local constraint, i.e., the (σ, ρ)-domination, we use the ideas of Bui-Xuan
et al. [7]. For every x ∈ V (T ) and all pairs (R,R′) ∈ Rd

Vx
×Rd

Vx
, we let Ax[R,R′] := {X ⊆

Vx : X ≡d
Vx

R and X ∪ R′ (σ, ρ)-dominates Vx}. To compute a maximum (or minimum)
(σ, ρ)-dominating set, Bui-Xuan et al. [7] proved that it is enough to compute, for each node
x ∈ V (T ) and each pair (R,R′), a partial solution X in Ax[R,R′] of maximum (or minimum)
weight. Indeed, by Lemma 7, if a partial solution X ∈ Ax[R,R′] could be completed into a
(σ, ρ)-dominating set of G with a set Y ≡d

Vx
R′, then it is the case for every partial solution

in Ax[R,R′]. To deal with the connectivity constraint, for each node x of V (T ) and each
pair (R,R′), our algorithm will compute a set Dx[R,R′] that satisfies the following invariant.

Invariant. For every (R,R′) ∈ Rd
Vx
×Rd

Vx
, the set Dx[R,R′] is a subset of Ax[R,R′] of size

at most s-nec1(T, δ)2 that (x,R′)-represents Ax[R,R′].
Notice that, by the definition of Ar[∅, ∅] (r being the root of T ) and the definition of

(x,R′)-representativity, if G admits a connected (σ, ρ)-dominating set, then Dr[∅, ∅] must
contain a maximum (or minimum) connected (σ, ρ)-dominating set.

3 More can be found in [7, Table 1] by adding a connectivity constraint to the sets or their complements.
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We compute the tables Dx’s by a usual bottom-up dynamic programming algorithm,
starting at the leaves of T . The computational steps are trivial for the leaves, and for each
internal node x with children a and b, and for each (R,R′) ∈ Rd

Vx
×Rd

Vx
we let Dx[R,R′]

be an (x,R′)-representative set of
(⋃

(A,A′), (B,B′) d-(R,R′)-compatibleAa[A,A′]
⊗
Ab[B,B′]

)
computed with the function reduce defined in Section 3. This guarantees that each set
Dx[R,R′] contains at most s-nec1(T, δ)2 partial solutions. Thanks to Lemma 6, we can state.

I Theorem 8. There exists an algorithm that, given an n-vertex graph G and a rooted layout
(T, δ) of G, computes a maximum (or minimum) connected (σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

As a corollary, we can solve in time s-nec1(T, δ)O(1) · n3 the Node-Weighted Steiner
Tree problem that asks, given a subset of vertices K ⊆ V (G) called terminals, a subset T
of minimum weight such that K ⊆ T ⊆ V (G) and G[T ] is connected.

I Corollary 9. There exists an algorithm that, given an n-vertex graph G, a subset K ⊆ V (G),
and a rooted layout (T, δ) of G, computes a minimum node-weighted Steiner tree for (G,K)
in time O(s-nec1(T, δ)(2ω+5) · log(s-nec1(T, δ)) · n3).

Observe that Corollary 9 simplify and generalize the algorithm from [5] for (Edge-
Weighted) Steiner Tree. Indeed the incidence graph of a graph of tree-width k has
tree-width at most k + 1, and one can reduce the computation of a edge-weighted Steiner
tree on a graph to the computation of a node-weighted Steiner tree on its incidence graph.

With few modifications of the algorithm from Theorem 8, we can state the following.

I Corollary 10. There exists an algorithm that, given an n-vertex graph G and a rooted
layout (T, δ) of G, computes a maximum (or minimum) connected co-(σ, ρ)-dominating set in
time O(s-necd(T, δ)3 · s-nec1(T, δ)(2ω+5) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

5 Acyclic variants of (Connected) (σ, ρ)-Dominating Set

We call AC-(σ, ρ)-Dominating Set (resp. Acyclic (σ, ρ)-Dominating Set) the family of
problems which consists in finding a subset X ⊆ V (G) of maximum (or minimum) weight
such that X is a (σ, ρ)-dominating set of G and G[X] is a tree (resp. a forest). Examples
are Longest Induced Path and Feedback Vertex Set.

In this section, we present an algorithm that solves any AC-(σ, ρ)-Dominating Set
problem. Unfortunately, we were not able to obtain an algorithm whose running time is
polynomial in n and the d-neighbor-width of the given layout (for some constant d). But, for
the other parameters, by using their respective properties, we get the running time presented
in Table 1. Moreover, we show, via a polynomial reduction, that we can use our algorithm
for AC-(σ, ρ)-Dominating Set problems (with some modifications) to solve any Acyclic
(σ, ρ)-Dominating Set problem.

Let us first explain why we cannot use the same trick as in [5] on the algorithms of
Section 4 to ensure the acyclicity, that is classifying the partial solutions X – associated
with a node x ∈ V (T ) – with respect to |X| and |E(G[X])|. Indeed, for two sets X,W ⊆ Vx

with |X| = |W | and |E(G[X])| = |E(G[W ])|, we have |E(G[X ∪ Y ])| = |E(G[W ∪ Y ])|, for
all Y ⊆ Vx, if and only if X ≡n

Vx
W . Hence, the trick used in [5] would imply to classify

the partial solutions with respect to their n-neighbor equivalence class. But, the upper
bounds we have on necn(Vx) with respect to module-width, (Q-)rank-width would lead to
an XP algorithm.
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In the following, we introduce some new concepts that extends the framework designed in
Section 3 in order to manage acyclicity. All along, we give intuitions on these concepts through
a concrete example: Maximum Induced Tree. Finally, we present the algorithms for the
AC-(σ, ρ)-Dominating Set problems and the algorithms for Acyclic (σ, ρ)-Dominating
Set problems. We start by defining a new notion of representativity to deal with the
acyclicity constraint. This new notion of representativity is defined w.r.t. to the 2-neighbor
equivalence class of a set R′ ⊆ Vx. We consider 2-neighbor equivalence classes instead of 1-
neighbor equivalence classes in order to manage the acyclicity (see the following explanations).
Similarly to Section 3, every concept introduced in this section is defined with respect to a
node x of T and a set R′ ⊆ Vx. To simplify this section, we fix a node x of T and R′ ⊆ Vx.
In our algorithm, R′ will always belong to Rd

Vx
for some d ∈ N+ with d ≥ 2. For Maximum

Induced Tree d = 2 is enough and in general, we use d := max{2, d(σ), d(ρ)}. The following
definition extends Definition 2 of Section 3 to deal with the acyclicity.

I Definition 11 ((x,R′)acy-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define
best(A, Y )acy := opt{w(X) : X ∈ A and G[X ∪ Y ] is a tree}.

Let A,B ⊆ 2Vx . We say that B (x,R′)acy-represents A if, for every Y ⊆ Vx such that
Y ≡2

Vx
R′, we have bestacy(A, Y ) = bestacy(B, Y ).

In order to compute a maximum induced tree, we design an algorithm similar to those
of Section 4. That is, for each (R,R′) ∈ R2

Vx
× R2

Vx
, our algorithm will compute a set

Dx[R,R′] ⊆ 2Vx that is an (x,R′)acy-representative set of small size of the set Ax[R] := {X ⊆
Vx such that X ≡2

Vx
R}. This is sufficient to compute a maximum induced tree of G since we

have Ar[∅] = 2V (G) with r the root of T . Thus, by Definition 11, any (r, ∅)acy-representative
set of Ar[∅] contains a maximum induced tree.

The key to compute the tables of our algorithm is a function that, given A ⊆ 2Vx ,
computes a small subset of A that (x,R′)acy-represents A. This function starts by removing
from A some sets that will never give a tree with a set Y ≡2

Vx
R′. For doing so, we characterize

the sets X ∈ A such that G[X ∪Y ] is a tree for some Y ≡2
Vx
R′. The following gives a formal

definition of these important and unimportant partial solutions.

I Definition 12 (R′-important). We say that X ⊆ Vx is R′-important if there exists Y ⊆ Vx

such that Y ≡2
Vx
R′ and G[X ∪ Y ] is a tree, otherwise, we say that X is R′-unimportant.

By definition, any set obtained from a set A by removing R′-unimportant sets is an
(x,R′)acy-representative set of A. The following lemma gives some necessary conditions on
R′-important sets. It follows that any set which does not respect one of these conditions
can safely be removed from A. These conditions are the key to obtain the running times
of Table 1. At this point, we need to introduce the following notations. For every X ⊆ Vx,
we define X0 := {v ∈ X : N(v) ∩ R′ = ∅}, X1 := {v ∈ X : |N(v) ∩ R′| = 1}, and
X2+ := {v ∈ X : |N(v) ∩ R′| ≥ 2}. Notice that, for every Y ≡2

Vx
R′ and X ⊆ Vx, the

vertices in X0 have no neighbor in Y , those in X1 have exactly one neighbor in Y and those
in X2+ have at least 2 neighbors in Y .

I Lemma 13. If X ⊆ Vx is R′-important, then G[X] is a forest and the following properties
are satisfied:
1. for every pair of distinct vertices a and b in X2+, we have N(a) ∩ Vx 6= N(b) ∩ Vx,
2. |X2+| is upper bounded by 2mim(Vx), 2rw(Vx) and 2rwQ(Vx).

In order to prove these two necessary conditions, we need the properties of the 2-neighbor
equivalence relation. More precisely, we use the fact that, for all X ⊆ Vx and Y ≡2

Vx
R′,

the vertices in X having at least two neighbors in Y corresponds exactly to those having
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at least two neighbors in R′. These vertices play a major role in the acyclicity and the
computation of representatives in the following sense. By removing from A the sets that do
not respect the two above properties, we are able to decompose A into a small number of
sets A1, . . . ,At such that an (x,R′)-representative set of Ai is an (x,R′)acy-representative
set of Ai for each i ∈ {1, . . . , t}. We find an (x,R′)acy-representative set of A, by computing
an (x,R′)-representative set Bi for each Ai with the function reduce. This is sufficient
because B1 ∪ · · · ∪ Bt is an (x,R′)acy-representative set of A. The following definition gives
a characterization of the subsets of 2Vx for which an (x,R′)-representative set is also an
(x,R′)acy-representative set.

I Definition 14. We say that A ⊆ 2Vx is R′-consistent if, for each Y ⊆ Vx such that
Y ≡2

Vx
R′, if there exists W ∈ A such that G[W ∪ Y ] is a tree, then, for each X ∈ A, either

G[X ∪ Y ] is a tree or G[X ∪ Y ] is not connected.

The following lemma proves that an (x,R′)-representative set of an R′-consistent set is
also an (x,R′)acy-representative set of this latter.

I Lemma 15. Let A ⊆ 2Vx . For all D ⊆ A, if A is R′-consistent and D (x,R′)-represents
A, then D (x,R′)acy-represents A.

The next lemma proves that, for each f ∈ {mw, rw, rwQ,mim}, we can decompose a set
A ⊆ 2Vx into a small collection {A1, . . . ,At} of pairwise disjoint subsets of A such that each
Ai is R′-consistent. Even though some parts of the proof are specific to each parameter,
the ideas are roughly the same. First, we remove the sets X in A that do not induce a
forest. If f = mw, we remove the sets in A that do not respect Condition (1) of Lemma 13,
otherwise, we remove the sets that do not respect the upper bound associated with f from
Condition (2) of Lemma 13. These sets can be safely removed as, by Lemma 13, they are
R′-unimportant. After removing these sets, we obtain the decomposition of A by taking the
equivalence classes of some equivalence relation that is roughly the n-neighbor equivalence
relation. Owing to the set of R′-unimportant sets we have removed from A, we prove that
the number of equivalence classes of this latter equivalence relation respects the upper bound
associated with f that is described in Table 2.

I Lemma 16. Let A ⊆ 2Vx . For each f ∈ {mw, rw, rwQ,mim}, there exists a collection
{A1, . . . ,At} of pairwise disjoint subsets of A computable in time O(|A| · Nf(T, δ) · n2) such
that (1) A1 ∪ · · · ∪ At (x,R′)acy-represents A, (2) Ai is R′-consistent for each i ∈ {1, . . . , t},
and (3) t ≤ Nf(T, δ); where Nf(T, δ) is the term defined in Table 2.

Table 2 Upper bounds Nf(T, δ) on the size of the decomposition of Lemma 16 for each f ∈
{mw, rw, rwQ,mim}.

f mw rwQ rw mim
Nf(T, δ) 2mw(T,δ) · 2n 2rwQ(T,δ) log2(2rwQ(T,δ)+1) · 2n 22rw(T,δ)2

· 2n 2n2mim(T,δ)+1

We are now ready to give an adaptation of Theorem 3 to the notion of (x,R′)acy-
representativity.

I Theorem 17. Let R ∈ R2
Vx
. For each f ∈ {mw, rw, rwQ,mim}, there exists an algo-

rithm reduceacy
f that, given a set A such that X ≡2

Vx
R for every X ∈ A, outputs in time

O((nec1(Vx)2(ω−1) +Nf(T, δ)) · |A| · n2), a subset B ⊆ A such that B (x,R′)acy-represents A
and |B| ≤ Nf(T, δ) · nec1(Vx)2.
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Now, The algorithm for any AC-(σ, ρ)-Dominating Set problem is essentially the same
as the algorithm from Theorem 8, except that we use reduceacy

f instead of reduce.

I Theorem 18. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an
n-vertex graph G and a rooted layout (T, δ) of G, solves any AC-(σ, ρ)-Dominating Set
problem, in time O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · Nf(T, δ)2 · log(s-necd(T, δ)) · n3), with
d := max{2, d(σ), d(ρ)}.

By constructing for any graph G a graph G′ such that the width measure of G′ is linear
in the width measure of G, and any optimum acyclic (σ, ρ)-dominating set of G corresponds
to an optimum AC-(σ, ρ)-dominating set of G′ and vice-versa, we obtain the following which
allows for instance to compute a feedback vertex set in time nO(c), c the mim-width.

I Theorem 19. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an
n-vertex graph G and a rooted layout (T, δ) of G, solves any Acyclic (σ, ρ)-Dominating
Set problem in time O(s-necd(T, δ)O(1) · Nf(T, δ)O(1) · n3) with d := max{2, d(σ), d(ρ)}.

6 Conclusion

Prior to this work, the d-neighbor-equivalence relation was used only for problems with a
locally checkable property like Dominating Set [7, 13, 19]. We prove that the d-neighbor-
equivalence relation can also be useful for problems with a connectivity constraint and an
acyclicity constraint. Is this notion also useful for other kinds of problems? Can we use
it for the problems which are unlikely to admit FPT algorithms parameterized by clique-
width, Q-rank-width or rank-width? This is the case for well-known problems such as
Hamiltonian Cycle, Edge Dominating Set, and Max Cut. The complexity of these
problems parameterized by clique-width is well-known. Indeed, for each of these problems, we
have an ad-hoc nO(k) time algorithm with k the clique-width of a given k-expression [4, 11].
On the other hand, little is known concerning rank-width and Q-rank-width. For mim-width,
we know that Hamiltonian Cycle is para-NP-hard parameterized by the mim-width of a
given rooted layout [15].

As these problems are W[1]-hard parameterized by clique-width, we cannot expect to
rely only on the d-neighbor equivalence relation for d a constant. Maybe, we can avoid
this dead-end by using the n-neighbor equivalence relation. In fact, we prove the following
theorem for Max Cut.

I Theorem 20. There exists an algorithm that, given an n-vertex graph G and a rooted
layout (T, δ), solves Max Cut in time O(s-necn(T, δ)2 · log(s-necn(T, δ)) · n3).

Consequently, this theorem implies the existence of nO(mw(L)), nO(rwQ(G)) and n2O(rw(G)) time
algorithms for Max Cut. Notice that, unless ETH fails, there are no no(mw(L)) and no(rwQ(G))

time algorithms for Max Cut [11].
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Abstract
Semi-online models where decisions may be revoked in a limited way have been studied extensively
in the last years.

This is motivated by the fact that the pure online model is often too restrictive to model
real-world applications, where some changes might be allowed. A well-studied measure of the amount
of decisions that can be revoked is the migration factor β: When an object o of size s(o) arrives, the
decisions for objects of total size at most β · s(o) may be revoked. Usually β should be a constant.
This means that a small object only leads to small changes. This measure has been successfully
investigated for different, classical problems such as bin packing or makespan minimization. The
dual of makespan minimization – the Santa Claus or machine covering problem – has also been
studied, whereas the dual of bin packing – the bin covering problem – has not been looked at from
such a perspective.

In this work, we extensively study the bin covering problem with migration in different scenarios.
We develop algorithms both for the static case – where only insertions are allowed – and for the
dynamic case, where items may also depart. We also develop lower bounds for these scenarios
both for amortized migration and for worst-case migration showing that our algorithms have nearly
optimal migration factor and asymptotic competitive ratio (up to an arbitrary small ε). We therefore
resolve the competitiveness of the bin covering problem with migration.
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1 Introduction

Online algorithms aim to maintain a competitive solution without knowing future parts
of the input. The competitive ratio of such an algorithm (for a maximization problem) is
thus defined as the worst-case ratio between the value of an optimal solution produced by
an offline algorithm knowing the complete input and the value of the solution produced
by the online algorithm. Furthermore, once a decision is made by these algorithms, this
decision is fixed and irreversible. While a surprisingly large number of problems do have
such algorithms, the complete irreversibility requirement is often too strict, leading to high
competitive ratios. Furthermore, if the departure of objects from the instance is also allowed,
irreversible online algorithms are rarely able to be competitive at all. From a practical point
of view, this is quite alarming, as the departure of objects is part of many applications. We
call such a problem dynamic and the version with only insertions static.

A number of different scenarios to loosen the strict requirement of irreversibility – called
semi-online scenarios – have been developed over time in order to find algorithms that achieve
good competitive ratios for some of the scenarios with bounded reversibility. In the last few
years, the concept of the migration factor has been studied intensively [3, 10, 11, 12, 13, 16,
19, 21, 22]. Roughly speaking, a migration factor of β allows to reverse a total size of β · s(o)
decisions, where s(o) denotes the size of the newly arrived object o. For a packing problem,
this means that the algorithm is allowed to repack objects with a total size of β · s(o). This
notion of reversibility is very natural, as it guarantees that a small object can only lead to
small changes in the solution structure. Furthermore, algorithms with bounded migration
factor often show a very clear-cut tradeoff between their migration and the competitive ratio:
Many algorithms in this setting have a bounded migration factor which can be defined as a
function f(ε) (growing with 1

ε ) and a small competitive ratio g(ε) (growing with ε), where the
functions f and g can be defined for all ε > 0 [3, 10, 13, 16, 19, 21, 22]. Such algorithms are
called robust, as the amount of reversibility allowed only depends on the solution guarantee
that one wants to achieve. Such robust algorithms thus serve as evidence for the possibility
for sensitivity analysis in approximated settings.

Many different problems have been studied in online and semi-online scenarios, but two
problems that have been considered in nearly every scenario are classical scheduling problems:
The bin packing problem and the makespan minimization problem. Both of these problems
have been studied intensively in the migration model [3, 10, 12, 13, 19, 21, 22]. Both of
these problems also have corresponding dual maximization variants. The dual version of the
makespan minimization problem, often called the Santa Claus or machine covering problem,
has also been studied with migration [16, 22]. In contrast, the dual version of bin packing,
called bin covering has not yet been studied in this model. The aim of this paper is to remedy
this situation by taking a look at this classical scheduling problem in the migration model.

Formal Problem Statement. In the bin covering problem, a set of items Γ with sizes
s : Γ → (0, 1] is used to cover as many unit sized bins as possible, that is, Γ has to be
partitioned maximizing the number of partitions with summed up item size of at least one.
An instance of the problem will usually be denoted as I and is given as a sequence of entries
(i, s(i)) where i is the identifier of the item and s(i) is the size of the item. A solution to such
an instance I with items Γ is a partition P : Γ → N and a set B = P−1(k) with B 6= ∅ is
called a bin and we say that the items in B are packed into the k-th bin. A bin B is covered
if s(B) :=

∑
i∈B s(i) ≥ 1, where s(B) is called the load of B, and the goal is to maximize the

number of such covered bins. The optimal (maximum) number of covered bins of instance I
is denoted as opt(I).
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We also use the following notation throughout our work: The smallest size of an item in
bin B is defined as smin(B) := mini∈B{s(i)} and the largest size is defined as smax(B) :=
maxi∈B{s(i)}. If B is a set of bins, we also define its total size s(B) :=

∑
B∈B s(B), its

minimal size smin(B) := minB∈B smin(B), and its maximal size smax(B) := maxB∈B smax(B).
Furthermore, we define smin(∅) = +∞ and smax(∅) = 0.

We consider variants of static and dynamic online bin covering in which algorithms
are allowed to reassign a bounded amount of previously assigned items. In particular, an
algorithm has a migration factor of β, if the total size of items that it reassigns upon arrival
or departure of an item of size s is bounded by βs. Moreover, it has an amortized migration
factor of β, if at any time the total size of items that have been reassigned by the algorithm in
total is bounded by βS, where S is the total size of all items that arrived before. Intuitively,
an item of size s creates a migration potential of size βs upon arrival, and this potential may
be used by an algorithm to reassign items right away (non-amortized) or anytime from then
on (amortized). Note that if an algorithm has a non-amortized migration factor of β, it also
has an amortized migration factor of at most β. Thus, we study four variants in this work.

Offline bin covering is NP-hard and therefore there is little hope for a polynomial time
algorithm solving the problem to optimality, and in the online setting there is no algorithm
that can maintain an optimal solution regardless of its running time. We prove that this non-
existence of algorithms that maintain an optimal solution holds also for (static or dynamic)
algorithms with bounded amortized migration factor (and thus also for algorithms with
bounded non-amortized migration factor).

Hence, algorithms satisfying some performance guarantee are studied. In particular an
offline algorithm alg for a maximization problem has an asymptotic performance guarantee
of α ≥ 1, if opt(I) ≤ α · alg(I) + c, where opt(I) and alg(I) are the objective values of
an optimal solution or the one produced by alg respectively for some instance I, and c is an
input independent constant. If c = 0 holds, α is called absolute rather than asymptotic. An
online algorithm has a (asymptotic or absolute) competitive ratio of α, if after each arrival or
departure an (asymptotic or absolute) performance guarantee of α for the instance of the
present items holds. Note that we use the convention of competitive ratios larger than 1 for
maximization problems. For minimization problems similar definitions are used but they
use the required inequality alg(I) ≤ α · opt(I) + c. As we study asymptotic competitive
ratios in this paper, we will sometimes omit the word asymptotic (and we always use the
word absolute for absolute competitive ratios).

Our Results. We present competitive algorithms using both amortized migration and
non-amortized migration and develop nearly matching lower bounds (up to an arbitrarily
small additive term of ε). These bounds show the optimality of all of our algorithms for
both the static and the dynamic version of the bin covering problem. The main technical
contribution of our work is an algorithm with competitive ratio 3/2 + ε and non-amortized
migration of O(1/ε5 · log2(1/ε)) for the dynamic bin covering problem where items arrive
and depart. A major obstacle in the design of competitive algorithms for dynamic problems
is the impossibility of moving large items on the arrival or departure of small items. We
overcome this obstacle by developing a delicate technique to combine the packing of large
and small items. The main results of this work are summarized in the following table. Note
that the lower bound of 1 in the third row indicates that there is no online algorithm that
maintains an optimal solution with amortized migration factor O(1). All of our algorithms
run in polynomial time. Curiously, we achieve a polynomial migration factor, while most
known migration factors are exponential (e. g. for the makespan minimization problem [21])
with the exception of bin packing [3, 18].
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18:4 Online Bin Covering with Limited Migration

Amortization Departures Lower Bound Competitive Ratio Migration

é é 3/2 3/2 + ε O(1/ε)
é Ë 3/2 3/2 + ε O(1/ε5 · log2(1/ε))
Ë é 1 1 + ε O(1/ε)
Ë Ë 3/2 3/2 + ε O(1/ε5 · log2(1/ε))

Due to space constraints, we focus on the non-amortized case with only insertions
(described in the first row) and prove most of the corresponding results here. The remaining
results are shortly described and a full presentation of them is given in the appendix.

Related Results
Bin Covering. The offline bin covering problem was first studied by Assmann et al. [1]. It
was shown that a simple greedy strategy achieves approximation ratio 2. For the online
version of the bin covering problem, Csirik and Totik showed in [6] that this simple greedy
algorithm also works in the online setting and that the competitive ratio of 2 reached by
this algorithm is the best possible. Csirik, Johnson, and Kenyon presented an asymptotic
polynomial time approximation scheme (APTAS) with approximation ratio 1 + ε in [5]. This
was improved to an asymptotic fully polynomial time approximation scheme (AFPTAS)
by Jansen and Solis-Oba in [20]. Many different variants of this problem have also been
investigated: If a certain number of classes needs to be part of each bin [9, 15]; if items are
drawn probabilistically [14, 15]; if bins have different sizes [7, 23]; if the competitiveness
is not measured with regard to an optimal offline algorithm [4, 8]. More variants are e. g.
discussed in [17] and lower bounds for several variants are studied in [2].

Makespan Minimization and Santa Claus. The migration factor model was introduced by
Sanders, Sivadasan, and Skutella in [21]. The paper investigated several algorithms for the
makespan minimization problem and also presents an approximation scheme with absolute
competitive ratio 1 + ε and non-amortized migration factor 2O(1/ε log2(1/ε)). Skutella and
Verschae [22] studied a dynamic setting with amortized migration, where jobs may also
depart from the instance. They achieved the same absolute competitive ratio, but their
algorithm needs an amortized migration of 2O(1/ε log2(1/ε)). Their algorithm also works for
the Santa Claus (or machine covering) problem, for which they show that even in the static
setting no algorithm has absolute competitive ratio 1 + ε and a bounded migration factor.
If one aims for a polynomial migration factor for the Santa Claus problem, Gálvez, Soto,
and Verschae presented an online variant of the LPT (longest processing time) algorithm
achieving an absolute competitive ratio of 4/3 + ε with non-amortized migration factor
O(1/ε3 log(1/ε)) [16]. For the makespan minimization problem with preemption, Epstein
and Levin showed in [12] that an optimal algorithm with a non-amortized migration factor
of 1− 1/m is achievable and best possible.

Bin Packing. Epstein and Levin presented an approximation scheme with the same ratio
1 + ε and the same non-amortized migration factor 2O(1/ε log2(1/ε)) as in the makespan
minimization for the bin packing problem in [10]. This result was improved by Jansen and
Klein in [18], who drastically reduced the migration factor to O(1/ε4). Berndt, Jansen,
and Klein used a similar approach to also handle the dynamic bin packing problem, where
items may also depart over time [3]. They also showed that a non-amortized migration
factor of Ω(1/ε) is needed for this. A generalized model, where an item i has arbitrary
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movement costs ci – not necessarily linked to the size of an item – was studied by Feldkord
et al. [13]. They showed that for α ≈ 1.387 and every ε > 0, a competitive ratio of α+ ε is
achievable with migration O(1/ε2), but no algorithm with migration o(n) and ratio α− ε
exists. Strengthening the lower bound of [3], they also showed an amortized migration factor
of Ω(1/ε) is needed for the standard model, where movement costs ci equal items sizes si,
if one wants to achieve competitive ratio 1 + ε. A generalization of bin packing – packing
d-dimensional cubic items into unit size cubes – was studied by Epstein and Levin [11].

2 Non-amortized Migration in the Static Case

We begin our study by analyzing the static case with non-amortized migration. We will first
present a lower bound showing that no algorithm with constant non-amortized migration
factor can have a competitive ratio below 3/2. Then, we present an algorithm that achieves
for all ε > 0 a competitive ratio of 3/2 + ε with non-amortized migration factor O(1/ε).

We start with a simple lower bound on the asymptotic competitive ratio of all algorithms
with constant non-amortized migration factor. This lower bound can also be proved for
a different definition of the asymptotic competitive ratio α, where we require opt(I) ≤
α · alg(I) + o(opt(I)).

I Proposition 1. There is no algorithm for static online bin covering with a constant
non-amortized migration factor and an asymptotic competitive ratio smaller than 3/2.

Proof sketch. Fix a migration factor β and an integer N . First, insert 6N items of size
1− ε and then 6N items of size ε, where ε = min{(2β + 2)−1}. J

We will now give our algorithm alg for this scenario. In addition to the instance I,
a parameter ε > 0 is also given that regulates the asymptotic competitive ratio and the
used migration. The assumption ε ≤ 0.5 is justified as for ε ≥ 0.5, the result follows by the
online algorithm with an asymptotic competitive ratio of 2 presented in [6], or by using the
algorithm below with ε = 1

2 .

I Theorem 2. For each ε ∈ (0, 0.5], there is an algorithm alg for static online bin covering
with polynomial running time, an asymptotic competitive ratio of 1.5 + ε with additive
constant 3, and a non-amortized migration factor of O(1/ε).

The algorithm distinguishes between big, medium and small items. For each item, it calls
a corresponding insertion procedure based on this classification into three classes. An item
i is called big if s(i) ∈ (0.5, 1], medium if s(i) ∈ (ε, 0.5], and small otherwise. For a bin B,
let small(B) be the set of small items of B. We define medium(B) and big(B) accordingly
and also extend these notions to sets of bins B. Furthermore, we call a covered bin barely
covered, if removing the biggest item of the smallest class of items, i. e. big, medium or small,
contained in the bin, results in the bin not being covered anymore. For instance, consider a
bin containing four items with sizes 0.65, 0.3, ε and 0.25ε, for ε ≥ 0.04. This bin contains
items of all three classes if ε < 0.3. In this case, the biggest item of the smallest class has
size ε, and if ε = 0.1, the bin is indeed barely covered. However, if ε = 0.22, the bin is not
barely covered. If ε = 0.3, the bin only has items of two classes, and it is not barely covered,
since removing one item of size 0.3 results in a total size above 1. Note that showing that
removing an arbitrary item of the smallest class of items for a given covered bin results in an
uncovered bin is sufficient for showing that it is barely covered.

Let B be a barely covered bin. If B contains at most one big item, its load is bounded
from above by 1.5, and if B additionally contains no medium item the bound is reduced to
1 + ε. This holds due to the following. Since the big item has size below 1, the bin contains at
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least one medium or small item. If the bin has no small items, removing the largest medium
item reduces the load to below 1, and together with the medium item the load is below 1.5.
If it has a small item, a similar calculation shows that the load is below 1 + ε.

The last two types of bins are benign in the sense that they allow analysis using arguments
that are based on sizes. This is not the case for bins containing two big items. Such bins
could have a size arbitrarily close to 2 (even if they have no other items). Bins of this type
are needed for instances with many big items (for an example we refer to the construction
of the lower bound in Proposition 1). However, they cause problems not only because they
are wastefully packed, but also because they exclusively contain big items that should only
be moved if suitably large items arrive in order to bound migration. The basic idea of the
algorithm is to balance the number of bins containing two big items and the number of bins
containing one big item and no medium items. The two numbers will be roughly the same,
which is obtained using migration on arrivals of big and medium items. As described in the
previous paragraph, the guarantees of these bins that are based on loads cancel each other
out in the sense that an average load not exceeding 1.5 + ε/2 can be achieved. In order to
keep the number of bins with two big items in check, our algorithm will only produce very
few bin types and we will maintain several invariants. This structured approach allows us
also to bound the migration needed. We elaborate on the details of the algorithm.

Bin Types and Invariants

We distinguish different types of bins packed by the algorithm.
The bins are partitioned into bins containing two big items (and no other items) BB;

barely covered bins containing one big item and some medium items BM; barely covered
bins containing one big item and some small items BSC; bins that are not covered (partially
covered) and contain one big item and no medium items (but it could contain small items)
BSP; and bins that are at most barely covered (they are barely-covered, or not covered) and
exclusively contain small or medium items S or M respectively. Furthermore, let MC ⊆ M and
SC ⊆ S be the corresponding subsets of barely covered bins (while M \MC and S \ SC are
sets of bins that are not covered). We denote the (disjoint) union of BSC and BSP as BS. The
set of bins packed by the algorithm (covered or not covered) is denoted as Bins. All bins
covered by the algorithm are in fact barely covered, and no bin (covered or not) contains
items of all three classes. Among bins that are not covered, there are no bins containing a
big item and a non-empty set of medium items.

We will now introduce the invariants needed. The first invariant of the algorithm ensures
that this bin structure is maintained and the second invariant was already indicated above
(A ∪̇ B denotes the disjoint union of A and B):
I1 The solution has the proposed bin type structure, i. e. Bins = BB ∪̇ BM ∪̇ BS ∪̇ M ∪̇ S and

BS = BSC ∪̇ BSP.
I2 The sets BB and BS are balanced in size, i. e.

∣∣|BB| − |BS|
∣∣ ≤ 1.

Therefore we have alg(I) = |BB|+ |BM|+ |BSC|+ |MC|+ |SC|. Furthermore, we have several
invariants concerning the distribution of items to different bin types. The intuition behind
these invariants is always the same: We have to ensure that no other algorithm is able to use
the small and medium items to cover too many bins.
I3 The big items contained in BM are at least as big as the ones in BSC which in turn are at least

as big as the ones in BSP, and the smallest big items are placed in BB, i. e. s(i) ≥ s(i′) for
each (i) i ∈ big(BM) and i′ ∈ big(BS∪BB); each (ii) i ∈ big(BM∪BSC) and i′ ∈ big(BSP∪BB);
each (iii) i ∈ big(BM ∪ BS) and i′ ∈ big(BB). Informally, BB ≤ BSP ≤ BSC ≤ BM.



S. Berndt, L. Epstein, K. Jansen, A. Levin, M. Maack, and L. Rohwedder 18:7

I4 The items in M cannot be used to cover a bin together with a big item from BS or BB, i. e.
BS ∪ BB 6= ∅ =⇒ s(M) < 1− smax(BS ∪ BB).

I5 If a bin containing only small items exists, all bins in BS are covered, i. e. |S| > 0 =⇒
|BSP| = 0.

Lastly, there are some bin types with bins that are not covered, and we have to make sure
that they are not wastefully packed:
I6 If there are small items in BSP, they are all included in the bin containing the biggest

item in BSP.
I7 Both S and M each contain at most one bin that is not covered.
This concludes the definition of all invariants. It is easy to see that the invariants all hold in
the beginning when no item has arrived yet. Next, we describe the insertion procedures and
argue that the invariants are maintained.

Insertion Procedures

We start with the definition of two simple auxiliary procedures used in the following:
GreedyPush(i,B) is given an item i and a set of bins B. If all the bins contained in B are
covered, it creates a new bin containing item i, and otherwise it inserts i into the most
loaded bin that is not covered.
GreedyPull(B,B) is given bin B and a set of bins B. It successively removes a largest
non-big item from a least loaded bin from {B′ ∈ B | small(B′) ∪medium(B′) 6= ∅} and
inserts it into B. This is repeated until B is covered or B does not contain non-big items.

Consider one application of GreedyPull such that B already has a big item. The total size
of moved items is smaller than 1. Both procedures are used to insert and repack non-big
items. Note that calling GreedyPush for a small item and bin set BSP or S, or a medium item
and bin set M, the last two invariants I6 and I7 are maintained. For BSP, the most loaded bin
always contains the largest big item, and if there is at least one small item, such a bin is
unique. It could happen that as a result of inserting a small item into this bin of BSP the bin
is covered and moves to BSC.

For each insertion procedure, we will argue that the invariants are maintained and focus
on the critical ones, that is, in each context the invariants, that are not discussed explicitly,
trivially hold. For example, we do not discuss I1 in the following, because it will always be
easy to see that it is maintained.

Insertion of Small Items. If the arriving item i∗ is small, we call GreedyPush(i∗, BSP), if
BSP 6= ∅, and GreedyPush(i∗, S) otherwise. Insertion into a bin of BSP (the most loaded one)
may lead to a covered bin, in which case the bin becomes a bin of BSC (but remains in BS).
It is easy to verify, that all invariants, and I5, I6 and I7 in particular, are maintained by this.
As mentioned above, I3 holds, as the most loaded bin in BSP always contains the largest big
item. Furthermore, there is no migration in this case. The insertion of a medium or big item,
however, is more complicated.

Insertion of Big Items. In the case that a big item i∗ arrives, we have to be careful where
we place it exactly, because, on the one hand, the distributions of big and medium items,
that is, invariants I3 and I4, have to be maintained, and, on the other hand, we have to
balance out BS and BB (I2). We consider placing the item in BM, BS or BB in this order, i. e.
we first try to insert i∗ into BM, then into BS and finally into BB. Figure 1 illustrates this.
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18:8 Online Bin Covering with Limited Migration

Insertion into BM. We insert i∗ into BM, if either s(i∗) + s(M) ≥ 1 or s(i∗) > smin(big(BM)).
Note that the first condition implies s(i∗) ≥ smax(big(BB ∪ BS)), because of I4, and therefore
the insertion of i∗ into BM maintains I3 in both situations. The second condition implies
BM 6= ∅, because we set smin(∅) = +∞. In either of these cases, we create a new bin B∗ = {i∗}
and call GreedyPull(B∗, M), thereby ensuring that I4 is maintained if the new bin is covered.
If the first condition did hold, B∗ is covered afterwards and we do nothing else. Otherwise,
there is a bin B ∈ BM containing a big item i with s(i) = smin(big(BM)) < s(i∗), and we have
M = ∅. We remove i from B, yielding M = {B}, and call GreedyPull(B∗, M) a second time.
Afterwards, B∗ is covered, because s(i∗) > s(i). Furthermore, s(i) + s(M) < 1, because B was
barely covered before and the biggest medium item was removed from B due to the second
call of GreedyPull. This ensures I4, since by I3, item i is no smaller than any big item packed
in BS or BB. The item i is reinserted using a recursive call to the procedure of inserting a big
item. However, item i will not be considered for insertion into BM, because neither the first
nor second condition holds for this item, and the other insertion options have no recursive
calls for insertion into BM. It is easy to verify that the distribution of medium items in M (I7)
is maintained.

Insertion into BS. This step is possible only for item i∗ that satisfies s(i∗) + s(M) < 1 and
s(i∗) ≤ smin(big(BM)). Thus, BM will have the largest big items as required in Invariant I3
after the insertion is performed. In this case there is no recursive call for inserting a big item.

We insert i∗ into BS, if either s(i∗) > smin(big(BS)) or the following two conditions hold:
s(i∗) ≥ smax(big(BB)) and |BS| ≤ |BB|. Note that s(i∗) ≥ smax(big(BB)) trivially holds, if
BB = ∅. Inserting i∗ into BS under these conditions already ensures the correct distribution
of big items (I3) with respect to BS and BB, but we still have to be careful concerning the
distribution within the two subsets of BS. The procedure is divided into three simple steps.
As a first step, we create a new bin B∗ = {i∗} and call GreedyPull(B∗, S). No matter whether
B∗ is now covered or not, Invariant I5 is satisfied as either B∗ is covered and therefore
BSP = ∅ both before and after the call, or B∗ is not covered but now S = ∅ (it is possible
that both will hold). Note that all properties of the invariants are satisfied, if B∗ is already
covered. In particular, Invariant I3 holds within BS because BSP = ∅. In the remainder of the
second step of the insertion into BS algorithm we deal with the case that B∗ is not covered.

Let XB denote the set of bins B ∈ BS that include small items as well as a big item i with
s(i) < s(i∗). Recall that any bin of BSC has at least one small item, while at most one bin of
BSP has small items.

First, assume that XB = ∅ but B∗ is not covered. There are two cases. In the first case,
at least one item of S was moved. In this case before we started dealing with i∗, the set BSP
was empty, and now B∗ is the unique bin of BSP, and its big item is not larger than those of
BSC (if the last set is not empty) so the invariants I3 and I6 are maintained. In the second
case, S was empty, and B∗ is now a bin of BSP with only a big item. Since XB = ∅, adding
B∗ to BSP maintains the invariants I3 and I6. Thus, it is left to deal with the case XB 6= ∅.
In the remainder of the second step of the insertion into BS algorithm we deal with the case
that XB is not empty.

As B∗ is not yet covered, we now have S = ∅, and this might have been the case before
the call of GreedyPull, in particular if we had BSP 6= ∅. Due to the existence of a big item
that is smaller than i∗ in BS (such items exist in all bins of XB), we have to be careful in
order to maintain the correct distribution of big and small items inside of BS (I3 and I6).

In the second step, we construct a set of bins B̃ ⊆ BS from which small items are removed
in order to cover B∗. If BSP∩ XB 6= ∅, this set has exactly one bin (containing small items) by
Invariant I6. If such a bin exists, we denote it by B1. If BSC ∩ XB 6= ∅, the set BSC includes



S. Berndt, L. Epstein, K. Jansen, A. Levin, M. Maack, and L. Rohwedder 18:9

a bin that contains a big item i′ with smin(big(BSC)) = s(i′) < s(i∗) and we denote one
such bin (with a big item of minimum size in BSC) by B2. As XB 6= ∅, at least one of the
bins B1 or B2 must exist, but it can also be the case that both exist. Let B̃ be the set of
cardinality 1 or 2, which contains these bins. The next operation of the second step is to
call GreedyPull(B∗, B̃). It is easy to see that no matter whether B∗ is covered or not after
this operation, the invariants I3 and I6 hold. Specifically, if B2 does not exist, B∗ is not
necessarily covered, but I3 and I6 hold as all big items of BSC are not smaller than i∗ (as
every such bin has at least one small item). If B2 exists, then B∗ keeps receiving items
coming first from B1 and then possibly also from B2, until it is covered. As the total size of
small items of B2 is sufficient for covering B∗ since the big item of B2 is smaller than i∗, B∗
will be covered, so all big items of BSP are not larger than i∗.

Lastly, we describe the third step, which is performed for all cases above, after i∗ has
been inserted. The insertion of i∗ might have violated I2, that is, we now have |BS| = |BB|+ 2.
In this case, we perform the last step, namely, we select two bins B3, B4 ∈ BS with minimal
big items, merge the big items into a BB bin and remove and reinsert all small items from B3
and B4, using insertion of small items. This yields, |BS| = |BB| − 1 and I2 holds.

Insertion into BB. If i∗ was not inserted in any of the last steps, it is inserted into BB. In
this case, we know from the conditions above that s(i∗) ≤ smin(big(BS∪BM)), and additionally
that s(i∗) ≥ smax(big(BB)) implies |BS| = |BB|+ 1. We consider two cases.

If |BS| = |BB|+ 1 (and hence BS 6= ∅), we select a bin B ∈ BS with a big item of minimal
size. We insert i∗ into B to obtain a BB bin and remove and reinsert all small items from B.
This yields |BS| = |BB| − 1 and I2 holds.

If |BS| < |BB| + 1, we have s(i∗) < smax(big(BB)) (and hence BB 6= ∅). In this case, we
select a bin B ∈ BB with a big item i of maximal size, insert i∗ into B, and remove and
reinsert i. Because of its size and invariant I4, the item i will be inserted into BS. Note that
in both cases invariant I3 is maintained.

Insert into BM:

i∗

B∗ M

i

B

i∗

B∗ B
insert(i)

Insert into BS:

i∗

B∗ S

i

B2

i∗

B∗

i

B2

Figure 1 Insertion of a big item i∗. Big items are drawn in dark gray, medium items in light
gray, and small items in white.
Insert into BM: open a new bin B∗ for i∗; pull M into B∗; pull from bin B ∈ BM containing the smallest
big item i; remove and reinsert i.
Insert into BS: open a new bin B∗ for i∗; pull S into B∗; pull from bin B ∈ BS containing the smallest
big item i.

I Lemma 3. The overall size of items migrated due to the insertion of a big item i∗ is upper
bounded by 11.

Proof sketch. First, note that an insertion into BS can not trigger the reinsertion of a big
item. The insertion into BB can only trigger the reinsertion of a single big item into BS and
the insertion into BM can only trigger the reinsertion into BB or BS. Hence, each insertion of
a big item can trigger at most two other insertions in total and thus only move a total size
of 2 this way. The direct reassignments are bounded by 5. J
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Insertion of Medium Items. If a medium item i∗ arrives, GreedyPush(i∗, M) is called. Af-
terwards, the invariant I4 may be infringed and if this happens, we have BS ∪ BB 6= ∅ and
s(M) ≥ 1− smax(BS ∪ BB), and we continue as follows. We will now describe how to pack a
barely covered bin using the items from M and a largest big item from BS∪ BB to maintain I4.

If BS = ∅, I2 implies that BB contains a single bin B including two items i and i′ with
smax(BS ∪ BB) = s(i) ≥ s(i′). We remove i′ from B, and call GreedyPull(B, M) to create a BM
bin. Afterwards, s(M) and smax(BS ∪ BB) are at most as big as they were before i∗ arrived as
the first item we pulled from M is at least as big as i∗, and therefore I4 holds. Furthermore
BS = BB = ∅ and I2 still holds. Lastly, we reinsert the big item i′.

If, on the other hand, BS 6= ∅, the corresponding big item i with smax(BS ∪ BB) = s(i) is
contained in a bin B ∈ BS, because of I3. In this case, we remove the small items from B and
call GreedyPull(B, M). Afterwards I4 holds, but I2 may be infringed due to the removal of a
bin from BS, i. e. |BB| = |BS|+ 2. In this case, we remove the two biggest items i1 and i2 from
the bins B1, B2 ∈ BB and if B1 6= B2 merge the two bins. This yields |BB| = |BS|+ 1 and I2
holds. Afterwards, we reinsert the two items i1 and i2, which both will be inserted in BS due
to their sizes. No matter whether we had to rebalance |BB| and |BS| or not, we reinsert the
removed small items from B as a last step. Figure 2 contains an illustration of this process.

i∗

M

i

j0
j1
j2
j3

B

i1

i′1

B1

i2

i′2

B2

i

i∗

B M

i′1

i′2

insert(i1, i2, j0, . . . , j3)

Figure 2 Insertion of a medium item i∗. Big items are drawn in dark gray, medium items in light
gray, and small items in white.

I Lemma 4. The overall size of items migrated due to the insertion of a medium item i∗ is
upper bounded by 27.

Analysis. The migration bound stated in Theorem 2 or more precisely 27
ε is already implied

by Lemma 3 and Lemma 4, as a medium item has size above ε. It is easy to see that:

I Remark 5. The presented algorithm for static bin covering has polynomial running time.

Hence, the only thing left to show is the stated asymptotic competitive ratio:

I Lemma 6. The presented algorithm has an asymptotic competitive ratio of 1.5 + ε with
additive constant 3.

Proof. First, we consider the case BSP = ∅. In this case, the claim holds because the bins on
average have not too much excess size. More precisely, we obviously have opt(I) ≤ s(I),
and invariants I1 and I7 imply s(I) < 2|BB|+ (1 + ε)|BS|+ 1.5|BM|+ 1.5|MC|+ (1 + ε)|SC|+ 2.
Furthermore, we have 0.5|BB| ≤ 0.5(|BS|+1), due to Invariant I2, and |BS| = |BSC|, as BSP = ∅
holds in the case we are currently considering. Hence opt(I) < (1.5 + ε)(|BB|+ |BSC|+ |BM|+
|MC|+ |SC|) + 2.5 < (1.5 + ε) alg(I) + 3.

A similar argument holds, if BSP 6= ∅ but BB = ∅. In this case, we have |BSP| = |BS| = 1,
because of invariant I2; and S = ∅, because of Invariant I5. Hence opt(I) ≤ s(I) <

1.5|BM|+ 1.5|MC|+ 2 = 1.5 alg(I) + 2.
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Next, we consider the case BSP 6= ∅ and BB 6= ∅. Here, we have MC = ∅, because of
Invariant I4, and S = ∅, because of Invariant I5. Note that every bin of BSC ∪ BM has at
least one item that is not big, since big items have sizes below 1, and these bins are covered.
Let ξ = smax(BSP) be the size of a big item from BSP with maximal size. Then all items in
BB∪BSP have size at most ξ (I3) and ξ > 0.5. We construct a modified instance I∗ as follows:
1. The size of each big item with size below ξ is increased to ξ.
2. Every big item of size larger than ξ is split into a big item of size ξ and a medium or

small item, such that the total size of these two items is equal to the size of the original
item. Let X be the set of items with sizes of ξ, which we will call ξ-items in the instance
after these transformations (X includes also items whose sizes were ξ in I).

3. For each bin from BSC ∪ BM, select the largest item of I that is not big and call it special.
By increasing item sizes if necessary, change the sizes of all special items to 0.5. Let Y
be the set of special items (whose sizes are now all equal to 0.5). Let Z be the set of the
remaining items not belonging to X or Y (in the instance I∗ after the transformations,
so there may be items that did not exist in I resulting from splitting a big item).

The set of items in I∗ is just X ∪ Y ∪ Z. For instance I∗, any bin of BB contains only
two items of X. Any bin of BSP has an item of X, and one of these bins may also have small
items of Z, but it is not covered. Any bin of BSC∪ BM has one item of X, one item of Y , and
possibly items of Z. There may be one uncovered bin of M, containing items of Z.

Note that opt(I) ≤ opt(I∗), since any packing for I can be used as a packing for I∗ with at
least the same number of covered bins. Next, we investigate the relationship between opt(I∗)
and the packing of the algorithm for the original instance I. For some optimal solution for I∗
without overpacked bins (more than barely covered), let k2, k1 and k0 be the number of covered
bins with 2, 1 and 0 items from X ∪ Y , respectively. Then we have opt(I∗) = k2 + k1 + k0
and due to counting 2k2 + k1 = |X ∪ Y | = (2|BB|+ |BS|+ |BM|) + (|BM|+ |BSC|). Since each
item in X ∪ Y is upper bounded by ξ, we have: (1− ξ)k1 + k0 ≤ s(Z).

The total size of items (of Z only) packed into the bin of M is below 1− ξ since BSP has
a big item of size ξ in I and by Invariant I4, since every item of BS ∪ BB is smaller than
1− s(M). For BSP only one bin may contain items of Z by Invariant I6, and this bin has an
item of size ξ in I (and it is not covered), so it also has items of Z of total size below 1− ξ.
Consider a bin of BSC ∪ BM. The total size of items excluding the special item is the same for
I and I∗. Since such a bin is barely covered and for I it has items of one class except for the
big item (small or medium), removing the special item results in a load below 1. The total
size of items of I∗ in such a bin excluding the ξ-item and the special item is below 1− ξ.

Therefore, we find that s(Z) ≤ (1− ξ)(|BM|+ |BSC|+ 2). Hence:

2 opt(I) ≤ 2(k2 + k1 + k0) ≤ (2k2 + k1) + (k1 + (1− ξ)−1k0)
≤ (2|BB|+ |BS|+ |BM|+ |BM|+ |BSC|) + (|BM|+ |BSC|+ 2)
≤︸︷︷︸

Invariant I2

3|BB|+ 3|BM|+ 2|BSC|+ 3 ≤ 3 alg(I) + 3. J

Extending Our Results

Non-amortized Migration in the Dynamic Case. We are able to extend the result of the
static case and show that we can also handle the case of departing items.

I Theorem 7. For each ε < 1 with 1/ε ∈ Z, there is an algorithm alg for dynamic online
bin covering with polynomial running time, an asymptotic competitive ratio of 1.5 + ε with
additive constant O(log 1/ε), and a non-amortized migration factor of O((1/ε)5 log2(1/ε)).
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This is the most elaborate result of the paper and its proof can be found in the long
version of the paper (see appendix). In the following, we briefly discuss this the result and
give some intuition for the developed techniques.

The main challenge in the dynamic case arises from small items: Let N be some positive
integer. Consider the case that N2 items of size 1/N arrived and were placed into N bins,
covering each of them perfectly. Next, one item from each bin leaves yielding a solution
without any covered bin while the optimum is still N − 1. Hence, a migration strategy for
the small items is needed. Now, coming up with such a strategy to deal with the present
example is rather simple, since all the items are of the same size, but in principle small items
may differ in size by arbitrary factors. Still, the case with only small items can be dealt with
adapting a technique for online bin packing with migration [3]. The basic idea is to sort
the items non-increasingly and maintain a packing that corresponds to a partition of this
sequence into barely covered bins. If an item arrives, it is inserted into the correct bin and
excess items are pushed to the right, that is, to the neighboring bin containing the next items
in the ordering, and this process is repeated until the packing is restored. Correspondingly,
if an item departs, items are pulled in from the next bin to the right. In this process the
arrival or departure of a small item can only cause movements of items at most as big as the
original one. While this is useful, it does not suffice to bound migration: Too many bins have
to be repacked. In order to deal with this, the bins are partitioned into chains of appropriate
constant length with a buffer bin at the end, which is used to interrupt the migration process.
This technique can be applied for the bins S containing only small items, but for bins BS
containing big items as well problems arise. The main reason for this is that in order to
adapt our analysis, we need to cover the bins in BS containing larger big items with higher
priority and furthermore guarantee that there are no (or only few) bins contained in S if
there are bins containing big items that are not covered, i.e., BSP 6= ∅. It is not hard to see
that spreading one sequence of chains out over the bins of BS and S will not suffice.

To overcome these problems, we develop a novel technique: We partition the bins of
BS into few, that is, O(log 1/ε) many, groups. Each of the groups is in turn partitioned
into parallel chains of length O(1/ε). The groups are defined such that they comply with a
non-increasing ordering of both the big and the small items: the first group contains the
largest big and small items, the next group the remaining largest, and so on. A similar
ordering holds for each single parallel chain, but no such structure is maintained in between
the parallel chains of the same group. Now, whenever a buffer bin of a parallel chain becomes
overfilled, items are pushed directly into the next group. However, to maintain the described
structure, these have to be the smallest items of the group, and to guarantee this we introduce
some additional structure for the buffer bins in each group. While there may be a chain
reaction caused by such a push or pull, the migration can still be bounded, because there
are only few groups. We are able to guarantee that there is at most one group G containing
uncovered bins and that that all bins of BS are barely covered, if S 6= ∅. These are the
essential properties we need in order to adapt our approach to the dynamic case.

Amortized Migration. First of all, we can strengthen the lower bound of Theorem 1 if items
can depart and show that the same bound also holds for amortized migration in this case.

I Proposition 8. There is no algorithm for dynamic online bin covering with a constant
amortized migration factor β and an asymptotic competitive ratio smaller than 3/2.

If items never depart, we can use the amortization by repacking the completely instance
every once in a while with the help of an AFPTAS of Jansen and Solis-Oba [20]. We can also
show that we need to be contended with a non-optimal solution by making use of a highly
non-trivial construction.



S. Berndt, L. Epstein, K. Jansen, A. Levin, M. Maack, and L. Rohwedder 18:13

I Theorem 9. For every ε > 0, there is an algorithm for static bin covering with polynomial
running time, asymptotic competitive ratio 1 + ε, and amortized migration factor O(1/ε).
Additionally, there is no (possibly exponential time) algorithm for static online bin covering
that maintains an optimal solution with constant amortized migration factor β.
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Abstract
Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal,
if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e.,
the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets
of consecutive edges with the same orientation. In this paper, we study the k-Modality problem,
which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem
is at the very core of a variety of constrained embedding questions for planar digraphs and flat
clustered networks.

First, since the 2-Modality problem can be easily solved in linear time, we consider the general
k-Modality problem for any value of k > 2 and show that the problem is NP-complete for planar
digraphs of maximum degree ∆ ≥ k+3. We relate its computational complexity to that of two notions
of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations.
This allows us to answer in the strongest possible way an open question by Di Giacomo et al. [GD17],
concerning the complexity of constructing planar NodeTrix representations of flat clustered networks
with small clusters, and to address a research question by Angelini et al. [JGAA17], concerning
intersection-link representations based on geometric objects that determine complex arrangements.
On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree,
whose running time is exponential in k and linear in the input size. Second, motivated by the
recently-introduced planar L-drawings of planar digraphs [GD17], which require the computation of a
4-modal embedding, we focus our attention on k = 4. On the algorithmic side, we show a complexity
dichotomy for the 4-Modality problem with respect to ∆, by providing a linear-time algorithm for
planar digraphs with ∆ ≤ 6. This algorithmic result is based on decomposing the input digraph into
its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees.
In particular, we are able to show that the constraints imposed on the embedding by the rigid
triconnected components can be tackled by means of a small set of reduction rules and discover
that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be
always NAE-satisfiable – a result of independent interest that improves on Porschen et al. [SAT03].
Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a
digraph always admits a k-modal embedding with k = 4 and that this value of k is best possible for
the digraphs in this family.
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1 Introduction

Computing k-modal embeddings of planar digraphs, for some positive even integer k called
modality, is an important algorithmic task at the basis of several types of graph visualizations.
In 2-modal embeddings, also called bimodal embeddings, the outgoing and the incoming edges
at each vertex form two disjoint sequences. Bimodal embeddings are ubiquitous in Graph
Drawing. For instance, level planar drawings [15, 22] and upward-planar drawings [8, 17] –
two of the most deeply-studied graph drawing standards – determine bimodal embeddings.
4-modal embeddings, where the outgoing and the incoming edges at each vertex form up to
four disjoint sequences with alternating orientations, arise in the context of planar L-drawings
of digraphs. In an L-drawing of an n-vertex digraph, introduced by Angelini et al. [1], vertices
are placed on the n × n grid so that each vertex is assigned a unique x-coordinate and a
unique y-coordinate and each edge uv (directed from u to v) is represented as a 1-bend
orthogonal polyline composed of a vertical segment incident to u and of a horizontal segment
incident to v. Recently, Chaplick et al. [13] addressed the question of deciding the existence
of planar L-drawings, i.e., L-drawings whose edges might possibly overlap but do not cross
and observe that the existence of a 4-modal embedding is a necessary condition for a digraph
to admit such a representation (Fig. 1a).

To the best of our knowledge, no further relationships have been explicitly pointed out in
the literature between modal embeddings and notable drawing models for modality values
greater than four, yet they do exist. Da Lozzo et al. [14] and Di Giacomo et al. [18] study the
planarity of NodeTrix representations of flat clustered networks, a hybrid representational
model introduced by Henry, Fekete, and McGuffin [19], where clusters and intra-cluster
edges are represented as adjacency-matrices, with rows and columns for the vertices of each
cluster, and inter-cluster edges are Jordan arcs connecting different matrices (Fig. 1b). For
clusters containing only two vertices, it is possible to show that the problem of computing
planar NodeTrix representations coincides with the one of testing whether a special digraph,
called the canonical digraph, associated to the network admits a 6-modal embedding. For
higher values of modality, k-modal embeddings occur in the context of Intersection-Link
representations of flat clustered networks. In an intersection-link representation [3, 5],
vertices are represented as translates of the same polygon, intra-cluster edges are represented

(a) (b) (c)

Figure 1 (a) A planar L-drawing, which determines a 4-modal embedding. (b) A planar NodeTrix
representation. (c) A planar intersection-link representation using comb-shaped polygons.
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via intersections between the polygons corresponding to their endpoints, and inter-cluster
edges – similarly to NodeTrix representations – are Jordan arcs connecting the polygons
corresponding to their endpoints. For any modality k ≥ 2, it can be shown that testing the
existence of a k-modal embedding of the canonical digraph of a flat clustered network with
clusters of size two is equivalent to testing the existence of an intersection-link representation
in which the curves representing inter-cluster edges do not intersect, when vertices are drawn
as comb-shaped polygons (Fig. 1c).

Related Work. It is common knowledge that the existence of bimodal embeddings can be
tested in linear time: Split each vertex v that has both incoming and outgoing edges into two
vertices vin and vout, assign the incoming edges to vin and the outgoing edges to vout, connect
vin and vout with an edge, and test the resulting (undirected) graph for planarity using any of
the linear-time planarity-testing algorithms [11, 20]. Despite this, most of the planarity
variants requiring bimodality are NP-complete; for instance, upward planarity [17], windrose
planarity [6], partial-level planarity [12], clustered-level planarity and T -level planarity [4, 23],
ordered-level planarity and bi-monotonicity [23]. In this scenario, a notable exception is
represented by the classic level planarity problem, which can be solved in linear time [22], and
its generalizations on the standing cylinder [7], rolling cylinder and the torus [2]. Although
the existence of a bimodal embedding is easy to test, Binucci, Didimo, and Giordano [9]
prove that the related problem of finding the maximum bimodal subgraph of an embedded
planar digraph is an NP-hard problem. Moreover, Binucci, Didimo, and Patrignani [10] show
that, given a mixed planar graph, i.e., a planar graph whose edge set is partitioned into a
set of directed edges and a set of undirected edges, orienting the undirected edges in such a
way that the whole graph admits a bimodal embedding is an NP-complete problem. On the
other hand, the question regarding the computational complexity of constructing k-modal
embedding for k ≥ 4 has not been addressed, although the related problem of testing the
existence of planar L-drawings has been recently proved NP-complete [13].

Our results. We study the complexity of the k-Modality problem, which asks for the
existence of k-modal embeddings of planar digraphs – with an emphasis on k = 4. Our
results are as follows:

We demonstrate a complexity dichotomy for the 4-Modality problem with respect to the
maximum degree ∆ of the input digraph. Namely, we show NP-completeness when ∆ ≥ 7
(see [21, Section 9]) and give a linear-time testing algorithm for ∆ ≤ 6 (Theorem 19).
Further, we extend the hardness result to any modality value larger than or equal to 4,
by proving that the k-Modality problem is NP-complete for k ≥ 4 when ∆ ≥ k + 3.
We provide an FPT-algorithm for k-Modality that runs in f(k)O(n) time for the class
of directed partial 2-trees (Theorem 16), which includes series-parallel and outerplanar
digraphs.
In Section 3, we relate k-modal embeddings with hybrid representations of flat clustered
graphs, and exploit this connection to give new complexity results (Theorems 4 and 8) and
algorithms (Theorems 3 and 7) for these types of representations. In particular, our NP-
hardness results allow us to answer two open questions. Namely, we settle in the strongest
possible way an open question, posed by Di Giacomo et al. [18, Open Problem (i)], about
the complexity of computing planar NodeTrix representations of flat clustered graphs with
clusters of size smaller than 5. Also, we address a research question by Angelini et al. [3,
Open Problem (2)] about the representational power of intersection-link representations
based on geometric objects that give rise to complex combinatorial structures, and solve
it when the considered geometric objects are k-combs.
Finally, in [21, Section 10], we show that not every outerplanar digraph admits a bimodal
embedding, whereas any outerplanar (multi-)digraph admits a 4-modal embedding.
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The algorithms presented in this paper employ the SPQ- and SPQR-tree data structures to
succinctly represent the exponentially-many embeddings of series-parallel and biconnected
planar digraphs, respectively, and can be easily modified to output an embedding of the
input digraph in the same time bound. In particular, our positive result for ∆ ≤ 6 is based
on a set of simple reduction rules that exploit the structure of the rigid components of
bounded-degree planar digraphs. These rules allow us to tackle the algorithmic core of the
problem, by enabling a final reduction step to special instances of NAESAT, previously
studied by Porschen et al. [26], which we prove to be always NAE-satisfiable [21, Section 7].2

2 Definitions

We assume familiarity with basic concepts concerning directed graphs, planar embeddings,
connectivity and the BC-tree data structure; see the full version [21] for more details.

Directed graphs. A directed graph (for short digraph) G = (V,E) is a pair, where V is the
set of vertices and E is the set of (directed) edges of G, i.e., ordered pairs of vertices. We
also denote the sets V and E by V (G) and E(G), respectively. The underlying graph of G is
the undirected graph obtained from G by disregarding edge directions. Let v be a vertex,
we denote by E(v) the set of edges of G incident to v and by deg(v) = |E(v)| the degree
of v. For an edge e = uv directed from u to v and an end-point x ∈ {u, v} of e, we define
the orientation σ(e, x) of e at x as σ(e, x) = ◦�, if x = u, and σ(e, x) = �◦, if x = v, and we say
that uv is outgoing from u and incoming at v.

Modality. Let G be a planar digraph and let E be an embedding of G. A pair of edges e1, e2
that appear consecutively in the circular order around a vertex v of G is alternating if they
do not have the same orientation at v, i.e., they are not both incoming at or both outgoing
from v. Also, we say that vertex v is k-modal, or that v has modality k, or that the modality
of v is k in E , if there exist exactly k alternating pairs of edges incident to v in E . Clearly,
the value k needs to be a non-negative even integer. An embedding of a digraph G is k-modal,
if each vertex is at most k-modal; see Fig. 3(left).

We now define an auxiliary problem, called k-MaxModality (where k is a positive
even integer), which will be useful to prove our algorithmic results. We denote the set of
non-negative integers by Z∗ and the set of non-negative even integers smaller than or equal
to k as E+

k = {b : b = 2a, b ≤ k, a ∈ Z∗}. Given a graph G, we call maximum-modality
function an integer-valued function m : V (G) → E+

k . We say that an embedding E of G
satisfies m at a vertex v if the modality of v in E is at most m(v).

Problem: k-MaxModality

Input: A pair 〈G, m〉, where G is a digraph and m is a maximum-modality function.
Question: Is there an embedding E of G that satisfies m at every vertex?

2 In “Stefan Porschen, Bert Randerath, Ewald Speckenmeyer: Linear Time Algorithms for Some Not-
All-Equal Satisfiability Problems. SAT 2003: 172-187” [26], the authors state in the abstract “First
we show that a NAESAT model (if existing) can be computed in linear time for formulas in which
each variable occurs at most twice.”. We give a strengthening of this result by showing that the only
negative formulas with the above properties are those whose variable-clause graph contains components
isomorphic to a simple cycle and provide a recursive linear-time algorithm for computing a NAE-truth
assignment for formulas in which each variable occurs at most twice, when one exists, which is also
considerably simpler than the one presented in [26].
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Figure 2 (a) Illustrations for the duality between the canonical digraph and the canonical c-graph.
Correspondence (b) between 6-modal embeddings and planar NodeTrix representations, and (c)
between 4-modal embeddings and clique-planar representations using 2-combs as geometric objects.

3 Implications on Hybrid Representations

A flat clustered graph (for short, c-graph) is a pair C = (G = (V,E),P = (V1, V2, . . . , Vc)),
where G is a graph and P is a partition of V into sets Vi, for i = 1, . . . , c, called clusters. An
edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge, if i = j, and is an inter-cluster
edge, if i 6= j. The problem of visualizing such graphs so to effectively convey both the
relation information encoded in the set E of edges of G and the hierarchical information
given by the partition P of the clusters has attracted considerable research attention. In a
hybrid representation of a graph different conventions are used to represent the dense and
the sparse portions of the graph [3, 5, 14, 18, 19, 24, 27]. We present important implications
of our results on some well-known models for hybrid-representations of c-graphs.

Let C be a c-graph whose every cluster forms a clique of size at most 2, that is, each
cluster contains at most two vertices connected by an intra-cluster edge. Starting from C we
define an auxiliary digraph G�, called the canonical digraph for C, as follows. Without loss
of generality, assume that, for i = 1, . . . , c, each cluster Vi contains two vertices denoted as
vi[�◦] and vi[◦�]. The vertex set of G� contains a vertex vi, for i = 1, 2, . . . , c, and a dummy
vertex de, for each inter-cluster edge e ∈ E. The edge set of G� contains two directed edges,
for each inter-cluster edge e = (vix, vjy) ∈ E, with x, y ∈ {�◦, ◦�} and i 6= j; namely, E(G�)
contains (i) either the directed edges vixde, if x = ◦�, or the directed edge devix, if x = �◦, and
(ii) either the directed edges viyde, if y = ◦�, or the directed edge deviy, if y = �◦.

Let now D = (V,E) be a digraph. We construct a c-graph C∗ = (G∗ = (V ∗, E∗),P∗)
from D whose every cluster forms a clique of size at most 2, called the canonical c-graph
for D, as follows. For each vertex vi ∈ V , G∗ contains two vertices vi[�◦] and vi[◦�], which
form the cluster Vi = {v[�◦], v[◦�]} in P∗. For each (directed) edge vivj of D, G∗ contains an
(undirected) edge (vi[◦�], vj [�◦]); that is, each directed edge in E that is incoming (outgoing) at
a vertex vi and outgoing (incoming) at a vertex vj corresponds to an inter-cluster edge in E∗
incident to vi[�◦] (to vi[◦�]) and to vj [◦�] (to vj [�◦]). Finally, for each vertex vi ∈ V , G∗ contains
an intra-cluster edge (vi[�◦], vi[◦�]). The canonical digraph and the canonical c-graph form
dual concepts, as illustrated in Fig. 2a; the canonical c-graph of G� is the original c-graph C
(neglecting clusters originated by dummy vertices) and the canonical digraph of C∗ is the
original digraph D (suppressing dummy vertices).

NodeTrix Planarity. A NodeTrix representation of a c-graph C = (G,P) is a drawing of C
such that: (i) each cluster Vi ∈ P is represented as a symmetric adjacency matrix Mi (with
|Vi| rows and columns), drawn in the plane so that its boundary is a square Qi with sides
parallel to the coordinate axes; (ii) no two matrices intersect, that is, Qi ∩ Qj = ∅, for
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all 1 ≤ i < j ≤ c; (iii) each intra-cluster edge is represented by the adjacency matrix Mi;
and (iv) each inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented as a simple
Jordan arc connecting a point on the boundary of Qi with a point on the boundary of Qj ,
where the point on Qi (on Qj) belongs to the column or to the row of Mi (resp. of Mj)
associated with u (resp. with v). A NodeTrix representation is planar if no inter-cluster edge
intersects a matrix or another inter-cluster edge, except possibly at a common end-point;
see Figs. 1b and 2b. The NodeTrix Planarity problem asks whether a c-graph admits a
planar NodeTrix representation. NodeTrix Planarity has been proved NP-complete for
c-graphs whose clusters have size larger than or equal to 5 [18].

We are ready to establish our main technical lemmas.

I Lemma 1. C-graph C is NodeTrix planar if and only if G� admits a 6-modal embedding.

I Lemma 2. Digraph D admits a 6-modal embedding if and only if C∗ is NodeTrix planar.

Proof sketch for Lemmas 1 and 2. Let Mi be the matrix representing cluster Vi =
{vi[�◦], vi[◦�]}. We have that, independently of which of the two possible permutations for the
rows and columns of Mi is selected, the boundary of Qi is partitioned into three maximal
portions associated with vi[�◦] and three maximal portions associated with vi[◦�]; that is, they
form the pattern [1, 2, 1, 2, 1, 2], see Fig. 2b. Therefore, any planar NodeTrix representation
of C (of C∗) can be turned into a 6-modal embedding of G� (of D) via a local redrawing
procedure which operates in the interior of Qi; also, any 6-modal embedding of G� (of D) can
be turned into a planar NodeTrix representation of C (of C∗) via a local redrawing procedure
which operates in a small disk centered at vi that contains only vi and intersects only edges
incident to vi.

Since G� can be constructed in linear time from C, Lemma 1 and the algorithm of
Theorem 16 for solving k-Modality of directed partial 2-trees give us the following.

I Theorem 3. NodeTrix Planarity can be solved in linear time for flat clustered graphs
whose clusters have size at most 2 and whose canonical digraph is a directed partial 2-tree.

Note that (i) C∗ can be constructed in polynomial time from D, (ii) C∗ only contains
clusters of size 2 (although clusters corresponding to vertices of D incident to incoming or
outgoing edges only could be simplified into clusters of size 1), and (iii) each cluster Vi ∈ P∗,
with vi ∈ V (D), is incident to α inter clusters edges, where α is the degree of vi in D. These
properties and the fact that in [21, Section 9] we prove the k-Modality problem to be
NP-complete for digraphs of maximum degree ∆ ≥ k + 3 give us the following.

I Theorem 4. NodeTrix Planarity is NP-complete for flat clustered graphs whose
clusters have size at most 2, even if each cluster is incident to at most 9 inter-cluster edges.

We remark that the above NP-completeness result is best possible in terms of the size
of clusters, as clusters of size 1 do not offer any advantage to avoid intersections between
inter-cluster edges. Also, it solves [18, Open Problem (i)], which asks for the complexity of
NodeTrix Planarity for c-graphs whose clusters have size between 2 and 5.

Clique Planarity. Hybrid representations have also been recently studied in the setting in
which clusters are represented via intersections of geometric objects. In particular, Angelini
et al. [3] introduced the following type of representations. Suppose that a c-graph (G,P) is
given, where P is a set of cliques that partition the vertex set of G. In an intersection-link
representation, the vertices of G are represented by geometric objects that are translates
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of the same rectangle. Consider an edge (u, v) and let R(u) and R(v) be the rectangles
representing u and v, respectively. If (u, v) is an intra-cluster edge (called intersection-edge
in [3]), we represent it by drawing R(u) and R(v) so that they intersect, otherwise if (u, v)
is an intra-cluster edge (called link-edge in [3]), we represent it by a Jordan arc connecting
R(u) and R(v). A clique-planar representation is an intersection-link representation in which
no inter-cluster edge intersects the interior of any rectangle or another inter-cluster edge,
except possibly at a common end-point. The Clique Planarity problem asks whether a
c-graph (G,P) admits a clique-planar representation.

Angelini et al. proved the Clique Planarity problem to be NP-complete, when P
contains a cluster V ∗ with |V ∗| ∈ O(|G|), and asked, in [3, Open Problem (2)], about
the implications of using different geometric objects for representing vertices, rather than
translates of the same rectangle. We address this question by considering k-combs as
geometric objects, where a k-comb is the simple polygon with k spikes illustrated in Fig. 2c.
We have the following.

I Lemma 5. C-graph C is a positive instance of Clique Planarity using k-combs as
geometric objects if and only if G� admits a 2k-modal embedding.

I Lemma 6. Digraph D admits an 4-modal embedding if and only if C∗ is a positive instance
of Clique Planarity using 2-combs as geometric objects.

Proof sketch for Lemmas 5 and 6. Let Ai be an arrangements of 2-combs representing
cluster Vi = {vi[�◦], vi[◦�]}. We have that, the boundary of Ai is partitioned into at most
two maximal portions associated with vi[�◦] and at most two maximal portions associated
with vi[◦�]; that is, they form the pattern [1, 2, 1, 2], see Fig. 2c. Therefore, as for Lemmas 1
and 2, we can exploit a local redrawing procedure to transform a clique-planar representation
of C (of C∗) into a 4-modal embedding of G� (of D), and vice versa.

Combining Lemma 5 and the algorithm of Theorem 16 gives us the following positive result.

I Theorem 7. Clique Planarity using r-combs, with r ≥ 1, as geometric objects can be
solved in linear time for flat clustered graphs whose clusters have size at most 2 and whose
canonical digraph is a directed partial 2-tree.

Finally, Lemma 6 and the discussion preceding Theorem 4 imply the following.

I Theorem 8. Clique Planarity using 2-combs as geometric objects is NP-complete,
even for flat clustered graphs with clusters of size at most 2 each incident to at most 7
inter-cluster edges.

4 Polynomial-time Algorithms

In this section, we present an algorithmic framework to devise efficient algorithms for the
k-Modality problem for notable families of instances. First, in Section 4.1, we show
how to efficiently reduce the k-Modality problem in simply-connected digraphs to the
k-MaxModality problem in biconnected digraphs. Then, in Section 4.2, we introduce
preliminaries and definitions concerning SPQR-trees and k-modal embeddings of bicon-
nected digraphs.

4.1 Simply-Connected Graphs
We first observe that the k-MaxModality problem is a generalization of the k-Modality
problem. In fact, a directed graph G = (V,E) admits a k-modal embedding if and only if
the pair 〈G,m〉, with m(v) = k, ∀v ∈ V (G), is a positive instance of the k-MaxModality
problem.
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Figure 3 (left) A 4-modal embedding of a simply-connected planar digraph G. (right) The SPQR
T of the block B of G rooted at the edge e = uv. The extended skeletons of all non-leaf nodes of T
are shown; virtual edges corresponding to S-, P-, and R-nodes are thick.

I Observation 1. k-Modality reduces in linear time to k-MaxModality.

Let 〈G,m : V (G)→ E+
4 〉 be an instance of 4-MaxModality; also, let β be a leaf-block

of the BC-tree T of G and let v be the parent cut-vertex of β in T . We denote by G−β the
subgraph of G induced by v and the vertices of G not in β, i.e., G−β = G− (β − {v}). Also,
let B(T ) be the set of blocks in T . We show that k-MaxModality (and k-Modality, by
Observation 1) in simply-connected digraphs is Turing reducible to k-MaxModality in
biconnected digraphs.

I Theorem 9. Given a subroutine TestBiconnected that tests k-MaxModality for
biconnected instances, there exists a procedure TestSimplyConnected that tests
k-MaxModality for simply-connected digraphs. Further, given an instance 〈G,m〉 of
k-MaxModality, the runtime of TestSimplyConnected(〈G,m〉) is

O
(
|G|+ log k

∑
β∈B(T )

r(β)
)
,

where r(β) is the runtime of TestBiconnected(〈β,m〉) and T is the BC-tree of G.

Sketch. The algorithm selects a leaf-block β of T , with parent cut-vertex v, and finds an
embedding of β with the minimum modality at v satisfying m at all vertices, by performing
a binary search using the TestBiconnected procedure. We then remove β, replace G
with G−β , and update the value of m(v), so to account for the alternations at v introduced
by β. The procedure terminates when all the blocks have been processed. Therefore, since
the total number of calls to subroutine TestBiconnected is bounded by the number
of blocks of G, which is O(|T |) = O(|G|) multiplied by log k, the overall running time is
O(|G|+ log k

∑
β∈B(T ) r(β)). J

4.2 Biconnected Graphs
To handle the decomposition of a biconnected digraph into its triconnected components, we
use SPQR-trees, a data structure introduced by Di Battista and Tamassia [16].

SPQR-trees. Let G be a biconnected digraph. We consider SPQR-trees that are rooted
at an edge e of G, called the reference edge. The rooted SPQR-tree T of G with respect to
e describes a recursive decomposition of G induced by its split pairs. The nodes of T are
of four types: S, P, Q, and R. Each node µ of T has an associated undirected multigraph
skel(µ), called the skeleton of µ, with two special nodes uµ and vµ (the poles of µ), and an
associated subgraph pert(µ) of G, called pertinent of µ. The skeleton graph equipped with
the edge uµvµ, called the parent edge, is the extended skeleton of µ. Refer to Fig. 3(right).
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Each edge of skel(µ), called virtual edge, is associated with a child of µ in T . The skeleton
of µ describes how the pertinent graphs of the children of µ have to be “merged” via their
poles to obtain pert(µ). The extended skeleton of an S-, P-, R-, and Q-node is a cycle,
parallel, triconnected graph, and a 2-gon, respectively. It follows that skeleton and pertinent
graphs are always biconnected once the parent edge is added. A series-parallel digraph is a
biconnected planar digraph whose SPQR-tree only contains S-, P-, and Q-nodes. A partial
2-tree is a digraph whose every block is a series-parallel digraph.

A digraph G is planar if and only if the skeleton of each R-node in the SPQR-tree
of G is planar. By selecting regular embeddings for the skeletons of the nodes of T , that
is, embeddings in which the parent edge is incident to the outer face, we can construct any
embedding of G with the edge e on the outer face, where the choices for the embeddings of
the skeletons are all and only the (i) flips of the R-nodes and the (ii) permutations for the
virtual edges of the P-nodes.

Consider a pair 〈G,m〉 such that G is biconnected and let E be a planar embedding of G.
Also, let T be the SPQR-tree of G rooted at an edge e of G incident to the outer face of E .
We will assume that the virtual edges of the skeletons of the nodes in T are oriented so that
the extended skeleton of each node µ is a DAG with a single source uµ and a single sink vµ.
Let µ be a node of T and let Eµ be the planar (regular) embedding of skel(µ) induced by E .
For an oriented edge d = uv of skel(µ), the left and right face of d in Eµ is the face of Eµ
seen to the left and to the right of d, respectively, when traversing this edges from u to v.
We define the outer left (right) face of Eµ as the left (right) face of the edge uµvµ in Eµ.

Embedding tuples. An embedding tuple (for short, tuple) is a 4-tuple 〈σ1, a, σ2, b〉, where
σ1, σ2 ∈ {◦�, �◦} are orientations and a, b ∈ N are non-negative integers. Consider two tuples
t = 〈σ1, a, σ2, b〉 and t′ = 〈σ′1, a′, σ′2, b′〉. We say that t dominates t′, denoted as t � t′,
if σ1 = σ′1, σ2 = σ′2, a ≤ a′, and b ≤ b′. Also, we say that t and t′ are incompatible, if
none of them dominates the other. Since the relationship � is reflexive, antisymmetric,
and transitive, it defines a poset (T,�), where T is the set of embedding tuples. A subset
S ⊆ T is succinct or an antichain, if the tuples in S are pair-wise incompatible. Consider
two subsets S, S′ ⊆ T of tuples. We say that S dominates S′, denoted as S � S′, if for any
tuples t′ ∈ S′ there exists at least one tuple t ∈ S such that t � t′. Also, S reduces S′ if
S � S′ and S ⊆ S′. Finally, S is a gist of S′, if S is succinct and reduces S′.

Let eu and ev be the edges of pert(µ) incident to the outer left face of Eµ and to uµ
and vµ, respectively, possibly eu = ev. Also, let a and b be non-negative integers. We say
that the embedding Eµ realizes tuple 〈σ1, a, σ2, b〉, if σ1 = σ(eu, uµ), σ2 = σ(ev, vµ), and
a and b are the number of inner faces of Eµ whose (two) edges incident to uµ and to vµ,
respectively, form an alternating pair. A tuple t = 〈σ1, a, σ2, b〉 is realizable by µ, if there
exists an embedding of pert(µ) that realizes t, and admissible, if a ≤ m(u) and b ≤ m(v). A
tuple is good for µ if it is both admissible and realizable by µ. We denote by S(µ) the gist of
the set of good tuples for a node µ. Let eµ be the virtual edge representing µ in the skeleton
of the parent of µ in T , with a small overload of notation, we also denote S(µ) by S(eµ).
For a tuple t = 〈σ1, a, σ2, b〉 ∈ S(eµ), where e = uµvµ, the pair (σ1, a) is the embedding pair
of t at uµ; likewise, the pair (σ2, b) is the embedding pair of t at vµ. We have the following
substitution lemma.

I Lemma 10. Let E be a planar embedding of G satisfying m. Let µ be a node of T and let
Eµ be the embedding of pert(µ) induced by E. Also, let E ′µ 6= Eµ be an embedding of pert(µ)
satisfying m. Then, G admits an embedding E ′ satisfying m in which the embedding of pert(µ)
is E ′µ, if t′ � t, where t and t′ are the embedding tuples realized by Eµ and by E ′µ, respectively.
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Figure 4 Illustration for the proof of Lemma 10. The parity of t and t′ is the same at uµ and
different at vµ; in particular, even if a new alternation is introduced between the pair (e, e′) at vµ,
the different parity guarantees that the modality at vµ does not increase from E to E ′.

Sketch. We show how to construct a drawing Γ′G of G satisfying m in which the embedding
of pert(µ) is E ′µ; see Fig. 4. Let ΓG be a drawing of G whose embedding is E . Remove
from ΓG the drawing of all the vertices of pert(µ) different from uµ and vµ and the drawing
of all the edges of pert(µ). Denote by f the face of the resulting embedded graph G− that
used to contain the removed vertices and edges. We obtain Γ′G by inserting a drawing of
pert(µ) whose embedding is E ′µ in the interior of f so that vertices uµ and vµ are identified
with their copies in G−. We can prove that the embedding E ′ of Γ′G satisfies m by exploiting
the interplay between the parity and the number of alternations at uµ (at vµ) in t′ and t
when t′ � t. J

Let T be the SPQR-tree T of G rooted at a reference edge e. In the remainder of the
section, we show how to compute the gist S(µ) of the set of good tuples for µ, for each
non-root node µ of T . In the subsequent procedures to compute S(µ) for S-, P-, and R-nodes,
we are not going to explicitly avoid set S(µ) to contain dominated tuples. In fact, this can
always be done at the cost of an additive O(k2) factor in the running time, by maintaining
an hash table that stores the tuples that have been constructed (possibly multiple times) by
the procedures and by computing the gist of the constructed set as a final step.

I Property 1. For each node µ ∈ T , it holds that |S(µ)| ∈ O(k).

Proof. By the definition of gist, any embedding pair (σ, a) has at most two tuples t′, t′′ ∈ S(µ)
such that (σ, a) is the embedding pair of t′ and t′′ at uµ; also, the embedding pairs (σ′, a′)
of t′ and (σ′′, a′′) of t′′ at vµ are such that σ′ 6= σ′′. Since there exist at most 2k realizable
embedding pairs (σ, a) at uµ (as σ ∈ {�◦, ◦�}, a ∈ {0, 1, . . . , k}, and the existence of tuple whose
embedding pair at uµ is (σ, 0) implies that all tuples have such an embedding pair at uµ),
we have |S(µ)| ≤ 4k. J

If µ is a leaf Q-node of T , then S(µ) = {〈σ(uµvµ, uµ), 0, σ(uµvµ, vµ), 0〉}. If µ is an
internal node of T , we visit T bottom-up and compute the set S(µ) for µ assuming to have
already computed the sets S(µ1), . . . , S(µk) for the children µ1, . . . , µk of µ (where µi is the
child of µ corresponding to the edge ei in skel(µ)). Let ρ be the unique child of the root
of T . Once the set S(ρ) has been determined, we can efficiently decide whether G admits an
embedding satisfying m in which the reference edge e is incident to the outer face by means
of the following lemma.

I Lemma 11. Given S(ρ), we can test whether G has an embedding that satisfies m in O(k2)
time.
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5 Partial 2-trees

In the following, we describe how to compute S(µ), if µ is an S-node (Lemma 12) and a
P-node (Lemma 13) in O(f(k)| skel(µ)|) time, where f is a computable function.

I Lemma 12. Set S(µ) can be constructed in O(k2| skel(µ)|) time for an S-node µ.

Sketch. Let µ be an S-node with skeleton skel(µ) = (e1, e2, . . . , eh). We define τj as the
S-node obtained by the series composition of µ1, µ2, . . . , µj , with j ≤ h. Initially we set
S(τ1) = S(e1). Then, we construct S(τj), for j = 2, . . . , h, by verifying the compatibility of
the embedding pairs of the good tuples of the virtual edges of skel(τj) at the internal vertices
of skel(τj). As S(τj) = S(τj−1) ∪ ej , we can compute S(τj) by considering all the tuples
obtained by combining every tuple t′ ∈ S(τj−1) with every tuple t′′ ∈ S(ej). Since both these
sets contain O(k) tuples, by Property 1, and since the tuple resulting from the combination
of t′ and t′′ can be determined in O(1) time, we have that S(τj) can be computed in O(k2)
time. Therefore, the overall running time for computing S(µ) = S(τh) is O(k2| skel(µ)|). J

I Lemma 13. Set S(µ) can be constructed in O((2k+ 4)!k3 + | skel(µ)|) time for a P-node µ.

Sketch. Let µ be a P-node with poles uµ and vµ, whose skeleton skel(µ) consists of h
parallel virtual edges e1, e2, . . . , eh. It can be shown that the computation of S(µ) reduces in
O(| skel(µ)|) time to the computation of S(τ), where τ is a P-node whose skeleton consists
of at most 2k virtual edges of skel(µ) that contribute with at least one alternating pair of
edges at uµ or vµ, plus up to 4 virtual edges of skel(µ) that contribute with no alternating
pair at uµ or at vµ. For any permutation π of the virtual edges of pert(τ), let τπi be the
P-node obtained by restricting τ to the first i virtual edges in π. We fix the embedding of
skel(τπi ) in such a way that the virtual edges of skel(τπi ) are ordered according to π. Then,
in a fashion similar to the S-node case, we can compute S(τπi ) for the given embedding of
skel(τπi ) by combining S(τπi−1) and S(ei) in O(k2) time (recall that both these sets have size
O(k), by Property 1). Clearly, for any fixed π, we can compute S(τhπ ) in O(k3) time. Thus,
by performing the above computation for all the (2k + 4)! possible permutations for the
virtual edges of pert(τ), we can construct S(τ) in O((2k + 4)!k3 + | skel(µ)|) time. J

Altogether, Lemmas 12 and 13 yield the following main result.

I Lemma 14. k-MaxModality can be solved in O((2k+4)!k3n) for series-parallel digraphs.

Observation 1, Lemma 14, and Theorem 9 immediately imply the following.

I Corollary 15. k-Modality can be solved in O(((2k + 4)!k3 log k)n) for directed partial
2-trees.

Due to the special algorithmic framework we are employing, we can however turn the
multiplicative O(log k) factor in the running time into an additive O(k) factor by modifying
Theorem 9 as follows. When considering a cut-vertex v, we will execute “only once” the
function TestBiconnected by rooting the SPQ-tree at a Q-node η corresponding to an
edge incident to v. This will allow us to compute the minimum modality for cut-vertex v
in an embedding that satisfies m at every vertex, by simply scanning the set S(η), which
takes O(k) time by Property 1, rather than by exploiting a logarithmic number of calls to
TestBiconnected.

I Theorem 16. k-Modality can be solved in O((2k + 4)!k3n) for directed partial 2-trees.
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6 A Linear-time Algorithm for 4-MaxModality when ∆ ≤ 6

In this section, we show that in the special case when k = 4 and G has maximum degree ∆ ≤ 6,
it is possible to compute the set S(µ) when µ is an R-node in linear time in the size of skel(µ).

Our strategy to compute S(µ) is as follows. We select a single tuple from the admissible
set of each virtual edge incident to uµ and vµ, in every possible way. Each selection determines
a “candidate tuple” t for S(µ). First, we check if t is admissible at both u and v. Second,
we restrict the tuples of the edges incident to the poles to only the tuples that form t and
check if there is a way of satisfying m at the (inner) vertices of skel(µ). If both the poles
and the inner vertices are satisfiable, then we add t to S(µ). Since the degrees of the poles
are bounded, there is at most a constant number of candidate tuples which must be checked.
The complexity lies in this check.

We now formally describe how to compute S(µ). First, for each virtual edge ei of skel(µ)
incident to the poles of µ, we select a tuple ti from S(µi). Let Tu = [tu,1, tu,2, . . . , tu,`] and
Tv = [tv,1, tv,2, . . . , tv,h] be the list of tuples selected for the virtual edges incident to uµ and
to vµ, respectively. Each pair of lists Tu and Tv yields a candidate tuple t = 〈σ1, a, σ2, b〉
for µ. However, the tuples selected to construct Tu and Tv allow for an admissible embedding
of pert(µ) realizing tuple t if and only if : (Condition 1) tuple t satisfies m at uµ and at
vµ, and (Condition 2) it is possible to select tuples for each of the remaining virtual edges
of skel(µ) that satisfy m at every internal vertex of skel(µ). Let P(µ) be the set of candidate
tuples for µ constructed as described above. We can easily filter out the candidate tuples
that do not satisfy Condition 1. In the remainder of the section, for each pair of lists Tu and
Tv yielding a tuple t ∈ P(µ), we will show how to test Condition 2 for µ in linear time. This
and the fact that |P(µ)| ∈ O(1) imply the following.

I Lemma 17. Set S(µ) can be constructed in O(| skel(µ)|) time for an R-node µ, if ∆ ≤ 6.

Altogether, Lemmas 12, 13 and 17 yield the following main result.

I Lemma 18. 4-MaxModality can be solved in linear time for biconnected digraphs
with ∆ ≤ 6.

Observation 1, Lemma 18, and Theorem 9 immediately imply the following.

I Theorem 19. 4-Modality can be solved linear time for digraphs with ∆ ≤ 6.

To prove Lemma 17, we show how to solve the following auxiliary problem for special
instances.

Problem: 4-MaxSkelModality

Input: A triple 〈G = (V, E),S = {S(e1), . . . , S(e|E|)}, m〉 where G is an embedded directed
graph, each S(ei) is a set containing embedding tuples for the virtual edge ei ∈ E, and
m : V → E+

4 is the maximum-modality function.
Question: Can we select a tuple from each set S(ei) in such a way that the modality at each

vertex v ∈ V is at most m(v)?

For each pair of lists Tu and Tv yielding a candidate tuple in P(µ), we will construct
an instance Iµ(Tu, Tv) = (G,S,m) of 4-MaxSkelModality as follows. First, we set
G = skel(µ) and we fix the embedding of G to be equal to the unique regular embedding of
skel(µ). Second, for each virtual edge eu,i incident to uµ, with i = 1, . . . , `, we set S(eu,i) =
{tu,i}; for each virtual edge ev,j incident to vµ, with j = 1, . . . , h, we set S(ev,j) = {tv,j};
and, for each of the remaining virtual edges ed of skel(µ), we set S(ed) = S(µd). Finally,
the maximum-modality function of Iµ coincides with m.
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Clearly, Iµ(Tu, Tv) is a positive instance of 4-MaxSkelModality if and only if, given
the constrains imposed by the tuples in Tu and in Tv, there exists a selection of tuples for
the edges of G not incident to uµ or vµ that satisfies m at all the internal vertices of G, i.e.,
Condition 2 holds.

Let v be a vertex of G and let e be an edge in E(v), we denote by Av(e) the maximum
number of alternations at v over all the tuples in S(e).

I Definition 20 (Good instances). An instance of 4-MaxSkelModality is good if, for
any vertex v in G, it holds

∑
e∈E(v)(Av(e) + 1) ≤ 6.

Note that, for each edge e in ske(µ) incident to a vertex v, pert(e) contributes at least
Av(e) + 1 edges to dpert(e)(v). Thus, we have

∑
e∈E(v)(Av(e) + 1) ≤

∑
e∈E(v) dpert(e)(v) ≤ 6.

Therefore, instance Iµ(Tu, Tv) is good. Although 4-MaxSkelModality turns out to be
NP-complete in general [21, Section 9], we are now going to show the following main
positive result.

I Theorem 21. 4-MaxSkelModality is linear-time solvable for good instances.

The outline of the linear-time algorithm to decide whether a good instance I = 〈G =
(V,E),S = {S(e1), . . . , S(e|E|)},m〉 of 4-MaxSkelModality is a positive instance is
as follows.

We process I by means of a set of reduction rules applied locally at the vertices of
G and their incident edges. Each of these rules, if applicable, either detects that the
instance I is a negative instance or transforms it into an equivalent smaller instance I ′ =
〈G′,S ′,m′〉. Each rule can be applied when specific conditions are satisfied at the
considered vertex. A rule may additionally set a vertex as marked. Any marked vertex
v has the main property that any selection of tuples from the admissible sets of the
edges incident to v satisfies m′ at v.
Let I∗ be the instance of 4-MaxSkelModality obtained when no reduction rule may
be further applied. We prove that instance I∗ has a special structure that allows us to
reduce the problem of testing whether I∗ is a positive instance of 4-MaxSkelModality
to that of verifying the NAE-satisfiability of a constrained instance of NAESAT, in fact,
of Planar NAESAT. Since Planar NAESAT is in P [25], this immediately implies
that 4-MaxSkelModality is also in P. However, in [21, Section 7], by strengthening
a result of Porschen et al. [26], we are able to show that the constructed instances
of NAESAT are always satisfiable and that a satisfying NAE-truth assignment can
be computed in linear time.

In [21, Section 8], we provide three reduction rules that turn a good instance I into an
equivalent smaller good instance I ′. Let I∗ = 〈G∗,S∗,m∗〉 be the good instance, equivalent
to I, produced by applying a maximal sequence of reduction rules to I. We say that I∗ is
irreducible. The following lemma will prove useful.

I Lemma 22. For each unmarked vertex v ∈ V (G∗), it holds that: (i) v has degree 3, (ii)
m∗(v) = 4, and (iii) there exist tuples t1, t2 ∈ S∗(e) such that the embedding pair of t1 and
of t2 at v are (�◦, 1) and (◦�, 1), respectively, for each edge e incident to v.

Our next and final tool is the following, quite surprising, result.

I Lemma 23. Any irreducible good instance I∗ is a positive instance.

Theorem 21 immediately follows from Lemma 23. We conclude the section by providing
a sketch of the proof of Lemma 23. A detailed proof can be found in [21, Section 8].
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Outline of the proof of Lemma 23. If a vertex is marked then any combination of tuples
will satisfy m∗ at it. So the proof is mainly concerned with unmarked vertices. By Lemma 22,
edges where both endpoints are unmarked have one of the following tuple sets: SA =
{〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}, SB = {〈◦�, 1, �◦, 1〉, 〈�◦, 1, ◦�, 1〉}, or SA ∪SB . In the last case we arbitrarily
remove either SA or SB. Taking advantage of the structure of irreducible instances, the
problem of solving I∗ is reduced in linear time to the one of testing the NAE-satisfiability of
a CNF-formula φ in which every variable occurs in at most two clauses. Each edge incident
to an unmarked vertex has the two possible embedding pairs (�◦, 1) or (◦�, 1) at the vertex. We
create a variable for each incidence between an edge and an unmarked vertex. For each edge
with two unmarked endpoints, we introduce an edge clause to ensure that the embedding
pairs for each endpoint are selected in a consistent way. Consider an unmarked vertex v and
assume, for simplicity of description, that its three incident edges have the same orientation
at v. A selection of embedding pairs for the edges incident to v will not satisfy m∗(v) if
and only if all such pairs coincide. Therefore, we can introduce a vertex clause to model
such constraint as a NAESAT clause that is the disjunction of the three boolean variables
for the endpoints of the edges incident to v. The NAE-formula φ has the property that
each variable occurs in at most two clauses. Moreover, the variable-clause graph Gφ of φ
contains no connected component that is isomorphic to a simple cycle, since vertex clauses
have degree 3. In [21, Section 7], we prove that such instances are always NAE-satisfiable
and provide a linear-time algorithm to construct a NAE-truth assignment for such formulas.
This proves that I∗ is always a positive instance.

7 Conclusions

In this paper, we studied the complexity of the k-Modality problem, with special emphasis
on k = 4. We provided complexity, algorithmic, and combinatorial results. Our main
algorithmic contribution for k = 4 and ∆ ≤ 6 leverages an elegant connection with the
NAE-satisfiability of special CNF formulas, whose study allowed us to strengthen a result
in [26]. Moreover, we showed notable applications of the previous results to some new
interesting embedding problems for clustered networks, some of which solve open problems
in this area [3, 18].
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Abstract
We study mechanism design for combinatorial cost sharing models. Imagine that multiple items or
services are available to be shared among a set of interested agents. The outcome of a mechanism in
this setting consists of an assignment, determining for each item the set of players who are granted
service, together with respective payments. Although there are several works studying specialized
versions of such problems, there has been almost no progress for general combinatorial cost sharing
domains until recently [7]. Still, many questions about the interplay between strategyproofness, cost
recovery and economic efficiency remain unanswered.

The main goal of our work is to further understand this interplay in terms of budget balance
and social cost approximation. Towards this, we provide a refinement of cross-monotonicity (which
we term trace-monotonicity) that is applicable to iterative mechanisms. The trace here refers to
the order in which players become finalized. On top of this, we also provide two parameterizations
(complementary to a certain extent) of cost functions which capture the behavior of their average
cost-shares. Based on our trace-monotonicity property, we design a scheme of ascending cost
sharing mechanisms which is applicable to the combinatorial cost sharing setting with symmetric
submodular valuations. Using our first cost function parameterization, we identify conditions under
which our mechanism is weakly group-strategyproof, O(1)-budget-balanced and O(Hn)-approximate
with respect to the social cost. Further, we show that our mechanism is budget-balanced and
Hn-approximate if both the valuations and the cost functions are symmetric submodular; given
existing impossibility results, this is best possible. Finally, we consider general valuation functions
and exploit our second parameterization to derive a more fine-grained analysis of the Sequential
Mechanism introduced by Moulin. This mechanism is budget balanced by construction, but in
general only guarantees a poor social cost approximation of n. We identify conditions under which
the mechanism achieves improved social cost approximation guarantees. In particular, we derive
improved mechanisms for fundamental cost sharing problems, including Vertex Cover and Set Cover.
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1 Introduction

How to share the cost of a common service (or public good) among a set of interested agents
constitutes a fundamental problem in mechanism design that has been studied intensively
for at least two decades. Several deep and significant advancements have been achieved
throughout this period, notably also combining classical mechanism design objectives (such as
incentive compatibility, economic efficiency, etc.) with theoretical computer science objectives
(such as approximability and computational efficiency).

However, in the vast majority of the cost sharing models that have been proposed and
analyzed in the literature, it is assumed that the mechanism designer is offering a single
service and that each agent has a private value describing the willingness to pay for the
service. At the same time, there is also a publicly known cost function which describes the
total cost for offering the service to each possible subset of agents. Said differently, this
results in a single-parameter mechanism design problem, where the goal is to select a subset
of the players that will be granted service, subject to covering the cost and achieving an
economically efficient outcome.

Although significant progress has been made for such single-parameter domains, moving
towards more general combinatorial domains has been almost elusive so far. Imagine that
there are multiple goods to be shared among the agents who now have more complex valuation
functions, expressing their willingness to pay for different subsets (or bundles) of goods. The
cost function now depends on the subsets of agents sharing each of the items. An outcome
of a mechanism under this setting, consists of an allocation, which specifies for each agent
the goods for which she is granted service, together with a payment scheme.

The desired properties in designing a cost-sharing mechanism (be it combinatorial or
not) are three-fold: (i) group-strategyproofness: we would like resistance to misreporting
preferences by individual agents or coalitions, (ii) budget-balance: the payments of the players
should cover the incurred cost, (iii) economic efficiency: the allocation should maximize a
measure of social efficiency. The fundamental results in [10, 16] rule out the possibility that all
three properties can be achieved. As a result, if we insist on any variant of strategyproofness,
we are forced to settle with approximate notions of at least one of the other two criteria.
In this context, approximate budget balance means that the mechanism may overcharge
the agents, but not by too much. In terms of efficiency, considering a social cost objective
instead of the classical social welfare objective (definitions are given in Section 2) seems more
amenable for multiplicative approximation guarantees.

These adapted objectives have been investigated thoroughly for single-parameter problems,
especially for cost-sharing variants of well-known optimization problems. In the context
of more general combinatorial cost-sharing mechanisms, a restricted model with multiple
levels of service was first studied in [13]. Ever since, for almost a decade, there was no
additional progress along these lines. It was only recently that a step forward was made
by Dobzinski and Ovadia [7]. In their work, they introduce a combinatorial cost-sharing
model and derive the first mechanisms guaranteeing good budget balance and social cost
approximation guarantees for different classes of valuation and cost functions. As already
pointed out in [7], however, several important questions concerning our understanding of the
approximability of these objectives remain open and deserve further study. This constitutes
the starting point of our investigations reported in this work.

Our Contributions. We make further advancements on the design and analysis of mechan-
isms for combinatorial cost-sharing models. To begin with, the analysis of the mechanisms
we study asks for new conceptual ideas which might be interesting on their own:
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We first provide a refinement of the well-known notion of cross-monotonic cost sharing
functions, which is key in the intensively studied class of Moulin-Shenker mechanisms
[15] for the single-parameter domain. We introduce the notion of trace-monotonic cost
sharing functions which is applicable for mechanisms that proceed iteratively and evict
agents one-by-one. Trace-monotonicity formalizes the fact that the cost-shares observed
by a player for an item do not decrease throughout the course of the mechanism. That is,
these cost shares may depend on the specific order (or trace as we will call it) in which
the mechanism considers the agents.
We identify two different and (to some extent) complementary parameterizations of
the cost functions. Intuitively, these parameters measure the “variance” of the average
cost-share c(S)/|S|, over all agent sets S. We introduce two such notions, which we
term α-average decreasing and α-average min-bounded (see Definition 5 and Definition
15, respectively). We note that for every cost function, there exist respective values of
α (possibly different for each definition) for which these properties are satisfied. These
definitions provide an alternative way to classify cost functions and their respective
approximation guarantees in terms of budget balance and social cost.

Using the above ideas, in Section 3, we derive a scheme for ascending cost sharing mechan-
isms, which can be seen as a (non-trivial) adaptation of the Moulin-Shenker mechanisms from
the binary accept/reject setting to combinatorial cost sharing. Our notion of trace-monotonic
cost shares plays a crucial role here. We show that our proposed mechanism is applicable for
any non-decreasing cost function and for symmetric submodular valuations (i.e., submodular
functions whose value depends only on the cardinality of the set).

By exploiting the first parameterization of α-average decreasing cost functions, our main
result of Section 3 is that for α = O(1), our mechanism is polynomial-time, weakly group-
strategyproof, O(1)-budget-balanced and O(Hn)-approximate with respect to social cost,
where n is the number of agents.1 As a consequence, if both the valuation and cost functions
are symmetric submodular (α = 1), the mechanism is budget-balanced and Hn-approximate.
This is best possible even for a single item, as there exist corresponding inapproximability
results by Dobzinski et al. [6]. Prior to our work, the best known mechanism for symmetric
submodular valuation and cost functions is Hn-budget balanced and Hn-approximate [7].
We anticipate that further extensions and generalizations might be feasible through our
framework and this type of ascending mechanisms.

In Section 4, we exploit our second parameterization of α-average min-bounded cost
functions, and provide results for general valuation functions. As it turns out, our para-
meterization enables us to obtain a more fine-grained analysis of the Sequential Mechanism
introduced by Moulin [14]. This mechanism is budget-balanced by construction, but in gen-
eral only guarantees a poor social cost approximation of factor n. We show that for α-average
min-bounded cost functions with α = O(1), the Sequential Mechanism is budget balanced
and Hn-approximate with respect to social cost. Interestingly, this result does not even
require monotonicity of the valuation functions. In addition, we can push our results even a
bit further by introducing a refinement of this class of cost functions (see Definition 20) for
which we show that the Sequential Mechanism is O(1)-approximate. The refinement allows
us to obtain improved mechanisms for several cost functions originating from combinatorial
optimization problems. For example, our result implies that the Sequential Mechanism is
d-approximate for certain cost-sharing variants of Vertex Cover and Set Cover, where d is
the maximum degree of a node or the maximum size of a set, respectively; this improves
upon existing results, even in the well-studied single-item case, when d is constant.

1 We use Hn to denote the n-th Harmonic number defined as Hn = 1 + 1
2 + · · ·+ 1

n .
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In general, the two parameterizations of the cost functions introduced in this work seem to
be suitable means to accurately capture the approximation guarantees of both the ascending
cost-sharing mechanism of Section 3, and the Sequential Mechanism of Section 4. In fact, we
have not managed to construct natural examples of cost functions which do not admit an
O(Hn)-approximation by neither of the mechanisms studied here. See also the discussion in
Section 5, where some examples are constructed but they are rather artificial (Proposition 25).
As such, these parameterizations help us to narrow down the class of cost functions which
are not yet known to admit a good social cost approximation and enhance our understanding
towards further progress in combinatorial cost sharing.

Related Work. For the single-item setting and with submodular cost functions, the best
known group-strategyproof and budget balanced cost-sharing mechanism is arguably the
Shapley value mechanism, introduced by Moulin and Shenker [14, 15]. This was also the first
work that tried to quantify the efficiency loss of budget balanced cost-sharing mechanisms.
Later, Feigenbaum et al. [9] showed that if one insists on truthfulness, there is no mechanism
that achieves a finite approximation of the social welfare objective, even if one relaxes the
budget balance property to cost recovery. To overcome this impossibility result, Roughgarden
et al. [17] introduced the notion of social cost as an alternative means to quantify the
efficiency of a mechanism. In the same work, they showed that the Shapley value mechanism
is Hn-approximate with respect to this objective. Dobzinski et al. [6] established another
impossibility result for the social cost objective, and showed that every mechanism satisfying
truthfulness and cost recovery cannot achieve a social cost approximation guarantee better
than Ω(logn). The problem of deriving mechanisms with the best possible budget balance and
social cost approximation guarantees for different cost functions arising from combinatorial
optimization problems has been extensively studied in various works, see e.g., [2, 3, 4, 11].

Moving beyond the single-item case, Mehta et al. [13] introduced a new family of truthful
mechanisms (called acyclic mechanisms) which apply to general demand settings of multiple
identical items when players have symmetric submodular valuations. For additional works
that consider the general demand setting, the reader is referred to [2, 3, 5, 14]. Birmpas et
al. [1] also studied families of valuation and cost functions for the multiple item setting, under
cost sharing models that are motivated by applications in participatory sensing environments.

Most related to our work is the recent work by Dobzinski and Ovadia [7]. To the best
of our knowledge, this is the only prior work that considers a more general approach for
combinatorial cost sharing. They studied a multi-parameter setting and proposed a new
VCG-based mechanism. Basically, the idea is to run a VCG mechanism with respect to a
modified objective function which is defined as the sum of the player valuations minus a
potential. Intuitively, the latter ensures that the payments computed by the mechanism cover
the actual cost. They showed that this mechanism is strategyproof and Hn-approximate with
respect to social cost. They also identified several classes of valuation and cost functions for
which the mechanism is Hn-budget balanced. In particular, this is the case if the valuation
and cost functions are symmetric.2 Additionally, they established that their mechanism
is optimal with respect to the social cost approximation among all symmetric VCG-based
mechanisms that always cover the cost.

2 We note that their definition of symmetry for the cost function differs from the one we use here.
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2 Definitions and Notation

We assume there is a set N = {1, 2, . . . , n} of players and a set M = {1, 2, . . . ,m} of items.
Each item can be viewed as a public good or some service that can be shared by the players.
Each player i has a private valuation function vi : 2M → R≥0 specifying the value that she
derives from each subset of items.

A cost-sharing mechanism takes as input the declared (possibly false) valuation functions
~b = (bi)i∈N of the players and outputs (i) an allocation that determines which players share
each item and (ii) a payment pi for each player i. An allocation is denoted by a tuple
A = (A1, . . . , An), where Ai ⊆ M is the set of items provided to player i. For notational
convenience, we also represent an allocation A = (Ai)i∈N as a tuple over the items space
(T1, . . . , Tm) such that for every item j ∈M , Tj ⊆ N is the subset of players sharing item j,
i.e., Tj = {i ∈ N : j ∈ Ai}.

In this paper, we consider mostly separable cost functions. In the separable setting, we
assume that the overall cost of an allocation decomposes into the cost for providing each item
separately. Hence, every item j is associated to a known cost function cj : 2N → R≥0, which
specifies for each set of players T ⊆ N , the cost cj(T ) of providing item j to the players in T .
Thus, the total cost of an allocation A is defined as C(A) =

∑
j∈M cj(Tj). In Section 4.3,

we also consider the non-separable setting, where we are given a more general cost function
C : (2M )n → R≥0, specifying for every allocation A = (Ai)i∈N the corresponding cost C(A).
Non-separable functions can capture dependencies among different items.

We assume that the utility functions of the players are quasilinear, i.e., given an allocation
A = (Ai)i∈N and payments (pi)i∈N determined by the mechanism for valuation functions
~v = (vi)i∈N , the utility of player i is defined as ui(~v) = vi(Ai)−pi. All our mechanisms have no
positive transfers (NPT), i.e., pi ≥ 0, and satisfy individual rationality (IR), i.e., pi ≤ vi(Ai).

In addition to the above, we are also interested in the following properties:
Weak Group-Strategyproofness (WGSP): We insist on a stronger notion of res-
istance to manipulation than truthfulness: A mechanism is weakly group-strategyproof
if there is no deviation by a coalition of players that makes all its members strictly
better off. More formally, we require that for every coalition Q ⊆ N of players, every
profile ~v−Q of the other players, there is no deviation ~bQ of the players in Q such that
ui(~bQ, ~v−Q) > ui(~vQ, ~v−Q) for every i ∈ Q, where ~vQ is the profile of the actual valuation
functions of Q.
Budget Balance: We are interested in mechanisms whose payments cover the allocation
cost, ideally exactly. However, the latter is not always possible as it may be incompatible
with the other objectives. We therefore consider an approximate budget balance notion:
A mechanism is β-budget-balanced (β ≥ 1) if for every valuation profile ~v = (vi)i∈N , the
outcome (A, p) computed by the mechanism satisfies

C(A) ≤
∑
i∈N

pi ≤ β · C(A).

Clearly, we want β to be as small as possible to not overcharge players too much for
covering the cost. We say that the mechanism is budget balanced if β = 1.
Economic Efficiency: Our goal is to compute outcomes that are (approximately)
efficient. To this aim, we use the social cost objective, originally defined in [17]. Adapted
to our combinatorial setting, the social cost of an allocation A = (Ai)i∈N is defined
as the actual cost of the outcome plus the value missed by not serving all items to all
players, i.e.,

π(A) =
∑
j∈M

cj(Tj) +
∑
i∈N

[vi(M)− vi(Si)].3
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A mechanism is said to be α-approximate with respect to the social cost objective if for
every valuation profile ~v = (vi)i∈N , the allocation A output by the mechanism satisfies
π(A) ≤ α · π(A∗), where A∗ is an allocation of minimum social cost.

We assume that both the valuation functions (vi)i∈N and the cost functions (cj)j∈M
are non-decreasing (see below for formal definitions). Further, we focus on certain classes
of valuation and cost functions: More specifically, we consider submodular and subadditive
cost functions, both naturally modeling economies of scale. As to the valuation functions,
we consider submodular valuation functions in Section 3 and general valuation functions in
Section 4. Further, the class of symmetric XOS functions play a prominent role in Section 3.4
Below we summarize all relevant definitions (see also Lehman et al. [12]).

I Definition 1. Let f : 2U → R≥0 be a function defined over subsets of a universe U .
1. f is non-decreasing if f(S) ≤ f(T ) for every S ⊆ T ⊆ U .
2. f is symmetric if f(S) = f(T ) for every S, T ⊆ U with |S| = |T |.
3. f is submodular if f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ) for every S ⊆ T ⊆ U and

i 6∈ S.
4. f is XOS if there are additive functions f1, . . . , fk such that f(S) = maxi∈[k] f

i(S) for
all S ⊆ U .

5. f is subadditive if f(S ∪ T ) ≤ f(S) + f(T ) for every S, T ⊆ U .
6. f is symmetric XOS if it is symmetric and f(S)/|S| ≥ f(T )/|T | for every S ⊆ T ⊆ U .

Some of our mechanisms make use of cross-monotonic cost-sharing functions defined as
follows:

I Definition 2. Let c : 2N → R≥0 be a cost function. A cost-sharing function5 χ : N ×2N →
R≥0 with respect to c specifies for each subset S ⊆ N and every player i ∈ S a non-negative
cost share χ(i, S) such that

∑
i∈S χ(i, S) ≥ c(S).6 χ is cross-monotonic if for all S ⊆ T ⊆ N

and every i ∈ S, we have χ(i, S) ≥ χ(i, T ).

3 An Iterative Ascending Cost Sharing Mechanism

In this section, we present our Iterative Ascending Cost Sharing Mechanism (IACSM) for
the combinatorial cost sharing setting with symmetric submodular valuations and general
cost functions. We first provide a generic description of our mechanism and identify two
properties which are sufficient for our main result to go through. We then show that these
properties are satisfied if the valuations are symmetric submodular.

3.1 Definition of IACSM and Two Crucial Properties
Mechanism IACSM can be viewed as a generalization of the Moulin-Shenker mechanism [15]
to the combinatorial setting in the sense that it simulates in parallel an ascending iterative
auction for each item. To our knowledge this is the first ascending price mechanism for the
combinatorial setting which is not VCG-based and as we will describe below, this adaptation
is not straightforward since there are several obstacles we need to overcome. A description
of our mechanism IACSM is given in Algorithm 1.

4 It is not hard to verify that these functions can equivalently be defined as stated in Definition 1 (see
also [8]).

5 We stress here that we allow cost-sharing functions to overcharge the actual cost c(·). As a result, this
will lead to approximately budget balanced mechanisms.

6 For notational convenience, we define χ(i, S) =∞ for i /∈ S.
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Algorithm 1 Iterative Ascending Cost Sharing Mechanism (IACSM).

Input: Declared valuation functions (bi)i∈N .
Output: Allocation A = (Ai)i∈N and payments p = (pi)i∈N .

1 Initialization: Let X = N be the set of active players and define Tj = N for every item
j ∈M .

2 while X 6= ∅ do
3 Compute an optimal bundle Ai for every player i ∈ X:

Ai ∈ arg max
S⊆M
{bi(S)− pi(S)}, where pi(S) =

∑
j∈S

χj(Tj) (1)

(If there are several optimal bundles, resolve ties as described within Section 3.1.)
4 Let i∗ ∈ X be a player such that |Ai∗ | ≤ |Ai| for every i ∈ X.
5 Assign the items in Ai∗ to player i∗ and remove player i∗ from X.
6 For every item j ∈M \Ai∗ , set Tj = Tj \ {i∗}, and update the cost shares χj(Tj).
7 return A = (Ai)i∈N and p = (pi)i∈N , where pi =

∑
j∈Ai

χj(Tj).

The mechanism maintains a set of active players X and for each item j ∈ M a set of
players Tj who are tentatively assigned to j. Initially, each player is active and tentatively
assigned to all the items, i.e., X = N and Tj = N for all j ∈ M . The mechanism then
proceeds in iterations. In each iteration, each item j is offered to each active player i ∈ X
at a price that only depends on the set of tentatively assigned players Tj . For this, we use
a player-independent cost sharing function χj(·, Tj) for every item j, and since we require
that χj(i, Tj) = χj(k, Tj) for every i, k ∈ Tj , we will simply denote by χj(Tj) the cost share
that each player i ∈ Tj tentatively assigned to j has to pay. Based on these cost shares,
every active player i ∈ X computes an optimal bundle Ai with respect to the payments pi(·),
as defined in Equation (1). If there are ties, we resolve them according to the following
tie-breaking rule: if there are several optimal bundles, then player i chooses one of maximum
size. If there are multiple optimal bundles of maximum size k, then she chooses the bundle
consisting of the k cheapest items (where ties between equal cost share items are resolved
consistently, say by index of the items).

After determining the optimal bundle for each active player, the mechanism then chooses
an active player i∗ whose optimal bundle has minimum size. Again, we break ties consistently,
say by index of the players. The items in Ai∗ are assigned to player i∗ and i∗ becomes
inactive. Finally, for every item j that does not belong to the optimal bundle Ai∗ , i∗ is
removed from the tentative set Tj . The mechanism terminates when all players are inactive.

We next identify two crucial properties that our mechanism has to satisfy for our main
result to go through. To formalize these properties, we introduce first some more notation.

Trace of IACSM. Note that the execution of our mechanism IACSM on an instance of the
problem induces an order τ = (τ1, . . . , τn) on the players. Without loss of generality, we
may assume that the players are renamed such that τ = (1, . . . , n), i.e., player i becomes
inactive in iteration i; however, we emphasize that this order is determined by the run
of our mechanism.

The order τ = (1, . . . , n) together with the final bundle Ai assigned to each player i at the
end of iteration i induces an order of player withdrawals for each item j. More precisely, for
every j ∈M we let τj be the subsequence of τ consisting only of the players who withdrew
from item j (at the end of the iteration when they became inactive). We refer to τj as the
trace of item j. Recall that initially Tj = N and hence all players are tentatively assigned to
j. The length of τj can vary from 0, when nobody withdraws from item j and τj is the null
sequence, all the way to n, when everybody withdraws from j and τj = τ . Given a trace τj
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in the form τj = (i1, i2, . . . , i`) and k ∈ {0, 1, . . . , |τj |}, let Rkj = N \ {i1, i2, . . . , ik}; define
R0
j = N . Note that the set Rkj is precisely the set of players tentatively assigned to j after k

players have withdrawn from j during the execution of the mechanism. We note that the
notion of trace is valid also for any other iterative mechanism where the assignment of one
player becomes finalized at each iteration, e.g., [13].

Trace-monotonic cost sharing functions. We introduce a new property of cost sharing
functions which will turn out to be crucial below. Intuitively, it is a refinement of the
standard cross-monotonicity property which has to hold only for certain subsets of players
encountered by the mechanism, namely for the sets {Rkj }. More precisely, given a trace τj for
an item j ∈M , we say that the cost sharing function χj is cross-monotonic with respect to τj
(or, trace-monotonic for short), if for every k ∈ {0, . . . , |τj | − 1}, we have χj(Rkj ) ≤ χj(Rk+1

j ).
Note that this ensures that the cost share of item j (weakly) increases during the execution
of the mechanism, as we consider the sequence of sets R0

j ⊃ R1
j ⊃ · · · ⊃ R

|τj |
j . A subtle

point here is that the definition of the cost share χj(Rkj ) may not only depend on the set
of players Rkj , but also on the trace τj specifying how the set Rkj has been reached by
the mechanism.7 It will become clear below that this additional flexibility enables us to
implement our mechanism for arbitrary cost functions.

Properties (P1) and (P2). Our first property is rather intuitive: An item j needs to be
offered to all active players at the same price and this price can only increase in subsequent
iterations. In particular, this ensures that if at the end of iteration i, player i withdraws from
an item j ∈M \Ai, then the price of j for the remaining players in Tj \{i} does not decrease.
This is crucial to achieve strategyproofness, and it is captured precisely by trace-monotonic
cost sharing functions.8

(P1) For each item j ∈M the cost sharing function χj is trace monotonic for every trace τj .

The first property alone is not sufficient to ensure that our mechanism IACSM is weakly
group-strategyproof (or even strategyproof). Additionally, we need to enforce the following
refinement property on the final bundles assigned to the players. We prove below that
Property (P2) is satisfied for symmetric submodular valuation functions.
(P2) The final bundles (Ai)i∈N assigned to the players satisfy the following refinement

property: Ai ⊆ Ai+1 for every i ∈ {1, . . . , n− 1}.

Feasibility of (P1) and (P2). We next define the cost sharing function that we use. The
intuition is as follows: Suppose that S = Tj is the set of players who are tentatively allocated
to item j at the beginning of iteration i for some i ∈ [n]. Ideally, we would like to charge the
average cost cj(S)/|S| to each player in S, but we cannot simply do this because the average
cost might decrease with respect to the previous iteration, and this will destroy Property
(P1). Given our new notion of trace-monotonicity, we can resolve this by defining the cost
share of item j as the maximum average cost over all player sets which were tentatively
allocated to j so far.

7 Notationally, we would have to write here χτj

j to indicate the dependency on τj . However, in the analysis
we focus on a fixed trace produced by an execution of the mechanism and omit the explicit reference to
it for notational convenience.

8 Note that we have to require trace-monotonicity with respect to an arbitrary trace of item j here,
because we cannot control the trace τj that will be realized by IACSM.
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More formally, let τj be the trace of item j induced by IACSM when executed on a given
instance. Let S be the set of players tentatively assigned to item j at the beginning of
iteration i, and fix k such that Rkj = S (by the definition of our mechanism, such a k must
exist and k ≤ i− 1). We define

χj(S) = max
`∈{0,...,k}

cj(R`j)
|n− `|

. (2)

Note that by using this definition we may end up overcharging the actual cost cj(S) of
item j in the sense that |S| · χj(S) > cj(S). As we show in Section 3.2, the budget balance
and social cost approximation guarantees depend on the magnitude by which we might
overcharge.

It is now trivial to show that Property (P1) holds.

I Lemma 3. Consider some item j ∈ M and let cj : 2N → R≥0 be an arbitrary cost
function. Let τj be an arbitrary trace of j. The cost sharing function χj defined in (2) is
trace-monotonic.

We turn to Property (P2). In general, it seems difficult to guarantee (P2), but it is not
hard to see that it holds if the valuation functions are symmetric submodular.

I Lemma 4. Suppose the valuation functions are symmetric submodular. Then Ai ⊆ Ai+1
for every i ∈ {1, . . . , n− 1}.

3.2 Main result for IACSM
In order to state our main result of this section, we need to introduce a crucial parameter that
determines the budget balance and social cost approximation guarantees of our mechanism.

I Definition 5. A cost function c : 2N → R≥0 is α-average-decreasing, for some α ≥ 1, if
for every S ⊆ T ⊆ N , α · c(S)

|S| ≥
c(T )
|T | .

Note that for every cost function c there exists some α ≥ 1 such that c is α-average
decreasing. However, here we are particularly interested in α-average decreasing cost functions
for which the parameter α is small, as can be seen by Theorem 6 below. Average decreasing
functions with small values of α arise naturally in the domains of digital goods and public
goods. For digital goods the cost of serving a non-empty set of customers is typically assumed
to be constant because there is a cost for producing the good and then it can be shared with
no additional cost (hence the definition is satisfied with α = 1). The same is applicable for
some public good models. Note also that symmetric XOS cost functions (see Definition 1)
are average-decreasing (i.e., α = 1).

The following is the main result of this section.

I Theorem 6. Suppose the valuation functions are symmetric submodular and the cost
functions are α-average decreasing, for some α ≥ 1. Then the mechanism IACSM runs in
polynomial time, satisfies IR, NPT, WGSP and is α-budget balanced and 2α3Hn-approximate.

Symmetric submodular cost functions are average decreasing (i.e., α = 1) since they are
a subclass of symmetric XOS functions. As a consequence, we obtain the following corollary
from Theorem 6 (with an additional improvement on the social cost approximation).

I Corollary 7. Suppose the valuation functions and the cost functions are symmetric sub-
modular. Then the mechanism IACSM runs in polynomial time, satisfies IR, NPT, WGSP
and is budget balanced and Hn-approximate.
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Note that the approximation factor of Hn for symmetric submodular functions is tight:
The impossibility result of Dobzinski et al. [6] for a single public good implies that achieving
a better approximation ratio is impossible, even in the single-item case (m = 1).

Finally we point out that α-average-decreasing functions are subadditive when α = 1,
while this is not necessarily true for α > 1.

I Lemma 8. Let c(·) be an α-average-decreasing cost function where α = 1. Then c(·)
is subadditive and in addition, not necessarily symmetric, or submodular. In case c(·) is
α-average-decreasing with α > 1, then c(·) is not necessarily subadditive.

3.3 Proof of Social Cost Approximation
Due to lack of space, we will only establish the social cost approximation stated in Theorem
6. In this section, we will show that our mechanism IACSM is 2α3Hn-approximate with
respect to the social cost objective for symmetric submodular valuation functions.

Let A = (Ai)i∈N be the allocation computed by the mechanism, where Ai ⊆ M is the
subset of items that player i receives. As before, without loss of generality we assume that
the player order induced by IACSM is τ = (1, . . . , n). Recall that for every item j ∈ M ,
Tj = {i ∈ N : j ∈ Ai} is the final set of players that receive item j. We also use T ij to refer
to the subset of players who are allocated to item j at the beginning of iteration i. Clearly,
T ij ⊇ Tj for every player i and item j.

We first state some simple lemmas which will be helpful to establish the social cost
approximation guarantee.

I Lemma 9. Fix an item j ∈ M and let i be the first player in τ such that j ∈ Ai. Then
Tj = {i, . . . , n}.

I Lemma 10. Consider player i who becomes inactive in iteration i. We have

vi(Ai)−
∑
j∈Ai

χj(Tj) ≥ vi(S)−
∑
j∈S

χj(Tj) ∀S ⊆M.

Proof. In iteration i, the final bundle Ai is chosen as the set of items maximizing the utility
of player i with respect to the current cost shares, i.e.,

vi(Ai)−
∑
j∈Ai

χj(T ij ) ≥ vi(S)−
∑
j∈S

χj(T ij ) ∀S ⊆M. (3)

Recall that T ij is the set of players that are allocated to item j in iteration i. Note that by
Lemma 9, T ij = Tj for every j ∈ Ai. Further, T ij ⊇ Tj for every j ∈ M \ Ai as additional
players might withdraw from j in subsequent iterations. Note that the final set Tj is reached
from T ij by following the trace τj of item j. The claim now follows from the trace-monotonicity
of χj (Property (P1)). J

I Lemma 11. Consider player i who becomes inactive in iteration i. For every item j ∈M ,

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 .

I Lemma 12. Let c be an α-average decreasing cost function. Let S, T ⊆ N be arbitrary
subsets with |S| ≤ |T |. Then c(S) ≤ 2αc(T ).

We are now ready to prove the approximation guarantee.
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I Lemma 13. Mechanisms IACSM is 2α3Hn-approximate.

Proof. Let A∗ = (A∗1, . . . , A∗n) be an optimal allocation and let T ∗j be the respective set of
players that receive item j in A∗. We have

π(A) =
∑
i∈N

(
vi(M)− vi(Ai)

)
+
∑
j∈M

cj(Tj)

≤
∑
i∈N

vi(M)−
∑
i∈N

(
vi(Ai)−

∑
j∈Ai

χj(Tj)
)

≤
∑
i∈N

vi(M)−
∑
i∈N

(
vi(A∗i )−

∑
j∈A∗

i

χj(T ij )
)

=
∑
i∈N

(
vi(M)− vi(A∗i )

)
+
∑
i∈N

∑
j∈A∗

i

χj(T ij ),

where the first inequality holds because χj is α-budget balanced and the second inequality
follows from Equation (3) in the proof of Lemma 10.

The proof follows if we can show that∑
i∈N

∑
j∈A∗

i

χj(T ij ) ≤ 2α3Hn

∑
j∈M

cj(T ∗j ). (4)

We use a charging argument to prove (4). Fix some item j ∈M and order the players in
T ∗j according to the player order τ = (1, . . . , n) induced by IACSM; let T ∗j = {i1, . . . , ik∗

j
} be

the ordered set with k∗j := |T ∗j |. We now “tag” each player i in T ∗j with a fraction of the cost
cj(T ∗j ) for item j as follows: For the lth player i = il in T ∗j with 1 ≤ l ≤ k∗j , define

tagi(j) :=
cj(T ∗j )

k∗j − l + 1 . (5)

That is, the first player i1 in T ∗j is tagged with cj(T ∗j )/k∗j , the second player i2 with
cj(T ∗j )/(k∗j − 1) and so forth, and the last player ik∗

j
is tagged with cj(T ∗j ).

We first derive two lower bounds on the tagged cost:

B Claim 14. For every player i ∈ N and for every item j ∈ A∗i :

tagi(j) ≥
cj(T ∗j )
n− i+ 1 and tagi(j) ≥

cj(T ∗j )
|T ∗j |

.

Proof. The latter bound holds by definition (5). To see that the former bound holds, observe
that the kth last player (1 ≤ k ≤ k∗j ) in the ordered set T ∗j is tagged by cj(T ∗j )/k. The claim
now follows because there are at most n− i players succeeding i in T ∗j according to the order.

C

Note that the total tagged cost of item j satisfies

∑
i∈T∗

j

tagi(j) =
k∗

j∑
l=1

cj(T ∗j )
k∗j − l + 1 ≤ Hncj(T ∗j ). (6)

Thus, to prove (4) it suffices to show that the total cost share sum is upper bounded by the
total tagged cost, i.e.,∑

i∈N

∑
j∈A∗

i

χj(T ij ) ≤ 2α3
∑
j∈M

∑
i∈T∗

j

tagi(j). (7)
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We show that for every i and every j ∈ A∗i , χj(T ij ) ≤ tagi(j). Summing over all i ∈ N and
j ∈ A∗i then proves (4). We distinguish two cases:

Case 1: |T ∗j | ≥ n− i+ 1: Let S ⊆ T ∗j be a set such that |S| = n− i+ 1. We have

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 ≤ 2α2 cj(S)

|S|
≤ 2α2 cj(T ∗j )

n− i+ 1 ≤ 2α2tagi(j), (8)

where the first inequality follows from Lemma 11, the second inequality follows from Lemma 12,
the third inequality holds because cj is non-decreasing and the last inequality follows from
Claim 14.

Case 2: |T ∗j | < n− i+ 1: Let S ⊃ T ∗j be a set such that |S| = n− i+ 1. We have

χj(T ij ) ≤ α
cj({i, . . . , n})
n− i+ 1 ≤ 2α2 cj(S)

|S|
≤ 2α3 cj(T

∗
j )

|T ∗j |
≤ 2α3tagi(j), (9)

where the first inequality follows from Lemma 11, the second inequality follows from Lemma 12,
the third inequality holds because cj is α-average-decreasing and the last inequality follows
from Claim 14. This concludes the proof. J

4 Mechanisms for General Valuations and Subadditive Cost
Functions

In this section, we move away from symmetric submodular valuation functions and derive
results for more general functions. In particular, we investigate the performance of the
Sequential Mechanism [14] for general valuations and subadditive cost functions. Although for
arbitrary subadditive cost functions this mechanism does not provide favorable approximation
guarantees, we identify conditions on the cost functions under which it achieves significantly
better approximation factors. This is based on considering a different parameterization of
cost functions with regard to their average cost shares.

4.1 The Sequential Mechanism
The Sequential Mechanism (SM) was introduced by Moulin [14] and was also studied
in [7]. A description of the mechanism SM is given in Algorithm 2. We note that this
mechanism is applicable both to separable and non-separable cost functions. Here, we first
focus on separable cost functions, and in Section 4.3, we consider generalizations to the
non-separable setting.

It is trivial to see that SM is budget-balanced and it is also known that it is WGSP [7].
However, for arbitrary monotone subadditive cost functions, the mechanism achieves a (poor)
social cost approximation guarantee of n (see [7]). Despite this, we show that SM has better
guarantees under certain conditions. Namely, we identify a crucial parameter of each cost
function cj with j ∈M that allows us to quantify this improvement. The parameterization
introduced here is different from the one used in Section 3 and it compares the average cost
of a set T ⊆ N with the minimum standalone cost of a player in T .

I Definition 15. A cost function c : 2N → R≥0 is α-average min-bounded, for some α ≥ 1,
if for every set T ⊆ N , we have α · c(T )

|T | ≥ cmin(T ), where cmin(T ) = minj∈T c({j}).

Definition 15 may look contrived at first glance and we thus provide some more intuition on
how we arrived at this parameterization. Given that IACSM performs well for α-average
decreasing functions and small values of α, as we established in Section 3, it is natural to
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Algorithm 2 Sequential Mechanism (SM).

Input: Declared valuation functions (bi)i∈N .
Output: Allocation A = (Ai)i∈N and payments p = (pi)i∈N .

1 Initialization: Fix an order on the set of players N = {1, . . . , n}.
2 for i = 1, . . . , n do
3 Compute an optimal bundle Ai for player i:

Ai ∈ arg max
S⊆M
{bi(S)− pi(S)}, where

pi(S) = C(A1, . . . , Ai−1, S, ∅, . . . , ∅)− C(A1, . . . , Ai−1, ∅, . . . , ∅).

(If there are multiple optimal bundles, choose the lexicographically smallest one.)
4 return A = (Ai)i∈N and p = (pi)i∈N , where pi = pi(Ai).

focus on the complement of this class. For example, fix α = 1 for now. Then the exact
complement is not easy to characterize because it involves two existential quantifiers. We
therefore consider a subset of this complement (with only one existential quantifier) by
demanding that for every T , there exists S ⊆ T such that c(S)/|S| < c(T )/|T |. It is not hard
to verify that this definition is equivalent to the class of 1-average min-bounded functions.
For larger values of α, we can see that α-average-min-bounded functions still capture a
chunk of the complement of α-average-decreasing functions. Thus, a positive result for
α-average-min-bounded functions narrows down on the cost functions that are not yet known
to admit good approximation guarantees.

Note that for every cost function we can find an α ≥ 1 such that it is α-average min-
bounded. As the next theorem reveals, the Sequential Mechanism attains a favorable
performance for small values of α.

I Theorem 16. Suppose we have general valuation functions and for each item j ∈M , the
cost function cj : 2N → R≥0 is non-decreasing, subadditive, and α-average min-bounded
for some α ≥ 1. Then the Sequential Mechanism satisfies IR, NPT, WGSP, and is budget
balanced and α ·Hn-approximate.

For the proof of Theorem 16, we will use the following proposition:

I Proposition 17. If c : 2N → R≥0 is non-decreasing and α-average min-bounded, then∑
i∈T c({i}) ≤ αH|T | · c(T ) for every T ⊆ N .

Proof of Theorem 16. We only need to prove that SM is αHn-approximate. All the other
properties have been established in [7, 14]. Let A = (Ai)i∈N be the allocation output by the
mechanism and let A∗ = (A∗i )i∈N be an optimal allocation. Further, let T ∗j be the respective
set of players that receive item j in A∗. To simplify notation in the analysis, we also let A<i
denote the tuple (A1, . . . , Ai−1, ∅, . . . , ∅). Define now the incremental cost of a player i for
a bundle S ⊆M , with respect to the allocation constructed by the Sequential Mechanism
before i’s turn as ∆i(A<i, S) = C(A1, . . . , Ai−1, S, ∅, . . . , ∅)− C(A1, . . . , Ai−1, ∅, . . . , ∅).

We have

π(A) =
∑
i∈N

[
vi(M)− vi(Ai)

]
+ C(A) =

∑
i∈N

vi(M)−
∑
i∈N

[
vi(Ai)−∆i(A<i, Ai)

]
≤
∑
i∈N

[
vi(M)− vi(A∗i )

]
+
∑
i∈N

∆i(A<i, A∗i ).
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Note that the inequality holds because Ai was chosen as the optimal bundle for i. The next
step is to prove a bound on the incremental costs in the form∑

i∈N
∆i(A<i, A∗i ) ≤ β · C(A∗). (10)

The proof follows if we can show that (10) holds for β = αHn because we then have

π(A) ≤
∑
i∈N

[
vi(M)− vi(A∗i )

]
+ α ·HnC(A∗) ≤ αHn · π(A∗).

By exploiting the subadditivity of the cost functions cj , we obtain

∆i(A<i, A∗i ) = C(A<i, A∗i )− C(A<i) ≤ C(A<i) + C(A∗i , ∅−i)− C(A<i) =
∑
j∈A∗

i

cj({i}).

Summing over over all i ∈ N , and using Proposition 17, we get:∑
i∈N

∆i(A<i, A∗i ) ≤
∑
i∈N

∑
j∈A∗

i

cj({i}) =
∑
j∈M

∑
i∈T∗

j

cj({i}) ≤
∑
j∈M

αH|T∗
j
|cj(T ∗j ) ≤ αHnC(A∗).

This proves (10) and concludes the proof of Theorem 16. J

By going through the proof of Theorem 16 more carefully, we realize the following:

I Remark 18. For any subclass of non-decreasing, subadditive cost functions, it suffices
to establish inequality (10) to prove that the Sequential Mechanism has a social cost
approximation guarantee of β.

Finally we have that for α = 1 the approximation factor is tight.

I Proposition 19. Even for the single item setting, there exists a 1-average min-bounded
cost function, under which the Sequential Mechanism provides an Hn-approximation.

4.2 Improved Approximation Guarantees and Applications

We continue with a natural refinement of Definition 15 which turns out to provide even
better approximation factors of the Sequential Mechanism.

I Definition 20. A cost function c : 2N → R≥0 is α-average max-bounded, for some α ≥ 1,
if for every set T ⊆ N , we have α · c(T )

|T | ≥ cmax(T ), where cmax(T ) = maxj∈T c({j}).

Clearly, any function that is α-average max-bounded is also α-average min-bounded.
Thus, we already have an αHn-approximation for non-decreasing, subadditive and α-average
max-bounded cost functions. Below we show that we can achieve a much better guarantee.

I Theorem 21. Suppose we have general valuation functions and for each item j ∈M , the
cost function cj : 2N → R≥0 is non-decreasing, subadditive, and α-average max-bounded
for some α ≥ 1. Then the Sequential Mechanism satisfies IR, NPT, WGSP, and is budget-
balanced and α-approximate.
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Example applications of combinatorial cost functions. We give some examples of com-
binatorial cost functions below and show that they are α-average max-bounded (possibly
depending on some parameters of the combinatorial problem). In particular, by applying
Theorem 21 we obtain attractive social cost approximation guarantees for these problems.
For simplicity, all examples consider a single item only; but clearly, we can consider more
general multiple item settings (e.g., when for each item j ∈ M , cj captures one of the
problems below).

Set Cover. We are given a universe of elements U and a family F ⊆ 2U of subsets of U .
The players correspond to the elements of U and the cost c(S) for serving a set of players
S ⊆ U is defined as the size of a minimum cardinality set cover for S.
Vertex Cover. This is a special case of Set Cover. We are given an undirected and
unweighted graph G = (V,E) and the players are the edges of the graph. The cost c(S)
for serving a set S ⊆ E of players is defined as the size of a minimum vertex cover in the
subgraph induced by S.
Matching. We are given an undirected and unweighted graph G = (V,E) and the
players correspond to the edges. The cost c(S) for serving a set S of players is defined as
the size of a maximum cardinality matching in the subgraph induced by S.

Using our α-average max-bounded notion, it is now easy to prove that these problems
admit constant social cost approximation guarantees (under certain restrictions).

I Theorem 22. The Sequential Mechanism is α-approximate for the above problems, where
1. α = d for the Set Cover problem, where d is the maximum cardinality of the sets in F ;
2. α = k for the Vertex Cover problem in graphs of maximum degree k;
3. α = k for the Matching problem in bipartite graphs of maximum degree k;
4. α = (5k + 3)/4 for the Matching problem in general graphs of maximum degree k.

We can now compare these bounds with the existing results in the literature. For Vertex
Cover, there is a mechanism that is 2-budget-balanced and O(logn)-approximate [13]. Thus,
for graphs with maximum degree less than logn, we obtain a better guarantee. For Set
Cover, there is a mechanism that is O(logn)-budget-balanced and O(logn)-approximate [13].
Hence, we obtain an improvement if the sets in F have a size that is no more than o(logn).
Finally, we note that our results do not apply to the weighted versions of these problems.

4.3 Guarantees of the Sequential Mechanism for Non-Separable Cost
Functions

We extend our results to non-separable cost functions. Recall that in this setting, the cost
C(A) of an allocation A = (Ai)i∈N is given by some general (not necessarily separable) cost
function C : (2M )n → R≥0. In particular, C may encode dependencies among different items.

We introduce some more notation. Given two allocations S = (Si)i∈N and T = (Ti)i∈N ,
we define S ∪ T as the componentwise union of S and T , i.e., S ∪ T = (S1 ∪ T1, . . . , Sn ∪ Tn).
Similarly, we write S ⊆ T if this relation holds componentwise, i.e., Si ⊆ Ti for every i ∈ N .
Given an allocation A = (Ai)i∈N and a set of players S ⊆ N , we define A|S = (AS , ∅−S) as
the allocation in which each player i ∈ S receives the items in Ai and all other players receive
nothing. If S = {i} is a singleton set, we also write A|i instead of A|{i}. Throughout this
section, we remain in the domain of non-decreasing and subadditive cost functions. In the
non-separable case, a cost function C : (2M )n → R≥0 is non-decreasing if C(S) ≤ C(T ) for
every pair of allocations S, T , with S ⊆ T . Also, it is subadditive if for every two allocations
S = (Si)i∈N and T = (Ti)i∈N , we have C(S ∪ T ) ≤ C(S) + C(T ).
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We now adapt Definitions 15 and 20 to non-separable cost functions.

I Definition 23. Let C : (2M )n → R≥0 be a non-separable cost function.
C is α-average min-bounded, for some α ≥ 1, if for every allocation A and every subset
T ⊆ N with |T | ≥ 2, it holds αC(A|T )

|T | ≥ Cmin(T ), where Cmin(T ) = minj∈T C(A|j).
C is α-average max-bounded, for some α ≥ 1, if for every allocation A and every subset
T ⊆ N with |T | ≥ 2, it holds αC(A|T )

|T | ≥ Cmax(T ), where Cmax(T ) = maxj∈T C(A|j).

As before, if a non-separable function is α-average max-bounded, then it is also α-average
min-bounded.

We remark that it has been shown in [14, 7] that the Sequential Mechanism is weakly group-
strategyproof and budget balanced for the non-separable setting. By adapting Proposition 17
for the non-separable setting and by using the same reasoning as in the proof of Theorem 16,
we obtain the same approximation guarantee of αHn as in the separable setting. Further, the
improvement we obtained in Theorem 21 also goes through in this setting. We summarize
these observations in the following corollary.

I Corollary 24. Suppose we have general valuation functions and a non-decreasing, subaddit-
ive, and α-average min-bounded cost function C : (2M )n → R≥0. Then the Sequential Mech-
anism satisfies IR, NPT, WGSP, and is budget balanced and α·Hn-approximate. Furthermore,
if C is also α-average max-bounded, then the Sequential Mechanism is α-approximate.

5 Discussion

In Section 3, we proposed the mechanism IACSM, which is weakly group-strategyproof
under general cost functions and symmetric submodular valuations. Moreover it is α-budget
balanced and 2α3Hn-approximate when we restrict the cost functions to the α-average-
decreasing class. The social cost approximation guarantee further improves to Hn if the cost
functions are symmetric submodular and this is best possible (due to the known lower bound
for public-excludable goods [6]). It would be very interesting to explore mechanisms that
go beyond symmetric submodular valuation functions. It seems that entirely new ideas are
needed for this setting. It would also be interesting to extend our mechanism to non-separable
cost functions. We note that separability of the costs in Section 3 is needed for IACSM only
to argue that the cost share per item increases as players withdraw (with respect to the
trace). One would need to investigate how to adapt the mechanism and enforce this property
in the non-separable setting. Technically, this seems far from obvious and we leave a proper
treatment of this issue for future work.

In Section 4, we studied the (partially) complementary class of α-average min bounded
cost functions. We showed that the well-known Sequential Mechanism is budget balanced
and αHn-approximate even for general valuation functions. These results also extend to
non-separable cost functions. A very natural question is whether SM is optimal in this
setting and we note that the answer is not yet clear: The impossibility result of [6] holds
for the public-excludable good cost function which is symmetric submodular and thus 1-
average-decreasing. However, it is not hard to see that this does not fall within the α-average
min bounded class for any constant α. This leads to the question of whether there exists
a WGSP mechanism that breaks the Ω(log(n))-approximation in terms of social cost for
α-average-min bounded functions with small values of α.

Finally, what we also find very interesting is to identify the class of cost functions for
which neither of the two mechanisms studied here perform well. Recall that, for any constant
value of α, if a cost function is either α-average decreasing or α-average min-bounded, then
a good performance is guaranteed. Thus, we need look at the complement of the set of
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α-average decreasing functions and the set of α-average min-bounded functions for small
value of α and examine whether these complements have a non-empty intersection. The
following proposition shows that this intersection is indeed non-empty.
I Proposition 25. Given α ≥ 1, the intersection of the complements of α-average-decreasing
and α-average min-bounded functions is non-empty.

The proof of this proposition follows by constructing a cost function that requires non-
constant values of α to be captured by either of our parameterizations. Although the
intersection turns out to be non-empty, the constructed cost function is rather artificial
and more natural examples are elusive so far. In fact, for most of the known cost functions
that have been studied in the literature, at least one of our mechanisms achieves an O(Hn)-
approximation. To make further progress, we believe it is important to understand better
the class of functions defined by the intersection of the two complements, as it would help us
to identify the missing elements for deriving mechanisms for a wider class of cost functions.
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Abstract
Hyperbolic random graphs (HRG) and geometric inhomogeneous random graphs (GIRG) are two
similar generative network models that were designed to resemble complex real world networks.
In particular, they have a power-law degree distribution with controllable exponent β, and high
clustering that can be controlled via the temperature T .

We present the first implementation of an efficient GIRG generator running in expected linear
time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It
is capable of generating graphs with ten million edges in under a second on commodity hardware.
The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG
generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures
are crucial for many applications, most existing generators are restricted to T = 0. We also support
parallelization, although this is not the focus of this paper. Moreover, we note that our generators
draw from the correct probability distribution, i.e., they involve no approximation.

Besides the generators themselves, we also provide an efficient algorithm to determine the
non-trivial dependency between the average degree of the resulting graph and the input parameters
of the GIRG model. This makes it possible to specify the desired expected average degree as input.

Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the
nature of the relation between the two models. Although HRGs represent, in a certain sense, a
special case of the GIRG model, we find that a straight-forward inclusion does not hold in practice.
However, the difference is negligible for most use cases.
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1 Introduction

Network models play an important role in different fields of science [8]. From the perspective
of network science, models can be used to explain observed behavior in the real world.
To mention one example, Watts and Strogatz [26] observed that few random long-range
connections suffice to guarantee a small diameter. This explains why many real-world
networks exhibit the small-world property despite heavily favoring local over long-range
connections. From the perspective of computer science, and specifically algorithmics, realistic
random networks can provide input instances for graph algorithms. This facilitates theoretical
approaches (e.g., average-case analysis), as well as extensive empirical evaluations by providing
an abundance of benchmark instances, solving the pervasive scarcity of real-world instances.

There are some crucial features that make a network model useful. The generated
instances have to resemble real-world networks. The model should be as simple and natural
as possible to facilitate theoretical analysis, and to prevent untypical artifacts. And it should
be possible to efficiently draw networks from the model. This is particularly important for
the empirical analysis of model properties and for generating benchmark instances.

A model that has proven itself useful in recent years is the hyperbolic random graph
(HRG) model [17]. HRGs are generated by drawing vertex positions uniformly at random
from a disk in the hyperbolic plane. Two vertices are joined by an edge if and only if their
distance lies below a certain threshold; see Section 2.2. HRGs resemble real-world networks
with respect to crucial properties. Most notable are the power-law degree distribution [15]
(i.e., the number of vertices of degree k is roughly proportional to k−β with β ∈ (2, 3)),
the high clustering coefficient [15] (i.e., two vertices are more likely to be connected if they
have a common neighbor), and the small diameter [11, 19]. Moreover, HRGs are accessible
for theoretical analysis (see, e.g., [15, 11, 19, 4]). Finally there is a multitude of efficient
generators with different emphases [2, 24, 23, 25, 21, 13, 12]; see Section 1.2 for a discussion.

Closely related to HRGs is the geometric inhomogeneous random graph (GIRG) model [7].
Here every vertex has a position on the d-dimensional torus and a weight following a power
law. Two vertices are then connected if and only if their distance on the torus is smaller than
a threshold based on the product of their weights. When using positions on the circle (d = 1),
GIRGs approximate HRGs in the following sense: the processes of generating a HRG and a
GIRG can be coupled such that it suffices to decrease and increase the average degree of the
GIRG by only a constant factor to obtain a subgraph and a supergraph of the corresponding
HRG, respectively. Compared to HRGs, GIRGs are potentially easier to analyze, generalize
nicely to higher dimensions, and the weights allow to directly adjust the degree distribution.

Above, we described the idealized threshold variants of the models, where two vertices are
connected if an only if their distance is small enough. Arguably more realistic are the binomial
variants, which allow longer edges and shorter non-edges with a small probability. This is
achieved with an additional parameter T , called temperature. For T → 0, the binomial and
threshold variants coincide. Many publications focus on the threshold case, as it is typically
simpler. This is particularly true for generation algorithms: in the threshold variants one
can ignore all vertex pairs with sufficient distance, which can be done using geometric data
structures. In the binomial case, any pair of vertices could be adjacent, and the search space
cannot be reduced as easily. For practical purposes, however, a non-zero temperature is
crucial as real-world networks are generally assumed to have positive temperature. Moreover,
from an algorithmic perspective, the threshold variants typically produce particularly well-
behaved instances, while a higher temperature leads to difficult problem inputs. Thus, to
obtain benchmark instances of varying difficulty, generators for the binomial variants are key.
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1.1 Contribution & Outline
Based on the algorithm by Bringmann, Keusch, and Lengler [7], we provide an efficient
and flexible GIRG generator. It includes the binomial case and allows higher dimensions.
Its expected running time is linear. To the best of our knowledge, this is the first efficient
generator for the GIRG model. Moreover, we adapt the algorithm to the HRG model,
including the binomial variant. Compared to existing HRG generators (most of which only
support the threshold variant), our implementation is the fastest sequential HRG generator.

A refactoring of the original GIRG algorithm [7] allows us to parallelize our generators.
They do not use multiple processors as effectively as the threshold-HRG generator by
Penschuck [21], which was specifically tailored towards parallelism. However, in a setting
realistic for commodity hardware (8 cores, 16 threads), we still achieve comparable run times.

Our generators come as an open-source C++ library1 with documentation, command-line
interface, unit tests, micro benchmarks, and OpenMP [6] parallelization using shared memory.
An integration into NetworKit [22] is available.

Besides the efficient generators, we have three secondary contributions. (I) We provide a
comprehensible description of the sampling algorithm that should make it easy to understand
how the algorithm works, why it works, and how it can be implemented. Although the core
idea of the algorithm is not new [7], the previous description is somewhat technical. (II) The
expected average degree can be controlled via an input parameter. However, the dependence
of the average degree on the actual parameter is non-trivial. In fact, given the average degree,
there is no closed formula to determine the parameter. We provide a linear-time algorithm
to estimate it. (III) We investigate how GIRGs and HRGs actually relate to each other by
measuring how much the average degree of the GIRG has to be decreased and increased to
obtain a subgraph and supergraph of the HRG, respectively.

In the following we first discuss our main contribution in the context of existing HRG
generators. In Section 2, we formally define the GIRG and HRG models. Afterwards we
describe the sampling algorithm in Section 3. In Section 4 we discuss implementation details,
including the parameter estimation for the average degree (Section 4.1) as well as multiple
performance improvements. Section 5 contains our experiments: we investigate the scaling
behavior of our generator in Section 5.1, compare our HRG generator to existing ones in
Section 5.2, and compare GIRGs to HRGs in Section 5.3.

1.2 Comparison with Existing Generators
We are not aware of previous GIRG implementations. Concerning HRGs, most algorithms
only support the threshold case; see Table 1. The only published exceptions are the trivial
quadratic algorithm [2], and an O((n3/2 +m) logn) algorithm [23] based on a quad-tree data
structure [24]. The latter is part of NetworkKit; we call it NkQuad. Moreover, the code for a
hyperbolic embedding algorithm [5] includes an HRG generator implemented by Bringmann
based on the GIRG algorithm [7]; we call it Embedder in the following. Embedder has been
widely ignored as a high performance generator. This is because it was somewhat hidden,
and it is heavily outperformed by other threshold generators. Experiments show that our
generator HyperGIRGs is much faster than NkQuad, which is to be expected considering
the asymptotic running time. Moreover, on a single processor, we outperform Embedder by
an order of magnitude for T = 0 and by a factor of 4 for higher temperatures. As Embedder
does not support parallelization, this speed-up increases for multiple processors.

1 https://github.com/chistopher/girgs
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Table 1 Existing hyperbolic random graph generators. The columns show the names used
throughout the paper; the conference appearance; a reference (journal if available); whether the
generator supports the binomial model; and the asymptotic running time. The time bounds hold in
the worst case (wc), with high probability (whp), in expectation (exp), or empirically (emp).

Name First Published Ref. Binom. Running Time

Pairwise CPC’15 [2] X Θ(n2) (wc)
QuadTree ISAAC’15 [24] O((n3/2 +m) logn) (wc)
NkQuad IWOCA’16 [23] X O((n3/2 +m) logn) (wc)
NkGen, NkOpt HPEC’16 [25] O(n logn+m) (emp)
Embedder ESA’16 [5] X Θ(n+m) (exp)
HyperGen SEA’17 [21] O(n log logn+m) (whp)
RHG IPDPS’18 [13] Θ(n+m) (exp)
sRHG JPDC’19 [12] Θ(n+m) (exp)
HyperGIRGs this paper X Θ(n+m) (exp)

For the threshold variant of HRGs, there are the following generators. The quad-tree data
structure mentioned above was initially used for a threshold generator (QuadTree) [24]. It
was later improved leading to the algorithm currently implemented in NetworKit (NkGen)
[25]. A later re-implementation by Penschuck [21] improves it by about a factor of 2 (NkOpt).
However, the main contribution of [21] was a new generator that features sublinear memory
and near optimal parallelization (HyperGen). Up to date, HyperGen was the fastest
threshold-HRG generator on a single processor. Our generator, HyperGIRGs, improves
by a factor of 1.3 – 2 (depending on the parameters) but scales worse for more processors.
Finally, Funke et al. [13] provide a generator designed for a distributed setting to generate
enormous instances (RHG). Its run time was later further reduced (sRHG) [12].

2 Models

2.1 Geometric Inhomogeneous Random Graphs
GIRGs [7] combine elements from random geometric graphs [14] and Chung-Lu graphs [10, 9].
Let V = {1, . . . , n} be a set of vertices with positive weights w1, . . . , wn following a power
law with exponent β > 2. Let W be their sum. Let Td be the d-dimensional torus for
a fixed dimension d ≥ 1 represented by the d-dimensional cube [0, 1]d where opposite
boundaries are identified. For each vertex v ∈ V , let xv ∈ Td be a point drawn uniformly
and independently at random. For x, y ∈ Td let ||x− y|| denote the L∞-norm on the torus,
i.e. ||x− y|| = max1≤i≤d min{|xi − yi|, 1− |xi − yi|}. Two vertices u 6= v are independently
connected with probability puv. For a positive temperature 0 < T < 1,

puv = min

1, c
(

wuwv/W

||xu − xv||d

)1/T
 (1)

while for T = 0 a threshold variant of the model is obtained with

puv =
{

1 if ||xu − xv|| ≤ c(wuwv/W )1/d,

0 else.

The constant c > 0 controls the expected average degree. We note that the above formulation
slightly deviates from the original definition; see Section 2.3 for more details.
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2.2 Hyperbolic Random Graphs
HRGs [17] are generated by sampling random positions in the hyperbolic plane and connecting
vertices that are close. More formally, let V = {1, . . . , n} be a set of vertices. Let α > 1/2 and
C ∈ R be two constants, where α controls the power-law degree distribution with exponent β =
2α+1 > 2, and C determines the average degree d̄. For each vertex v ∈ V , we sample a random
point pv = (rv, θv) in the hyperbolic plane, using polar coordinates. Its angular coordinate θv
is chosen uniformly from [0, 2π) while its radius 0 ≤ rv < R with R = 2 log(n) + C is drawn
according to the density function f(r) = α sinh(αr)

cosh(αR)−1 . In the threshold case of HRGs two
vertices u 6= v are connected if and only if their distance is below R. The hyperbolic distance
d(pu, pv) is defined via cosh(d(pu, pv)) = cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(θu − θv).

The binomial variant adds a temperature T ∈ [0, 1] to control the clustering, with lower
temperatures leading to higher clustering. Two nodes u, v ∈ V are then connected with
probability pT (d(pu, pv)) where pT (d) = (exp[(d − R)/(2T )] + 1)−1. For T → 0, the two
definitions (threshold and binomial) coincide.

2.3 Comparison of GIRGs and HRGs
Bringmann et al. [7] show that the HRG model can be seen as a special case of the GIRG
model in the following sense. Let dHRG be the average degree of a HRG. Then there exist
GIRGs with average degree dGIRG and DGIRG with dGIRG ≤ dHRG ≤ DGIRG such that they
are sub- and supergraphs of the HRG, respectively. Moreover, dGIRG and DGIRG differ only
by a constant factor. Formally, this is achieved by using the big-O notation instead of a
single constant c for the connection probability. We call this the generic GIRG framework. It
basically captures any specific model whose connection probabilities differ from Equation (1)
by only a constant factor. From a theoretical point of view this is useful as proving something
for the generic GIRG framework also proves it for any manifestation, including HRGs.

To see how HRGs fit into the generic GIRG framework, consider the following mapping [7].
Radii are mapped to weights wv = e(R−rv)/2, and angles are scaled to fit on a 1-dimensional
torus xv = θv/(2π). One can then see that the hyperbolic connection probability pT (d) under
the provided mapping deviates from Equation (1) by only a constant. Thus, c in Equation (1)
can be chosen such that all GIRG probabilities are larger or smaller than the corresponding
HRG probabilities, leading to the two average degrees dGIRG and DGIRG mentioned above.
Bringmann et al. [7] note that the two constants, which they hide in the big-O notation, do
not have to match. They leave it open if they match, converge asymptotically, or how large
the interval between them is in practice. We investigate this empirically in Section 5.3.

3 Sampling Algorithm

As mentioned in the introduction, the core of our sampling algorithm is based on the algorithm
by Bringmann et al. [7]. In the following, we first give a description of the core ideas and
then work out the details that lead to an efficient implementation.

To explain the idea, we make two temporary assumptions and relax them in Section 3.1
and Section 3.2, respectively. For now, assume that all weights are equal and consider only
the threshold variant T = 0. The task is to find all vertex pairs that form an edge, i.e., their
distance is below the threshold c(wuwv/W )1/d. Since all weights are equal, the threshold
in this restricted scenario is the same for all vertex pairs. One approach to quickly identify
adjacent vertices is to partition the ground space into a grid of cells. The size of the cells
should be chosen, such that (I) the cells are as small as possible and (II) the diameter
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Figure 1 (a),(b) The grid used by weight bucket pairs with a connection probability threshold
between 2−3 and 2−4 in two dimensions. (a) Each pair of colored cells represent neighbors. Note
that the ground space is a torus and a cell is also a neighbor to itself. (b) The eight gray cells
represent multiple distant cell pairs, which are replaced by one pair consisting of the red outlined
parent cell pair. (c) Linearization of the cells on level 1 (left) and 2 (right) for d = 2.

of cells is larger than the threshold c(wuwv/W )1/d. The latter implies that only vertices
in neighboring cells can be connected thus narrowing down the search space. The former
ensures that neighboring cells contain as few vertex pairs as possible reducing the number of
comparisons. Figure 1a shows an example of such a grid for a 2-dimensional ground space.

3.1 Inhomogeneous Weights

Assume that we have vertices with two different weights w1, w2, rather than one. As before,
the cells should still be as small as possible while having a diameter larger than the connection
threshold. However, there are three different thresholds now, one for each combination of
weights. To resolve this, we can group the vertices by weight and use three differently sized
grids to find the edges between them.

As GIRGs require not only two but many weights, considering one grid for every weight
pair is infeasible. The solution is to discretize the weights by grouping ranges of weights into
weight buckets. When searching for edges between vertices in two weight buckets, the pair of
largest weights in these buckets provides the threshold for the cell diameter. This choice of
the cell diameter satisfies property (II). Property (I) is violated only slightly, if the weight
range within the bucket is not too large. Thus, each combination of two weight buckets uses
a grid of cells, whose granularity is based on the maximum weight in the respective buckets.

As a tradeoff, we choose dlog2 ne many buckets which yields a sublinear number of grids.
Moreover, the largest and smallest weight in a bucket are at most a factor two apart. Thus,
the diameter of a cell is too large by at most a factor of four.

With this approach, a single vertex has to appear in grids of different granularity. To do
this in an efficient manner, we recursively divide the space into ever smaller grid cells, leading
to a hierarchical subdivision of the space. This hierarchy is naturally described by a tree. For
a 2-dimensional ground space, each node has four children, which is why we call it quadtree.
Note that each level of the quadtree represents a grid of different granularity. Moreover, the
side length of a grid cell on level ` is 2−`. For a pair (i, j) of weight buckets, we then choose
the level that fits best for the corresponding weights, i.e., the deepest level such that the
diameter of each grid cell is above the connection threshold for the largest weights in bucket
i and j, respectively. We call this level the comparison level, denoted by CL(i, j). It suffices
to insert vertices of a bucket into the deepest level among all its comparison levels. This
level is called the insertion level and we denote it by I(i). In Section 3.4, we discuss in detail
how to efficiently access all vertices in a given grid cell belonging to a given weight bucket.
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3.2 Binomial Variant of the Model
For T > 0, neighboring cell pairs are still easy to handle: a constant fraction of vertex pairs
will have an edge and one can sample them by explicitly checking every pair. For distant cell
pairs and a fixed pair of weight buckets, the distance between the cells yields an upper bound
on the connection probability of included vertices; see Equation (1). The probability bound
depends on both, the weight buckets and the cell pair distance, using the maximum weight
within the buckets and the minimum distance between points in the cells. We note that the
individual connection probabilities are only a constant factor smaller than the upper bound.

Knowing this, we can use geometric jumps to skip most vertex pairs [1]. The approach
works as follows. Assume that we want to create an edge with probability p for each vertex
pair. For this process, we define the random variable X to be the number of vertex pairs we
see until we add the next edge. Then X follows a geometric distribution. Thus, instead of
throwing a coin for each vertex pair, we can do a single experiment that samples X from the
geometric distribution and then skip X vertex pairs ahead. Since not all vertex pairs reach
the upper bound p, we accept encountered pairs with probability puv/p to get correct results.

Although distant cell pairs are handled efficiently, their number is still quadratic, most
of which yield no edges. To circumvent this problem, the sampling algorithm, yet again,
uses a quadtree. In the quadratic set of cell pairs to compare for one weight bucket pair,
non-neighboring cells are grouped together along the quadtree hierarchy. They are replaced
by their parents as shown in Figure 1b until their parents become neighbors.

In conclusion, for each pair of weight buckets (i, j) the following two types of cell pairs
have to be processed. Any two neighboring cell pairs on the comparison level CL(i, j); and
any distant cell pair with level larger or equal CL(i, j) that has neighboring parents. The
resulting set of distant and neighboring cell pairs for a fixed bucket pair partitions Td × Td.

3.3 Efficiently Iterating Over Cell Pairs
The previous description sketches the algorithm as originally published. Here, we propose
a refactoring that greatly simplifies the implementation and enables parallelization. We
attribute a significant amount of HyperGIRGs’ speed up over Embedder to this change.

Instead of first iterating over all bucket pairs and then over all corresponding cell pairs,
we reverse this order. This removes the need to repeatedly determine the cell pairs to process
for a given bucket pair. Instead it suffices to find the bucket pairs that process a given cell
pair. This only depends on the level of the two cells and their type (neighboring or distant).
Inverting the mapping from bucket pairs to cell pairs in the previous section yields the
following. A neighboring cell pair on level ` is processed for bucket pairs with a comparison
level of exactly `. A distant cell pair on level ` (with neighboring parents) is processed for
bucket pairs with a comparison level larger than or equal to `. Thus, for each level of the
quadtree we must enumerate all neighboring cell pairs, as well as distant cell pairs with
neighboring parents. Algorithm 1 recursively enumerates exactly these cell pairs.

3.4 Efficient Access to Vertices by Bucket and Cell
A crucial part of the algorithm is to quickly access the set of vertices restricted to a weight
bucket i and a cell A, which we denote by V Ai . To this end, we linearize the cells of each level
as illustrated in Figure 1c. This linearization is called Morton code [18] or z-order curve [20].
It has the nice properties that (I) for each cell in level `, its descendants in level `′ > ` in the
quadtree appear consecutively; and (II) it is easy to convert between a cells position in the
linear order and its d-dimensional coordinates (see Section 4.2).
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Algorithm 1 Sample GIRG by Recursive Iteration of Cell Pairs.

Input: cell pair (A,B); initially called with A,B set to the root of the quadtree
1 forall bucket pairs (i, j) that process the cell pair (A,B) do
2 if A and B are neighbors then
3 emit each edge (u, v) ∈ V Ai × V Bj with probability puv
4 else
5 choose candidates S ⊆ V Ai × V Bj using geometric jumps and p
6 emit each edge (u, v) ∈ S with probability puv/p

7 if A and B are neighbors and not maximum depth reached then
8 forall children X of A do
9 forall children Y of B do

10 recur(X,Y )

We sort the vertices of a fixed weight bucket i by the Morton code of their containing
cell on the insertion level I(i), using arbitrary tie-breaking for vertices in the same cell. This
has the effect that for any cell A with level(A) ≤ I(i), the vertices of V Ai appear consecutive.
Thus, to efficiently enumerate them, it suffices to know for each cell A the index of the first
vertex in V Ai . This can be precomputed using prefix sums leading to the following lemma.

I Lemma 1. After linear preprocessing, for all cells A and weight buckets i with level(A) ≤
I(i), vertices in the set V Ai can be enumerated in O(|V Ai |).

4 Implementation Details

The description in the previous section is an idealized version of the algorithm. For an actual
implementation, there are some gaps to fill in. Omitting many minor tweaks, we want to
sketch optimizations that are crucial to achieve a good practical run time in the following.
More details on the sketched approaches can be found in the long version of this paper [3].

4.1 Estimating the Average Degree Parameter
Here, we sketch how to estimate the parameter c in Eq. (1) to achieve a given expected
average degree. We estimate the constant based on the actual weights, not on their probability
distribution. This leads to lower variance and allows user-defined weights.

We start with an arbitrary constant c, calculate the resulting expected average degree E[d̄]
and adjust c accordingly, using a modified binary search. This is possible, as E[d̄] is monotone
in c. We derive an exact formula for E[d̄], depending on c and the weights. It cannot simply
be solved for c, which is why we use binary search instead of a closed expression.

For the binary search, we need to evaluate E[d̄] for different values of c. This is potentially
problematic, as the formula for E[d̄] sums over all vertex pairs. The issue preventing us from
simplifying this formula is the minimum in the connection probability. Therefore, we first
ignore the minimum and subtract an error term for those vertex pairs, where the minimum
takes effect. The remaining hard part is to calculate this error term. Let ES be the set of
vertex pairs appearing in the error term and let S be the set of vertices with at least one
partner in ES . Although |ES | itself is sufficiently small, S is too large to determine ES by
iterating over all pairs in S × S. We solve this by iterating over the vertices in S, sorted by
weight. Then, for each vertex we encounter, the set of partners in ES is a superset of the
partners of the previous vertex with smaller weight, allowing us to compute E[d̄] in O(S).
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4.2 Efficiently Encoding and Decoding Morton Codes

Recall from Section 3.4 that we linearize the d-dimensional grid of cells using Morton code.
As vertex positions are given as d-dimensional coordinates, we have to convert the coordinates
to Morton codes (i.e., the index in the linearization) and vice versa. This is done by bitwise
interleaving the coordinates. For example, the 2-dimensional Morton code of the four-bit
coordinates a = a3a2a1a0 and b = b3b2b1b0 is a3b3a2b2a1b1a0b0. We evaluated different
encoding and decoding approaches via micro benchmarks. The fastest approach, at least on
Intel processors, was an assembler instruction from BMI2 proposed by Intel in 2013 [16].

4.3 Generating HRGs Avoiding Expensive Mathematical Operations

The algorithm from Section 3 can be used to generate HRGs. The algorithm works concep-
tually the same, except that most formulas change. This has for example the effect that
we no longer get a closed formula to determine the insertion level of a weight bucket or
the comparison level of a bucket pair. Instead, one has to search them, by iterating over
the levels of the quadtree. Furthermore, HRGs introduce many computationally expensive
mathematical operations like the hyperbolic cosine. This can be mitigated as follows.

For the threshold model, an edge exists if the distance d is smaller than R. Considering
how the hyperbolic distance is defined (Section 2.2), reformulating it to cosh(d) < cosh(R)
avoids the expensive arccosh, while cosh(R) remains constant during execution and can thus
be precomputed. Similar to recent threshold HRG generators, we compute intermediate values
per vertex such that cosh(d) can be computed using only multiplication and addition [12, 21].

For the binomial model, evaluating the connection probability is a performance bottleneck.
The straightforward way to sample edges is: compute the connection probability pT (d)
depending on the distance, sample a uniform random value u ∈ [0, 1], and create the edge
if and only if u < pT (d). We can improve this by precomputing the inverse of pT (d)
for equidistant values in [0, 1]. This lets us, for small ranges in [0, 1], quickly access the
corresponding range of distances. Changing the order, we first sample u ∈ [0, 1], which falls
in a range between two precomputed values, which in turn yields a range of distances. If the
actual distance lies below that range, there has to be an edge and if it lies above, there is no
edge. Only if it lies in the range, we actually have to compute the probability pT (d).

4.4 Parallelization

The algorithm has five steps: generate weights, generate positions, estimate the average
degree constant, precompute the geometric data structure, and sample edges. The first
two are trivial to parallelize. For estimating the constants, we parallelize the dominant
computations with linear running time. To sample the edges, we make use of the fact that
we iterate over cell pairs in a recursive manner. This can be parallelized by cutting the
recursion tree at a certain level and distributing the loose ends among multiple processors.

For the preprocessing we have to do three subtasks: compute for each vertex its containing
cells on its insertion level, sort the vertices according to their Morton code index, and compute
the prefix sum for all cells. We parallelize all three tasks and optimize them by handling
all weight buckets together, sorting by weight bucket first and Morton code second. This is
done by encoding this criterion into integers that are sorted with parallel radix sort.
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Figure 2 Sequential run time for the steps of the GIRG sampling algorithm averaged over 10
iterations. Each plot varies a different model parameter deviating from a base configuration d = 1,
n = 215, T = 0, β = 2.5, and d̄ = 10. The base configuration is indicated by a dashed vertical line.

5 Experimental Evaluation

We perform three types of experiments. In Section 5.1 we investigate the scaling behavior
of our GIRG generator, broken down into the different tasks performed by the algorithm.
In Section 5.2 we compare our HRG generator with existing generators. In Section 5.3
we experimentally investigate the difference between HRGs and their GIRG counterpart.
Whenever a data point represents the mean over multiple iterations, our plots include error-
bars that indicate the standard deviation. Besides the implementation itself, all benchmarks
and analysis scripts are also accessible in our source repository.

5.1 Scaling of the GIRG Generator
We investigate the scaling of the generator, broken down into five steps. 1. (Weights) Gen-
erate power-law weights. 2. (Positions) Generate points on Td. 3. (Binary) Estimate the
constant controlling the average degree. 4. (Pre) Preprocess the geometric data structure
(Section 3.4). 5. (Edges) Sample edges between all vertex pairs as described in Algorithm 1.

Figure 2 shows the sequential run time over the number of nodes n (top left), number of
edges m (top right), temperature T (bottom right), and dimension d (bottom right). The
performance is measured in nanoseconds per edge. Each data point represents the mean over
10 iterations. To make the measurements independent of the graph representation, we do
not save the edges into RAM, but accumulate a checksum instead. Note that the top right
plot increases the average degree, resulting in a decreased time per edge.

The empirical run times match the theoretical bounds: it is linear in n and m, grows
exponentially in the dimension d, and is unaffected by the temperature T . The overall time
is dominated by the edge sampling. Generating the weights includes expensive exponential
functions, making it the slowest step after edge sampling. Generating the positions is
significantly faster even for higher dimensions. For the parameter estimation using binary
search, one can see that the run time never exceeds the time to generate the weights. For
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(b) d̄ = 10, β = 3, T = 0, sequential.
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(c) d̄ = 10, β = 2.2, T = 0.5, sequential.
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(16 threads).

Figure 3 Comparison of HRG generators averaged over 5 iterations. (a), (b) Threshold variant
for different average degrees d̄ and power-law exponents β. (c) Binomial variant with temperature
T = 0.5. (d) The same configuration as (b) but utilizing multiple cores.

non-zero temperature T the performance of the binary search is similar to the generation of
the weights, as it also requires exponential functions. The lower run times per edge for the
increasing number of edges (top right) show that the run time is dominated by the number of
nodes n. Only for very high average degrees, the cost per edge outgrows the cost per vertex.

5.2 HRG Run Time Comparison
We evaluate the run time performance of HyperGIRGs compared to the generators in
Table 1, excluding the generators with high asymptotic run time as well as RHG and sRHG.
RHG and sRHG are designed for distributed machines. Executed on a single compute node,
the performance of the faster sRHG is comparable to HyperGen [12]. To avoid systematic
biases between different graph representations, the implementations are modified2 not to
store the resulting graph. Instead, only the number of edges produced is counted and we
ensure that the computation of incident nodes is not optimized away by the compiler.

We used different machines for our sequential and parallel experiments. The former
are done on an Intel Core i7-8700K with 16 GB RAM, the latter on an Intel Xeon CPU
E5-2630 v3 with 8 cores (16 threads) and 64 GB RAM.

Our generator HyperGIRGs is consistently faster than the competitors, independent
of the parameter choices; see Figure 3a and 3b. Only for unrealistic average degrees (1 k),
HyperGen slightly outperforms HyperGIRGs. Moreover, HyperGIRGs beats Embedder,
the only other efficient generator supporting non-zero temperature, by an order of magnitude.

2 The modifications are publicly available and referenced in our GitHub repository.
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Figure 4 Relation between the HRG and the GIRG model. (a) The values for dHRG, dGIRG,
DGIRG averaged over 50 iterations. (b) The number of missing (HRG \ GIRG) and additional
(GIRG \ HRG) edges depending on the expected degree of the corresponding GIRG. It can be
interpreted as a cross-section of one iteration in (a).

For higher temperatures, we compare our algorithm with the two other non-quadratic
generators NkQuad (included in NetworKit) and Embedder; see Figure 3c. We note that
Embedder uses a different estimation for R, which leads to an insignificant left-shift of the
corresponding curve. In Figure 3c, one can clearly see the worse asymptotic running time of
NkQuad. Compared to Embedder, HyperGIRGs is consistently 4 times faster.

Figure 3d shows measurements for parallel experiments using 16 threads. The parameters
coincide with Figure 3b. Embedder does not support parallelization and is outperformed
even more. For sufficiently large graphs, the fastest generator in this multi-core setting is
HyperGen, which is specifically tailored towards parallel execution. Nonetheless, Hyper-
GIRGs shows comparable performance and overtakes the other two generators NkGen and
NkOpt. We note that even on parallel machines, the sequential performance is of high
importance: one often needs a large collection of graphs rather than a single huge instance.
In this case, it is more efficient to run multiple instances of a sequential generator in parallel.

5.3 Difference Between HRGs and GIRGs
Recall from Section 2.3 that a HRG with average degree dHRG has a corresponding GIRG
sub- and supergraphs with average degrees dGIRG and DGIRG, respectively.

We experimentally determine, for given HRGs, the values for dGIRG by decreasing the
average degree of the corresponding GIRGs until it is a subgraph of the HRG. Analogously,
we determine the value for DGIRG. We focus on the threshold variant of the models, as
this makes the coupling between HRGs and GIRGs much simpler (the graph is uniquely
determined by the coordinates). Figure 4a shows dGIRG and DGIRG, compared to dHRG
for growing n. One can see that dGIRG and DGIRG are actually quite far apart. They in
particular do not converge to the same value for growing n. However, at least dGIRG seems
to approach dHRG. This indicates that every HRG corresponds to a GIRG subgraph that
is missing only a sublinear fraction of edges. On the other hand, the average degree of the
GIRG has to be increased by a lot to actually contain all edges also contained in the HRG.

Figure 4b gives a more detailed view for a single HRG. Depending on the average degree
of the GIRG, it shows how many edges the GIRG lacks and how many edges the GIRG has
in addition to the HRG. For degree 100, the GIRG contains about 38 k additional and lacks
about 42 k edges. These are rather small numbers compared to the 50 M edges of the graphs.
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Abstract
Randomized incremental construction (RIC) is one of the most important paradigms for building
geometric data structures. Clarkson and Shor developed a general theory that led to numerous
algorithms that are both simple and efficient in theory and in practice.

Randomized incremental constructions are most of the time space and time optimal in the worst-
case, as exemplified by the construction of convex hulls, Delaunay triangulations and arrangements
of line segments. However, the worst-case scenario occurs rarely in practice and we would like to
understand how RIC behaves when the input is nice in the sense that the associated output is
significantly smaller than in the worst-case. For example, it is known that the Delaunay triangulations
of nicely distributed points on polyhedral surfaces in E3 has linear complexity, as opposed to a
worst-case quadratic complexity. The standard analysis does not provide accurate bounds on the
complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we
will show that, in the case of nicely distributed points on polyhedral surfaces, the complexity of the
usual RIC is O(n logn), which is optimal. In other words, without any modification, RIC nicely
adapts to good cases of practical value.

Our proofs also work for some other notions of nicely distributed point sets, such as (ε, κ)-samples.
Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of
independent interest.
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1 Introduction

The randomized incremental construction (RIC) is an algorithmic paradigm introduced
by Clarkson and Shor [10], which has since found immense applicability in computational
geometry, e.g., [21, 20]. The general idea is to process the input points sequentially in a
random order, and to analyze the expected complexity of the resulting procedure. The theory
developed by Clarkson and Shor is quite general and has led to numerous algorithms that
are simple and efficient, both in theory and in practice. On the theory side, randomized
incremental constructions are most of the time space and time optimal in the worst-case, as
exemplified by the construction of convex hulls, Delaunay triangulations and arrangements
of line segments. Randomized incremental constructions appear also to be very efficient in
practice, which, together with their simplicity, make them the most popular candidates for
implementations. Not surprisingly, the cgal library includes several randomized incremental
algorithms, e.g., for computing Delaunay triangulations [22].

This paper aims at extending the analysis of RIC to the case of nice-case complexity.
More precisely, our goal is to understand how randomized incremental constructions behave
when the input is nice in the sense that the associated construction is significantly smaller
than in the worst-case.

In this paper, we shall consider the case where the underlying space is a polyhedral surface
in E3. This is a commonly-occuring practical scenario in e.g., surface reconstruction [1, 6], and
has been studied by several authors [2, 4, 5, 17]. Further, we need a model of good point sets
to describe the input data and analyze the algorithm. This will be done through the notion
of ε-nets. When we enforce such a hypothesis of “nice” distribution of the points in space, a
result of Attali and Boissonnat [4] ensures that the complexity of the Delaunay triangulation
is linear in the number of points. Unfortunately, to be able to control the complexity of the
usual randomized incremental algorithms [3, 9, 10, 12], it is not enough to control the final
complexity of the Delaunay triangulation. We need to control also the complexity of the
triangulation of random subsets. One might expect that a random subsample of size k of
an ε-net is also an ε′-net for ε′ = ε

√
n
k . Actually this is not quite true, it may happen with

reasonable probability that a ball of radius O (ε′) contains Ω(log k/ log log k) points or that
a ball of radius Ω(ε′

√
log k) does not contain any point. However, it can only be shown that

such a subsample is an
Ä

ε′

log(1/ε)

ä
-covering and an (ε′ log(1/ε))-packing, with high probability.

Thus this approach can transfer the complexity of an ε-net to the one of a random subsample
of an ε-net but with an extra multiplicative factor of Ω(log 1/ε) = Ω(logn). It follows that,
in the case we consider, the standard analysis does not provide accurate bounds on the
complexity of the (standard) randomized incremental construction. Our results are based
on proving that the above bad scenarios occur rarely, and the algorithm achieves optimal
run-time complexity, in expectation.

Related Work

The Delaunay triangulations of nicely-distributed points have been studied since the 50’s,
e.g., by Meijering [18], and later by Møller [19], Dwyer [13, 14], and others. Erickson [15, 16]
proved upper and lower bounds for point samples with bounded spread (the ratio between
the maximum to minimum distance between any two points) in E3. For polyhedral surfaces,
Golin and Na [17] gave an O(n log4 n) bound for Poisson-distributed points. Attali and
Boissonnat [4] showed that for (ε, κ)-samples, the complexity of the Delaunay triangulation is
linear. Under some extra assumptions, this was extended by Amenta, Attali, and Devillers [2]
to higher-dimensional polyhedral surfaces. Attali, Boissonnat, and Lieutier [5] proved an
O(n logn) bound for (ε, κ)-samples on smooth surfaces in E3.
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Except for a few authors such as Dwyer [14] and Erickson [16], most of the above results
discuss only the combinatorial aspects and not the algorithmic ones. For Poisson and
uniformly distributed point samples, we observe that the standard analysis of the RIC
procedure immediately implies an optimal bound on the expected run-time. However, for
deterministic notions of nice distributions such as ε-nets, (ε, κ)-samples, and bounded spread
point sets, the standard RIC analysis is not optimal, since, as we observed, it gives at least
an extra logarithmic factor for (ε, κ)-samples and even worse for bounded spread point-sets,
as stated in an open problem by Erickson [16].

Our Contribution

For ε-nets on polyhedral surfaces in E3, we establish tight bounds on the complexity of
random subsamples of any given size. Using this, we show that the complexity of the usual
RIC is O(n logn), which is optimal. Hence, without any modification, the standard RIC
nicely adapts to polyhedral surfaces in E3.

Our technical developments rely on a general bound for the probability of certain non-
monotone events in sampling without replacement, which may be of independent interest.
We use this together with a geometric construction that, given a point p on a plane P , and
a threshold radius r, allows us to bound the probability of existence of any empty disk in
P with radius at least r, having p on its boundary. Lastly, the boundary effects need to
be explicitly controlled, which requires a careful handling along the lines of the result of
Attali and Boissonnat [4], along with some new ideas which we develop. (For a more detailed
outline of the ideas, see the discussion in Section 3).

We remark that though we focus on polyhedral surfaces in E3 in this paper, our techniques
are more general, and can be extended to e.g., ε-nets on d-dimensional flat torii, etc., which
we do in the full version of this paper.

Outline

The rest of the paper is as follows. In Section 2, we define the basic concepts of Delaunay
triangulation, ε-nets and random samples. We state our theorems and their proofs in
Section 3. In Section 4, we give the proofs of some technical lemmas needed for the proofs
of our theorems. Proofs missing from the main sections can be found in the full version of
this paper [7].

2 Background

2.1 Notations
We shall use ‖.‖ to denote the Euclidean `2 norm. We denote by Σ(p, r), B(p, r) and B[p, r],
the sphere, the open ball, and the closed ball of center p and radius r respectively. For
x ∈ E2, y ≥ 0, D(x, r) denotes the disk with center x and radius r, i.e. the set of points
{y ∈ E2 : ‖y − x‖ < r}, and similarly D[x, r] denotes the corresponding closed disk.

For an event E in some probability space Ω, we use 1[E] to denote the indicator variable
1[E] = 1[E](ω) which is 1 whenever ω ∈ E , and zero otherwise. We use [n] to mean the set
{1, 2, . . . , n}. Given a discrete set A, ] (A) denotes its cardinality and, for k ∈ Z+,

(
A
k

)
denotes

the set of k-sized subsets of A. Given an event A in some probability space, P [A] denotes
the probability of A occuring. For a random variable Z in a probability space, E [Z] denotes
the expected value of Z. Lastly, e = 2.7182 . . . denotes the base of the natural logarithm.
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2.2 ε-nets
A set X of n points in a metric spaceM, is an ε-packing if any pair of points in X are at
least distance ε apart, and an ε-cover if each point inM is at distance at most ε from some
point of X . X is an ε-net if it is an ε-cover and an ε-packing simultaneously.

The definition of an ε-net applies for any metric space. In the case of the Euclidean
metric, we can prove some additional properties, which will be given in Section 3.

2.3 Delaunay Triangulation
For simplicity of exposition and no real loss of generality, all finite point sets considered in
this paper will be assumed to be in general position, i.e. there are no 5 points lying on a
sphere in E3, and no plane has a set of 4 points lying on a circle. Given a set X in some
ambient topological space, the Delaunay complex of X is the (abstract) simplicial complex
with vertex set X which is the nerve of the Voronoi diagram of X , that is, a simplex σ (of
arbitrary dimension) belongs to Del(X ) iff the Voronoi cells of its vertices have a non empty
common intersection. Equivalently, σ can be circumscribed by an empty ball, i.e. a ball
whose bounding sphere contains the vertices of σ and whose interior contains no points of X .

For point sets in E3 in general position, the Delaunay complex embeds in E3 and is a
triangulation of the space.

2.4 Polyhedral Surfaces in E3

A polyhedral surface S in E3 is a collection of a finite number of polygons F ⊂ S, called facets,
which are pairwise disjoint or meet along an edge. In this paper, S will denote an arbitrary
but fixed polyhedral surface, with C facets, and having total length of the boundaries of
its faces L and total area of its faces A. Any non-convex polygonal facet F ∈ S can be
triangulated and replaced in S by the collection of triangular facets obtained. This will only
change the total length L of the boundaries, which, for a given triangulation, still depends
only on the original surface S. Thus without any real loss of generality, we can (and shall)
assume the facets of S are convex.

2.5 Randomized Incremental Construction and Random Subsamples
For the algorithmic complexity aspects, we state a version of a standard theorem for the
RIC procedure, (see e.g., [11]). We first need a necessary condition for the theorem. When
a new point p is added to an existing triangulation, a conflict is defined to be a previously
existing simplex whose circumball contains p.

I Condition 1. At each step of the RIC, the set of simplices in conflict can be removed and
the set of newly introduced conflicts can be computed in time proportional to the number
of conflicts.

We now come to the general theorem on the algorithmic complexity of RIC using the
Clarkson-Shor technique (see e.g., Devillers [11] Theorem 5(1,2)).

I Theorem 2. Let F (s) denote the expected number of simplices that appear in the Delaunay
triangulation of a uniform random sample of size s, from a given point set P . Then, if
Condition 1 holds and F (s) = O(s), we have
(i) The expected space complexity of computing the Delaunay triangulation is O(n).
(ii) The expected time complexity of computing the Delaunay triangulation is O(n logn).



J.-D. Boissonnat, O. Devillers, K. Dutta, and M. Glisse 22:5

A subset Y of set X is a uniform random sample of X of size s if Y is any possible subset
of X of size s with equal probability.

In order to work with uniform random samples, we shall prove a lemma on the uniformly
random sampling distribution or sampling without replacement, which is stated below, and
will be a key probabilistic component of our proofs. The lemma provides a bound on the
probability of a non-monotone compound event, that is, if the event holds true for a fixed
set of k points, there could exist supersets as well as subsets of the chosen set for which the
event does not hold. This may well be of general interest, as most natural contiguity results
with Bernoulli (i.e. independent) sampling, are for monotone events.

I Lemma 3. Given a, b, c ∈ Z+, with 2b ≤ a ≤ c, t ≤ c. Let C be a set, and B and T
two disjoint subsets of C. If A is a random subset of C, chosen uniformly from all subsets
of C having size a, the probability that A contains B and is disjoint from T , is at most(
a
c

)b Ä1− t
c−b

äa−b
≤
(
a
c

)b · exp
(
−at2c

)
, where a, b, c are the cardinalities of A, B, and C

respectively, and the cardinality of T is at least t.

Proof. The total number of ways of choosing the random sample A is
(
c
a

)
. The number

of ways of choosing A such that B ⊂ A and T ∩ A = ∅, is
(
c−b−t
a−b

)
. Therefore the required

probability is

P [B ⊂ A, T ∩A = ∅] =
(
c−b−t
a−b

)(
c
a

)
=

∏b−1
i=0 (a− i)

∏a−1
i=b (a− i)∏b−1

i=0 (c− i)
∏a−1
i=b (c− i)

·
∏a−b−1
i=0 (c− b− t− i)∏a−b−1
i=0 (a− b− i)

=
∏b−1
i=0 (a− i)∏b−1
i=0 (c− i)

∏a−b−1
i=0 (c− b− t− i)∏a−b−1
i=0 (c− b− i)

= (a/c)b
∏b−1
i=0 (1− i/a)∏b−1
i=0 (1− i/c)

Å
1− t

c− b

ãa−b(∏a−b−1
i=0 (1− i

c−b−t )∏a−b−1
i=0 (1− i

c−b )

)

≤ (a/c)b
Å

1− t

c− b

ãa−b
,

where in the last step, observe that for the product
∏b−1

i=0
(1−i/a)∏b−1

i=0
(1−i/c)

for each i, the term (1− i/a)

in the numerator is smaller than the corresponding term (1− i/c) in the denominator, since

a ≤ c. A similar observation holds for the product
Å∏a−b−1

i=0
(1− i

c−b−t )∏a−b−1
i=0

(1− i
c−b )

ã
.

Now, observe that
Ä
1− t

c−b

äa−b
≤ exp

Ä
−
Ä
t(a−b)
c−b

ää
≤ exp

(
−
(
at
2c
))
, if b ≤ a/2 and

b < c. J

3 Results and Main Proofs

We show that the expected complexity of the Delaunay triangulation of a uniformly random
subsample of an ε-net on a polyhedral surface is linear in the size of the subsample:

I Theorem 4. Let ε ∈ (0, 1], X be an ε-net on a polyhedral surface S, having n points and
let Y ⊂ X be a random sub-sample of X having size s. Then, in expectation, the Delaunay
triangulation Del(Y) of Y on S has O(s) simplices.
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Algorithmic Bounds

We next use the above combinatorial bound to get the space and time complexity of the
randomized incremental construction of the Delaunay triangulation of an ε-net on a polyhedral
surface in E3.

I Theorem 5 (Randomized incremental construction). Let ε ∈ (0, 1], and let X be an ε-net
in general position over a fixed polyhedral surface S ⊂ E3, then the randomized incremental
construction of the Delaunay triangulation takes O(n logn) expected time and O(n) expected
space, where n = ] (X ) and the constant in the big O depends on (and only on) S.

I Remark 6. Theorem 4 also works for the case when the random sample is a Bernoulli
sample of parameter q := s

n .
I Remark 7. Our results can be extended to other types of good samples, e.g., the weaker
notion of (ε, κ)-samples for which any ball of radius ε contains at least one point and at
most κ points. If we fix κ = κ0 = 2O(d), we get exactly the same result. The bounds can be
straightforwardly adapted to accomodate other values of κ.

Before presenting the proof of Theorem 4, we briefly discuss the outline of the proof.

Main Ideas

Our overall strategy will be to mesh the proof of Attali and Boissonnat [4] with some new
ideas which are needed for random subsamples of ε-nets. Briefly, Attali and Boissonnat
reduce the problem to counting the Delaunay edges of the point sample, which they do by
distinguishing between boundary points, which lie in a strip of width ε near the boundaries
of the facets of the polyhedral surface, and the other points, called interior points. For
boundary points, they allow all possible edges. For interior points, the case of edges with
endpoints on the same facet is easy to handle, while geometric constructions are required to
handle the case of endpoints on different facets, or that of edges with one endpoint in the
interior and another on the boundary.

However, we shall need to introduce a couple of new ideas. Firstly, an edge can have
multiple balls passing through its endpoints and, as soon as one of these balls is empty,
the edge is in the triangulation. To bound therefore, the probability of a potential edge
appearing in the triangulation, we need to simultaneously bound the probability of any of
these balls being empty. To ensure this, we use a geometric construction (see Lemma 17).
Basically, the idea is to build a constant-sized packing of a sphere centered on a given point,
using large balls, such that any sphere of a sufficiently large radius which passes through the
point, must contain a ball from the packing.

Secondly, since we have randomly spaced points at the boundaries, boundary effects are
no longer necessarily contained in the fixed strip of width ε around the boundary, and could
potentially penetrate deep into the interior. To handle this, we generalize the fixed-width strip
using the notion of levels of a facet. We then use a probabilistic, rather than deterministic,
classification of boundary and interior points. The new classification is based on the level of
a point and the radius of the largest empty disk passing through it.

Recall the definitions of X , Y and S from Theorem 4. We shall use κ to denote the
maximum number of points of a given point set in a disk of radius 2ε. When X is an ε-net,
κ is at most 25, using a packing argument (the maximum number of disjoint discs of radius
ε/2 that can be packed in a disc of radius 2ε+ ε/2, is π(5ε/2)2

π(ε/2)2 ≤ 25. We define q := s
n , and

δ := ε/
√
q. For a curve Γ, l(Γ) denotes its length. For a subset of a surface R ⊂ S, a(R)

denotes the area of R. For sets A,B ⊂ E3, A⊕B denotes the Minkowski sum of A and B,
i.e. the set {x+ y : x ∈ A, y ∈ B}. For convenience, the special case A⊕B(0, r) shall be
denoted by A⊕ r.
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We next present some general lemmas, which will be needed in the proofs of the main
lemmas.

Level Sets, Boundary Points and Interior Points

We now introduce some definitions which will play a central role in the analysis. First we define
the notion of levels. Given facet F ∈ S and k ≥ 0, define the level set L≤k := F ∩ (∂F ⊕ 2kδ).
L=k := L≤k \ L≤k−1. For x ∈ X , the level of x, denoted Lev(x), is k such that x ∈ L=k.
Let L≤k(X ), L=k(X ) denote L≤k ∩ X , L=k ∩ X respectively. Note that for x ∈ L=k, k ≥ 1,
the distance d(x, ∂F ) ∈ (2k−1δ, 2kδ]. Hence, if Lev(x) = k, D(x, 2k−1δ) ⊂ F . For k = 0,
d(x, ∂F ) ∈ [0, δ].

Given x ∈ F having Lev(x) = k, x is a boundary point or x ∈ BdF (Y) if k = 0 or if
there exists an empty disk (w.r.t. Y) of radius greater than 2k−1δ, whose boundary passes
through x. x is an interior point or x ∈ IntF (Y) if and only if x ∈ Y \BdF (Y). In general,
x ∈ BdS(Y) if x ∈ BdF (Y) for some F ∈ S, and x ∈ IntS(Y) is defined similarly.

The above bi-partition induces a classification of potential edges of Del(Y), depending on
whether the end-points are boundary or interior points. Let E1 denote the set of edges whose
end points are two boundary points. Let E2 denote the set of edges having as end-points, two
interior points of the same facet of S. Let E3 denote the set of edges having as end-points,
two interior points of different facets of S. Let E4 denote the set of edges having an interior
point and a boundary point as end-points.

We have the following lemmas, to be proved in section 4.2.

I Lemma 8. E [] (E1)] ≤ O(1) · (κ2L2/A) · s.

I Lemma 9. E [] (E2)] ≤ O(1) · κs.

I Lemma 10. E [] (E3)] ≤ O(1) · (C − 1) · κs.

I Lemma 11. E [] (E4)] ≤ O(1) · κ
2L2

A s.

Given the above lemmas, the proof of Theorem 4 follows easily.

Proof of Theorem 4. As in [4] (Section 4), by Euler’s formula, the number of tetrahedra
t(Del(Y)) in the Delaunay triangulation of S, is at most e(Del(Y))− ] (Y) = e(Del(Y))− s,
where e(Del(Y)) is the number of edges in the Delaunay triangulation. Therefore, it suffices
to count the edges of Del(Y). Next, observe that any point x ∈ Y is either a boundary or an
interior point, that is BdS(Y) t IntS(Y) = Y. An edge in Del(Y), therefore, can be either
between two points in BdS(Y), or two points in IntS(Y), or between a point in BdS(Y) and
another in IntS(Y). The case of a pair of points in IntS(Y) is further split based on whether
the points belong to the same facet of S or different facets. Thus using the above exhaustive
case analysis, the proof follows simply by summing the bounds of Lemmas 8 to 11. J

Next, we show how Theorem 4 implies bounds on the computational complexity of
constructing Delaunay triangulations of ε-nets. Our main tool shall be Theorem 2. However,
we need to show first that Condition 1 holds. The standard proof of this (see e.g., [10], [9],
also the discussion in [8](Section 2.2 D)) is sketched below.

Now we come to the proof of Theorem 5.

Proof of Theorem 5. To verify that Condition 1 indeed holds in the case of polyhedral
surfaces, observe first that the union Cp of the simplices in conflict with a new point p is a
connected set. Therefore, walking on the adjacency graph of the simplices by rotating around
the edge or triangle shared between two adjacent faces on the boundary of Cp, is enough to
yield the set of new conflicts. Now Theorem 2 can be applied to get the claimed result. J
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4 Proofs of Lemmas 8–11

Before proving Lemmas 8–11, we need a few technical lemmas.

4.1 Some Technical Lemmas

The following geometric and probabilistic lemmas prove certain properties of ε-nets on
polyhedral surfaces and random subsets, as well as exploit the notion of boundary and
interior points to get an exponential decay for boundary effects penetrating into the interior.

I Lemma 12. Given a > 0, b ∈ (0, 1), the sum
∑
n∈Z+

2an · exp (−b · 2an) is at most
2 log2(1/b)

eab .

I Proposition 13 ([4]). Let F be a (convex)1 facet of S. For any convex Borel set R ⊂ F ,
we haveÅ

a(R)
4πε2

ã
≤ ] (R ∩ X ) ≤

Å
κ · a(R⊕ ε)

πε2

ã
, and therefore, (1)Å

A

4πε2

ã
≤ ] (S ∩ X ) = n. (2)

I Proposition 14 ([4]). Let F be a facet of S, let Γ ⊂ F be a curve contained in F , and
k ∈ N. Then

] ((Γ⊕ kε) ∩ X ) ≤ κl(Γ)(2k + 2)ε
πε2 ≤

Å
2kκl(Γ)

ε

ã
, when k ≥ 1. (3)

I Lemma 15. Given a circle Σ1 ⊂ E2 of unit radius centered at the origin, seven disks
having centers in Σ1 and radius 1/2, are necessary and sufficient to cover Σ1.

I Lemma 16 (Level Size). ] (L=k ∩ X ) ≤ ] (L≤k ∩ X ) ≤ 9κL
Ä

2kδ
ε2

ä
.

I Lemma 17. Let F be a facet of S with supporting plane P , and x ∈ F with Lev(x) > 0.
Then given any k ∈ [0, Lev(x)), k ∈ N, there exists a collection Dx of at most cB = 7 disks
in F , such that
(i) Each D ∈ Dx is contained in F ,
(ii) Each D ∈ Dx has radius r0/4, where r0 = 2kδ and k ∈ N such that 0 ≤ k < Lev(x),

and
(iii) Any disk D ⊂ P of radius at least r0, such that x ∈ ∂D, contains at least one disk in Dx.

1 Recall our assumption in 2.4.



J.-D. Boissonnat, O. Devillers, K. Dutta, and M. Glisse 22:9

I Lemma 18 (Decay Lemma). Given x1, . . . , xt ∈ X , with xi contained in the facet Fi with
supporting plane Pi, such that Lev(xi) > 0, 1 ≤ i ≤ t, then for all 0 ≤ ki < Lev(xi), with
r∗i := 2kiδ, the probability of the event

E := {∀i ∈ [t] : ∃Di = D(yi, ri) ⊂ Pi : ri ≥ r∗i , xi ∈ Y, xi ∈ ∂Di and int(Di) ∩ Y = ∅},

is given by

P [E] ≤
®
qt, if kmax = 0,
c1 · qt · exp

(
−c2 · 22kmax

)
, if kmax > 0,

where c1 = ctB, c2 ≥ 2−7, and kmax := maxi{ki}. Thus

P [E] ≤ c1 · qt · exp
(
−c2 · 22kmax

)
, kmax ≥ 0.

I Lemma 19 (Growth Lemma). Given any point x ∈ S in a facet F , and 0 ≤ k < Lev(x),
we have
(i) 22k−2/q ≤ ]

(
D(x, 2kδ) ∩ X

)
≤ 4 · (22k/q).

(ii) 22k−2 ≤ E
[
]
(
D(x, 2kδ) ∩ Y

)]
≤ 4 · (22k).

4.2 Proofs of Lemmas 8–11
The proofs of Lemmas 8 and 9 now follow by adapting the analysis of [4] to random subsamples
of ε-nets, using the Decay and Growth lemmas.

Proof of Lemma 8. To bound the expected number of edges in E1, we simply bound the
number of pairs (x1, x2) ∈ BdS(Y) × BdS(Y). Consider a pair of points x1, x2 ∈ X . Let
l1 := Lev(x1) and l2 := Lev(x2), and let l := max{l1, l2}. By definition, if l = 0, then
x1, x2 ∈ BdS(Y). For l ≥ 1, we get that x1 ∈ BdS(Y) and x2 ∈ BdS(Y) only if there
exists a disk of radius at least 2l−1δ passing through x1 or x2, and containing no points of
Y. Therefore to bound the probability that (x1, x2) ∈ (BdS(Y))2, we can apply the Decay
Lemma 18, with t = 2, for i ∈ {1, 2}. We get

P [(x1, x2) ∈ E1] ≤ P
[
(x1, x2) ∈ (BdS(Y))2]

≤ c1q
2 · exp

(
−c2 · 22l−2) ≤ c1q

2 · exp
(
−c′2 · 22l) , (4)

where c′2 = c2/4 = 2−9. Summing over all choices of levels of x1 and x2, we have

E [] (E1)] ≤
∑
l1≥0

] (L=l1 ∩ X )
∑
l2≥0

] (L=l2 ∩ X ) P
[
(x1, x2) ∈ (BdS(Y))2] .

By symmetry, it is enough to assume without loss of generality that l1 ≥ l2, i.e. l = l1. Thus,

E [] (E1)] ≤ 2
∑
l1≥0

] (L=l1 ∩ X )
l1∑
l2=0

] (L=l2 ∩ X ) P
[
(x1, x2) ∈ (BdS(Y))2] .

Applying equation (4) and the Level Size Lemma 16, we get

E [] (E1)] ≤ 2
∑
l1≥0

] (L≤l1 ∩ X )
l1∑
l2=0

] (L≤l2 ∩ X ) · c1q
2 · exp

(
−c′2 · 22l1

)
≤ 2c1q

2
∑
l1≥0

(9κL · (2l1δ/ε2))
l1∑
l2=0

(9κL · (2l2δ/ε2)) · exp
(
−c′2 · 22l1

)
≤ 2c1q

2(9κL
Å
δ

ε2

ã
)2

∑
l1≥0

2l1 · exp
(
−c′2 · 22l1

) l1∑
l2=0

2l2 .
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Using the definitions of q and δ, together with Proposition 13, and writing the terms
outside the summation as N1, we get N1 := 2 · c1q

2 (9κL ( δε2

))2 = 2c1 · (9κL)2 ( s
nε2

)
≤

4c1 ·
(

4π(9κL)2

A

)
· s. We get

E [] (E1)] ≤ N1
∑
l1≥0

2l1 · exp
(
−c′2 · 22l1

)
· 2 · 2l1 ≤ 2N1

∑
l1≥0

22l1 · exp
(
−c′2 · 22l1

)
.

The summation can be bounded using Lemma 12, to get

E [] (E1)] ≤ 2N1 ·
Å

2 · log 1/c′2
2ec′2

ã
= 2N1 ·

log 1/c′2
e · c′2

.

Now substituting c′2 = 2−9 gives E [] (E1)] ≤ 2 · 104 · c1 ·
(

4π(9κL)2

A

)
· s. J

The proof of Lemma 9 follows simply from the fact that for any given face, the Delaunay
graph formed by the points in Y is planar, and therefore the number of edges is at most 3
times the number of points. The total number of such edges, summed over all faces of S, is at
most 3s. The proof of Lemma 10 is based on combining a construction of Attali-Boissonnat
with Lemma 9, and is omitted here. For the proofs of Lemmas 10 and 11, we need some
more geometric ideas of [4]. Before proving Lemma 11, we briefly describe a construction,
which will be central to our analysis.

I Construction 20 (Attali-Boissonnat [4]). Let P be a plane and Z be a finite set of points.
To each point x ∈ Z, assign the region V (x) = Vx(Z) ⊂ P of points y ∈ P such that the sphere
tangent to P at y and passing through x encloses no point of Z. Let V := {V (x) : x ∈ Z}.

We summarize some conclusions of Attali-Boissonnat regarding the construction. The
proofs of these propositions can be found in [4].

I Proposition 21.
(i) V is a partition of P .
(ii) For each x ∈ Z, V (x) is an intersection of regions that are either disks or complements

of disks.
(iii) The total length of the boundary curves in V is equal to the total length of the convex

boundaries.

For the rest of this subsection, we shall apply Construction 20 on the plane P , and the
points in BdS(Y) as Z. Let T := IntF (Y) for some facet F ∈ S. Given x ∈ Z, y ∈ P \ V (x),
let ky = ky(x) denote the least k ≥ 0 such that y ∈ ∂V (x)⊕ 2kδ.

I Proposition 22 (Attali-Boissonnat [4]). Suppose there exists a ball B ⊂ E3 and y ∈ P , such
that y, x ∈ ∂B, and B ∩ T = ∅. Then the disk Dy = P ∩ B satisfies Dy ∩ T = ∅, y ∈ ∂Dy

and Dy ∩ Vx 6= ∅.

I Lemma 23. If {x, y} ∈ E4 with x ∈ BdS(Y), y ∈ Int(F ), then ky ≤ Lev(y).

Proof. Suppose {x, y} ∈ E4. Then there exists a ball B ∈ E3 with x, y ∈ ∂B, and int(B) ∩
Y = ∅. Therefore Dy := B ∩ P also satisfies int(Dy) ∩ Y = ∅. By Proposition 22 we have
that Dy ∩ V (x) 6= ∅. Therefore, y ∈ V (x) ⊕ 2ry, where ry is the radius of Dy. But since
y ∈ Int(F ), we have that any disk having y on its boundary and containing no point of Y in
its interior can have radius at most 2Lev(y)−1δ. Therefore ry ≤ 2Lev(y)−1δ. Now taking ky
such that 2kyδ = 2ry, we get that ky ≤ Lev(y). J
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Now we partition the pairs of vertices {x, y} ∈ E4 with x ∈ BdS(Y), depending on
whether y ∈ VF (x) or y ∈ ∂VF (x) ⊕ 2kyδ. That is, given a facet F ∈ S, let E4(Int(F ))
denote the set of edges {x, y} ∈ E4 with y ∈ int(VF (x)), and E4(Bd(F )) denote the set of
edges in E4 with y ∈ ∂(VF (x)) ⊕ 2kδ, for k ∈ [0, ky]. Define E4(Int) :=

⋃
F∈S E4(Int(F ))

and E4(Bd) :=
⋃
F∈S E4(Bd(F )) respectively.

Lemma 11. The proof follows from Lemmas 24 and 25, which bound the expected number
of edges in E4(Int) and E4(Bd) respectively. J

I Lemma 24. Given a facet F ∈ S, E [E4(Int(F ))] ≤ q · ] (X ∩ F ). As a consequence,
E [E4(Int)] ≤ s.

Proof. Let x ∈ X and y ∈ X ∩ F . Let Ex,y denote the event {x, y} ∈ E4(Int(F )). Then
Ex,y can occur only if (i) x ∈ BdS(Y) and, (ii) y ∈ IntS(Y ) ∩ VF (x). Fix a choice of Y, say
Y ∈

(X
s

)
. Conditioning on this choice of Y, BdS(Y) is a fixed set of points. The number of

pairs contributing to E4(Int(F )) is at most ] ({(x, y) ∈ Y × Y | x ∈ BdS(Y ), y ∈ VF (x)}).
The main observation is now that since V restricted to F is a sub-division of F , for each
y ∈ X ∩ F , there is a unique x = xy ∈ BdS(Y ) such that y ∈ VF (x). Therefore we get

E4(Int(F )) ≤
∑

VF (x)∈V: x∈BdS(Y )

] (VF (x) ∩ Y ) ≤ ] (Y ∩ F ) .

Since the last bound holds for any choice of Y , taking expectation over all choices we get

E [E4(Int(F ))] ≤ E [] (Y ∩ F )] = q · ] (X ∩ F ) .

Now summing over all faces gives [E4(Int)] ≤ E [] (Y)] = s. J

I Lemma 25. Given a facet F ∈ S, E [E4(Bd(F ))] ≤
(
O(1) · κ

2L·l(∂F )s
A

)
. As a consequence,

E [E4(Bd(S))] ≤
Ä
O(1) · κ

2L2s
A

ä
.

Proof. To compute the expected value of E4(Bd(S)), fix a face F ∈ S. Consider a pair of
points x, y ∈ X , such that y ∈ F . Let Ex,y denote the event {x, y} ∈ E4(Bd(F )).

The value of E4(Bd) is the number of x, y ∈ X , such that Ex,y occurs. Taking expectations,

E [E4(Bd(F ))] ≤
∑
x∈X

∑
y∈X∩F

P [Ex,y] . (5)

Observe that Ex,y occurs only if (i) x ∈ BdS(Y) and (ii) ky(x) ≤ Lev(y), by applying
Construction 20, on the plane P , Z = BdS(Y), and T = Y ∩ P , and using Proposition 22.
By Lemma 23, ky(x) ∈ [0, Lev(y)].

Let Pl1,l2 denote the probability that {x, y} ∈ E4(Bd(F )), with Lev(x) = l1, and
ky(x) = l2. Equation (5) can be rewritten in terms of l1 and l2 as

E [E4(Bd(F ))] ≤
∑
l1≥0

] (L=l1 ∩ X )
∑
l2≥0

∑
VF∈V

]
(
(∂VF ⊕ 2l2δ) ∩ X

)
· Pl1,l2 .

Applying the Decay Lemma 18 with t = 2, x1 = x, x2 = y, k1 = max{0, l1 − 1} (since
x ∈ BdS(Y)), and k2 = max{0, l2 − 1}, we get

Pl1,l2 ≤ c1q
2 · exp (−f(l∗)) ,
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where l∗ := max{0, l1 − 1, l2 − 1}, and f(l∗) = 0 if l∗ = 0, and c′2 · 22l∗ otherwise, with
c′2 = c2/4. As in the proof of Lemma 8, we shall use symmetry to combine the cases l1 ≥ l2
and l2 > l1 together.

E [E4(Bd(F ))] ≤ 2
∑
l1≥0

] (L=l1 ∩ X ) ·

∑
l2≤l1

∑
V (x)∈V

]
(
(∂V (x)⊕ 2l2δ) ∩ X

)
· c1q

2 · exp
(
−c′222l1

)
.

By the Level Size Lemma 16, we get that ] (L=l1 ∩ X ) ≤ 2κL2l1δ
ε2 . Using Proposition 14, we

get that ]
(
{∂V (x)⊕ 2l2δ} ∩ Y

)
≤ 2κ·l(∂V (x))2l2δ

ε2 . By Proposition 21 (iii), each boundary in
the partition V is convex for some x ∈ BdS(Y), and so we need to sum l(∂V (x)) only over
the convex curves in ∂V (x), x ∈ BdS(Y), whose length we observe is at most l(∂F ). Thus,

E [E4(Bd(F ))] ≤ 2L · l(∂F ) ·
Å2κδq

ε2

ã2 ∑
l1≥0

2l1
∑
l2≤l1

2l2c1 · exp
(
−c′2 · 22l1

)
.

Using Lemma 12, the above summation is bounded by a constant. This comes to c1 ·
O(1)

(
(2κ))2L·l(∂F )δ2q2

ε4

)
= O

(
κ2L·l(∂F )s

A

)
, where the last step followed from the lower bound

on n in Proposition 13 (2), and the identities q = s/n = δ2/ε2. Summing y over all facets F
in S, we get E [E4(Bd(S))] =

Ä
O(1) · κ

2L2s
A

ä
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Abstract
The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an
edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions
to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian
cycle C into a new Hamiltonian cycle C′ by replacing k edges. We analyze the problem of determining
whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown
that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether
or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in
time f(k)no(k/ log k) for any function f , while (ii) it is possible to improve on the brute-force running
time of O(nk) and save linear factors in the exponent. Modern TSP heuristics are very successful
at identifying the most promising edges to be used in k-opt moves, and experiments show that
very good global solutions can already be reached using only the top-O(1) most promising edges
incident to each vertex. This leads to the following question: can improving k-opt moves be found
efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new
algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also
holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving
k-move can be found in time O(n(23/135+εk)k), where limk→∞ εk = 0. This improves upon the
best-known bounds for general graphs. Due to its practical importance, we devote special attention
to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear
time. For k ≤ 7, we give quasi-linear time algorithms for general weights. For k = 8 we obtain a
quasi-linear time algorithm when the weights are bounded by O(polylogn). On the other hand, based
on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in
edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence
we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic
weights on bounded-degree graphs.
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1 Introduction

1.1 Motivation
The Traveling Salesman Problem (TSP) hardly needs an introduction; it is one of the
most important problems in combinatorial optimization, which asks to find a Hamiltonian
cycle of minimum weight in an edge-weighted complete graph. Local search is widely used
in practical TSP solvers [10, 11]. The most commonly used neighborhood is a k-move (or
k-opt move). A k-move on a Hamiltonian cycle C is a pair (E−, E+) of edge sets such that
E− ⊆ E(C), |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. Marx [13]
showed that finding an improving k-move (i.e., a k-move that results in a lighter Hamiltonian
cycle) is W[1]-hard parameterized by k, and this result was refined by Guo et al. [6] to
obtain an f(k)nΩ(k/ log k) lower bound under the Exponential Time Hypothesis (ETH). For
small values of k, the current fastest running time is O(nk) for k = 2, 3 (by exhaustive
search), O(n3) for k = 4 [4], and O(n3.4) for k = 5 [3]. Moreover, de Berg et al. [4] and
Cygan et al. [3] showed that improving the running time to O(n3−ε) for k = 3 or k = 4 implies
a breakthrough result of an O(n3−δ)-time algorithm for All-Pairs Shortest Paths.

From the hardness shown by the theoretical studies, it seems that local search can be
applied only to small graphs. Nevertheless, state-of-the-art local search TSP solvers can deal
with large graphs with tens of thousands of vertices. This is mainly due to the following
two heuristics.
1. They sparsify the input graph by picking the top-d important incident edges for each

vertex according to an appropriate importance measure. For example, Lin-Kernighan [12]
picks the top-5 nearest neighbors, and its extension LKH [8] picks the top-5 α-nearest
neighbors, where the α-distance of an edge is the increase of the Held-Karp lower
bound [7] by including the edge. The empirical evaluation by Helsgaun [8] showed that
the sparsification by the α-nearest neighbors can preserve almost optimal solutions.

2. They mainly focus on sequential k-moves. In general, E− ∪E+ is a set of edge-disjoint
closed walks, each of which alternately uses edges in E− and E+. If it consists of a single
closed walk, the move is called sequential. Graphs of maximum degree d with n vertices
have at most n(2(d−2))k−1 sequential k-moves (n choices for the starting point, 2 choices
for the next edge in E−, and at most d − 2 choices for the next edge in E+), which
is linear in n when considering d and k as constants. On the other hand, linear-time
computation of non-sequential k-moves appears non-trivial. Lin-Kernighan does not
search for non-sequential moves at all, and after it finds a local optimum, it applies special
non-sequential 4-moves called double bridges to get out of the local optimum. LKH-2 [9]
improves Lin-Kernighan by heuristically searching for non-sequential moves during the
local search.
This state of affairs raises the following questions: what is the complexity of finding

improving k-moves in bounded-degree graphs? How does the complexity scale with k, and
can it be done efficiently for small values of k? Since improving sequential moves can be
found in linear time for fixed k and d, to answer these questions we have to investigate
non-sequential k-moves in bounded-degree graphs.
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1.2 Our contributions
We classify the complexity of finding improving k-moves in bounded-degree graphs in various
regimes. We present improved algorithms that exploit the degree restrictions using the
structure of k-moves, treewidth bounds, color-coding, and suitable data structures. We also
give new lower bounds based on the Exponential Time Hypothesis (ETH) and hypotheses
from fine-grained complexity concerning the complexity of detecting triangles. To state
our results in more detail, we first introduce the two problem variants we consider; a weak
variant to which our lower bounds already apply, and a harder variant which can be solved
by our algorithms.

k-opt Detection Parameter: k.
Input: An undirected graph G, a weight function w : E(G) → Z, an integer k, and a
Hamiltonian cycle C ⊆ E(G).
Question: Can C be changed into a Hamiltonian cycle of strictly smaller weight by a
k-move?
The related optimization problem k-opt Optimization is to compute, given a Hamilto-

nian cycle in the graph, a k-move that gives the largest cost improvement, or report that no
improving k-move exists. With this terminology, we describe our results.

We show that k-opt Detection is unlikely to be fixed-parameter tractable on bounded-
degree graphs: we give a new constant-degree lower-bound construction to show that there
is no function f for which k-opt Detection on subcubic graphs with weights {1, 2} can
be solved in time f(k) · no(k/ log k), unless ETH fails. Hence the running time lower bound
for general graphs by Guo et al. [6] continues to hold in this very restricted setting. While
the degree restriction does not make the problem fixed-parameter tractable, it is possible
to obtain faster algorithms. By adapting the approach of Cygan et al. [3], exploiting the
fact that the number of sequential moves is linear in n in bounded-degree graphs, and
proving a new upper bound on the pathwidth of an k-edge even graph, we show that k-
opt Optimization in n-vertex graphs of maximum degree O(1) can be solved in time
O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0. This improves on the behavior
for general graphs, where the current-best running time [3] is O(n(1/4+εk)k).

Since quasi-linear running times are most useful for dealing with large inputs, we perform
a fine-grained analysis of the range of k for which improving k-moves can be found in
time O(npolylogn) on n-vertex graphs. Observe that in the bounded-degree setting, the
number of edges m is O(n). We prove lower bounds using the hypothesis that detecting
a triangle in an unweighted graph cannot be done in nearly-linear time in the number of
edges m, which was formulated in several ways by Abboud and Vassilevska Williams [1,
Conjectures 2–3]. By an efficient reduction from Triangle Detection, we show that an
algorithm with running time O(npolylogn) for 9-opt Detection in subcubic graphs with
weights {1, 2} implies that a triangle in anm-edge graph can be found in time O(mpolylogm),
contradicting popular conjectures. We complement these lower bounds by quasi-linear
algorithms for all k ≤ 8 to obtain a complete dichotomy for the case of integer weights
bounded by O(polylogn). When the weights are not bounded, we obtain quasi-linear time
algorithms for all k ≤ 7, leaving open only the case k = 8.

1.3 Organization
Preliminaries are presented in Section 2. In Section 3 we give faster XP algorithms for
varying k. By refining these ideas, we give quasi-linear-time algorithms for k ≤ 8 in Section 4.
Section 5 gives the reduction from Triangle Detection to establish a superlinear lower
bound on subcubic graphs for k = 9. In Section 6 we describe the lower bound for varying k.
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2 Preliminaries

Given a graph G edge-weighted by w : E(G) → Z, and a subset F ⊆ E(G) of its edges,
w(F ) :=

∑
e∈F w(e). A k-move on a Hamiltonian cycle C is pair (E−, E+) of edge sets such

that |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. A k-move is called
improving if w((C \ E−) ∪ E+) < w(C), or equivalently and more simply w(E+) < w(E−).
A necessary condition for a pair (E−, E+) to be a k-move is that the multiset of endpoints
of E− is equal to the multiset of endpoints of E+. An exchange (E−, E+) that satisfies this
condition is called a k-swap. We say that a k-swap results in the graph (C \E−) ∪E+. Note
that a k-swap always results in a spanning disjoint union of cycles. A k-swap resulting in a
graph with a single connected component is therefore a k-move. An infeasible k-swap is a
k-swap which is not a k-move.

We say that a k-swap (E−, E+) induces the graph E− ∪ E+. As a slight abuse of
notation, a k-swap will sometimes directly refer to this graph. A k-swap (E−, E+) such
that all edges E− ∪E+ are visited by a single closed walk alternating between E− and E+

is called sequential. In particular, in a simple graph, every 2-swap is sequential. One can
notice that an infeasible (sequential) 2-swap results in a disjoint union of exactly two cycles.
A k-move can always be decomposed into sequential ki-swaps (with

∑
ki = k) but some

k-moves cannot be decomposed into sequential ki-moves. The quantity w(E−)− w(E+) is
called the gain of the swap (E−, E+). We distinguish neutral swaps, with gain 0, improving
swaps, with strictly positive gain, and worsening swaps, with strictly negative gain.

For an integer n, we denote [n] = {1, . . . , n}. A k-embedding (or shortly: embedding) is
an increasing function f : [k]→ [n]. A connection k-pattern (or shortly: connection pattern)
is a perfect matching in the complete graph on the vertex set [2k]. A pair (f,M) where f is
a k-embedding and M is a connection k-pattern, is an alternative description of a k-swap.
Indeed, let e1, . . . , en be subsequent edges of C. Then, E− = {ef(i) : i ∈ [k]}. Vertices of the
connection pattern correspond to endpoints of E−, i.e., vertices 2i− 1, 2i ∈ [2k] correspond
to the left and right (in the clockwise order) endpoint of ef(i), respectively. Thus, edges of
the connection pattern correspond to a set E+ of |M | edges in G. We say that a k-swap
(E−, E+) fits into M if there is an embedding f such that (f,M) describes (E−, E+). Note
that every pair of an embedding and a connection pattern (f,M) describes exactly one
swap (E−, E+). Conversely, for a swap (E−, E+) the corresponding embedding f is also
unique (and determined by E−). However, in case E− contains incident edges, the swap
fits into more than one matching M (see Fig. 1). See [3] for a more formal description
of the equivalence.

The notion of a connection pattern can be extended to represent k′-swaps, for k′ < k, as
follows. Note that a matching N in the complete graph on the vertex set [2k] corresponds to
an |N |-swap if and only if there is a set ι(N) ⊆ [k] such that V (N) = {2i− 1, 2i : i ∈ ι(N)}.
For a set X ⊆ [k], by M [X] we denote the swap N such that ι(N) = X. We say that a
connection pattern M decomposes into swaps N1, . . . , Nt when M =

⊎t
i=1Ni and each Ni is

a connection pattern of a swap. The notion of fitting extends to k′-swaps in the natural way.
Consider a connection pattern N of a swap, for V (N) ⊆ [2k]. We call N sequential if

N ∪ {{2i− 1, 2i} : i ∈ ι(N)} forms a simple cycle. In particular, every connection pattern
can be decomposed into sequential connection patterns of (possibly shorter) swaps. The
correspondence between sequential swaps and sequential connection patterns is somewhat
delicate, so let us explain it in detail.

Let N be a sequential connection pattern, V (N) ⊆ [2k]. Recall that for every embedding
f there is exactly one |N |-swap (E−, E+) that fits into N . Clearly, this swap is sequential,
since every edge in {{2i− 1, 2i} : i ∈ ι(N)} corresponds to an edge of E− and every edge in
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Figure 1 A sequential swap (left) which fits two connection patterns (center, right). The pattern
in the center is not sequential, while the pattern on the right is sequential. On the left the solid
red edges are in E−, the dashed green edges are in E+, and the thin black edges are the remaining
edges of the Hamiltonian cycle C. In the central and right pictures, the dashed green edges form
some connection patterns.

N corresponds to an edge in E+. Thus the resulting set of edges E− ∪ E+ forms a single
closed walk. In particular, if the image of f contains two neighboring indices i, i+ 1 ∈ [n],
the closed walk is not a simple cycle.

Conversely, it is possible that a sequential swap fits into a connection pattern which is
not sequential, see Fig. 1 for an example. However, every sequential `-swap (E−, E+) fits at
least one sequential connection pattern. This sequential connection pattern is determined by
the closed walk which certifies the sequentiality of the swap. Indeed, let E− = {ei1 , . . . , ei`},
where i1, . . . , i` is an increasing sequence. Let v0, . . . , v2`−1 be the closed walk alternating
between E− and E+, in particular assume that E− = {vivi+1 : i is even}. Consider any
i = 0, . . . , ` − 1 and the corresponding edge eij = v2iv2i+1 in E−, for some j ∈ [`]. If v2i
is the left endpoint of eij , we put w2i = 2j − 1 and w2i+1 = 2j, otherwise w2i = 2j and
w2i+1 = 2j − 1. Then w0, . . . , w2`−1 is a simple cycle and N = {wiwi+1 : i is odd} is a
sequential connection pattern. By construction, (E−, E+) fits N , as required. Keeping in
mind the nuances in the notions of sequential swaps and corresponding sequential connection
patterns, for simplicity, we will often just say “a sequential swap M” for a matching M ,
instead of the more formal “a sequential connection pattern M of a swap”.

Fix a connection pattern M and let f : S → [n] be a partial embedding, for some S ⊆ [k].
For every j ∈ S, let v2j−1 and v2j be the left and right endpoint of ef(j), respectively.
We define

E−f = {ef(i) | i ∈ S},

E+
f = {{vi′ , vj′} | i, j ∈ S, i′ ∈ {2i− 1, 2i}, j′ ∈ {2j − 1, 2j}, {i′, j′} ∈M}.

Then, gainM (f) = w(E−f )− w(E+
f ).

3 Fast XP algorithms

For all fixed integers k and d, the number of sequential k-swaps in a graph of maximum
degree d is O(n), and we can enumerate all of them in the same running time. Therefore, we
can find the best improving k-move that can be decomposed into at most c sequential k-swaps
in O(nc) time. Because c is at most bk2 c, we obtain an O(nb k

2 c)-time algorithm for k-opt
Optimization. In what follows, we will improve this naive algorithm. Below we present a
relatively simple algorithm which exploits the range tree data structure [15] and achieves
running time roughly the same as the more sophisticated algorithm of Cygan et al. [3] for
general graphs.
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I Theorem 1. For all fixed integers k, c, and d, there is an O(nd c
2 e polylogn)-time algorithm

to compute the best improving k-move that can be decomposed into c sequential swaps in
graphs of maximum degree d.

Proof. When c = 1, we can use the naive algorithm. Suppose c ≥ 2 and let h := d c2e.
For each possible connection pattern M consisting of c sequential swaps, we find the

best embedding as follows. Let M =
⋃c
i=1Ni, where each Ni corresponds to a sequential

swap. We split M into two parts ML =
⋃h
i=1Ni and MR =

⋃c
i=h+1Ni and we define

L =
⋃h
i=1 ι(Ni) and R =

⋃c
i=h+1 ι(Ni). Note that L ] R = [k]. Let fL : L → [n] and

fR : R→ [n] be embeddings of L and R, respectively. The union of these two embeddings
results in an embedding of [k] if and only if the following conditions hold.

For each i ∈ [k − 1] with i ∈ L and i+ 1 ∈ R, fL(i) < fR(i+ 1) holds.
For each i ∈ [k − 1] with i ∈ R and i+ 1 ∈ L, fR(i) < fL(i+ 1) holds.

We can efficiently compute a pair of embeddings satisfying these conditions using an orthog-
onal range maximum data structure as follows. Let {l1, . . . , lp} = {i : li ∈ L and li + 1 ∈ R}
and let {r1, . . . , rq} = {i : ri − 1 ∈ R and ri ∈ L}. We first enumerate all the |L|-swaps that
fit into ML and all the |R|-swaps that fit into MR, in O(nh) time. For each such |L|-swap
(fL,ML), we create a (p+ q)-dimensional point (fL(l1), . . . , fL(lp), fL(r1), . . . , fL(rq)) with
a priority gainML

(fL), and we collect these points into a data structure. It stores O(nh)
points. For each |R|-swap (fR,MR), we query for the embedding fL of maximum priority
satisfying fL(li) < fR(li + 1) for every i ∈ [p] and fR(ri − 1) < fL(ri) for every i ∈ [q], and
we answer the pair maximizing the total gain, i.e., the sum gainML

(fL) + gainMR
(fR). Using

the range tree data structure [15], each query takes O(logp+q nh) = O(polylogn) time, so
the total running time is O(nh polylogn). J

Since c ≤ bk2 c we get the following corollary.

I Corollary 2. For all fixed integers k and d, k-opt Optimization in graphs of maximum
degree d can be solved in time O(nd k−1

4 e polylogn).

Let us take another look at the proof of Theorem 1. Recall that for merging embeddings
fL and fR, we were interested only in values fL(i) for i ∈ L such that i+ 1 ∈ R or i− 1 ∈ R.
The embeddings of the remaining elements of L were forgotten at that stage, but we knew
that it is possible to embed them and we stored the gain of embedding them. This suggests
the following, different approach. We decompose the connection pattern into sequential
swaps and we scan the swaps in a carefully chosen order. Assume we scanned t swaps already
and there are c− t swaps ahead. Assume that only p� t of the t “boundary” swaps interact
with the remaining c− t swaps, where two swaps N1 and N2 interact when there is i ∈ ι(N1)
such that i− 1 ∈ ι(N2) or i+ 1 ∈ ι(N2). Then it suffices to compute, for every embedding
fL of the p swaps, the gain of the best (i.e., giving the highest gain) embedding gL of the t
swaps, such that fL matches gL on the boundary swaps. This amounts to O(np) values to
compute, since each sequential swap can be embedded in O(n) ways, if k and the maximum
degree are O(1). The idea is to (1) compute these values quickly (in time linear in their
number) using analogous values computed for the prefix of t − 1 swaps, (2) find an order
of swaps so that p is always small, namely p ≤ (23/135 + εk)k. The readers familiar with
the notion of pathwidth recognize that p here is just the pathwidth of the graph obtained
from the path 1, 2, . . . , k by identifying vertices in the set ι(N) for every sequential swap N
in M , and that (2) is just dynamic programming over the path decomposition. The resulting
algorithm is summarized in Theorem 3, and due to space limits, its formal proof is deferred
to the full version.
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I Theorem 3. For all fixed integers k and d, k-opt Optimization in graphs of maximum
degree d can be solved in time O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0.

4 Fast algorithms for small k

Note that the algorithm for k-opt Optimization from Corollary 2 is quasi-linear for k ≤ 5.
In this section we extend the quasi-linear-time solvability to k ≤ 7 for k-opt Detection.
Under an additional assumption of bounded weights, we are able to reach quasi-linear time
for k = 8 as well, but the details of this part are deferred to the full version because of space
constraints. To be precise, in the k = 7 case we prove the following stronger statement than
just finding an arbitrary improving k-move.

I Theorem 4. For k ≤ 7, there is a quasi-linear-time algorithm to compute the best improving
k-move in bounded-degree graphs under the assumption that there are no improving k′-moves
for k′ < k.

We say that a connection pattern M of k-swaps is reducible if it can be decomposed into
two moves. Note that if M is improving, then at least one of the two moves is improving,
contradicting the assumption of Theorem 4.

I Observation 5. If there are no improving k′-moves for k′ < k, then no improving k-swap
fits into a reducible connection pattern.

Before we formulate our algorithm, we need two lemmas. We can prove these lemmas
by case analysis, and because of the space constraints, their proofs are deferred to the full
version. Let M [X] and M [Y ] be two swaps in a connection pattern M , for some disjoint
X,Y ⊆ [k]. Interaction between M [X] and M [Y ] is any i ∈ [k − 1] such that i ∈ X and
i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X.

I Lemma 6. For any k ≥ 6, there is no feasible and irreducible connection k-pattern that
contains two 2-swaps that interact at least twice.

Let M be a connection pattern, i.e., a perfect matching on vertices [2k]. We say that M ′
is obtained from M by swapping i and i+ 1, for i ∈ [k], when M ′ is obtained from M by
swapping the mates of 2i− 1 and 2i+ 1 and swapping the mates of 2i and 2i+ 2.

I Lemma 7. LetM be a feasible irreducible connection k-pattern. Assume thatM decomposes
into three sequential swaps M [X], M [Y ], and M [Z], such that |X| = |Y | = 2. If there is
exactly one index i ∈ [k− 1] with i ∈ X and i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X, the connection
pattern M ′ obtained from M by swapping i and i+ 1 is either feasible or reducible.

Now we are ready to describe the algorithm from Theorem 4 (see also Pseudocode 1).
For each feasible and irreducible connection k-pattern M , we compute the best embedding
as follows. If M consists of at most two sequential swaps, we can use the algorithm in
Theorem 1. Otherwise, M consists of three sequential swaps M [X], M [Y ], M [Z] such that
X ] Y ] Z = [k], |X| = |Y | = 2 and |Z| = k − 4. For each embedding fX : X → [n] of
X = {i, j} we create a 2-dimensional point (fX(i), fX(j)) with priority gainX(fX) and we
put all the points in a range tree data structure DX [15]. We build an analogous data
structure for Y . Next, for each embedding fZ for Z, we compute the best pair of embeddings
(fX , fY ) for X and Y as follows.

If there are no interactions between X and Y , we can find the best pair in O(polylogn)
time by independently picking the best embeddings for X and Y by querying the range trees
DX andDY . Indeed, first note that there is no index i ∈ [k−1] such thatX = {i, i+1} because
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Algorithm 1 Quasi-linear-time algorithm for k ≤ 7.

1: for each feasible irreducible connection k-pattern M do
2: if M consists of at most two sequential swaps then
3: Apply the algorithm in Theorem 1.
4: else
5: Let M = M [X] ]M [Y ] ]M [Z] where |X| = |Y | = 2 and |Z| = k − 4.
6: if there are no interactions between X and Y then
7: for each embedding fZ for Z do
8: Independently compute the best embeddings fX for X and fY for Y .
9: else
10: Relax the constraint fX(i) < fY (i+ 1) to fX(i) 6= fY (i+ 1).
11: for each embedding fZ for Z do
12: Compute the best pair (fX , fY ) satisfying the relaxed constraints.

in such a case, both the 2-swap and the remaining (k− 2)-swap have to be feasible (similarly
for Y ). Since there are no interactions between X and Y , we must have i− 1 ∈ Z ∪ {0} and
i+1 ∈ Z∪{k+1} for every i ∈ X∪Y . To find the best embedding fX of X = {i, j}, we query
DX with the constraints fZ(i− 1) < fX(i) < fZ(i+ 1) and fZ(j − 1) < fX(j) < fZ(j + 1),
where we define fZ(0) := 0 and fZ(k + 1) := n+ 1. We proceed analogously for Y .

Finally, assume there are interactions between X and Y , so from Lemma 6, there is exactly
one interaction. W.l.o.g. i ∈ X and i+1 ∈ Y . Note that i−1 ∈ Z∪{0} and i+2 ∈ Z∪{k+1}.
We first relax the constraint fZ(i − 1) < fX(i) < fY (i + 1) < fZ(i + 2), where we define
fZ(0) := 0 and fZ(k + 1) := n + 1, to three constraints fZ(i − 1) < fX(i) < fZ(i + 2),
fZ(i − 1) < fY (i + 1) < fZ(i + 2), and fX(i) 6= fY (i + 1). We then drop the disturbing
inequality constraint fX(i) 6= fY (i+ 1) by color-coding1. We color each vertex in [n] in red
or blue, and we independently pick the best embedding for X (resp. Y ) that uses only red
(resp. blue) vertices. By using a family of perfect hash functions [5], we can construct a set
of O(log2 n) colorings such that, for every pair of embeddings fX and fY , there is at least
one coloring that colors all the vertices in fX red and all the vertices in fY blue.

We now obtain the best pair of embeddings (fX , fY ) satisfying the relaxed constraints.
If the obtained k-swap is not improving, we immediately know that there are no improving
k-moves that fit into M . If it is improving and satisfies the original constraint, we are
done. Finally, if it is improving but does not satisfy the original constraint, it fits into the
connection pattern M ′ that is obtained from M by swapping i and i+ 1. By Lemma 7, M ′
is either feasible or reducible. Because no improving k-swaps fit into reducible connection
patterns, M ′ has to be feasible. We therefore obtain a k-move that is as good as the best
k-move that fits into M . This completes the proof of Theorem 4.

We finally consider the case of k = 8. Note that, because Lemma 6 and 7 do not
assume k ≤ 7, the above algorithm can also compute the best improving k-move that can be
decomposed into three sequential swaps of size (2, 2, k − 4) for any fixed k under the same
assumption. Moreover, any connection patterns of 8-moves consisting of four 2-swaps are
reducible because it always induces a pair of two 2-swaps that interact at least twice. The

1 Instead of color-coding, we can adapt the range tree to support orthogonal range maximum queries
with an additional constraint of the form x 6= i by keeping one additional point in each node. With this
approach, we can avoid the additional log2 n factor. Because this paper does not focus on optimizing
the polylogn factor, we do not touch on the details.
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Figure 2 An instance of Triangle Detection.

remaining case for k = 8 is only when the 8-move can be decomposed into three sequential
swaps of size (2, 3, 3). In order to tackle this case, we exploit the bounded-weight assumption
as follows. For each connection pattern M = M [X] ]M [Y ] ]M [Z] with |X| = 2 and
|Y | = |Z| = 3, and for each embedding fZ for Z, we want to compute the best pair of
embeddings fX for X and fY for Y . When all the weights are integers from [W ], the gain
of (fX ,M [X]) is an integer from [−2W, 2W ], and the gain (fY ,M [Y ]) is an integer from
[−3W, 3W ]. We therefore have only O(W 2) pairs of gains. By guessing the pair of gains, the
query of finding the best pair can be reduced to the query of finding an arbitrary pair, and
the latter query can be efficiently answered by adapting the range tree. This leads to the
following algorithm, whose detailed description is deferred to the full version.

I Theorem 8. When all the weights are integers from [W ], there is an O(W 2n polylogn)-
time algorithm to compute the best improving 8-move under the assumption that there are no
improving k′-moves for k′ < 8.

5 Lower bound for k = 9

The starting point for our reduction is the following problem (see Fig. 2 for an exemplary
instance).

Triangle Detection Parameter: m := |E(H)|.
Input: An undirected graph H whose vertex set V (H) is partitioned into A ∪B ∪ C.
Question: Is there a triple (a, b, c) ∈ A×B × C such that {ab, ac, bc} ⊆ E(H)?

We assume without loss of generality that A, B, and C are three independent sets, so that
finding such a triple is equivalent to finding a triangle in the graph H. By simple reductions
that incur only a constant blow-up in the number of vertices and edges, this problem is
equivalent to determining whether a graph has a triangle or not.

I Assumption 1 (Triangle hypothesis [1]). There is a fixed δ > 0 such that, in the Word RAM
model with words of O(logn) bits, any algorithm requires m1+δ−o(1) time in expectation to
detect whether an m-edge graph contains a triangle.

It should be noted that one can solve Triangle Detection in time O(nω) where n is
the number of vertices and ω ≤ 2.373 is the best-known exponent for matrix multiplication.
Alon et al. [2] found an elegant win-win argument to solve Triangle Detection in time
O(m

2ω
ω+1 ): the 3-vertex paths in which the middle vertex has degree less than m

ω−1
ω+1 can be

listed in time O(m ·m
ω−1
ω+1 ) = O(m

2ω
ω+1 ), and for each, one can check if they form a triangle,

whereas the number of vertices of degree greater than m
ω−1
ω+1 is at most m

2
ω+1 , so one can

detect a triangle in time O(m
2ω

ω+1 ) in the subgraph that they induce. After more than two
decades, this is still the best worst-case running time (when nω = Ω(m

2ω
ω+1 )). This suggests
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that the triangle hypothesis is likely to hold. Moreover, if one thinks that the above scheme
yields the best possible running time and that ω will eventually reach 2, then exponent 4/3
could be the right answer for Triangle Detection parameterized by the number of edges.
The following is implied by [1, Conjecture 2] (since ω ≥ 2), in the regime m = Θ(n3/2) (so
that O(n2) and O(m4/3) coincide).

I Assumption 2. In the Word RAM model with words of O(logn) bits, any algorithm requires
m4/3−o(1) time in expectation to detect whether an m-edge Θ(m2/3)-node graph contains
a triangle.

We show that Subcubic 9-opt Detection parameterized by the number of vertices is as
hard as Triangle Detection parameterized by the number of edges, by providing a linear-
time reduction from the latter to the former. In light of Theorem 4, this implies that Bounded-
Degree 8-opt Detection is the only remaining open case where a quasi-linear algorithm
is not known but also not ruled out by a standard fine-grained complexity assumption.

I Lemma 9. There is an O(m)-time reduction from Triangle Detection onm-edge graphs
to Subcubic 9-opt Detection on O(m)-vertex undirected graphs with edge weights in {1, 2}.

Proof. From a tripartitioned instance of Triangle Detection H = (A ∪ B ∪ C,E(H))
with m edges, we build a subcubic graph G with Θ(m) vertices, an edge-weight function
w : E(G)→ {1, 2}, and a Hamiltonian cycle C. From C, there is a swap of up to 9 edges (i.e.,
up to 9 deletions and the same number of additions) which results in a lighter Hamiltonian
cycle if and only if H has a triangle.

Overall construction of G. We will build G by adding chords to the cycle C. Henceforth,
a chord is an edge of G which is not in C. It is helpful to think of C as a (subdivided)
triangle whose three sides correspond to A, B, and C, which we call the A-side (left), B-side
(right), and C-side (bottom), respectively. We will only name the edges of G (and not the
vertices), since the problem is more efficiently described in terms of edges. We will define
some sequential 3-swaps (we recall that a sequential i-swap is a closed walk of length 2i
alternating edges of E(C) and edges of E(G)\E(C)). Eventually, all the edges that are not in
a described sequential 3-swap are incident to a vertex of degree 2, making them undeletable.
(One can also enforce that by subdividing every irrelevant edge once.)

The improving 9-move, should there be a triangle abc in H, will consist of a sequence of
three 3-swaps. More precisely, it consists of one improving 3-swap, which splits C into three
cycles respectively containing:
(1) a part of the vertex gadget of some a ∈ A,
(2) the part of the B-side below the vertex gadget of b, as well as the C-side, and
(3) the part of the B-side above the vertex gadget of some b ∈ NH(a) ∩B.
This decreases the total weight by 1. Then a neutral 3-swap reconnects (1) and (2) together,
but also detaches (4) a part of the vertex gadget of some c ∈ NH(a) ∩ C. Finally a neutral
3-swap glues (3), (1)+(2), and (4) together, provided bc ∈ E(H). This results in a new
Hamiltonian cycle of length w(C)− 1.

There will be relatively few edges of weight 2. To simplify the presentation, every edge is
of weight 1, unless specified otherwise. Let ~H be the directed graph obtained from H by
orienting its edges from A to B, from B to C, and from C to A. Note that finding a directed
triangle in ~H is equivalent to finding a triangle in H.
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Vertex scopes, extended scopes, and nested chords. For (X,Y ) ∈ {(A,B), (B,C), (C,A)},
we set Z := {A,B,C} \ {X,Y } and we do the following as a preparatory step to encode the
arcs of ~H. Each vertex v ∈ X is given a (pairwise vertex-disjoint) subpath Iv of C, called the
extended scope of v, with |Iv| := 6(|NH(v) ∩ Y |) + 3(|NH(v) ∩ Z|)− 1 vertices. We think of
Iv as being displayed from left to right with the leftmost vertex of index 1, and the rightmost
one of index |Iv|. The extended scopes of the vertices of A, B, and C occupy respectively
the A-side, B-side, and C-side. In what follows, it will be more convenient to have a circular
notion of left and right. Starting from the bottom corner of the A-side, and going clockwise
to the top corner of the A-side, then down to the bottom corner of the B-side, the relative
left and right within the A-side and the B-side coincide with the usual notion as displayed
in Figure 3a. But then closing the loop from the right corner of the C-side to its left corner,
left and right are switched: the closer to the bottom corner of A (resp. B), the more “right”
(resp. “left”).

Each vertex v ∈ X has |NH(v) ∩ Y | nested chords spaced out every three vertices. More
precisely, the second vertex of Iv is adjacent to the penultimate, the fifth to the one of index
|Iv| − 4, the eighth to the one of index |Iv| − 7, and so on, until |NH(v) ∩ Y | chords are
drawn. Each of these chords is associated to an edge vy ∈ E({v}, Y ), and is denoted by vy.
A vertex just to the right of the left endpoint, or just to the left of the right endpoint, of
such a chord will remain of degree 2 in G. This is the case of the vertices of index 3, 6, . . .
and |Iv| − 2, |Iv| − 5, . . . in Iv. We call l−(v, y) (resp. r−(v, y)) the edge of Iv incident to
both the left endpoint of vy and the vertex just to its left (resp. right endpoint of vy and
the vertex just to its right). Both endpoints of l−(v, y) and of r−(v, y) will eventually have
degree 3 in G.

The chord linking the most distant vertices in Iv is called the outermost chord, while
the one linking the closest pair is called the innermost chord. We also say that a chord e is
wider than a chord e′ if e links a farther pair on Iv than e′ does. The central path Jv ⊂ Iv
on |Iv| − (6|NH(v) ∩ Y | − 4) = 3(|NH(v) ∩ Z| + 1) vertices, surrounded by the innermost
chord, is called the scope of v. We map in one-to-one correspondence the edges of E({v}, Z)
to every three edges of Jv starting from the third edge (that is, the third, sixth, and so on).
Note that we have the exact space to do so, since |Jv| = 3(|NH(v) ∩ Z|+ 1). We denote by
zv the edge in Jv corresponding to the edge vz ∈ E({v}, Z).

Encoding the arcs of ~H. The last step to encode the arcs of ~H, or equivalently the edges
of H, is the following. Keeping the notations of the previous paragraphs, for every edge
xy ∈ E(X,Y ), we add two chords (of weight 1): one chord l+(x, y) between the left endpoint
of l−(x, y) and the right endpoint of xy and one chord r+(x, y) between the right endpoint of
r−(x, y) and the left endpoint of xy. We finish the construction of G (and C) by subdividing
each edge between consecutive extended scopes once, to make the resulting edges undeletable.
The edges l−(a, b) for (a, b) ∈ A × B get weight 2, while all the other edges of E(G) get
weight 1. This finishes the construction of (G,w, C). See Figure 3a for an illustration.

Improving and neutral 3-swaps. For each (x, y) ∈ E( ~H), denote by S(x, y) the 3-swap
({xy, l−(x, y), r−(x, y)}, {xy, l+(x, y), r+(x, y)}). For (X,Y ) ∈ {(A,B), (B,C), (C,A)}, we
define the set of 3-swaps S(X,Y ) :=

⋃
xy∈E(X,Y )

S(x, y), and S := S(A,B)∪S(B,C)∪S(C,A).

Note that all the 3-swaps of S(A,B) are improving. They gain 1 since l−(a, b) has weight
2 for any (a, b) ∈ A × B. On the other hand, all the 3-swaps of S(B,C) and S(C,A) are
neutral. The edges added in swaps of S partition the chords of G, and the open neighborhood
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(a) The construction for the instance of Figure 2.
Edges of C are in black, chords are in red, bold
edges are the ones with weight 2. The three
chords in blue are the edges to add to perform
the neutral 3-swap S(5, 1) of S(C,A).
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(b) The 9-move corresponding to the triangle
135 results in a Hamiltonian cycle using one less
edge of weight 2. Note that after the swaps
S(1, 3) and S(5, 1) are performed, the only 3-
swap that can reconnect the three cycles into
one, is S(3, 5), implying the existence of the
edge 35, and thereby of the triangle 135.

Figure 3 Illustration of the reduction (left) and of a potential solution (right).

of the six vertices involved in every swap are six vertices of degree 2 in G. Therefore, all the
possible swaps are in the set S, they are on vertex-disjoint sets of vertices, and any move is
a sequence of 3-swaps of S.

The vertices of C are incident to at most one chord. Hence the graph G is subcubic. It
has

∑
v∈V (H) 1 + |Iv| 6 9|E(H)|+ |V (H)| = Θ(m) vertices and (G,w, C) takes Θ(m)-time

to build. To summarize, we defined a linear reduction from Triangle Detection with
parameter m to Subcubic 9-opt Detection with parameter n. So a quasi-linear algorithm
for the latter would yield an unlikely quasi-linear algorithm for the former. We now check
that the reduction is correct.

A triangle in H implies an improving 9-move for (G, w, C). Let abc be a triangle in
H. In particular, all three swaps S(a, b), S(b, c), and S(c, a) exist. Performing these three
3-swaps results in a spanning union of (vertex-disjoint) cycles, whose total weight is w(C)− 1.
Indeed S(a, b) is swap of weight −1, while S(b, c), and S(c, a) are both neutral.

We thus only need to show that the three swaps result in a connected graph (hence,
Hamiltonian cycle of lighter weight). By performing the 3-swap S(a, b), we create three
components: (1) one on a vertex set Ka,b such that Ja ⊆ Ka,b ⊆ Ia, (2) one containing
the scopes of vertices of the B-side to the right (lower part) of the scope of b, and (3) one
containing the scopes of vertices of the B-side to the left (upper part) of the scope of b. Then
the swap S(c, a) glues (1) and (2) together, but also disconnects (4) a cycle on a vertex set
Kc,a such that Jc ⊆ Kc,a ⊆ Ic. At this point, there are three cycles: (3), (1)+(2), and (4).
It turns out that the 3-swap S(b, c) deletes exactly one edge in each of these three cycles:
bc in (4), l−(b, c) in (3), and r−(b, c) in (1)+(2). Therefore, S(b, c) reconnects these three
components into one Hamiltonian cycle.

An improving k-move for (G, w, C) with k 6 9 implies a triangle in H. We assume that
there is an improving k-moveM = (E−, E+) for (G,w, C) with k 6 9. Being improving, the
k-move has to contain at least one improving 3-swap of S(A,B). Let S(a, b) be a 3-swap of
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S(A,B) inM such that for every other (improving) 3-swap S(a, b′) inM, the chord ab′ is
wider than ab. Since S(a, b) exists, it holds in particular that ab ∈ E(H). Performing S(a, b)
results in the union of three cycles: (1) on a vertex set Ka,b with Ja ⊆ Ka,b ⊆ Ia, and cycles
(2) and (3) as described in the previous paragraph.

By the choice of b, the only remaining swaps of M touching Ka,b are in S(C,A). So
M has to contain a neutral 3-swap S(c, a) for some c ∈ C. This implies that ac ∈ E(H).
Performing this swap results in three cycles: (3), (1)+(2), and (4), as described above. To
reconnect all three components into one Hamiltonian cycle, the 3-swap has to delete exactly
one edge in (3), (1)+(2), and (4). The only 3-swap that does so is S(b, c). This finally implies
that bc ∈ E(H). Thus abc is a triangle in H. J

We obtain the following theorem as a direct consequence of the previous lemma.

I Theorem 10. Subcubic 9-opt Detection requires time:
(1) n1+δ−o(1) for a fixed δ > 0, under the triangle hypothesis, and
(2) n4/3−o(1), under the strong triangle hypothesis,
in expectation, even in undirected graphs with edge weights in {1, 2}.

If we use general integral weights and not just {1, 2}, we can show a stronger lower
bound, by reducing from Negative Edge-Weighted Triangle. Again, we can assume
that the instance is partitioned into three sets A, B, C, and we look for a triangle abc
such that w′(ab) + w′(bc) + w′(ac) < 0, where w′ gives an integral weight to each edge.
A truly subcubic (in the number of vertices) algorithm for this problem would imply one
for All-Pairs Shortest Paths, which would be considered a major breakthrough. The
assumption that such an algorithm is not possible is called the APSP hypothesis.

We only change the above construction in the weight of the edges l−(x, y). Now each edge
l−(x, y) gets weight −w′(xy). From a Negative Edge-Weighted Triangle-instance with
n vertices, we obtain an equivalent instance of Subcubic 9-opt Detection with O(n2)
vertices, in time O(n2). So we derive the following.

I Theorem 11. Subcubic 9-opt Detection requires time n3/2−o(1), under the APSP
hypothesis.

6 Lower bound for varying k

In this section we describe the main ideas behind the lower bound for k-opt Detection
in subcubic graphs for varying k. The details are deferred to the full version due to space
restrictions. The overall approach is similar to the lower bound of Guo et al. [6], in that
we give a linear-parameter reduction from the k-Partitioned Subgraph Isomorphism
problem parameterized by the number of edges k. Marx [14] proved that, assuming the
Exponential Time Hypothesis, the problem cannot be solved in time f(k) · no(k/ log k) for
any function f .

The instance created in the reduction of Guo et al. [6] may contain vertices of arbitrarily
large degrees. To obtain such a reduction to k-opt Detection in subcubic graphs, an
essential ingredient is a choice gadget with terminal pairs (x0, y0), . . . , (x`, y`) which enforces
that sufficiently cheap Hamiltonian cycles that enter at xi, must leave via the corresponding yi.
The gadget can be implemented by suitable weight settings and vertices of degree at most three.
This gadget allows us to enforce synchronization properties, which enforce that an improved
Hamiltonian cycle first selects which vertices to use in the image of the subgraph isomorphism,
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and then selects incident edges for each selected vertex. By carefully coordinating the gadgets,
this allows us to implement the hardness proof by an edge selector strategy. It leads to a
proof of the following theorem.

I Theorem 12. There is no function f for which k-opt Detection on n-vertex graphs of
maximum degree 3 with edge weights in {1, 2} can be solved in time f(k) · no(k/ log k), unless
ETH fails.

We remark that the lower bound also holds for permissive local search algorithms which
output an improved Hamiltonian cycle of arbitrarily large Hamming distance to the starting
cycle C, if a cheaper cycle exists in the k-opt neighborhood of C.
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Abstract
Let k and d be such that k ≥ d + 2. Consider two k-colorings of a d-degenerate graph G. Can
we transform one into the other by recoloring one vertex at each step while maintaining a proper
coloring at any step? Cereceda et al. answered that question in the affirmative, and exhibited a
recolouring sequence of exponential length.

If k = d + 2, we know that there exists graphs for which a quadratic number of recolorings is
needed. And when k = 2d + 2, there always exists a linear transformation. In this paper, we prove
that, as long as k ≥ d + 4, there exists a transformation of length at most f(∆) · n between any pair
of k-colorings of chordal graphs (where ∆ denotes the maximum degree of the graph). The proof
is constructive and provides a linear time algorithm that, given two k-colorings c1, c2 computes a
linear transformation between c1 and c2.
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1 Introduction

Reconfiguration problems consist in finding step-by-step transformations between two feasible
solutions of a problem such that all intermediate states are also feasible. Such problems
model dynamic situations where a given solution already in place has to be modified for
a more desirable one while maintaining some properties throughout the transformation.
Reconfiguration problems have been studied in various fields such as discrete geometry [6],
optimization [1] or statistical physics [22] in order to transform, generate, or count solutions. In
the last few years, graph reconfiguration received a considerable attention, e.g. reconfiguration
of independent sets [3, 21], matchings [7, 20], dominating sets [24] or fixed-degree sequence
graphs [9]. For a complete overview of the reconfiguration field, the reader is referred to the
two recent surveys on the topic [23, 25].

Two main questions are at the core of combinatorial reconfiguration. (i) Is it possible to
transform any solution into any other? (ii) If yes, how many steps are needed to perform
this transformation? These two questions and their algorithmic counterparts received
considerable attention.
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Graph recoloring

Throughout the paper, G = (V,E) denotes a graph, n = |V |, ∆ denotes the maximum degree
of G, and k is an integer. For standard definitions and notations on graphs, we refer the
reader to [15]. A (proper) k-coloring of G is a function f : V (G)→ {1, . . . , k} such that, for
every edge xy ∈ E, we have f(x) 6= f(y). Since we will only consider proper colorings, we will
then omit the proper for brevity. The chromatic number χ(G) of a graph G is the smallest k
such that G admits a k-coloring. Two k-colorings are adjacent if they differ on exactly one
vertex. The k-reconfiguration graph of G, denoted by G(G, k) and defined for any k ≥ χ(G),
is the graph whose vertices are k-colorings of G, with the adjacency condition defined above.
Cereceda, van den Heuvel and Johnson provided an algorithm to decide whether, given
two 3-colorings, one can transform one into the other in polynomial time and characterized
graphs for which G(G, 3) is connected [12, 13]. Given any two k-colorings of a graph, it is
PSPACE-complete to decide whether one can be transformed into the other for k ≥ 4 [5].

The k-recoloring diameter of a graph G is the diameter of G(G, k) if G(G, k) is connected
and is +∞ otherwise. In other words, it is the minimum D for which any k-coloring can
be transformed into any other one through a sequence of at most D recolorings. Bonsma
and Cereceda [5] proved that there exists a class C of graphs and an integer k such that, for
every graph G ∈ C, there exist two k-colorings whose distance in the k-reconfiguration graph
is finite and super-polynomial in n.

A graph G is d-degenerate if any subgraph of G admits a vertex of degree at most d.
In other words, there exists an ordering v1, . . . , vn of the vertices such that for every i, vi

has at most d neighbors in vi+1, . . . , vn. It was shown independently by Dyer et al [16] and
by Cereceda et al. [12] that for any d-degenerate graph G and every k ≥ d+ 2, G(G, k) is
connected. Note that the bound on k is the best possible since the G(Kn, n) is not connected.
Cereceda [11] conjectured the following:

I Conjecture 1 (Cereceda [11]). For every d, every k ≥ d+ 2, and every d-degenerate graph
G, the diameter of G(G, k) is at most Cd · n2.

If true, the quadratic function is the best possible, even for paths, as shown in [2].
Bousquet and Heinrich [8] recently proved that the diameter of G(G, k) is O(nd+1). In the
general case, Cereceda’s conjecture is only known to be true for d = 1 (trees) [2] and d = 2
and ∆ ≤ 3 [18]. The diameter of G(G, k) is O(n2) when k ≥ 3

2 (d+ 1) as shown in [8]. Even
if Cereceda’s conjecture is widely open for general graphs, it has been proved for a few
graph classes, e.g. chordal graphs [2], bounded treewidth graphs [4], and bipartite planar
graphs [8].

Jerrum conjectured that if k ≥ ∆ + 2, the mixing time (time needed to approach the
stationary distribution) of the Markov chain of graph colorings1 is O(n logn). So far, the
conjecture has only been proved if k ≥ ( 11

6 −ε)∆ [14]. Since the diameter of the reconfiguration
graph is a lower bound of the mixing time, a lower bound on the diameter is of interest to
study the mixing time of the Markov chain. In order to obtain such a mixing time, we need
an (almost) linear diameter.

The diameter of G(G, k) is linear if k ≥ 2d+ 2 [10] or if k is at least the grundy number of
G plus 1 [4]. When k = d+ 2, the diameter of G(G, k) may be quadratic, even for paths [2].
But it might be true that the diameter of G(G, k) is linear whenever k ≥ d+ 3. In this paper,
we investigate the following question, raised for instance in [8]: when does the k-recoloring
diameter of d-degenerate graphs become linear?

1 A random walk on G(G, k). Fore more details on Markov chains on graph colorings, the reader is for
instance referred to [14].
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Our results

A graph is chordal if it does not contain any induced cycle of length at least 4. Chordal
graphs admit a perfect elimination ordering, i.e. there exists an ordering v1, . . . , vn of V such
that, for every i, N [vi]∩{vi+1, . . . , vn} is a clique. Chordal graphs are (ω(G)− 1)-degenerate
where ω(G) is the size of a maximum clique of G. Our main result is the following:

I Theorem 2. Let ∆ be a fixed integer. Let G be a d-degenerate chordal graph of maximum
degree ∆. For every k ≥ d+4, the diameter of G(G, k) is at most O∆(n). Moreover, given two
colorings c1, c2 of G, a transformation of length at most O∆(n) can be found in linear time.

Theorem 2 improves the best existing upper bound on the diameter of G(G, k) (where G
is chordal) which was quadratic up to k = 2d+ 1 [10].

Note that the bound on k is almost the best possible since we know that this result
cannot hold for k ≤ d+ 2 [2]. So there is only one remaining case which is the case k = d+ 3.

I Question 3. Is the diameter of G(G, d + 3) at most f(∆(G)) · n for any d-degenerate
graph G?

In some very restricted cases (such as power of paths), our proof technique can be
extended to k = d+ 3, but this is mainly due to the very strong structure of these graphs.
For chordal graphs (or even interval graphs), we need at least d+ 4 colors at several steps of
the proof and decreasing k to d+ 3 seems to be a challenging problem.

We also ask the following question: is it possible to remove the dependency on ∆ to only
obtain a dependency on the degeneracy? More formally:

I Question 4. Is the diameter of G(G, d+ 3) at most f(d) · n for any d-degenerate chordal
graph G?

The best known result related to that question is the following: G(G, k) has linear diameter
if k ≥ 2d+ 2 (and f is a constant function) [10].

I Question 5. Is the diameter of G(G, d+ 3) at most f(∆(G)) · n for any bounded treewidth
graph G?

Our proof cannot be immediately adapted for bounded treewidth graphs since we use the
fact that all the vertices in a bag have distinct colors. Feghali [17] proposed a method to
“chordalize” bounded treewidth graphs for recoloring problems. However his proof technique
does not work here since it may increase the maximum degree of the graph. We nevertheless
think that our proof technique can be adapted in order to study many well-structured
graph classes.

Proof outline

In order to prove Theorem 2, we introduce a new proof technique to obtain linear diameters
for recoloring graphs. The existing results (e.g. [10]) ensuring that G(G, k) has linear diameter
are based on inductive proofs that completely fail when k is close to d. On the other hand, in
the proofs giving quadratic diameters (e.g. [2]), the technique usually consists in finding two
vertices that can be “identified” and then applying induction on the reduced graph. In that
case, even if we can identify two vertices after a constant number of single vertex recolorings,
we only obtain a quadratic diameter (since each vertex might “represent” a linear number of
initial vertices). Both approaches are difficult to adapt to obtain linear transformations since
they do not use or “forget” the original structure of the graph.
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Let us roughly describe the idea of our method on interval graphs. A buffer B is a set of
vertices contained in f(ω) consecutive cliques of the clique path. We assume that at the left
of the buffer, the coloring of the graph already matches the target coloring. We moreover
assume that the coloring of B is special in the sense that, for every vertex v in B, at most
d+ 2 colors appear in the neighborhood of v 2. Note that in order to satisfy this property
(and several others detailed in Section 2), the buffer has to be “long enough”. The main
technical part of the proof consists in showing that if the buffer is “long enough”, then we
can modify the colors of vertices of the buffer in such a way that the same assumptions hold
for the buffer starting one clique to the right of the starting clique of B. We simply have to
repeat at most n times this operation to guarantee that the coloring of the whole graph is
the target coloring. Since a vertex is recolored only if it is in the buffer and a vertex is in
the buffer a constant (assuming ∆ constant) number of times, every vertex is recolored a
constant number of times.

The structure of this special coloring of the buffer, which is the main novelty of this paper,
is described in Sections 2.2 to 2.4. We actually show that this graph recoloring problem can
be rephrased into a “vectorial recoloring problem” (Section 2.5) which is easier to manipulate.
And we finally prove that this vectorial recoloring problem can be solved by recoloring every
element (and then every vertex of the graph) at most a constant number of times in Section 3.

2 Buffer and vectorial coloring

Throughout this section, G = (V,E) is a chordal graph on n vertices of maximum clique
number ω and maximum degree ∆. Let k ≥ ω+3 be the number of colors denoted by 1, . . . , k.
Given two integers x ≤ y, Jx, yK is the set {x, x+ 1, . . . , y}. The closed neighbourhood of a
set S ⊆ V is N [S] := S ∪ (∪v∈SN(v)).

2.1 Chordal graphs and clique trees
Vertex ordering and canonical coloring

Let v1, v2, . . . vn be a perfect elimination ordering of V . A greedy coloring of vn, vn−1, . . . , v1
gives an optimal coloring c0 of G using only ω colors. The coloring c0 is called the canonical
coloring of G. The colors c ∈ 1, 2 . . . , ω are called the canonical colors and the colors
c > ω are called the non-canonical colors. Note that the independent sets Xi := {v ∈
V such that c0(v) = i} for i ≤ ω, called the classes of G, partition the vertex set V .

Clique tree

Let G = (V,E) be a chordal graph. A clique tree of G is a pair (T,B) where T = (W,E′) is
a tree and B is a function that associates to each node U of T a subset of vertices BU of V
(called bag) such that: (i) every bag induces a clique, (ii) for every x ∈ V , the subset of nodes
whose bags contain x forms a non-empty subtree in T , and (iii) for every edge (U,W ) ∈ T ,
BU \ BW and BW \ BU are non empty. Note that the size of every bag is at most ω(G).
A clique-tree of G can be found in linear time [19]. Throughout this section, T = (VT , ET )
is a clique tree of G. We assume that T is rooted on an arbitrary node. Given a rooted
tree T and a node C of T , the height of C denoted by h(C) is the length of the path from
the root to C.

2 Our condition is actually even more restrictive.
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Qi

u

v

w

Qi+1

x

Figure 1 The nodes represent cliques of G. The vertices v and w belong to Qi. The vertex u

does not belong to Qi even if it intersects cliques of Qi, and the vertex x belongs to Qi+1.

I Observation 6. Let G be a chordal graph of maximum degree ∆ and T be a clique tree
of G rooted in an arbitrary node. Let x be a vertex of G and Ci, Cj be two bags of T that
contain x. Then h(Cj)− h(Ci) ≤ ∆.

Proof. We can assume without loss of generality (free to replace the one with the smallest
height by the first common ancestor of Ci and Cj) that Ci is an ancestor of Cj (indeed, this
operation can only increase the difference of height). Let P be the path of T between Ci and
Cj and (U,W ) be an edge of P with h(U) < h(W ). By assumption on the clique tree, there
is a vertex y that appears in BW and that does not appear in BU . Since this property is
true for every edge of T and since all the bags of P induce cliques and contain x, the vertex
x has at least |P | neighbors. J

2.2 Buffer, blocks and regions
Let Ce be a clique of T . We denote by TCe

the subtree of T rooted in Ce and by hCe
(C) the

height of the clique C ∈ TCe
. Given a vertex v ∈ TCe

, we say that v starts at height h if the
maximum height of a clique of TCe

containing v is h (in TCe
).

Let s := 3
(

ω
2
)

+ 2 and N = s + k − ω + 1 where k is the number of colors. The buffer
B rooted in Ce is the set of vertices of G that start at height at most 3∆N − 1 in TCe . For
every 0 ≤ i ≤ 3N − 1, the block Q3N−i of B is the set of vertices of G that start at height
h with i∆ ≤ h ≤ (i + 1)∆ − 1. Finally, for 0 ≤ i ≤ N − 1, the region Ri of B is the set
of blocks Q3i+1, Q3i+2, Q3(i+1). Unless stated otherwise, we will always denote the three
blocks of Ri by Ai, Bi and Ci, and the regions of a buffer B by R1, . . . , RN . Given a color
class Xp and S ⊆ V , we denote by N [S, p] the set N [S ∩Xp]. By definition of a block and
Observation 6 we have:

IObservation 7. Let Ce be a clique of T and B be the buffer rooted in TCe
. Let Qi−1, Qi, Qi+1

be three consecutive blocks of B. Then N [Qi] ⊆ Qi−1 ∪ Qi ∪ Qi+1. In particular for each
region Ri = (Ai, Bi, Ci) of B, N [Bi] ⊆ Ri.

Proof. Let v be a vertex of Qi. By definition of Qi, v starts at height h with (3N − i)∆ ≤
h ≤ (3N − i+ 1)∆− 1. Let u be a neighbour of v. By Observation 6, u starts at height h′
with h−∆ ≤ h′ ≤ h+ ∆, thus we have (3N − i− 1)∆ ≤ h′ ≤ (3N − i+ 2)∆− 1. It follows
that u belongs either to Qi−1, Qi, or Qi+1. J

We refer to this property as the separation property. It implies that when recoloring a
vertex of Qi, one only has to show that the coloring induced on Qi−1, Qi, Qi+1 remains proper.

2.3 Vectorial coloring
Let B be a buffer. We denote the set of vertices of class p that belong to the sequence
of blocks Qi, . . . , Qj of B by (Qi, . . . , Qj , p). A color vector ν is a vector of size ω such
that ν(p) ∈ J1, kK for every p ∈ J1, ωK, and ν(p) 6= ν(q) for every p 6= q ≤ ω. A block Q
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Ce

CNBNAN

∆ ∆ ∆

3∆N

A1

Figure 2 The buffer B rooted at Ce. The dots represent cliques of T and the dashed lines
separates the blocks of B.

is well-colored for a color vector νQ if all the vertices of (Q, p) are colored with νQ(p). It
does not imply that all the colors are ≤ ω but just that all the vertices of a same class
have the same color (and vertices of different classes have different colors). For brevity,
we say that (Q, νQ) is well-colored and when νQ is clear from context we just say that Q
is well-colored. In particular, a well-colored block is properly colored. Since the set (Q, p)
may be empty, a block may be well-colored for different vectors. However, a color vector
defines a unique coloring of the vertices of a block (if (Q, νQ) is well-colored then every
vertex of (Q, p) has to be colored with νQ(p)). The color vector ν is canonical if ν(p) = p

for every p ≤ ω. A sequence of blocks Q1, . . . , Qr is well-colored for (ν1, . . . , νr) if (Qi, νi) is
well-colored for every i ≤ r.

I Definition 8 (Waiting region). A region R well-colored for vectors νA, νB , νC is a waiting
region if νA = νB = νC .

I Definition 9 (Color region). A region R well-colored for vectors νA, νB , νC is a color region
if there exist a canonical color c1, a non-canonical color z and a class p such that:
1. νA(m) = νB(m) = νC(m) /∈ {c1, z} for every m 6= p.
2. νA(p) = c1 and νB(p) = νC(p) = z.
In other words, the color of exactly one class is modified from a canonical color to a non-
canonical color between blocks A and C. We say that the color c1 disappears in R and that
the color z appears in R. For brevity we say that R is a color region for the class Xp and
colors c1, z.

I Definition 10 (Transposition region). A region R well-colored for vectors νA, νB , νC is a
transposition region if there exist two canonical colors c1 6= c2, two non-canonical colors
z 6= z′ and two distinct classes p, q such that:
1. νA(m) = νB(m) = νC(m) /∈ {c1, c2, z, z′} and is canonical for every m /∈ {p, q}.
2. νA(p) = c1, νB(p) = z, νC(p) = c2.
3. νA(q) = c2, νB(q) = z′, νC(q) = c1.
Note that νA and νC only differ on the coordinates p and q which have been permuted. The
colors z and z′ are called the temporary colors of R. Note that the coloring induced on R is
proper since the separation property ensures that N [A ∩ R] ⊆ A ∪ B, N [C ∩ R] ⊆ B ∩ C
and no class in B is colored with c1 nor c2.

Let ν be a color vector. The color vector ν′ is obtained from ν by swapping the coordinates
p, ` ≤ ω if for every m /∈ {p, l}, ν′(m) = ν(m), ν′(p) = ν(`), and ν′(`) = ν(p). In other words,
ν′ is the vector obtained from ν by permuting the coordinates p and `.
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X1

X2

X3

X4

Ai Bi Ci

Waiting region Color region Transposition region

1 1 1

3 3 3

4

2 2 2

44

1 1 1

3 5 5

4

2 2 2

44

1 5 3

3 6 1

4

2 2 2

44

Figure 3 Example of waiting, color, and transposition regions with ω = 4. Each square represents
a region, the dotted lines separate the blocks and the dashed lines separate the classes. The colors 1
to 4 are the canonical colors and the colors 5 and 6 are non-canonical colors. The underlined colors
in the transposition region indicate the temporary colors.

Swapping the coordinates p and ` in a region R well-colored for (νA, νB , νC) means that for
every block Q ∈ {A,B,C}, we replace νQ by the color vector ν′Q obtained by swapping the
coordinates p and ` of νQ. It does not refer to a reconfiguration operation but just to an
operation on the vectors.

I Observation 11. Swapping two coordinates in a waiting (resp. color, resp. transposition)
region leaves a waiting (resp. color, resp transposition) region.

Using the following lemma, we can assume that all the transposition regions use the same
temporary colors.

I Lemma 12. Let R be a transposition region with temporary colors z, z′. Let z′′ /∈ {z, z′}
be a non-canonical color. By recoloring the vertices of R at most once, we can assume the
temporary colors are z, z′′.

Proof. Let p and q be the coordinates which are permuted in R. By definition of transposition
regions, no vertex of R is colored with z′′. As any class is an independent set and by the
separation property, we can recolor (B, q) with z′′ to obtain the desired coloring of R. J

2.4 Valid and almost valid buffers
In what follows, a bold symbol ν always denote a tuple of vectors and a normal symbol
ν always denotes a vector. Let B = R1, R2, . . . , RN be a buffer such that all the regions
Ri = Ai, Bi, Ci are well-colored for the vectors νAi

, νBi
, νCi

. So B is well-colored for
ν = (νA1 , νB1 , νC1 , νA2 , . . . , νCN

). The buffer (B,ν) is valid if:
1. [Continuity property] For every i ∈ 1, 2, ..., N − 1, νCi

= νAi+1 .
2. The vectors νA1 , νB1 and νC1 are canonical (and then R1 is a waiting region).
3. The regions R2, . . . , Rs−1 define a transposition buffer, that is a sequence of consecutive

regions that are either waiting regions or transposition regions using the same temporary
colors.

4. The regions Rs+1, . . . , RN−1 define a color buffer, that is a sequence of consecutive regions
that are either color regions or waiting regions.

5. The regions Rs and RN are waiting regions.
Note that Property 1 along with the definition of well-colored regions enforce “continuity” in
the coloring of the buffer: the coloring of the last block of Ri and the first block of Ri+1 in a
valid buffer have to be the same.

An almost valid buffer (B,ν) is a buffer that satisfies Properties 1 to 4 of a valid buffer
and for which Property 5 is relaxed as follows:
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5’. The region Rs is a transposition region or a waiting region. RN is a waiting region.

Let us make a few observations.

I Observation 13. Let (B,ν) be an almost valid buffer. For every i ≤ s, the color vectors
νAi and νCi are permutations of the canonical colors.

Proof. By induction on i. By Property 2 of almost valid buffers, it is true for every i ≤ r.
Suppose now that the property is verified for Ri with 2 < i < s. By assumption νCi

is a
permutation of J1, ωK and the continuity property (Property 1 of almost valid buffer) ensures
that νAi+1 = νCi . By Property 3 we only have two cases to consider, either Ri+1 is a waiting
region and by definition νci+1 = νAi+1 , or Ri+1 is a transposition region. In the later case,
by definition of a transposition region, νCi+1 is equal to νAi+1 up to a transposition of some
classes k, ` and thus is a permutation of the canonical colors. J

I Observation 14. Let (B,ν) be an almost valid buffer and c be a non-canonical color.
There exists a unique class p ≤ ω such that νCs(p) = c. Furthermore, either the class p is
colored with c on all the blocks of Rs+1, . . . , RN , or the color c disappears in a color region
for the class p.

Proof. By Observation 13, νCs
is a permutation of the canonical colors. Thus there exists

a unique class p ≤ ω such that νCs(p) = c. Furthermore, by Property 4 of almost valid
buffer, the regions Rs+1, . . . , RN are either waiting or color regions. The continuity property
then ensures that either the class p is colored with c on Rs+1, . . . , RN or that the color c
disappears in a color region if there exists a color region for the class p. J

Since only non-canonical colors can appear in a color region, we have the following
observation:

I Observation 15. Let (B,ν) be an almost valid buffer and z be a non-canonical color.
Either no vertex of Rs+1, . . . , RN is colored with z, or there exists a color region Ri with
s < i < N for the class p in which z appears. In the latter case, the vertices of the color
buffer of B colored with z are exactly the vertices of (Bi, Ci, . . . , CN , p).

Finally, since the number of regions in the color buffer is the number of non-canonical
colors, we have:

I Observation 16. Let (B,ν) be an almost valid buffer. There exists a waiting region in
Rs+1, . . . , RN−1 if and only if there exists a non-canonical color that does not appear in
Rs+1, . . . , RN−1.

2.5 Vectorial recoloring
Let (B,ν) be a buffer. The tuple of color vectors ν = (νQ1 , . . . , νQ3∆N

) is a (proper) vectorial
coloring of B if for every color c and every i ≤ 3∆N − 1 such that c is in both νQi

and νQi+1 ,
then there exists a unique class p ≤ ω such that νQi(p) = νQi+1(p) = c.

I Observation 17. Any proper vectorial coloring (B,ν) induces a proper coloring of G[B].

Proof. Indeed, two different classes in two consecutive blocks cannot have the same color
in a proper vectorial coloring. Since for any block Qi of B and for any class p, N [Qi, p] ⊆
Qi−1 ∪Qi ∪Qi+1, the coloring induced on G[B] is proper. J
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Note that if (B,ν) is an almost valid buffer then ν is a proper vectorial coloring of B by
the continuity property and the definition of waiting, color, and transposition regions. Since
we will only consider proper vectorial colorings, we will omit the term proper for brevity.

Let νQ be a color vector. A color vector ν′Q is adjacent to νQ if there exist a class p and
a color c /∈ νQ such that ν′Q(p) = c and ν′Q(m) = νQ(m) for every m 6= p.

I Observation 18. Let Q be a block well-colored for νQ and let ν′Q be a color vector adjacent
to νQ such that ν′Q(p) = c 6= νQ(p). Then recoloring the vertices of (Q, p) one by one is a
proper sequence of recolorings of G[Q] after which Q is well-colored for ν′Q.

Let (ν,ν′) be two vectorial colorings of a buffer B. The coloring ν′ is a vectorial recoloring
of ν if there exists a unique i ∈ J1, 3∆NK such that ν′Qi

is adjacent to νQi
and ν′Qj

= νQj
for

j 6= i. By Observation 18, we have:

I Observation 19. Let t ≥ 1 and (ν1,νt) be two (proper) vectorial colorings of a buffer B.
If there exists a sequence of adjacent (proper) vectorial recolorings ν1,ν2, . . .νt, then there
exists a sequence of (proper) single vertex recolorings of G[B] after which the coloring of B is
well-colored for νt.

Given a sequence of vectorial recolorings ν1,ν2, . . .νt, we say that each coordinate is
recolored at most ` times if for every coordinate p ≤ ω and every r ∈ J1, 3∆NK, there exist
at most ` indices t1, . . . , t` such that the unique difference between νti and νti+1 is the p-th
coordinate of the r-th vector of the tuples.

3 Algorithm outline

Let G be a chordal graph of maximum degree ∆ and maximum clique size ω, T be a clique
tree of G, and φ be any k-coloring of G. We propose an iterative algorithm that recolors the
vertices of the bags of T from the leaves to the root until we obtain the canonical coloring
defined in Section 2.1. Let S be a clique of T . A coloring α of G is treated up to S if:
1. Vertices starting at height more than 3∆N in TS are colored canonically, and
2. The buffer rooted at S is valid.
Let C be a clique of T . We associate a vector νC of length ω to the clique C as follows. We
set νC(`) = α(v) if there exists v ∈ X` ∩ C. Then we arbitrarily complete νC in such a way
all the coordinates of νC are distinct (which is possible since |νC | < k).

Given two vectors ν and ν′ the difference D(ν, ν′) between ν and ν′ is |{p : ν(p) 6= ν′(p)}|,
i.e. the number of coordinates on which ν and ν′ differ. Given an almost valid buffer (B,ν)
and a vector νC , the border error DB(νC ,ν) is D(νCN

, νC).
Let B be a buffer. The class p ≤ ω is internal to B if N [RN , p] ⊆ RN−1 ∪RN .
We first state the main technical lemmas of the paper with their proof outlines and finally

explain how we can use them to derive Theorem 2. The complete proofs of the lemmas
annotated with (∗) are included in the full version of the article (see related version).

I Lemma 20 (*). Let C be a clique associated with νC . Let S be a child of C, B be the
buffer rooted at S and ν be a tuple of vectors such that (B,ν) is valid. If DB(νC ,ν) > 0,
then there exists a recoloring sequence of ∪N

i=sRi such that the resulting coloring ν′ satisfies
DB(νC ,ν

′) < DB(νC ,ν), and (B,ν′) is almost valid.
Moreover, every coordinate of ∪N

i=sRi is recolored at most 3 times and only internal classes
are recolored.
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Outline of the proof. Let ` be a class on which νC and νCN
are distinct. Then, in particular,

no vertex of X` is in CN ∩C thus the class ` is internal. Given an internal class `, if we modify
νCN

(`) and maintain a proper vectorial coloring of the buffer B, then the corresponding
recoloring of the graph is proper. So, if we only recolor internal classes of RN , then we simply
have to check that the vectorial coloring of B remains proper. The proof is then based on a
case study depending on whether νC(`) is canonical or not. A more complete sketch is given
in Section 3.1 J

I Lemma 21 (*). Let (B,ν) be an almost valid buffer. There exists a recoloring sequence of
∪s

i=2Ri such that every coordinate is recolored at most 6 times and the resulting coloring ν′

is such that (B,ν′) is valid.

Outline of the proof. The proof distinguishes two cases: either there exists a waiting region
in the transposition buffer or not. In the first case, we show that we can “slide” the waiting
regions to the right of the transposition buffer and then ensure that Rs is a waiting region.
Otherwise, because of the size of the transposition buffer, then some pair of colors has to
be permuted twice. In this case, we show that these two transpositions can be replaced
by waiting regions (and we can apply the first case). A more complete sketch is given in
Section 4. J

Note that given a clique C and its associated vector νC , applying Lemma 21 to an almost
valid buffer (B,ν) rooted at a child S of C does not modify DB(νC ,ν) since the region RN

is not recolored.
Let C be a clique and S1, S2 be two children of C. For every i ≤ 2, let Bi be the buffer

of Si and assume that Bi is valid for νi. We say that B1 and B2 have the same coloring
if ν1 = ν2.

I Lemma 22 (*). Let C be a clique associated with νC . Let S1, S2, . . . Se be the children of
C, and for every i ≤ e, Bi be the buffer rooted at Si. Let νi be a vectorial coloring such that
(Bi,ν

i) is valid. If DBi(νC ,ν
i) = 0 for every i ≤ e, then there exists a recoloring sequence of

∪N−1
j=2 R

i
j such that every coordinate is recolored O(ω2) times, the final coloring of all the Bis

is the same coloring ν′, DBi(νc,ν
′) = 0, and (Bi,ν

′) is valid for every i ≤ e.

Outline of the proof. First, we prove that it is possible to transform the coloring of Bi in
such a way that all the color buffers have the same coloring, and that ν1

s = νi
s for i ∈ J2, eK.

We then have to ensure that the vectors of the transposition buffers are the same, which is
more complicated. Indeed, even if we know that the vectors ν1

s and νi
s are the same, we are

not sure that we use the same sequence of transpositions in the transposition buffers of B1
and Bi to obtain it. Let τ1, . . . , τr be the set of transpositions of B1. The proof consists in
showing that we can add to Bi the transpositions τ1, . . . , τr, τ

−1
r , . . . , τ−1

1 at the beginning of
the transposition buffer. It does not modify νAs

since this sequence of transpositions gives
the identity. Finally, we prove that τ−1

r , . . . , τ−1
1 can be cancelled with the already existing

transpositions of Bi. And then the transposition buffer of Bi only consists of τ1, . . . , τr. J

I Lemma 23 (*). Let C be a clique of T with children S1, S2, . . . Se and let α be a k-
coloring of G treated up to Si for every i ∈ J1, eK. Let νC be a vector associated with C and
Bi = Ri

1, . . . , R
i
N denote the buffer rooted at Si. Assume that there exists ν such that (Bi,ν)

is valid and satisfies DBi
(νC ,ν) = 0 for every i ≤ e. Then there exists a recoloring sequence

of ∪N−1
j=2 R

i
j such that, for every i ≤ e, every vertex of Bi is recolored at most one time and

such that the resulting coloring of G is treated up to C.
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Outline of the proof. This proof “only” consists in shifting the buffer of one level. We
simply recolor the vertices that now start in another region (of the buffer rooted at C) with
their new color. We prove that the recoloring algorithm cannot create any conflict. J

Given Lemmas 20, 21, 22 and 23 we can prove our main result:

I Theorem 24. Let ∆ be a fixed constant. Let G(V,E) be a d-degenerate chordal graph of
maximum degree ∆ and φ be any k-coloring of G with k ≥ d+ 4. Then we can recolor φ into
the canonical coloring c0 in at most O(d4∆ ·n) steps. Moreover the recoloring algorithm runs
in linear time.

Proof. Let c0 be the canonical coloring of G as defined in Section 2.1, and T be a clique tree
of G. Let us first show that given a clique C ∈ T with children S1, . . . , Se and a coloring α
treated up to Si for every i ≤ e, we can obtain a coloring of G treated up to C. Let νC be
a vector associated with C. For every i ≤ e, let Bi be the buffer rooted in Si and νi be a
vectorial coloring of Bi such that (Bi,ν

i) is valid. For every i ≤ e, by applying Lemmas 20
and 21 at most DBi

(νC ,ν
i) times to (Bi,ν

i), we obtain a vectorial coloring νi such that
(Bi,ν

i) is valid and DBi(νc,ν
i) = 0. By Lemma 22, we can recolor each νi into ν′ such that

for every i, (Bi,ν
′) is valid and DBi

(νc,ν
′) = 0. Then we can apply Lemma 23 to obtain a

coloring of G such that the buffer (B,ν) rooted in C is valid. Since no vertex starting in
cliques W ∈ TC with hC(W ) > 3∆N is recolored, these vertices remain canonically colored
and the resulting coloring of G is treated up to C. Note that only vertices of TC that start
in cliques of height at most 3∆N are recolored at most O(ω2) times to obtain a coloring
treated up to C.

Let us now describe the recoloring algorithm and analyze its running time. We root
T at an arbitrary node Cr and orient the tree from the root to the leaves. We then do a
breadth-first-search starting at Cr and store the height of each node in a table h such that
h[i] contains all the nodes of T of height i. Let ih be the height of T . We apply Lemmas
20 to 23 to every C ∈ h[i] for i from ih to 0. Let us show that after step i, the coloring of
G is treated up to C for every C ∈ h[i]. It is true for i = ih since for any C ∈ h[ih] the
sub-tree TC of T only contains C. Suppose it is true for some i > 0 and let C ∈ h[i − 1].
Let S1, . . . , Se be the children of C. For all j ∈ 1, . . . , e, Sj ∈ h[i] and by assumption the
current coloring is treated up to Sj after step i. Thus we can apply Lemmas 20 to 23 to C.
After iteration ih we obtain a coloring of G that is treated up to Cr. Up to adding “artificial”
vertices to G, we can assume that Cr is the only clique of T adjacent to a clique path of
length 3∆N (in fact we only need a tuple of 3N color vectors) in T and apply Lemmas
20 to 23 until we obtain a coloring such that Cr is canonically colored, and the algorithm
terminates. A clique tree of G can be computed in linear time [19], as well as building the
table h via a breadth-first-search. Given a clique C, we can access to the cliques of the buffer
rooted at TC in constant time by computing their height and using the table h. Furthermore,
a vertex of height i is recolored during the iterations i+ 1, . . . , i+ 3∆N only. As each vertex
is recolored at most O(ω2) times at each iteration, it follows that the algorithm runs in linear
time. Finally, as N = 3

(
ω
2
)

+ k − ω + 3, each vertex is recolored at most O(ω4∆) times, and
thus the algorithm recolors φ to c0 in at most O(ω4∆ · n) steps. J

The proof of Theorem 2 immediately follows:

Proof of Theorem 2. Let φ and ψ be two k-colorings of G with k ≥ d + 4 and let c0 be
the canonical coloring of G defined in Section 2.1. By Theorem 24, there exists a recoloring
sequence from φ (resp. ψ) to c0 of length O((d+ 1)4∆ · n). Thus there exists a sequence of
length O∆(n) that recolors φ to ψ. Furthermore the recoloring sequences from φ to c0 and
from ψ to c0 can be found in linear time by Theorem 24, which concludes the proof. J
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3.1 Proof of Lemma 20
Recall that in a buffer B, Rs is the region that sits between the transposition buffer and the
color buffer. Before proving Lemma 20, let us first start with some observations.

I Observation 25. Let R be a well-colored region that does not contain color c. If we set
νQ(p) = c for every block Q of R, then we obtain a waiting region if R was a waiting region
or a color region for the class p, and we obtain a color region if R was a color region for a
class q 6= p.

I Lemma 26 (*). Let (B,ν) be an almost valid buffer and Ri, Rj be two regions of B with
1 ≤ i ≤ j. Let X be a block in {Bi, Ci} and let Y = Bj or Y = CN . Then recoloring
(X, . . . , Y, p) with c preserves the continuity property.

Given a color c, a class p, and a sequence of consecutive blocks (Qi, . . . , Qj), we say
that (Qi, . . . , Qj , p) is c-free if no vertex of N [∪j

t=iQt ∩Xp] is colored with c. Note that a
sequence of (proper) vectorial recolorings of a buffer (B,ν) that does not recolor A1 and such
that all the classes recolored on CN are internal to B yields a (proper) sequence of single
vertex recolorings of G by Observation 19. With the definition of clique-tree we can make
the following observation:

I Observation 27. Let C be a clique associated with νC , S be a child of C, and (B,ν) be
the buffer rooted at S. If νCN

(`) 6= νC(`) for some ` ≤ ω, then the class ` is internal to B.

Proof. Suppose that the class ` ≤ ω is not internal to B. Then there exists a vertex
u ∈ X`∩RN which has a neighbor v that does not belong to RN−1∪RN . Thus u and v must
be contained in C or in a clique C ′ that is an ancestor of C. In the latter case, Property (ii)
of clique tree ensures that u must also be contained in C. Then, by definition of νC , it must
be that νC(`) = νCn

(`). J

We also need the following technical lemma:

I Lemma 28. Let (B,ν) be an almost valid buffer. Let s < i < N , c be a color and p be an
internal class. If one of the following holds:
1. Ri is a waiting region, c is a non-canonical color that does not appear in Rs, . . . , RN and

the class p is not involved in a color region, or
2. Ri is a color region for the class p. Moreover c is non-canonical and does not appear in

Rs, . . . , RN , or
3. Ri is a color region for the class p where c is the canonical color that disappears.
Then changing the color of (Bi, . . . , CN , p) by c also gives an almost valid buffer and a proper
coloring of G.

We can now give the flavour of Lemma 20. For a complete proof, the reader is referred to
the full version of the article.

Proof of Lemma 20. Let C be the clique associated with vector νC and S be a child of C.
Let (B,ν) be the valid buffer rooted at S. Assume that DB(νc,ν) > 0. Then there exists
p ≤ ω such that νCN

(p) 6= νC(p) := c and by Observation 27 the class p is internal to B.
The following sequences of recolorings only recolor blocks of Rs, . . . , RN and all the recolorings
fit in the framework of Lemma 26. Thus Properties 1, 2 and 3 of almost valid buffers are
always satisfied. We then only have to check Properties 4 and 5’ to conclude the proof. The
proof is then based on a case distinction. Let us give a couple of simple cases to give an idea
of the general proof:



N. Bousquet and V. Bartier 24:13

Case 1. No class is colored with c on Rs, . . . , RN in ν.
Then c is not canonical since νAs

is a permutation of the canonical colors by Observation
13. Suppose first that there does not exist a color region for the class p in ν. Since c
does not appear in the color buffer, Observation 16 ensures that there exists a waiting
region Ri with s < i < N . Then by Lemma 28.1, we can recolor (Bi, . . . , CN , p) with c
and obtain an almost valid buffer. Suppose otherwise that there exists a color region Rj

for class p in ν. By Lemma 28.2, we can recolor (Bj , . . . , CN , p) with c and obtain an
almost valid buffer. In both cases, the border error decreases.

Case 2. A class ` 6= p is colored with c, c is canonical, and c disappears in the color region Rj

for class ` where the non-canonical color z appears (see Figure 4 for an illustration). Let
z′ 6= z be a non-canonical color and let c1 = νAs(p). We apply the following recolorings:

(1) Recolor (Bs, . . . , Aj , `) with z,
(2) Recolor (Bs, p) with z′,
(3) Recolor (Cs, . . . , CN , p) with c,
(4) Recolor (Cs, . . . , Aj , `) with c1.
Recoloring 1 is proper since Observation 15 ensures that the only class colored with z in
Rs, . . . , RN is the class ` on (Bj , . . . , CN ). By the separation property, (Bs, . . . , Aj , `) is
z-free in ν. Recoloring 2 is proper as the only non-canonical color in Rs after recoloring
1 is z 6= z′. Recoloring 3 is proper as the class p is internal and thus after recoloring
1, (Cs, . . . , CN , p) is c-free by the separation property. Finally, recoloring 4 is proper as
after recolorings 2 and 3, (Cs, . . . , Aj , `) is c1-free by the separation property.

Let us show that the resulting coloring defines an almost valid buffer. First note that
regions Rj+1, . . . , RN are only modified by recoloring 3 and Observation 25 ensures they
remain either waiting or color regions. In particular RN remains a waiting region. Note
that after recolorings 3 and 4, ν′ on regions Rs+1, . . . , Rj−1 is obtained from ν by swapping
coordinates p and ` (on these regions). Thus the nature of these regions is maintained by
Observation 11. Since Rj was a color region for the class ` and colors c, z in ν, Bj , Cj are
not modified and since ν′Aj

(`) = c1, Rj is a color region for class ` and colors c1, z in ν′. So
the regions Rs+1, . . . , RN remain either waiting or color regions. Furthermore no new color
region is created and colors c1, z are involved in exactly one color region thus Property 4 is
satisfied. Finally, Rs is indeed a transposition region in ν′ since ν is a valid buffer and z
and z′ are non-canonical colors, thus Property 5’ holds. Furthermore, ν′CN

(p) = c thus the
border error has decreased. J

Xp

X`

vc

RNRs

X`
c z

Rj RNRs

Aj Bj Cj

Figure 4 The initial coloring ν for case 2 in the proof of Lemma 20. The rows represent the
classes. A blank indicates a color region for the class. The vertical segment at the end of the buffer
indicates that the class is internal. The dotted vertical lines separate the different regions.
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4 Proof of Lemma 21

The proof distinguishes two cases:
Case 1. there is a region of the transposition buffer of B that is a waiting region.

The core of the proof consists in iteratively applying the following lemma:
I Lemma 29 (*). Let (B,ν) be an almost valid buffer and Ri, Ri+1 be two consecutive
regions with 1 < i < s such that Ri is a waiting region and Ri+1 is a transposition region.
Then there exists a recoloring sequence of Ri ∪Ri+1 such that, in the resulting coloring
ν′, Ri is a transposition region, Ri+1 is a waiting region, and (B,ν′) is almost valid.
Moreover only coordinates of Ri ∪Ri+1 are recolored at most twice.

Case 2. All the regions of the transposition buffer of B are transposition regions.
As there are 3

(
ω
2
)
regions in the transposition buffer and only

(
ω
2
)
distinct transpositions

of J1, ωK, there must exist two distinct regions Ri and Rj with 1 < i < j < s for which
the same pair of colors is permuted (note that the colors might be associated to different
classes in Ri and Rj but it does not matter). The proof consists in applying the following
lemma and then applying Case 1.
I Lemma 30 (*). Let (B,ν) be an almost valid buffer and c1, c2 be two canonical colors.
If there exist two transposition regions Ri and Rj where colors c1 and c2 are transposed,
then there exists a sequence of recolorings of ∪j

t=iRt such that each coordinate is recolored
at most twice, Ri and Rj are waiting regions in the resulting coloring ν′, and (B,ν′) is
almost valid.
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Abstract
We describe a generic way of exponentially speeding up algorithms which rely on Color-Coding
by using the recently introduced technique of Extensor-Coding (Brand, Dell and Husfeldt, STOC
2018). To demonstrate the usefulness of this “patching” of Color-Coding algorithms, we apply it ad
hoc to the exponential-space algorithms given in Gutin et al. (Journal Comp. Sys. Sci. 2018) and
obtain the fastest known deterministic algorithms for, among others, the k-internal out-branching
and k-internal spanning tree problems. To realize these technical advances, we make qualitative
progress in a special case of the detection of multilinear monomials in multivariate polynomials:
We give the first deterministic fixed-parameter tractable algorithm for the k-multilinear detection
problem on a class of arithmetic circuits that may involve cancellations, as long as the computed
polynomial is promised to satisfy a certain natural condition.

Furthermore, we explore the limitations of using this very approach to speed up algorithms by
determining exactly the dimension of a crucial subalgebra of extensors that arises naturally in the
instantiation of the technique: It is equal to F2k+1, the kth odd term in the Fibonacci sequence. To
determine this dimension, we use tools from the theory of Gröbner bases, and the studied algebraic
object may be of independent interest.

We note that the asymptotic bound of F2k+1 ≈ φ2k = O(2.619k) curiously coincides with the
running time bound on one of the fastest algorithms for the k-path problem based on representative
sets due to Fomin et al. (JACM 2016). Here, φ is the golden ratio.
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1 Introduction

The research in parameterized algorithms has brought forth a vast toolbox of techniques to
tackle an ever-growing list of hard computational problems, and provided solutions for those
problems in a multitude of shapes and flavors. Recently, Brand, Dell and Husfeldt [9] added
another item to the box: A technique called Extensor-Coding, based on the properties of the
so-called exterior algebra, a fundamental object in multilinear algebra.

Extensor-Coding allows us to understand a variety of key approaches in the design of
parameterized algorithms in a common language, including the celebrated and by now classic
Color-Coding-approach of Alon, Yuster and Zwick [1], the algebraic fingerprints due to Koutis
[24] and Koutis and Williams [25], the representative families from Fomin et al. [19, 18], and
the labeled walks of Björklund et al. [5].
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While this yields unification on a conceptual level, the main technical advance made
in [9] was with respect to the approximate counting of solutions in the longest path (or
k-path) problem. Despite the fact that the technique suggests a straightforward algebraic
and deterministic algorithm for the k-path problem, its running time was only very slightly
(infinitesimally, in fact) below the older bound achieved by Chen et al. [10], and thus at
significant distance from Zehavi’s current record bound [36]. In this paper, we will identify
several problems where Extensor-Coding does improve over the state-of-the-art. To this end,
we start from a novel and natural variant of the ubiquitous multilinear detection problem on
polynomials computed by arithmetic circuits that is more general than the very well-studied
case of cancellation-free circuits. This leads us to a rather generic approach of patching, if
you will, algorithms involving Color-Coding, by replacing the Colors used in the algorithm by
Extensors, i.e., elements of the exterior algebra.1 This then yields an exponential speed-up.
While this improvement is certainly incremental in nature, the novelty of the approach laid
out in this work is of a more conceptual nature. This is discussed further below.

On the other hand, we demonstrate an algebraic barrier, limiting the potential progress
that can be made by applying Extensor-Coding in a more or less straightforward manner –
just as we do it in this paper for the considered algorithmic problems. This barrier is based
on the dimension of a certain subalgebra of the exterior algebra, which presents a lower
bound for the cost of computation in the algebra and hence for the entire algorithm. It is
noteworthy that the resulting bound, which is exactly the (2k + 1)th Fibonacci number on
an underlying vector space of dimension k, asymptotically coincides with the square of the
golden ratio, which also appears in the approach of Fomin et al. to the k-path problem, which
is based on the very different, purely combinatorial method of representative families [19].
One might argue that this connection is not entirely surprising, since the approaches can be
used to solve the same problem and the representative families in fact have their origin in
exterior algebra. This, however, is an argument that only bears on a superficial level: It is
by no means clear how the very algebraic object studied in this article relates in any way to
the use of the exterior algebra in the representative families-approach, and indeed, one can
consider uncovering such a precise connection as an intriguing avenue for further research.
Therefore, one may regard studying this algebraic object as a first step to tighten the ties
between combinatorics and algebra in the study of rather general parameterized algorithms,
and not just for the k-path problem.

1.1 Contributions

1.1.1 New and Improved Algorithms

The algorithmic problems we study are the following: The k-internal out-branching (k-IOB)
problem asks for the existence of an out-branching (also called a directed spanning tree or
arborescence, among others) with at least k internal, i.e., non-leaf, nodes. The k-internal
spanning (k-IST) tree problem is formulated analogously for undirected graphs. A subset of
edges in an edge-colored graph is k-colorful if it contains edges of at least k distinct colors,
and the definitions of the problems k-colorful perfect matching and k-colorful out-branching
are self-evident.

Our algorithmic advances in these problems are borne by progress in another domain:
The k-multilinear detection (k-MLD) problem has as an input a multivariate polynomial
represented through an arithmetic circuit, and asks whether the polynomial contains a

1 Extensors are often also referred to as antisymmetric tensors, hence the title.
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monomial of degree k in which no variable appears with degree more than one. We focus our
attention on the restriction of the problem to those instances where a multilinear monomial
may only appear with positive coefficient. Since there is no known way to efficiently test
this property, this turns the problem into a promise problem. The promise, however, is
typically satisfied in combinatorial applications, where the studied polynomials are usually
multivariate generating functions of the sought combinatorial objects. The decisive subtlety
here is that, while the polynomial that is computed by the input circuit may not have
negative coefficients in its multilinear part, the circuit itself may very well contain negative
constants and make use of cancellations, and, in particular, it need not be monotone. We will
make heavy use of this property in the above application problems, and the above point is
decisive here for the following reason: These problems can be expressed using determinantal
generating functions, and by a theorem of Jerrum and Snir, determinants do not have
monotone circuits of subexponential size, such that cancellations are actually crucial for
their efficient computation. To the best of our knowledge, this is the first fixed-parameter
tractable algorithm for the problem.

We prove the following deterministic, exponential-space2 record time bounds, and defer
the reader to Sect. 4 for a formal statement of the theorem.

I Theorem 1 (Informal). There are deterministic algorithms to solve
1. the k-internal out-branching problem and the k-internal spanning tree problem in time

3.21k · poly(n), and
2. the k-colorful perfect matching problem on planar graphs and the k-colorful out-branching

problem in time 4k · poly(n).
Furthermore, there is a deterministic algorithm that solves the restriction of the multilin-
ear detection problem to circuits computing polynomials with positive coefficients in their
multilinear part (as laid out above) in time 4k · poly(n) on skew arithmetic circuits, and
in time 2ωk · poly(n) < 5.19k · poly(n) on general circuits, where ω is the exponent of
matrix multiplication.

I Remark 2. The bound of 5.19 is not competitive; indeed it is easy to prove that an
exponential basis of 4.312 can be obtained using a derandomization of Color-Coding, and
Pratt [28] gives a randomized algorithm achieving 4.075. Note, however, that our bound
depends on ω, and one can make the point (albeit moot in the foreseeable future) of this
dependency making our bound potentially competitive.

I Remark 3. Skewness, i.e., the syntactic restriction of each multiplication gate having an
input as an operand seems rather strong at a first glance. At a second glance, this impression
does not hold up: Without concerning ourselves with the technicalities of algebraic complexity
theory, suffice it to say that the polynomials that can be computed by efficient skew circuits
are precisely those that are efficient projections of determinants, and determinantal generating
functions are known for a variety of combinatorial objects. Equivalently, they are those
polynomials that are computed by efficient algebraic branching programs (which is a widely
studied and very natural computational model).

The algorithms for the problems of detecting a k-internal as well as k-colorful out-
branching (and spanning tree) are established, as demonstrated by Björklund et al. , via the
Directed Matrix-Tree Theorem [7]. We reuse the meticulous and very careful analysis of the

2 We are aware of the doubtful practical usefulness of exponential-space algorithms in some settings and
ask the skeptical reader to think of our results as being motivated theoretically.
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parallel monomial sieving technique by Gutin et al. [22]. We can relatively easily replace the
employed pseudorandom objects by extensors. This suggests a rather generic way in which
to speed up algorithms based on Color-Coding by instead using Extensor-Coding.

As far as the k-colorful planar matching problem is concerned, as in [22], we use a Pfaffian
computation. However, we cannot perform the square root extraction that is necessary to
make use of the determinantal identities for the Pfaffian, but rely on a result of Flarup et al.
[15] for a direct computation of Pfaffians with skew arithmetic circuits.

Let us conclude the discussion of our algorithmic contributions with a comment on
their relevance. As far as combinatorial problems are concerned, the obtained technical
improvements are incremental. However, focusing on these individual results is, in a way, a
red herring: The important point is that we can obtain speed-ups in sophisticated algorithms
for well-studied problems in a simple, ad hoc manner by replacing colors with extensors.
The only requirement here is the, as argued, rather mild one of the combinatorial objects in
question being described through a determinantal formula. This is not primarily a technical,
but a conceptual insight that is meant to guide the design of deterministic exponential-space
algorithms in the future, and to encourage revisiting existing bounds using extensors. To
demonstrate how to go about this, we do so for k-IOB, a very well-studied problem where
the current state-of-the-art was obtained through a sequence of incremental improvements,
each more involved than the previous one.

A similar case can be made for the monomial detection algorithms, which are obtained in
an admittedly straightforward manner by an application of the Extensor-Coding method,
which was certainly available at the time of writing of [9]. The takeaway here, however,
is that polynomials with positive coefficients computed by efficient skew circuits are not
some arbitrary, but instead very natural class of polynomials, namely those that arise as
determinantal generating functions for combinatorial objects, which are of central interest in
algebraic combinatorics.

1.1.2 Algebraic Limitations
Broadly speaking, when aiming towards deterministic decision algorithms, Extensor-Coding
essentially works by evaluating a multivariate polynomial associated with the input over an
exterior algebra. This algebra is of dimension 4k, where k will typically be the parameter of
the input instance (while it formally is half the dimension of the underlying vector space).

In this way, it is similar to a method introduced by Koutis [24]. It differs, however, in the
points at which the polynomial associated with the input instance is evaluated. While Koutis,
and later, Williams [33], rely on random evaluation points, in [9], certain carefully constructed
vectors are used. One can readily observe that “evaluating a polynomial” involves, on an
arithmetic level, nothing but multiplications and additions. In particular, if one evaluates
a polynomial over any algebraic structure that is closed under multiplication and addition,
one will always obtain again an element of this algebraic structure after evaluation. Turning
this around, one can always restrict one’s attention to the closure of (i.e., the substructure
generated by) the set of evaluation points. In particular, it might be far easier to actually
implement the arithmetic operations only over this substructure than over the entire structure.

In this paper, we will examine the subalgebra generated by the aforementioned special
evaluation points (i.e., the smallest set closed under addition, scaling with a field constant,
and multiplication containing all the evaluation points). Note now that the dimension of
an algebra provides a trivial lower bound on the cost of general computation in it, simply
because one has to write down its elements’ coordinates at some point. Conversely, the
dimension itself can be used to derive a trivial upper bound for the cost of computation as
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well, just by a look-up of the structural constants of the algebra, but this bound is generally
far from optimal. For example, naive multiplication of degree-d polynomials (which can
be modeled as objects of a O(d)-dimensional algebra over some field) takes around O(d2)
field operations, while (over compatible fields) the Fast Fourier Transform method yields
the classic bound of O(d log d). A running time of the latter form, i.e., quasilinear in the
dimension of the algebra, is of course the best one can hope for. Note however that, in
general, it is a highly nontrivial, and sometimes impossible, task to come up with such fast
multiplication algorithms in any kind of algebraic structure.

We prove that, surprisingly (for reasons that will be expanded on later), the dimension of
the subalgebra generated by the evaluation points used in Extensor-Coding is of dimension
exponentially smaller than 4k, i.e., the dimension of the full algebra. At first, this seems to
open up a tantalizing new point of attack on one of the most prominent open problems in
the area of parameterized algorithms: To exhibit a deterministic algorithm for the k-path
problem that matches the running time of 2k · poly(n) for the best randomized algorithms
[33, 24]. Now, a priori, we could hope for the studied subalgebra to be of dimension 2k (but
not much smaller, by a result of Koutis-Williams [26]). Then, a quasilinear multiplication
algorithm would give a bound of 2k · poly(k) field operations, and (assuming all coefficients
stay of moderate size) hence produce a deterministic algorithm solving the problem in time
2k · poly(n).

Unfortunately, we share the fate of Tantalos:

I Theorem 4 (Informal). The dimension of the subalgebra of the exterior algebra over the
complex vector space of dimension 2k generated by the evaluation points used in Extensor-
Coding is of dimension exactly F2k+1, which is the (2k + 1)th Fibonacci number, and this is
asymptotically bounded as 2.618k ≤ F2k+1 ≤ 2.619k.

Again, it will be stated formally in Sect. 5. Somewhat unluckily, this does also not suffice
to improve the state-of-the-art for k-path, even if we had a sufficiently fast multiplication
algorithm, since Zehavi’s [36] intricate algorithm has an exponential basis of 2.597 in its
running time.

This result can be interpreted in two ways: On the one hand, as laid out above, it
can be seen as a negative result, ruling out one approach for solving the k-path problem
deterministically and fast. On the other hand, while a quasilinear multiplication algorithm for
the subalgebra might be a lot to hope for, even an algorithm using, say, 2.619ωk/2 < 3.136k

field operations would mean significant improvements for all the problems studied in this
paper, including in particular deterministic multilinear detection for a subclass of circuits
with cancellations. It is not at all clear how to implement multiplication over this algebra
faster than trivially, and we leave this as a challenging open problem.

Let us comment on the bound of 2.619kω/2, which might at first seem arbitrary. This
is simply the bound one would obtain from a matrix representation of dimension at most
d, i.e., having dimension

√
2.619k/2 ×

√
2.619k/2. For this reason, it appears in the recent

breakthrough work of Umans [32] and Ching-Yun Hsu and Umans [12] on generalized Fast
Fourier Transforms on arbitrary finite groups. Therefore, our result nurtures the hope for
even further, significant improvement for a variety of parameterized problems, conditional
on the development of fast multiplication algorithms over this algebraic structure.

Furthermore, we exhibit a whole family of subalgebras that enjoy all the desired properties
of the subalgebra that is used in [9], and that obey the same upper bound on their dimension,
while the lower bound argument does not easily carry over, and it is an exciting possibility
that, somewhere among these subalgebras, there is one that has even lower dimension.
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As for our algorithmic contributions, let us comment on the relevance of the algebraic
barrier, and in particular, why this highly special algebraic object is of wider interest. Given
the apparent connection to the work of Fomin et al. as well as the recent insights of Pratt
[28], the study of algebraic approaches may have much closer ties to the classic combinatorial
techniques than is currently visible. Establishing the dimension bounds as done here is clearly
necessary and important in order to uncover these ties; ties which, eventually, might make
the study of parameterized algorithms and their limitations appealing to a more diverse
audience even outside of parameterized algorithms and complexity, in a way similar (even
if not as ambitious by far) to how algebraic geometers found interest in complexity theory
through its geometric reformulation. Furthermore, as stated, exhibiting fast multiplication
algorithms for this problem would directly imply massive speed-ups for problems that are
amenable to be “patched” using extensors.

1.2 Related work
The k-internal out-branching and spanning tree problems have attracted a significant amount
of attention over the last years [17, 22, 6, 7, 27, 38, 37, 16, 13, 11, 21, 14, 29]. The current
deterministic record bounds for all the aforementioned graph problems were recently given
in Gutin et al. [22], using monomial sieving in combination with Color-Coding and suitable
pseudorandom objects. The bounds they obtain (in the exponential-space setting) for the
k-internal out-branching and spanning tree problems are 3.41k · poly(n), and 4.32k · poly(n)
for the k-colorful perfect matching and out-branching problems.

The detection of k-multilinear terms in polynomials computed by arithmetic circuits lies
at the heart of the design of the fastest randomized algorithms for a host of parameterized
problems, such as the longest path problem on directed graphs, the k-tree problem, the
t-dominating set problem and the m-dimensional k-matching problem, with a record bound
of 2k · poly(n) for randomized k-multilinear detection [26, 33]. The crux is that, for the
arithmetic circuits in these algorithms, it is required that they be monotone, i.e., do not
involve any cancellations of terms. On this class of monotone arithmetic circuits, the k-
multilinear detection problem can be solved deterministically in time 3.85k · poly(n), using
the combinatorial notion of representative sets [18].

Recently, the first fixed-parameter tractable randomized algorithms were developed for
the problem on general arithmetic circuits [9], which has sparked further work in the area,
announcing a polynomial-space version and 4.08k · poly(n) as a new record bound on general
circuits [3, 2, 28].

Due to the particularity of the algebraic object studied for the dimension barrier, it is
highly doubtful whether any work directly related to it has been done – at the least, we are
not aware of such work. However, the idea of proving dimension lower bounds in order to
limit the use of certain parameterized algorithmic techniques was already present in work
by Koutis and Williams [26]. Their work, however, gives a more general lower bound and
relies on entirely different technical ideas, making it akin to our work only in a broader
conceptual sense.

Omitted proofs and details will appear in [8], which we call the full version.

2 Preliminaries

In what follows, 2 ≤ ω < 2.374 [30, 34] is the exponent of matrix multiplication.
An arithmetic circuit is a directed acyclic graph with a single vertex of out-degree 0,

called the output, a set of vertices with in-degree 0 which are labeled with variables or
complex numbers, called the inputs and labels + and × on all vertices that are not inputs.
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A vertex labeled with + or × is, respectively, called a +-gate or ×-gate. All ×-gates are
required to have in-degree at most two. We call an arithmetic circuit skew if, for all ×-gates,
at least one of the arcs ending at the gate comes from an input. The polynomial computed
by an arithmetic circuit is defined in the obvious inductive way: It is equal to the label of
the inputs, and for a gate that is not an input, it is defined as the result of the operation
indicated by the label of the gate, applied to its two inputs.

Given a directed graph D = (V,A), we a call a subgraph B of D out-branching if B is
an oriented tree with exactly one vertex r of in-degree zero, the root, and B is spanning.
Vertices of out-degree zero are called leaves, and vertices that are not leaves are internal. For
an integer k, an out-branching is k-internal if it contains at least k internal vertices.

A set of arcs is called a matching if no vertex of V is contained in two arcs, and a matching
is perfect if every vertex is contained in some arc of the matching.

For an edge-colored graph G, directed or undirected, we call a subgraph S of G k-colorful,
if the edge set of S contains at least k differently colored edges.

2.1 A Review of Extensor-Coding
Although not a strict prerequisite, some knowledge of the technique and its uses for the
longest path problem make the following certainly more digestible. An elementary exposition
of the employed algebraic objects can be found in the original work [9]. However, we will
demonstrate the technique in the appropriate brevity. This should, in principle, suffice to
understand everything that happens here. For a more mathematically concise and thorough
treatment of the algebraic background material, we encourage the interested reader to consult
any given textbook on algebra, for example the one by Birkhoff and Mac Lane [4].

Let us first review some basic algebraic notions. A complex unital associative algebra is
a ring A that is simultaneously a complex vector space, such that scalar multiplication is
compatible with the multiplication in the ring. That is, for any λ ∈ C and a, b ∈ A, it holds
that λ(ab) = (λa)b = a(λb) and there is an element 1 ∈ A with 1a = a = a1 for all a ∈ A.
Since complex unital associative algebras are the only types of algebras we will encounter
henceforth, we understand all these properties whenever we speak merely of an algebra. The
dimension of an algebra A is the dimension of A as a complex vector space.

2.1.1 The Exterior Algebra
Let V be the complex vector space Ck, endowed with its canonical basis {e1, . . . , ek}. We
can now consider the set of formal, non-commutative polynomials C〈e1, . . . , ek〉 that can be
formed in the “indeterminates” (or generators) e1, . . . , ek.

Let us define a kind of multiplication on these generators that is denoted as ∧, called
the wedge product. The wedge product operation on the generators is defined to satisfy the
anti-commutativity relation: ei ∧ ej = −ej ∧ ei for all 1 ≤ i, j ≤ k. For i = j, this means
that ei ∧ ei = −ei ∧ ei, which over C implies ei ∧ ei = 0 for all i.

By repeatedly applying this rule, we can understand the multiplication of more than two
generators as follows. Let 1 ≤ i1, . . . , it ≤ k be natural numbers, and consider the wedge
product ei1 ∧ · · · ∧ eit . Exhaustive application of the rules now implies that this product
becomes zero if ij = ij′ for any distinct j, j′. Otherwise, it is equal to sgn(σ)eiσ(1) ∧· · ·∧eiσ(t) ,
where σ is the permutation that brings the sequence i1, . . . , it in ascending order.

This multiplication is extended to linear combinations of wedge products of the generators
by distributivity and bilinearity. The vector space generated by all such wedge products of
generators is called the exterior algebra over V and is denoted by Λ(V ). The vector space
Λ(V ) is turned into an algebra by equipping it with the wedge product as multiplication. We
have seen that any reordering of the factors either leaves the original wedge product intact
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or leads to a sign change. Hence, the set of ordered wedge products {ei1 ∧ · · · ∧ eit | 0 ≤
t ≤ k, i1 < · · · < it} form a linear basis of Λ(V ). This shows that Λ(V ) is of dimension 2k.
For any set S ⊆ {1, . . . , k}, we write eS to denote ei1 ∧ · · · ∧ ei|S| , where the elements of S
are assumed to be in ascending order, i.e., i1 < · · · < i|S|. We remark that we can regard
V as a linear subspace of Λ(V ) via a vector’s basis representation, i.e., (x1, . . . , xk)T ∈ Ck

corresponds uniquely to x1e{1} + · · ·+ xje{k}.
Let us quickly comment on the cost of computation in Λ(V ). It is clear that addition of

two elements of Λ(V ) can be performed using 2k arithmetic operations, namely by pointwise
addition, over C. Clearly, this can be performed in time polynomial in the length of the
basis coefficients of the two summands.

For a restricted but crucial variant of multiplication in Λ(V ), called skew multiplication,
we recall the following observation:

I Proposition 5 ([9], Sect. 2.3). Given an element x ∈ Λ(Ck) and y ∈ Ck ⊆ Λ(Ck) as a list
of basis coefficients, their product x∧ y ∈ Λ(Ck) as a list of basis coefficients can be computed
using 2k · poly(k) arithmetic operations over C.

Additionally, if the bitlength of coefficients of x and y is bounded in by τ , then their
product can be computed in 2k · poly(τ) bit operations.

As for general multiplication, let us record what Włodarczyk [35] showed implicitly:

I Theorem 6 ([35]). Given two elements x, y ∈ Λ(Ck) as a list of basis coefficients, their
product x ∧ y ∈ Λ(Ck) as a list of basis coefficients can be computed using 2ωk/2 · poly(k)
arithmetic operations over C.

Additionally, if the bitlength of coefficients of x and y is bounded by τ , then their product
can be computed in 2ωk/2 · poly(τ) bit operations.

Since the connection to the exterior algebra in [35] is not made explicitly, we give a self-
contained (and somewhat simpler) proof of Włodarczyk’s result, adapted to our terminology,
in the full version.
I Remark 7. The best known way to compute a general wedge product is due to insights of
Włodarczyk: This goes by reducing the wedge product to the product in a so-called Clifford
algebra, which is an algebra that, filtered by degree, gives rise to the exterior algebra as its
associated graded algebra. This is surprising from a mathematical perspective: The exterior
algebra is an especially degenerate Clifford algebra, and yet the latter is used to compute in
the former. Finding other, possibly faster approaches for the computation of wedge products
is an independent research direction that we feel worth pursuing in the future, given that
the wedge product is the epitomic operation in all of multilinear algebra.

An easy, but fundamental standard observation is that, for any t ≤ k, the t-factor wedge
multiplication map

V t → Λ(V ), x1, . . . , xt 7→ x1 ∧ · · · ∧ xt ∈ Λ(V ) (1)

can be written down in coordinates as the determinants of the t× t-minors of the matrix
(x1 | x2 | . . . | xt) obtained as the juxtaposition of x1, . . . , xt:

x1 ∧ · · · ∧ xt =
∑

S∈([k]
t )

det(x1 | x2 | . . . | xt)SeS ,

where (x1 | x2 | . . . | xt)S is the t× t-minor of the matrix (x1 | x2 | . . . | xt) indexed at the
rows S. In particular, this entails that the k-fold wedge product is just the determinant map:

x1 ∧ · · · ∧ xk = det(x1 | x2 | . . . | xt)e[k] .
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2.1.2 Lifts
Consider the direct sum of vector spaces V ⊕ V ∼= C2k, and let ι1, ι2 : V → V ⊕ V be the
canonical embeddings of V into V ⊕ V as the left and right summand, respectively. In
coordinates, this corresponds respectively to pre- or appending k zeros to a vector. Consider
the lift mapping Λ(V )→ Λ(V ⊕ V ), x 7→ x := ι1(x) ∧ ι2(x). We now have (see also [9, Sect.
3.4]) the following.

x1 ∧ · · · ∧ xk = ±det(x1 | · · · | xk)2e[2k],

where the sign only depends on k.

2.1.3 Vandermonde Codings
Determinants vanish on singular matrices. To prevent unwanted vanishing of determinants
later on, we will use a set of vectors that are, in a sense, maximally linearly independent:
Vandermonde vectors. To this end, consider the mapping

φ : C→ V, c 7→ (1, c, c2, . . . , ck−1)

and its lifted variant

φ : C→ V ⊕ V, c 7→ φ(c) .

This has the nice property that, on the image of φ (or φ for that matter), the k-fold wedge
product map as in Eq. (1) is zero only when two factors are equal. In particular, the mapping
Ck → Λ(V ⊕ V ), (c1, . . . , ck) 7→ φ(c1) ∧ · · · ∧ φ(ck) is zero exactly on the set of points that
have at least two coordinates equal. Indeed, the coordinates of this map witness this in the
clearest way possible: It is the well-known Vandermonde-determinant

∏
i<j(ci − cj). An

analogous statement of course holds for φ.

3 Monomial Detection Problems

As a kind of warm-up, we will give a rather direct, but very useful first application to a special
kind of monomial detection problem. The general problem presents itself as follows: As
input, it obtains a multivariate (and now again commutative) polynomial f ∈ C[X1, . . . , Xn]
in n indeterminates. Our task is now to decide whether or not f contains a monomial of
degree k such that no indeterminate appears twice. A variation of this is to ask whether f
contains a monomial such that at least k distinct indeterminates appear in it. The degree of
hardness of this problem obviously hinges on the way in which f is represented. When f is
given in its sparse representation as a list of monomials and coefficients, then deciding this
question is trivial.

This not the case, however, if f is represented by an arithmetic circuit, which is the setting
we are interested in. Indeed, we are interested only in a semantically defined subclass of
arithmetic circuits: Those that compute a polynomial f such that every multilinear monomial
that appears in f does so with positive coefficient. As stated before, it is crucial to note that
this does not mean a monotonicity restriction for the input circuit, and it may well involve
cancellations of terms and negative constants. Let us formally define the set of circuits we
are interested in:

I Definition 8. Let C be an arithmetic circuit that computes a polynomial f . We call
C combinatorial if f has non-negative coefficients on its multilinear part, and C can be
evaluated over Z at numbers of absolute value at most τ using poly(τ) bit operations.
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We remark that the last condition of this definition is a barely concealed crutch to avoid
having to think about subtleties regarding a possible doubly exponential blowup of inputs
in general arithmetic circuits, which are irrelevant in our applications. For a very similar
reason, we only speak about evaluation over Z; namely, in order to ignore potential issues
with representations of complex numbers.

3.1 Multilinear Detection
As promised, we will now start out with an easy application of Extensor-Coding. Speaking of
promises, it is again in order to remark that the problems discussed henceforth are promise
problems, in the sense that there is no known efficient method of checking whether an input
circuit satisfies the condition of being combinatorial.

I Theorem 9. There is a deterministic algorithm that, given a combinatorial arithmetic
circuit C of size s and an integer k, decides whether or not the polynomial computed by C
contains a multilinear monomial of degree k in time 2ωk · poly(s) < 5.19k · poly(s).

Proof. Consider the lifted Vandermonde coding φ, and assume that the polynomial computed
by C is n-variate.

The algorithm then simply evaluates C at (φ(1), . . . , φ(n)), and outputs “yes” if and only
if the coefficient of e[2k] in the resulting element of Λ(V ⊕ V ) is non-zero.

The running time is immediate from the definition and Theorem 6, and correctness can
be seen as follows. We first have to take care of the fact that our algebra is not commutative,
strictly speaking, but nevertheless we evaluate a commutative polynomial over it. This is
remedied either by a standard degree-k homogenization argument on C, and, depending on
k, a subsequent single sign correction of the result. Alternatively, one can observe that the
signs are consistent across each degree individually, and monomials of different degrees are
linearly independent, so that the different signature arising when evaluation over the image
of φ will not make a difference. From the fact mentioned in discussion about Vandermonde
codings, every monomial containing an indeterminate twice will vanish. The parts of degree
less than k do not enter into the coefficient of e[2k], and parts of degree more than k will go
to zero anyways. Now, let L be the set of multilinear monomials in the polynomial computed
by f . Each such monomial m identifies a subset of {1, . . . , n}, and by abuse of notation, we
will not distinguish between a monomial and a subset. Furthermore, we denote with cm the
coefficient of m, which is non-negative by the assumption on C, and let Vm be the 2k × 2k
matrix (φ(i))i∈m. Then the coefficient of e[2k] can be seen to be equal to

∑
m∈L cm ·det(Vm)2,

which is non-zero if and only if one of the determinants is non-zero. This in turn happens if
and only if there is a multilinear monomial of degree k in the polynomial computed by C. J

We also obtain the more useful skew variant:

I Theorem 10. There is a deterministic algorithm that, given a skew combinatorial arithmetic
circuit C of size s and an integer k, decides whether or not the polynomial computed by C
contains a multilinear monomial of degree k in time 4k · poly(s).

Proof. Follows verbatim like Theorem 9 after replacing Theorem 6 by Proposition 5. J

3.2 k-Distinct Detection
We will now turn to the monomial detection problem that will later on be used in applications,
namely the k-distinct detection problem. Again, the input here is an arithmetic circuit, but
this time, the task is to decide whether there exists a monomial containing at least k distinct



C. Brand 25:11

indeterminates. Using the folklore trick of replacing every variable xi by 1 + t · xi with a
formal indeterminate t, turning a nilpotent variable xi into an (almost) idempotent one, and
then extracting the coefficient of tk, we obtain:3

I Theorem 11. There is a deterministic algorithm that, given a skew combinatorial arithmetic
circuit C of size s that computes a polynomial that only has non-negative coefficients, and an
integer k, decides whether or not the polynomial computed by C contains a monomial with at
least k different variables in time 4k · poly(s).

A proof sketch is given in the full version. Equipped with these observations, we may now
turn to our application problems.

4 Graph Problems

We will make use of the classic Directed Matrix-Tree Theorem, following the presentation
in [7]. Let us first define the Laplacian of a directed graph G = (D,A). To this end, let
X = {xa | a ∈ A} be a set of formal indeterminates labeled with the arcs of a graph, and
define the matrix L = (`uv)u,v∈V through

`uv =


∑

w∈V :wu∈A xwu if u = v

−xuv if uv ∈ A
0 if uv /∈ A

.

After fixing a root r ∈ V , we will consider Lr, the Laplacian punctured at r, which is defined
as the matrix obtained from L by striking row r and column r. With these definitions in place,
we have the following well-known theorem, and just as [7], we refer to the corresponding
chapter of Gessel and Stanley in the Handbook of Combinatorics [20] for a proof.

I Theorem 12 (Directed Matrix-Tree Theorem). Let G = (D,A) be a directed graph. For all
r ∈ V , the following holds.

detLr =
∑

T = (V, B) is an
out-branching of G

rooted at r

∏
b∈B

xb .

In other words, the determinant of Lr is the multivariate generating function of the set
of out-branchings rooted at r. The important insight is now the following: All known
(randomized) efficient algorithms for detecting k-multilinear terms – and, by extension,
k-distinct terms – in the polynomial computed by an arithmetic circuit rely on this circuit
not involving cancellations in their computation, i.e., they need to be monotone.

However, by a theorem of Jerrum and Snir [23], computing detLr using such a monotone
circuit requires circuits of exponential size in n.

On the other hand, there are efficient skew arithmetic circuits (this time with cancellations)
for computing the n× n determinant polynomial:

I Theorem 13 ([31]). There is a family of skew arithmetic circuits (Cn)n∈N such that Cn

computes the n× n determinant polynomial, and the size s(n) of Cn satisfies s(n) ≤ poly(n).
Furthermore, there is an algorithm that, upon input 1n, outputs a description of Cn in time
poly(n), and every circuit can be evaluated over Z in polynomial time in the length of the
input representation.

3 We might just replace the indeterminate t by 1, and extract the degree-k term of the result in the exterior
algebra. Using an extra indeterminate t allows us to avoid explaining how degree is a well-defined
concept even over exterior algebras.
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In fact, the n×n determinant polynomial is complete – for a suitable notion of reduction – for
the adequately named class VDET of polynomial families computable by poly(n)-sized skew
arithmetic circuits, defined ibid. Importantly, this together with the Matrix-Tree Theorem
12 also shows that detLr is a combinatorial polynomial.

4.1 Out-Branchings
Let us now proceed gently with a first application of what we have gathered so far.

I Theorem 14. There is a deterministic algorithm that, given a directed edge-colored graph
D on n vertices and an integer k, decides whether D has a k-colorful out-branching in time
4k · poly(n).

Proof. First, replace every variable xa by a fresh variable corresponding to its color c(a), say
yc(a), and denote the corresponding symbolic matrix with Lr(y). Since detLr is combinatorial
and skew, so is detLr(y), and we can perform the k-distinct detection from Theorem 11 in
the claimed running time. The existence of a monomial with k distinct variables in detLr(y)
is now clearly equivalent to the existence of a k-colorful out-branching in D. J

Theorems 12, 13 and Theorem 11 immediately yield a deterministic algorithm for the problem,
running in time 4k · poly(n). We note that this is already a significant improvement over the
time bound of 5.14k · poly(n) on the runner-up algorithm of [37].

I Proposition 15 (Superseded by [22]). There is a deterministic algorithm that, given a
directed graph D on n vertices and an integer k, decides whether D has a k-internal out-
branching in time 4k · poly(n).

Proof. First, replace every variable xuv be a fresh variable corresponding to its tail, say yu,
and denote the corresponding symbolic matrix with Lr(y). Since detLr is combinatorial and
skew, so is the n-variate polynomial detLr(y), and we can perform the k-distinct detection
from Theorem 11 in the claimed running time. It has been observed by Björklund et al. [7]
that this is neatly equivalent to the input instance containing a k-internal out-branching. J

To speed this up, we can more or less just plug in an Extensor-Coding into the analysis from
[22] and set a new record bound for the k-internal out-branching problem. We defer the
proof to the full version.

I Theorem 16. There is a deterministic algorithm that, given a directed graph D on n vertices
and an integer k, decides whether D has a k-internal out-branching in time 3.21k · poly(n).

The corresponding results for k-internal spanning trees of undirected graphs follow immedi-
ately by standard reductions to the directed case (see [22]).

4.2 Colorful Planar Perfect Matchings
Just like out-branchings, perfect matchings in planar graphs have an efficiently computable
multivariate generating function, namely the Pfaffian Pf A of a suitable skew-symmetric
matrix A. Gutin et al. [22] employ a determinantal identity for the Pfaffian, and do so by
evaluating the determinant polynomial in question over the integers in a black-box fashion.
Namely, they exploit that Pf(A)2 = det(A). In the very last step, this requires a square
root extraction, which is a perfectly viable path over the integers, but not over more general
algebras. Therefore, instead of construing Pf(A) as

√
det(A), we rely on an observation

of Flarup et al. [15], who show that the Pfaffian has efficient skew circuits. Putting this
together, we immediately obtain:
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I Theorem 17. There is a deterministic algorithm that, given an undirected edge-colored
planar graph G on n vertices and an integer k, decides whether G has a k-colorful perfect
matching in time 4k · poly(n).

5 The Dimension Barrier

In this section, we will explain Theorem 4. The entire proof is deferred to the full version.

5.1 The Subalgebra Generated by Evaluation Points
Let us first elaborate on the fundamental insight that motivates this result and that was
alluded to already in the introduction: Let f be a complex polynomial, such as the polynomial
computed by a circuit in, say, Theorem 11. During the evaluation of this polynomial f
(or rather the circuit computing it) at points from the image of φ, only sums and wedge
products of elements of the image of φ are ever formed. Note that this is what we do in all
our applications: We only plug in points of the form φ(c) for some c ∈ C. We can say this
rigorously and concisely by stating that during such an evaluation, all computation may only
occur in the subalgebra of Λ(V ⊕ V ) generated by the image of φ, which is – by definition
– the set of all sum-wedge product combinations of the generating set. It is precisely the
subalgebra generated by these elements φ(c) that we will study. The fundamental quantity
associated with this subalgebra is its dimension, that is, the dimension of the subalgebra
as a complex vector space. Let us stress again the argument from the introduction that
any potential progress on the technique in its present form hinges on the dimension of this
subalgebra: It provides both strict lower bounds and a good guide towards the upper bounds
one can hope for when solving problems using Extensor-Coding.

5.2 A Family of Related Subalgebras
The decisive property that makes Vandermonde codings so useful is that any distinct k of
them are linearly independent, which is commonly referred to the set of Vandermonde vectors
being in general position. This, however, is not only a property enjoyed by Vandermonde
vectors. First of all, any finite random set of vectors is in general position almost certainly.

This suggests that instead of considering the subalgebra generated by Vandermonde
codings, one might as well just take any n random vectors and proceed with them. Extensive
computational experiments have shown, however, that the expected dimension of this
subalgebra is almost as high as the dimension of the full algebra. Curiously, it seems to be
equal (and in fact this was the only case that ever occurred during all our experiments) to
the k-th Catalan number, which grows asymptotically faster than 4(1−ε)k for all ε > 0.

It is worth pondering about this phenomenon for a little while. From a matroid perspective,
the Vandermonde codings just correspond to a representation of the k-uniform matroid over
an n-element universe. One might now hope that the dimension of the subalgebra generated
by the lifts of the columns of this representation matrix is a matroid invariant; however, this
is not the case. Even more, most representations are just as bad as the worst case.

Remarkably, the extraordinarily well-behaved case of the Vandermonde representation
transfers quite directly to a related family of subalgebras. Consider any set P = {p1, . . . , pk}
of formal univariate polynomials that are linearly independent and of degree less than k. In
other words, a basis of the set of polynomials of degree less than k. We can form, for any n,
a k×n evaluation matrix of this set P , where the i-th row is given as (pi(1), pi(2), . . . , pi(n)).
If we pick as P the standard monomial basis, this is just the Vandermonde representation.
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However, we may as well pick any other basis, and the resulting matrix will again have the
property that any subset of k columns is linearly independent. This works, provided the pi

do not have a common root at the evaluation point. We can take care of this easily by just
picking a different, appropriate set of evaluation points. Note that this set exists (and in fact,
almost certainly, any random set will do) by the fact that the pi are distinct polynomials.
Now, we can again study the subalgebra of Λ(V ⊕ V ) generated by the lifts of the column
vectors of this evaluation matrix. Surprisingly, the argument for the upper dimension bound
carries over immediately, but we could not find a corresponding proof for the lower bound.
This opens up the exciting possibility of finding lower-dimensional algebras in this family,
that could lead to even faster algorithms. Note that despite the main motivation for studying
this algebra may stem from the flagship k-path problem, due to the connection to multilinear
detection, finding these algorithms has impacts for all the problems that reduce to this special
case of multilinear detection, including those studied in this paper.

5.3 The Barrier
As announced, we will merely state the relevant theorem. A full, detailed proof can be found
in the full version.

I Theorem 18. Let V = Ck and let F2k+1 be the (2k+1)th Fibonacci number. The subalgebra
of Λ(V ⊕V ) generated by the image {φ(c) | c ∈ C} of φ is of dimension exactly equal to F2k+1.

Furthermore, for any linear basis P of the univariate polynomials of degree at most k,
denote for c ∈ C with P (c) the column vector obtained by evaluating all polynomials in P at
c. Then, the subalgebra generated by {P (c) | c ∈ C} is of dimension at most F2k+1.
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Abstract
We study Set Cover for orthants: Given a set of points in a d-dimensional Euclidean space and a
set of orthants of the form (−∞, p1]× . . .× (−∞, pd], select a minimum number of orthants so that
every point is contained in at least one selected orthant. This problem draws its motivation from
applications in multi-objective optimization problems. While for d = 2 the problem can be solved in
polynomial time, for d > 2 no algorithm is known that avoids the enumeration of all size-k subsets of
the input to test whether there is a set cover of size k. Our contribution is a precise understanding
of the complexity of this problem in any dimension d > 3, when k is considered a parameter:

For d = 3, we give an algorithm with runtime nO(
√

k), thus avoiding exhaustive enumeration.
For d = 3, we prove a tight lower bound of nΩ(

√
k) (assuming ETH).

For d > 4, we prove a tight lower bound of nΩ(k) (assuming ETH).
Here n is the size of the set of points plus the size of the set of orthants. The first statement comes
as a corollary of a more general result: an algorithm for Set Cover for half-spaces in dimension 3.
In particular, we show that given a set of points U in R3, a set of half-spaces D in R3, and an integer
k, one can decide whether U can be covered by the union of at most k half-spaces from D in time
|D|O(

√
k) · |U |O(1).

We also study approximation for Set Cover for orthants. While in dimension 3 a PTAS can be
inferred from existing results, we show that in dimension 4 and larger, there is no 1.05-approximation
algorithm with runtime f(k) · no(k) for any computable f , where k is the optimum.
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1 Introduction

Motivated by applications in multi-objective optimization, we study a geometric variant of
the classic Set Cover problem. In general, Set Cover is defined as follows. Let U be a
universe; typically, U is a finite collection of elements or Rd for some constant d > 1. Given a
finite set U ⊆ U and a finite set T of subsets of U, the goal is to find a set S ⊆ T of minimum
size such that for each u ∈ U it holds that u ∈ F for some F ∈ S. We let n = |T |+ |U |.

Set Cover can be approximated within factor ln |T | by a greedy algorithm [13, 29, 34],
but, unless P = NP, no polynomial-time algorithm can attain an approximation factor of
(1 − ε) ln |T | for any ε > 0 [20]. Moreover, when parameterized by the expected solution
size k (formally, here we consider a decision problem), the problem is W[2]-hard [21] and
there is no O(nk−ε)-time algorithm for any ε > 0, unless the Strong Exponential Time
Hypothesis (SETH) fails [50]. Recently, it was even shown that, unless the Gap Exponential
Time Hypothesis (Gap-ETH) fails, Set Cover has no f(OPT)|T |o(|OPT|)-time algorithm
that approximates the optimum OPT within a factor of a(OPT), for any computable a and
f [9]. This makes Set Cover a very hard algorithmic problem in general.

Fortunately, through years of research, we know that Set Cover becomes much easier
when geometry is involved. If the universe U is equal to Rd for some d > 1, the set U is a set
of points, and the sets in T are defined by geometric objects, then the problem is known as
Geometric Set Cover. Then various restrictions on the shapes of objects allowed in T
may lead to different tractability results. While for d = 1 the problem is polynomial-time
solvable when T is required to consist of intervals, there are easy cases in d = 2 that are
NP-hard, such as when T is defined by sets of unit squares or disks [24, 30]. However,
the approximability of Geometric Set Cover in d = 2 is significantly better than in
general. Approaches like the shifting technique [23], ε-nets [1, 2, 8, 14, 33, 41, 47], local
search [3, 25, 44], sampling techniques [11, 55] and separator techniques [43] have proven
successful in obtaining constant-factor approximation algorithms and approximation schemes.
Recently, Govindarajan et al. [25] showed a very general approximability result, namely that
Geometric Set Cover admits a PTAS when the underlying sets in T are non-piercing
regions, which includes the case of pseudo-disks. From a parameterized perspective, Marx
and Pilipczuk [39] showed that Geometric Set Cover has a |T |O(

√
k)-time algorithm

when T is a set of disks or a set of squares. Moreover, no no(
√

k)-time algorithm exists for
these cases unless the Exponential Time Hypothesis fails [36, 39]. For piercing regions, such
as axis-parallel rectangles and fat triangles, Geometric Set Cover is APX-hard [10, 27]
and admits no |T |o(k)-time algorithm unless ETH fails [39]. For d = 3, a generic PTAS is
also unlikely, as Geometric Set Cover is APX-hard even for unit balls [10], although
constant-factor approximation algorithms do exist in certain cases [33]. This makes the
complexity of Geometric Set Cover highly interesting for d > 3.

Orthant Cover. In this paper, we contribute to the knowledge about Geometric Set
Cover by considering the case when the sets in T are orthants, which we call Orthant
Cover. An orthant is a subset T ⊂ Rd of the form T = {(x1, . . . , xd) ∈ Rd : xi 6
pi for all i ∈ [d]} for some (p1, . . . , pd) ∈ Rd. Alternatively, an orthant can be defined as
(−∞, p1]× · · · × (−∞, pd].
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Our interest in Orthant Cover is motivated by multi-objective optimization. Here an
optimization problem (like shortest path) is associated with d > 1 objectives (e.g. every edge
has a cost and transition time), see, e.g., [5, 22, 26, 45, 48, 49]. We identify each possible
solution of the optimization problem with the vector in Rd that lists all of its d objectives.
A solution p ∈ Rd is called Pareto-optimal if there is no solution q ∈ Rd with q > p (i.e.,
qi > pi for all 1 6 i 6 d). The set of all Pareto-optimal solutions F ⊆ Rd is called the Pareto
front [32] (or trade-off curve [56] or skyline [4]), and computing it is the standard goal of
multi-objective optimization.

However, the Pareto front can be prohibitively large to display to the end user. Therefore,
a typical relaxation is to compute a (1 + ε)-approximation of the Pareto front. This is
defined as a subset F ′ of the Pareto front F such that for every p ∈ F there exists a q ∈ F ′
with p 6 (1 + ε)q [48]. The question then becomes to find a Pareto front approximation
of minimum size. This problem has been studied in multi-objective optimization under
different names like “approximately dominating representatives” (ADR) [32] and “ε-indicator
subset selection” [6, 7, 57]. Observe that we can solve ADR using an algorithm for Orthant
Cover by setting

U := F and T := {(−∞, (1 + ε)f1]× . . .× (−∞, (1 + ε)fd] : (f1, . . . , fd) ∈ F}.

Therefore, Orthant Cover can be seen as an asymmetric variant of ADR. This provides
strong motivation to gain an algorithmic understanding of Orthant Cover.

We already know that in dimension d = 2, Orthant Cover can be solved in polynomial
time, and even in near-linear time in n [7, 32]. For d > 3, however, the problem becomes
NP-hard [32]. Moreover, if we focus on looking for a solution of size at most k, no algorithm is
known that avoids the enumeration of all size-k subsets of T . In fact, no no(k)-time algorithm
is known, even for d = 3. Therefore, we ask in which dimensions can the naive algorithm for
Orthant Cover with running time nO(k) be significantly improved upon?

Our Contribution. In this paper, we resolve the parameterized complexity of Orthant
Cover when parameterized by the size of the solution. We present an algorithm for d = 3 that
improves on the naive nO(k)-time algorithm, and rule out any further significant improvements
in any dimension. Our lower bounds are conditional on the Exponential Time Hypothesis
(ETH) by Impagliazzo, Paturi, and Zane [28], which (avoiding technical details) states that
3-SAT has no algorithm with running time 2o(n), where n is the number of variables.

I Theorem 1. Consider the Orthant Cover problem in dimension d. Then:
1. for d = 3, it can be solved in time |T |O(

√
k) · |U |O(1), in particular in time nO(

√
k);

2. for d = 3, it cannot be solved in time f(k)no(
√

k) for any computable f , assuming ETH;
3. for d > 4, it cannot be solved in time f(k)no(k) for any computable f , assuming ETH.

In the above and for all the results stated in this paper, we measure the running time in
the number of arithmetic operations over the reals given on input, i.e., in the strong fashion.
Note that n = |T |+ |U |.

Thus, we determine the optimal time complexity of Orthant Cover as nΘ(
√

k) for d = 3
and nΘ(k) for d > 4, assuming ETH. This dependence on d is somewhat surprising, since many
previous conditional lower bounds for geometric problems are of the form nΩ(k1−1/d) [40, 52].
We are only aware of one other work establishing problems to be easier for d = 3, but for
d = 4 to be as hard as in any high dimension, namely k-means and k-median [15].

The algorithm of Theorem 1.1 actually follows from a more general result.
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I Theorem 2. Given a set of points U in R3, a set of half-spaces D in R3, and an integer
k, one can decide whether U can be covered by the union of at most k half-spaces from D in
time |D|O(

√
k) · |U |O(1).

It is known that Orthant Cover can be reduced to this case (see [46, Lemma 2.3] or [12,
Section A.3]). We observe that Geometric Set Cover for disks in R2 (Disk Cover) can
also be reduced to this case, as follows. Consider an instance of Disk Cover where the
point set U and the disk set T are in the plane z = 0, and let p be a point in R3 outside
this plane. For each disk D ∈ T , we can define a ball B(D) whose intersection with the
plane z = 0 is D and that has p on its boundary. We apply an inversion with center p. As a
result, each ball B(D) is mapped to a half-space that contains the inverse of a point x ∈ U if
and only if x is covered by D. Hence, Theorem 2 also generalizes the known nO(

√
k)-time

algorithm for Disk Cover [39].
We also study the approximability of Orthant Cover. Previous work implies a PTAS

for d = 3 running in nO(1/ε2) time by a reduction (see [46, Lemma 2.3] or [12, Section A.3])
to the known PTAS for half-spaces in dimension 3 [44], and APX-hardness for d > 4 by a
reduction (see Section 4) to the known APX-hardness of Rectangle Cover [54]. In this
paper, we rule out any significant improvement for d = 3, particularly the existence of an
Efficient PTAS. For d > 4, we establish a stronger inapproximability result conditional on
Gap-ETH [19, 35].

I Theorem 3. Consider the Orthant Cover problem in dimension d. Then:
1. for d = 3, it has no PTAS with running time f(ε)no(

√
1/ε) for any computable f , assuming

ETH;
2. for any d > 4, it has no 1.05-approximation algorithm running in time f(k)no(k) for any

computable f , assuming Gap-ETH.

Technical Overview. Our algorithm for half-spaces in R3 is a branching algorithm that
attempts to split the input point set based on a balanced separator S0 of the optimum
solution, where the separator should be small: of size O(

√
k). However, we do not know

the optimum solution and thus we cannot know the separator. Instead, we show that we
can enumerate a set of candidate separators in time |T |O(

√
k), in which the separator S0 is

guaranteed to be contained. Similar approaches to obtain a subexponential-time algorithm
for geometric and planar problems are known to exist (e.g. [31, 39]). However, the existence
of the balanced separator of size O(

√
k) is somewhat surprising here, since in 3 dimensions

only separators of size O(k2/3) are known (see e.g. [53]). In order to get the desired separator
size, we work on the surface of the convex polytope which is defined as the complement of
the union of half-spaces in the solution. The edge graph of this polytope is planar, which
allows us to define an appropriately small separator of the input point set.

For the nΩ(
√

k) lower bound, the first observation is that Orthant Cover for d = 3 is
at least as hard as Geometric Set Cover in the plane where the objects are translates of
an equilateral triangle. For the problem of Geometric Set Cover for squares, an nΩ(

√
k)

conditional lower bound is known via a reduction from the Grid Tiling problem [37, 40].
In this reduction, it is crucial that a gadget of (shifts of) a square can “transport” a value a
from its left side to its right side, and a value b from its top side to its bottom side. For the
related Dominating Set problem on intersection graphs of triangle translates, the proof
strategy does generalize [18]. However, triangle translates are not flexible enough to naively
follow this proof strategy for Geometric Set Cover: in a sense they have too few sides.
Therefore, while our lower bound is also a reduction from Grid Tiling, it is much more
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subtle. Our most crucial construction is a “sumcheck” gadget that obtains “input values”
a and b at two sides of the involved triangles and results in the value a+ b at the “output
side”, while disallowing certain combinations. Using the “sumcheck” gadget on the values
a+ b and −a allows us to recover value b, and similarly we can recover a. Hence, we can use
an essentially planar layout of triangles to transfer a value a from left to right and a value
b from top to bottom; see Figure 3 for illustrations. Using this construction we can then
simulate Grid Tiling, obtaining the claimed lower bound.

The nΩ(k) lower bound for d = 4 as well as our results on approximation algorithms all
follow by relatively simple reductions to or from known results.

Organization. We prove Theorem 2 in Section 2, which implies Theorem 1.1 as per [46,
Lemma 2.3] or [12, Section A.3]. We prove the remainder of Theorem 1 in Sections 3 and 4,
which respectively contain a sketch of the lower bound for d = 3 and the lower bound for
d = 4. Details of the lower bound for d = 3 as well as the proof of Theorem 3 are deferred to
the full version of the paper.

2 Half-spaces in dimension 3

In this section, we prove Theorem 2 (and by extension, Theorem 1.1) by giving an algorithm
for Geometric Set Cover for half-spaces in R3. An instance of this problem consists
of a set of half-spaces D in R3, a set of points U in R3, and an integer k. The question
is whether one can select k half-spaces from D so that every point of U is covered by at
least one of them.

We shall say that a set of half-spaces D in R3 is in general position if no two boundaries
of half-spaces in D are parallel, and no four boundaries of half-spaces in D meet at one point.
Note that given an instance (D, U, k) of Geometric Set Cover for half-spaces, one may
slightly perturb the half-spaces of D so that every half-space still covers the same subset
of points in U as before, but after the perturbation they are in general position. Hence,
we shall assume this property in all the considered instances of Geometric Set Cover
for half-spaces.

2.1 Algorithm
Our algorithm will rely on the following balanced separator lemma.

I Lemma 4. Suppose (D, U, k) is an instance of Geometric Set Cover for half-spaces in
R3 where D is in general position, and let S ⊆ D be an optimum solution to this instance,
whose size ` satisfies 4 < ` 6 k. Then there exists a subset S0 ⊆ S with |S0| 6 O(

√
k) and

a partition P of U \
⋃
S0 with |P| 6 k, such that the following property holds: For each

W ∈ P, if `W is the optimum size of a solution to the instance (D,W, k), then `W 6 2
3` and

|S0|+
∑

W∈P `W 6 `.
Moreover, given (D, U, k), one can in time |D|O(

√
k) · |U |O(1) enumerate a family N

consisting of at most |D|O(
√

k) pairs (S0,P) with S0 ⊆ D, P a partition of U \
⋃
S0 with

|P| 6 k, and the guarantee that N contains at least one pair satisfying the property above.

Before we give a proof of Lemma 4, we show how it can be used to construct an algorithm
as promised in Theorem 2. The algorithm is presented below using pseudo-code as Algorithm
halfSpaceCoverDim3.

ESA 2019



26:6 On Geometric Set Cover for Orthants

Algorithm 1 Algorithm halfSpaceCoverDim3.

Input: Instance (D, U, k) of Geometric Set Cover for half-spaces in R3 with D
in general position

Output: An optimum solution S ⊆ D provided it has size 6 k, or ⊥ otherwise

S ← ⊥
for each C ⊆ D with |C| 6 min(k, 4) do

if U ⊆
⋃
C and |C| < |S| then // convention: |⊥| =∞

S ← C
if k 6 4 then

return S
N ← family enumerated using the algorithm of Lemma 4 for (D, U, k)
for each (S0,P) ∈ N do

for each W ∈ P do
SW ← halfSpaceCoverDim3(D,W, b2k/3c)

C ← S0 ∪
⋃

W∈P SW // convention: ⊥ ∪X = ⊥
if |C| 6 k and |C| < |S| then
S ← C

return S

As argued, we may assume that D is in general position. First, we look through all
candidates C for a solution with |C| 6 4. In case any such C covering U is found, we store
the smallest one as the optimum solution. Next, provided k > 4, we apply the algorithm
of Lemma 4 to the instance (D, U, k) and enumerate a suitable family of pairs N . For each
(S0,P) ∈ N we apply the algorithm recursively to all instances (D,W, b 2

3kc) for W ∈ P,
yielding solutions SW . We then consider C = S0∪

⋃
W∈P SW as a candidate solution, provided

none of SW is equal to ⊥. Finally, we output the smallest candidate solution of size at
most k found.

The correctness of the algorithm follows immediately from Lemma 4. Indeed, if (D, U, k)
admits a solution of size at most 4, then an optimum solution will be found in the initial
search. Otherwise, Lemma 4 ensures us that for some pair (S0,P) ∈ N , the recursive calls of
the algorithm will find solutions SW for W ∈ P which together with S0 form an optimum
solution to (D, U, k).

We are left with bounding the time complexity of the algorithm. Let C > 0 be such that
the algorithm of Lemma 4 always returns a family N satisfying |N | 6 |D|C

√
k. Let T [d, k]

be the maximum number of leaves of the recursion tree produced by the algorithm when
applied to an instance with |D| = d and parameter k. Then T [d, k] = 1 for k 6 4, while for
k > 4 we have the following recursive inequality:

T [d, k] 6 k · dC
√

k · T [d, b2k/3c].

Here, factor k · dC
√

k comes from the fact that for at most dC
√

k pairs (S0,P) ∈ N we
apply the algorithm recursively to |P| 6 k instances with parameter b2k/3c. Unraveling the
recursion, we have

T [d, k] 6 klog3/2 k · dC
√

k·(1+(2/3)1/2+(2/3)2/2+(2/3)3/2+...) = klog3/2 k · dC′
√

k = dO(
√

k),

where C ′ = C · 1
1−(2/3)1/2 .

We conclude that the recursion tree for an instance with d = |D| and parameter k has at
most dO(

√
k) leaves, so it also has dO(

√
k) nodes. The internal computation for each node

takes time dO(
√

k) · |U |O(1), so the total running time of dO(
√

k) · |U |O(1) follows.
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2.2 Balanced separator lemma
We now move to the proof of Lemma 4, which spans the remainder of this section.

Since S is an optimum solution to (D, U, k), we have that S is minimal in the following
sense: there is no S ∈ S such that S ⊆

⋃
T∈S\{S} T . It turns out that this minimality

condition together with the assumption |S| > 4 implies that S cannot cover the whole space;
this is implied by the following result.

I Theorem 5 (Danzer et al. [17]). If a set of half-spaces S in R3 is minimal and
⋃
S = R3,

then |S| 6 4.

For every half-space S ∈ S we may choose an affine function ϕS : R3 → R so that

S = {x ∈ R3 : ϕS(x) 6 0}.

In particular, we set ϕS(x) = 〈x−vS , nS〉, where vS is a point in the boundary of S, the vector
nS is the normal of the boundary plane of S pointing away from S, and 〈., .〉 denotes the inner
product in R3. Let S = {x ∈ R3 : ϕS(x) > 0}; that is, S is the closure of the complement
of S. Then the complement of

⋃
S is the interior of the polytope P defined as follows:

P =
⋂

S∈S
S = {x ∈ R3 : ϕS(x) > 0 for all S ∈ S}.

By Theorem 5 we infer that P is non-empty.
We shall also assume from now on that the polytope P is bounded. This can be achieved

by adding to S up to 6 dummy half-spaces of the form {(x1, x2, x3) ∈ R3 : xi > M} and
{(x1, x2, x3) ∈ R3 : xi 6 −M} for i = 1, 2, 3 and some large M , so that none of the dummy
half-spaces covers any point of U . These may be perturbed slightly so that S remains in
general position. As we will not use the optimality of S from now on, this can be safely done
at the cost of replacing ` with `+ 6 in all asymptotic bounds. Note that we do ensure that
minimality of S is maintained, and thus possibly less than 6 dummy half-spaces are added.

Recall that we denote |S| = `. Thus, P is a bounded convex polytope in R3 with ` faces,
one for each half-space of S (this follows by minimality). Since S is in general position, at
each vertex of P three faces meet. Let H be a graph whose vertices are the vertices of P and
whose edges are the edges of P . Observe that the boundary of P – which consists of its faces
– is homeomorphic to a sphere, so this homeomorphism shows that H admits a drawing in
the sphere with ` faces. In the following, we identify faces of H with the faces of P . Since
every face f of P is a polygon, the boundary of f is a simple cycle in H. Therefore, H is a
simple 3-regular plane graph (i.e. without loops and multiple edges connecting the same pair
of vertices) that is connected and bridgeless.

Let H ′ be the radial graph of H: the vertex set of H ′ consists of vertices and faces of
H, and in H ′ a vertex u is adjacent to a face f if and only if u lies on the boundary of f .
Note that H ′ is bipartite, with the vertices and faces of H being the bipartition. Also, H ′
admits an embedding into a sphere constructed from the embedding of H as follows: for
every face f pick an arbitrary point xf ∈ f representing it, and connect xf with all vertices
u lying on f using pairwise non-crossing curves within f . Observe that every face of H ′ is
a 4-cycle, induced by two faces of H and the endpoints of an edge shared by them. Since
H is connected and bridgeless, a straightforward argument shows that H ′ is 2-connected.
Since H is 3-regular, it follows that 3|V (H)| = 2|E(H)|, so by Euler’s formula for polyhedra
(|V (H)| − |E(H)|+ ` = 2), we have that |V (H)| = 2`− 4. Consequently, |V (H ′)| = 3`− 4.

We may now apply the following Cycle Separator Theorem of Miller.
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I Theorem 6 ([42], with simplified formulation). Let G be a 2-connected plane graph on n
vertices and let d be the maximum length of a face in G. Suppose µ : V (G) → [0, 1] is a
weight function on the vertices of G such that µ(V (G)) =

∑
v∈V (G) µ(v) = 1. Then there

exists a simple cycle C in G of length at most 2
√

2bd/2cn such that if R1 and R2 are the
(open) connected regions of the plane with C removed, then the vertices contained in R1 have
total weight at most 2/3, and the same holds for R2.

On the vertex set of H ′ define the following weight function: µ(f) = 1
` for every face f of

H, and µ(u) = 0 for every vertex u of H. By Theorem 6, in H ′ there exists a simple cycle C
of length at most 4

√
|V (H ′)| = 4

√
3`− 4 such that every connected component of H ′ − C

contains at most 2
3` vertices that correspond to faces of H. Let

C = (z1, f1, z2, f2, . . . , zq, fq),

where 2q is the length of C (thus q 6 2
√

3`− 4), z1, . . . , zq are consecutive vertices of H
visited by C, and f1, . . . , fq are consecutive faces of H visited by C.

Let Q be a closed poly-line in R3 with vertices z1, . . . , zq, connected with straight line
segments in this order (cyclically). Then the segment between zi and zi+1 (with indices
behaving cyclically modulo q) is entirely contained in the face fi of P . Thus, Q is a curve
contained in the boundary of P (denoted further ∂P ), so it splits ∂P (which is homeomorphic
to a sphere) into two regions, say A1 and A2.

We now color the faces of P in three colors as follows:
faces incident to any of the vertices z1, z2, . . . , zq are colored green;
remaining faces are colored red or blue, depending whether they are contained in A1
or A2.

Note that since three faces meet at each vertex zi, there are at most 4
√

3`− 4 green faces:
f1, . . . , fq and at most one additional face per each vertex zi. Also, red faces do not share
edges with blue faces, because all faces intersecting Q (even at one point) are colored green.
We treat the above coloring of faces of P also as a coloring of all the points of ∂P . Here,
points on edges of P are colored green if any face incident to the edge is colored green, and
they are colored red or blue if all incident faces are red or blue, respectively.

Let X = conv{z1, . . . , zq}. The asserted properties of C immediately yield the following.

B Claim 7. There are at most 4
√

3`− 4 green faces, at most 2
3` red faces, and at most 2

3`

blue faces. No red face shares any edge with any blue face. Moreover, if x is any blue point
on ∂P and y is any red point on ∂P , then the straight line segment with endpoints x and y
intersects X.

As faces of P are in one-to-one correspondence with the half-spaces of S, we may talk
about red, green, and blue half-spaces of S. We next observe that the separating properties
of C carry over to the points of U .

B Claim 8. If a point u ∈ U is simultaneously covered by a red half-space from S and by a
blue half-space from S, then it is also covered by a green half-space from S.

Proof. Let A and B be respectively the red and the blue half-space covering u, and let fA

and fB be the faces of P that correspond to A and B, respectively. Pick any point xA ∈ fA

and xB ∈ fB and let Π be a plane through u, xA, and xB . We may choose xA and xB so that
Π does not contain any vertex of P . Then P ∩Π is a nonempty convex polygon, whose sides
are colored red, green, and blue so that no red side is adjacent to any blue side. Moreover,
the side containing xA is red, while the side containing xB is blue. Call these sides sA and
sB , respectively.
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Call a side s of P ∩Π separating if its extension to a line separates u from P ∩Π in the
plane Π. Since P ∩ Π is convex, separating sides form an interval on the perimeter of P ∩ Π.
Moreover, since A and B cover u, it follows that sA and sB are separating. As sA is red and
sB is blue, from the two claims above we conclude that there exists a green side s of P ∩Π
that is also separating. Then the half-space corresponding to the face of P containing s is
green and it covers u, as required. C

By Claim 8, we may partition U into three subsets:
green points of U that are covered by some green half-space from S;
red points of U that are covered only by red half-spaces from S;
blue points of U that are covered only by blue half-spaces from S.

Denote the above sets by UG, UR, UB , respectively. In the following claims, roughly speaking
we show that X can be used to separate red points of U from blue points of U . Call two points
u, v ∈ U separated by X if the straight line segment with endpoints u and v intersects X.

B Claim 9. For all u ∈ UR and v ∈ UB , we have that u and v are separated by X.

Proof. Let I be the straight line segment with endpoints u and v.
Suppose first that I does not intersect the polytope P . Since both I and P are convex,

there exists an affine functional ψ : R3 → R such that ψ(u) < 0, ψ(v) < 0, but ψ(x) > 0
for all x ∈ P . We may moreover choose ψ so that there exists a vertex w of P for which
ψ(w) = 0. Let the faces of P incident to w be contained in the boundaries of half-spaces
S1, S2, S3. Since ψ is nonnegative on P , it follows that ψ can be written as a nonnegative
linear combination of ϕS1 , ϕS2 , ϕS3 . Then ϕSi

(u) < 0 holds for some index i ∈ {1, 2, 3}, and
similarly condition ϕSj (v) < 0 holds for some index j ∈ {1, 2, 3}. Thus Si covers u and Sj

covers v, so Si is necessarily red and Sj is necessarily blue. However, the faces corresponding
to Si and Sj share an edge incident to the vertex w. This contradicts Claim 7.

Now we know that I indeed intersects P . Let J = I ∩ P . Note that since u ∈ UR, the
endpoint of J closer to u has to be red, for the half-space corresponding to the face of P
containing this endpoint covers u. Similarly, the endpoint of J closer to v has to be blue.
We conclude that, by Claim 7, the segment J has to intersect X. C

B Claim 10. Suppose u, v ∈ U \ UG are separated by X. Then there is no half-space in S
that would simultaneously cover both u and v.

Proof. Let I be the straight line segment with endpoints u and v, and let x be any point
of I ∩X.

Suppose first that x lies on ∂P . Since x ∈ X and all faces of P incident to z1, . . . , zq

are colored green, it follows that x is green. Let S be any half-space of S corresponding
to a green face on which x lies. As x ∈ I, we conclude that S either covers u or v, which
contradicts the assumption that u, v /∈ UG.

Suppose now that x lies in the interior of P . If there was a half-space S ∈ S containing
both u and v, then S would contain the whole segment I, and x in particular, so S would
intersect the interior of P . This is a contradiction with the definition of P . C

Consider now a graph L with vertex set U \ UG, where different u, v ∈ U \ UG are
considered adjacent if and only if they are not separated by X. Then Claims 9 and 10
directly imply the following.

B Claim 11. Every connected component of L is entirely contained either in UR or in UB.
Moreover, no half-space in S covers points from two different connected components of L.
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The existential part of Lemma 4 follows now if we take S0 to be the set of green half-
spaces and P to be the partition of U \ UG into the connected components of L. Here, if
any half-space from S0 turns out to be one of the at most six dummy half-spaces, we may
safely remove it from S0, as it does not cover any point in U anyway. Let us check that
the required properties are indeed satisfied by the pair (S0,P). First, by Claim 7 we have
|S0| 6 2q 6 O(

√
k). Next, for a connected component W of L, let us denote by SW the

set of half-spaces from S that cover at least one point of U \ UG belonging to W . Clearly,
SW is a solution to the instance (D,W, k), hence |SW | > `W . By Claim 10, the sets SW are
pairwise disjoint, and they are clearly disjoint from S0. Hence, we have

` = |S| > |S0|+
∑

W∈cc(L)

|SW | > |S0|+
∑

W∈cc(L)

`W ,

where cc(L) is the set of connected components of L. Also, the sets SW are non-empty,
because every connected component of L requires at least one half-space to be covered,
so

∑
W∈cc(L) |SW | 6 ` entails that |P| = |cc(L)| 6 ` 6 k. Finally, by Claim 9, for each

W ∈ cc(L) the half-spaces of SW are either all red or all blue, which by Claim 7 implies that
|SW | 6 2

3` for all W ∈ cc(L).

We are left with providing an algorithm enumerating a suitable family N . The algorithm
proceeds as follows. Let D′ be D augmented by adding the six dummy half-spaces of the
form {(x1, x2, x3) ∈ R3 : xi >M} and {(x1, x2, x3) ∈ R3 : xi 6 −M} for i = 1, 2, 3 and some
large M , so that none of the added half-spaces covers any point of U . Say that a point
x ∈ R3 is important if it is the intersection of some triple of planes that are boundaries of
some half-spaces in D′. Note that all vertices of the polytope P are important points, while
the total number of important points is at most (|D| + 6)3 and they can be enumerated
in time O(|D|3).

Next, for every q 6 2
√

3 · (k + 6)− 4 = 2
√

3k + 14, iterate through

every choice of 2q half-spaces from D, say S0 = {S1, . . . , S2q};

and every choice of q important points z1, . . . , zq.
Note that there are at most |D|4

√
3k+14 choices for S0 and at most (|D|+ 6)6

√
3k+14 choices

for z1, . . . , zq, hence we iterate through at most (|D|+ 6)10
√

3k+14 choices in total.
Let X = conv{z1, . . . , zq} and let UG be the set of all points of U that are covered by

some half-space of S0. Construct the graph L as described before: the vertex set of L is
U \ UG = U \

⋃
S0, and two points u, v ∈ U \ UG are adjacent if and only if u and v are

not separated by X. Observe that whether u and v are separated by X can be checked
in strongly polynomial time. Indeed, this question boils down to the verifying whether, in
3-dimensional Euclidean space, a given segment intersects a polyhedron defined as the convex
hull of a given set of points, which can be solved by any strongly polynomial-time procedure
for intersecting two convex polyhedra in R3, see e.g. [51, Section 7.3 and notes and comments
to Chapter 7]. Therefore, L can be computed in (strongly) polynomial time. Finally, if L has
at most k connected components, then include in the constructed family N the pair (S0,P),
where P is the partition of U \ UG into the connected components of L.

The bound on the size of N and the running time of the algorithm follow immediately
from the description. The correctness is also clear, as some choice of S0 and z1, . . . , zq

considered by the algorithm is the same as the one considered in the existential argument.
This finishes the proof of Lemma 4.
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3 Lower bound for dimension 3

The goal of this section is to prove Theorem 1, assertion 2. We can restrict our attention to
the case where all points lie on the plane Π = {(x, y, z) : x+ y + z = 0} and the corners of
all orthants lie on the plane {(x, y, z) : x+ y + z = 1}. In such a setting, the intersections
of the orthants with Π form equilateral triangles on Π, which all have the same size and
orientation. In essence, this setting of Orthant Cover is equivalent to finding a geometric
set cover of size k among m translates of some triangle. We call this problem Triangle
Translate Cover. Therefore, Theorem 1.2 is implied by the following theorem.

I Theorem 12. There is no f(k)no(
√

k) algorithm for Triangle Translate Cover for
any computable function f , unless ETH fails.

Here n is m plus the number of points.
Our reduction is from Grid Tiling [38, 16], which is defined as follows. We are

given as input an integer k, an integer n, and a collection S of k2 non-empty sets Si,j ⊆
{1, . . . , n} × {1, . . . , n} for i, j ∈ {1, . . . , k}. The goal is to select an element si,j ∈ Si,j for
each i, j ∈ {1, . . . , k} such that:

If i < k, si,j = (x, y), and si+1,j = (x′, y′), then x = x′.
If j < k, si,j = (x, y), and si,j+1 = (x′, y′), then y = y′.

One can picture these sets in a k×k matrix: in each cell (a, b), we need to select a representative
from the set Si,j so that the representatives selected from horizontally neighboring cells agree
in the first coordinate, and representatives from vertically neighboring cells agree in the
second coordinate. Observe that due to equality conditions, the goal in the Grid Tiling
problem can be stated equivalently as follows: select elements x1, . . . , xk, y1, . . . , yk ∈ [n] such
that (xi, yj) ∈ Si,j for all i, j ∈ [k]. Note that si,j = (xi, yj) in this case. In the following, we
will treat the selection x1, . . . , xk, y1, . . . , yk also as a solution to a Grid Tiling instance.

Our goal is to create a parameterized reduction where the constructed instance of
Triangle Translate Cover has a cover of size ck2 for some constant c if and only if the
original Grid Tiling instance has a solution. This is sufficient due to the following theorem.

I Theorem 13 ([38, 16]). There is no f(k)no(k) algorithm for Grid Tiling for any com-
putable function f , unless ETH fails.

3.1 Gadgets
Due to lack of space, we only give a short intuitive overview of our construction. The
complete construction and all proofs can be found in the full version of the paper.

Let ε = 1
100n . In the Triangle Translate Cover problem, the input triangles are

equilateral triangles; we assume the side lengths are precisely 1. This means our construction
can effectively use three directions, namely along the vectors ē = (1, 0), é = (1/2,

√
3/2),

and è = (1/2,−
√

3/2). For convenience, we let E = {ē,−ē, é,−é, è,−è}. Given a positive
integer N , we use [N ] to denote {1, . . . , N} and [−N ] to denote {−1, . . . ,−N}.

Bundles. We first establish a gadget to represent an integer value. Let N = 2n and e ∈ E.
A bundle is a set of N triangles B = {t1, . . . , tN} such that t1 has its lower-left corner on
the origin and ti+1 is t1 translated by iε · e. The bundle also contains a point pB on the
incenter of tN/2 ensuring that at least one triangle is selected from B. The idea behind the
construction is that each solution will select exactly one triangle from the bundle. In this
manner, the index of the selected triangle represents an integer in [N ]. In the figures, each
bundle has an arrow that indicates the direction along which the translation is done, and the
indices (i.e. the represented integer) increase.
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Figure 1 Left, middle: transportation gadgets. Arrows indicate the direction of increasing indices
within the bundle. Right: negation gadget.
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Figure 2 Integer gadgets with some transportation to the outside.

A negative bundle uses a different indexing, and represents the integer −N + i− 1. Hence,
the index of the selected triangle represents an integer in [−N ]. (In figures, such bundles are
indicated with a minus sign.)

Transportation gadget. We now establish a gadget to transport an integer value over some
distance; this is built on a pair of bundles B and B′ as in Figure 1. Observe that the
boundaries of the triangles of B and B′ induce an (N − 1)× (N − 1) lattice with directions
è and ē. Now place points in the cells of this lattice as indicated in the figure. In this way,
we are able to transport the integer value i represented by the triangle selected from B to an
integer value of at most i for the bundle B′. Note that within certain limits, we can translate
B′ at will, so that we can “lengthen” or “shorten” as needed for the rest of the construction.
By switching the sign of the values represented by one bundle of the transportation gadget,
we get a negation gadget (see right hand side of Figure 1); if we make a cycle by joining
transportation gadgets, we get an integer gadget, within which the selected triangles of each
bundle must represent the same integer value (see Figure 2).

Sum and sumcheck gadget. We can create a sum gadget, which has three bundles, two of
which are considered input bundles and one an output bundle. The gadget has the property
that if the triangles selected in the two input bundles represent a and b respectively, then
the output bundle must have a triangle representing some value that is at most a+ b. Such
a gadget is depicted in Figure 3. By adding extra points (indicated by red crosses), we can
also disable the selection of certain triplets (a, b, a+ b). For a set S ⊆ [n]× [n], this allows
us to create a sumcheck gadget where given inputs a, b the output is at most a+ b, where
equality can occur if and only if (a, b) ∈ S. This is the crucial step that eventually allows us
to check for the sets Si,j corresponding to the cell i, j of the Grid Tiling instance.
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6 a+ b
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b = bi,j
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bi+1,j

6 a

6 b

6 b

6 a

6 −a

6 −b

6 a+ b

Gh
i,j

Gh
i,j+1

Gv
i,j

Gv
i+1,j

Si,j
check

sum

sum

sum

Figure 3 Left: summation gadget. Adding the points indicated by the red crosses creates an
S-sumcheck gadget for S = {(1, 1); (1, 3); (2, 2)}. Right: schematic representation of a cell (i, j) of
the Grid Tiling instance. The transportation gadgets (blue) carry inequalities involving a = ai,j

and b = bi,j .

3.2 The complete construction
The idea of the reduction is to have for any pair of neighboring tiles an integer gadget which
contains the value that these neighboring tiles must agree on. Given such integer gadgets,
we can realize a single tile (i, j) ∈ [k]× [k] using our gadgetry the following way. We want
to transfer the value a that is our horizontal selection and the value b which is our vertical
selection between these integer gadgets. At the same time, we want to ensure that (a, b) ∈ Si,j .
We do this as explained schematically in Figure 3. From the integer gadgets on the left
and on the top, we extract the integer values stored there, say ai,j and bi,j respectively,
and transport these values (using transportation gadgets) to an Si,j-sumcheck gadget. The
output of this gadget will be an integer c satisfying c 6 ai,j + bi,j , and moreover c < ai,j + bi,j

if (ai,j , bi,j) 6∈ Si,j . Using negation gadgets, we can extract −ai,j and −bi,j from the left and
top integer gadgets, respectively. Each of these values can be combined with c through a sum
gadget, whose output (i.e., third bundle) recovers integer values ai,j+1 6 ai,j and bi+1,j 6 bi,j

that can be passed along to the right hand side and bottom integer gadgets respectively.
Let G be the construction thus far. Note that the construction ensures that left-to-right

and top-to-bottom we have non-increasing values stored in our integer gadgets. To ensure
equality holds, we need to wrap the rows and columns into cycles, just as we did for a single
integer gadget. Doing this in a naive manner would lead to further crossings, so instead
we create a construction H that is similar to G, but the rows are in reverse order, and the
gadgetry of every tile is mirrored on the vertical axis; this construction is then translated
below G (see Figure 4). In particular, the cell in row i and column j of H corresponds to
the cell in row k − i+ 1 and column j of the Grid Tiling instance. As Figure 4 indicates,
we can create transportation gadgets in a suitable manner to realize this construction.

We remark that it is tempting to use a known a variant of Grid Tiling called Grid
Tiling with 6 as the starting point of the reduction, which enjoys the same complexity lower
bound as Grid Tiling; see [16, Theorem 14.30]. In this variant, the equality conditions are
replaced with the requirement that one coordinate behaves non-decreasingly along rows, while
the second behaves non-decreasingly along columns. The variant looks convenient, as our
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Figure 4 Schematic representation of the complete construction for k = 3.
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gadgets directly implement inequalities between coordinates, not equalities. This thinking,
however, is problematic for the following reason: in our construction, in order to implement
the check (a, b) ∈ Si,j we have to enforce equality in the sumcheck gadget created for the
cell (i, j), as in case of any slackness, this condition is not checked by the gadget. Therefore,
starting the reduction from Grid Tiling with 6 would not simplify the reasoning.

4 Lower bound for dimension 4 and higher

Consider the Rectangle Cover problem: Given points P ⊆ R2, a set R of axis-parallel
rectangles in the plane, and a number k, decide whether there is a subset R′ ⊆ R of size k
such that P is contained in the union of all rectangles in R′. Rectangle Cover is not
solvable in time f(k)no(k) for any computable f assuming ETH [39], where n = |P |+ |R|. We
obtain the same lower bound for Orthant Cover in dimension d > 4 by an easy reduction.

Proof of Theorem 1.3. Given points P and rectangles R in the plane, we construct a 4-
dimensional Orthant Cover instance (U, T ): For each point p = (x, y) ∈ P , we add the
point (−x, x,−y, y) to U . For each rectangle r = [x1, x2]× [y1, y2] ∈ R, we add the orthant
with corner (−x1, x2,−y1, y2) to T . Note that p is contained in r if and only if x1 6 x 6 x2
and y1 6 y 6 y2, which is equivalent to −x 6 −x1, x 6 x2, −y 6 −y1, and y 6 y2. For
points p, q ∈ Rd, note that q is contained in the orthant T = (−∞, p1] × . . . × (−∞, pd] if
and only if every coordinate of p is not larger than the corresponding coordinate of q. This
proves the correctness of our reduction. We thus ruled out time f(k)no(k) assuming ETH for
Orthant Cover in dimension d = 4, and also for any d > 4 (by a trivial embedding). J

Together with the reasoning presented in [39], the above argument yields a chain of reduc-
tions from Clique to Orthant Cover in d = 4. Using recent hardness of approximation
for Clique [9] and carefully tracking the gap through this chain of reductions, we obtain
that Orthant Cover in d = 4 has no 1.05-approximation with running time f(k)no(k) for
any computable f , assuming Gap-ETH (Theorem 3.2). This result is presented in the full
version of the paper.
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Abstract
Recently, Chakrabarty and Swamy (STOC 2019) introduced the minimum-norm load-balancing
problem on unrelated machines, wherein we are given a set J of jobs that need to be scheduled
on a set of m unrelated machines, and a monotone, symmetric norm; We seek an assignment
σ : J 7→ [m] that minimizes the norm of the resulting load vector ~loadσ ∈ Rm+ , where ~loadσ(i) is the
load on machine i under the assignment σ. Besides capturing all `p norms, symmetric norms also
capture other norms of interest including top-` norms, and ordered norms. Chakrabarty and Swamy
(STOC 2019) give a (38 + ε)-approximation algorithm for this problem via a general framework they
develop for minimum-norm optimization that proceeds by first carefully reducing this problem (in a
series of steps) to a problem called min-max ordered load balancing, and then devising a so-called
deterministic oblivious LP-rounding algorithm for ordered load balancing.

We give a direct, and simple 4+ε-approximation algorithm for the minimum-norm load balancing
based on rounding a (near-optimal) solution to a novel convex-programming relaxation for the
problem. Whereas the natural convex program encoding minimum-norm load balancing problem
has a large non-constant integrality gap, we show that this issue can be remedied by including a key
constraint that bounds the “norm of the job-cost vector.” Our techniques also yield a (essentially)
4-approximation for: (a) multi-norm load balancing, wherein we are given multiple monotone
symmetric norms, and we seek an assignment respecting a given budget for each norm; (b) the best
simultaneous approximation factor achievable for all symmetric norms for a given instance.
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1 Introduction

In the minimum-norm load-balancing (MinNormLB) problem, we are given a set J of n
jobs, a set of m machines, and processing times pij ≥ 0 for all i ∈ [m] and j ∈ J . We use
[m] to denote {1, . . . ,m}. We are also given a monotone, symmetric norm f : Rm → R+.
Recall that by definition of norm, this means that f satisfies: (i) f(x) = 0 iff x = 0; (ii)
f(x + y) ≤ f(x) + f(y) for all x, y ∈ Rm (triangle inequality); and (iii) f(λx) = |λ|f(x)
for all x ∈ Rm, λ ∈ R (homogeneity). (Properties (ii) and (iii) imply that f is convex.)
Monotonicity means that f(x) ≤ f(y) for all x, y ∈ Rm such that xi(yi − xi) ≥ 0 for all
i ∈ [m]; symmetry means that permuting the coordinates of x does not affect its norm, i.e.,
f(x) = f

(
{xπ(i)}i∈[m]

)
for every x ∈ Rm and every permutation π : [m] 7→ [m].
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The goal is to find an assignment σ : J → [m] that minimizes the norm (under f)
of the induced load vector. More precisely, an assignment σ induces the m-dimensional
load vector ~loadσ ∈ Rm+ where ~loadσ(i) :=

∑
j:σ(j)=i pij . The objective is to find σ that

minimizes f( ~loadσ).
Besides `p-norms, monotone symmetric norms capture Top-` norms – sum of ` largest

coordinates in absolute value – and ordered norms (which are a nonnegative linear combination
of Top-` norms). The minimum-norm load-balancing problem was recently introduced
by Chakrabarty and Swamy [8]. They develop a general framework for minimum-norm
optimization problems based on reducing the problem to a special case called min-max
ordered optimization, and devise a so-called deterministic oblivious rounding [8] to tackle
the latter problem, which results in a (38 + ε)-approximation algorithm for MinNormLB.

Our main result is a simpler 4(1 + ε)-approximation algorithm for MinNormLB that runs
in time poly

(
input size, log( 1

ε )
)
.

I Theorem 1. One can achieve a 4(1 + ε)-approximation for MinNormLB in time
poly

(
input size, log( 1

ε )
)
, assuming we have a value-oracle and subgradient-oracle for the

norm f . More generally, if we have ω-approximate value- and subgradient- oracles for f (see
Section 4), then one can compute a 4(1 + 5ω)(1 + ε)-approximation to MinNormLB in time
poly

(
input size, log( 1

ε )
)
.

This is a substantial improvement over the approximation factor of 38 obtained in [8].
Moreover, our algorithm is also simpler and more direct than the one in [8]. Notably, our
approximation factor is close to the best-known approximation factor (of 2) known for the
`∞ norm (wherein MinNormLB becomes the classical minimum-makespan problem). Our
algorithm proceeds by rounding the solution to a novel convex-programming relaxation of
the problem. The convex program can be solved (approximately) using an (approximate)
first-order oracle for f that returns the function value, and its subgradient at a given point.

Our techniques also yield a 4(1 + ε)-approximation for (see Section 5): (a) multi-norm
load balancing, wherein we are given multiple monotone, symmetric norms and budgets
for each norm, and we seek an assignment (approximately) respecting these budgets; and
(b) the best simultaneous approximation factor achievable for all symmetric norms for a
given instance.

Motivation and perspective

One of the reasons for studying MinNormLB is that it generalizes various load-balancing
problems considered in the literature, and its study therefore yields a unified methodology
for dealing with monotone, symmetric norms.

Load balancing under the `∞ norm, that is, minimizing the maximum load (also called
the makespan) is a classical scheduling problem that has been extensively studied [18, 23, 10,
24, 6, 15] over the past three decades, both in its full generality for unrelated machines and
for various special cases. The best known approximation factor for the unrelated-machines
setting is still 2 [18], and it is NP-hard to obtain an approximation factor better than
3/2 [18]. For general `p-norms, Azar and Epstein [3] obtain a 2-approximation, and improved
guarantees have been obtained for constant p [3, 16, 19]. More recently, the load-balancing
problem has also been considered for other monotone, symmetric norms. Top-`- and ordered-
norms have been proposed in the location-theory literature (see “Other related work”) as
a means of interpolating between the `1 and `∞ norms (and an alternative to using `p
norms), and motivated by this, Chakrabarty and Swamy [8] studied the Top-` load-balancing
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problem – minimize the total load on the ` most loaded machines – and the ordered load-
balancing problem. They give a (2 + ε)-approximation algorithm in both settings, and also
(as noted earlier) devise a (38 + ε)-approximation algorithm for an arbitrary monotone,
symmetric norm.

For load balancing, there has been considerable interest in simultaneous optimization.
Given an instance, the objective is to find an assignment that simultaneously approximates a
large suite of objective functions. Building upon previous works [2, 4], Goel and Meyerson [11]
describe a 2-approximation for the problem of simultaneously approximating all monotone
symmetric norms in the restricted assignment setting. However, it is known that such an
O(1)-factor is impossible in the unrelated-machines setting [4, 11]. As a byproduct of their
MinNormLB algorithm, in the unrelated-machines setting, Chakrabarty and Swamy [8] give an
instance-wise (38 + ε)-approximation to the best simultaneous approximation-factor possible
for the instance. To elaborate, let α∗I denote the smallest factor for instance I such that there
exists a schedule that achieves an α∗I-approximation for all monotone, symmetric norms;
[8] returns a schedule for I that achieves a 38(1 + ε)α∗I-approximation for all monotone,
symmetric norms. As mentioned above, we devise an algorithm that for every instance
I returns a schedule that simultaneously achieves a

(
4 + O(ε)

)
α∗I-approximation for all

monotone, symmetric norms (see Theorem 13).

Our techniques

Since a norm is a convex function, a natural convex-programming relaxation for MinNormLB
is to minimize the norm of the fractional load vector ~L = ~L(x) :=

{∑
j pijxij

}
i∈[m], where

the xijs are the usual variables denoting if job j is assigned to machine i, and we have the
usual job-assignment constraints encoding that every job is assigned to some machine. This
convex program, however, has a large integrality gap, even when f is the `∞-norm due to
the issue that the convex program could split a large job across multiple machines.

In the case of the `∞ norm (the makespan minimization problem), the typical way of
circumventing the above issue is to “guess” the optimal value, say T , and add constraints
to encode that no single job contributes more than T to the objective. The usual way of
capturing this is to explicitly set xij = 0 if pij > T . A less common, and weaker, way of
encoding this is to enforce that

∑
i pijxij ≤ T for all j, that is, the total processing time

contribution of any job j across the machines cannot exceed T .
For an arbitrary (monotone, symmetric) norm, it is unclear how to extend either of the

above approaches, since the contribution of a job to the objective is a now a somewhat vague
notion. One way to generalize things would be to encode (either explicitly or in the alternate
weaker sense above) that the “norm” of the job-cost vector is at most T , where the job-cost
vector is indexed by jobs and the cost for job j (under x) is Pj :=

∑
i pijxij . But the norm

f is defined over Rm, whereas the job-cost vector lies in Rn. For certain specific (families of)
norms – e.g., `p-norms, top-` norm, ordered norm – there is a natural version of the norm
over Rn,1 but what does such a constraint mean in general, and how can one encode this?

Our key insight, which leads to our convex program, is that one can capture the above
consideration by examining the vector ~P ∈ Rm comprising the costs of the m most-costly
jobs and enforcing the constraint f(~P ) ≤ T ; since f is monotone, this can be equivalently
encoded as f

(
{Pj}j∈S

)
≤ T for all S ⊆ J with |S| = m. It is not apparent that such a

1 For `p-norms, a variant of this that considers the `pp expression does work, but this crucially exploits
the separability of `pp [3].
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constraint is valid, but we derive some insights about symmetric norms and show that this is
indeed the case (see Theorem 3). This yields our convex program (CP), which can be solved
efficiently (within ε additive error, for any ε > 0, in time poly

(
input size, ln(1/ε)

)
) using the

ellipsoid method provided we have a value oracle and subgradient oracle for f .
Rounding a solution x to the convex program is now quite easy. Let ~L ∈ Rm denote

the load-vector arising from x. We use a filtering step to ensure that each job j is only
assigned to machines i for which pij ≤ 2Pj . This causes a factor-2 blowup in the machine
loads. Now we use the rounding algorithm of Shmoys and Tardos [23] for the generalized
assignment problem (GAP). The resulting assignment σ has load-vector at most 2~L + ~Z,
where ~Z ∈ Rm and Zi = maxj:σ(j)=i pij ; the filtering step and our constraints ensure that
f(~Z) ≤ 2T , so f(2~L+ ~Z) ≤ 4T . Our algorithm is much more direct than the one in [8]: it
avoids the sequence of steps (and the associated approximation-factor losses) used in [8],
wherein MinNormLB is reduced to a special case, called min-max ordered load balancing,
which is then tackled by a deterministic oblivious rounding procedure.

Other related work

The algorithmic problem of finding minimum-norm solutions has also been investigated in
the context of k-clustering, wherein the goal is to open k “facilities” in a metric space to serve
a set of clients, and the cost vector induced by a solution is the vector of distances of clients
to their nearest open facility. The setting of `p-norms, especially when p ∈ {1, 2,∞} (where
the problem is called the k-{median,means, center} problem) has been extensively studied,
and O(1)-approximations are known in these settings [13, 9, 14, 1]. Top-` and ordered norms
have been proposed in the context of k-clustering in the Operations Research literature
(see, e.g., [21, 17]), but constant-factor approximations for these norms were obtained quite
recently [5, 7, 8]. Furthermore, Chakrabarty and Swamy [8] utilize their general framework to
obtain an O(1)-approximation for the k-clustering problem under any monotone, symmetric
norm. We do not know of any alternate approach that works in the k-clustering setting.

2 A convex-programming relaxation

By possibly adding dummy jobs with zero processing times, we may assume without loss of
generality that n ≥ m. A natural convex program for MinNormLB has non-negative variables
xij denoting if job j is assigned to machine i (or the extent of j assigned to i) with the
constraint (1) encoding that every job is assigned to a machine. These x-variables define
a load vector ~L =

(
Li = Li(x)

)
i∈[m] where Li(x) =

∑
j∈J pijxij . The objective seeks to

minimize T := f
(
~L
)
. As noted earlier, this convex program has a large integrality gap (even

when f is the `∞ norm). We strengthen the convex program as follows.
Given the x-assignment, define Pj = Pj(x) :=

∑
i pijxij , which is the load incurred by

the fractional solution for scheduling job j. Fix any subset S ⊆ J with |S| = m. Note that
this is well-defined since we have assumed n ≥ m. This defines the m-dimensional vector
~PS := {Pj}j∈S . We add the constraints (6) enforcing that f(~PS) ≤ T for each such subset S.
Throughout, we use i to index the machines in [m], and j to index the jobs in J .

min T (CP)

s.t.
∑
i

xij ≥ 1 ∀j ∈ J (1)

x ≥ 0 (2)

Li =
∑
j∈J

pijxij ∀i ∈ [m] (3)

Pj =
∑
i∈[m]

pijxij∀j ∈ J (4)

f(~L) ≤ T (5)

f(~PS)≤ T ∀S⊆J, |S|=m (6)
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Let OPT := OPTCP denote the optimal value of (CP), and let O∗ be the optimal value
of the minimum-norm load-balancing problem. Since the xij-variables completely determine
a solution to (CP), we will sometimes abuse notation and say that x is a feasible solution
to (CP). We argue that (CP) is a valid relaxation. The proof uses the following simple
observation about symmetric convex functions.

B Claim 2. Let h : Rm → R be a symmetric convex function. Let v ∈ Rm+ , and i, j ∈ [m].
Let w ∈ Rm+ be the vector where wi = vi + vj , wj = 0, and wk = vk otherwise. Then,
h(v) ≤ h(w).

Proof. Consider the vector w′ constructed in a symmetric fashion to w: set w′j = vi + vj ,
w′i = 0, and w′k = vk otherwise. Observe that v is a convex combination of w and w′ (we
have v = vi

vi+vj
· w + vj

vi+vj
· w′), and h(w) = h(w′) since h is symmetric. By convexity and

symmetry, h(v) ≤ max
{
h(w), h(w′)

}
= h(w). C

I Theorem 3. Constraints (6) are valid, and so for any instance of MinNormLB, we have
OPT ≤ O∗.

Proof. Let σ∗ : J → [m] be an optimal assignment, so f( ~loadσ∗) = O∗. We now describe a
feasible solution to (CP) with T = O∗. Set xij = 1 if σ∗(j) = i, and 0 otherwise. Clearly,
constraints (1) hold. Note, Li = loadσ∗(i) for all i, and Pj = pσ∗(j)j for all j. Therefore, (5)
holds with equality.

The interesting bit is to show that (6) holds. To that end, fix a subset S ⊆ J of m jobs.
Consider the load vector induced by jobs in S. That is, define L′i :=

∑
j∈S:σ∗(j)=i pij . Note

that ~L coordinate wise dominates ~L′, so by monotonicity of f , we have f( ~L′) ≤ f(~L) = T .
We argue that f(~PS) ≤ f( ~L′), which will complete the proof. To see this, first note

that if σ∗ assigns the jobs in S to distinct machines, then ~PS is simply a permutation of
~L′, so f(~PS) = f( ~L′). Otherwise, observe that ~L′ can be obtained from ~PS by applying the
operation in Claim 2 to pairs of jobs in S assigned to the same machine; therefore, we have
f(~PS) ≤ f( ~L′). J

The proof above relied only on convexity, monotonicity, and symmetry of the function
f . In Section 3 (see Theorem 4) we describe a rounding procedure which takes a feasible
solution for (CP) and returns an assignment with a factor-4 blow-up in the objective. This
will utilize the homogeneity of the norm f . In Section 4, we show how to (approximately)
solve (CP) given an (approximate) first-order oracle for the underlying norm (see Theorem 9).
Combining these two results yields Theorem 1.

3 The rounding algorithm

We now describe and analyze our simple rounding algorithm, which yields the following
guarantee.

I Theorem 4. Given a feasible fractional solution
(
x = {xij}i,j , ~L, ~P , T

)
to (CP), there is

a polynomial time algorithm to obtain a schedule σ with f( ~loadσ) ≤ 4T .

Proof. First, we filter x. For every i, j, we set x̂ij = 2xij if pij ≤ 2Pj , and 0 otherwise. A
standard Markov-inequality style argument shows that x̂ satisfies (1). Now we apply the
Shmoys-Tardos GAP-rounding algorithm [23] to x̂. This yields an assignment σ : J → [m]
such that: for every job j, we have σ(j) = i only if x̂ij > 0, and for every machine i, we have
loadσ(i) ≤

∑
j∈J pij x̂ij + Zi ≤ 2Li + Zi, where Zi = maxj:σ(j)=i pij . Thus, ~loadσ ≤ 2~L+ ~Z.
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Let ji be a maximum-length job assigned to machine i in σ, i.e., σ(ji) = i and Zi = piji . By
our filtering step, we know that Zi ≤ 2Pji

. Let S = {ji : i ∈ [m]}. Then ~Z := (Zi)i∈[m] ≤ 2~PS .
By monotonicity, the triangle inequality, and homogeneity of f , we then obtain that

f( ~loadσ) ≤ 2f(~L) + f(~Z) ≤ 2T + 2f(~PS) ≤ 4T. J

Interestingly, and notably, observe that the rounding procedure above is oblivious to the
norm f : given a fractional solution x, the same rounding procedure works for all monotone,
symmetric norms. This will be useful in Section 5, where we seek an assignment that is
simultaneously good for multiple norms.

4 Solving the convex program

We now discuss how to solve the convex program (CP). To maintain the flow of reading,
proofs of certain technical claims are deferred to Section 6. It is well known [20, 12] that we
can efficiently solve a convex program minx∈S h(x) (where S ⊆ Rn is convex) to within any
additive error ε > 0 using the ellipsoid method provided that (we state things more precisely
below): (i) S has non-zero volume and is contained in some ball; (ii) we have a separation
oracle for S; (iii) we have a first-order oracle for h that given input x ∈ S, returns h(x), and
a subgradient of h at x. More generally, we show that by utilizing the machinery of Shmoys
and Swamy [22], even an approximate value and subgradient oracle suffices (see Theorem 9).
This is particularly relevant since the norm and/or components of the subgradient vector
may involve irrational numbers.

By scaling we may assume that all pijs are integers. Let O∗ denote the optimal value for
the MinNormLB instance. We can easily detect if O∗ = 0, since this implies an assignment with
0 load on every machine. Therefore, we assume O∗ ≥ 1. It will be convenient to reformulate
(CP) as follows. Let P :=

{
x ∈ R[m]×J :

∑
i xij ≥ 1 ∀j ∈ J, 0 ≤ xij ≤ 1 ∀i ∈ [m], j ∈ J

}
denote the feasible region for the assignment variables.

min g(x) := max
{
f
( ~L(x)

)
, max

S⊆J:|S|=m
f
( ~P (x)S

)}
s.t. x ∈ P. (CP’)

Note that the xijs are the only variables above. Recall that OPT is the optimal value of
(CP) (and (CP’)).

We recall a few standard concepts from optimization. Let h : Rk 7→ R and let ‖u‖ denote
the `2 norm of u.

We say that h has Lipschitz constant (at most) K if |h(v) − h(u)| ≤ K‖v − u‖ for all
u, v ∈ Rk.
We say that d ∈ Rk is a subgradient of h at u ∈ Rk if we have h(v)−h(u) ≥ d · (v−u) for
all v ∈ Rk. We say that d̂ is an ω-subgradient of h at u ∈ Rk if for every v ∈ Rk, we have
h(v)− h(u) ≥ d̂ · (v − u)− ωh(u); we call this the approximate-subgradient inequality.
An ω-first-order oracle for h is an algorithm that at any point u ∈ Rk, returns an estimate
est such that h(u) ≤ est ≤ (1 + ω)h(u), and an ω-subgradient of h at u.
(In the optimization literature, the notions of approximate first-order oracle and approx-
imate subgradient typically involve additive errors; since our problems are scale-invariant,
multiplicative approximations, where the error at u is measured relative to h(u), are more
apt here.)

We remark that since f is a norm, an ω-subgradient d̂ of f at u also yields an estimate
of f(u) as follows: taking v = ~0 and v = 2u respectively in the approximate-subgradient
inequality, we obtain the bounds d̂ · u ≥ (1 − ω)f(u) and d̂ · u ≤ (1 + ω)f(u). (Thus, an
ω-first-order oracle for f boils down to an ω-subgradient oracle for f .)
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By input size, we mean the total encoding length of the pijs. It is easy to separate over
P, and easy to find radii R, and 0 < V ≤ 1 such that P ⊆ B(0, R) := {x : ‖x‖ ≤ R}, P
contains a ball of radius V , and log

(
R
V

)
= poly(m,n). In particular, R =

√
mn suffices, and

P contains a ball of radius V = 0.5
m around the point x with xij = 1.5

m for all i, j. (We may
assume m ≥ 2 as otherwise the problem is trivial.) Throughout, we use Kf to denote an
efficiently-computable upper bound on the Lipschitz constant of f ; Lemma 8 shows how to
obtain this. Given a bound on the Lipschitz constant of f , one can compute an upper bound
on the Lipschitz constant of g.

B Claim 5. The Lipschitz constant of g is at most K =
√
mn ·maxi,j pij ·Kf .

I Theorem 6 (Follows from [20]; see also [12]). Let alg be a first-order oracle for f . Then, for
any η > 0, we can compute x∗ ∈ P such that g(x∗) ≤ OPT + η in poly

(
input size, log(KfR

ηV )
)

time and using poly
(
input size, log(KfR

ηV )
)
calls to alg.

Theorem 6 follows from the ellipsoid method for convex optimization, due to the bound
on the Lipschitz constant of g obtained from Claim 5, and since one can use alg to obtain
a first-order oracle for g. We next use [22] to obtain a stronger result that utilizes only an
approximate first-order oracle for f .

I Theorem 7 (Lemma 4.5 in [22] paraphrased). Consider a convex optimization problem:
minx∈P h(x). Let Kh be a known bound on the Lipschitz constant of h. Let ω < 1 and η > 0.
In poly

(
m,n, log(KhR

V η )
)
time and using poly

(
m,n, log(KhR

V η )
)
calls to an ω-first-order oracle

for h, one can compute a solution x∗ ∈ P such that h(x∗) ≤ 1+ω
1−ω ·

(
minx∈P h(x) + η

)
.

To utilize Theorem 7 to solve (CP), we show how to obtain an approximate first-order
oracle for g given one for f . Also, in order to convert the additive error in Theorem 7 (and
Theorem 6) into a multiplicative guarantee, we show how to obtain a lower bound lb on O∗
such that Kf/lb is small.

I Lemma 8. Let alg be an ω-first-order oracle for f (where ω < 1).
We can obtain a 2ω-first-order oracle for g using O(1) calls to alg.
Using alg, we can efficiently compute lb ≤ O∗, and an upper bound Kf on the Lipschitz
constant of f such that Kf

lb ≤ 2
√
m.

I Theorem 9. Let alg be an ω-first-order oracle for f with ω ≤ 1
10 . Given a MinNormLB

instance with optimum value O∗, there is an algorithm that, for any ε > 0, computes a
feasible solution x∗ to (CP) of objective value g(x∗) ≤ (1 + 5ω)(1 + ε)O∗. The algorithm
runs in poly

(
input size, log( 1

ε )
)
time and makes poly

(
input size, log( 1

ε )
)
calls to alg.

Proof. This follows by combining Theorem 7 and Lemma 8. Recall that we are assuming that
O∗ ≥ 1. By part 8 of Lemma 8, we can compute a 2ω-first-order oracle for g. We use part 8 of
Lemma 8 to obtain lb and Kf . Now we apply Theorem 7 to the problem minx∈P g(x), taking
η = εlb. The point x∗ returned satisfies g(x∗) ≤ 1+2ω

1−2ω · (OPT + εlb) ≤ (1 + 5ω)(1 + ε)O∗.
Recall that log(R/V ) = poly(m,n). Since we have an upper bound K on the Lipschitz

constant of g, where logK = poly(input size)·logKf (Claim 5), the running time and number
of calls to the first-order oracle for g (and hence alg) is at most poly

(
input size, log( 1

ε )
)
. J
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5 Extensions: multi-norm load balancing and simultaneous
approximation

5.1 Multi-norm load balancing
In the multi-norm load-balancing problem, we are given a load-balancing instance(
J,m, {pij}i∈[m],j∈J

)
, multiple monotone, symmetric norms f1, . . . , fk, and budgets

T1, . . . , Tk for these norms respectively. The goal is to find an assignment σ : J → [m]
such that fr( ~loadσ) ≤ Tr for all r ∈ [k]. Our approximation guarantee extends easily to
this problem.

I Theorem 10. Let
(
J,m, {pij}i∈[m],j∈J

)
be a load-balancing instance. Let f1, . . . , fk be

k monotone, symmetric norms, with associated budgets T1, . . . , Tk. Given an ω-first-order
oracle for each norm, for any ε > 0, in poly(input size, k, log(1/ε)) time, one can either
determine that there is no feasible solution to the multi-norm load-balancing problem, or
return an assignment σ : J → [m] such that fr( ~loadσ) ≤ 4(1 + 7ω)(1 + ε)Tr for all r ∈ [k].

The convex-programming relaxation for this problem is a variant of (CP) where there is
no objective function, and constraints (5), (6) are replaced with

fr(~L) ≤ Tr, fr(~PS) ≤ Tr ∀S ⊆ J : |S| = m, ∀r = 1, . . . , k (7)

Let (Multi-CP) denote the resulting feasibility problem: find (x, ~L, ~P ) satisfying (1)–(4), and
(7). As noted earlier, the rounding procedure in Section 3 is oblivious to the underlying norm,
and so our task boils down to finding an (approximately) feasible solution to (Multi-CP).

In order to solve (Multi-CP), as with (CP), it will be convenient to move the nonlinear
constraints to the objective and consider the following reformulation:

min q(x) := max
{

max
r∈[k]

fr(
−−→
L(x))
Tr

, max
r∈[k]

max
S⊆J:|S|=m

f(
−−−→
P (x)S)
Tr

}
s.t. (1), (2). (MNCP)

Observe that finding a feasible solution to (Multi-CP) is equivalent to finding a feasible
solution to (MNCP) with objective value at at most 1. As before, we may assume that the
pijs are integers, and can determine if there is an assignment σ such that ~loadσ = ~0 (which
clearly satisfies (7)). So assume otherwise. We prove the following.

I Theorem 11. Let algr be an ω-first-order oracle for fr for all r ∈ [k], where ω ≤ 1
18 . For

any ε > 0, in poly
(
input size, log( 1

ε )
)
time and using poly

(
input size, log( 1

ε )
)
calls to each

algr oracle, we can determine that either (Multi-CP) is infeasible, or compute x∗ ∈ P such
that q(x∗) ≤ (1 + 7ω)(1 + ε).

Using Theorem 11, for any ε > 0, we can determine in time poly
(
input size, log( 1

ε

)
that

(Multi-CP) is infeasible, or return a fractional assignment x∗ satisfying

fr( ~L(x∗)) ≤ κTr, fr( ~P (x∗)S) ≤ κTr ∀S ⊆ J : |S| = m, ∀r = 1, . . . , k

where κ = (1 + 7ω)(1 + ε). As noted earlier, the rounding procedure in Section 3 is oblivious
to the underlying norm, and so by utilizing this to round x∗, we obtain an assignment σ such
that fr( ~loadσ) ≤ 4κTr for all r ∈ [k]. This yields Theorem 10.

In the rest of this section, we discuss the proof of Theorem 11. If the multi-norm problem
is feasible, we must have Tr ≥ fr(e1) for all r ∈ [k]. We assume in the sequel that Tr is
at least the estimate of fr(e1) returned by algr scaled by (1 + ω), for all r ∈ [k]; if this
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does not hold, then we declare infeasibility. Given this, the proof of Lemma 8 8 shows that
Kr = (1 + ω)

√
m · Tr is an upper bound on the Lipschitz constant of fr, for all r ∈ [k]. We

assume this bound in the sequel. Similar to Claim 5 and Lemma 8, we show that the Lipschitz
constant of q can be bounded in terms of the Krs, and we can obtain a 2ω-first-order oracle
for q using the algr oracles.

I Lemma 12. (i) The Lipschitz constant of q is bounded by K = poly(m,n,maxi,j pij). (ii)
We can obtain a 2ω-first order oracle for q by making O(1) calls to algr for each r ∈ [k].

Proof of Theorem 11. We utilize Lemma 12 in conjunction with Theorem 7. Part (ii) of
Lemma 12 shows how to obtain a 2ω-first-order oracle, alg, for q. So invoking Theorem 7 with
η = ε, and the bound K on the Lipschitz constant of q obtained from part (i) of Lemma 12,
we obtain x ∈ P such that

q(x) ≤ 1 + 2ω
1− 2ω

(
min
x∈P

q(x) + η
)
. (8)

The running time is poly
(
input size, log( 1

ε )
)
(since log(R/V ), logK = poly(input size)), and

this is also a bound on the number of calls to the algr oracles. Using alg, we obtain an
estimate est such that q(x) ≤ est ≤ (1 + 2ω)q(x). If est > (1+2ω)2

1−2ω · (1 + η), then (8) implies
that

(
minx∈P q(x)

)
> 1, and so (Multi-CP) is infeasible. Otherwise, taking x∗ = x, we

obtain that q(x∗) ≤ est ≤ (1+2ω)2

1−2ω · (1 + ε) ≤ (1 + 7ω)(1 + ε) since ω ≤ 1
18 . J

5.2 Simultaneous approximation

Given a load-balancing instance I =
(
J,m, {pij}i∈[m],j∈J

)
, let α∗I be the smallest α such

that there exists an assignment σ∗ satisfying f( ~loadσ∗) ≤ α
(
minσ:J 7→[m] f( ~loadσ)

)
for every

monotone, symmetric norm. That is, α∗I is the best simultaneous approximation factor
achievable on instance I. Instead of seeking absolute bounds on α∗I over a class of instances [2,
4, 11], as discussed in [8], another pertinent problem is to seek instance-wise guarantees:
given an instance I, we want to find a polytime-computable assignment σ such that, for some
factor γ ≥ 1, we have f( ~loadσ) ≤ γα∗I

(
minσ:J 7→[m] f( ~loadσ)

)
for every monotone, symmetric

norm; i.e., the simultaneous approximation factor of σ at most γ times the best simultaneous
approximation factor achievable for I.

Our techniques coupled with insights from [11, 8] yields a 4
(
1 + O(ε)

)
-approximation

to the best simultaneous approximation factor, in time poly
(
input size, (mε )O(1/ε)). To ob-

tain this guarantee, following [11, 8], incurring a (1 + ε)-factor loss, it suffices to obtain
a 4-approximation to the best simultaneous-approximation achievable for Top-`-norms –
Top-`(x) := maxS⊆[m]:|S|=`

∑
i∈S |xi| – for the O(logm) indices ` in

POS :=
{

min{d(1 + ε)se ,m} : s ≥ 0
}
. If we knew the optimal value opt` for each such Top-`

norm, then we can set set a budget T` = αopt` for each ` ∈ POS, and utilize our result for
multi-norm load balancing to do a binary search for α. Importantly, notice that the resulting
feasibility problem (Multi-CP) can now be cast as an linear-programming feasibility problem,
since a budget constraint of the form Top-`(~v) ≤ T` can be modeled using exponentially many
linear constraints that one can separate over. Thus, this would yield a 4(1+ε)-approximation.
To make this idea work, we enumerate all choices for the opt` values in powers of (1 + ε). As
argued in [8], there are at most poly

(
input size, (mε )O(1/ε)) candidates to enumerate over,

and this yields the stated guarantee.
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I Theorem 13. Given a load-balancing instance I =
(
J,m, {pij}i∈[m],j∈J

)
, let α∗I be the

smallest α such that there is an assignment σ∗ satisfying f( ~loadσ∗) ≤ α
(
minσ:J 7→[m] f( ~loadσ)

)
for every monotone, symmetric norm f . In poly

(
input size, (mε )O(1/ε)) time, we can find

an assignment σ̂ such that we have f( ~load
σ̂
) ≤

(
4 +O(ε)

)
α∗I
(
minσ:J 7→[m] f( ~loadσ)

)
for every

monotone, symmetric norm f .

6 Proofs from Sections 4 and 5

Proof of Claim 5. The bound follows easily from the definition of g. Let x, y ∈ R[m]×J . Let
~L, ~L′ ∈ Rm be the load vectors induced by x, y respectively; let ~PS , ~P ′S , be the job-cost
vectors for the jobs in S induced by x, y respectively. Then, g(y) − g(x) ≤ max

{
f(L′) −

f(L),maxS⊆J:|S|=m f(P ′S) − f(PS)
}
. So g(y) − g(x) ≤ Kf‖L′ − L‖2 or g(y) − g(x) ≤

Kf‖P ′S − PS‖ for some S ⊆ J with |S| = m. Let pmax := maxi,j pij . In the former case, we
have g(y)− g(x) ≤ Kfpmax

∑
i,j |yij − xij | ≤

√
mn ·Kfpmax‖y − x‖2; the same bound also

applies in the latter case. This shows shows that K =
√
mn ·Kfpmax is a bound on the

Lipschitz constant of g. J

The following claim will be useful in proving part 8 of Lemma 8, as also part (ii) of
Lemma 12.

B Claim 14. Let h : RN 7→ R be defined by h(x) := maxr∈[k] hr(x), where hr : RN 7→ R is
convex for all r ∈ [k]. Let algr be an ω-first order oracle for hr for all r ∈ [k] (where ω < 1).

One can obtain a 2ω-first order oracle for h using O(1) calls to alg1, . . . algk.
More generally, suppose that given x ∈ Rn, one can identify I(x) ⊆ [k] such that
h(x) = maxr∈I(x) hr(x). Then, one can compute a 2ω-first-order oracle for h that, on
input x ∈ Rn, makes O(1) calls to algr for all r ∈ I(x).

Proof. We focus on proving part (i); part (ii) follows from a very similar argument. Fix
x ∈ RN . For every r ∈ [k], we call algr to obtain an estimate estr of hr(x). We set the
estimate for h(x) to be est := maxr∈[k] estr. From the properties of estr, it is easy to see that
h(x) ≤ est ≤ (1 + ω)h(x).

Let dr be the ω-subgradient of fr at x returned by algr. Let s ∈ [k] be such that est = ests.
We set µ = ds. We now argue that µ is a 2ω-subgradient of h at x. Consider any y ∈ RN .
We have

µT (y − x) = (y − x)T ds ≤ hs(y)− hs(x) + ωhs(x) ≤ h(y)− 1−ω
1+ω · ests = h(y)− 1−ω

1+ω · est

≤ h(y)− 1−ω
1+ω · h(x) ≤ h(y)− (1− 2ω)h(x).

The first two inequalities follow due to the fact that (ests, ds) was returned by the ω-first order
oracle for hs; the next equality follows from the definition of index s; and the penultimate
inequality follows since est ≥ h(x) as established earlier.

The proof of the more general statement in (ii) is essentially identical: on input x, we
now run algr for all r ∈ I(x); we set est = maxr∈I(x) estr, and d = ds, where s ∈ I(x) is an
index such that est = ests. C

Proof of Lemma 8. For part 8, fix x ∈ R[m]×J . Recall that Pj = Pj(x) :=
∑
i pijxij , Let

S∗ be the set of m jobs with the highest Pj values. Let ~L = ~L(x) and ~PS∗ = ~P (x)S∗ . Then,
g(x) = max

{
f(~L), f(~PS∗)

}
. Observe that alg can be used to obtain an ω-first-order oracle

for both f
( ~L(x)

)
and f

( ~P (x)S∗

)
. Thus, by using Claim 14 (ii), we obtain a 2ω-first-order

oracle for g using O(1) calls to alg.
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We now justify the observation. A (1 +ω)-approximate value oracle is obtained by simply
calling alg to obtain estimates of f(~L) and f(~PS∗). Let dL = (dLi )i∈[m], and dP = (dPj )j∈S∗

be the ω-subgradients of f at ~L at ~PS∗ respectively returned by alg.

For all i ∈ [m], j ∈ J , define βij = pijd
L
i , γij =

{
pijd

P
j if j ∈ S∗;

0 otherwise.

Then, for any y ∈ R[m]×J , we have βT (y − x) =
∑
i,j d

L
i pij(yij − xij) = ( ~L(y) − ~L(x))T dL

showing that β is an ω-subgradient of f
( ~L(·)

)
at x. Similarly, γT (y − x) =

( ~P (y)S∗ −
~P (x)S∗

)T
dP showing that γ is an ω-subgradient of f

( ~P (·)
)
at x.

For part 8, Let σ∗ be an optimal assignment. Since we are assuming that O∗ ≥ 1, we
have loadσ∗(i) ≥ 1 for some i ∈ [m]. Let ei ∈ Rm be the vector with 1 in coordinate i and
0s everywhere else. Then, O∗ ≥ f(e1). Let lb be the estimate of f(e1) obtained by alg
scaled down by (1 + ω). So we have f(e1)/(1 + ω) ≤ lb ≤ O∗. Consider any x, y ∈ Rm.
We have y = x +

∑m
i=1(yi − xi)ei, so by the triangle inequality and symmetry, we have

|f(y) − f(x)| ≤
∑m
i=1 |yi − xi|f(ei) Therefore, |f(y) − f(x)| ≤ (1 + ω)lb

∑m
i=1 |yi − xi| ≤

(1 + ω)
√
m · lb · ‖y − x‖. So we can set Kf = (1 + ω)

√
m · lb. J

Proof of Lemma 12. Part (i) follows by applying Claim 5 to each norm fr, and since the
Lipschitz constant of the maximum of a collection of functions is bounded by the maximum
of the Lipschitz constants of the functions in the collection. Let pmax = maxi,j pij . By
Claim 5, for each r ∈ [k], and S ⊆ J with |S| = m, both fr( ~L(x))/Tr and fr( ~P (x)S)/Tr have
Lipschitz constant at most

√
mn · pmax ·Kr/Tr ≤ (1 + ω)m

√
npmax. Hence, the Lipschitz

constant of q is at most K = (1 + ω)m
√
npmax.

For part (ii), we mimic the proof of part 8 of Lemma 8. Fix x ∈ R[m]×J . Let S∗ be the
set of m jobs with the highest Pj(x) values, where Pj(x) :=

∑
i pijxij . Let ~L = ~L(x) and

~PS∗ = ~P (x)S∗ . Then,

q(x) = max
{

max
r∈[k]

fr(~L)/Tr, max
r∈[k]

fr(~PS∗)/Tr
}
.

As in the proof of Lemma 8 8, for each r ∈ [k], we can use algr to obtain an ω-first-order oracle
for fr

( ~L(x)
)
/Tr and fr

( ~P (x)S∗

)
/Tr. Thus, by using Claim 14 (ii), we obtain a 2ω-first-order

oracle for q using O(1) calls to algr, for each r ∈ [k]. J

References
1 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and Euclidean k-median by primal-dual algorithms. In Proceedings, FOCS, pages
61–72, 2017.

2 Noga Alon, Yossi Azar, Gerhard Woeginger, and Tal Yadid. Approximation schemes for
scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

3 Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines.
In Proceedings, STOC, pages 331–337, 2005.

4 Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm approximation
algorithms. J. Algorithms, 52(2):120–133, 2004.

5 Jarosław Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation
for ordered k-median. In Proceedings, STOC, pages 620–631, 2018.

6 Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1, ε)-restricted assignment makespan
minimization. In Proceedings, SODA, pages 1087–1101, 2015.

ESA 2019



27:12 Minimum-Norm Load Balancing

7 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-center:
Approximation Algorithms for Ordered k-median. In Proceedings, ICALP, pages 29:1–29:14,
2018.

8 Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm
and ordered optimization problems. In Proceedings, STOC, pages 126–137, 2019.

9 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. System Sci., 65(1):129–149,
2002.

10 Tomáš Ebenlendr, Marek Krčál, and Jiří Sgall. Graph balancing: A special case of scheduling
unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.

11 Ashish Goel and Adam Meyerson. Simultaneous optimization via approximate majorization
for concave profits or convex costs. Algorithmica, 44(4):301–323, 2006.

12 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Springer-Verlag, 1988.

13 Dorit S. Hochbaum and David B. Shmoys. A Best Possible Heuristic for the k-Center Problem.
Math. Oper. Res., 10(2):180–184, 1985.

14 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM (JACM), 48(2):274–296, 2001.

15 Klaus Jansen and Lars Rohwedder. On the configuration-LP of the restricted assignment
problem. In Proceedings, SODA, pages 2670–2678, 2017.

16 V. S. Kumar, Madhav V Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. A
unified approach to scheduling on unrelated parallel machines. Journal of the ACM (JACM),
56(5):28, 2009.

17 G. Laporte, S. Nickel, and F. S. da Gama. Location Science. Springer, 2015.
18 Jan K. Lenstra, David B. Shmoys, and Éva. Tardos. Approximation algorithms for scheduling

unrelated parallel machines. Math. Programming, 46(1-3):259–271, 1990.
19 Konstantin Makarychev and Maxim Sviridenko. Solving optimization problems with dis-

economies of scale via decoupling. In Proceedings, FOCS, pages 571–580, 2014.
20 A. Nemirovski and Yudin D. Problem complexity and method efficiency in optimization. John

Wiley and Sons, 1983.
21 S. Nickel and J. Puerto. Location Theory: A Unified Approach. Springer Science & Business

Media, 2005.
22 David B. Shmoys and Chaitanya Swamy. An Approximation Scheme for Stochastic Linear

Programming and Its Application to Stochastic Integer Programs. Journal of the ACM,
53(6):978–1012, 2006.

23 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical programming, 62(1-3):461–474, 1993.

24 Ola Svensson. Santa Claus schedules jobs on unrelated machines. SIAM Journal on Computing,
41(5):1318–1341, 2012.



On Computing Centroids According to the
p-Norms of Hamming Distance Vectors
Jiehua Chen
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
jiehua.chen2@gmail.com

Danny Hermelin
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer Sheva, Israel
hermelin@bgu.ac.il

Manuel Sorge
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
manuel.sorge@mimuw.edu.pl

Abstract
In this paper we consider the p-Norm Hamming Centroid problem which asks to determine
whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to
the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining
whether there exists a string s∗ with

(∑
s∈S

dp(s∗, s)
)1/p ≤ k, where d(, ) denotes the Hamming

distance metric. This problem has important applications in data clustering and multi-winner
committee elections, and is a generalization of the well-known polynomial-time solvable Consensus
String (p = 1) problem, as well as the NP-hard Closest String (p =∞) problem.

Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the
gap for all rational values of p between 1 and ∞. Under standard complexity assumptions the

reduction also implies that the problem has no 2o(n+m)-time or 2o(k

p
(p+1) )-time algorithm, where m

denotes the number of input strings and n denotes the length of each string, for any fixed p > 1.
The first bound matches a straightforward brute-force algorithm. The second bound is tight in

the sense that for each fixed ε > 0, we provide a 2k

p
(p+1) +ε

-time algorithm. In the last part of the
paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2
approximation algorithm for the problem.
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1 Introduction

The Hamming distance between two strings of equal length is the number of positions at which
the corresponding symbols in the strings differ. In other words, it measures the number of
substitutions of symbols required to change one string into the other, or the number of errors
that could have transformed one string into the other. This is perhaps the most fundamental
string metric known, named after Richard Hamming who introduced the concept in 1950 [24].

While Hamming distance has a variety of applications in a plethora of different domains, a
common usage for it appears when clustering data of various sorts. Here, one typically wishes
to cluster the data into groups that are centered around some centroid, where the notion of
centroid varies from application to application. Two prominent examples in this context are:
Consensus String, where the centroid has a bound on the sum of its (Hamming) distance

to all strings, and
Closest String, where the centroid has a bound on the maximum distance to all strings.
In functional analysis terms, these two problems can be formalized using the p-norms of the
Hamming distance vectors associated with the clusters. That is, if S ⊆ {0, 1}n is a cluster
and s∗ ∈ {0, 1}n is its centroid, then the p-norm of the corresponding Hamming distance
vector is defined by

‖(s∗, S)‖p :=
(∑
s∈S

dp(s∗, s)
)1/p

,

where d(s∗, s) = |{i : s∗[i] 6= s[i], 1 ≤ i ≤ n}| denotes the Hamming distance between s∗

and s. Using this notation, we can formulate Consensus String as the problem of finding
a centroid s∗ with a bound on ‖(s∗, S)‖1 for a given set S of strings, while Closest String
can be formulated as the problem of finding a centroid s∗ with a bound on ‖(s∗, S)‖∞.

The following cluster S with 5 strings, each of length 7, shows that for different p, we
indeed obtain different optimal centroids. For each p ∈ {1, 2,∞}, string s∗p is an optimal
p-norm centroid but it is not an optimal q-norm centroid, where q∈{1, 2,∞}\{p}. Moreover,
one can verify that s∗2 is the only optimal 2-norm centroid and no optimal ∞-norm centroid
is an optimal 2-norm centroid.

S :
1111 111
1111 000
0000 100
0000 010
0000 001

‖ · ‖1 ‖ · ‖2 ‖ · ‖∞
s∗1 = 0000 000 14

√
68 7

s∗2 = 0011 000 16
√

56 5
s∗∞ = 0011 001 17

√
61 4

p
centroid

The notion of p-norms for distance vectors is very common in many different research
fields [33, 30, 21, 34, 20, 2, 27, 3, 17, 39]. In cluster analysis of data mining and machine
learning, one main goal is to partition m observations (i.e., m real vectors of the same
dimension) into K groups so that the sum of “discrepancies” between each observation
and its nearest center is minimized. Here, two highly prominent clustering methods are
K-means [32] and K-medians [25, 4] clustering, each using a slightly different notion of
discrepancy measure. The first method aims to minimize the sum of squared Euclidean
distances between each observation and the “mean” of its respective group. In other words,
it minimizes the squared 2-norm of the Euclidean-distance vector. K-medians, on the
other hand, uses the 1-norm instead of the squared 2-norm to define the discrepancy to the
mean. Thus, instead of calculating the mean for each group to determine its centroid, one
calculates the median.
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In committee elections from social choice theory [17, 39, 35, 16], the p-norm is used to
analyze how well a possible committee represents the voter’s choices. In a fundamental
approval-based procedure to select a t-person committee from n candidates, each voter either
approves or disapproves each of the candidates, which can be expressed as a binary string
of length n. An optimal committee is a length-n binary string containing exactly t ones
and which minimizes the p-norm of the vector of the Hamming distances to each voter’s
preference string [39].

Problem Definition, Notation, and Conventions

Since the Hamming distance is frequently used in various applications, e.g., in computational
biology [36], information theory, coding theory and cryptography [24, 11, 37], in social
choice [26, 1] and since the notion of p-norm is very prominent in clustering tools [38, 6, 30, 40]
and preference aggregation rules [1, 5, 35], where often p = 1, 2,∞ but also other values of p
are used, it is natural to consider computational problems associated with the p-norm of the
Hamming distance metric. This is the main purpose of this paper. Specifically, we consider
the following problem:

p-Norm Hamming Centroid (p-HDC)
Input: A set S of strings s1, . . . , sm ∈ {0, 1}n and a real k.
Question: Is there a string s∗ ∈ {0, 1}n such that ‖(s∗, S)‖p ≤ k?

Throughout, we will call a string s∗ as above a solution. Note that there is nothing special
about using the binary alphabet in the definition above, but for ease of presentation we use it
throughout the paper. When p = 1, our p-HDC problem is precisely the Consensus String
problem, and when p =∞ it becomes the Closest String problem.

In the following, we list some notation and conventions that we use. By p-distance
we mean the pth-power of the Hamming distance. For each natural number t by [t] we
denote the set {1, 2, . . . , t}. Unless stated otherwise, by strings we mean binary strings over
alphabet {0, 1}. Given a string s, we use |s| to denote the length of this string. For two
binary strings s and s′, let s ◦ s′ denote the concatenation of s and s′. By s[j] we denote the
jth value or the value in the jth character of string s. By s = (1− s[j])j∈[|s|] we denote the
complement of the (binary) string s. Given two integers j, j′ ∈ {1, 2, · · · , |s|} with j ≤ j′,
we write s|j

′

j for the substring s[j]s[j + 1] · · · s[j′]. Given a number `, we use 0` and 1` to
denote the length-` all-zero string and the length-` all-one string, respectively.

Our Contributions

Our main result is a tight running time bound on the p-HDC problem for all fixed rationals
p > 1. Specifically, we show that the problem is NP-hard and can be solved in 2kp/(p+1)+ε ·
|I|O(1) time for arbitrary small ε > 0 where |I| denotes the size of the instance, but cannot
be solved in 2o(kp/(p+1)) time unless the Exponential Time Hypothesis (ETH) [12] fails.
The lower bounds are given in Theorem 3 and Proposition 6 and the upper bound in
Theorem 10. While the upper bound in this result is not very difficult, the lower bound uses
an intricate construction and some delicate arguments to prove its correctness. In particular,
the construction extensively utilizes the fact that since p > 1, the p-norm of Hamming
distances is convex and always admits a second derivative. We believe that this kind of
technique is of interest on its own. As another consequence of the hardness construction,
we also obtain a 2o(n+m) running time lower bound assuming ETH, which gives evidence
that the trivial brute-force 2n · |I|-time algorithm for the problem cannot be substantially
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improved. Moreover, the lower bounds also hold when we constrain the solution string to
have a prescribed number of ones. That is, we also show hardness for the committee election
problem mentioned above (Corollary 7).

In the final part of the paper we present two more algorithms for p-HDC. First, we provide
an mO(m2) · |I|O(1) time algorithm (see Theorem 13), by first formulating the problem as a
so-called Combinatorial n-fold Integer Program, and then applying the algorithm developed
by Knop et al. [28]. Second, we show that the problem can be approximated in polynomial
time within a factor of 2, using an extension of the well known 2-approximation algorithm
for Closest String (see Proposition 14).

Related Work

The NP-complete Closest String [18, 29] problem (aka. Minimum Radius) is a special
case of p-HDC with p =∞. It seems, however, difficult to adapt this hardness reduction to
achieve our hardness results for every fixed rational p (see also the beginning of Section 2
for some more discussion). Closest String has been studied extensively under the lens
of parameterized complexity and approximation algorithmics. The first fixed-parameter
algorithm for parameter k, the maximum Hamming distance bound, was given by Gram et
al. [22], runs in O(kk · km + mn) time where m and n denote the number and the length
of input strings, respectively. This algorithm works for arbitrary alphabet Σ. For small
alphabets Σ, there are algorithms with O(mn+ n · |Σ|O(k)) running time [31, 9]. Both types
of running time are tight under the ETH [12, Theorem 14.17]. For arbitrary alphabet Σ,
Knop et al. [28] gave an algorithm with mO(m2) · logn running time based on so-called n-fold
integer programming. As for approximability, Closest String admits a PTAS with running
time O(nO(ε−2)) [31] but no EPTAS unless FPT = W[1] [13].

Our problem falls into the general framework of convex optimization with binary variables.
If the input and the output are allowed to have fractional values, then the underlying convex
optimization problem, called Lp-Norm Convex Minimization, can be solved in polynomial
time for each fixed value p ≤ 2 [34, Chapter 6.3.2]. This convex optimization problem is a
special variant of the in general NP-hard Lp Subspace Approximation problem [14, 23].
This problem has as input m points s1, . . . , sm in Rn and an integer k′, and asks to find a
subspace H of Rn of dimension k′ that minimizes the following

∑m
i=1(distp(H, ai))1/p, where

dist(H, ai) is the minimum Euclidean distance between ai and any point in H. For k = 0,
Lp Subspace Approximation is equivalent to the Lp-Norm Convex Minimization.

For p ∈ {2, 3}, maximizing (instead of minimizing) the p-norm reduces to Mirkin
Minimization in consensus clustering with input and output restricted to two-clusters,
which was shown to be NP-hard [15] under Turing reductions. Recently, Chen et al. [7]
showed that the simple 2n-time algorithm by brute-force searching all possible outcome
solutions is essentially tight under ETH. They also provided some efficient algorithms and
showed that the problem admits an FPTAS using a simple rounding technique.

2 NP-hardness for the p-Norm of Hamming Distance Vectors

We now show that p-HDC is NP-hard for each fixed rational number p > 1 (Theorem 3
and Proposition 6) and that algorithms with running time 2o(n+m) or 2o(k

p/(p+1)) would
contradict the ETH. We reduce from the NP-hard 3-Coloring problem [19] in which, given
an undirected graph G = (V,E), we ask whether there is a proper vertex coloring col : V →
{0, 1, 2}, that is, no two adjacent vertices receive the same color.
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The first challenge we need to overcome when designing the reduction is to produce some
regularity in the solution string: Given n̂ ∈ N, in Lemma 1, we show how to construct a set
of strings to enforce a solution string to have exactly n̂ ones which only occur in the columns
of some specific range. This allows us later on to build gadgets that have several discrete
states. Indeed, after controlling the overall number of ones in the solution in this way, we
can allocate three columns (one for each color) for each vertex v in G and build a gadget
for v such that this gadget induces minimum p-distance to the solution if and only if there is
exactly 1 one in the solution in the columns allocated for v. This column determines the
color for v. Then, for each edge, we will introduce an edge gadget consisting of six strings
which induce minimum p-distance in the solution if and only if they are “covered” by the
ones in the solution exactly twice, corresponding to different colors.

In general, the design of gadgets for p-HDC is quite different from the known NP-hard
case Closest String (p =∞) [18, 29]: In Closest String every optimal solution s∗ must
regard the “worst” possible input string while in our case s∗ can escape such constraints by
distributing some of its Hamming distance from the “worst” to other strings.

In the remainder of this section, let a and b be two fixed integers such that a and b are
coprime, a > b, and p = a/b > 1. To better capture the Hamming distance, we introduce the
notion of the Hamming set of two strings s and s′ of equal length n, which consists of the
indices of the columns at which both strings differ: hs(s, s′) = {j ∈ [n] | s[j] 6= s′[j]}.

As mentioned, we first show how to construct a set of strings to enforce some structure
on the optimal solution, that is, a binary string with minimum sum of the p-distances.

I Lemma 1 (?1). Let p> 1 be a fixed rational number, and a and b be two coprime fixed
integers with p=a/b. Let S consist of one string 1(2b+1)n̂◦0n̂ and 2a−b copies of string 0(2b+2)n̂,
where n̂ is a positive integer. For each string s∗ ∈ {0, 1}(2b+2)n̂, the following holds.
(1) If d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [(2b+1)n̂], then ‖(s∗, S)‖pp = (2a+2a−b) · n̂p.
(2) If d(s∗,0(2b+2)n̂) 6= n̂ or hs(s∗,0(2b+2)n̂) * [(2b + 1)n̂], then ‖(s∗, S)‖pp > (2a + 2a−b) · n̂p.

To show Lemma 1 we crucially use the fact that p > 1. In contrast, if p = 1, then taking the
majority value in each column yields an optimal solution, and thus it is impossible to force
every optimal solution to have a certain number of ones without at the same time specifying
in which precise columns these ones should occur.

In the reduction we make heavy use of specific pairs of strings whose Hamming distances
to an arbitrary string always sum up to some lower bound. They will enforce local structure
in some columns of the solution, while being somewhat immune to changes elsewhere. As a
tool in the reduction we derive the following lower bound on the p-distance of an arbitrary
string to a pair of strings which are quite far from each other, in terms of Hamming distances.

I Lemma 2 (?). Let s1 and s2 be two strings of the same length R such that the Hamming
distance between s1 and s2 is d(s1, s2) = 2L. For each rational p > 1 and each length-R
string ŝ the following holds.
(1) dp(ŝ, s1) + dp(ŝ, s2) ≥ 2 · Lp.
(2) If d(ŝ, s1) = d(ŝ, s2) = L, then dp(ŝ, s1) + dp(ŝ, s2) = 2 · Lp.
(3) If d(ŝ, s1) 6= L or d(ŝ, s2) 6= L, then dp(ŝ, s1) + dp(ŝ, s2) > 2 · Lp.

Using Lemmas 1 and 2, we can show NP-hardness of p-HDC for each fixed rational p > 1.
For better readability, we will first show hardness for the case with multiple identical
strings (Theorem 3) and then extend the construction to also include the case where no two
strings are the same (Proposition 6).

1 Proofs for results marked by ? can be found in [8].
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I Theorem 3. For each fixed rational number p > 1, p-HDC (with possibly multiple identical
strings) is NP-hard.

Proof. First of all, let a and b be two fixed coprime integers such that p = a/b. To show the
hardness result, we reduce from the NP-hard 3-Coloring problem [19] defined above. Let
G = (V,E) be an instance of 3-Coloring. Let n be the number of vertices in G and m the
number of edges. Denote V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.

Construction. We introduce three groups of strings of length (2b + 2) · n̂ each, where
n̂ = n+m. The first group ensures that each optimal solution string must have exactly n̂
ones which appear in the first 3n̂ columns (using Lemma 1), the second group ensures that
an optimal solution enforces that each vertex has exactly one of the three colors, and the
third group, combined with the second group, ensures that no two adjacent vertices obtain
the same color.

Group 1. Construct one string 1(2b+1)n̂ ◦ 0n̂ and 2a−b copies of the same string 0(2b+2)n̂.
Group 2. This group consists of one pair of strings for each vertex. Each pair consists of two

strings which are mostly complements to each other. This ensures that the Hamming
distance to the solution induced by a pair is somewhat homogeneous, regardless where
exactly the ones in the solution occur. However, in each pair there are three columns,
corresponding to the vertex, which will skew the pairs of Hamming distances in a way to
induce minimum p-distances only if the solution has exactly 1 one in these three columns.
Formally, for each vertex vi ∈ V , let ui be a string of length 3n̂ which has exactly 3
ones in the columns 3i − 2, 3i − 1, 3i, and let ui be the complement of ui. Deriving
from ui, we construct two vertex strings si and ri with si := ui ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1
and ri := ui ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1. Note that both strings si and ri have all zeros in the
columns {3n̂, . . . , (2b + 1)n̂} such that d(si, ri) = 4n̂.
For an illustration, the strings s2 and r2, which correspond to the vertex v2, are as follows:
s2 = 000 111 ◦ 03n̂−6 ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1, r2 = 111 000 ◦ 13n̂−6 ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1.

Group 3. We now use three pairs of strings for each edge to ensure relatively homogeneous
distributions of Hamming distances to the solution and then skew them. This time, we
aim to skew distances to the solution so that their corresponding p-distances are minimum
only if the solution distributes exactly three ones (corresponding to the colors) over three
special regions: two corresponding to the endpoints of the edge and one extra dummy
region.
Formally, for each edge ej ∈ E let e(0)

j , e
(1)
j , and e(2)

j denote three strings, each of length 3n̂,
that ensure that the edge and both of its endpoints each have a distinct color:

∀` ∈ {1, 2, · · · , n̂} : e(0)
j [3`− 2, 3`− 1, 3`] :=

{
100, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.

e
(1)
j [3`− 2, 3`− 1, 3`] :=

{
010, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.

e
(2)
j [3`− 2, 3`− 1, 3`] :=

{
001, 1 ≤ ` ≤ n with v` ∈ ej , or ` = j + n,

000, otherwise.
Now, we construct the following six edge strings for edge ej :

∀z ∈ {0, 1, 2} : t(z)j := e
(z)
j ◦ 0(2b−2)n̂ ◦ 0 ◦ 1n̂−1 and w(z)

j := e
(z)
j ◦ 0(2b−2)n̂ ◦ 1 ◦ 0n̂−1.

Just as for group 2, the two strings t(z)j and w(z)
j have all zeros in the columns {3n̂, . . . , (2b+

1)n̂} such that d(t(z)j , w
(z)
j ) = 4n̂.
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2 0

0 1
v1 v2

v3 v4

e1

e5

e3

e2e4

G :

 

111 111 111 111 111 111 111 111 111 0000 00000
000 000 000 000 000 000 000 000 000 0000 00000
000 000 000 000 000 000 000 000 000 0000 00000

s1 : 111 000 000 000 000 000 000 000 000 0111 11111
s2 : 000 111 000 000 000 000 000 000 000 0111 11111
s3 : 000 000 111 000 000 000 000 000 000 0111 11111
s4 : 000 000 000 111 000 000 000 000 000 0111 11111
t
(0)
1 : 100 100 000 000 100 000 000 000 000 0111 11111
t
(1)
1 : 010 010 000 000 010 000 000 000 000 0111 11111
t
(2)
1 : 001 001 000 000 001 000 000 000 000 0111 11111
t
(0)
2 : 000 100 000 100 000 100 000 000 000 0111 11111
t
(1)
2 : 000 010 000 010 000 010 000 000 000 0111 11111
t
(2)
2 : 000 001 000 001 000 001 000 000 000 0111 11111
t
(0)
3 : 000 000 100 100 000 000 100 000 000 0111 11111
t
(1)
3 : 000 000 010 010 000 000 010 000 000 0111 11111
t
(2)
3 : 000 000 001 001 000 000 001 000 000 0111 11111
t
(0)
4 : 100 000 100 000 000 000 000 100 000 0111 11111
t
(1)
4 : 010 000 010 000 000 000 000 010 000 0111 11111
t
(2)
4 : 001 000 001 000 000 000 000 001 000 0111 11111
t
(0)
5 : 000 100 100 000 000 000 000 000 100 0111 11111
t
(1)
5 : 000 010 010 000 000 000 000 000 010 0111 11111
t
(2)
5 : 000 001 001 000 000 000 000 000 001 0111 11111
s∗ : 100 010 001 100 001 001 010 010 100 0000 00000

v1 v2 v3 v4 e1 e2 e3 e4 e5

group 1

group 2

group 3

Figure 1 Illustration of the reduction used in Theorem 3. The left figure depicts a graph G that
admits a proper vertex coloring col (see the labels on the vertices). For instance, vertex v1 has
color 0, i.e., col(v1) = 0. The right figure shows the crucial part of an instance of p-HDC with p = 2
(i.e., a = 2 and b = 1) that we will construct according to the proof for Theorem 3. For each pair of
constructed strings we only show the first one. A solution string s∗ corresponding to the coloring col
is depicted at the bottom of the right figure.

For an example, assume that a = 3, b = 2, n = 3, and m = 2, and there is an edge of the
form e2 = {v1, v3}. Then, the two triples of strings that we construct for e2 have each length
(2b + 2)(n+m) = 30 and are

t
(0)
j = 100 000 100 000 100 0000000000 01111, w

(0)
j = 011 111 011 111 011 0000000000 10000,

t
(1)
j = 010 000 010 000 010 0000000000 01111, w

(1)
j = 101 111 101 111 101 0000000000 10000,

t
(2)
j = 001 000 001 000 001 0000000000 01111, w

(2)
j = 110 111 110 111 110 0000000000 10000.

Summarizing, the instance I ′ of p-HDC consists of the following strings, each of length (2b +
2)n̂ = (2b + 2)(n+m):
(1) Add the 2a−b + 1 strings in group 1 to I ′.
(2) For each vertex vi ∈ V , add the vertex strings si and ri to I ′.
(3) For each edge ej ∈ E, add two triples t(0)

j , t(1)
j , t(2)

j and w(0)
j , w(1)

j , w(2)
j to I ′.

See Figure 1 for an illustration.
Finally, we define k such that kp = (2a + 2a−b) · n̂p + 2(n+ 3m) · (2n̂)p. This completes

the construction, which can clearly be done in polynomial time.
Correctness of the construction. Before we show the correctness of our construction,

we define a notion and make an observation. Let s and s′ be two strings of equal length.
We say that s covers s′ exactly once if there is exactly one integer ` ∈ {1, 2, · · · , |s|} with
s[`] = s′[`] = 1.
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B Claim 4 (?). Let s∗ and s be two strings, both of length 4n̂, such that
(i) s∗ has exactly n̂ ones and each of them is in the first 3n̂ columns, and
(ii) in s, the first 3n̂ columns have exactly 3 ones and the last n̂ columns are 0 ◦ 1n̂−1.

Then, if s∗ covers s exactly once, then dp(s∗, s)+dp(s∗, s) = 2·(2n̂)p; else dp(s∗, s)+dp(s∗, s) >
2 · (2n̂)p.

We show that G has a proper 3-coloring if and only if there is a string s∗ such that the sum
of the p-distances from s∗ to all strings in I ′ is at most kp = (2a+2a−b) · n̂p+2(n+3m) ·(2n̂)p.

For the “if” direction, let s∗ be a string which has a sum of p-distances of at most kp to
all strings in I ′. Before we define a coloring for the vertices and show that it is proper we
observe several properties of the solution string s∗.

By Lemma 2(1), the sum of p-distances to all strings from group 2 and group 3 is at least
2 · (2n̂)p · (n+3m) since these groups consist of n+3m pairs of strings, and the strings in each
of these pairs have Hamming distance exactly 4n̂ to each other. By the definition of k, the sum
of p-distances from s∗ to the first of group of strings is thus at most (2a+2a−b) · n̂p. Hence, by
the contra-positive of Lemma 1(2), the solution string s∗ has exactly n̂ ones, which all appear
in the first (2b + 1)n̂ columns, i.e., d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [(2b + 1)n̂]. By
Lemma 1(1), this implies that∑

s∈group 1
dp(s∗, s) = (2a + 2a−b) · n̂p. (1)

Next, we claim that the ones in the solution s∗ indeed all appear in the first 3n̂ columns,
i.e., hs(s∗,0(2b+2)n̂) ⊆ [3n̂]. Suppose, for the sake of contradiction, that solution s∗ contains
x ones which appear in columns ranging from 3n̂ + 1 to (2b + 1)n̂ with x > 0. Consider
an arbitrary pair of strings si and ri from group 2 or an arbitrary pair of strings t(z)i and
w

(z)
i from group 3; for the sake of readability, represent them by s and s′. By construction,

strings s and s′ have Hamming distance exactly 4n̂ to each other, but have all zeros in the
columns between 3n̂+ 1 and (2b + 1)n̂. Since x > 0, by the triangle inequality of Hamming
distances, it follows that at least one string from the pair, s or s′, has Hamming distance
more than 2n̂ from s∗. However, by Lemma 2(3), this means that the sum of p-distances from
s∗ to {s, s′} exceeds 2 · (2n̂)p. Since there are in total n+ 3m such pairs in groups 2 and 3,
the sum of p-distances from s∗ to these groups exceeds 2(n+ 3m) · (2n̂)p, a contradiction to
equation (1) and the defined bound k. Thus, indeed, it holds that

d(s∗,0(2b+2)n̂) = n̂ and hs(s∗,0(2b+2)n̂) ⊆ [3n̂]. (2)

This implies that, when determining the p-distance of s∗ to the strings from group 2 and
group 3, we can ignore, the values in the columns ranging from 3n̂+ 1 to (2b + 1)n̂, in each
string, which includes the solution s∗, because s∗ also has only zeros in these columns. We
will hence from now on treat these columns as if they do not exist. In this way, we obtain
strings of length 4n̂. Again, consider an arbitrary pair of strings si and ri from group 2 (resp.
an arbitrary pair of strings t(z)i and w(z)

i from group 3), and represent them by s and s′. Since
we ignore columns 3n̂+ 1 to (2b + 1)n̂, string s′ is the complement of s. By construction,
the Hamming distance between s and s′ is exactly 4n̂. Using Claim 4 on s∗, s, s′ , the sum
of p-distances from s∗ to the pair {s, s′} is indeed equal to 2 · (2n̂)p. By the same claim, it
follows that s∗ covers each string si (resp. t(z)j ) from group 2 (resp. group 3) exactly once.

Having this property, we are ready to color the vertices. Let col : V → {0, 1, 2} be a
mapping defined as follows. For each vi ∈ V , set col(vi) = z where z ∈ {0, 1, 2} such that
s∗[3i− 2 + z] = 1. Note that, since s∗ covers si exactly once and since si has exactly three
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ones in the columns 3i− 2, 3i− 1, and 3i, there is indeed such a z with col(vi). We claim
that col is a proper coloring for G. Suppose, towards a contradiction, that there is an
edge ej = {vi, vi′} ∈ E such that vi and vi′ have the same color from col, say z ∈ {0, 1, 2}.
By the definition of col, this means that s∗[3i − 2 + z] = s∗[3i′ − 2 + z] = 1. However,
by the definition of the string t(z)j which corresponds to the edge ej , we also have that
t
(z)
j [3i − 2 + z] = t

(z)
j [3i′ − 2 + z] = 1. This implies that t(z)j is not covered by s∗ exactly

once – a contradiction to our reasoning above that s∗ covers each string from the third
group exactly once.

For the “only if” direction, let col : V → {0, 1, 2} be a proper coloring for G. For an
edge e ∈ E with two endpoints vi, vi′ , let col(e) = {col(vi), col(vi′)}. We claim that string s∗,
defined as follows, has the desired bound on the sum of the p-distances to all strings of I ′.

∀i ∈ {1, 2, · · · , n} : s∗[3i− 2, 3i− 1, 3i] :=


100, col(vi) = 0,
010, col(vi) = 1,
001, col(vi) = 2.

∀j ∈ {n+ 1, n+ 2, · · · , n̂} : s∗[3j − 2, 3j − 1, 3j] :=


100, col(ej) = {1, 2},
010, col(ej) = {0, 2},
001, col(ej) = {0, 1}.

s∗|(2
b+2)n̂

3n̂+1 := 0n̂.
First of all, since col is a proper coloring, s∗ is well defined in all (2b + 2)n̂ columns.

Moreover, it has exactly n ones in the first 3n columns and exactly m ones in the next
3m columns, and all zeros in the remaining columns. Thus, by Lemma 1(2), the sum of the
p-distances from s∗ to the first group of strings is (2a + 2a−b) · n̂p.

Now, we focus on strings from group 2 and group 3. Since the solution s∗ and each
string in these groups have only zeros in the columns between 3n̂+ 1 and (2b + 1)n̂, we can
simply ignore the values in these columns and assume from now on that the strings have
length 4n̂. Moreover, for each i ∈ [n], the pair si and ri can be considered as complement to
each other. Thus, for each string si from group 2, s∗ and si fulfill the properties stated in
Claim 4. Moreover, by definition, s∗ covers si exactly once. Thus, by the same claim, we
have that the sum of the p-distances from s∗ to all strings in group 2 is n · 2 · (2n̂)p.

Analogously, consider a string t(z)j from group 3, j ∈ {1, 2, . . . ,m} and z ∈ {0, 1, 2}.
Recall that t(z)j corresponds to the edge ej , and let vi and vi′ be the two endpoints of edge ej .
We claim that s∗ covers t(z)j exactly once. Observe that t(z)j has exactly 3 ones in the first
3n̂ columns, namely at columns 3i− 2 + z, 3i′ − 2 + z, and 3n+ 3j − 2 + z. To prove that s∗
covers t(z)j exactly once, it suffices to show that s∗ has 1 one in exactly one of these three
columns. To show this, we consider the substrings t(z)j |

3n+3j
3n+3j−2 and s∗|3n+3j

3n+3j−2.
Case 1: s∗|3n+3j

3n+3j−2 = t
(z)
j |

3n+3j
3n+3j−2. By the definition of s∗, this implies that s∗[3n+ 3j − 2 +

z] = 1 and col(ej) = {0, 1, 2} \ {z}. We claim that s∗[3i − 2 + z] = s∗[3i′ − 2 + z] = 0.
By the definition of s∗ regarding the columns that correspond to the endpoint vi of
edge ej , we have that s∗[3i − 2 + col(vi)] = 1 while s∗[3i − 2 + z] = 0 (since z /∈
col(ej) = {col(vi), col(vi′)}). Analogously, by the definition of s∗ regarding the columns
that correspond to the other endpoint vi′ of edge ej , we have that s∗[3i′− 2 + col(vi′)] = 1
while s∗[3i′ − 2 + z] = 0 (since z /∈ col(ej) = {col(vi), col(vi′)}). Thus, 3n + 3j − z

is the only column in which both s∗ and t
(z)
j have 1 one, implying that s∗ covers t(z)j

exactly once.
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Case 2: s∗|3n+3j
3n+3j−2 6= t

(z)
j |

3n+3j
3n+3j−2. This means that s∗[3n + 3j − 2 + z] = 0 and that

z ∈ col(ej). To show that s∗ covers t(z)j exactly once in this case, it suffices to show that
either s∗[3i−2 + z] = 1 and s∗[3i′−2 + z] = 0, or s∗[3i−2 + z] = 0 and s∗[3i′−2 + z] = 1.

Assume that s∗[3i− 2 + z] = 1. Then, by the definition of s∗ regarding the columns
that correspond to the endpoint vi of edge ej , this means that col(vi) = z. Since col
is a proper coloring, it follows that col(vi′) 6= z. Thus, again by the definition of s∗
regarding the columns that correspond to the other endpoint vi′ of edge ej , it follows
that s∗[3i′ − 2 + z] = 0.
Assume that s∗[3i−2+z] = 0. Then, by the definition of s∗ regarding the columns that
correspond to the endpoint vi of edge ej , we have col(vi) 6= z. Since z ∈ col(ej) and
col is a proper coloring, the other endpoint vi′ of edge ej must have color col(vi′) = z.
Again, by the definition of s∗ regarding the columns that correspond vi′ , it follows
that s∗[3i′ − 2 + z] = 1.

We have just shown that s∗ covers t(z)j exactly once. Since s∗ and t(z)j fulfill the property
stated in Claim 4, it follows from the same claim that the sum of p-distances from s∗ to t(z)j

and to w(z)
j is 2 · (2n̂)p. There are 3m pairs in this group. So, the sum of the p-distances

from s∗ to all strings of this group is 3m · 2 · (2n̂)p.
In total, the sum of the p-distances from s∗ to all strings of I ′ is (2a + 2a−b) · n̂p + 2 ·

(2n̂)p · (n+ 3m) = kp, as required. J

Our NP-hardness reduction implies the following running time lower bounds [12].

I Corollary 5 (?). For each fixed rational number p > 1, unless the ETH fails, no 2o(n̂+m̂) ·
|I ′|O(1)-time or 2o(k

p/(p+1)) · |I ′|O(1)-time algorithm exists that decides every given instance I ′
of p-HDC where n̂ is the length of the input strings, m̂ is the number of input strings, and k
is the p-norm bound.

Using a slight modification of the construction, we can show that our results are not
idiosyncratic to instances which contain some strings multiple times. (Recall that the gadget
from Lemma 1 in the construction contains 2a−b copies of the all-zero string.) The basic
idea is to append an identity matrix to the strings we need to distinguish, and then to show
using a slightly more involved analysis that the gadgets still work in the same way.

I Proposition 6 (?). Theorem 3 and Corollary 5 hold even if all input strings are distinct.

Let p-Norm Approval Committee be the variant of p-HDC in which we additionally
get t ∈ N as an input and require the number of ones in the solution string s∗ to be
exactly t [39]. Note that in the proof of Theorem 3 we have first shown that each solution
string contains exactly n̂ ones. Thus, the reduction works in the same way for p-Norm
Approval Committee when we specify t = n̂ in the constructed instance. We hence obtain
the following.

I Corollary 7. For each fixed rational p > 1, p-Norm Approval Committee is NP-hard
and admits no algorithm running in 2o(n̂+m̂) · |I ′|O(1)-time or in 2o(k

p/(p+1)) · |I ′|O(1)-time
unless the ETH fails, where n̂ is the number of candidates, m̂ is the number of voters, and k
is the p-norm bound.

3 Algorithmic Results

We now turn to our positive results. In Section 3.1 we provide an efficient algorithm when
the objective value k is small. In Section 3.2, we derive an integer convex programming
formulation to obtain an efficient algorithm for instances where the number m of input
strings is small. Finally, we give a simple 2-approximation in Section 3.3.
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3.1 A Subexponential-Time Algorithm
In this section, we present an algorithm with running time 2k

p/(p+1)+ε · |I|O(1) for any ε > 0
and input instance I with distance bound k. By the lower bound result given in Corollary 5,
we know that under ETH, the running time of the obtained algorithm is tight.

The algorithm is built on two subcases, distinguishing on a relation between the numberm
of input strings and the distance bound k. In each subcase we use a distinct algorithm
that runs in subexponential time when restricted to that subcase. To start with, a dynamic
programming algorithm which keeps track of the achievable vector of Hamming distances to
each input string after columns 1 to j ≤ n has running time O(n · km).

I Lemma 8 (?). p-HDC can be solved in O(n · km) time and space, where m and n are the
number and the length of the input strings, respectively, and k is the p-norm distance bound.

The dynamic program given in Lemma 8 is efficient if there is a small number m of
input strings only. In particular, if m satisfies m ≤ k

p/(p+1)

log k , then we immediately obtain
an O(n · 2k

p/(p+1))-time algorithm. Otherwise, we can use Lemma 9. The algorithm behind
Lemma 9 is based on a different but related idea as the fixed-parameter algorithm for
Closest String given by Gramm at al. [22]: We use data reduction to shrink the length
of the strings by kp, observe that one of the input strings must be close to a solution with
bound k if it exists, and then find the solution by a search tree.

I Lemma 9. p-HDC can be solved in O(nm2 · k
p·k
p√m ) time, where m and n are the number

and the length of the input strings, respectively, and k is the p-norm distance bound.

Proof. Let I = (S, k) be an instance of p-HDC with S = (s1, . . . , sm) being the input strings
of length n and k being the p-norm distance bound. To show the statement, we first observe
that if a column is an all-zero (resp. an all-one) column, then we can simply assume that
an optimal solution will also have zero (resp. one) in this column as our objective function
is convex. By preprocessing all columns that are either an all-zero or an all-one vector, we
obtain an equivalent instance, where each column has at least a zero and at least a one.
Thus, for each column, no matter which value a solution has at this column, it will always
induce Hamming distance of at least one to some input string. Consequently, if there are
more than kp columns remaining, then we can simply answer “no” as any string will have
cost more than k to the input. Otherwise, there remain at most kp columns.

If I is a yes-instance, meaning that there is a solution s∗ for I with ‖(s∗, S)‖p ≤ k, then
there is an input string s∗∗ ∈ S whose Hamming distance satisfies d(s∗∗, s∗) ≤ p

√
kp

m = k
p
√
m
.

Thus, we iterate over all input strings in S, assuming in each iteration that the current string
is the aforementioned s∗∗. For each string si that we assume to be the aforementioned s∗∗,
we go over all strings ŝ that differ from si by k′ columns with k′ ≤ k

p
√
m
. We check whether

‖(ŝ, S)‖p ≤ k. We answer “no” if for each input string si ∈ S, no length-n string ŝ with
d(si, ŝ) ≤ k

p
√
m

exists which satisfies ‖(ŝ, S)‖p ≤ k.
It remains to show the running-time bound. Observe that the preprocessing for all-zero

and all-one columns can be done in O(nm) time. After that, for each of the m input strings si,
we search all strings of Hamming distance at most k′ ≤ k

p
√
m

to si, and there are O(n
k
p√m ) such

strings. For each of them, we compute the objective function, which can be accomplished in
O(nm) time. As already reasoned, after the preprocessing, n is upper-bounded by kp. Thus,
the overall running time bound is O(nm+ nm2 · n

k
p√m ) = O(nm2 · k

p·k
p√m ), as claimed. J

Combining Lemma 8 with Lemma 9, we obtain a subexponential algorithm with respect to k.
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I Theorem 10. For each fixed positive value ε > 0, p-HDC can be solved in O(nm2 ·
2k

p/(p+1)+ε) time, where n and m denote the length and the number of input strings, and k is
the p-norm distance bound with p > 1.

Proof. Let I = (S, k) be an instance of p-HDC with S = (s1, . . . , sm) being the input strings
of length n and k being the p-norm distance bound. As already discussed, to solve our
problem we distinguish between two cases, depending on whether m ≤ k

p/(p+1)

log k holds.

If m ≤ k
p/(p+1)

log k , then km ≤ k
k
p/(p+1)

log k ≤ 2k
p/(p+1) . In this case, we use the dynamic

programming approach given in the proof of Lemma 8, which has the desired running
time O(n · km) = O(n · 2k

p/(p+1)).
Otherwise, m > k

p/(p+1)

log k , meaning that p·k·log k
p
√
m

< p · k · log k/ p

√
kp/(p+1)

log k = p · kp/(p+1) ·
(log k)(p+1)/p. For each fixed positive ε ∈ R there exists k0 = k0(p, ε) ∈ R such that, for
each k ≥ k0, we have p · (log k)(p+1)/p < kε. If k < k0, then the algorithm in the proof
of Lemma 9 runs in O(nm2) time. Otherwise k ≥ k0, which implies p·k·log k

p
√
m

< kp/(p+1)+ε.

Thus, the algorithm given in the proof of Lemma 9 has a running time of O(nm2 · k
p·k
p√m ) =

O(nm2 · 2
p·k·log k
p√m ) = O(nm2 · 2k

p/(p+1)+ε).
Altogether we presented an algorithm which has the desired running time bound. J

3.2 A Fixed-Parameter Algorithm for the Number of Input Strings
In this section, we show that minimizing the sum of the p-distances is fixed-parameter
tractable for the number m of input strings. The idea is to formulate our problem as a
combinatorial n-fold integer program (CnIP) with O(2m) variables and O(m) constraints.
We then apply the following simplified result of Knop et al. [28]:

I Proposition 11 ([28, Theorem 3]). Let E ∈ Z(r+1)×t be a matrix such that the last row
equals (1, 1, . . . , 1) ∈ Zt. Let b ∈ Zr+1, `, u ∈ Zt, and let f : Rt → R be a separable
convex function given by an evaluation oracle2. Then, there is an algorithm that solves3

P := min{f(x) | Ex = b∧` ≤ x ≤ u∧x ∈ Zt} in tO(r)·
(
(1+‖E‖∞)·r

)O(r2)·L+T time, where
L is the total bit-length of b, `, u, and the oracle of f , and T is the time that an algorithm
needs to solve the continuous relaxation of P .

To get a useful running time bound from Proposition 11, we need a bounded number of
variables. To do this, we group columns in the input strings with the same “type” together and
introduce an integer variable for each column type. To this end, given a set S = {s1, . . . , sm}
of length-n strings, we say that two columns j, j′ ∈ [n] have the same type if for each i ∈ [m]
it holds that si[j] = si[j′]. The type of column j is its equivalence class in the same-type
relation. Thus, each type is represented by a vector in {0, 1}m. Let n′ denote the number of
different (column) types in S. Then, n′ ≤ min(2m, n). Enumerate the n′ column types as
t1, . . . , tn′ . Below we identify a column type with its index for easier notation. Using this, we
can encode the set S succinctly by introducing a constant e(j) for each column type j ∈ [n′]
that denotes the number of columns with type j. Given a solution string s∗, we can also
encode this string s∗ via an integer vector x ∈ {0, 1, . . . , n}n′ , where for each type j ∈ [n′]
we define x[j] as the number of ones in the solution s∗ whose corresponding columns are
of type j. Note that this encodes all essential information in a solution, since the actual

2 A function is separable convex if it is the sum of univariate convex functions.
3 The algorithm correctly reports either a minimizer x ∈ P or that P is infeasible or unbounded.
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order of the columns is not important (see Example 12). Vice versa, each integer vector
in x ∈ {0, 1, . . . , n}n′ satisfying 0 ≤ x[j] ≤ e(j) for each j ∈ [n′] yields a length-n binary
string s∗(x); it remains to add constraints and a suitable objective function to ensure that
s∗(x) has minimum sum of p-distances to the input strings.

I Example 12. For an illustration, let S = {0000, 0001, 1110}. The set S has two different
column types, represented by (0, 0, 1)T , call it type 1, and (0, 1, 0)T , call it type 2. There are
three columns of type 1 and one column of type 2. The solution 0110 for S can be encoded
by two variables x[1] = 2 and x[2] = 0.

We next introduce m variables y ∈ {0, 1, . . . , n}m that shall be equal to the Hamming
distances of each input string si, i ∈ [m], to the solution s∗(x) selected by x. To achieve
this, we need a formula specifying the Hamming distance between the two strings si and
s∗(x), and this formula needs to be linear in x. This can be achieved as follows; for the
sake of simplicity, we let si[j] = 1 if the column of type j has one in the ith row and
si[j] = 0 if it has zero in the ith row: d(si, s∗(x)) =

∑n′

j=1
(
si[j]·(e(j)−x[j]) + (1−si[j]) ·

x[j]
)

=
∑n′

j=1 (e(j) · si[j] + (1−2si[j])·x[j]) =wi +
∑n′

j=1 x[j] · (1− 2si[j]), where we define
wi :=

∑n′

j=1 e(j) · si[j], which denotes the number of ones in string si.
We can now formulate an appropriate CnIP. The variables are x ∈ Rn′ , y ∈ Rm, and a

dummy variable z ∈ Z. The bounds `, u for the variables are defined such that
(1) for each j ∈ [n′] it holds that 0 ≤ x[j] ≤ e(j),
(2) for each i ∈ [m] it holds that 0 ≤ y[i] ≤ n, and
(3) there is virtually no constraint on z, that is, −n′ · n+mn ≤ z ≤ n′ · n+mn.
The objective function is defined as f(x, y, z) =

∑n′

i=1 y[i]p which is clearly separable convex
over the domain specified by ` and u. Finally, the constraint system Et = b, where t> =
(x>y>z) is defined such that the first m constraints are

∑n′

j=1
(
x[j] · (1−2si[j])

)
−y[i] = −wi,

for each i ∈ [m], and the last constraint is
∑n′

j=1 x[j] +
∑m
i=1 y[i] + z = 0 (note that this

constraint can always be fulfilled by setting z accordingly).
By the above reasoning, an instance of p-HDC is a yes-instance if and only if min{f(x) |

Et = b ∧ ` ≤ t ≤ u ∧ t ∈ Zn′+n+1} is at most kp. Plugging in the running time of
Proposition 11, and using a polynomial-time algorithm for the continuous relaxation of the
CnIP above [10], we obtain the following.

I Theorem 13. p-Norm Hamming Centroid can be solved in mO(m2) · (n ·m)O(1) time.

3.3 A Factor-2 Approximation
It is known that by taking an input string that minimizes the largest Hamming distance
over all input strings, Closest String can be approximated within factor 2. Indeed, using
a similar idea, we show that the minimization version of our p-HDC problem can also be
approximated within factor 2. More specifically, we show that an input string which has
minimum p-norm to all other input strings is a 2-approximate solution.

I Proposition 14 (?). The minimization variant of p-HDC can be approximated within
factor 2 in polynomial time.

4 Conclusion and Outlook

We analyzed the complexity of p-Norm Hamming Centroid for all fixed rational values p
between p = 1 and p = ∞. We believe that the running time bounds established in this
paper, of essentially 2Θ(k

p
p+1 ) · (nm)O(1), connect the extreme points p = 1 and p = ∞ in
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a very satisfying way. We did not consider the non-norm case of 0 < p < 1, as it does not
fit our clustering motivation very well. But this non-convex case might be of independent
interest, and may be the subject of future work. Furthermore, we have focused here on the
case where p is a fixed constant. It would also be interesting to study the case where p is
part of the input.

An interesting generalization of Closest String is Closest Substring in which we
seek a string s∗ of a certain specified length such that each of the input strings has a substring
which is close to s∗ (see, e.g., Ma and Sun [31]). It would be interesting to see how our
results carry over to this and other similar variants. Finally, the fact that the simple 2-factor
approximation for Closest String carries over to p-HDC may imply that there are similar
connections for approximation algorithms. This warrants further investigation into whether
p-HDC admits a PTAS.
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Abstract
Interactive-proof games model the scenario where an honest party interacts with powerful but
strategic provers, to elicit from them the correct answer to a computational question. Interactive
proofs are increasingly used as a framework to design protocols for computation outsourcing.

Existing interactive-proof games largely fall into two categories: either as games of cooperation
such as multi-prover interactive proofs and cooperative rational proofs, where the provers work
together as a team; or as games of conflict such as refereed games, where the provers directly compete
with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of
service providers in outsourcing applications. How to design and analyze non-cooperative interactive
proofs is an important open problem.

In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-
proof model in which the provers are rational and non-cooperative – they act to maximize their
expected utility given others’ strategies. We define a strong notion of backwards induction as our
solution concept to analyze the resulting extensive-form game with imperfect information.

We fully characterize the complexity of our proof system under different utility gap guarantees.
(At a high level, a utility gap of u means that the protocol is robust against provers that may not
care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational
interactive proofs with a polynomial utility gap is exactly equal to the complexity class PNEXP.
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1 Introduction

Game theory has played a central role in analyzing the conflict and cooperation in interactive
proof games. These games model the scenario where an honest party interacts with powerful
but strategic agents, to elicit from them the correct answer to a computational question.
The extensive study of these games over decades has fueled our understanding of important

© Jing Chen, Samuel McCauley, and Shikha Singh;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jingchen@cs.stonybrook.edu
mailto:sam@cs.williams.edu
mailto:shikha@cs.williams.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.29
https://arxiv.org/abs/1708.00521
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 Non-Cooperative Rational Interactive Proofs

complexity classes (e.g., [4, 16,22–24,26,27,37]). From a modern perspective, these games
capture the essence of computation outsourcing – the honest party is a client outsourcing his
computation to powerful rational service providers in exchange for money.

In this paper, we consider a natural type of interactive-proof game. For the moment, let
us call our client Arthur. Arthur hires a service provider Merlin to solve a computational
problem for him, and hires a second service provider Megan to cross-check Merlin’s answer.
Arthur wants the game (and associated payments) to be designed such that if Merlin gives
the correct answer, Megan agrees with him; however, if Merlin cheats and gives a wrong
answer, Megan is incentivized to contradict him, informing Arthur of Merlin’s dishonesty.
This means that Merlin and Megan are not purely cooperative nor purely competitive. Each
is simply a rational agent who wants to maximize their own utility.

This is a mechanism design problem – how can Arthur incentivize non-cooperative rational
agents (Merlin and Megan) to give truthful answers to his questions, helping him solve a
computational problem? This problem is the focus of our paper.

Structure of the game

We borrow the structure and terminology of interactive proofs [3,6,29], as was done in previous
work on rational proofs [1, 2, 11, 12, 17–19, 31, 32] and refereed games [16, 22, 24–26, 35, 40].
We call Arthur the verifier and assume that he is computationally bounded (he may
be probabilistic, but must run in polynomial time). Arthur’s coin flips are treated as
Nature moves in the game. We call Merlin and Megan the provers; they have unbounded
computational power.

The verifier exchanges messages with the provers in order to determine the answer to
a decision problem. The exchange proceeds in rounds: in a round, either a verifier sends
a message to all provers or receives a response from each. The provers cannot observe the
messages exchanged between the verifier and other provers.

At the end, the verifier gives a payment to each prover. Our goal is to design protocols
and payments such that, under an appropriate solution concept of the resulting game, the
provers’ best strategies lead the verifier to the correct answer.

The interactive protocols described above form an extensive-form game of imperfect
information. To analyze them, we essentially use a strong notion of backward induction as
our solution concept. We refine it further by eliminating strategies that are weakly dominated
on “subgames” within the entire game. We define the solution concept formally in Section 2.1.

Comparison to previous work

The model of our games is based on interactive proof systems [3, 29], in which a verifier
exchanges messages with untrustworty provers and at the end either accepts or rejects their
claim. Interactive proofs guarantee that, roughly speaking, the verifier accepts a truthful
claim with probability at least 2/3 (completeness) and no strategy of the provers can make
the verifier accept a false claim with probability more than 1/3 (soundness).

The study of interactive proofs has found extensive applications in both theory and
practice. Classical results on IPs have led us to better understand complexity classes through
characterizations such as IP = PSPACE [37, 43] and MIP = NEXP [4, 23,27], and later led to
the important area of probabilistically checkable proofs [44]. More recently, the study of IPs
has resulted in extremely efficient (e.g., near linear or even logarithmic time) protocols for
delegation of computation [7,9,15,30,41]. Such super-efficient IPs have brought theory closer
to practice, resulting in “nearly practical” systems (e.g., see [8, 13,45,47]).
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Indeed, interactive proofs are not only a fundamental theoretical concept but an indis-
pensable framework to design efficient computation-outsourcing protocols.

Existing interactive-proof games

Interactive-proof systems with multiple provers have largely been studied as games that
fall into two categories: either as games of cooperation such as MIP [6], cooperative multi-
prover rational proofs (MRIP) [18], and variants [4, 10, 27, 30, 33], where the provers work
together to convince the verifier of their joint claim; or as games of conflict such as refereed
games [14–16,22, 24, 26, 34], where the provers directly compete with each other to convince
the verifier of their conflicting claims.

Both of these categories have limitations. In a game of cooperation, provers cannot be
leveraged directly against each other. That is, the verifier cannot directly ask one prover if
another prover is lying. On the other hand, in a game of conflict, such as refereed games, one
prover must “win” the zero-sum game. Thus, such games need to assume that at least one
prover – who must be the winning prover in a correct protocol – can be trusted to always tell
the truth. Despite their limitations, both models have proved to be fundamental constructs
to understand and characterize important complexity classes [4, 16, 18, 22, 26], and to design
efficient computation outsourcing protocols [7, 8, 14,15,30].

1.1 Contributions and Results
In this paper, we introduce a new interactive-proof game, non-cooperative rational interactive
proofs (ncRIP). This model generalizes multi-prover rational proofs [17–19].

Solution concept for ncRIP

We define a refinement of sequential equilibrium [36], strong sequential equilibrium
(SSE), that essentially says that players’ beliefs about the histories that led them to an
unreachable information set should be irrelevant to their best response. From a mechanism-
design perspective, we want to design the protocols and payments that allow this strong
guarantee to hold – letting the players’ best responses be unaffected by their beliefs.1

Finally, we eliminate SSE strategies that are suboptimal within “subgames” by defining
and enforcing a backward-induction-compatible notion of dominance. Roughly speaking, we
say a protocol is a ncRIP if there exists a strategy profile of the provers that is a dominant
SSE among the subforms of the extensive form game, and under this strategy the provers’
lead the verifier to the correct answer. We define the model formally in Section 2.

Utility gap for non-cooperative provers

Utility gap is a fundamental concept for rational proofs [2, 18,19,31] which is analogous to
soundness gap in interactive proofs. It measures how robust a protocol is against the provers’
possible deviations from the desired strategy.

This notion is straightforward to define for cooperative rational protocols – they have a
utility gap of u if the total expected payment decreases by 1/u whenever the provers report
the wrong answer. In non-cooperative protocols, however, it is not a priori clear how to
define such a payment loss or to choose which prover should incur the loss. A payment loss

1 We believe that SSE is of independent interest as a solution concept for designing extensive-form
mechanisms (e.g. [21,28,46]). In the full version of the paper, we prove important properties of SSE
that may prove useful in future studies.
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solely imposed on the total payment may not prevent some provers from deviating, and a
loss solely imposed on the provers’ final payments may not prevent them from deviating
within subgames.

We define a meaningful notion of utility gap for ncRIP that is naturally incorporated in
a backward-induction-compatible way to the dominant SSE concept.

Tight characterizations of ncRIP classes

In this paper, we completely characterize the power of non-cooperative rational proofs under
different utility-gap guarantees.

We construct ncRIP protocols with constant, polynomial, and exponential utility gaps
for powerful complexity classes, demonstrating the strength of our solution concept. Our
protocols are simple and intuitive (requiring only a few careful tweaks from their cooperative
counterparts), and are thus easy to explain and implement. However, proving their correctness
involves analyzing the extensive-game (including subtleties in the incentives and beliefs of
each player at each round) to show that the protocol meets the strong solution-concept and
utility-gap requirements.

We then prove tight upper bounds for all three ncRIP classes. Proving tight upper
bounds is the most technically challenging part of the paper. We prove the upper bounds by
simulating the decisions of the verifier and provers with a Turing Machine. However, there
are several obstacles to attain the correct bounds. For example, the polynomial randomness
of the verifier can induce an exponential-sized game tree, which is too large to be verified by
the polynomial-time machine in Theorems 1 and 2. Furthermore, an NEXP oracle cannot
itself verify whether a strategy profile is a dominant SSE. The key lemma that helps us
overcome these challenges is the pruning lemma (Lemma 13). At a high level, it shows that
we can prune the nature moves of the verifier in the resulting game tree, while preserving
the dominant-SSE and utility-gap guarantees.

Our results are summarized in Figure 1, where we use O(1)-ncRIP, poly(n)-ncRIP and
exp(n)-ncRIP to denote ncRIP classes with constant, polynomial and exponential utility
gaps respectively. The notations are analogous for MRIP [17] (the cooperative variant). We
characterize ncRIP classes via oracle Turing machines. In particular, PNEXP[O(1)] is the class
of languages decided by a polynomial-time Turing machine that makes O(1) queries to an
NEXP oracle, and EXPpoly-NEXP is the class decided by an exponential-time Turing machine
with polynomial-length queries to an NEXP oracle.

Note that lower and upper bounds for the case of exponential utility gap (that is,
Theorem 3 and Corollary 6) are deferred to the full version of the paper.

I Theorem 1.O(1)-ncRIP = PNEXP[O(1)]

I Theorem 2.poly(n)-ncRIP = PNEXP

I Theorem 3.exp(n)-ncRIP = EXPpoly-NEXP

I Corollary 4.O(1)-ncRIP = O(1)-MRIP

I Corollary 5.poly(n)-ncRIP ⊇ poly(n)-MRIP

I Corollary 6.exp(n)-ncRIP = exp(n)-MRIP

Figure 1 Summary of our results.

Power of non-cooperative vs. cooperative and competitive provers

Interestingly, in the case of constant and exponential utility gap, the power of ncRIP and
MRIP coincide. This can be explained by the power of adaptive versus non-adaptive queries
in oracle Turing machines.
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Indeed, our results reveal the main difference between non-cooperative and cooperative
provers: the former can be used to handle adaptive oracle queries, the latter cannot (see [17,
18]). Intuitively, this makes sense – cooperative provers may collude across adaptive queries,
answering some of them incorrectly to gain on future queries. On the other hand, non-
cooperativeness allows us to treat the subgame involving the oracle queries as a separate
game from the rest.

Our results also show that non-cooperative provers are more powerful than competing
provers. Feige and Kilian [22] proved that the power of refereed games with imperfect
information and perfect recall is equal to EXP.

2 Non-Cooperative Rational Interactive Proofs

In this section we introduce the model for ncRIP.

Notation

First, we review the structure of ncRIP protocols and related notation; this is largely the
same as [18].

The decision problem being solved by an interactive proof is modeled as whether a given
string x is in language L. An interactive protocol is a pair (V, ~P ), where V is the verifier,
~P = (P1, . . . , Pp(n)) is the vector of p(n) provers, where p(n) is polynomial in n = |x|.
The verifier runs in polynomial time and flips private coins. Each Pi is computationally
unbounded. The verifier and provers are given the input x. Similar to classical multi-prover
interactive proofs, the verifier can communicate with each prover privately, but no two
provers can communicate with each other once the protocol begins.

In a round, either each prover sends a message to V , or V sends a message to each
prover, and these two cases alternate. The length of each message `(n), and the number of
rounds k(n) are both polynomial in n. The final transcript ~m of the protocol is a random
variable depending on r, the random string used by V . At the end of the communication, the
verifier computes an answer bit c ∈ {0, 1} for the membership of x in L based on x, r, and
~m. V also computes a payment vector ~R = (R1, R2, . . . , Rp(n)), where Ri is the payment
given to Pi, Ri ∈ [−1, 1], and the total

∑p(n)
i=1 Ri ∈ [−1, 1] as well.2 The protocol and the

payment function ~R are public knowledge.
Each prover Pi’s strategy at round j maps the transcript seen at the beginning of round

j to the message he sends in that round. Let si = (si1, . . . , sik(n)) be the strategy of prover Pi,
and s = (s1, . . . , sp(n)) be the strategy profile of the provers. Given input x, and strategy
profile s, let uk(x, s, (V, ~P )) denote the expected payment of prover Pk in the protocol (V, ~P )
based on randomness r, input x and s; if (V, ~P ) is clear from context, we shorten this to
uk(x, s) or uk(s).

The protocol forms an extensive-form game with imperfect information and should be
designed such that the provers are incentivized to reach an equilibrium that leads V to the
correct answer bit c. We formalize the solution concept next.

2 Negative payments are used to reflect punishment. The individual payments and the total payment can
be shifted and scaled to lie in [0, 1].
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2.1 Solution concept for ncRIP
We want the solution concept for ncRIP to satisfy a strong notion of backward induction [39],
a standard criterion applied to extensive-form games based on the common knowledge of
rationality. Backwards induction refers to the condition of being “sequentially rational” in
an extensive-form game, that is, each player must play his best response at each node where
he has to move, even if his rationality implies that such a node will not be reached.

If an interactive protocol forms an extensive-form game of perfect information, it is easy
to formalize this condition. A strategy s is sequentially rational or satisfies backward
induction, if for every player i and every decision node of i, conditioned on reaching the
decision node, si is a best response to s−i, that is, ui(si, s−i) ≥ ui(s′i, s−i) for any strategy
s′i of prover i. In other words, s induces a best response at every subgame.3

In a game of imperfect information, the decision nodes corresponding to a player’s turn
are partitioned into information sets, where the player is unable to distinguish between
the possible histories within an information set. To reason about sequential rationality we
need a probability distribution uI on each information set I, so as to determine the players’
expected utility conditioned on reaching I and thus their best response at I. The probability
distribution µI is referred to as the player’s beliefs about the potential histories leading to I.

Given a strategy profile s, beliefs uI at reachable information sets (reached with non-
zero probability under s) are derived from s using Bayes’ rule; this is a standard derivation
used in most solution concepts for extensive-form games [39]. We sometimes write µsI to
emphasize that the beliefs depend on s.

Past work has introduced a variety of methods for defining the beliefs usI at unreachable
information sets I (i.e. information sets reached with probability zero under s); see
e.g. [20,36,38,42]. The most well-known is sequential equilibrium [36], which demands an
explicit system of beliefs that satisfies a (somewhat artificial) consistency condition. Other
equilibria, like trembling hand [42], reason implicitly about beliefs at unreachable information
sets by assigning a negligible probability with which the player’s hand “trembles,” and reaches
an otherwise-unreachable information set. Further refinements of these take the structure
and payoffs of the game into account [5, 20,38].

The treatment of beliefs at unreachable information sets in these solution concepts is often
focused on ensuring that they can be used to analyze every extensive-form game. From a
mechanism-design perspective, our focus is different – we want to design mechanisms in such
a way that they admit much stronger equilibrium requirements, even if such an equilibrium
cannot be used to analyze every game.

At a high-level, we want the players’ beliefs to be irrelevant in determining their best
response at unreachable information sets. We call this notion strong sequential rationality.
A strategy profile s is strongly sequentially rational if for every information set I,
conditioned on reaching I, si is a best response to s−i with respect to µsI , where

µsI is derived using Bayes’s if I is reachable under s, and
µsI is any arbitrary probability distribution if I is unreachable under s.

In the full version of the paper, we show that this requirement is equivalent to saying that, at
an unreachable information set I, si must be a best response to s−i conditioned on reaching
each history h ∈ I. In other words, at an unreachable information set I, each player must
have a single action that is the best response to every possible history in I. We say a strategy
profile is a strong sequential equilibrium (SSE) if it satisfies strong sequential rationality.

3 A subgame is a subtree that can be treated as a separate well-defined game. In a perfect-information
game, every node starts a new subgame. “Backward induction” and “subgame-perfect equilibrium” are
used interchangeably in the literature [28].
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We refine our solution concept further to eliminate strategies that are weakly dominated
within “subgames” of the entire game. This is crucial to deal with equilibrium selection, in
particular, because the players’ cannot unilaterally deviate out of a suboptimal equilibria.
We say an SSE s weakly dominates another SSE s′ if, for any player i, ui(s) ≥ ui(s′).
A strategy s is weakly dominant if it dominates all SSEs. Next we eliminate SSEs that
are weakly dominated in subgames of the entire game. We use the generalized notion of
subgames, called subforms, defined by Kreps and Wilson [36] for extensive-form games with
imperfect information.

To review the definition of subforms, we need further notation. Let H be the set of
histories of the game. Recall that a history is a sequence (a1, . . . , aK) of actions taken by the
players.4 For histories h, h′ ∈ H, we say h has h′ as a prefix if there exists some sequence of
actions b1, . . . , bL (possibly empty) such that h = (h′, b1, . . . , bL). For a history h ∈ H, let
I(h) be the unique information set containing h.

For an information set I, let HI be the set of all histories following I, that is, HI is the
set of all histories h ∈ H such that h has a prefix in I. We say that HI is a subform rooted
at I if for every information set I ′ such that I ′ ∩HI 6= ∅, it holds that I ′ ⊆ HI . Roughly
speaking, a subform HI “completely contains” all histories of the information sets following
I, so there is no information asymmetry between the players acting within HI .

Thus, given a strategy profile, the subform HI together with the probability distribution
µsI on I, can be treated as a well-defined game.

We say an SSE s weakly dominates SSE s′ on a subform HI if, for any player j
acting in HI , the expected utility of j under sI in the game (HI , µ

s
I) is greater than or equal

to their utility under s′I in the game (HI , µ
s′

I ).
We eliminate weakly dominated strategies by imposing this dominance condition in a

backward-induction-compatible way on the subforms as follows.

I Definition 7 (Dominant Strong Sequential Equilibrium). A strategy profile s is a dominant
strong sequential equilibrium if s is an SSE and

for every subform HI of height 1: s weakly dominates s’ on HI for any SSE s′

for every subform HI subgame of height > 1: s weakly dominates s′ on HI for any SSE
s′ that is a dominant SSE in all subforms of height at most h− 1.

We are ready to define non-cooperative rational interactive proofs.

I Definition 8 (Non-Cooperative Rational Interactive Proof). Fix an arbitrary string x and
language L. An interactive protocol (V, ~P ) is a non-cooperative rational interactive proof
(ncRIP) protocol for L if there exists a strategy profile s of the provers that is a dominant
SSE in the resulting extensive-form game, and under any dominant SSE, the answer bit c
output by the verifier is correct (i.e., c = 1 iff x ∈ L) with probability 1, where the probability
is taken over the verifier’s randomness.

2.2 Utility Gap in ncRIP Protocols
In game theory, players are assumed to be perfectly rational and “sensitive” to arbitrarily
small utility losses. In reality, some provers may not care about small losses. Such provers may
not have sufficient incentive to reach a dominant SSE, and could end up leading the verifier
to the wrong answer. To design ncRIP protocols that are robust against such “insensitive”
provers, we define the notion of utility gap.

4 In the full version of the paper, we present a more formal treatment of the underlying extensive-form
game, based on [39].
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Informally, a utility gap of u means that if a strategy profile s leads the verifier to the
wrong answer, there must exist a subform, such that some provers must lose at least a
1/u amount in their final individual payments (compared to their optimal strategy in that
subform). As a consequence, these provers will not deviate to s, as long as they care about
1/u payment losses. We formalize this notion below. (We say a subform HI is reachable
under s if the information set I is reached under s with non-zero probability.)

I Definition 9 (Utility Gap). Let (V, ~P ) be an ncRIP protocol for a language L and s∗ be a
dominant SSE of the resulting game. The protocol (V, ~P ) has an α(n)-utility gap or α(n)-gap,
if for any strategy profile s′ under which the answer bit c′ is wrong, there exists a subform HI

reachable under s′, and a prover Pj acting in HI who has deviated from s∗ such that

uj(x, (s′−I , s∗I), (V, ~P ))− uj(x, (s′−I , s′I), (V, ~P )) > 1/α(n),

where s′−I denotes the strategy profile s′ outside subform HI , that is, s′−I = s′ \ s′I .

The class of languages that have an ncRIP protocol with constant, polynomial and
exponential utility gap, are denoted by O(1)-ncRIP, poly(n)-ncRIP, and exp(n)-ncRIP re-
spectively.5 Note that α(n) gap corresponds to a payment loss of 1/α(n), so an exponential
utility gap is the weakest guarantee.

3 Lower Bounds: ncRIP Protocols with Utility Gap

In this section, we give an O(1)-utility gap ncRIP protocol for the class NEXP and use it to
give an O(α(n))-utility gap ncRIP protocol for the class PNEXP[α(n)]. Setting α(n) to be a
constant or polynomial in n gives us PNEXP[O(1)] ⊆ O(1)-ncRIP and PNEXP ⊆ poly(n)-ncRIP
respectively.

Here we argue correctness of our protocols at a high level; see the full version of the paper
for formal proofs.

A constant-gap ncRIP protocol for NEXP

The ncRIP protocol for any language in NEXP is in Figure 2. The protocol uses the 2-prover
1-round MIP for NEXP [23] as a blackbox.6 The protocol in Figure 2 essentially forces the
non-cooperative provers to coordinate by giving them identical payments. As a result, it is
almost identical to the MRIP protocol for NEXP [18].

While the payment scheme is simple, in the analysis we have to open up the black-box
MIP. In particular, if P1 sends c = 0 in round 1, all the information sets of P1 and P2 in
round 3 become unreachable. To show that an SSE exists, we show that the provers have a
best response at these unreachable sets, which is argued based on the messages exchanged in
the MIP protocol.

I Lemma 10. Any language L ∈ NEXP has a 2-prover 3-round 6/5-gap ncRIP protocol.

5 These classes are formally defined by taking the union over languages with α(n) utility gap, for every
α(n) that is constant, polynomial and exponential in n respectively.

6 It is also possible to give a scoring-rule based ncRIP protocol for NEXP, similar to MRIP [18]. However,
such a protocol has an exponential utility gap.
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For any input x and language L ∈ NEXP, the protocol (V, P1, P2) for L is:
1. P1 sends a bit c to V . V outputs c at the end of the protocol.
2. If c = 0, then the protocol ends and the payments are R1 = R2 = 1/2.
3. Otherwise, V runs the classic 2-prover 1-round MIP protocol for NEXP [23] with P1

and P2 to prove if x ∈ L. If the MIP protocol accepts then R1 = 1, R2 = 1; else,
R1 = −1, R2 = −1.

Figure 2 A simple O(1)-utility gap ncRIP protocol for NEXP.

An O(α(n))-gap ncRIP protocol for PNEXP[α(n)]

Using the above NEXP protocol as a subroutine, we give an ncRIP protocol with O(α(n))-
utility gap for the class PNEXP[α(n)]. This protocol works for any function α(n) which (1) is a
positive integer for all n, (2) is upper-bounded by a polynomial in n, and (3) is polynomial-
time computable.7

I Lemma 11. Any language L ∈ PNEXP[α(n)] has a 3-prover 5-round ncRIP protocol that has
a utility gap of 6/(5α(n)).

The ncRIP protocol for any L ∈ PNEXP[α(n)] is in Figure 3. It is fairly intuitive – V
simulates the polynomial-time Turing machine directly, and uses the ncRIP protocol for NEXP
for the oracle queries.

For any input x of length n, the protocol (V, ~P ) works as follows.

1. P1 sends (c, c1, . . . , cα(n)) ∈ {0, 1}α(n)+1 to V . V outputs c at the end of the protocol.
2. V simulates M on x using the bits c1, . . . , cα(n) as answers to NEXP queries

φ1, . . . , φα(n) generated by M respectively. If M accepts and c = 0 or M rejects and
c = 1, then the protocol ends and R1 = −1, R2 = R3 = 0.

3. V picks a random index i′ from {1, . . . , α(n)} and sends (i′, φi′) to P2 and P3.
4. V runs the 2-prover 3-round O(1)-gap ncRIP protocol for NEXP (Figure 2) with P2

and P3 on φi. P2 and P3 get payments R2 and R3 based on the protocol. Let c∗i′ be
the answer bit in the NEXP protocol. If c∗i′ 6= ci′ , then R1 = 0; otherwise R1 = 1.

Figure 3 An O(α(n))-utility gap ncRIP protocol for PNEXP[α(n)].

We argue the correctness of this protocol at a high-level. Under any strategy of P1, the
resulting NEXP queries in the protocol in Figure 3 are the roots of non-trivial subforms.
Which of these subforms are reachable under a strategy profile s is determined solely by the
strategy of P1. However, because weak dominance is imposed on all subforms in a bottom-up
fashion, P2 and P3 must play their optimal strategy in these subforms regardless of their
reachability – and therefore, they must play optimally for any strategy of P1. (This is one
example of why ruling out weakly-dominated strategies in subforms in the definition of
dominant SSEs is crucial to arguing correctness.) From the correctness of the NEXP protocol
in Figure 2, we know that the optimal strategy of P2 and P3 is to compute the NEXP queries
correctly. Given that the best response of P2 and P3 is to solve the NEXP queries correctly,
and given that V randomly verifies 1 out of α(n) queries, P1 must commit to correct answer
bits in the first round, or risk losing a O(1/α(n)) amount from his expected payment.

7 For Theorem 1 and Theorem 2, α(n) need only be a constant or polynomial in n. However, Lemma 11
holds for all α(n)’s that are polynomial-time computable (given 1n) and polynomially bounded, such as
logn,

√
n, etc.
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If P1 gives the correct answer bits in step 1, but P2 or P3 deviate within a subform
corresponding to an NEXP query φq, then with probability 1/α(n), V simulates the protocol
in Figure 3 on φq, in which case they lose a constant amount of their expected payment.

4 Upper Bounds: ncRIP Protocols with Utility Gap

In this section, we prove matching upper bounds on the classes of ncRIP protocols with
constant and polynomial utility gaps. In particular, we show that any language in O(1)-ncRIP
(or poly(n)-ncRIP) can be decided by a polynomial-time Turing machine with a constant
(resp. polynomial) number of queries to an NEXP oracle.

To simulate an ncRIP protocol, we need to find a strategy profile “close enough” to the
dominant SSE so that the answer bit is still correct, i.e. a strategy profile that satisfies the
utility-gap guarantee. We formalize this restatement of Definition 9 below.

I Observation 12. Given input x and an ncRIP protocol (V, ~P ) with α(n)-utility gap, let s
be a strategy profile such that for all reachable subforms HI and all provers Pj acting in HI ,

uj(x, r, (V, ~P ), (s−I , s∗I))− uj(x, r, (V, ~P ), (s−I , sI)) <
1

α(n) ,

where s∗ is a dominant SSE. Then, the answer bit c under s must be correct.

There are several challenges involved in finding a strategy profile satisfying Observation 12.
First, the size of the game tree of any ncRIP protocol – small gap notwithstanding – can

be exponential in n. Even if the polynomial-time machine considers a single strategy profile
s at a time, since V can flip polynomially many coins, the part of the tree “in play” – the
number of decision nodes reached with positive probability under s – can be exponential in n.

The second (and related) challenge is that of verifying whether a strategy profile is a
dominant SSE. While the NEXP oracle can guess and verify an SSE, it cannot directly help
with dominant SSEs. The polynomial-time machine must check using backward induction if
an SSE is dominant on all its reachable subforms, which can again be exponential in n.

Finally, the polynomial-time machine needs to search through the exponentially large
strategy-profile space in an efficient way to find one which leads to the correct answer.

In the remainder of the section we address these challenges. In Lemma 13 we show that
we can prune the game tree, resolving the first two challenges. Then in Lemmas 17 and 18,
we show how to efficiently search through the strategy-profile space.

Pruning Nature moves in ncRIP protocols

We now give our main technical lemma for the upper bound, which shows that we can limit
ourselves to examining protocols with bounded game trees without loss of generality.

Recall that a verifier’s coin flips in an ncRIP protocol represent Nature moves in the
resulting game. The problem is that a polynomial-time verifier can result in Nature moves
that impose nonzero probabilities over exponentially many outcomes.

We prune the Nature moves of a verifier so that a polynomial-time Turing machine
simulating an α(n)-utility-gap protocol can traverse the game tree reachable under a given s.
This pruning operation takes exponential time (linear in the size of the game tree), and can
be performed by the NEXP oracle.

I Lemma 13 (Pruning Lemma). Let L ∈ α(n)-ncRIP and let (V, ~P ) be an ncRIP protocol
for L with α(n) utility gap and p(n) provers. Given an input x and a strategy s, the protocol
(V, ~P ) can be transformed in exponential time to a new protocol (V ′, ~P ), where
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the probability distribution on the outcomes imposed by the Nature moves of V ′ for input
x has O(α(n)) support,
if s is a dominant SSE of (V, ~P ), then s induces a dominant SSE in (V ′, ~P ),
|uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4α(n)) for all j ∈ {1, . . . , p(n)}, and
the utility gap guarantee is preserved, that is, if the answer bit under s is wrong, then
there exists a subform HI in the game (V ′, ~P ) (reachable under s) and a prover Pj acting
at HI , such that Pj loses a 1/(2α(n)) amount in his expected payment compared to a
strategy profile where sI (induced by s on HI) is replaced by s∗I (the dominant SSE on
HI), keeping the strategy profile outside HI , s−I , fixed.

We prove Lemma 13 in several parts. First, given an input x and a strategy s of the
provers, we show how to transform any verifier V that imposes a probability distribution over
outcomes with exponential support into a verifier V ′ that imposes a probability distribution
with O(α(n)) support.

Let (V, ~P ) use p(n) provers and let the running time of V be nk for some constant k.
There can be at most 2nk different payments that V can generate for a particular prover
given input x. Given x and s, fix a prover index j ∈ {1, . . . , p(n)}. Let R1, R2, . . . , Rm be
the payments generated by V on s for Pj . Let V ’s randomness assign probability distribution
µ = (p1, p2, . . . , pm) to R1, R2, . . . , Rm respectively. Then, the expected payment of Pj under
s is uj(x, s, (V, ~P )) =

∑m
i=1 piRi.

Recall that uj(x, s, (V, ~P )) ∈ [−1, 1] for all 1 ≤ j ≤ p(n). For each prover Pj , divide the
interval [−1, 1] into 4α(n) intervals, each of length 1/(2α(n)). In other words, prover Pj ’s
ith interval is [i/2α(n), (i+ 1)/2α(n)),8 for each i ∈ {−2α(n), . . . , 2α(n)− 1}.

We round the possible payments for Pj to a representative of the their corresponding
interval. Specifically, we map each payment Ri to rj as described in Equation 1. There

rj =


4`+1
4α(n) if Ri ∈

[
`

2α(n) ,
2`+1
4α(n)

)
4`+3
4α(n) if Ri ∈

[
2`+1
4α(n) ,

`+1
2α(n)

) (1) p′i =
{ ∑

k∈Tj
pk if i = f(S(i))

0 otherwise
(2)

are potentially exponentially many different payments Ri, and only polynomially many
different payments rj , so several Ri must map to the same rj . Let Tj = {i : Ri maps to rj}.
Let T = ∪j{Tj}. Thus the total number of distinct rj is 8α(n), so |T | = O(α(n)). Let
S : {1, . . . ,m} → T such that S(i) = Tj if and only if i ∈ Tj .

For each Tj ∈ T , let f(Tj) denote a unique index in the set Tj . Without loss of generality,
let f(Tj) be the lowest index in Tj . We define a new probability distribution µ′ = (p′1, . . . , p′h)
over the payments R1, . . . , Rh respectively, given by Equation 2. In particular, for every
Tj ∈ T , assign Rf(Tj) probability

∑
k∈Tj

pk and for every other index ` ∈ Tj , ` 6= f(Tj),
assign R` probability 0.

Define V ′ as a polynomial-time verifier that simulates all deterministic computation
of V . For a fixed input x, V ′ imposes a probability distribution µ′ with O(α(n)) support
for any probability distribution µ imposed by V . For other inputs, V ′ simulates V without
any modification.

8 To include 1 as a possible payment, interval 2α(n)− 1 should be closed on both sides; we ignore this for
simplicity.
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Note that given input x, a strategy profile s and the protocol (V, ~P ), transforming the
distribution µ to µ′ takes time linear in the size of the game tree, and thus exponential
in n. (This means that an NEXP oracle, given x, can guess a particular s and perform
the transformation.)

The remainder of the proof of Lemma 13 consists of the following three claims. We argue
their correctness at a high-level and defer formal proofs to the full version.

First, we show that if the strategy profile s is a dominant SSE of (V, ~P ), then s restricted
to the pruned game tree of (V ′, ~P ) imposes a dominant SSE on (V ′, ~P ) as well.

I Claim 14. Any dominant SSE s of the game formed by (V, ~P ) induces a dominant SSE in
the game formed by (V ′, ~P ).

First, we prove that s is an SSE of (V ′, ~P ). Suppose by contradiction that s is not a SSE of
(V ′, ~P ). Then there exists an information set I, such that, conditioned on reaching I, the
prover acting at I can improve his expected payment by deviating (given his belief u′I at I
if I is reachable under s and for any belief he may hold at I if I is unreachable under s).
Writing out their expected payments, accounting for the probabilistic transformation between
V and V ′, in both cases leads to a contradiction to the assumption that s was an SSE in
(V, ~P ). We then argue that a similar contradiction holds for proving that s is a dominant
SSE of (V ′, ~P ).

The following claim states that for a given s, the expected payments of the provers
under (V, ~P ) and under (V ′, ~P ) are not too far off. This claim is one of the bullet points in
Lemma 13, and will be used to prove Claim 16.

I Claim 15. For all j ∈ {1, . . . , p(n)}, |uj(x, s, (V, ~P ))− uj(x, s, (V ′, ~P ))| < 1/(4α(n)).

With the above, we show that (V ′, ~P ) preserves utility gap guarantees.

I Claim 16. Given input x, if the answer bit under s is wrong, then there exists a subform
HI reachable under s in (V ′, ~P ) and Pj acting at HI , such that Pj ’s expected payment under s
is 1

2α(n) less than his expected payment under (s−I , s∗I), where s∗I is a dominant SSE on HI .

Consider a strategy profile s∗ that is a dominant SSE in the game tree of (V, ~P ). Since s
gives the wrong answer bit, from the α(n)-utility gap guarantee of (V, ~P ) and Definition 9,
there exists a subform HI reachable under s, such that a prover Pj acting in HI loses 1/α(n)
in his expected payment under s compared to the strategy profile (s−I , s∗I).

Using Claim 14, s∗ also induces a dominant SSE in the game tree of (V ′, ~P ). And since
HI is reachable under s in (V, ~P ), it is reachable under s in (V ′, ~P ) as well. Finally, Claim 16
follows by applying Claim 15 twice: once to show that payments under V and V ′ are similar
under s, and once to show that the payments are similar under (s−I , s∗I). In the worst case
this leads to a payment difference of 1/(4α(n)) + 1/(4α(n)) = 1/(2α(n)).

Using Lemma 13, given an O(α(n))-gap ncRIP protocol (where α(n) is constant or
polynomial), a polynomial-time oracle Turing machine can use its NEXP oracle to guess a
strategy profile s, prune the verifier’s Nature moves, and report the resulting O(α(n))-support
distribution bit-by-bit. Thus, it can simulate the new distribution and find the decision
nodes that are reachable under s.

Searching through the strategy-profile space efficiently

The next question is: how should the polynomial-time Turing machine navigate the potential
strategy-profile space (in polynomial time) to find the strategy profile that satisfies Observa-
tion 12? To cut down on the search space, we invoke a recurring idea: divide each prover’s
expected payment interval [−1, 1], evenly into 8α(n) subintervals of length 1/(4α(n)), and
consider subinterval profiles (a tuple of subintervals, one for each prover).
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I Lemma 17. Given an input x and an ncRIP protocol (V, ~P ) with α(n)-utility gap, consider
a subinterval profile (L1, . . . , Lp(n)), where each Li = [k/(4α), (k + 1)/(4α+ 1)) denotes a
subinterval of prover Pi in [−1, 1], for some k ∈ {−2α(n), . . . , 2α(n)− 1}. Let s be an SSE
that has an expected payment profile ũ(x, s) such that ui(x, s) ∈ Li for all 1 ≤ i ≤ p(n),
and s does not satisfy Observation 12. Then the expected payment profile ũ(x, s∗) under a
dominant SSE s∗ cannot lie in the same subinterval profile, that is, there exists a prover
index j such that uj(x, s∗) /∈ Lj.

Using Lemma 17, if the polynomial-time Turing machine is able to test any SSE s with
ũ(x, s) in a subinterval profile, for all subinterval profiles, then it is guaranteed to find one
that satisfies Observation 12. This is because a dominant SSE of an ncRIP protocol is
guaranteed to exist and its expected payment profile must belong to some subinterval profile.

However, there are still O(α(n)) subintervals for each prover, and thus O(α(n)p(n)) total
subinterval profiles. A polynomial-time machine cannot test SSEs for each of them.

To reduce the search space further, we show that it is sufficient to consider subintervals
of the total expected payment rather than individual and test an SSE s for each of them.
Recall that a SSE s is weakly dominant if for any player i and SSE s′, ui(s) ≥ ui(s′).

I Lemma 18. If a weakly-dominant SSE exists, then a strategy profile s is a weakly-dominant
SSE if and only if s is an SSE and s maximizes the sum of utilities of all players among
all SSEs.

We are now ready to prove the upper bound for ncRIP classes with constant and
polynomial utility gap. We defer formal details of the proof to the full version of the paper.

Constant utility gap

Using Lemma 13 and Lemma 18, simulating a constant-gap protocol using a PNEXP[O(1)]

machine M is straightforward. We give a high-level overview below.
There are at most O(1) subforms that are reachable under any strategy profile s, and the

total expected payment of the provers conditioned on reaching these subforms will be in one
of the O(1) subintervals. Thus, there are O(1) combinations of total expected payments on
all subforms (including the whole game). M queries its NEXP oracle whether there exists an
SSE that achieves that combination of total expected payments on those subforms, for all
combinations. Then, M finds the maximum among all of the combinations that got a “yes.”
Such a maximum is guaranteed to exist for an ncRIP protocol. Finally, M queries the oracle
for the answer bit of the corresponding SSE by giving the dominant profile of total expected
payments over the subgames.

I Lemma 19. O(1)-ncRIP ⊆ PNEXP[O(1)].

Polynomial utility gap

To simulate a polynomial-utility gap ncRIP protocol (V, ~P ), using a PNEXP machine M , we
put to use all the structure we have established in this section.

For each of the O(α(n)) total payment subintervals of the interval [−1, 1] that correspond
to an SSE, M does a recursive search to find an exact total expected payment u(x, s) that is
generated by an SSE. (We can restrict ourselves to O(α(n)) oracle queries due to Lemma 18.)
In particular, M queries the NEXP oracle: Does there exist an SSE with total expected
payment in the first half of the ith interval?. If the answer is yes then M recurses on the first
half of the ith interval; M does not need to search the second half by Lemma 17. Otherwise
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(if the answer is no) then M recurses on the second half. Thus, in polynomial time and with
polynomial queries, M can find an exact u(x, s) for an SSE s in the subinterval using the
power of its adaptive queries.

Next, M simulates the protocol (V, ~P ) with the help of the oracle, under the SSE s for a
given subinterval. Lemma 13 is crucial for M to simulate the verifier’s moves, because V in
general can induce exponential-size distributions. M traverses the tree reachable under s
“top-down” using the oracle to learn the pruned distributions and provers’ moves. Finally, M
goes “bottom-up” to test whether s satisfies Observation 12 on all its reachable subgames.

I Lemma 20. poly(n)-ncRIP ⊆ PNEXP.
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Abstract
The minimum genus of a graph is an important question in graph theory and a key ingredient in
several graph algorithms. However, its computation is NP-hard and turns out to be hard even
in practice. Only recently, the first non-trivial approach – based on SAT and ILP (integer linear
programming) models – has been presented, but it is unable to successfully tackle graphs of genus
larger than 1 in practice.

Herein, we show how to improve the ILP formulation. The crucial ingredients are two-fold. First,
we show that instead of modeling rotation schemes explicitly, it suffices to optimize over partitions
of the (bidirected) arc set A of the graph. Second, we exploit the cycle structure of the graph,
explicitly mapping short closed walks on A to faces in the embedding.

Besides the theoretical advantages of our models, we show their practical strength by a thorough
experimental evaluation. Contrary to the previous approach, we are able to quickly solve many
instances of genus > 1.
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1 Introduction

The (orientable) genus of a graph G is the smallest number γ such that G can be embedded
on an orientable surface of genus γ. The problem of determining γ is the graph genus problem.

Algorithmically exploiting a low graph genus is a vivid research field that spawned
many results. It plays a key role for the complexity of certain problems, in particular w.r.t.
polynomial-time approximation schemes (PTAS) and fixed parameter tractability (FPT) [8].
Algorithms tailored to achieve faster runtime on planar graphs can often be extended for
the bounded genus setting (given a corresponding embedding, see below). For example, a
bounded graph genus leads to: linear-time graph isomorphism testing [7]; FPT runtime
for dominating set [15]; subexponential FPT runtime for many bidimensional problems,
including vertex cover and variants of dominating set [13]; a quasi-PTAS for capacitated
vehicle routing [1]; stronger preprocessing for several Steiner problems [29]; and many more.

Apart from such algorithmic uses, the problem is of independent interest in graph theory,
where one is concerned with finding the genus of certain graph families (or even single
graphs) [3–5, 12, 17, 18, 21, 22, 24, 26, 30–33,37]. Typically, this involves induction and tedious
arguments for the base cases.

Although genus is one of the best-established measures for non-planarity, its NP-hardness
was proved relatively late in 1989 by Thomassen [35]. In contrast to other non-planarity
measures like crossing number or skewness (or equivalently, maximum planar subgraph),
and even compared to the maximum graph genus problem, there has been little algorithmic
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progress. In 1988, Thomassen gave an algorithm that computes the genus of a restricted
class of graphs in polynomial time [36] (graphs that have so-called LEW-embeddings). The
problem is in FPT w.r.t. its natural parameterization due to Robertson and Seymour [34];
Mohar gave a constructive proof for such an FPT-algorithm [25]. Still, the proof spans seven
papers of more than 100 pages in total. It was later simplified and extended to graphs with
bounded treewidth [19]. It remains open to find a practically feasible FPT-algorithm [27].
No general approximation algorithm is known, although some progress was recently made for
restricted variants and closely related problems [6,20,23]. The first general exact algorithm –
beyond explicit enumeration – was described only recently [2]. It uses ILP/SAT solving to
optimize over all rotation systems of the input, but fails to compute genera higher than 1 in
practice. Overall, there is no practical, non-trivial algorithm to find low-genus embeddings,
not even heuristically. Clearly, this is a main stumbling block for applying any of the
genus-based algorithms mentioned above in practice.

Contribution. In this paper, we use the existing ILP as a starting point to develop a
practically feasible model. To this end, we establish two novel core ideas. The original
approach needs to model the embedding’s rotation scheme (see below) explicitly, essentially
considering a Hamiltonian cycle problem for each graph node. We show how to only consider
partitions of the bidirected arc set to deduce a rotation scheme; among other benefits, this
allows us to use fewer variables. The second concept is to explicitly consider the cycle
structure of the graph, by examining short, closed walks of the graph. Overall, we obtain
both theoretically and practically stronger LP-relaxations. We thus present the first approach
to compute the genus of (reasonably sized) graphs in practice, even for genera > 1.

2 Preliminaries

We only need to consider biconnected (since genus is additive over biconnected components),
simple graphs where each node has degree ≥ 3: Given an undirected graph, we obtain its
bidirected counterpart by creating two oppositely directed arcs uv, vu for each edge {u, v}.
Given a graphH, we denote its nodes, edges, and arcs by V (H), E(H), and A(H), respectively.
For the input graph G, we may simply write V , E, and A. A closed walk c on a bidirected
graph G is a set of arcs such that the induced subgraph G[c] is connected and for each node
the number of entering arcs is equal to that of leaving arcs. A cycle is a closed walk that
visits no node more than once. For a node v, we refer to the arcs entering (leaving) v as
δ+(v) (δ−(v), respectively). Let N(v) be the nodes adjacent to node v. Given two subsets W ,
U of nodes, we define W ×A U := (W × U) ∩A as the arcs from W to U . Given a partition,
we refer to its partition sets as cells; this term should not be confused with faces of an
embedding. For k ∈ N, let [k] := {1, . . . , k}.

Graph Embeddings. A drawing D of an undirected graph G = (V,E) on an orientable
surface S is a set of points P and curves C on S, such that there are bijections DV : V → P and
DE : E → C. We require that for each edge uv the two endpoints of DE(uv) are DV(u),DV(v).
A drawing is crossing free if for any two edges e, f , DE(e) is disjoint from DE(f) except for
common endpoints. We say that a graph is planar if it admits a crossing free drawing on the
sphere. A crossing free drawing D induces a cyclic rotation scheme Π of edges around each
node, an embedding. From a combinatorial perspective, Π fully specifies D and the genus
minimal surface that D can be drawn on. The regions bounded by edges are the faces of Π.
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Given an embedding Π, we may identify its faces by tracing them as follows: Consider
the bidirected counterpart of G. Starting at a node v, we traverse an arc vw and continue
with the cyclically succeeding arc leaving w (w.r.t. the order of the undirected edges in Π).
We iterate this until we again arrive at vw, closing the traced face’s boundary. Repeating
this operation until all edges are traversed exactly once in both directions gives all faces of Π.
The traversed arcs of a face form a closed walk. If a node (or edge) appears more than once
on the walk, we call this node (or edge) singular. The face tracing will allow us to count the
number fΠ of faces. Using the Euler characteristic |V |+ fΠ − |E| = 2− 2γ, we are able to
determine the lowest-genus (i.e., γ) surface that Π can be drawn on. Algorithmically, we
thus ask for an embedding yielding the maximum number of faces.

Integer Linear Programming. A linear program (LP) consists of a cost vector c ∈ Qd
together with a set of linear inequalities, called constraints, that define a polyhedron P in
Rd. In polynomial time, we can find a point x ∈ P that maximizes the objective value cᵀx.
Unless P = NP, this is no longer true when restricting x to have integral components; the
so-modified problem is an Integer Linear Program (ILP). Conversely, the LP-relaxation of
an ILP is obtained by dropping the integrality constraints on its variables. Typically, there
are several ways to reduce a given NP-hard problem to an ILP. These reductions are referred
to as models. To achieve good practical performance, one aims for a small model where the
objective value of the LP-relaxation is close to that of the ILP. This is crucial, as ILP solvers
rely on iteratively computing LP-relaxations to obtain dual bounds on the integral objective.
When a model has too many constraints to be solved in its entirety, it is often sufficient to
use only a reasonably sized constraint subset to achieve a provably optimal solution. Hence,
we may dynamically add constraints, during the solving process; this is called separation. We
say that model A is at least as strong as model B, if for all instances, the LP-relaxation’s
value of model A is no worse than that of B. If there also exists an instance for which A’s
LP-relaxation yields a tighter value than that of B, we call A stronger than B.

Common Foundation and Predecessor Model. As the known model [2], ours will simulate
the face tracing algorithm. As such, both models share a common foundation that we borrow
from [2]. For the sake of completeness, we repeat its definition below: We use variables
xi that are 1 if and only if face i exists, and variables xai that are 1 if and only if arc a
participates in the boundary of face i. Let f̄ be an upper bound on the number of faces. We
use the shorthands x(I,A) :=

∑
i∈I,a∈A x

a
i and x(A) := x([f̄ ], A); thereby, we may omit curly

braces when providing sets of cardinality one. Consider the following (by itself insufficient!)
model (1a–1e) that we call ILPBase.

max
∑f̄
i=1 xi (1a)

s.t. 3xi ≤ x(i, A) ∀i ∈ [f̄ ] (1b)
x(a) = 1 ∀a ∈ A (1c)
x(i, δ−(v)) = x(i, δ+(v)) ∀i ∈ [f̄ ], v ∈ V (1d)
xi, x

a
i ∈ {0, 1} ∀i ∈ [f̄ ], a ∈ A (1e)

Following [2], ILPBase ensures that the faces form a partition of the arc set such that each
cell consists of at least three arcs and is a collection of closed walks.

It remains to ensure that the faces are consistent with some rotation scheme of the edges
around the nodes. In [2], this is achieved via predecessor variables, and we denote the model
by ILPPre in the following. It uses ILPBase and additionally (2a–2d). The idea is to establish
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a cyclic order of the incident edges of each node by a cut-based sub-ILP known from the
traveling salesman problem.

xvwi ≥ xuvi + pvu,w − 1, xuvi ≥ xvwi + pvu,w − 1 ∀i ∈ [f̄ ], v ∈ V, u, w ∈ N(v) : u6=w (2a)∑
u∈N(v):
u6=w

pvw,u = 1,
∑
u∈N(v):
u6=w

pvu,w = 1 ∀v ∈ V, w ∈ N(v) (2b)∑
u∈W,w∈N(v)\W pvu,w ≥ 1 ∀v ∈ V, W ( N(v) : ∅ 6= W (2c)

pvu,w ∈ {0, 1} ∀v ∈ V, u, w ∈ N(v) : u 6= w (2d)

3 Realizability Model

In contrast to the explicit modeling of an embedding in ILPPre, we establish the existence
of an embedding implicitly. Our realizability constraints (see (3) later) require only the
variables of ILPBase. We first need some auxiliary concepts. A graph G = (V,A) is loopy if
it is directed, connected, each node has at least one incoming arc, and for each arc uv ∈ A it
holds that K(uv) := G[{s : sv ∈ A} ∪ {t : ut ∈ A}] is a complete bipartite graph Kk,k for
some k ∈ N, such that each arc is directed from the cell of u to that of v w.r.t. the bipartition.

I Lemma 1. Loopy graphs are Hamiltonian, i.e., they contain a cycle traversing all nodes.

Proof. We first show that any loopy graph allows a cycle cover of pairwise node-disjoint
cycles. Assume it does not, consider a collection C of pairwise node-disjoint cycles covering
as many nodes as possible, and let v be an uncovered node. By loopiness, there exists a
bipartition that induces two cells, an arc uv, and K(uv) has a node w (possibly u = w) in
the cell of u, such that w is not contained in any cycle of C: for any ` nodes of one cell in a
cycle c ∈ C, c also contains ` nodes of the other cell. As there are only finitely many nodes,
we find a new cycle by iterating our argument, i.e., traversing the cycle’s arcs in reverse
order, thus increasing our cycle cover; a contradiction.

Now, let C be a node-disjoint cycle cover. For a cycle c ∈ C, an arc a connecting V (c)
with V \ V (c) exists by connectivity. Hence, K(a) contains an arc uv of c and another arc
wx of a different cycle c′ ∈ C. We join c with c′ to a single cycle by replacing uv,wx with
ux,wv. Iterating this yields the claim. J

I Theorem 2. A graph G allows an embedding Π with at least ξ faces if and only if there
exists a partition P of A(G), such that
(a) P consists of at least ξ cells;
(b) every cell of P is a set of pairwise node-disjoint closed walks; and
(c) for all subsets X ⊆ P , nodes v ∈ V (G), and non-empty subsets W ( N(v), we have
{wv, vw : w ∈W} 6=

⋃
x∈X{a ∈ x : v incident to a}.

Before giving the formal proof, let us provide some intuition on property (c): It models
that the rotation around each node v is consistent. While in ILPPre constraints (2a–2d)
model the rotation explicitly, property (c) ensures the existence of a feasible rotation by
preventing subcycles. In the rotation around v, any two subsequent arcs must share an edge
or a face. Hence, there cannot exist a proper subset W of v’s neighbors, such that exactly the
arcs between v and W belong to a subset X of faces. As shown below this is also sufficient.

Proof (of Theorem 2). (=⇒) We obtain P by creating a cell for each face f of Π: it
contains exactly the arcs traversed by f . This satisfies (a) and (b). Assume that (c)
is not satisfied, i.e., there exist X, v,W (following the above selection rules) such that
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{wv, vw : w ∈W} =
⋃
x∈X{a ∈ x : v incident to a}. Since W is a proper subset of N(v), X

cannot span all faces incident with v. We choose any face contained (not contained) in X
and denote it by f (resp. g). Since Π is an embedding, there exists a sub-sequence of edges
incident with v that corresponds to a dual path from f to g. But according to (c), all edges
incident with X join two faces in X.
(⇐=) We find an embedding Π by forming a face from each component of each cell of P . We
establish feasible rotations around each node v in the following way: Let Dv be a directed
graph with nodes N(v) such that uw ∈ A(Dv) if and only if uv and vw are in the same cell of
P (i.e., the arcs could be traversed in that order when tracing the face corresponding to v’s
component of the cell). A feasible rotation around v corresponds to a Hamiltonian cycle in
Dv. We show that Dv is loopy, and hence Hamiltonian by Lemma 1: By construction of Dv,
K(a) is a Kk,k for some k ∈ N, for each a ∈ A(Dv). By property (b), all nodes of Dv have at
least one incoming arc. For disconnected Dv, let W denote the nodes of a single component
of Dv, and X the cells that induce A(Dv[W ]). Then X, v,W contradict property (c). J

The above theorem shows that it suffices to optimize over all partitions of arcs into faces.
Given a feasible partition (w.r.t. Theorem 2), a corresponding embedding is easily determined
in polynomial time following our proof. We can now establish our new model ILPReal, which
extends ILPBase with constraints (3). While the former already establishes properties (a)
and (b), the latter models property (c): the connectivity of the “local dual graph” Dv around
each primal node. Here, index set I corresponds to X from Theorem 2.

x(I, v×A (N(v)\W )) ≥ 1+x(I, v×AW )−2|W | ∀v ∈ V, I ⊆ [f̄ ],W ( N(v) : W 6= ∅ (3)

Separation. Clearly, it is impractical to add all exponentially many constraints (3) when
solving ILPReal. We use a heuristic separation routine to identify a relevant subset of these
constraints. For each LP-feasible solution encountered during the solving process, we proceed
as follows: For each node v we check if all variables xia of its incident arcs a are integral. If
this holds, but the corresponding Dv is disconnected, we found a new violation of (3).

4 Small Faces

The following approach is inspired by the cycle model for the maximum planar subgraph
problem [11]. There, a mapping between small faces and short cycles was used to (only)
strengthen the LP-relaxation of another, by itself sufficient, model. Thus, it was possible to
mostly disregard longer cycles. In our setting we have to be more careful: On the one hand,
we need to consider a far wider range of drawings as we embed on surfaces of higher genera.
On the other hand, we have to directly adapt the core model itself; to continue to have a
sufficient model, we need to precisely encode all, even very large, faces. We will model “short”
faces by new binary y-variables, one for each specific feasible set of arcs. We continue to use
the x-variables for generic, i.e., “large” faces. On sparse graphs, this yields a reduction of
x-variables, as we may drastically decrease the upper bound on the number of generic faces.
Both models, ILPPre and ILPReal, can be extended in this way.

Let Cχ denote the maximal set of closed walks such that each walk’s length satisfies
property χ. Expanding on ILPBase, we parameterize our new model ILPDBase by some D ≥ 2
and obtain (4a–4g) below. We introduce a new decision variable yc for each c ∈ C≤D. Let
y(a) :=

∑
c∈C≤D:a∈c yc and f̄>d any upper bound on the number of faces with length > d.
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max
∑f̄>D

i=1 xi +
∑
c∈C≤D

yc (4a)

s.t. (D + 1)xi ≤ x(i, A) ∀i ∈ [f̄>D] (4b)
x(a) + y(a) = 1 ∀a ∈ A (4c)
x(i, δ−(v)) = x(i, δ+(v)) ∀i ∈ [f̄>D], v ∈ V (4d)∑f̄>D

i=1 xi +
∑
c∈C≤D:|c|>d yc ≤ f̄>d ∀d ∈ {2, . . . , D} (4e)

xi ∈ {0, 1}, xai ∈ {0, 1} ∀i ∈ [f̄>D], a ∈ A (4f)
yc ∈ {0, 1} ∀c ∈ C≤D (4g)

Each arc is contained either in one of the generic faces that each form a set of closed walks (as
for ILPBase), or in a closed walk c with dedicated variable yc, see constraints (4c). Generic
faces are large, as required by constraints (4b). Constraints (4d) are essentially (1d). Albeit
not required for integral solutions, constraints (4e) enforce the previously implicit upper
bound on the total number of faces and bound the number of gradually smaller faces.

Predecessor Model. To obtain ILPDPre, we add equations (2a–2d) to ILPDBase, i.e., the same
set as for the transition from ILPBase to ILPPre. Additionally, we require∑

c∈C≤D:uv,vw∈c yc ≥ pvu,w − x([f̄ ], uv) ∀v ∈ V, u, w ∈ N(v). (5)

Similar to (2a), this ensures that if an arc uv is contained in a face modeled by a y-variable,
the succeeding arc vw has to be contained in the same face.

Realizability Model. We obtain ILPDReal by starting with ILPDBase and adding the following
constraints to realize property (c) of Theorem 2.

x(I, AvW ) ≥ 1 + x(I, AvW ) +
∑
c∈C≤D:c∩Av

W
=∅ |c ∩A

v
W |yc − 2|W |

∀v ∈ V, I ⊆ [f̄ ],W ( N(v) : W 6= ∅, AvW := v ×AW, AvW := v ×A (N(v) \W )
(6)

They ensure there is no subset W of arcs at a common node v that is fully assigned to a set
(consisting of I and a subset of C≤D) of face variables that do not have an arc outside of W .

D-Hierarchy: Strength of LP-Relaxations. Clearly ILPBase = ILP2
Base. The value of f̄

has a strong influence on the dual bounds obtained by LP-relaxations. Hence, we describe
how to determine f̄ and f̄>D on general graphs. Let n := |V (G)| and m := |E(G)|. Let
fUB(a, b) := min{a, b − 1a−b=1 mod 2}, f̄ := fUB(m − n, b2m/3c), f̄>2 := f̄ , and f̄>d :=
min{f̄>d−1, b2m/(d + 1)c} for d > 2. The validity of these bounds follows directly from
Eulers formula (assuming non-planar G). We are not aware of any better, general, dual
bounds. In the following comparison of LP-relaxations we always assume the above bounds.

I Lemma 3. For every graph G, the LP-relaxation of ILPBase has objective value f̄ .

Proof. The domains (1e) establish f̄ as an upper bound. Set x̃ia = 1/f̄ and x̃i = 1 for all
i ∈ f̄ , a ∈ A. Clearly x̃ is an LP-feasible solution and achieves the claimed objective. J

I Lemma 4. For every graph G, ILPDBase admits an LP-feasible solution with objective
value f̄>D. If G contains no closed walk of length at most D, this value is optimal.
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Proof. The first claim follows from the LP-feasible solution x̃ai = 1/f̄>D and x̃i = 1 for all
i ∈ f̄>D, a ∈ A, and ỹ = 0. When C≤D = ∅, there are no y variables and the domains (4f)
bound the objective from above, yielding the second claim. J

I Lemma 5. Model ILPD+1
Base is at least as strong as ILPDBase for any D ≥ 2.

Proof. Observe that ILPD+1
Base generally contains more y- but fewer x-variables than ILPDBase.

Consider an LP-feasible solution (x̂, ŷ) for ILPD+1
Base . We derive an LP-feasible solution (x̃, ỹ) for

ILPDBase that achieves no smaller objective value. For notational simplicity, let x̂i = x̂ai = 0 for
all i > f>D+1 and β :=

∑
c∈C=D+1

ŷc. For β = 0, already (x̂, ŷ), when interpreted for ILPDBase,

is LP-feasible. Assume β > 0. Let α := f̄>D−
∑f̄>D+1
i=1 x̂i and βa :=

∑
c∈C=D+1:a∈c ŷc ∀a ∈ A.

From α < β it would follow that f̄>D <
∑
i=1 f̄>D+1x̂i + β, a direct contradiction of

constraint (4e) for d = D in ILPD+1
Base . Thus, α ≥ β. We define (x̃, ỹ) by x̃i := x̂i + (1 −

x̂i)β/α,∀i ∈ [f̄>D]; x̃ai := x̂ai + (x̃i− x̂i)βa/β,∀i ∈ [f̄>D], a ∈ A; and ỹc := ŷc,∀c ∈ C≤D. The
objective value (4a) for (x̃, ỹ) in ILPDBase is∑f̄>D

i=1 x̃i +
∑
c∈C≤D

ỹc =
∑f̄>D

i=1
(
x̂i + (1− x̂i)β/α

)
+
∑
c∈C≤D

ŷc

(by xi = 0 ∀i > f̄D+1) =
∑f̄>D+1
i=1 x̂i + β/α ·

(
f̄>D −

∑f̄>D+1
i=1 x̂i

)
+
∑
c∈C≤D

ŷc

(by def. of α, β) =
∑f̄>D+1
i=1 x̂i +

∑
c∈C≤D+1

ŷc,

i.e., equal to that of (x̂, ŷ) in ILPD+1
Base . Assuming constraint (4b) to be violated, we obtain

(D+1)x̃i > (D+1)(x̃i− x̂i)+
∑
a∈A x̂

a
i , since

∑
a∈A βa/β = D+1. This implies (D+1)x̂i >∑

a∈A x̂
a
i , a violation of constraint (4b) already by (x̂, ŷ). Let us show the feasibility of (x̃, ỹ)

w.r.t. constraints (4c) by expanding their left-hand side.

x̃(a) + ỹ(a) =
∑f>D

i=1
(
x̂ai + (1− x̂i)βa/α

)
+
∑
c∈C≤D:a∈c ŷc

(by def. of α) =
∑f̄>D+1
i=1 x̂ai + βa +

∑
c∈C≤D:a∈c ŷc

(by def. of βa) =
∑f̄>D+1
i=1 x̂ai +

∑
c∈C≤D+1:a∈c ŷc (by feasibility of (4c) in (x̂, ŷ)) = 1

Since C=D+1 contains only closed walks, we have
∑
u∈N(v)(βuv − βvu) = 0 for all nodes v.

Constraints (4d) hold, as we see by expanding their left-hand side:∑
vu∈A x̃

vu
i =

∑
vu∈A x̂

vu
i + (x̃i − x̂i)/β ·

∑
vu∈A βvu

(by (4d) in ILPD+1
Base and the above) =

∑
uv∈A x̂

uv
i + (x̃i − x̂i)/β ·

∑
uv∈A βuv =

∑
uv∈A x̃

uv
i

Constraints (4e) maintain their slack, as the first term increases by
∑f̄>D

i=1 (x̃i− x̂i) = β while
the second decreases by β. Clearly, x̃i ≥ x̂i and x̃ai ≥ x̂ai . By α ≥ β we have x̃i ≤ 1. By (4c)
we have x̂ai +βa ≤ 1. Thus, x̃ai > 1 would imply x̃i− x̂i > β. Clearly, we keep 0 ≤ ỹc ≤ 1. J

I Theorem 6. Model ILPD+1
Base is stronger than ILPDBase for any D ≥ 2.

Proof. Restricting ourselves to dense graphs of girth > D+ 1, the claim immediately follows
from Lemmata 3–5. An example of such graphs are the complete graphs on D nodes, where
we subdivide each edge D times. They have girth 3(D + 1) and are dense enough such that
the respective bounds differ: f>D > f>D+1. We note that there are also dense graphs with
high girth that do not allow any general preprocessing techniques. J
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5 Additional Tuning (“Add-Ons”)

In addition to the new models described above, there is a set of supplemental constraints
that may be applied to several of these models. We discuss them in alphabetical order.

Arc-Face. We may require the below trivial constraints explicitly.

xi ≥ xai ∀a ∈ A, i ∈ [f̄ ] (7)

Branching Rule. To facilitate the fast generation of strong primal bounds, we may initially
restrict the solution space to explicitly modeled faces, e.g., by branching on∑

i∈f̄>D
xi

?= 0. (8)

deg 3-Model. There are only two possible rotations around any degree-3 node v. In ILPPre,
this can be modeled by a single binary variable for v and alternative constraints, partially
replacing (2a–2d), as discussed in [2]. The same holds for ILPDPre, and we use this improvement
in our benchmarks.

Long Faces. In several cases we can establish lower bounds on the length of faces modeled
by the x-variables. Let s(v, w) denote the length of the shortest path between nodes v and w.

I Lemma 7. For arcs uv,wx that traverse the same face f , we have s(v, w)+s(x, u)+2 ≤ |f |.

Proof. Tracing any such face f yields a path from v to w that neither contains arc uv (it
may contain arc vu) nor arc vx. Similarly, an arc-disjoint path from x to u must exist in f .
The total length of these paths is lower bounded by s(v, w) + s(x, u). J

I Lemma 8. Any face with a singular edge contains at least eight arcs and this is tight.

Proof. Let uv denote the edge that is traversed in both directions when tracing face f .
If tracing f would additionally yield a path from u to v that does not contain uv, the
tracing would similarly yield a path from v to u that does not contain vu. This contradicts
the assumption since f would contain two oppositely directed, closed walks that form two
separate faces. Hence, there exist two arc-disjoint closed walks on the boundary of f , one for
each node u, v. Since there are no deg-1 nodes in a biconnected graph, any subcycle in a
face requires at least three arcs and the claim follows. Considering a genus-1 embedding of
the K4 we can see that it indeed contains such a face of length eight. J

I Lemma 9. Any face with a singular node contains at least six arcs and this is tight.

Proof. If the face f also traverses an edge twice, the bound follows from Lemma 8. Otherwise,
the doubly traversed node has at least four arcs in f , belonging to pairwise different edges,
and hence four incident nodes. A closed walk on this K1,4 requires at least two additional arcs
and the claimed bound follows. A face of length six can be observed in a genus-1 embedding
of the following graph: Take two copies of the K5, remove one edge each, join the graphs by
identifying two deg-3 nodes, and add a new edge between the remaining two deg-3 nodes. J

Let `uv,wx := max{s(v, w)+s(x, u)+2, 6·1k=3, 8·1k=2} with k := |{u, v, w, x}|. Lemmata 7–9
yield the following constraints. When using them in our benchmarks, we separate them.

`uv,wx(xuvi + xwxi − 1) ≤ x(i, A) ∀i ∈ [f̄>D], uv, wx ∈ A : uv 6= wx (9)
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Objective Parity. All above ILPs maximize the number f of faces and deduce γ via Euler’s
formula n+ f −m = 2− 2γ. Thus the parity of f is fixed. This gives room for improved
bounding and cutting by the ILP solver. Using a new variable z ∈ N we may demand

(m− n mod 2) + 2z =
∑f̄>D

i=1 fi +
∑
c∈C≤D

yc. (10)

Symmetry Breaking. For ILPPre it was observed in [2] that symmetry breaking does not
seem to pay off. However, ILPPre only solves genus-1 instances in practice (see below).
Symmetry breaking may hinder heuristics from identifying trivially optimal solutions, but
may be beneficial for harder instances. The approach in [2] enforces that face i has at most
as many arcs as face i+ 1. However, there are typically many faces with the same length in
a low-genus embedding. We consider breaking symmetries by restricting the set of faces that
may contain a given arc. Let ≺ denote an arbitrary but fixed order on the arc set A.

y(a) + x({1, . . . , `}, a) ≥ 1− x(`, {a′ ∈ A : a′ ≺ a}) ∀` ∈ [f̄ ], a ∈ A (11)

These constraints ensure that any arc is contained either in an explicitly modeled closed
walk or in the lowest-indexed face that it can be placed into. For ILPPre and ILPReal, i.e.,
when there are no explicitly modeled closed walks, we simply set y(a) = 0.

6 Experiments

All algorithms are implemented in C++, compiled with gcc 6.3.0, and use the OGDF (snapshot
2018-03-28) [9]. We use SCIP 6.0.0 [16] for solving ILPs, with CPLEX 12.8.0 as the underlying
LP solver. Each computation uses a single physical core of a Xeon Gold 6134 CPU (3.2 GHz)
with a memory speed of 2666 MHz. We employ a time limit of 10 minutes and a memory limit
of 8 GB per computation. All instances and results, giving runtime and genus (if solved), are
available for download at http://tcs.uos.de/research/min-genus. In our experiments,
we increase parameter D – separately on each graph – until we obtain at least 1000 y-variables.
As they are not required for integral solutions, we omit constraints (4e) by default.

Instance Sets. We consider the 423 and 8249 non-planar graphs of the two established
real-world sets North [28] and Rome [14], respectively. In addition, we use the set of 600
Expander graphs, as established in [10,11] for a related non-planarity measure (skewness):
there are 20 graphs for each feasible parameterization (|V (G)|,∆) ∈ {10, 20, 30, 50, 100} ×
{4, 6, 10, 20, 40}, where ∆ denotes the node degree.

Discussion of SAT-based algorithms. In [2], the SAT-based approach was faster than the
ILP-based one. However, we do not need to directly compare with it.

Both previous approaches solve only instances with genus ≤ 1 in practice. Since the
respective dual bound is trivially given by planarity testing (and enforced in all previous
models), the runtime difference can be attributed to the SAT-solver quickly finding a
satisfying solution. In contrast, standard primal heuristics of ILP-sovlers are weaker, and the
comparably time-consuming LP-relaxations are rarely profitable. However, w.r.t. success-rate,
SAT is only marginally in the lead, if at all: on the Rome graphs, the ILP and SAT solve
2595 and 2667 instances, respectively. For North, “the success-rates of both approaches are
[...] comparable” [2].

ESA 2019

http://tcs.uos.de/research/min-genus


30:10 Stronger ILPs for the Graph Genus Problem

ILPPre ILPReal ILPD
Pre ILPD

Real

0

500

1000

1500

2000

in
st
a
n
ce
s

10 20 30 40 50 60 70 80 90 100

0%

50%

100%

nodes of input

so
lv
ed

(a) Solved Rome graphs by number of nodes.

0

20

40

60

80

in
st
an

ce
s

10 20 30 40 50 60 70 80 90 100
0%

50%

100%

nodes of input

so
lv
ed

(b) Solved North graphs by number of nodes.

Figure 1 Detailed success-rates of algorithms on established benchmark sets. We provide the
relative number of solved instances over the number of nodes, clustered to the nearest multiple of 10.
The gray bars denote the number of instances in each cluster.

Since we can neither employ separation nor LP-relaxations in the setting of SAT-solvers,
there also is no immediate way of using our strengthening results for SAT-based algorithms.
We will see that the new ILP variants clearly dominate the SAT-based variants; e.g., we
solve up to 6797 Rome instances.

Results. The experiments confirm that our new model is not only theoretically stronger
but also better in practice: Using ILPDReal, we are now able to solve 82% instead of just 28%
of the Rome graphs, cf. Table 1. Depending on the instance set, we achieve an average
speed-up of factor 82 to 248. In [2], only graphs with genus 1 (and not all of them) could be
solved. Surprisingly, and in contrast to the observations made in [2], the deg 3-model does
not perform better than the respective base variant: SCIP’s built-in preprocessing reduces
the variable space to essentially the same dimension as obtained when manually applying the
deg 3-model (while possibly retaining some additional information that helps in the solving
process). Also somewhat to our surprise, none of the add-ons (8–11) pay off reliably.

Taking a closer look at the number of solved instances (Figure 1 and Table 2), we see
that – on average – ILPDReal is superior to all other variants for any graph size. We now
solve real-world instances with non-trivial dual bounds, i.e., when the genus is > 1, e.g.,
we have solved a genus-7 instance on Rome and even a genus-21 instance on North. We
see very clearly, in particular on Rome, that we may order the models ILPPre, ILPReal,
ILPDPre, ILPDReal by increasing success rate. This means that, independent on whether we
apply the small-faces model extension or not, the realizability model is more successful than
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Table 1 Average success-rate s and runtime t on each instance set. Considering the runtime, we
restrict the instances to those solved by all variants. Of the graphs solved by ILPPre, all variants
solved at least 94% (Rome), 99% (North), and 100% (Expander). Particularly, algorithms based
on ILPD

Base always solved all of the instances solved by ILPPre.

Rome North Expander
s [%] t [s] s [%] t [s] s [%] t [s]

ILPPre 27.79 190.23 45.86 139.09 5.26 58.29
ILPPre + deg 3 27.94 186.31 47.52 111.50 5.26 58.53
ILPReal 31.85 70.57 50.83 25.44 5.53 11.33
ILPD

Pre 73.08 2.92 67.14 12.21 17.37 2.24
ILPD

Pre + deg 3 68.09 3.86 65.01 12.47 17.37 2.25
ILPD

Real 81.65 0.91 73.52 7.26 23.95 0.95
ILPD

Real + branch rule (8) 76.41 0.86 73.05 7.29 21.05 0.80
ILPD

Real + all symmetries (11) 81.56 0.91 73.52 7.27 23.95 0.95
ILPD

Real + sepa. symmetries (11) 81.59 0.91 73.76 7.26 23.95 0.94
ILPD

Real + sepa. long faces (9) 81.16 0.95 72.81 7.27 22.89 0.81
ILPD

Real + all #faces cons. (4e) 81.57 0.75 74.00 6.79 23.68 0.86
ILPD

Real + sepa. #faces cons. (4e) 81.60 1.13 74.00 7.02 23.95 1.05
ILPD

Real + parity model (10) 82.33 1.25 73.29 1.11 22.89 1.68
ILPD

Real + all arc-face cons. (7) 75.43 0.98 71.39 7.35 18.95 0.71
ILPD

Real + sepa. arc-face cons. (7) 81.71 1.48 73.76 7.28 23.42 0.76
ILPD

Real + (10) + sepa. (4e,7) 82.40 1.37 74.00 1.20 22.63 1.65
ILPD

Real + (8) + (10) + sepa. (4e,7) 78.07 1.19 75.65 1.18 21.58 1.62
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Figure 2 Final primal vs. dual bounds on the genus, generated by algorithmic variants on Rome
(without any add-ons). Color and size indicate the number of instances with the respective bounds.
We note that these bounds do not apply to the values of the formal objective value, i.e., the number
of attained faces, but to the genus, which allows a more sensible comparison. Note that without the
small faces extension, neither ILPPre nor ILPReal obtains lower bounds > 1 (i.e., only trivial ones).
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Figure 3 Average values of ILPD
Base on the solved Rome graphs, depending on the maximum

length D of explicitly modeled cycles and the genus of the graph. Note that we only solved one
instance with genus 7 on Rome.

Table 2 Number of solved instances in the Expander set for selected variants without add-ons.

# nodes 10 20 30 ≥ 50
node degree 4 6 4 6 10 4 6-20 4–40
ILPPre 20 0 0 0 0 0 0 0
ILPReal 20 1 0 0 0 0 0 0
ILPD

Pre 20 20 20 0 0 6 0 0
ILPD

Real 20 20 20 18 0 13 0 0

the predecessor model. The most progress, however, is achieved by activating the small-faces
model extension ILPDBase. As the shapes of the success-rate curves demonstrate, it benefits
both underlying models roughly equally. In particular, we see (cf. also Figure 2 which shows
the final bounds of our core variants on Rome) that even ILPReal, like ILPPre, can only solve
genus 1 instances. This is in accordance with Lemma 3, i.e., that the LP-relaxation of ILPBase
always yields value f̄ . Nonetheless, the success-rates 46% and 51% on North for ILPPre
and ILPReal, respectively, demonstrate that ILPPre is far from solving all toroidal instances.
More complex instances require the small-faces extension ILPDBase. This is also reflected by
the root relaxations of ILPDBase for different values of D, cf. Figure 3. Consistent with theory,
increasing the minimum length D leads to stronger LP-relaxations also in practice, but may
drastically increase the number of variables. Interestingly, generating only triangles, i.e.,
D = 3, yields only a very slight increase on the average dual bound compared to ILPBase on
Rome, possibly caused by the graphs’ sparsity.

Genera in Graph Theory. Our new approach allows us to confirm results from literature,
all with non-trivial dual bounds: In 2015, the circulants of genus ≤ 2 were characterized [12].
Thereby, the authors need to show that 12 specific graphs have genus ≥ 3. For these arguments
alone, they require about nine pages, supplemented by several hours of computation. Using
ILPDReal, we are able to confirm these results (and compute the respective genera) in a matter
of seconds without employing any graph-specific theory. Before, using ILPPre, the arguably
hardest case C11(1, 2, 4) required 180 hours [2]. In 2005, a full paper was dedicated to showing
that the Gray graph has genus 7 [24]. Our tool confirms this result within 42 hours. Similarly,
we confirm a result from 1989 [4] in 250 seconds: the group that is the semidirect product of
Z9 with Z3 has genus 4 (the genus of group Γ is the smallest genus of a Caley graph of Γ).
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7 Conclusion

We have presented novel ILP models for the graph genus problem, proved their theoretical
strength, the existence of a hierarchy of ever stronger LP-relaxations, and positively evaluated
them in practice, e.g., by solving 82% instead of the previous 28% of the Rome instances. We
are now able to solve real-world instances with genera up to 21. This is in stark contrast to
the previous models that – on the same set of instances – succeeded only on toroidal graphs.

It remains open whether even stronger models can be found by a more careful examination
of the face structure. What additional properties of the embedding may be modeled? Is
it possible to better exploit singular nodes or edges, particularly when they are adjacent?
Further, we expect that our algorithms would benefit from strong primal heuristics but we
are not aware of any general such algorithms. Currently, optimal dual bounds are often
identified long before an optimal solution is found.
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Abstract
For a graph F , a graph G is F -free if it does not contain an induced subgraph isomorphic to F .
For two graphs G and H, an H-coloring of G is a mapping f : V (G)→ V (H) such that for every
edge uv ∈ E(G) it holds that f(u)f(v) ∈ E(H). We are interested in the complexity of the problem
H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we
consider H-Coloring of F -free graphs, where F is a fixed graph and H is an odd cycle of length
at least 5. This problem is closely related to the well known open problem of determining the
complexity of 3-Coloring of Pt-free graphs.

We show that for every odd k ≥ 5 the Ck-Coloring problem, even in the precoloring-extension
variant, can be solved in polynomial time in P9-free graphs. On the other hand, we prove that the
extension version of Ck-Coloring is NP-complete for F -free graphs whenever some component of
F is not a subgraph of a subdivided claw.
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1 Introduction

For graphs G and H, a homomorphism from G to H is a mapping f : V (G)→ V (H) such
that f(u)f(v) ∈ E(H) for every edge uv ∈ E(G). It is straightforward to see that if H is a
complete graph with k vertices, then every homomorphism to H is in fact a k-coloring of G

(and vice versa). This shows that homomorphisms can be seen as a generalization of graph
colorings. Because of that, a homomorphism to H is often called an H-coloring, and vertices
of H are called colors. We also say that G is H-colorable if G has an H-coloring.

In what follows, the target graph H is always fixed. We are interested in the complexity
of the H-Coloring problem, which asks whether the input graph G has an H-coloring.

1.1 Complexity of variants of H-Coloring
Since H-Coloring is a generalization of k-Coloring, it is natural to try to extend results
for k-Coloring to target graphs H which are not complete graphs. For example, it is
well-known that k-Coloring enjoys a complexity dichotomy: it is polynomial-time solvable
if k ≤ 2, and NP-complete otherwise. The complexity dichotomy for H-Coloring was
described by Hell and Nešetřil in their seminal paper [23]: they proved that the problem is
polynomial-time solvable if H is bipartite, and NP-complete otherwise.

Since then, there have been numerous studies on variants of H-Coloring. Our main
focus will be on the H-Precoloring Extension problem, in which we are given a triple
(G, W, h), where G is a graph, W is a subset of V (G), and h is a mapping from W to V (H).
The problem is to decide if h can be extended to an H-coloring of G, that is, if there is an
H-coloring f of G such that f |W = h.

Note that this problem is closely related to the List H-Coloring problem, where the
input consists of a graph G with an H-list assignment, which is a function L : V (G)→ 2V (H)

that assigns a subset of V (H) (called list) to each vertex of G. We ask if there is an
H-coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G). In such a case we say that
(G, L) is H-colorable and f is an H-coloring of (G, L). Clearly H-Precoloring Extension
can be seen as a restriction of List H-Coloring, in which every list is either a singleton,
or contains all vertices of H. This is the reason why it is sometimes called one-or-all list
homomorphism (coloring) problem [13].

In general, variants of H-Coloring can be seen in a wider context of Constraint
Satisfaction Problems (CSP). A full complexity dichotomy for this family of problems has
been a long-standing open question, known as the CSP dichotomy conjecture of Feder and
Vardi [15]. After a long series of partial results, the problem was finally solved very recently,
independently by Bulatov [5] and by Zhuk [33].

A natural approach in dealing with computationally hard problems is to consider restricted
instances, in hope to understand the boundary between easy and hard cases. For example, it
is known that H-Coloring can be solved in polynomial time for perfect graphs, because
it suffices to test whether ω(G) > ω(H), which can be done in O(|V (G)||V (H)|) time. If
ω(G) > ω(H), then the answer is no, as there is no way to map the largest clique of G to H.
Otherwise the answer is yes, since ω(G)-coloring of G can be translated to a homomorphism
of G to the largest clique of H, and thus to H. The situation changes when we consider the
more general setting of H-Precoloring Extension and List H-Coloring. For any fixed
graph H, List H-Coloring (and thus H-Precoloring Extension and H-Coloring)
can be solved in polynomial time for input graphs with bounded tree-width. Combining this
with an observation that any graph with a clique larger than ω(H) has no H-coloring, we
obtain polynomial-time algorithms for chordal graphs [14]. For permutations graphs, List
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H-Coloring can also be solved in polynomial time via a recursive branching algorithm [11].
For bipartite input graphs, however, 3-Precoloring Extension (i.e., K3-Precoloring
Extension) is already NP-complete [29]. Other restricted inputs have been studied too,
e.g. bounded-degree graphs [16]. For more results on graph homomorphisms, we refer to the
monograph by Hell and Nešetřil [22].

1.2 Graphs with forbidden induced subgraphs
A rich family of restricted graph classes comes from forbidding some small substructures.
For graphs G and F , we say that G contains F if F is an induced subgraph of G. By F -free
graphs we mean the class of graphs that do not contain F . Note that this class is hereditary,
that is, it is closed under taking induced subgraphs.

The complexity of k-Coloring for hereditary graph classes has received much attention
in the past two decades and significant progress has been made. Of particular interest is the
class of F -free graphs for a fixed graph F . For any fixed k ≥ 3, the k-Coloring problem
remains NP-complete for F -free graphs whenever F is not a linear forest (a collection
of disjoint paths) [25, 31]. The simplest linear forests are paths, and the complexity of
k-Coloring in Pt-free graphs has been studied by many researchers.

On the positive side, Hoàng, Kamiński, Lozin, Sawada, and Shu [24] gave a recursive
algorithm showing that k-Coloring can be solved in polynomial time for P5-free graphs
for any fixed k. Bonomo, Chudnovsky, Maceli, Schaudt, Stein, and Zhong [4] showed that
3-Coloring can be solved in polynomial time in P7-free graphs. Moreover, very recently,
Chudnovsky, Spirkl, and Zhong proved that 4-Coloring is polynomial-time solvable in
P6-free graphs [7, 8, 9].

On the negative side, Woeginger and Sgall [32] demonstrated the NP-completeness of
5-Coloring for P8-free graphs and 4-Coloring for P12-free graphs. Later on, these
NP-completeness results were improved by various researchers and the strongest result is
due to Huang [26] who proved that 4-Coloring is NP-complete for P7-free graphs and
5-Coloring is NP-complete for P6-free graphs. These results settle the complexity of
k-Coloring for Pt-free graphs for all pairs (k, t), except for the complexity of 3-Coloring
for Pt-free graphs when t ≥ 8. Interestingly, all polynomial-time results carry over to the list
variant, except for the case of List 4-Coloring of P6-free graphs, which was shown to be
NP-complete by Golovach, Paulusma, and Song [18]. We refer the reader to the survey by
Golovach, Johnson, Paulusma, and Song [17] for more information about coloring graphs
with forbidden subgraphs.

Understanding the complexity of 3-Coloring in Pt-free graphs seems a hard problem
– on the one hand, algorithms even for small values of t are difficult to construct, and on
the other hand all our hardness reductions appear to introduce long induced paths. Let us
mention a problem whose complexity is equally elusive: Independent Set. Alekseev [1]
observed that Independent Set is NP-complete in F -free graphs whenever F is not a
path or a subdivided claw. For Pt-free graphs, polynomial-time algorithms are known only
for small values of t: currently, the best result is the recent polynomial-time algorithm for
P6-free graphs by Grzesik, Klimošova, Pilipczuk, and Pilipczuk [20, 21]. On the other hand,
the problem is not known to be NP-hard for any fixed t.

A natural question to ask is if the similar behavior of 3-Coloring and Independent
Set in Pt-free graphs is a part of a more general phenomenon. Recently, Groenland, Okrasa,
Rzążewski, Scott, Seymour, and Spirkl [19] shed some light on this question by showing that
if H does not contain two vertices with two common neighbors, then a very general, weighted
variant of H-Coloring can be solved in time 2O(

√
tn log n) for Pt-free graphs. Clearly K3
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does not have two vertices with two common neighbors. Moreover, Independent Set can be
expressed as a weighted homomorphism to , which has the same property, and thus,
for every t, both 3-Coloring and Independent Set can be solved in subexponential time
in Pt-free graphs (we note that a subexponential algorithm for Independent Set in Pt-free
graphs was known before [2]). This implies that if one attempts to prove NP-completeness
of any of these problems in Pt-free graphs, then, assuming the Exponential Time Hypothesis
[27, 28], such a reduction should be sufficiently complicated to introduce at least a quadratic
blow-up of the instance.

In this paper, we study the complexity of variants of H-Coloring when H is an odd
cycle of length at least five. Note that by the result of Groenland et al. [19], this problem can
be solved in subexponential time in Pt-free graphs. We are interested in better classification
of polynomial and NP-hard cases.

1.3 Our contribution
The contribution of the paper is twofold: First, we show that the Ck-Precoloring Exten-
sion problem can be solved in polynomial time in P9-free graphs.

I Theorem 1.1. Let k ≥ 5 be odd, G be a P9-free graph of order n, W be a subset of its
vertices, and h be a mapping from W to V (Ck). Then one can determine in O(n12k+3) time
if h can be extended to a Ck-coloring of G, and find such a Ck-coloring if one exists.

The algorithm is described in detail in Section 3. It builds on the recent work on 3-
Coloring P7-free graphs [4]. The high-level idea of the algorithm is the following: First, we
partition the graph into a so-called layer structure and guess the colors of a constant number
of vertices. This precoloring propagates to other vertices using the layer structure, reducing
the lists of possible colors. We keep guessing the colors of other vertices, transforming the
input instance into a set of nO(k) subinstances of List H-Coloring, such that:
(i) (G, W, f) is a yes-instance of Ck-Precoloring Extension if and only if one of these

subinstances is a yes-instance of List Ck-Coloring; and
(ii) each subinstance can be solved in polynomial time by a reduction to 2-Sat.

In Section 4, we study the complexity of variants of H-Coloring in F -free graphs and
prove the following theorem.

I Theorem 1.2. Let F be a connected graph. If F is not a subgraph of a subdivided claw,
then for every odd k ≥ 5 the Ck-Precoloring Extension problem is NP-complete for
F -free graphs.

We prove the theorem in several steps, analyzing the possible structure of F and trimming
the hard cases. Observe that the statement of Theorem 1.2 is similar to the previously
mentioned result of Alekseev for Independent Set [1]. In most cases, we actually prove
hardness for the more restricted Ck-Coloring problem.

Finally, in Section 5, we state some open questions for future research.

2 Preliminaries

Let G be a simple graph. For X ⊆ V (G), we denote by G|X the subgraph induced by
X, and denote by G \ X the graph G|(V (G) \ X). We say that X is connected if G|X
is connected. For two disjoint subsets A, B ⊂ V (G), we say that A is complete to B if
every vertex of A is adjacent to every vertex of B, and that A is anticomplete to B if every
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vertex of A is nonadjacent to every vertex of B. If A = {a} we write a is complete (or
anticomplete) to B to mean that {a} is complete (or anticomplete) to B. For X ⊆ V (G),
we say that e ∈ E(G) is an edge of X if both endpoints of e are in X. For v ∈ V (G) we
write NG(v) (or N(v) when there is no danger of confusion) to mean the set of vertices of G

that are adjacent to v. Observe that since G is simple, v 6∈ N(v). For X ⊆ V (G) we define
N(X) =

(⋃
v∈X N(v)

)
\X. We say that the set S dominates X, or S is a dominating set of

X if X ⊆ S ∪N(S). We write that S dominates G when we mean that it dominates V (G).
A component of G is trivial if it has only one vertex and nontrivial otherwise.

We use [k] to denote the set {1, 2, . . . , k}. We denote by Pt the path with t vertices. A
path in a graph G is a sequence v1 − · · · − vt of pairwise distinct vertices such that for any
i, j ∈ [t], vivj ∈ E(G) if and only if |i− j| = 1. The length of this path is t. We denote by
V (P ) the set {v1, . . . , vt}. If a, b ∈ V (P ), say a = vi and b = vj with i < j, then a−P − b is
the path vi − vi+1 − · · · − vj , and b− P − a is the path vj − vj−1 − · · · − vi.

Let k ≥ 3 be an odd integer. We denote by Ck a cycle with k vertices 1, 2, . . . , k that
appear along the cycle in this order. The calculations on vertices of Ck will be preformed
modulo k, with 0 unified with vertex k.

We say that (G, L′) is a subinstance of (G, L) if L′(v) ⊆ L(v) for every v ∈ V (G). Two
Ck-list assignments L and L′ of G are equivalent if (G, L) is Ck-colorable if and only if (G, L′)
is Ck-colorable. A Ck-list assignment L is equivalent to a set L of Ck-list assignments of a
graph G if there is L′ ∈ L such that (G, L) is equivalent to (G, L′).

Let (G, L) be an instance of List Ck-Coloring. We say that the list L(x) of a vertex x

is good if |L(x)| ∈ {1, 2, 3, k} and in addition
if |L(x)| = 2, then L(x) = {i− 1, i + 1} for some i ∈ [k], and
if |L(x)| = 3, then L(x) = {i, i− 2, i + 2} for some i ∈ [k].

We say that L is good if L(v) is good for all v ∈ V (G).
For an edge vw ∈ E(G), we update v from w if one of the following is performed.
If L(w) = {i} for some i ∈ [k], then replace the list of v by {i− 1, i + 1} ∩ L(v).
If L(w) = {i− 1, i + 1} for some i ∈ [k], then replace the list of v by {i, i + 2, i− 2}∩L(v).
If L(w) = {i, i− 2, i + 2}, L(v) = {j, j + 2, j − 2} for some i, j ∈ [k], then replace the list
of v by {i− 1, i + 1, i− 3, i + 3} ∩ L(v).

Clearly, any update creates an equivalent subinstance of (G, L). Note that in the graph
homomorphism literature this operation is usually referred to as edge (or arc) consistency and
it is performed in the beginning of most algorithms solving variants of H-Coloring [22, 30].
However, we keep the name “update” to emphasize that we will only perform it at certain
points in our algorithm. We say that an update of v from w is effective if the size of the
list of v decreases by at least 1, and ineffective otherwise. Note that an update is effective
if and only if there exists an element c ∈ L(v) which is not an element of {i − 1, i + 1},
{i, i + 2, i − 2} or {i − 1, i + 1, i − 3, i + 3} depending on the case in the definition of an
update. We observe that the update does not change the goodness of the list2.

I Lemma 2.1 (♠). If the lists of v and w are good before updating v from w, then the list
of v is good or empty after the update.

A Ck-list assignment L is said to be reduced if no effective update can be performed. It
is well-known that one can obtain a reduced list assignment in polynomial time.

2 The proofs of theorems and lemmas marked with ♠ are omitted due to space constraints.
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I Lemma 2.2 (♠). Let G be a graph of order n, and L be a Ck-list assignment. There exists
an O(n3)-time algorithm to obtain an equivalent reduced subinstance (G, L′) of (G, L) or
determine that (G, L) has no Ck-coloring.

We now introduce two more tools that are important for our purpose. The first one is
purely graph-theoretic and describes the structure of Pt-free graphs.

I Theorem 2.3 ([6]). Let G be a connected Pt-free graph with t ≥ 4. Then G has a connected
dominating set D such that G|D is either Pt−2-free or isomorphic to Pt−2.

The next observation generalizes the observation by Edwards [10] that List k-Coloring
can be solved in polynomial time, whenever the size of each list is at most two. This was
already noted by e.g. Feder and Hell [12].

I Theorem 2.4 (♠). Let (G, L) be an instance of List H-Coloring where G is of order
n and |L(v)| ≤ 2 for every v ∈ V (G). Then one can determine in O(n2) time if (G, L) is
H-colorable and find an H-coloring if one exists.

3 Polynomial algorithm for P9-free graphs

In this section, we show that Ck-Precoloring Extension can be solved in polynomial
time for P9-free graphs.

I Theorem 1.1. Let k ≥ 5 be odd, G be a P9-free graph of order n, W be a subset of its
vertices, and h be a mapping from W to V (Ck). Then one can determine in O(n12k+3) time
if h can be extended to a Ck-coloring of G, and find such a Ck-coloring if one exists.

Outline of the proof

The overall strategy is to reduce the instance (G, W, h), in polynomial time, to a set I of
polynomially many instances of List Ck-Coloring, in which every list has size at most 2,
and (G, W, h) is an yes-instance if and only if at least one instance from I is a yes-instance.
We then apply Theorem 2.4 to solve each instance from I in polynomial time.

More specifically, our algorithm, at a high level, consists of five phases. In the first
three of them, we focus on processing the graph G′ := G \W . First, we apply Theorem 2.3
to show that the vertex set of G′ can be partitioned into four sets (S, X, Y, Z) such S is
connected and dominates X, X dominates Y , and Y dominates Z. Second, we branch on
every possible Ck-coloring of G′|S. For each of these colorings of G′|S, we propagate the
coloring of S to the vertices of G′ \ S via updates. After updating, the vertices in S ∪X

will have lists of size at most 2, but the vertices in Y ∪ Z may still have larger lists. In
the third phase, we reduce the instance to polynomially many subinstances via branching
in such a way that each of the subinstances avoids certain configurations, which we call
bad paths. Finally, using the fact that each subinstance has no bad paths, in the last two
phases we reduce the list size of vertices in Y ∪Z to at most 2, restore the set W , creating a
set of instances, which is equivalent to (G, W, h), and use Theorem 2.4 to solve the created
instances in polynomial time.

Proof of Theorem 1.1. We view (G, W, h) as an equivalent instance (G, L) of List Ck-
Coloring where L(v) = {h(v)} if v ∈W and L(v) = [k] otherwise.

Clearly, h can be extended to an Ck-coloring of G if and only if (G, L) is Ck-colorable.
Moreover, observe that if G contains a triangle, then we can immediately report a no-instance.
Checking for existence of triangles can clearly be done in O(n3) time, so from now on we
assume that G is triangle-free.
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For the first three phases we consider the graph G′ := G \W . We may assume that G′ is
connected, for otherwise we can apply the same reasoning to every connected component.

Phase I. Obtaining a layer structure

Let us start with imposing some structure on the vertices of G′.

B Claim 3.1. There exists S ⊆ V (G′) such that |S| ≤ 7, the graph G′|S is connected, and
S ∪N(S) ∪N(N(S)) dominates G′.

Proof. We apply Theorem 2.3 to G′: G′ has a connected dominating set D that induces a
subgraph that is either P7-free or isomorphic to a P7. If G′|D is isomorphic to a P7, then D

is the desired set S. Otherwise we apply Theorem 2.3 on G′|D to conclude that G′|D has a
connected dominating set D′ that induces a subgraph that is either P5-free or isomorphic to
a P5. If G′|D′ is isomorphic to a P5, then D′ is the desired set S. Otherwise G′|D′ is P5-free.
We again apply Theorem 2.3 on G′|D′: G|D′ has a connected dominating set D′′ that
induces a subgraph that is either P3-free or isomorphic to P3. Then D′′∪N(D′′)∪N(N(D′′))
dominates G′. Since G′ is triangle-free, if G′|D′′ is P3-free, then D′′ is a clique of size at
most 2. It follows that |D′′| ≤ 3 and thus we can choose D′′ for S. C

Let S be the set given by Claim 3.1. Define X = N(S), Y = N(N(S)) \ S and
Z = V (G′) \ (X ∪ Y ∪ Z). Then (S, X, Y, Z) is a partition of V (G′), where S dominates X,
X dominates Y and Y dominates Z, and there is no edge between S and Y ∪ Z or between
X and Z. Moreover, S is connected. Such a quadruple P = (S, X, Y, Z) is called a layer
structure of G′. The set S is called the seed of P.

Phase II. Obtaining a canonical Ck-list assignment via updates

We now branch on every possible Ck-coloring of G′|S, there are at most k7 such colorings
since |S| ≤ 7. Note that k7 is a constant since k is a fixed number. To prove the theorem,
therefore, it suffices to determine whether there is a branch, in which the precoloring of
S ∪W can be extended to a Ck-coloring of (G, L) in polynomial time.

In the following, we consider a fixed coloring f : S → [k], and we continue with the
instance (G′, L′) of List Ck-Coloring, where L′(v) = {f(v)} if v ∈ S and L′(v) = [k]
otherwise.

We further partition the sets S, X, and Y as follows. For 1 ≤ i ≤ k, we define

Si :={s ∈ S : L(s) = {i}},

Xi :={x ∈ X \ (
i−1⋃
j=1

Xj) : N(x) ∩ Si 6= ∅},

Yi :={y ∈ Y \ (
i−1⋃
j=1

Yj) : N(y) ∩Xi 6= ∅}.

Clearly, (X1, X2, . . . , Xk) is a partition of X and (Y1, Y2, . . . , Yk) is a partition of Y .
We now perform the following updates for all 1 ≤ i ≤ k in the following order.

For every edge sx with s ∈ Si and x ∈ Xi, we update x from s.
For every edge xy with x ∈ Xi and y ∈ Yi, we update y from x.
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We continue to denote the resulting Ck-list assignment by L′. Then |L′(s)| = 1 for every
s ∈ S, L′(x) ⊆ {i− 1, i + 1} for every x ∈ Xi and L′(y) ⊆ {i, i− 2, i + 2} for every y ∈ Yi.
We call such a Ck-list assignment L′ canonical for P = (S,

⋃k
i=1 Xi,

⋃k
i=1 Yi, Z).

B Claim 3.2 (♠). If Xi is not stable, then (G′, L′) is not Ck-colorable.

Note that one can determine in O(n2) time if there exists an Xi that is not stable. If so,
we stop and correctly determine that (G′, L′) is not Ck-colorable by Claim 3.2. Otherwise,
we may assume that Xi is stable for all 1 ≤ i ≤ k from now on.

Phase III. Eliminating bad paths via branching (O(n12k) branches)

In this phase, we shall reduce the instance (G′, L′) to an equivalent set of polynomially many
subinstances so that every subinstance has no bad paths, which we define now.

An induced path a − b − c is a bad path in P = (S, X, Y, Z) = (S,
⋃k

i=1 Xi,
⋃k

i=1 Yi, Z)
if for some i ∈ [k] we have a ∈ Yi, b, c ∈ (Y ∪ Z) \ Yi, and {b, c} is anticomplete to Xi.
We call a the starter of a − b − c. Let Qi be the set of all bad paths with starters in Yi,
clearly |Qi| = O(n3).

A vertex v ∈ Yi is of depth at least ` in P if for every x ∈ N(v) ∩ Xi, there exists an
induced path v − x− P of length at least ` such that V (P ) ⊆ S. Observe that every vertex
in Y is of depth at least 3 to S (because we may assume that |S| ≥ 2 and so no vertex in X

is complete to S since G is triangle-free), and that the starter of a bad path is of depth at
most 7 to S since G′ is P9-free.

Note that for any Ck-coloring of (G′, L′) and every i ∈ [k], either there exists a bad
path in Qi whose starter is colored with a color in {i− 2, i + 2} or the starters of all bad
paths in Qi are colored with i. This leads to the following branching scheme, which only
updates the lists.

Branching.
(2k = O(1) branches.) For every subset I ⊆ [k], we have a branch BI intended to find
possible colorings such that there exists a bad path in Qi whose starter is colored with
a color in {i − 2, i + 2} if i ∈ I, and all starters of bad paths in Qi are colored with
color i if i /∈ I. Clearly, (G′, L′) is Ck-colorable if and only if at least one of the BI is a
yes-instance. In the following, we fix a branch BI .
(O(2kn3k) = O(n3k) branches.) We further branch to obtain a set of size O(n3k) of
subinstances within BI by guessing, for each i ∈ I, a bad path in Qi, and guessing the
color of its starter from {i−2, i+2}. The union over all branches BI of these subinstances
is equivalent to (G′, L′).
Specifically, for each element (ai− bi− ci)i∈I in Πi∈IQi, we have one branch where we set
L′′(ai) := L′(ai) ∩ {i− 2, i + 2} for every i ∈ I, and we set L′′(a) := L′(a) ∩ {i} for every
starter a of a bad path in Qi for every i /∈ I. We denote the resulting Ck-list assignment
by L′′. For each such branch and for every element (qi)i∈I in Πi∈IL′′(ai), we have one
branch where L′′(ai) = {qi} for all i ∈ I. It follows that for all i ∈ I and x ∈ Xi ∩N(ai),
the only possible color for x is (qi + i)/2, and so we set L′′(x) = {(qi + i)/2}. Since
L′′(ai) ⊆ {i− 2, i + 2} for all i ∈ I, it follows that there are 2|I| ≤ 2k branches. Let us fix
one such branch and denote the resulting instance by (G′, L′′).
(O(k3k) = O(1) branches.) We let I∗ be the subset of [k] \ I of indices i such that Qi

contains a bad path. For each i ∈ I∗, we choose a bad path ai − bi − ci in Qi such that
|N(ai) ∩Xi| is minimum, where the minimum is taken over all bad paths in Qi. Choose
a vertex xi ∈ N(ai) ∩Xi for each i ∈ I∗. Define

Q :=
⋃
i∈I

{bi, ci} ∪
⋃

i∈I∗

{bi, ci, xi},
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where for i ∈ I, bi, ci are two vertices on the bad path we guessed in the previous bullet.
We branch on every possible coloring of Q. Since |Q| ≤ 3k, the number of branches is at
most k3k. In the following, we fix a coloring g of Q and denote the resulting subinstance
by (G′, L′′′), where L′′′(v) = {g(v)} if v ∈ Q and L′′′(v) = L′′(v) otherwise.

Obtaining a new layer structure with a canonical Ck-list assignment. We now deal with
(G′, L′′′). Define

A =
⋃
i∈I

((N(ai) ∩Xi) ∪ {ai, bi, ci}) ∪
⋃

i∈I∗

{xi, ai, bi, ci},

and note that in L′′′, every vertex in A has a list of size at most 1. We update all vertices of
G′ from all vertices in A and continue to denote the resulting Ck-list assignment by L′′′. We
now obtain a new partition P ′ = (S′, X ′, Y ′, Z ′) of G′ as follows.

Let S′ := S ∪A.
For each 1 ≤ j ≤ k, let Kj := ∅. For each vertex v ∈ Y ∪Z, if v has a neighbor in S′, let j

be the smallest integer in [k] such that there exists a vertex s ∈ N(v)∩S′ with L(s) = {j},
and add v to Kj . For each 1 ≤ j ≤ k, let X ′j = (Xj ∪Kj) \A. Let X ′ :=

⋃k
i=1 X ′i.

For 1 ≤ i ≤ k, let Y ′i be the set of vertices in V (G′) \ (S′ ∪X ′ ∪ (
⋃

j<i Y ′j )) that have a
neighbor in X ′i. Let Y ′ :=

⋃k
i=1 Y ′i .

Let Z ′ := V (G′) \ (S′ ∪X ′ ∪ Y ′).

B Claim 3.3 (♠). The new partition P ′ := (S′, X ′, Y ′, Z ′) is a layer structure of G’ and L′′′

is a canonical Ck-list assignment for P ′.

B Claim 3.4 (♠). For every i ∈ [k] it holds that
1. X ′i \Xi ⊆ Y ∪ Z.
2. If a vertex in Y ′ ∪ Z ′ is anticomplete to X ′i, then it is anticomplete to Xi.
3. Y ′i \ Yi is anticomplete to Xi.

The following claim is the key to our branching algorithm.

B Claim 3.5. Let a be a starter of a bad path in P ′. If the depth of the starter of any bad
path in P is at least `, then the depth of a in P ′ is at least ` + 1.

Proof. Let a′ − b′ − c′ be a bad path in P ′ with a′ ∈ Y ′i . Consider the following cases.

Case 1: a′ ∈ Yi ∩ Y ′i . Then ∅ 6= N(a′) ∩ Xi ⊆ X ′i. By item 2. in Claim 3.4, {b′, c′} is
anticomplete to Xi and so a′− b′− c′ is also a bad path in P = (S, X, Y, Z). This implies
that Qi 6= ∅. Therefore, there exist a, b, c, x ∈ S′ such that a− b− c is a bad path in P
with a ∈ Yi and x ∈ N(a) ∩Xi.
We first claim that it is possible to pick a vertex x′ ∈ N(a′) ∩Xi that is not adjacent
to a. Recall that the branch we consider corresponds to a set I ⊆ [k]. If i ∈ I, then all
vertices in N(a) ∩Xi are in A and hence are now in S′. So every vertex in N(a′) ∩Xi

is not adjacent to a, and our claim holds. If i 6∈ I, then i ∈ I∗, and so a = ai. By the
choice of ai, it follows that |N(a)∩Xi| ≤ |N(a′)∩Xi|. Since a′ ∈ Y ′i , it follows that a′ is
not adjacent to x. Therefore, there exists a vertex x′ ∈ N(a′) ∩Xi such that x′ is not
adjacent to a.
Note that x and x′ are not adjacent by Claim 3.2. Moreover, x′ is anticomplete to
{b′, c′, b, c} by the definition of bad path. Let P ′ be the shortest path from x to x′ with
internal vertices contained in S. Note that P ′ exists since S is connected. Then P ′ is an

ESA 2019



31:10 Complexity of Ck-Coloring in Hereditary Classes of Graphs

induced path. Since V (P ′) \ {x, x′} ⊆ S, it follows that V (P ′) \ {x, x′} is anticomplete
to {a, b, c, a′, b′, c′}. Therefore, c− b− a− x− P ′ − x′ − a′ − b′ − c′ is an induced path of
order at least 9, a contradiction.

Case 2: a′ ∈ Y ′i \ Yi. It follows from Claim 3.4, item 3. that N(a′) ∩X ′i ⊆ X ′i \Xi. Pick a
vertex x′ ∈ N(a′) ∩X ′i. Since x ∈ X ′i \Xi, x′ has a neighbor s′ ∈ S′ by the definition
of X ′i. By Claim 3.4, item 1., x′ ∈ Y ∪ Z and so s′ ∈ S′ \ S = A. Thus there exists
j ∈ I such that x′ is not anticomplete to Q = {xj , aj , bj , cj}, where xj ∈ N(aj) ∩ Xj .
Let aj − xj − P be an induced path of length ` with V (P ) ⊆ S. Note that x′ ∈ Y ∪ Z

is anticomplete to V (P ) ⊆ S. Let x′ − P ′′ − xj be the shortest path from x′ to xj such
that V (P ′′) ⊆ Q. Since a′ is anticomplete to {x} ∪ V (P ) ∪ V (P ′′) ⊆ S′, it follows that
a′ − x′ − P ′′ − xj − P is an induced path of length at least ` + 1. This proves the claim.

C

Therefore, we have obtained an equivalent set of subinstances of size O(n3k). For each
such subinstance, the minimum depth of the starter of a bad path has increased by at least 1
compared to P due to Claim 3.5. Note that the depth of any starter of a bad path in P is at
least 3. Moreover, since G′ is P9-free, the depth of any starter of a bad path is at most 7.

By branching 4 times, therefore, we obtain an equivalent set of O(n12k) subinstances
such that each subinstance has no bad paths.

Phase IV. Reducing the list size of vertices in Z

Now we go back to processing the graph G. Let us fix an instance of List Ck-Coloring on
G′, created in the previous phase, and let (G, L) denote the instance obtained by restoring
the vertices of W . By P = (S, X, Y, Z) we denote the layer structure of G′ with no bad paths
and L is canonical for P. We first reduce the list size of vertices in Z.

B Claim 3.6 (♠). The set Z is stable and each z ∈ Z has neighbors in at most one of
{Y1, Y2, . . . , Yk}.

B Claim 3.7 (♠). Let z ∈ Z be anticomplete to W and have a neighbor in Yi. If (G, L) has
a Ck-coloring, then (G, L) has a Ck-coloring c such that c(z) ∈ {i− 1, i + 1}.

We now modify the lists of vertices in Z: let L(z) := L(z) ∩ {i− 1, i + 1} for every z ∈ Z

that is anticomplete to W and has a neighbor in Yi. It follows from Claim 3.7 that the
resulting list is equivalent to the original one. We still denote by the resulting list L.

Phase V. Reducing the list size of vertices in Y

We now apply Lemma 2.2 to obtain a reduced Ck-list assignment L′. Then (G, L′) is an
equivalent subinstance of (G, L). If L′(v) = ∅ for some v ∈ V (G), we stop and report a
no-instance. Define:

S′ :={v ∈ V (G′) : |L′(v)| = 1},
X ′i :={v ∈ V (G′) \ S′ : L′(v) ⊆ {i− 1, i + 1}}, 1 ≤ i ≤ k,

Y ′i :={v ∈ V (G′) \ (S′ ∪X ′ ∪
⋃
j<i

Y ′j ) : L′(v) ⊆ {i, i− 2, i + 2}}, 1 ≤ i ≤ k,

X ′ :=
k⋃

i=1
X ′i,

Y ′ :=
k⋃

i=1
Y ′i .
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Note W ⊆ S′ and that (S′, X ′, Y ′, ∅) is almost a layer structure of G except that S′ is not
necessarily connected. It follows from the definition of (S′, X ′, Y ′) and Lemma 2.1 that
L′(x) = {i − 1, i + 1} for every x ∈ X ′i and L′(y) = {i − 2, i, i + 2} for every y ∈ Y ′i . For
1 ≤ i ≤ k, we partition Y ′i into two subsets Y 1

i and Y 2
i , where Y 2

i is the set of isolated
vertices in G|Y ′i and Y 1

i = Y ′i \ Y 2
i . We prove a few properties for S′, X ′ and Y ′.

B Claim 3.8 (♠). The following hold for S′, X ′ and Y ′.
1. V (G) = S′ ∪X ′ ∪ Y ′.
2. For every i ∈ [k] and y ∈ Y ′i , we have N(y) ∩X ′ ⊆ X ′i.
3. For every i ∈ [k], we have Xi ⊆ X ′i ∪ S′ and Y ′i ⊆ Yi.
4. For every i ∈ [k] and y ∈ Y 2

i , the vertex y is anticomplete to Y ′ \ (Y 2
i+1 ∪ Y 2

i−1).

B Claim 3.9. If (G, L′) is Ck-colorable, then there exists a Ck-coloring c of (G, L′) such that
for each 1 ≤ i ≤ k, c(y) = i for all y ∈ Y 2

i and c(y) ∈ {i− 2, i + 2} for all y ∈ Y 1
i .

Proof. Suppose that c′ is a Ck-coloring of (G, L′). Note that each u ∈ Y 1
i has a neighbor

v ∈ Y 1
i by the definition. Since L′(u), L′(v) ⊆ {i − 2, i, i + 2} and c′ is a Ck-coloring of

(G, L′), it follows that c′(u) 6= i and c′(v) 6= i. So c′(u) ∈ {i− 2, i + 2}.
Let u ∈ Y 2

i . Note that u can only have neighbors in X ′i or in Y 2
i+1 ∪ Y 2

i−1 by item 2. and
item 4. of Claim 3.8. Define c : V (G)→ [k] such that c(v) := i if v ∈ Y 2

i and c(v) := c′(v) if
v /∈

⋃k
i=1 Y 2

i .
Then c is a Ck-coloring of (G, L′), since c′(x) ∈ {i − 1, i + 1} for every x ∈ X ′i. This

completes the proof. C

Let us point out that the special treatment of the sets Y 1
i is needed only for the case

k = 5. For k > 5, if one Yi contains two adjacent vertices, one can observe that there is no
way to color them. Thus we can immediately report a no-instance (or let it be reported when
we solve the corresponding 2-Sat instance).

Let us now modify the lists as follows. For each 1 ≤ i ≤ k and each y ∈ Y ′i , let
L′(y) := L′(y) ∩ {i − 2, i + 2} if y ∈ Y 1

i and L′(y) := L′(y) ∩ {i} if y ∈ Y 2
i . By Claim 3.9,

the new list assignment is equivalent to the original one. Now for each v ∈ V (G) we have
|L′(v)| ≤ 2 and so Theorem 2.4 applies.

This completes the proof of correctness of our algorithm. Clearly, the most expensive
part of our algorithm is Phase III where we branch into O(n12k) subinstances. Since each
subinstance can be constructed in O(n3) time by Lemma 2.2 and each 2-Sat instance can
be solved in O(n2) time by Theorem 2.4, the total running time is O(n12k+3). J

4 Hardness results

In this section we prove the following theorem.

I Theorem 1.2. Let F be a connected graph. If F is not a subgraph of a subdivided claw,
then for every odd k ≥ 5 the Ck-Precoloring Extension problem is NP-complete for
F -free graphs.

We will prove Theorem 1.2 in several steps in which we analyze possible structure of F .
We start with the following simple observation that will be repeatedly used. For the rest of
this section, let k = 2s + 1 for s ≥ 2.

I Observation 4.1. Let s ≥ 2 be an integer and P be a 2s-vertex path with endvertices a

and b. Then the following holds.
In any C2s+1-coloring h of P we have h(a) 6= h(b).
For any distinct i, j ∈ {1, 2, . . . , 2s + 1}, there exists a C2s+1-coloring h of P such that
h(a) = i and h(b) = j.

ESA 2019



31:12 Complexity of Ck-Coloring in Hereditary Classes of Graphs

4.1 Eliminate cycles
The girth of a graph G, denoted by girth(G), is the length of a shortest cycle in G. A vertex
in a graph is called a branch vertex if its degree is at least 3. By Γp we denote the class of
graphs, in which the number of edges in any path joining two branch vertices is divisible by p.

We first show that the problem is NP-hard in F -free graphs, unless F is a tree in Γ2s−1.

I Theorem 4.2. For each fixed integer s ≥ 2 and each connected graph F , C2s+1-Coloring
is NP-complete for F -free graphs whenever F contains a cycle or is not in Γ2s−1.

Proof. It is known (see e.g. [31]) that the (2s + 1)-Coloring problem is NP-complete for
graphs of girth at least g for each fixed g ≥ 3. We reduce this problem to C2s+1-Coloring.
Given a graph G, we obtain a graph G′ by replacing each edge of G by a (2s − 1)-edge
path. Then it follows from Observation 4.1 that G is (2s + 1)-colorable if and only if G′

is C2s+1-colorable. Clearly, girth(G′) = girth(G) · (2s− 1) ≥ g(2s− 1). Thus, if we choose
g ≥ 3 such that g(2s− 1) > girth(F ), e.g., g = |V (F )|+ 1, it follows that all graphs of girth
at least g(2s − 1) are F -free. Moreover, it is easy to see that the number of edges in any
path joining two branch vertices of G′ is divisible by 2s− 1, so if F /∈ Γ2s−1, then G′ does
not contain F . J

4.2 Eliminate vertices of degree at least 4
From now on it suffices to consider trees with branch vertices at distance divisible by 2s− 1.
We now show that Ck-Coloring is NP-complete for F -free graphs if F contains a vertex of
degree at least 4. Note that in this case every subcubic graph is F -free.

I Theorem 4.3 (♠). For each fixed s ≥ 2, C2s+1-Coloring is NP-complete for subcubic
graphs.

4.3 Eliminate multiple branch vertices
Before we prove the main theorem we need one more intermediate step that allows us to
eliminate those F in which there are two branch vertices that are at distance not divisible by
s. The proof is a reduction from the problem called Non-Rainbow Coloring Extension,
whose instance is a 3-uniform hypergraph H and a partial coloring f of some of its vertices
with colors {1, 2, 3}. We ask whether f can be extended to a 3-coloring of V (H) such that
no hyperedge is rainbow (i.e., contains three distinct colors). This problem is known to be
NP-complete [3].

I Theorem 4.4. For each fixed integer s ≥ 2, C2s+1-Precoloring Extension is NP-
complete for bipartite graphs in Γs.

Proof. We reduce from Non-Rainbow Coloring Extension. Let H = (V, E) be a
3-uniform hypergraph and let f be a partial 3-coloring of H. We construct an instance of
C2s+1-Precoloring Extension as follows.

For each vertex v ∈ V , we introduce a variable vertex, denoted by v′. If v is precolored
by f , we precolor v′ with the color f(v).
For each v that is not precolored by f , we introduce 2s − 2 new vertices and precolor
them with 4, 5, . . . , 2s + 1, respectively. Then each of these new vertices is joined by a
(2s− 1)-edge path to v′. It follows from Observation 4.1 that each vertex v′ can only be
mapped to one of 1, 2, 3, and any of these three choices is possible.
For each hyperedge e = {x, y, z} ∈ E, we add a new vertex ve and three s-edge paths
connecting ve to x′,y′, and z′, respectively. This whole subgraph is called an edge gadget.
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Observe that if x′ is mapped to i ∈ {1, 2, 3}, then the possible colors for ve are {s + i, s + i−
2, . . . , s + i− 2bs/2c} ∪ {s + i + 1, s + i + 3, . . . , s + i + 1 + 2bs/2c}. Thus, if each of x′, y′, z′

is mapped to a different vertex from {1, 2, 3}, then there is no way to extend this mapping to
the whole edge gadget. On the other hand, such an extension is possible whenever x′, y′, z′

receive at most two distinct colors.
We denote by G the resulting graph. By the properties of variable vertices and edge

gadgets, (H, f) is an yes-instance of Non-Rainbow Coloring Extension if and only if
the precoloring of G can be extended to a C2s+1-coloring of G. Clearly, G is bipartite and
belongs to Γs. J

By Theorems 4.2, 4.3, and 4.4, the C2s+1-Precoloring Extension problem is NP-
complete for F -free graphs unless F is a tree in Γs(2s−1) (observe that s and 2s − 1 are
relatively prime). We are now ready to show that the problem is NP-hard if F has more
than one branch vertex.

I Theorem 4.5. Let s ≥ 2 be an integer and let F be a tree. If F contains two branch
vertices, then C2s+1-Coloring is NP-complete for F -free graphs.

Proof. Let d be the distance between two closest branch vertices in F . We reduce from
Positive Not-All-Equal Sat with all clauses containing exactly three literals. Consider
an instance with variables x1, x2, . . . , xn and clauses D1, D2, . . . , Dm.

We start our construction by introducing one special vertex z.
For each variable xi, we introduce a vertex vi, adjacent to z.
For each clause D` = {xi, xj , xk}, we introduce three new vertices y`,i, y`,j , and y`,k,
and join each pair of them with a (2s − 1)-edge path. This guarantees that in every
C2s+1-coloring, they get three distinct colors. These three paths constitute the clause
gadget.
For each variable xi belonging to a clause D`, we join each y`,i to vi by a path P`,i with
2d(2s− 1) + 1 edges. Let vi = p1, p2, . . . , p2d(2s−1)+2 = y`,i be the consecutive vertices of
P`,i. We add edges joining z and p1+j(2s−1) for every 1 ≤ j ≤ 2d.

This completes the construction of a graph G. We claim that G is C2s+1-colorable if and
only if the initial formula is satisfiable, and that G belongs to our class.

B Claim 4.6 (♠). G is C2s+1-colorable if and only if the initial formula is satisfiable.

B Claim 4.7 (♠). G is F -free.

This completes the proof of Theorem 4.5. J

Now Theorem 1.2 comes from combining the Theorems 4.2, 4.3, 4.4, and 4.5. We observe
that all reductions in our hardness proofs are linear in the number of vertices (the target
graph is assumed to be fixed, so s is a constant). Moreover, all problems we are reducing
from can be shown to be NP-complete by a linear reduction from 3-Sat. Thus we get the
following result, conditioned on the Exponential Time Hypothesis (ETH), which, along with
the sparsification lemma, implies that 3-Sat with n variables and n clauses cannot be solved
in time 2o(n+m) [27, 28].

I Corollary 4.8. Unless the ETH fails, the following holds. If F is a connected graph that
is not a subgraph of a subdivided claw, then for every s ≥ 2, the C2s+1-Precoloring
Extension problem cannot be solved in time 2o(n) in F -free graphs with n vertices.
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5 Conclusion

In this paper, we initiate a study of C2s+1-Coloring for F -free graphs for a fixed graph F .
We prove that C2s+1-Precoloring Extension is NP-complete for F -free graphs if some
component of F is not a subdivided claw. Moreover, we show that C2s+1-Precoloring
Extension is polynomial-time solvable for P9-free graphs. Note that all our hardness results
work for C2s+1-Coloring, except for Theorem 4.4. Thus it is natural to ask whether
analogous hardness results holds for C2s+1-Coloring too. Moreover, the following questions
seem natural to explore.

Are there values of s and t such that C2s+1-Coloring is NP-complete for Pt-free graphs?
Is C2s+1-Coloring polynomial for F -free graphs when F is a subdivided claw?
Is C2s+1-Coloring FPT for Pt-free graphs, when parameterized by s?
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Abstract
Representing a family of geometric objects in the digital world where each object is represented by a
set of pixels is a basic problem in graphics and computational geometry. One important criterion is
the consistency, where the intersection pattern of the objects should be consistent with axioms of
the Euclidean geometry, e.g., the intersection of two lines should be a single connected component.
Previously, the set of linear rays and segments has been considered. In this paper, we extended
this theory to families of curved rays going through the origin. We further consider some psudoline
arrangements obtained as unions of such families of rays.
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1 Introduction

The representation of geometric objects in the pixel world does not always satisfy geometric
properties such as Euclidean axioms. Figure 1 shows that a naive definition of digital lines
may cause inconsistency. In Figure 1, the intersection of a pair of digital lines is divided
into three connected components (in the 4-neighbor topology), while it is desired that the
intersection should be connected to imitate the Euclidean axiom that two non-parallel lines
intersect at a point. Thus, it is important to seek for a digital representation of a family of
geometric objects such that they satisfy a digital version of geometric axioms.

Figure 1 Inconsistency of intersection (green pixels) of two digital line segments.
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Geometric consistency is important in implementation of algorithms of computational
geometry. In geometric computation, we often experience that finite-precision computation
is suffered by geometric inconsistency. For example, the divide and conquer algorithm to
construct a Voronoi diagram given in the textbook of Preparata and Shamos [6] is known
to be difficult to implement. The algorithm needs to compute the intersection point of two
(possibly nearly parallel) lines, and then later decides whether the intersection point is above
or below another line. Therefore, we may need to compute the intersection point precisely
beyond the precision of the system to avoid inconsistency causing a wrong decision. It is
a difficult task to avoid such geometric inconsistency. After the seminal paper of Greene
and Yao [7], many approaches to overcome the geometric inconsistency in finite precision
computation have been proposed. Snap rounding [10, 8, 9] is one of the approaches, which
systematically replaces line segments with piecewise linear segments. Another approach
implemented in several softwares is the dynamic control of the precision [15, 13].

The pixel-based consistent representation of digital objects would lead to an additional
methodology for consistent geometric computation. In general, it is a difficult task to convert
families of geometric objects into families of digital objects without geometric inconsistency.
However, we have hope if we restrict the task on some fundamental curves to represent basic
geometric objects.

In this paper, we propose the consistent digital curved rays generalizing consistent digital
rays for straight lines [5, 14]. We also show constructions of digital rays that consistently
approximate some pseudoline arrangements in the first quadrant.

We consider the triangular region ∆ defined by {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ n} in the
plane, and the integer grid G = {(i, j) : i, j ∈ {0, 1, . . . , n}, i+ j ≤ n} in the region. We can
also handle a square region, but use ∆ to make the description easier.

Each element of G is called a pixel (usually, a pixel is a square, but we represent it by
its lower-left-corner grid point in this paper). A pixel is called a boundary pixel if it lies on
x+ y = n. We consider an undirected graph structure under the four-neighbor topology such
that (i, j) ∈ G is connected to (k, `) ∈ G if (k, `) ∈ {(i− 1, j), (i, j − 1), (i+ 1, j), (i, j + 1)}.

A digital ray S(p) is a path in G from the origin o to p, where S(o) = {o} is a zero-length
path. Let us consider a family {S(p) : p ∈ G} of digital rays, where a digital ray is uniquely
assigned to each p ∈ G. The family is called consistent if the following three conditions hold:
1. If q ∈ S(p), then S(q) ⊆ S(p).
2. For each S(p), there is a (not necessarily unique) boundary pixel r such that S(p) ⊆ S(r).
3. Each S(p) is a shortest path from o to p in G.

The consistency implies that the union of paths S(p) form a spanning tree T of G such
that all leaves are boundary pixels, and accordingly the intersection of two digital rays
consists of single connected component. See the pictures (a) and (b) of Figure 2for the
illustration. The tree T and also the family of digital rays are called CDR (Consistent Digital
Rays).

Previously, the theory has been considered only for digital straightness[11]. Lubby [14]
first gave a construction of CDR where each S(p) simulates a linear ray within Hausdorff
distance O(logn), and showed that the bound is asymptotically tight. Here, the Hausdorff
distance between objects P and Q is max{maxp∈P minq∈Q d(p, q),maxq∈Q minp∈P d(p, q)},
where d(p, q) is the Euclidean distance between p and q. The construction was re-discovered
by Chun et al.[5] to give further investigation, and Christ et al.[4] gave a construction of
consistent digital line segments where the lines need not go through the origin. There are
several works on different characterizations and variations [1, 2, 3].
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(a) (b) (c) (d)

Figure 2 CDR for linear rays and parabolic rays in the triangular region of a 20× 20 grid, and
sampled linear and parabola digital rays in a 300× 300 square grid.

We will extend the theory to families of curves with the same topology as linear rays. In
Figure 2, the combinatorial difference between two CDRs can be observed. The difference
leads to the visual difference of digital rays illustrated in Figure 2, where it can be seen that
the digital rays in (b) approximate parabolas as shown in (d) extended to a sufficiently large
grid, while (a) approximates linear rays as shown in (c).

A family F of nondecreasing curves in ∆ is called a ray family if each curve goes through
the origin o, and for each point (x, y) ∈ ∆ \ {o} there exists a unique curve of F going
through it. We call an element of F a ray. Accordingly, each pair of rays intersect each other
only at the origin. A typical example is the family of parabolas y = ax2 for a ≥ 0.

We give a construction method of CDR TF in G such that the (unique) ray of F connecting
o and a pixel p is approximated by the path S(p) of TF well. In order to theoretically gurantee
the goodness of the approximation, we give an O(

√
n logn) bound of the Hausdorff distance

for several ray families, where the unit is given by the pixel size. Although the theoretical
bound is much worse than the known Θ(logn) optimal bound for the linear ray [5, 14], it is
the first nontrivial result for curved rays as far as the authors know.

Then, we investigate the structure of unions of CDRs. Our results include a new
interpretation of CDS, and generalize it to a digitized pseudoline arrangement (i.e. set of
paths interesecting at monst once to each other) given as union of translated copies of a ray
family. Moreover, we deal with digitization of the arrangement given as a union of families
of constant degree homogeneous polynomial curves to show that they can be consistently
discretized to form a pseudoline arrangement in a subregion of ∆ excluding a constant
number of rows and columns, and a constant-area triangle.

We have implemented our construction algorithm of CDR for several families of rays,
and our experimental result shows that the Hausdorff distance is only 12 for n = 214 for the
parabola rays.

2 Consistent digital rays and their properties

The set of pixels of G on the diagonal x + y = k for k = 0, 1, . . . , n is called the level set
L(k). We implicitly give a direction of edges from lower towards higher levels, and call an
edge of G between nodes u ∈ L(k − 1) and v ∈ L(k) an incoming edge to (resp. outgoing
edge from) v (resp. u).

Consider a CDR T . Any node of T has exactly one incoming edge, and at most two
outgoing edges of T . The following observation was given by Chun et al.[5] (see Figure 3 for
its illustration).

ESA 2019
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Figure 3 The branching nodes (colored yellow) and partition of incoming edges to the 5th level
(left picture) of the CDR (right picture) of linear rays.

I Lemma 1. In the level set L(k) for k ≥ 1, there exists a real value 0 < x(k) < k such
that the incoming edge of T to each node whose x-value is smaller than (resp. larger than
or equal to) x(k) is vertical (resp. horizontal). Accordingly, there exists a unique branching
node of T in L(k − 1) (colored yellow in Figure 3).

Thus, a CDR is completely characterized by the integer sequence dx(1)e, dx(2)e, . . . , dx(n)e,
where 1 ≤ x(i) ≤ i. We call x(k) the separating position on L(k). The following lemma is
easy to verify.

I Lemma 2. A (unique) CDR exists for each of (n− 1)! possible sequences as above.

Our task is to find a CDR among those candidates to approximate a given family of rays
as good as possible.

2.1 CDR for linear rays revisited
The CDR of linear rays can be obtained by selecting x(k) as uniformly as possible from [1, k].

Let us consider the binary representation k =
∑∞
i=0 a(i)2i of a natural number k. The

van der Corput sequence (see [12] ) is the sequence that is defined by a function V (k) =∑∞
i=1 a(i)2−i from natural numbers to [0, 1]. We remove V (0) = 0 from our consideration so

that the range becomes (0, 1]. For example, for 6 = 2 + 4 = 1102, V (6) = 0.112 = 1
2 + 1

4 = 3
4 .

Here, a sequence of digits with subscript 2 means 2-adic representation of numbers.
The van der Corput sequence is known to be a low discrepancy sequence: There is a

nonnegative constant c such that for each n and a range [a, b] in (0, 1], the number of k ≤ n
satisfying V (k) ∈ [a, b] differs from (b− a)n at most c logn. In particular, for each m < n,
the set {V (i) : m ≤ i 6= n} gives an almost uniform distribution on [0, 1].

We can set x(k) = kV (k) to obtain a CDR. This CDR is exactly same as the one given
by Chun et al.[5], and it has been shown that it approximates the linear rays emanating from
the origin with the optimal Θ(logn) distance bound. In order to generalize to the curved
rays, we give the following interpretation.

Consider a line y = ax intersecting x + y = k at q = (x0, k − x0). By definition, its
slope is a, which is k−x0

x0
. Naturally, we need to approximate the line segment of slope k−x0

x0
with a grid path in a neighborhood of q in order to globally approximate a line by the path.
Ideally the ratio of vertical edges to the horizontal edges in the path should be k−x0

x0
in the

neighborhood. If we set x0 = kt0, the ratio is 1−t0
t0

.
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By the definition of the separating position x(k), the edge incoming to q is vertical if and
only if q lies on the left of x(k). Let x(k) = kt(k) and we take t(k) = θ for a uniformly random
variable θ on (0, 1]. Then, q is on the left of x(k) if and only if t0 < θ, and its probability is
1− t0. Thus, the incoming edge becomes horizontal and vertical with probabilities t0 and
1− t0, respectively. Hence, the ratio between them is 1−t0

t0
as desired.

The construction can be derandomized by replacing θ by V (k) for each k. This deran-
domization also improves the Hausdorff distance bound.

We would like to extend this argument for other families of curves.

3 CDR for families of curves

Let us give a construction method of CDR applicable to several families of curves. We start
with a family of parabolas as a typical example for improving the readability, and then
discuss more general cases for which we will prove an upper bound for the Hausdorff distance
between rays and digital rays.

3.1 CDR for a family of parabolas

3.1.1 Construction of CDR

Figure 4 CDR Tpara. Green nodes are branching nodes. Red path gives a digital parabolic ray.

Let us consider the family y = ax2 (a ≥ 0) of parabolas that have the origin o as their
apex. We include the y-axis x = 0 in the family (this convention is applied to all other cases).

Consider a parabola C : y = ax2 intersecting the level x+ y = k at q = (x0, k − x0). The
slope of tangent at q is 2ax0, which is 2y0

x0
= 2(k−x0)

x0
= 2(1−t0)

t0
if we set x0 = kt0.

Analogously to the linear case, if we would like to have a digital ray nicely approximate
C, the curve C in a neighborhood of q should be approximated by a path that contains the
horizontal and vertical edges with the probabilities t0

2−t0 and 2(1−t0)
2−t0 , respectively.

Thus, we should select the separating position x(k) = kt(k) to be located on the left of q
with probability t0

2−t0 . We consider a monotonically increasing function Fk in the range [0, 1]
and set t(k) = Fk(θ) for the uniformly random variable θ on (0, 1]. The probability that
x0 = kt0 < x(k) is the probability that F−1

k (t0) < θ from the monotonicity of Fk. Because
of uniformity, this probability equals to F−1

k (t0).
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Thus, we should set F−1
k (t) = t

2−t to meet our requirement, and Fk(θ) = 2θ
θ+1 . This

is indeed monotonically increasing as we desired1. We then derandomize the process by
replacing θ with V (k), and we set t(k) = 2V (k)

V (k)+1 and hence x(k) = 2kV (k)
V (k)+1 to construct a

CDR Tpara illustrated in Figure 4 deterministically.
The bound for the Hausdorff distance between a parabola ray and its corresponding

digital ray in Tpara is given in the following theorem, although its proof will be given later
for a more general form.

I Theorem 3. For each node p ∈ G, the Hausdorff distance between the parabola ray going
through p and the path S(p) from p towards the origin in the CDR Tpara is O(

√
n logn).

3.2 Homogeneous polynomials
Let us consider the family Fj of curves defined by y = fa(x) = axj for a ≥ 0. Here, the slope
of tangent of a curve at (x, y) is f ′a(x) = jaxj−1, which equals jy/x. Thus, analogously to the
parabola case, we have F−1

k (t) = t
j−(j−1)t and Fk(θ) = jθ

1+(j−1)θ . Applying derandomization
to replace θ by V (k), we set x(k) = jkV (k)

(j−1)V (k)+1 for k = 1, 2, . . . , n to define a CDR TFj . The
following theorem is analogously obtained to the parabola case.

I Theorem 4. For each node p ∈ G, the Hausdorff distance between the ray in Fj going
through p and the path S(p) from p towards the origin in the CDR TFj

is O(
√
n logn).

3.3 Handling general ray families
3.3.1 Framework for a diffused ray family
Recall that a family F of nondecreasing curves in ∆ is called ray family if each curve (called
ray) goes through the origin o, and for each point (x, y) ∈ ∆ \ {o} there exists a unique
curve of F going through it. We call a ray family smooth if every curve is differentiable.
Let us consider the slope τ(t, z) at p = (tz, z − tz) (0 < t ≤ 1) of the unique curve of F
going through p. We assume that we can compute τ(t, z) for a given p efficiently, and its
computation time will be regarded as the unit of the time complexity.

I Definition 5. A smooth ray family F is called diffused (resp. weakly diffused) if τ(t, z) is
continuous and decreasing (resp. nonincreasing) in t for each fixed z > 0.

Intuitively, the diffusedness means that the rays always expand: The distance between two
curves along the off-diagonal x+ y = k is increasing in k, since the right curve has a smaller
slope than the left one. It can be considered as a continuous counterpart of the property of
CDR given in Lemma 1 that vertical edges are incoming to the left of x(k) = kt(k) while
horizontal edges incoming to the right of it in each level L(k). The families of parabolas and
homogeneous polynomials are diffused.

Now, we consider construction of a CDR for a diffused family F . We want to control so
that the probability that the edge incoming to a pixel q = (tk, k − tk) in L(k) is horizontal
with probability gk(t) = 1

1+τ(t,k) , so that the ratio of probabilities to have a vertical edge
against a horizontal edge becomes τ(t, k) for each of t = j/k (j = 1, 2, . . . , k).

We would like to find a monotonically increasing function Fk such that t(k) = Fk(θ) for
a uniformly random variable θ on (0, 1] so that the incoming edge to (tk, k − tk) becomes
horizontal with probability gk(t).

1 The function Fk is independent of k, but it is not always true for the more general cases.
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Since the family is diffused, τ(t, k) is decreasing in t, and hence gk is increasing. Therefore,
it has the inverse function g−1

k that is also increasing.
We set Fk = g−1

k to attain our requirement. Indeed, the condition that x(k) lies on the
left of q is that t(k) < t, which means gk(t(k)) ≤ gk(t) because of the monotonicity of gk.
Since gk(t(k)) = gk(Fk(θ)) = θ, this happens if the value of θ is smaller than gk(t), and
hence the probability is gk(t) as we desire.

By evaluating Fk(θ) at a given θ, we have t(k) for k = 1, 2, . . . , n, and hence obtain
a CDR for F . Approximate evaluation is sufficient for our purpose, since only the value
dx(k)e = dkt(k)e is necessary for the construction of CDR. Since τ(t, z) can be computed in
the unit time, we can compute gk(t) Since gk(t) is an increasing function, the value dkt(k)e
for t(k) = tθ = Fk(θ) can be computed by binary searching over t ∈ {1/k, 2/k, . . . k − 1/k}
to find the value t0 such that g(t0 − 1/k) < θ ≤ g(t0).

We then derandomize the process replacing θ by V (k) for each k.

3.3.2 Upper bound of the Hausdorff distance
We give the analysis for the Hausdorff distance between a curved ray and its digitized ray.
We consider the derandomized version here, and the analysis for the randomized version
is given later.

For a differentiable curve C ∈ F , consider the intersection point pC(z) = (xC(z), z−xC(z))
with the line x+ y = z for 0 < z ≤ n. Let sC(z) be the slope of C at pC(z). Our analysis
depends on the property of the function sC(z).

I Definition 6. Given a function y = f(x) defined on an interval I, if I can be decomposed
into a minimum number of consecutive subintervals such that f(x) is monotone (either
nonincreasing or nondecreasing) on each subinterval, the number of subintervals is called
the wave number of f . It is infinity if there is no such decomposition into a finite number
of subintervals.

The wave number of sC(z) is intuitively the length of the alternating sequence of consec-
utive convex segments and concave segments of C.

I Definition 7. The wave number of F is the supremum of the wave numbers of sC(z) over
all C ∈ F on the interval (0, n] of z.

I Theorem 8. If F is a diffused family of rays with the wave number w, the Hausdorff
distance between the ray C going through p in F and the path P = S(p) from p towards the
origin in T detF is bounded by O(

√
wn logn) for any node p ∈ G.

For the families of parabolas and homogeneous polynomials, we can verify that the wave
number is 1, and thus we have Theorems 3 and 4 as corollaries.

In order to prove Theorem 8, we prepare two lemmas. The first one (Lemma 9) is
well-known (see e.g. [12]). The area of a planar region X is denoted by A(X).

I Lemma 9. Consider the set of points S = {(k, V (k)) : k = 0, 1, 2, . . . , n} in the region
X = [0, n] × [0, 1]. Then, for any axis parallel rectangle R in X, the difference (called
discrepancy) between the number of points in S ∩R and the area of A(R) is O(logn).

The following Lemma 10 gives a discrepancy bound of S with respect to a region below a
curve of a function.
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I Lemma 10. Consider the set of points S = {(k, V (k)) : k = 0, 1, 2, . . . , n}. Let f(x)
be a continuous function from [0, n] to [0, 1] with a wave number w, and let QI(f) =
{(x, y) : 0 ≤ y ≤ f(x), x ∈ I} for any given interval I ⊂ [0, 1]. Then, the discrepancy
||S ∩QI(f)| −A(QI(f))| is bounded by c

√
wn logn for a suitable constant c.

Proof. Since we can decompose the interval I into w subintervals such that f is monotone
on each of them, it suffices to consider the case w = 1. Indeed, if subintervals have lengths
n1, n2, . . . , nw and has discrepancies c

√
ni logni for i = 1, 2, . . . , w, the sum

∑w
i=1 c
√
ni logni

is bounded by c
√
wn logn, where the minimum it attained if ni = n/w for every i. If w = 1,

f is either nonincreasing or nondecreasing, and without loss of generality, we assume f
is nondecreasing.

We divide QI(f) into its intersections with consecutive vertical strips of width
√
n logn

(possibly the last one is skinnier). Let Ai for i = 1, 2, . . . ,M = d
√
n/ logne be the strips.

Suppose si and ti are x-values of the leftmost and rightmost boundary of Ai, respectively.
Now, within the strip Ai, QI(f) is contained in a rectangle Ri whose height is f(ti), and
contains another rectangle R′i whose height is f(si). Since 0 ≤ f(x) ≤ 1 and f is nondecreasing
we can easily see that the difference of areas of ∪Mi=1Ri and ∪Mi=1R

′
i is at most the area of a

rectangle of height 1 and width
√
n logn. For a union of M rectangles, we can apply Lemma 9,

and the number of points of S in ∪Mi=1Ri is at most A(QI(f)) +
√
n logn+O(M logn), and

that in ∪Mi=1R
′
i is at least A(QI(f))−

√
n logn−O(M logn). Since M <

√
n/ logn+ 1, we

have the lemma. J

We remark that for the discrepancy in Lemma 10, an Ω(
√
n) lower bound is known even if f

is a linear function (see [12]).
Now let us give a proof for Theorem 8.
The basic idea is that if P goes too far from C on a level, then it cannot come back to

the same destination point p without violating the discrepancy condition given in Lemma 10.
Without loss of generality, we can assume that p is a boundary element located on

L(n). For each diagonal x + y = k, the intersection of C (resp. P ) with it is denoted
by qC(k) = (xC(k), yC(k)) and qP (k) = (xP (k), yP (k)), respectively. Then, the Hausdorff
distance is bounded by

√
2 max1≤k≤n |xC(k)− xP (k)|, and it suffices to show that there is a

constant c′ such that |xC(k)− xP (k)| ≤ c′
√
wn logn. We take c′ > c, where c is the constant

given in Lemma 10.
Assume on the contrary there exists an index s such that |xC(s)− xP (s)| > c′w

√
n logn.

Without loss of generality, we can assume that xC(s) > xP (s), since the other case can be
handled analogously.

There exists an indexm such that xC(i)−xP (i) > 0 for s ≤ i < m and xC(m)−xP (m) ≤ 0
because xP (n) = xC(n) (both P and C need to go through p). In other words, the path
P lies on the left of C in L(k) for s ≤ k < m and first comes back to the (almost) same
position on L(m). Let I be the interval (s,m]. Thus, we have

xP (m)− xP (s) > xC(m)− xC(s) + c′
√
wn logn. (*)

In the derandomized construction, V (k) is used (instead of θ) to determine t(k). In our
construction method, P has a horizontal incoming edge at L(k) if and only if gk(tP (k)) ≥ V (k),
where tP (k) = xP (k)

k . By the monotonicity of gk, gk(tC(k)) ≥ gk(tP (k)) if k ∈ I, and this
implies gk(tC(k)) ≥ V (k).

The integer-valued function xC(k) is extended to a continuous function xC(z) that gives
the x-value of the intersection point of x+ y = z and the ray C for a real value z ∈ (0, n].
Moreover, the function gk(t) = 1

1+τ(t,k) can be extended to g(t, z) = 1
1+τ(t,z) .
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We define ϕC(z) = g(tC(z), z) = 1
1+τ(tC (z),z) . Recall that τ(tC(z0), z0) = dy/dx|z=z0 is

the slope of C at z = z0, and hence

ϕC(z0) = 1
1 + dy

dx |z=z0

= dx

dx+ dy
|z=z0 = dx

dz
|z=z0 .

Thus, ϕC(z) is the ratio of the increase of xC(z) to the increase of z in the infinitesimal
neighbor of z0. The wave number of ϕC(z) is the same as that of τ(tC(z), z), since ϕC(z)
is increasing in an interval I if and only if τ(tC(z), z) is decreasing. We can observe that
τ(tC(z), z) = sC(z) by definition, and hence the wave number of ϕC(z) is the same as that
of sC(z), and bounded by w. Also, the range of ϕC(z) is in (0, 1].

If the incoming edge of P is horizontal, ϕC(k) = gk(tC(k)) ≥ V (k) as shown above,
and this condition is equivalent to (k, V (k)) ∈ QI(ϕC), since QI(ϕC) = {(z, x) : 0 ≤ x ≤
ϕC(z), s < z ≤ m}. Let S be the set of points (k, V (k)) for k = s, s + 1, . . . ,m − 1. The
difference of the x-values of P at z = s and z = m is the number of horizontal edges in the
interval, which is hence bounded by |QI(ϕC) ∩ S|.

On the other hand, A(QI(ϕC) equals the difference of x-value of C at s and m, since

A(QI(ϕC)) =
∫
s<z<m

ϕC(z)dz =
∫
s<z<m

dxC(z)
dz

dz = xC(m)− xC(s).

Since the wave number of ϕC is bounded by w and its range is in (0, 1], Lemma 10 says that
|QI(ϕC) ∩ S| −A(QI(ϕC)) < c

√
wn logn. Thus, we have

xP (m)−xP (s) ≤ |QI(ϕC)∩S| ≤ A(QI(ϕC))+c
√
wn logn = xC(m)−xC(s)+c

√
wn logn.

Therefore, xP (m) − xP (s) ≤ xC(m) − xC(s) + c
√
wn logn. Compared with (∗), we have

c > c′, and obtain a contradiction.

3.3.3 Analysis for the randomized version
We would like to mention the quality of the randomized construction of a CDR.

I Definition 11. Consider a continuous function f defined on an interval I = (k,m] with
the range [0, 1], where 0 < k < m < n are positive integers. let f̄ be the linear interpolation
using the values of f on integer abascissae, which is the piecewise linear curve connecting
(k, f(k)), (k + 1, f(k + 1)), . . . , (m, f(m)) by linear segments of width 1. The discretization
error of f on I is |A(QI(f))−A(QI(f̄))|.

The following is easy to see.

I Lemma 12. If the wave number of f is bounded by w, the discretization error of f is at
most w.

Now, given a function f from [0, n] to [0, 1], consider a {0, 1}-valued random variable
Xf (i) for each i = 1, 2, . . . , n such that it becomes 1 if and only if a uniformly randomly
number (chosen independently for each i) in [0, 1] becomes less than or equals to f(i).
Let Xf =

∑n
i=1 Xf (i). Then the expected value E(X) =

∑n
i=1 E(Xi) equals

∑n
i=1 f(i) =

A(QI(f̄)) + f(m)−f(k)
2 . Note that A(QI(f̄)) ≤ n, thus E(X) ≤ n+ 1/2.

We can apply Chernoff’s inequality, and obtain a constant c(r) such that |X −Q(f̄)| ≥
c(r)
√
n logn with a probability 1 − n−r−3 for any given constant r. Now we are ready to

analyze the randomized construction of CDR.
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I Theorem 13. If F is a diffused family of rays with the wave number w, the largest Hausdorff
distance between a ray and the corresponding digital ray in T randF is O(

√
n logn+ w) with

probability 1− n−r for any fixed r > 0.

Proof. Analogously to the deterministic version, For any path p in the CDR corresponding
a curve C = C(p) ∈ F , the Hausdorff distance from p to C is bounded by the maximum
difference of A(QI(ϕ(C))) and XQI (ϕ(C) over all I. Since there are O(n) paths from the
root to leaves, and there are O(n2) intervals [k,m], there are O(n3) choices. Thus, with
probability 1−n−r, |A(QI ¯(ϕ(C(p))))−X(QI(ϕ(C(p)))| ≤ c(r)

√
n logn for all p and I. Thus,

we have the theorem. J

The above upper bound is worse than the deterministic version by a
√

logn factor if w is
a small constant, while it is theoretically better if w > logn.

3.4 Family of curves linear in a parameter
Let us consider a nondecreasing differentiable function y = f(x) for x ∈ [0, n] such that
f(0) = 0 and f(x) > 0 for x > 0. We define the family F = {Ca : a ≥ 0} of curves, where
Ca is defined by y = af(x). It is clear that this gives a ray family.

If Ca goes through (x0, y0), then a = y0
f(x0) . The slope of the curve Ca at (x0, y0) is

af ′(x0), which is (eliminating a) f ′(x0)y0
f(x0) . We consider the slope τ(x, k) = (k−x)f ′(x)

f(x) along
the diagonal x+ y = k for each k.

If F is diffused, the framework in the previous subsection works. Although the explicit
form of Fk might not be obtained, we can apply binary search to compute Fk(z) for a given
z utilizing the monotonicity. Thus, we can compute x(k) = kFk(V (k)) within the pixel
precision in O(logn) time.

Diffusedness and the wave number depend on f . The following lemma is easy to observe.

I Lemma 14. If f is a strictly increasing and concave function, the family F is diffused,
and its wave number is 1.

Note that the family of rays {y = f(a−1x) : a > 0} for a convex function f can be
also handled, since this family is {x = af−1(y)} and f−1(y) is a concave function, e.g., the
families of parabolas and homogeneous polynomials could be regarded in this form. Let us
see some typical examples.

I Example 15. Let Fsig be the family of curves y = aσ(x), 0 ≤ a, where σ(x) = 1
1+e−x − 1

2
is the shifted sigmoid function. The curve y = σ(x) is strictly increasing and concave; hence,
the family is diffused with the wave number 1, and we have the O(

√
n logn) bound.

Here, τ(x, k) = (k−x)e−x

(1+e−x)2σ(x) . The function gk = F−1
k can be analytically given, but it is

a complicated function such that it is difficult to find an explicit formula for Fk. Thus, we
apply the binary searching method to find a value of Fk(V (k)) in our experiment.

I Example 16. Consider the family of curves y = a log(x + 1), then similarly we have a
CDR with the O(

√
n logn) distance bound.

I Example 17. The sine curve y = sin(x) is not monotone. Therefore, we define ˜sin(x) by
˜sin(x) = 0 for x < 0, ˜sin(x) = sin x for 0 ≤ x ≤ π/2 and ˜sin(x) = 1 for x > π/2. The curve
y = ˜sin(x) is monotonically nondecreasing and differentiable, and we will apply our CDR
construction for the family of curves y = a ˜sin(x) for a ≥ 0.
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Here, the family is weakly-diffused but not diffused, since there are many parallel horizontal
lines intersecting each level. However, it is clear that in the region x > π/2 where the rays
becomes horizontal, we can set all edges horizontal. Thus, we can still apply our method to
have the O(

√
n logn) bound.

The obtained CDRs are illustrated in Figure 6 in the section to give experimental results.

4 Union of CDRs with consistency

A CDR is characterized by the sequence m : m(1),m(2), . . .m(n) where 1 ≤ m(i) = dx(k)e ≤
k, and we denote the CDR by T (m). We denote m �m′ if m(i) ≥ m(i)′ for all 1 ≤ i ≤ n.
� is a partial ordering. We write m �m′ if m �m′ and m 6= m′.

Consider P(T (m))∪P(T (m′)), where P(T ) means the set of paths from the root towards
leaf vertices in T .

Let xP (k) be the x-value of the pixel of a path P (from the root to a leaf) in a CDR on
the level L(k).

I Definition 18. We say a path P1 is steeper than another path P2 in a different CDR if
there is an index 0 ≤ k ≤ n such that xP1(i) ≤ xP2(i) for i ≤ k and xP1(i) > xP2(i) for i > k.
We say the level L(k) the break level of P1 and P2.

The above definition implies that P1 lies below or on P2 up to the break level, and
it lies strictly above P2 after it. We allow k = n, which means P1 never goes above P2.
We say the pair of paths have a singular separation on a level L(i) if xP1(i) = xP2(i) and
xP1(i + 1) > xP2(i + 1). Thus, the paths cross each other at most once, although they
may touch and singularly separate several times before the break level. We say P1 and P2
semi-consistently intersect if one is steeper than the other. Moreover, if there is no singular
separation, we say they consistently intersect each other.

I Theorem 19. If m �m′, any path P1 ∈ P(T (m)) is steeper than any path P2 ∈ P(T (m′)).
Moreover, if a singular separation happens on a level L(i), m(i+1) = m′(i+1) = xP1(i)+1 =
xP2(i) + 1.

Proof. Since m �m′, if a vertical edge comes in p ∈ L(k) in Tm′ , a vertical edge comes in
p in Tm, too. This further implies that if such p is located on the right of another pixel q on
L(k), every incoming edge to q must be also vertical in both trees.

Therefore, if P2 lies strictly on the right of P1 on a level L(k), whenever P2 selects a
vertical incoming edge in L(k+ 1) , P1 also must select a vertical edge. Thus, inductively the
horizontal distance never decreases after the break level, and hence P1 never meets P2 again.

Next, we consider what happens at a singular separation. Then, P1 and P2 goes through a
same point p = (x, k−x) in a level L(k), and P1 selects a horizontal and P2 selects a vertical
edge towards L(k + 1). Then, the vertices of P1 and P2 are at positions q = (x+ 1, k − x)
and q′ = (x, k + 1− x), respectively. Since the incoming edge of Tm to q is horizontal and
that of Tm′ to q′ is vertical, m(i+ 1) ≤ x+ 1 and m′(i+ 1) > x. Since m(i+ 1) ≥ m′(i+ 1),
this happens only if m(i+ 1) = m′(i+ 1) = x+ 1. J

We note that the conditionm(i+1) = m′(i+1) = xP1 +1 = xP2 +1 for a singular level L(i)
means that both Tm and Tm′ have the branching node p = (m(i+ 1)− 1, i−m(i+ 1) + 1) on
the level L(i) simultaneously. Both P1 and P2 goes through p, and P1 selects the horizontal
while P2 selects the vertical branch. We say a node p a singular point if it is a shared
branching node of Tm a Tm′ , and hence a singular separation only occurs at a singular point.
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A region R ⊆ ∆ is called a slanted-quadrant if it is defined as {(x, y) ∈ ∆ | x ≥ a, y ≥
b, x+y ≥ c} for nonnegative numbers a, b, and c. We say a set of digital rays semi-consistently
(resp. consistently) approximates a family of curves intersecting at most once to each other
in a slanted-quadrant R if each pair of digital rays semi-consistently (resp. consistently)
intersect each other if they are restricted to G ∩R.

Suppose that families F and F ′ has CDRs T (m) and T (m′) for m � m′, respectively.
Assume that F ∪ F ′ forms a pseudoline arrangement in a slanted quadrant R. Theorem 19
assures that P(T (m)) ∪ P(T (m′)) consistently approximates F ∪ F ′ in R if there is no
singular point in R.

4.1 Union of translated copies of a CDR
For the sequence m and a nonnegative integer s, we define a new sequence ms by ms(k) =
min(m(k)+s, k). Similarly, for a negative integer s, we define ms byms(k) = max(m(k)+s, 1).
The following lemma is obvious.

I Lemma 20. If s ≥ 1, ms �m. If s ≤ −1, m �ms.

I Theorem 21. Suppose that F and Fs are ray families digitized by T (m) and T (ms),
respectively. Assume that F ∪ Fs forms a pseudoline arrangement in ∆1 : {(x, y) ∈ ∆ | x ≥
1, y ≥ 1}. Then P(T (m)) ∪ P(T (ms)) consistently approximate F ∪ Fs in ∆1.

Proof. Semi-consistency is clear from Theorem 19 and Lemma 20. Consider the location of
a singular point p = (m(i+ 1)− 1, i−m(i+ 1) + 1) for a pair of paths. However, Theorem 19
says that m(i + 1) = ms(i + 1). This only happens either m(i + 1) = ms(i + 1) = 1 or
m(i + 1) = ms(i + 1) = i + 1, and hence p = (0, i) or p = (i, 0). Thus the singular points
only locate on the coordinate axises. Thus, we have the theorem. J

For a CDR T = T (m), we define UK(T ) = ∪−K≤i≤KP(T (ms)). It follows from The-
orem 21 that UK(T ) consistently approximates a pseudoline arrangement represented as a
union of associated ray families.

I Example 22 (Consistent digital line arrangement). Let us consider the family F1 of linear
rays. Define Fs1 for s ≥ 0 (resp. s ≤ −1) to be the set of rays starting with horizontal
(resp. vertical) rays, and continue to linear rays with positive slopes emanating from (s,−s).
Let T be the CDR for F1 constructed in Section 2.1. Then UK(T ) consistently digitize
∪−K≤s≤KFs1 in ∆1 with the O(logn) distance bound.

Indeed, for s > 0, the structure of T (ms) in ∆ ∩ {(x, y) : x ≥ s} is same as the tree
obtained by connecting the forest of T ∩{(x, y) : y ≥ s} by a horizontal path. The case s < 0
is similar. Thus, the discrepancy bound remains as same as the one for T .

Note that although we only consider the lines with positive slopes, we can easily mix it
with those with negative slopes (obtained by a mirror construction) without losing consistency.
The above example shows that we can consistently digitize the line segments in the first
quadrant. However, it is weaker than [4] since we only deal with segments on the lines going
through (s,−s) for integers s, and we need a finer precision to represent short segments.

I Example 23 (Consistent digital pseudoline arrangement of shifted parabola rays). Let us
consider the family F2 consisting of curves defined by y = ax2 (a > 0). Define Fs2 to be
the set of the right halves of parabolas with the apex (s,−s). Then UK(Tpara) consistently
digitize ∪−K≤s≤KFs2 in ∆1 with the O(

√
n logn) distance bound.
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4.2 Union of homogeneous polynomial families
In this section, we assume that the CDRs are constructed deterministically. Let us consider
Fi,j = Fi ∪ Fj for 1 ≤ i ≤ j, where Fi is the family of homogeneous polynomial curves of
degree i. Let m(i) be the sequence (do not confuse this with ms given above) corresponding
to TFi

deterministically constructed. Naturally, each pair of curves f ∈ Fi and g ∈ Fj
intersect once in the first quadrant other than the origin, and thus behaves as a pseudoline
arrangement in the region x > 0, y > 0. We consider the union Ti,j = P(TFi

) ∪ P(TFj
) to

approximate curves in Fi,j .

I Lemma 24. m(j) �m(i) for 1 ≤ i ≤ j.

Proof. Recall that x(k) = jkV (k)
(j−1)V (k)+1 in the construction of TFj

. Thus, m(j)(k) =
d jkV (k)

(j−1)V (k)+1e. Since
ikV (k)

(i−1)V (k)+1 ≤
jkV (k)

(j−1)V (k)+1 if i < j, we have the lemma. J

I Theorem 25. T1,2 consistently approximates F1,2 in the region {(x, y) ∈ ∆ | x ≥ 3, y ≥ 3}.
For i ≥ 2, Ti,i+1 consistently approximates Fi,i+1 in the region R(i) = {(x, y) ∈ ∆ | x+ y ≥
4(i+ 1)(i+ 2), x ≥ 4i, y ≥ 4(i+ 1)}.

Proof. Ti,i+1 semi-consistently approximates Fi,i+1 in ∆, although the existence of multiple
singular points prevents the consistency.

Thus, we study location of singular points to find a subregion R to attain the consistency.
Consider a singular point p in a level L(k). Recall that p = (m(i)(k+1), k−m(i+1)(k+1))

and m(i)(k + 1) = m(i+1)(k + 1) at a singular point p in a level L(k). Since m(i)(k + 1) =
m(i+1)(k + 1), we have

(i+ 1)(k + 1)V (k + 1)
iV (k + 1) + 1 − i(k + 1)V (k + 1)

(i− 1)V (k + 1) + 1 < 1.

For the case i = 1, suppose that a singular point appears on L(k), and let v = V (k + 1),
and K = k + 1. Then we have 2Kv

v+1 − Kv < 1, which means Kv(1 − v) < v + 1. We
assume that K ≥ 6 and 3

K ≤ v ≤ 1− 3
K . Then, Kv(1− v) ≥ 3(1− 3

K ) = 3− 9
K and hence

3− 9
K < 1 + 1− 3

K and hence K < 6, and we have contradiction.
Thus, k + 1 < 6 or (k + 1)v < 3 or (k + 1)v > k + 1 − 3 = k − 2. The position of the

singular point p is d(k + 1)ve, k − d(k + 1)ve, and hence it is located either in the region
x+ y ≤ 4, x ≤ 2 or y ≤ 2. Thus, we have the theorem for T1,2.

For i ≥ 2, p = (m(i)(k+1), k−m(i)(k+1)) and m(i)(k+1) = m(i+1)(k+1) at the singular
point p. For simplifying the formulas, we set K = k+ 1, v = V (k+ 1), and c = 2(i+ 1)(i+ 2).
We assume K > 2c since otherwise the singular point is outside R.

Now, we have

(i+ 1)Kv
iv + 1 − iKv

(i− 1)v + 1 < 1.

This is transformed to

Kv(1− v) < (iv + 1)((i+ 1)v + 1). (∗)

We will first show that it gives a contradiction if 4
K ≤ v ≤ 1− c

K .
For the case where 1/2 ≤ v ≤ 1− c

K , v(1− v) take its minimum at v = 1− c
K , and the

right hand side is at most (i+ 1)(i+ 2). Thus we have

K
c

K
(1− c

K
) = c(1− c

K
) < (i+ 1)(i+ 2)
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Since K > 2c, c(1− 1/2) < (i+ 1)(i+ 2) and hence c < 2(i+ 1)(i+ 2) and it contradicts the
definition of c.

If 1
i+1 ≤ v <

1
2 , substituting K > 4(i+ 1)(i+ 2), (∗) implies that

4(i+ 1)(i+ 2)v(1− v) < (iv + 1)((i+ 1)v + 1).

Cleaning up the formula, we have

−(5i2 + 13i+ 8)v2 + (4i2 + 10i+ 7)v − 1 < 0.

Since v < 1/2, we replace v2 by v/2, we have

−(5i2 + 13i+ 8)v2 + (4i2 + 10i+ 7)v − 1 < 0.

And hence (3i2 + 7i+ 6)v < 2. This does not happen if v ≥ 1
i+1 .

If 4
K ≤ v ≤

1
i+1 , the left hand of (∗) takes minimum at v = 4

K , and the right hand takes
maximum at v = 1

i+1 , and we have

4(1− 4
K

) < 22i+ 1
i+ 1 .

Since K > 4(i+ 1)(i+ 2),

1− 1
(i+ 1)(i+ 2) < 1− 1

2(i+ 1) .

This does not happen since i+ 2 > 2.
Thus, we have either v < 4

K or v > 1− c
K .

In the former case that v < 4
K . The x-value of the singular point is d iKv

(i−1)v+1e.
iKv

(i−1)v+1
is monotonically increasing in v (if v > 0). Thus, we have it is less than 4i

1+4(i−1)/K , which
takes maximum at K =∞. Thus, the x-value of the singular point is less than 4i.

In the latter case, consider the y- value k − d (i+1)Kv
iv+1 e of the singular point, which is

at most K − (i+1)Kv
iv+1 = K−Kv

iv+1 . It takes the maximum c
i(1− c

K )+1 at v = 1 − c
K , and since

K > 2c it is less than 2c
i+2 = 4(i+ 1). J

The following is a straightforward corollary.

I Corollary 26. Ti,j consistently approximates Fi,j for any j > i in the region R(i). Accord-
ingly, T≤d = ∪1≤i≤dP(Ti) consistently approximates Hd = ∪1≤i≤dFi in the region R(d− 1).

5 Experimental results

We have implemented our method and constructed CDR for the constant-multiplied curves.
Figure 5 and Figure 6 illustrate CDRs for polynomial curves, sine, sigmoid, and loga-
rithmic rays.

Figure 7 shows the selected paths approximating the curves towards equally-spaced
sampled points on the boundary of square regions.

For each grid width n = 2m up to n = 214, the worst-case Hausdorff distance between
parabolas and digital rays in Tpara is given in Figure 8, where it is about 12 for n = 214. The
dependency of worst-case Hausdorff distance on n have the similar behavior for each of other
types of curve.

The error for n = 214 is about 11.2, 13.4, 15.0 for sine, sigmoid and logarithmic curves,
respectively. Note that the values are real numbers since we consider Hausdorff distance
based on Euclidean distance.
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(a) (b) (c)

Figure 5 CDRs for (a) y = ax2, (b) y = ax3, and (c) y = ax4. Green nodes are branching nodes.
Red paths are the digital curves towards p = (15, 15).

(d) (e) (f)

Figure 6 CDRs for (d) y = a ˜sinx (0 ≤ x ≤ π/2), (e) y = aσ(x)(x ≤ 6), and (f) y = a log(x+ 1).
Green nodes are branching nodes. Red paths are the digital curves towards p = (15, 15).

(a) (b) (c)

(d) (e) (f)

Figure 7 Sampled Curves of CDRs for (a) y = ax2, (b) y = ax3, (c) y = ax4, (d) y = a ˜sinx
(0 ≤ x ≤ π/2), (e) y = aσ(x)(x ≤ 6), and (f) y = a log(x+ 1) in the 300× 300 grid.
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Figure 8 The largest distance from a parabola and the corresponding digital ray in Tpara.

6 Concluding remarks

The experimental result suggests that our O(
√
n logn) bound seems to be loose. Although

currently the lower bound mentioned for Lemma 10 prevents us to improve it beyond O(
√
n),

recent progress on low-discrepancy sequences [16] might be applied.
For the line segments, a construction of consistent digital segments (CDS) is known [4]

with O(logn) distance error bound. Although we have a generalization of CDS to handle
some families of curves, there are a lot of questions to invest further: For example, we do not
know how to handle the set of all axis parallel parabolas.
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Abstract
We consider the k-Median problem on planar graphs: given an edge-weighted planar graph G, a
set of clients C ⊆ V (G), a set of facilities F ⊆ V (G), and an integer parameter k, the task is to
find a set of at most k facilities whose opening minimizes the total connection cost of clients, where
each client contributes to the cost with the distance to the closest open facility. We give two new
approximation schemes for this problem:

FPT Approximation Scheme: for any ε > 0, in time 2O(kε−3 log(kε−1)) · nO(1) we can compute a
solution that has connection cost at most (1 + ε) times the optimum, with high probability.
Efficient Bicriteria Approximation Scheme: for any ε > 0, in time 2O(ε−5 log(ε−1)) · nO(1) we can
compute a set of at most (1 + ε)k facilities whose opening yields connection cost at most (1 + ε)
times the optimum connection cost for opening at most k facilities, with high probability.

As a direct corollary of the second result we obtain an EPTAS for Uniform Facility Location on
planar graphs, with same running time.

Our main technical tool is a new construction of a “coreset for facilities” for k-Median in planar
graphs: we show that in polynomial time one can compute a subset of facilities F0 ⊆ F of size
k · (log n/ε)O(ε−3) with a guarantee that there is a (1 + ε)-approximate solution contained in F0.
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the cost defined as |D| · open +
∑
c∈C minf∈D dist(c, f). In the Non-uniform Facility

Location variant, the opening costs may vary between facilities.
We also consider the related k-Median problem, where the tuple (G,F,C) comes with a

hard budget k for the number of open facilities (as opposed to the opening cost open). That
is, the problem asks for a set D ⊆ F of size at most k that minimizes the connection cost∑
c∈C dist(c,D). Note that Uniform Facility Location can be reduced to k-Median by

guessing the number of open facilities in an optimal solution.
Facility Location and k-Median model in an abstract way various clustering ob-

jectives appearing in applications. Therefore, designing approximation algorithms for them
and their variants is a vibrant topic in the field of approximation algorithms. For Non-
uniform Facility Location, a long line of work [1, 15, 22, 16] culminated with the
1.488-approximation algorithm by Li [18]. On the other hand, Guha and Khuller [13] showed
that the problem cannot be approximated in polynomial time within factor better than 1.463
unless NP ⊆ DTIME[nO(log logn)], which gives almost tight bounds on the best approximation
factor achievable in polynomial time. For k-Median, the best known approximation ratio
achievable in polynomial time is 2.67 due to Byrka et al. [3], while the lower bound of 1.463
due to Guha and Khuller [13] holds here as well.

Given the approximation hardness status presented above, it is natural to consider
restricted metrics. In this work we consider planar metrics: we assume that the underlying
edge-weighted graph G is planar.

It was a long-standing open problem whether Facility Location admits a polynomial-
time approximation scheme (PTAS) in planar metrics. For the uniform case, this question has
been resolved in affirmative by Cohen-Addad et al. [8] in an elegant way: they showed that
local search of radius O(1/ε2) actually yields a (1 + ε)-approximation, giving a PTAS with
running time nO(1/ε2). This approach also gives a PTAS for k-Median with a similar running
time, and works even in metrics induced by graphs from any fixed proper minor-closed class.

Very recently, Cohen-Addad et al. [9] also gave a PTAS for Non-uniform Facility
Location in planar metrics using a different approach. Roughly, the idea is to first apply
Baker layering scheme to reduce the problem to the case when in all clusters (sets of clients
connected to the same facility) in the solution, all clients are within distance between 1 and r
from the center, for some constant r depending only on ε. This case is then resolved by
another application of Baker layering scheme, followed by a dynamic programming on a
hierarchichal decomposition of the graph using shortest paths as balanced separators.

Both the schemes of [8] and of [9] are PTASes: they run in time ng(ε) for some function g.
It is therefore natural to ask for an efficient PTAS (EPTAS): an approximation scheme with
running time f(ε) ·nO(1) for some function f . Such an EPTAS was given by Cohen-Addad [5]
for k-Means in low-dimensional Euclidean spaces; this is a variant of k-Median where every
client contributes to the connection cost with the square of its distance from the closest open
facility. Here, the idea is to apply local search as in [8], but to use the properties of the
metric to explore the local neighborhood faster. Unfortunately, this technique mainly relies
on the Euclidean structure (or on the bounded doubling dimension of the input) and seems
hard to lift to the general planar case. Also the techniques of [9] are far from yielding an
EPTAS: essentially, one needs to use a logarithmic number of portals at every step of the
final dynamic programming in order to tame the accumulation of error through logn levels
of the decomposition. Recently, a near-linear time EPTAS was given by Cohen-Addad et
al. [6] for k-median, k-means and non-uniform facility location where the input points lie in a
metric of bounded doubling dimension. This result is obtained using a randomized dissection
of the metric, a technique that is not available for planar inputs.

The goal of this work is to circumvent these difficulties and give an EPTAS for Uniform
Facility Location in planar metrics.
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Our results. Our main technical contribution is the following theorem. In essence, it states
that when solving k-Median on a planar graph one can restrict the facility set to a subset of
size k · (ε−1 logn)O(ε−3), at the cost of losing a multiplicative factor of (1+ε) on the optimum
connection cost. This can be seen as the planar version of the classic result by Matoušek [20]
who showed that for Euclidean metrics of dimension d, it is possible to reduce the number
of candidate centers to poly(k)ε−O(d) at the cost of losing a multiplicative factor of (1 + ε)
on the optimum connection cost (through the use of coresets as well). For general metrics,
obtaining such a result seems challenging, since this would imply a (1 + ε)-approximation
algorithm with running time f(k, ε)nO(1), which would contradict Gap-ETH [7].

From now on, by with constant probability we mean with probability at least 1/2; this
can be boosted by independent repetition.

I Theorem 1. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized polynomial time compute a set F0 ⊆ F

of size k · (ε−1 logn)O(ε−3) satisfying the following condition with constant probability: there
exists a set D0 ⊆ F0 of size at most k such that for every set D ⊆ F of size at most k it
holds that

∑
c∈C minu∈D0 dist(u, c) 6 (1 + ε)

∑
c∈C minu∈D dist(u, c).

A direct corollary of Theorem 1 is a fixed-parameter approximation scheme for the
k-Median problem in planar graphs. This continues the line of work on fixed-parameter
approximation schemes for k-median and k-means in Euclidean spaces [12, 17], where the
goal is to design an algorithm running in time f(k, ε) · nO(1) for a computable function f .

I Corollary 2. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized time 2O(kε−3 log(kε−1)) · nO(1) compute
a solution D ⊆ F that has connection cost at most (1 + ε) times the minimum possible
connection cost with constant probability.

Proof. Apply the algorithm of Theorem 1 and let F0 ⊆ F be the obtained subset of facilities.
Then run a brute-force search through all subsets of F0 of size at most k and output one
with the smallest connection cost. Thus, the running time is(

k · (ε−1 logn)O(ε−3)
)k
· nO(1) 6 2O(kε−3 log(kε−1)) · (logn)O(kε−3) · nO(1)

which is at most 2O(kε−3 log(kε−1)) · nO(1) since (logn)d 6 2O(d log d) · nO(1): if n 6 2d2 then
(logn)d 6 d2d 6 2O(d log d), and if n > 2d2 then (logn)d 6 2

√
logn·log logn 6 nO(1). J

Using Theorem 1 we can also give an efficient bicriteria PTAS for k-Median in planar
graphs. This time, the proof is more involved and uses the local search techniques of [5].

I Theorem 3. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized time 2O(ε−5 log(ε−1)) · nO(1) compute a set
D ⊆ F of size at most (1 + ε)k such that its connection cost is at most (1 + ε) times the
minimum possible connection cost for solutions of size k with constant probability.

A direct corollary of Theorem 3 is an efficient PTAS for Uniform Facility Location
in planar graphs.

I Theorem 4. Given a Uniform Facility Location instance (G,F,C, open), where G is a
planar graph, and an accuracy parameter ε > 0, one can in randomized time 2O(ε−5 log(ε−1)) ·
nO(1) compute a solution D ⊆ F that has total cost at most (1 + ε) times the optimum cost
with constant probability.
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Proof. Iterate over all possible choices of k being the number of facilities opened by the
optimum solution, and for every k invoke the algorithm of Theorem 3 for the k-Median
instance (G,F,C, k). From the obtained solutions output one with the smallest cost. J

Note that the approach presented above fails for the non-uniform case, where each facility
has its own, distinct opening cost.

In this extended abstract we focus on proving the main result, Theorem 1. The proof of
Theorem 3, on which Theorem 4 also relies, is fully deferred to the full version of the paper [10].

Our techniques. The first step in the proof of Theorem 1 is to reduce the number of
relevant clients using the coreset construction of Feldman and Langberg [11]. By applying
this technique, we may assume that there are at most k · O(ε−2 logn) clients in the instance,
however they are weighted: every client c is assigned a nonnegative weight ω(c), and it
contributes to the connection cost of any solution with ω(c) times the distance to the closest
open facility in the solution.

We now examine the Voronoi diagram induced in the input graph G by the clients:
vertices of G are classified into cells according to the closest client. This Voronoi diagram
has one cell per every client, thus it can be regarded as a planar graph with |C| faces, where
each face accommodates one cell. To formally define the Voronoi diagram, and in particular
the boundaries between neighboring cells, we use the framework introduced by Marx and
Pilipczuk [19] and its extension used in [21].

Consider now all the spokes in the diagram, where a spoke is the shortest path connecting
the center of a cell (i.e. a client) with a branching node of the diagram incident to the cell
(which is a face of G). Removing all the spokes and all the branching nodes from the plane
divides it into diamonds, where each diamond is delimited by four spokes, called further the
perimeter of the diamond. See Figure 1 for an example. Since the diagram is a planar graph
with |C| faces, there are O(|C|) = k · O(ε−2 logn) diamonds altogether. Moreover, since no
diamond contains a client in its interior, whenever P is a path connecting a client with a
facility belonging to some diamond ∆, P has to cross the perimeter of ∆.

Now comes the key and most technical part of the proof. We very carefully putO(ε−2 logn)
portals on the perimeter of each diamond. The idea of placement is similar to that of the
resolution metric used in the QPTAS for Facility Location. Namely, on a spoke Q starting
at client c we put portals at distance 1, (1 + ε), (1 + ε)2, . . . from c, so that the further we are
on the spoke from c, the sparser the portals are. As a diamond is delimited by four spokes,
we may thus use only O(ε−2 logn) portals per diamond, while the cost of snapping a path
crossing Q to the portal closest to the crossing point can be bounded by ε times the distance
from the crossing point to c.

For a facility f in a diamond ∆, we define the profile of f as follows. For every spoke Q
in the perimeter of ∆, we look at the closest portal π from f on Q. We record approximate
(up to (1 + ε) multiplicative error) distances from f to π and O(ε−3) neighboring portals,
as well as the distance to the client endpoint of the spoke Q. The crux lies in the following
fact: for every two facilities f, f ′ in ∆ with the same profile, replacing f with f ′ increases
the connection cost of any client c connected to f only by a multiplicative factor of (1 + ε).
Hence, for every profile in every diamond it suffices to keep just one facility with that profile.
Since there are k · O(ε−2 logn) diamonds and O(ε−1 logn)O(ε−3) possible profiles in each of
them, we keep at most k · (ε−1 logn)O(ε−3) facilities in total. This proves Theorem 1.

For the proof of Theorem 3, we first apply Theorem 1 to reduce the number of facilities
to k · (ε−1 logn)O(ε−3). Then we again inspect the Voronoi diagram, but now induced by the
facilities. Having contracted every cell to a single vertex, we compute an r-division of the
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obtained planar graph to cover it with regions of size r = (ε−1 logn)O(ε−3) so that only O(ε)k
facilities are on boundaries of the regions. We open all the facilities in all the boundaries
– thus exceeding the quota for open facilities by O(ε)k – run the PTAS of Cohen-Addad
et al. [8] in each region independently, and at the end assemble regional solutions using a
knapsack dynamic programming. Since within each region there are only polylogarithmically
many facilities, each application of the PTAS actually works in time f(ε) · nO(1).

2 Preliminaries on Voronoi diagrams and coresets

In this section we recall some tools about Voronoi diagrams in planar graphs and coresets
that will be used in the proof of Theorem 1. We will consider undirected graphs with positive
edge lengths embedded in a sphere, with the standard shortest-paths metric dist(u, v) for
u, v ∈ V (G). Contrary to the previous section, the metric is defined on the vertex set of
G only, i.e., we do not consider G as a metric space with points in the interiors of edges.
For X,Y ⊆ V (G), we denote dist(X,Y ) = minx∈X,y∈Y dist(x, y) and similarly we define
dist(u,X) for u ∈ V (G) and X ⊆ V (G).

Recall that for a set D ⊆ V (G) of open facilities and a set C ⊆ V (G), we define the
connection cost as

conn(D,C) =
∑
v∈C

dist(v,D).

If the input is additionally equipped with opening costs open : F → R>0, then the opening
cost of D is defined as

∑
w∈D open(w).

2.1 Voronoi diagrams in planar graphs
We now recall the construction of Voronoi diagrams and related notions in planar graphs used
by Marx and Pilipczuk [19]. The setting is as follows. Suppose G is an n-vertex simple graph
embedded in a sphere Σ whose edges are assigned nonnegative real lengths. We consider
the shortest path metric in G: for two vertices u, v, their distance dist(u, v) is equal to the
smallest possible total length of a path from u to v. We will assume that G is triangulated
(i.e. every face of G is a cycle of length 3), for this may always be achieved by triangulating
the graph using edges of infinite weight.

Further, we assume that shortest paths are unique in G and that finite distances between
distinct vertices in G are pairwise different: for all vertices u, v, u′, v′ with u 6= v, u′ 6= v′

and {u, v} 6= {u′, v′}, we have dist(u, v) 6= dist(u′, v′) or dist(u, v) = dist(u′, v′) = +∞. This
can be achieved by adding small perturbations to the edge lengths. Since we never specify
degrees of polynomials in the running time of our algorithms, we may ignore the additional
complexity cost incurred by the need of handling the perturbations in arithmetic operations.

Voronoi diagrams and their properties. Suppose that S is a subset of vertices1 of G. First,
define the Voronoi partition: for a vertex p ∈ S, the Voronoi cell CellS(p) is the set of all
those vertices u ∈ V (G) whose distance from p is smaller than the distance from any other
vertex q ∈ S; note that ties do not occur due to the distinctness of distances in G. Note that
{CellS(p)}p∈S is a partition of the vertex set of G. For each p ∈ S, let T (p) be the union of

1 In [19] a more general setting is considered where objects inducing the diagram are connected subgraphs
of G instead of single vertices. We will not need this generality here.
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Figure 1 A part of the Voronoi diagram with various features distinguished. Branching nodes of
the diagram are grayed triangular faces, edges of the diagram are dashed. Solid paths of respective
colors are spokes. (The interior of) one diamond is grayed in order to highlight it.

shortest paths from vertices of CellS(p) to p; recall here that shortest paths in G are unique.
Note that, due to the distinctness of distances in G, T (p) is a spanning tree of the subgraph
of G induced by the cell CellS(p).

The diagram VorS induced by G is a multigraph constructed as follows. First, take the
dual G? of G and remove all edges dual to the edges of all the trees T (p), for p ∈ S. Then,
exhaustively remove vertices of degree 1. Finally, for every maximal 2-path (i.e. path with
internal vertices of degree 2), say with endpoints u and v, we replace this path by the edge
uv; note that this creates a loop at u in case u = v. The resulting multigraph VorS is the
Voronoi diagram induced by S. Note that the vertices of VorS are faces of G; for clarity we
shall call them branching nodes. Furthermore, VorS inherits an embedding in Σ from the
dual G?, where an edge uv that replaced a maximal 2-path P is embedded precisely as P ,
i.e., as the concatenation of (the embeddings of) the edges comprising P . From now on we
will assume this embedding of VorS .

We recall several properties of VorS , observed in [19]

I Lemma 5 (Lemmas 4.4 and 4.5 of [19]). The diagram VorS is a connected and 3-regular
multigraph embedded in Σ, which has exactly |S| faces, 2|S| − 4 branching nodes, and 3|S| − 6
edges. The faces of VorS are in one-to-one correspondence with vertices of S: each p ∈ S
corresponds to a face of VorS that contains all vertices of CellS(p) and no other vertex of G.

Spokes and diamonds. We now introduce further structural elements that can be dis-
tinguished in the Voronoi diagram, see Figure 1 for reference. The definitions and basic
observations presented below are taken from Pilipczuk et al. [21], and were inspired by the
Euclidean analogues due to Har-Peled [14].

An incidence is a triple τ = (p, u, f) where p ∈ S, f is a branching node of the diagram
VorS , and u is a vertex of G that lies on f (recall that f is a triangular face of G) and
belongs to CellS(p). The spoke of the incidence τ , denoted Spoke(τ), is the shortest path in
G between p and u. Note that all the vertices of Spoke(τ) belong to CellS(p).

Let e = f1f2 be an edge of the diagram VorS , where f1, f2 are branching nodes (possibly
f1 = f2 if e is a loop in VorS). Further, let p1 and p2 be the vertices from S that correspond
to faces of VorS incident to e (possibly p1 = p2 if e is a bridge in VorS). Suppose for a
moment that f1 6= f2. Then, out of the three edges of f1 (these are edges in G) there is
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exactly one that crosses the edge e of VorS ; say it is the edge u1,1u1,2 where u1,1 ∈ CellS(p1)
and u1,2 ∈ CellS(p2). Symmetrically, there is one edge of f2 that crosses e, say it is u2,1u2,2
where u2,1 ∈ CellS(p1) and u2,2 ∈ CellS(p2). In case f1 = f2, the edge e crosses two different
edges of f1 = f2 and we define u1,1, u1,2, u2,1, u2,2 analogously for these two crossings; note
that then, provided p1 corresponds to the face enclosed by the loop e, we have u1,1 = u1,2.
For all i, j ∈ {1, 2}, consider the incidence τi,j = (pi, ui,j , fj).

Consider removing the following subsets from the sphere Σ: interiors of faces f1, f2
and spokes Spoke(τi,j) for all i, j ∈ {1, 2}. After this removal the sphere breaks into two
regions, out of which exactly one, say R, intersects (the embedding of) e. Let the diamond
of e, denoted Diam(e), be the subgraph of G consisting of all features (vertices and edges)
embedded in R∪

⋃
i,j∈{1,2} Spoke(τi,j). The region R as above is the interior of the diamond

Diam(e). Note that in particular, the spokes Spoke(τi,j) for i, j ∈ {1, 2} and the edges
u1,1u1,2 and u2,1u2,2 belong to Diam(e). The perimeter of the diamond of e is the closed walk
obtained by concatenating spokes Spoke(τi,j) for i, j ∈ {1, 2} and edges u1,1u1,2, u2,1u2,2 in
the natural order around Diam(e). The following observation is immediate:

I Proposition 6. Consider removing all the spokes (considered as curves on Σ) and all
the branching nodes (considered as interiors of faces on Σ) of the diagram VorS from the
sphere Σ. Then Σ breaks into 3|S| − 6 regions that are in one-to-one correspondence with
edges of VorS: a region corresponding to the edge e is the interior of the diamond Diam(e).
Consequently, the intersection of diamonds of two different edges of VorS is contained in the
intersection of their perimeters.

Finally, we note that the perimeter of a diamond separates it from the rest of the graph.
Since vertices of S are never contained in the interior of a diamond, this yields the following.

I Lemma 7. Let p ∈ S and u be a vertex of G belonging to the diamond Diam(e) for some
edge e of VorS. Then every path in G connecting u and p intersects the perimeter of Diam(e).

2.2 Coresets
In most our algorithms, the starting point is the notion of a coreset and a corresponding
result of Feldman and Langberg [11]. To this end, we need to slightly generalize the notion
of a client set in a k-Median instance. A client weight function is a function ω : C → R>0.
Given a set D ⊆ F of open facilities, the (weighted) connection cost is defined as

conn(D,ω) =
∑
v∈C

dist(v,D) · ω(v).

That is, every client v is assigned a weight ω(v) with which it contributes to the objective
function. The support of a weight function ω is defined as supp(ω) = {v ∈ C | ω(v) > 0}.
From now on, whenever we speak about a k-Median instance without specified client weight
function, we assume the standard function assigning each client weight 1.

The essence of coresets is that one can find weight functions with small support that
well approximate the original instance. Given a k-Median instance (G,F,C, k) (without
weights) and an accuracy parameter ε > 0, a coreset is a weight function ω such that for
every set D ⊆ F of size at most k, it holds that

|conn(D,C)− conn(D,ω)| 6 ε · conn(D,C).

We rely on the following result of Feldman and Langberg [11].
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I Theorem 8 (Theorem 15.4 of [11]). Given a k-Median instance (G,F,C, k) with n = |V (G)|
and accuracy parameter ε > 0, one can in randomized polynomial time find a weight function
ω with support of size O(kε−2 logn) that is a coreset with constant probability.

We note that Ke Chen [4] gave a construction of a strong coreset with support of size
O(k2ε−2 logn) that is much simpler than the later construction of Feldman and Langberg [11].
By using this construction instead, we would obtain a weaker version of Theorem 1, with a
bound on |F0| that is quadratic in k instead of linear. This would be perfectly sufficient to
derive an FPT approximation scheme as in Corollary 2, but for Theorem 3 we will vitally
use the stronger statement. A construction of coresets with similar size guarantees, but
maintainable in the streaming model, has been proposed by Braverman et al. [2].

3 Facility coreset for k-Median in planar graphs

In this section we give a coreset for centers for the k-Median problem, that is, we prove
Theorem 1. We shall focus on the following lemma, which in combination with Theorem 8
yields Theorem 1.

I Lemma 9. Given a k-Median instance (G,F,C, k) with a weight function ω and an
accuracy parameter ε > 0, one can in polynomial time compute a set F0 ⊆ F of size
|supp(ω)| · (ε−1 log |V (G)|)O(ε−3) satisfying the following condition with constant probability:
there exists a set D0 ⊆ F0 of size at most k such that for every set D ⊆ F of size at most k
it holds that conn(D0, ω) 6 (1 + ε) · conn(D,ω).

Before we proceed, let us verify that Theorem 8 and Lemma 9 together imply Theorem 1.
Given an instance (G,F,C, k) of k-Median, we first apply Theorem 8 to obtain a coreset ω
with support of size O(kε−2 logn). Next, we pass this coreset to Lemma 9, thus obtaining
a set F0 ⊆ F of size k · (ε−1 logn)O(ε−3). Let D0 be the subset of F0 of size at most k
that minimizes conn(D0, ω). Then using the approximation guarantees of Theorem 8 and
Lemma 9, for any D ⊆ F we have

conn(D0, C) 6 (1 + ε)conn(D0, ω) 6 (1 + ε)2conn(D,ω) 6 (1 + ε)3conn(D,C).

It remains to rescale ε. Hence, for the rest of this section we focus on proving Lemma 9.

Let I = (G,F,C, k) be an input k-Median instance with a weight function ω, where G
is planar. Let ε > 0 be an accuracy parameter and without loss of generality assume that
ε < 1/4. Let n = |V (G)| and m = |E(G)|. Without loss of generality assume that n = Θ(m).

We assume that G is embedded in a sphere Σ and apply the necessary modifications
explained in the beginning of Section 2.1 to fit into the framework of Voronoi diagrams.
Denote S = supp(ω). We compute the Voronoi partition CellS induced by S and the Voronoi
diagram VorS induced by S. By Proposition 6, VorS has O(|S|) vertices, faces, and edges.

Distance levels. We first compute an O(1)-approximate solution D̃ ⊆ F using the al-
gorithm given by Feldman and Langberg [11, Theorem 15.1]; this algorithm outputs an
O(1)-approximate solution with constant probability. Let us scale all the edge lengths in G
by the same ratio so that

conn(D̃, ω) = |S|/ε. (1)

Next, we assign length +∞ to every edge of length larger than conn(D̃, ω); clearly, they are
not used in the computation of the connection cost of an optimum solution. Without loss of
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generality we assume that all the distances between vertices in G are finite: otherwise we
can split the instance into a number of independent ones, compute a suitable set F0 for each
of them and take the union.

The next step is to assign levels to distances in the graph. For any c ∈ [0,+∞), define
the level of c, denoted level(c), to be the smallest nonnegative integer ` such that c < (1 + ε)`.
Note that level(c) = 0 if and only if c < 1. Let L = 1 + level(m · conn(D̃, ω)), then we have

level(dist(u, v)) ∈ {0, 1, . . . , L− 1} for all u, v ∈ V (G).

Observe that since m = Θ(n), by (1) we have

L 6 O(ε−1 log(m|S|/ε)) 6 O(ε−2 logn). (2)

Portals and profiles. Let τ = (p, u, f) be an incidence in VorS . Let d(τ) = dist(p, u)
and let `(τ) = level(d(τ)); note that Spoke(τ) has length exactly d(τ). For every integer
ι ∈ {1, . . . , `(τ)}, we define the portal p〈τ, ι〉 as a vertex on Spoke(τ) at distance exactly
(1 + ε)ι−1 from p; we subdivide an edge an create a new vertex to accommodate p〈τ, ι〉 if
necessary. Furthermore, we add also a portal p〈τ, 0〉 = p. Since `(τ) = level(d(τ)) < L, there
are at most L portals on the spoke Spoke(τ).

Consider a diamond Diam(e) induced by some edge e of VorS , and a vertex v in Diam(e).
Recall that the perimeter of Diam(e) consists of spokes Spoke(τi,j) for four incidence τi,j ,
where i, j ∈ {1, 2}. The profile of a vertex w belonging to the diamond Diam(e) consists of
the following information, for all τ ∈ {τi,j : i, j ∈ {1, 2}}:
1. The minimum index λ ∈ {0, 1, . . . , `(τ)} satisfying

dist(p〈τ, λ〉, p) > ε · dist(p〈τ, λ〉, w),

where p = p〈τ, 0〉 is the vertex of S involved in τ . If no such index exists, we set λ = `(τ).
2. Letting

I =
(
{0} ∪ {ι : |ι− λ| 6 1/ε3}

)
∩ {0, 1, . . . , `(τ)},

the profile records the value of level(dist(w, p〈τ, ι〉)) for all ι ∈ I.
Whenever speaking about a vertex w and incidence τ , we use λ(τ, w) and I(τ, w) to denote
λ and I as above. We note that in total there are only few possible profiles.

B Claim 10. The number of possible different profiles of vertices in Diam(e) is LO(ε−3).

Proof. Since 0 6 `(τ) < L for every incidence τ , there are at most L4 choices for the four
values λ(τi,j , w) for i, j ∈ {1, 2}. Further, we have |I(τi,j , w)| 6 O(ε−3), so there are at most
LO(ε−3) choices for the values level(dist(w, p〈τi,j , ι〉)) for i, j ∈ {1, 2} and ι ∈ I(τi,j , w). C

For future reference, we state the key property of profiles: having the same profile implies
having approximately same distances to the profiles with indices in I.

B Claim 11. Suppose w and w′ are two vertices of Diam(e) that have the same profile. Then
for each τ ∈ {τi,j : i, j ∈ {1, 2}} and ι ∈ I(τ, w), we have

dist(w′, p〈τ, ι〉) 6 (1 + ε) · dist(w, p〈τ, ι〉) + 1.

Proof. Let ` = level(dist(w, p〈τ, ι〉)) = level(dist(w′, p〈τ, ι〉)), as recorded in the common
profile. If ` = 0, then dist(w′, p〈τ, ι〉) < 1 and we are done. Otherwise, dist(w, p〈τ, ι〉) and
dist(w′, p〈τ, ι〉) are both contained in the interval [(1 + ε)`−1, (1 + ε)`). This interval has
length ε · (1 + ε)`−1 6 ε · dist(w, p〈τ, ι〉), hence the claim follows. C
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Construction of the set F0. We now construct the set F0 as follows: for every diamond
Diam(e) and every possible profile in Diam(e), include in F0 one facility with that profile (if
one exists). Since there are O(|S|) diamonds, by Claim 10 and (10) we have

|F0| 6 O(|S|) · LO(ε−3) = |supp(ω)| · (ε−1 logn)O(ε−3),

as claimed. It remains to prove that F0 has the claimed approximation properties.
For every facility w ∈ F , pick a diamond Diam(e) containing w and let f(w) to be the

facility f(w) ∈ F0 ∩ Diam(e) that has the same profile as w. Fix a solution D? ⊆ F with
|D?| 6 k minimizing conn(D?, ω). Let D0 = {f(w) : w ∈ D?}. Clearly, |D0| 6 |D?| 6 k. To
finish the proof of Lemma 9 it suffices to show that

conn(D0, ω) 6 (1 +O(ε))conn(D?, ω). (3)

To this end, consider any client v ∈ S = supp(ω) and let w ∈ D? be the facility in D?

serving v, that is, dist(v, w) = dist(v,D?). To show (3), it suffices to prove that

dist(v, f(w)) 6 (1 +O(ε))dist(v, w) +O(1). (4)

Indeed, by summing (4) through all v ∈ S and using (1) we obtain

conn(D0, ω) 6 (1 +O(ε))conn(D?, ω) +O(1) · |S|

6 (1 +O(ε))conn(D?, ω) +O(ε) · conn(D̃, ω) 6 (1 +O(ε))conn(D?, ω),

where the last inequality is due to D̃ being an O(1)-approximate solution.
Hence, from now on we focus on proving (4). Let Diam(e) be the diamond containing

w and f(w). Consider the shortest path P from w to v in G. By Lemma 7, the path P

intersects the perimeter of the diamond Diam(e). Let u be the vertex on the perimeter of
Diam(e) that lies on P and, among such, is closest to w on P . Since P is a shortest path,
the length of the subpaths of P between v and u and between u and w equal dist(v, u) and
dist(u,w), respectively, and in particular dist(v, w) = dist(v, u) + dist(u,w).

We now observe that to prove (4), it suffices show the following.

dist(u, f(w)) 6 dist(u,w) +O(ε)dist(v, w) +O(1). (5)

Indeed, assuming (5) we have

dist(v, f(w)) 6 dist(v, u) + dist(u, f(w))
6 dist(v, u) + dist(u,w) +O(ε)dist(v, w) +O(1)
= dist(v, w) +O(ε)dist(v, w) +O(1).

Hence, from now on we focus on proving (5).
Let τi,j for i, j ∈ {1, 2}, be the four incidences involved in the diamond Diam(e). Since

u lies on the perimeter of Diam(e), actually u lies on Spoke(τ), where τ = τi,j for some
i, j ∈ {1, 2}. Let p = p〈τ, 0〉 be the vertex of S involved in the incidence τ . Since u ∈ CellS(p)
while v ∈ S, we have that dist(u, p) 6 dist(u, v). Consequently, we have dist(u,w) 6 dist(v, w)
and dist(u, p) 6 dist(v, w), so to prove (5) it suffices to prove the following:

dist(u, f(w)) 6 dist(u,w) +O(ε)(dist(u,w) + dist(u, p)) +O(1). (6)

Let pu = p〈τ, ι〉 be the portal on the subpath of Spoke(τ) between u and p that is closest
to u. Intuitively, pu is a good approximation of u and distances from pu are almost the same
as distances from u. As this idea will be repeatedly used in this sequel, we encapsulate it in
a single claim.
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B Claim 12. Suppose for some vertices x and y we have

dist(pu, x) 6 A · dist(pu, y) +B,

for some A,B. Then

dist(u, x) 6 A · dist(u, y) +B + (A+ 1)ε · dist(u, p) + (A+ 1).

Proof. By the choice of pu we have

dist(pu, p) 6 dist(u, p) 6 (1 + ε)dist(pu, p) + 1,

so dist(u, pu) 6 ε · dist(u, p) + 1. Therefore, we have

dist(u, x) 6 dist(pu, x) + dist(pu, u) 6 A · dist(pu, y) +B + dist(pu, u)
6 A · (dist(u, y) + dist(pu, u)) +B + dist(pu, u)
= A · dist(u, y) +B + (A+ 1) · dist(pu, u)
6 A · dist(u, y) +B + (A+ 1) · ε · dist(u, p) + (A+ 1),

as claimed. C

Since w and f(w) have the same profile, we may denote λ = λ(τ, w) = λ(τ, f(w)) and
I = I(τ, w) = I(τ, f(w)). Further, let pλ = p〈τ, λ〉 We now consider a number of cases
depending on the relative values of ι and λ, with the goal on proving that (6) holds in each
case. See Figure 2 for an illustration.

v

p

w

τ

f(w)

u

pu

pλ

Figure 2 The diamond Diam(e) with vertices v, u, w, p, and f(w). Red vertices are clients, black
squares are portals. The case distinction in the proof corresponds to relative order of pλ and pι.

Middle case: ι ∈ I. As profiles of w and f(w) are the same and ι ∈ I, by Claim 11 we
have

dist(pu, f(w)) 6 (1 + ε)dist(pu, w) + 1.

It suffices now to apply Claim 12 to infer inequality (6).

Close case: ι < λ− 1/ε3. Since ι < λ− 1/ε3, by the choice of λ we have

dist(pu, p) 6 ε · dist(pu, w).

By applying Claim 12, we infer that

dist(u, p) 6 ε ·dist(u,w) + (1 + ε)ε ·dist(u, p) +O(1) 6 ε ·dist(u,w) + dist(u, p)/2 +O(1),
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which entails

dist(u, p) 6 2ε · dist(u,w) +O(1).

Since 0 ∈ I and the profiles of w and f(w) are equal, by Claim 11 we have

dist(p, f(w)) 6 (1 + ε) · dist(p, w) + 1.

By combining the last two inequalities, we conclude that

dist(u, f(w)) 6 dist(u, p) + dist(p, f(w))
6 dist(u, p) + (1 + ε)dist(p, w) + 1
6 dist(u, p) + (1 + ε)(dist(u, p) + dist(u,w)) + 1
= (2 + ε)dist(u, p) + (1 + ε)dist(u,w) + 1
6 (1 +O(ε))dist(u,w) +O(1).

Thus, inequality (6) holds in this case.

Far case: ι > λ+1/ε3. By the definition of λ and since ι > λ+1/ε3, we have in particular
λ < `(τ) and hence

ε · dist(pλ, w) < dist(pλ, p).

On the other hand, we have

dist(p, pλ) = (1 + ε)λ−ιdist(p, pu) 6 (1 + ε)−1/ε3
dist(p, pu) 6 ε2 · dist(p, pu),

where the last step follows from Bernoulli’s inequality. By combining the above two inequalities
we obtain

dist(pλ, w) 6 ε · dist(p, pu),

implying

dist(p, w) 6 dist(p, pλ)+dist(pλ, w) 6 (ε+ε2) ·dist(p, pu) 6 2ε ·dist(p, pu) 6 2ε ·dist(p, u).

As before, by Claim 11 we have dist(p, f(w)) 6 (1 + ε)dist(p, w) + 1 due to 0 ∈ I, hence

dist(u, f(w)) 6 dist(u, p) + dist(p, f(w))
6 (dist(u,w) + dist(p, w)) + (1 + ε)dist(p, w) + 1
6 dist(u,w) + (2 + ε) · (2ε) · dist(u, p) + 1
6 dist(u,w) +O(ε)dist(u, p) +O(1).

We conclude that inequality (6) holds in this case.

As the case investigation presented above covers all the possibilities, the proof of Lemma 9
is complete, so we have also proved Theorem 1.
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Abstract
Treedepth, a more restrictive graph width parameter than treewidth and pathwidth, plays a major
role in the theory of sparse graph classes. We show that there exists a constant C such that for
every integers a, b ≥ 2 and a graph G, if the treedepth of G is at least Cab log a, then the treewidth
of G is at least a or G contains a subcubic (i.e., of maximum degree at most 3) tree of treedepth at
least b as a subgraph.

As a direct corollary, we obtain that every graph of treedepth Ω(k3 log k) is either of treewidth
at least k, contains a subdivision of full binary tree of depth k, or contains a path of length 2k. This
improves the bound of Ω(k5 log2 k) of Kawarabayashi and Rossman [SODA 2018].

We also show an application for approximation algorithms of treedepth: given a graph G of
treedepth k and treewidth t, one can in polynomial time compute a treedepth decomposition of G of
width O(kt log3/2 t). This improves upon a bound of O(kt2 log t) stemming from a tradeoff between
known results.

The main technical ingredient in our result is a proof that every tree of treedepth d contains a
subcubic subtree of treedepth at least d · log3((1 +

√
5)/2).
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1 Introduction

For an undirected graph G, the treedepth of G is the minimum height of a rooted forest whose
ancestor-descendant closure contains G as a subgraph. Together with more widely known
related width notions such as treewidth and pathwidth, it plays a major role in structural
graph theory, in particular in the study of general sparse graph classes [8, 7, 6].

An important property of treedepth is that it admits a number of equivalent definitions.
Following the definition of treedepth above, a treedepth decomposition of a graph G consists of
a rooted forest F and an injective mapping f : V (G)→ V (F ) such that for every uv ∈ E(G)
the vertices f(u) and f(v) are in ancestor-descendant relation in F . The width of a treedepth
decomposition (F, f) is the height of F (the number of vertices on the longest leaf-to-root path
in F ) and the treedepth of G is the minimum possible height of a treedepth decomposition
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of G. A centered coloring of a graph G is an assignment α : V (G)→ Z such that for every
connected subgraph H of G, α has a center in H: a vertex v ∈ V (H) of unique color, i.e.,
α(v) 6= α(w) for every w ∈ V (H) \ {v}. A vertex ranking of a graph G is an assignment
α : V (G) → Z such that in every connected subgraph H of G there is a unique vertex of
maximum rank (value α(v)). Clearly, each vertex ranking is a centered coloring. It turns out
that the minimum number of colors (minimum size of the image of α) needed for a centered
coloring and for a vertex ranking are equal and equal to the treedepth of a graph [6].

While there are multiple examples of algorithmic usage of treedepth in the theory of sparse
graphs [7, 8], our understanding of the complexity of computing minimum width treedepth
decompositions is limited. For a graph G, let td(G) and tw(G) denote the treedepth and the
treewidth of G, respectively. An algorithm of Reidl, Rossmanith, Villaamil, and Sikdar [9]
computes exactly the treedepth of an input graph G in time 2O(td(G)·t)nO(1), given a tree
decomposition of G of width t. Combined with the classic constant-factor approximation
algorithm for treewidth that runs in 2O(tw(G))nO(1) time [10], one obtains an exact algorithm
for treedepth running in time 2O(td(G)tw(G))nO(1). No faster exact algorithm is known.

For approximation algorithms, the following folklore lemma (presented with full proof
in [4]) is very useful.

I Lemma 1. Given a graph G and a tree decomposition (T, β) of G of maximum bag size
w, one can in polynomial time compute a treedepth decomposition of G of width at most
w · td(T ).

Using Lemma 1, one can obtain an approximation algorithm for treedepth with a cheap
tradeoff trick.1

I Lemma 2. Given a graph G, one can in polynomial time compute a treedepth decomposition
of G of width O(td(G) · tw(G)2 log tw(G)).

Proof. Let n = |V (G)|. Using the polynomial-time approximation algorithm for treewidth [3],
compute a tree decomposition (T, β) of G of width t = O(tw(G)

√
log tw(G)) and O(n) bags.

For every integer 1 ≤ k ≤ (logn)/t, use the algorithm of [9] to check in polynomial time if
the treedepth of G is at most k. Note that if this is the case, the algorithm finds an optimal
treedepth decomposition and we can conclude. Otherwise, we have logn ≤ td(G) · t and we
apply Lemma 1 to G and (T, β) obtaining a treedepth decomposition of G of width

O(t logn) ≤ O(td(G) · t2) ≤ O(td(G) · tw(G)2 log tw(G)). J

Lemma 2 is the only polynomial approximation algorithm for treedepth running in polynomial
time we are aware of.

A related topic to exact and approximation algorithms computing minimum-width
treedepth decomposition is the study of obstructions to small treedepth. Dvořák, Gianno-
poulou, and Thilikos [2] proved that every minimal graph of treedepth k has the number
of vertices at most double-exponential in k. More recently, Kawarabayashi and Rossman
showed an excluded-minor theorem for treedepth.

I Theorem 3 ([4]). There exists a universal constant C such that for every integer k every
graph of treedepth at least Ck5 log2 k is either of treewidth at least k, contains a subdivision
of a full binary tree of depth k as a subgraph, or contains a path of length 2k.

1 This trick has been observed and communicated to us by Michał Pilipczuk. We thank Michał for
allowing us to include it in this paper.
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While neither the results of [2] nor [4] have a direct application in the approximability
of treedepth, these topics are tightly linked with each other and we expect that a finer
understanding of treedepth obstructions is necessary to provide more efficient algorithms
computing or approximating the treedepth of a graph.

Our results

Our main result is the following statement, improving upon the work of Kawarabayashi and
Rossman [4].

I Theorem 4. Let G be a graph of treewidth tw(G) and treedepth td(G). Then there exists
a subcubic tree H that is a subgraph of G and is of treedepth Ω(td(G)/(tw(G) log tw(G))).

In other words, Theorem 4 states that there exists a constant C such that for every graph G
and integers a, b ≥ 2, if the treedepth of G is at least Cab log a, then the treewidth of G is at
least a or G contains a subcubic tree of treedepth b. Since every subcubic tree of treedepth d
contains either a simple path of length 2Ω(

√
d) or a subdivision of a full binary tree of depth

Ω(
√
d) [4], we have the following corollary.

I Corollary 5. Let G be a graph of treewidth tw(G) and treedepth td(G). Then for some

h = Ω
(√

td(G)/(tw(G) log tw(G))
)

G contains either a simple path of length 2h or a subdivision of a full binary tree of depth h.
Consequently, there exists an absolute constant C such that for every integer k ≥ 1 and a

graph G of treedepth at least Ck3 log k, either
G has treewidth at least k,
G contains a subdivision of a full binary tree of depth k as a subgraph, or
G contains a path of length 2k.

In other words, Corollary 5 improves the bound k5 log2 k of Kawarabayashi and Rossman [4]
to k3 log k. We remark here that there are subcubic trees of treedepth Ω(h2) that contains
neither a path of length 2h nor a subdivision of a full binary tree of depth h,2 and thus the
quadratic loss between the statements of Theorem 4 and Corollary 5 is necessary.

Inside the proof of Theorem 4 we make use of the following lemma that may be of
independent interest. This lemma is the main technical improvement upon the work of
Kawarabayashi and Rossman [4].

I Lemma 6. Every tree of treedepth d contains a subcubic subtree of treedepth at least
log((1+

√
5)/2)

log(3) d.
Furthermore, such a subtree can be found in polynomial time.

The techniques developed to prove Theorem 4 have some implications on the approxim-
ability of treedepth. We improve upon Lemma 2 as follows.

I Theorem 7. Given a graph G, one can in polynomial time compute a treedepth decompos-
ition of G of width O(td(G) · tw(G) log3/2 tw(G)).

2 It is straightforward to deduce such an example from the proof of [4]. We provide such an example in
Section 6.
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The result of Kawarabayashi and Rossman [4] has been also an important ingredient in
the study of linear colorings [5]. A coloring α : V (G)→ Z of a graph G is a linear coloring if
for every (not necessarily induced) path P in G there exists a vertex v ∈ V (P ) of unique color
α(v) on P . Clearly, each centered coloring is a linear coloring, but the minimum number of
colors needed for a linear coloring can be much smaller than the treedepth of a graph. Kun
et al. [5] provided a polynomial relation between the treedepth and the minimum number
of colors in a linear coloring; by replacing their usage of [4] by our result (and using an
improved bound for the excluded grid theorem [1]) we obtain an improved bound.

I Theorem 8. There exists a polynomial p such that for every integer k and graph G, if the
treedepth of G is at least k19p(log k), then every linear coloring of G requires at least k colors.

The previous bound of [5] is k190p(log k).

After proving Lemma 6 in Section 2, we prove Theorem 4 in Section 3. Theorem 7 is
proven in Section 3 while Theorem 8 is proven in Section 5. The symbol logp stands for
base-p logarithm and log stands for log2. We denote ϕ = 1+

√
5

2 ; note that ϕ is chosen in a
way so that ϕ2 = ϕ+ 1 and ϕ > 1.

2 Subcubic subtrees of trees of large treedepth

This section focuses on proving Lemma 6.
Schäffer [11] proved that there is a linear time algorithm for finding a vertex ranking with

minimum number of colors of a tree T . We follow [5] for a good description of its properties.
In original Schäffer’s algorithm ranks are starting from 1, however for the ease of exposition

let us assume that ranks are starting from 0. That is, the algorithm constructs a vertex
ranking α : V (T ) → {0, 1, 2, . . .} trying to minimize the maximum value attained by α.
Assume that T is rooted in an arbitrary vertex and for every v ∈ V (T ) let Tv be the subtree
rooted at v.

Of central importance to Schäffer’s algorithm are what we will refer to as rank lists. For
a rooted tree T , the rank list L(T ) for vertex ranking α consists of these ranks i for which
there exists a path P starting from the root and ending in a vertex v with α(v) = i such that
for every u ∈ V (P ) \ {v} we have α(u) < α(v), that is, v is the unique vertex of maximum
rank on P . More formally:

I Definition 9. For a vertex ranking α of tree T , the rank list of T , denoted L(T ), can be
defined recursively as L(T ) = L(T \Tv)∪{α(v)} where v is the vertex of maximum rank in T .

Schäffer’s algorithm arbitrarily roots T and builds the ranking from the leaves to the
root of T , computing the rank of each vertex from the rank lists of each of its children. For
brevity, we denote L(v) = L(Tv) for every v in T .

I Proposition 10. Let α be a vertex ranking of T produced by Schäffer’s algorithm and let
v ∈ T be a vertex with children u1, . . . , ul. If x is the largest integer appearing on rank lists
of at least two children of v (or −1 if all such rank lists are pairwise disjoint) then α(v) is
the smallest integer satisfying α(v) > x and α(v) 6∈

⋃l
i=1 L(ui).

For a node v ∈ V (T ), and vertex ranking α, the following potential is pivotal to the
analysis of Schäffer’s algorithm. Let l0 > l1 > . . . > l|L(v)|−1 be the elements of L(v) sorted
in decreasing order.



W. Czerwiński, W. Nadara, and M. Pilipczuk 34:5

ζ(v) =
∑

r∈L(v)

3r =
|L(v)|−1∑
i=0

3li .

When we write ζ(T ) for some tree T we refer to ζ(s) where s is a root of T . For our purposes,
we will also use a skewed version of potential function with a different base

σ(v) =
|L(v)|−1∑
i=0

ϕli−i,

where again l0 > l1 > . . . > l|L(v)|−1 are elements of L(v) sorted in decreasing order.
Throughout this section, when focusing on one node v ∈ V (T ), we use notation that li is
i−th element of set L(v) when sorted in decreasing order and when 0−based indexed.

Let us start with proving following two bounds that estimate td(T ) in terms of ζ(T )
and σ(T ).

B Claim 11. logϕ(σ(T )) ≥ td(T )− 1.

Proof. We know that L(T ) is nonempty and its biggest element is equal to td(T )− 1 (we
need to subtract one because we use nonnegative numbers as ranks, not positive). Therefore
we have

σ(T ) =
|L(T )|−1∑
i=0

ϕli−i ≥ ϕl0 = ϕtd(T )−1.

Hence, logϕ(σ(T )) ≥ td(T )− 1, as desired. C

B Claim 12. log3(ζ(T )) + log3(2) < td(T ).

Proof. We have that

ζ(T ) =
∑

r∈L(v)

3r ≤
td(T )−1∑
r=0

3r = 3td(T ) − 1
2 ,

2ζ(T ) ≤ 3td(T ) − 1 < 3td(T )

log3(2) + log3(ζ(T )) < td(T ). C

We are ready to prove Lemma 6. Given tree T we want to produce a subcubic (i.e.,
maximum degree at most 3) tree S which is a subtree of T and that fulfills td(S) >

td(T ) log3(ϕ).
Let us start our algorithm by arbitrary rooting T and computing rank lists using Schäffer’s

algorithm. Then for every vertex v ∈ T we define C(v) as a set of two children of v that
have the biggest value of ζ in case v has at least two children, or all children otherwise. Let
us now define forest F whose vertex set is the same as vertex set of T where for every v we
put edges between v and all elements of C(v). Clearly this is a forest consisting of subcubic
trees which are subtrees of T (where subtree is understood as subgraph, not necessarily as
some vertex t along with all its descendants in a rooted tree). Let S be a tree of this forest
containing root of T . We claim that S is that subcubic subtree of T we are looking for. Note
that computing F and thus S can be trivially done in polynomial time. Hence, we are left
with proving that td(S) > td(T ) log3(ϕ).

ESA 2019
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Let us root every tree of F in a vertex that was closest to root of T in T . Then compute
rank lists for these trees using Schäffer’s algorithm. So now, for every vertex we have two
rank lists, one for T and one for F . Let us now denote these second ranklists as L̃(v) for
v ∈ V (T ) and let us define function ζ̃ which will be similar potential function as ζ, but
operating on rank lists L̃(v) instead of L(v). Following claim will be crucial.

B Claim 13. For every v ∈ V (T ) it holds that ζ̃(v) ≥ σ(v).

We first verify that Claim 13 implies Lemma 6.

Proof of Lemma 6. Using also Claims 12 and 11 we infer that

td(S) > log3(ζ̃(S)) + log3(2) by Claim 12 for S
≥ log3(σ(T )) + log3(2) by Claim 13
= logϕ(σ(T )) · log3(ϕ) + log3(2) logarithm base change
≥ (td(T )− 1) · log3(ϕ) + log3(2) by Claim 11 for T
= td(T ) · log3(ϕ)− log3(ϕ) + log3(2) > td(T ) · log3(ϕ). J

Thus it remains to prove Claim 13. To this end, we prove two auxiliary inequalities.

B Claim 14. For every v ∈ V (T ) it holds that ζ̃(v) ≥ 1 +
∑
s∈C(v) ζ̃(s)

Proof. We express every ζ̃(x) for x ∈ {v} ∪ C(v) as a sum of powers of 3 and count how
many times each power occurs on both sides of this claimed inequality. Consider a summand
3c. If c > α(v) then, by the choice of α(v), 3c appears at most once on the right side and if it
appears there, then it appears on the left side as well, so contributions of summands of form
3c for c > α(v) to both sides are equal. The summand 3α(v) appears once on the left side
and does not appear on the right side. For c < α(v), the summands of form 3c appear at
most twice in

∑
s∈C(v) ζ̃(s), so their contribution to right side can be bounded from above

by
∑α(v)−1
c=0 2 · 3c = 3α(v) − 1, so in fact 3α(v) from the left side contributes at least as much

as remaining summands from the right side. This finishes the proof of the claim. C

B Claim 15. For every v ∈ V (T ) it holds that σ(v) ≤ 1 +
∑
s∈C(v) σ(s)

Proof. Recall that by the definition C(v) is a set of two children of v in T with the biggest
values of ζ or a set of all children of v in case it has less than two of them. Observe that having
bigger value of ζ(v) is another way of expressing having the set L(v) bigger lexicographically
when sorted in decreasing order.

If v is a leaf then C(v) is empty and σ(v) = 1, so the inequality is obvious. Henceforth
we focus on a vertex v that is not a leaf. In our proof following equation will come handy:

ϕ =
∞∑
i=0

ϕ−2i

It holds since
∑∞
i=0 ϕ

−2i = 1
1−ϕ−2 = ϕ2

ϕ2−1 = ϕ2

ϕ = ϕ.
Let us now analyze L(v). It consists of some prefix P of values that appeared exactly

once in children of v, then α(v) and then nothing (when enumerated from the biggest to the
smallest). Let us now denote by Ai intersection of L(ui) and P , where ui is i−th child of v
when sorted in nonincreasing order by their values ζ(ui) (1-based). We distinguish two cases:
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Case 1: A2 is nonempty. If A2 is nonempty then in particular it means that v has at least
two children. Let us denote the biggest element of L(u2) by d. We have that d ∈ P , but d
is not the biggest element of P . Its contribution to σ(u2) is ϕd, however its contribution
to σ(v) is at most ϕd−1 (because of the skew and since d is not the biggest element of
P ). Contribution to σ(v) of elements smaller than d can be bounded from above by
ϕd−3 + ϕd−5 + . . .. We know that d = lj for some j, where j ≥ 1 and L(v) consists
of elements l0 > l1 > . . . > l|L(v)−1|. We have that lk ∈ L(u1) for k < j and that
lj ≥ li + (i− j) for i ≥ j, so li − i ≤ lj − j − 2(i− j) = d− j − 2(i− j).
We can deduce that

σ(v) =
|L(v)|−1∑
i=0

ϕli−i =
j−1∑
i=0

ϕli−i +
|L(v)|−1∑
i=j

ϕli−i ≤ σ(u1) +
|L(v)|−1∑
i=j

ϕd−j−2(i−j)

≤ σ(u1) + ϕd−j
∞∑
i=j

ϕ−2(i−j) = σ(u1) + ϕd−j
∞∑
i=0

ϕ−2i = σ(u1) + ϕd−j+1

≤ σ(u1) + ϕd ≤ σ(u1) + σ(u2) < 1 + σ(u1) + σ(u2),

which is what we wanted to prove.
Case 2: A2 is empty. Let us now introduce a few variables:

d - the biggest integer number smaller than α(v) that is not an element of L(u1).
We know that elements from d+ 1 to α(v)− 1 belong to L(u1).
k - shorthand for number of these elements (which is equal to α(v)− 1− d).
k can be zero, but cannot be negative.
g - the number of elements of L(v) that are bigger than α(v).

Then from the definition of α(v) either
d = −1; or
v has at least two children and L(u2) contains a number that is at least d.

Because of that we have 1 +
∑
s∈C(v) σ(s) ≥ σ(u1) +ϕd. We know that

∑
s∈C(v) is either

σ(u1) or σ(u1) + σ(u2), depending on whether v has only one child or more. If d = −1
then 1 ≥ ϕd and stated inequality holds. If d 6= −1 then u2 exists and σ(u2) ≥ ϕd.
Note that either k > 0 or g > 0, because if k = g = 0 then d = α(v) − 1 and L(u1)
cannot contain elements bigger then α(v) (because g = 0), cannot contain α(v) (from
the definition of α(v)) and cannot contain α(v)− 1 (since d = α(v)− 1), so its biggest
element is at most d− 1. If d = −1 then it means that v is a leaf, but we already assumed
it is not one. However, if v has at least two children and L(u2) contains a number that is
at least d, then it contradicts the assumption that ζ(u1) ≥ ζ(u2). So indeed it holds that
k > 0 or g > 0 and therefore k + g ≥ 1.
We have that

σ(v)− σ(u1) ≤ ϕα(v)−g − (ϕα(v)−g−1 + ϕα(v)−g−3 + . . .+ ϕα(v)−g−2k+1),

which is because summands coming from numbers bigger than α(v) in L(v) and L(u1)
cancel out (A2 is empty, so all elements of L(v) different than α(v) come from L(u1)) and
new rank α(v) contributes ϕα(v)−g to σ(v) whereas L(u1) contains numbers from d+ 1 up
to α(v)−1 and their contribution to σ(u1) is ϕα(v)−g−1 +ϕα(v)−g−3 + . . .+ϕα(v)−g−2k+1.
We conclude that σ(v)− σ(u1) ≤ ϕ−g(ϕα(v) − (ϕα(v)−1 + ϕα(v)−3 + . . .+ ϕα(v)−2k+1)).
On the other hand since ϕ2 = ϕ+ 1 we have that

ϕα(v) = ϕα(v)−1 + ϕα(v)−2 = ϕα(v)−1 + ϕα(v)−3 + ϕα(v)−4 = . . . =

= (ϕα(v)−1 + ϕα(v)−3 + . . .+ ϕα(v)−2k+1) + ϕα(v)−2k.
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Because of that we have

σ(v)−σ(u1) ≤ ϕ−g ·ϕα(v)−2k = ϕα(v)−2k−g = ϕα(v)−(α(v)−1−d)−k−g = ϕd+1−(k+g) ≤ ϕd.

From that we conclude that σ(v) ≤ σ(u1) +ϕd ≤ 1 +
∑
s∈C(v) σ(s), what concludes proof

of this claim. C

Now, having claims 15 and 14 proven, we can wrap our reasoning up. If v is a leaf
then σ(v) = ζ̃(v) = 1. If v is not a leaf then we know that σ(v) ≤ 1 +

∑
s∈C(v) σ(s) and

ζ̃(v) ≥ 1 +
∑
s∈C(v) ζ̃(s), so by straightforward induction we get that σ(v) ≤ ζ̃(v) for every

v ∈ V (T ), as desired by Claim 13.

3 Proof of Theorem 4

Let G be a nonempty graph and let r = td(G)/(tw(G) + 1). Recall that our goal is to show
existence of a subcubic tree H being a subgraph of G such that td(H) is Ω(r/ log(tw(G)+1)).
Without loss of generality we may assume that G is connected, as otherwise we focus on
the connected component of G of maximum treedepth. Also, the statement is trivial for
tw(G) ≤ 1 (when G is a tree) and when r ≤ 2, so assume otherwise.

We consider a greedy tree decomposition of G, as defined in [4]. A greedy tree decompos-
ition is a tree decomposition that can be also interpreted as a treedepth decomposition.

Recall that a tree decomposition of a graph G is a pair (T, β) where T is a rooted tree
and β : V (T )→ 2V (G) is such that for every v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} induces
a connected nonempty subtree of T and for every uv ∈ E(G) there exists t ∈ V (T ) with
u, v ∈ β(t). A tree decomposition (T, β) of a graph G is greedy if
1. V (T ) = V (G),
2. for every uv ∈ E(G), the nodes u and v in T are in ancestor-descendant relation in T ,

and
3. for every vertex u ∈ V (T ) and its child v there is some descendant w of v in T such that

uw ∈ E(G).

Lemma 3.6. in [4] states that for every connected graph G there exists a greedy tree
decomposition (T, β) of width tw(G), that is, all bags β(t) for t ∈ V (T ) have size bounded
by tw(G) + 1. Let (T, β) be such a decomposition of our graph G. By Lemma 1 we get
that td(T ) ≥ r, as otherwise we would be able to construct treedepth decomposition of too
low treedepth.

In the remainder of the proof we show the following lemma.

I Lemma 16. Let G be a connected graph, (T, β) be a greedy tree decomposition of G, and
let τ ≥ 2 be such that |β(t)| ≤ τ for every t ∈ V (T ). Then G contains a subcubic tree of
treedepth Ω(td(T )/ log τ).

Theorem 4 follows immediately from Lemma 16 applied to the tree decomposition (T, β) of
G. Thus, it remains to prove Lemma 16.

To this end, we first apply Lemma 6 to tree T and obtain a subcubic tree S such that

td(S) ≥ r · log3(ϕ). (1)

Second, we apply the core part of the reasoning of Kawarabayashi and Rossman [4]. The
construction of Section 5 of [4] can be encapsulated in the following lemma.
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I Lemma 17 (Section 5 of [4]). Let (T, β) be a greedy tree decomposition of graph G and let
τ = maxt∈V (T ) |β(t)|. Then for every subcubic subtree S of T there exists a subtree F of G
such that V (S) ⊆ V (F ) and the maximum degree of F is bounded by τ + 2.

By application of Lemma 17 to our decomposition (T, β) and subtree S we get a tree F
in G, which has large treedepth, as we show in a moment. To this end, we need the following
simple bound on treedepth of trees.

I Lemma 18. For every tree H with maximum degree bounded by d ≥ 2 it holds that

logd |V (H)| ≤ td(T ) ≤ 1 + log2 |V (H)|.

Proof. We use the following equivalent recursive definition of treedepth: Treedepth of an
empty graph is 0, treedepth of a disconnected graph equals the maximum of treedepth
over its connected components, while for nonempty connected graphs G we have td(G) =
1 + minv∈V (G) td(G− v).

For the lower bound, for k ≥ 1 let fd(k) be the maximum possible number of vertices
of a tree of maximum degree at most d and treedepth at most k. Clearly, fd(1) = 1. Since
removing a single vertex from a tree of maximum degree at most d results in at most d
connected components, we have that

fd(k + 1) ≤ 1 + d · fd(k).

Consequently, we obtain by induction that

fd(k) ≤ dk − 1.

This proves the lower bound. For the upper bound, note that in every tree T there exists
a vertex v ∈ V (T ) such that every connected component of T − {v} has at most |V (T )|/2
vertices. Consequently, if we define g(n) to be the maximum possible treedepth of an n-vertex
tree, then g(1) = 1 and we have that

g(n) ≤ 1 + g(bn/2c).

This proves the upper bound. J

By (1) and Lemma 18 we get that |V (S)| ≥ 2r·log3(ϕ)−1. This implies that also

|V (F )| ≥ 2r·log3(ϕ)−1. (2)

As S is subcubic, by Lemma 17 we know that the maximum degree of F is bounded by
tw(G) + 3. Therefore Lemma 18 and (2) jointly imply that

td(F ) ≥ log(tw(G)+3) 2r·log3(ϕ)−1 ≥ r · log3(ϕ)− 1
log(tw(G) + 3) ≥

log3(ϕ)
20 · r/ log(tw(G) + 1). (3)

Here, the last inequality follows from the assumptions r > 2 and tw(G) ≥ 2; note that the
constant 20 is sufficiently large constant for the estimations to work.

As tree F is not necessarily subcubic, we apply one more time Lemma 6 and get a
subcubic subtree H of F such that

td(H) ≥ td(F ) · log3(ϕ) ≥ log3(ϕ)2

20 · r/ log(tw(G) + 1), (4)

which finishes the proof of Lemma 16 and of Theorem 4.

ESA 2019



34:10 Improved Bounds for the Excluded-Minor Approximation of Treedepth

4 Proof of Theorem 7

Proof of Theorem 7. Without loss of generality we can assume that the input graph G

is connected. As in the proof of Lemma 2, we apply the polynomial-time approximation
algorithm for treewidth [3], to compute a tree decomposition (T0, β0) of G with O(n) nodes
of T0 and |β(t)| ≤ τ for every t ∈ V (T0) and some τ = O(tw(G)

√
log tw(G)). As discussed

in [4], one can in polynomial time turn (T0, β0) into a greedy tree decomposition (T, β) of G
without increasing the maximum size of a bag, that is, still |β(t)| ≤ τ for every t ∈ V (T ).
We apply Lemma 1 to (T, β), returning a treedepth decomposition of G of width at most
τ · td(T ) = O(td(T )tw(G)

√
log tw(G)).

It remains to bound td(T ). Lemma 16 asserts that G contains a subcubic tree H of
treedepth Ω(td(T )/ log τ). Therefore td(T ) = O(td(H) log τ) = O(td(G) log tw(G)) and thus
the width of the computed treedepth decomposition is O(td(G)tw(G) log3/2 tw(G)). This
finishes the proof of Theorem 7. J

5 Proof of Theorem 8

Here we show how to assemble the proof of Theorem 8 from Theorem 4, a number of
intermediate results of [5], and an improved excluded grid theorem due to Chuzhoy and Tan [1]:

I Theorem 19 ([1]). There exists a polynomial pGMT such that for every integer k if a graph
G has treewidth at least k9pGMT(log k) then G contains a k × k grid as a minor.

The following two results were proven in [5].

I Lemma 20 ([5]). If a graph G contains a k× k grid as a minor, then every linear coloring
of G requires Ω(

√
k) colors.

I Lemma 21 ([5]). If G is a tree of treedepth d and maximum degree ∆, then every linear
coloring of G requires at least d/ log2(∆) colors.

Recall that Theorem 4 asserts that there exists a constant C such that for every graph G and
integers a, b ≥ 2, if the treedepth of G is at least Cab log a, then either the treewidth of G is
at least a or G contains a subcubic tree of treedepth at least b. Applying this theorem to
a = θ(k2) and b = k log2(3), one obtains that if the treedepth of G is Ω(k19pGMT(log k) log k),
then G contains either a θ(k2)× θ(k2) grid minor or a subcubic tree of treedepth at least
k log2(3). In the first outcome, Lemma 20 gives the desired number of colors of a linear
coloring, while in the second outcome the same result is obtained from Lemma 21. This
concludes the proof of Theorem 8.

6 An example of a tree with treedepth quadratic in the height of the
binary tree or logarithm of a length of a path

In this section we provide a construction of a family of trees (Gn)n≥1 such that
1. The tree Gn does not contain a path with 2n+2 vertices.
2. The tree Gn does not contain a subdivision of a full binary tree of depth n+ 2.
3. The treedepth of Gn is at least

(
n+1

2
)
.

We will consider each tree Gn as a rooted tree. The tree G1 consists of a single vertex.
For n ≥ 2, the tree Gn is defined recursively as follows. We take a path Pn with 2n vertices
and for each v ∈ V (Pn) we create a copy Cvn of Gn−1 and attach its root to v. We root
Gn in one of the endpoints of Pn; see Figure 1. We now proceed with the proof of the
properties of Gn.
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2n vertices

Gn−1

Gn−1

Gn−1

Figure 1 Construction of Gn.

Since every path in Gn is contained in at most two root-to-leaf paths (not necessarily
edge-disjoint), to show Property (1) it suffices to show the following.

I Lemma 22. Every root-to-leaf path in Gn contains less than 2n+1 vertices.

Proof. We prove the statement by induction on n. For n = 1 the statement is straightforward.
For the inductive step, observe that every root-to-leaf path in Gn consists of a subpath of
Pn (which has 2n vertices) and a root-to-leaf path in one of the copies Cvn of Gn−1 (which
has less than 2n vertices by the inductive assumption). J

We say that a subtree H of Gn that is a subdivision of a full binary tree of height h ≥ 1
is aligned if h = 1 or h ≥ 2 and the closest to the root vertex of H is of degree 2 in H and its
deletion breaks H into two subtrees containing a subdivision of a full binary tree of height
h− 1. In other words, an aligned subtree has the same ancestor-descendant relation as the
tree Gn. Observe that any subtree H0 of Gn that is a subdivision of a full binary tree of
height h ≥ 2 contains a subtree that is an aligned subdivision of a full binary tree of height
h− 1. Therefore, to prove Property (2), it suffices to show the following.

I Lemma 23. Gn does not contain an aligned subdivision of a full binary tree of height
n+ 1.

Proof. We prove the claim by induction on n. It is straightforward for n = 1. For n ≥ 2,
let H be such an aligned subtree of Gn and let w be the closest to the root of Gn vertex
of H. If w ∈ V (Cvn) for some v ∈ V (Pn), then H is completely contained in Cvn, which is a
copy of Gn−1. Otherwise, w ∈ V (Pn) and thus one of the components of H − {w} lies in
Cwn . However, this component contains an aligned subdivision of a full binary tree of height
n. In both cases, we obtain a contradiction with the inductive assumption. J

We are left with the treedepth lower bound of Property (3). To this end, we consider the
following families of trees. For integers a, b ≥ 1, the family Ga,b contains all trees H that are
constructed from a path PH with at least 2a vertices by attaching, for every v ∈ V (PH), a
tree Tv of treedepth at least b by an edge to v. We show the following.

I Lemma 24. For every H ∈ Ga,b we have td(H) ≥ a+ b.

Proof. We prove the lemma by induction on a. For a = 1 we have td(H) ≥ a + 1 and H
contains two vertex-disjoint subtrees of treedepth at least b each. Assume then a > 1 and
H ∈ Ga,b. Then for every v ∈ V (H), H − v contains a connected component that contains a
subtree belonging to Ga−1,b. This finishes the proof. J
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We show Property (3) by induction on n. Clearly, td(G1) = 1 =
(1+1

2
)
. Consider n ≥ 2. Since

the treedepth of Gn−1 is at least
(
n
2
)
, we have that Gn ∈ Gn,(n

2). By Lemma 24, we have that

td(Gn) ≥ n+
(
n

2

)
=
(
n+ 1

2

)
.

This finishes the proof of Property (3).

7 Conclusions

We have provided improved bounds for the excluded minor approximation of treedepth of
Kawarabayashi and Rossman [4]. Our main result, Theorem 4, is close to being optimal
in the following sense: as witnessed by the family of trees, if one considers the measure
r := td(G)/tw(G), one cannot hope to find a tree in G of treedepth larger than r. We pose
getting rid of the log(tw(G) + 1) factor in Theorem 4 as an open problem. Improving the
Ck3 log k bound of Corollary 5 to Ck3−ε for some ε > 0 seems much more challenging.

Our main result can be applied to a polynomial-time treedepth approximation algorithm,
improving upon state-of-the-art tradeoff trick. As a second open problem, we ask for a
polynomial-time or single-exponential in treedepth parameterized algorithm for constant or
polylogarithmic approximation of treedepth.
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Abstract
A robot modeled as a deterministic finite automaton has to build a structure from material available
to it. The robot navigates in the infinite oriented grid Z× Z. Some cells of the grid are full (contain
a brick) and others are empty. The subgraph of the grid induced by full cells, called the field, is
initially connected. The (Manhattan) distance between the farthest cells of the field is called its span.
The robot starts at a full cell. It can carry at most one brick at a time. At each step it can pick a
brick from a full cell, move to an adjacent cell and drop a brick at an empty cell. The aim of the
robot is to construct the most compact possible structure composed of all bricks, i.e., a nest. That
is, the robot has to move all bricks in such a way that the span of the resulting field be the smallest.

Our main result is the design of a deterministic finite automaton that accomplishes this task
and subsequently stops, for every initially connected field, in time O(sz), where s is the span of the
initial field and z is the number of bricks. We show that this complexity is optimal.
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1 Introduction

The problem

A mobile agent (robot) modeled as a deterministic finite automaton has to build a structure
from material available to it. The robot navigates in the infinite oriented grid Z × Z
represented as the set of unit square cells in the two-dimensional plane, with all cell sides
vertical or horizontal. The robot has a compass enabling it to move from a currently occupied
cell to one of the four cells (to the North, East, South, West) adjacent to it. Some cells of the
grid contain a brick, i.e., are full, other cells are empty. The subgraph of the grid induced
by full cells, called the field, is initially connected. The (Manhattan) distance between the
farthest cells of the field is called its span. Notice that the span of any current field may
be much smaller than its diameter as a subgraph of the grid. In fact, this diameter may be
sometimes undefined, if the field becomes disconnected. The robot starts at a full cell. It
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can carry at most one brick at a time. At each step, the robot can pick up a brick from the
currently occupied full cell (if it does not carry any brick at this time), moves to an adjacent
cell, and can drop a brick at the currently occupied empty cell (if it carries a brick). The
robot has no a priori knowledge of the initial field, of its span or of the number of bricks.

The aim of the robot is to construct the most compact possible structure composed of all
bricks, i.e., a nest. That is, the robot has to move all bricks in such a way that the span of
the resulting field be the smallest. The above task has many real applications. In the natural
world, animals use material scattered in a territory (pieces of wood, small branches, leaves) to
build a nest, and minimizing the span is important to better protect it. A mobile robot may
be used to clean a territory littered by hazardous material, in which case minimizing the span
of the resulting placement of contaminated pieces facilitates subsequent decontamination. A
more mundane example is the everyday task of sweeping the floor, whose aim is to gather all
trash in a small space and then get rid of it.

Our results

Our main result is the design of a deterministic finite automaton that accomplishes the task
of building a nest and subsequently stops, for every initially connected field, in time O(sz),
where s is the span of the initial field and z is the number of bricks. The time is defined as
the number of moves of the robot. We show that this complexity is optimal.

The essence of our nest building algorithm is to instruct the robot to make a series of
trips to get consecutive bricks, one at a time, and carry them to some designated compact
area. This approach ensures the optimal complexity. (In order to show where the problem is,
we also sketch a much simpler algorithm that uses another approach but has significantly
larger complexity). There are two major difficulties to carry out this plan. The first is that
the span of the initial field may be much larger than the memory of the robot, and hence the
robot that already put several bricks in a compact area and goes for the next brick cannot
remember the way back to the area where it started building. Thus we need to prepare the
way, so that the robot can recognize the backtrack path locally at each decision point. The
second problem is that, while we temporarily disconnect the field during the execution of the
algorithm, special care has to be taken so that the connected components of intermediary
fields be close to each other, to prevent the robot from getting lost in large empty spaces.

To the best of our knowledge, the task of constructing structures from available material
using an automaton, has never been studied before in the algorithmic setting. It is interesting
to compare this task to that of exploration of mazes by automata, that is a classic topic
with over 50 years of history (see the section “Related work”). It follows from the result of
Budach [9] (translated to our terminology) that if an automaton can only navigate in the
field without moving bricks then it cannot explore all connected fields, even without the stop
requirement, i.e., it cannot even see all bricks. By contrast, it follows from our result that
the ability of moving bricks enables the automaton not only to see all bricks but to build a
potentially useful structure using all of them and stop, and to accomplish all of that with
optimal complexity.

The model

We consider the infinite oriented grid Z× Z represented as the set of unit square cells tiling
the two-dimensional plane, with all cell sides vertical or horizontal. Each cell has 4 adjacent
cells, North, East, South and West of it. Some cells of the grid contain a brick, i.e., are full,
other cells are empty. The subgraph of the grid induced by full cells is initially connected.
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At each step of the algorithm this subgraph can change, due to the actions of the robot,
described below. At each step, the subgraph induced by the full cells is called the current field.
Any maximal connected subgraph of the current field is called a component. Throughout the
paper, the distance between two cells (x, y) and (x′, y′) of the grid is the Manhattan distance
between them, i.e., |x− x′|+ |y− y′|. The number of cells of a field is called its size, and the
distance between two farthest cells of a field is called its span. A nest of size z is a field that
has the minimum span among all fields of size z.

We are given a mobile entity (robot) starting in some cell of the initial field and traveling
in the grid. The robot has a priori no knowledge of the field, of its size or of its span.
The robot is formalized as a finite deterministic Mealy automaton R = (X,Y, §, δ, λ, S0, Sf).
X = {e, f} × {l, h} is the input alphabet, Y = {N,E, S,W} × {e, f} × {l, h} is the output
alphabet. § is a finite set of states with two special states: S0 called initial and Sf called final.
δ : § ×X → § is the state transition function, and λ : § ×X → Y is the output function.

The meaning of the input and output symbols is the following. At each step of its
functioning, the robot is at some cell of the grid and has some weight: it is either light,
denoted by l (does not carry a brick) or heavy, denoted by h (carries a brick). Moreover, the
current cell is either empty, denoted by e or full, denoted by f . The input x ∈ {e, f} × {l, h}
gives the automaton information about these facts. The robot is in some state S. Given this
state and the input x, the robot outputs the symbol λ(x, S) ∈ {N,E, S,W} × {e, f} × {l, h}
with the following meaning. The first term indicates the adjacent cell to which the robot
moves: North, East, South or West of the current cell. The second term determines whether
the robot leaves the current cell empty or full, and the third term indicates whether the
robot transits as heavy or as light to the adjacent cell. Since the robot can only either leave
the current cell intact and not change its own weight, or pick a brick from a full cell leaving
it empty (in the case when the robot was previously light), or drop a brick on an empty
cell leaving it full (in the case when the robot was previously heavy), we have the following
restrictions on the possible values of the output function λ:

λ(S, e, l) must be (·, e, l)
λ(S, e, h) must be either (·, e, h) or (·, f, l)
λ(S, f, l) must be either (·, f, l) or (·, e, h)
λ(S, f, h) must be (·, f, h)
Seeing the input symbol x and being in a current state S, the robot makes the changes

indicated by the output function (it goes to the indicated adjacent cell, possibly changes the
filling of the current cell as indicated and possibly changes its own weight as indicated), and
transits to state δ(x, S). The robot starts light in a full cell in the initial state S0 (hence its
initial input symbol is (f, l)) and terminates its action in the final state Sf.

Related work

Problems concerning exploration and navigation performed by mobile agents or robots in
an unknown environment have been studied for many years (cf. [7, 21, 26]). The relevant
literature can be divided into two parts, according to the environment where the robots
operate: it can be either a geometric terrain, possibly with obstacles, or a network modeled
as a graph in which the robot moves along edges.

In the geometric context, a closely related problem is that of pattern formation [12, 14, 28].
Robots, modeled as points freely moving in the plane have to arrange themselves to form a
pattern given as input. This task has been mostly studied in the context of asynchronous
oblivious robots having full visibility of other robots positions.
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The graph setting can be further specified in two different ways. In [1, 3, 4, 13, 19] the
robot explores strongly connected directed graphs and it can move only in the tail-to-head
direction of an edge, not vice-versa. In [2, 5, 9, 15, 16, 17, 25, 27] the explored graph is
undirected and the robot can traverse edges in both directions. Graph exploration scenarios
can be also classified in another important way. It is either assumed that nodes of the graph
have unique labels which the robot can recognize (as in, e.g., [13, 17, 25]), or it is assumed
that nodes are anonymous (as in, e.g., [3, 4, 9, 10, 27]). In our case, we work with the infinite
anonymous grid, hence it is an undirected anonymous graph scenario. The efficiency measure
adopted in papers dealing with graph exploration is either the completion time of this task,
measured by the number of edge traversals, (cf., e.g., [25]), or the memory size of the robot,
measured either in bits or by the number of states of the finite automaton modeling the
robot (cf., e.g., [15, 20, 19]). We are not concerned with minimizing the memory size but we
assume that this memory is bounded, i.e., it is constant as a function of the input grid size.
However we want to minimize the time of our construction task.

The capability of a robot to explore anonymous undirected graphs has been studied in,
e.g., [6, 9, 15, 20, 23, 27]. In particular, it was shown in [27] that no finite automaton can
explore all cubic planar graphs (in fact no finite set of finite automata can cooperatively
perform this task). Budach [9] proved that a single automaton cannot explore all mazes (that
we call connected fields in this paper). Hoffmann [22] proved that one pebble does not help
to do it. By contrast, Blum and Kozen [6] showed that this task can be accomplished by two
cooperating automata or by a single automaton with two pebbles. The size of port-labeled
graphs which cannot be explored by a given robot was investigated in [20].

Recently a lot of attention has been devoted to the problem of searching for a target
hidden in the infinite anonymous oriented grid by cooperating agents modeled as either
deterministic or probabilistic automata. Such agents are sometimes called ants. It was
shown in [18] that 3 randomized or 4 deterministic automata can accomplish this task.
Then matching lower bounds were proved: the authors of [11] showed that 2 randomized
automata are not enough for target searching in the grid, and the authors of [8] proved that
3 deterministic automata are not enough for this task. Searching for a target in the infinite
grid with obstacles was considered in [24].

Our present paper adopts the same model of environment as the above papers, i.e., the
infinite anonymous oriented grid. However the task we study is different: instead of searching
for a target, the robot has to build some structure from the available material. To the best
of our knowledge, such construction tasks performed by automata have never been studied
previously in the algorithmic setting.

2 Terminology and preliminaries

In the description and analysis of our algorithm we will categorize full cells. A full cell is
said to be a border cell if it is adjacent to an empty cell. A full cell that has only one full
adjacent cell is called a leaf. A full cell is called special, if it is either a leaf, or has at least
two full cells adjacent to it, sharing a corner.

A finite deterministic automaton may remember a constant number of bits by encoding
them in its states. We will use this fact to define several simple procedures and simplifications
that we use in the sequel. The first simplification is as follows. We formulate the actions of
the robot based on the configuration of bricks in its neighborhood. More precisely, at any
step, the robot knows whether each cell at distance at most r = 8 from its current cell is full
or empty. This can be achieved by performing a bounded local exploration with return, after
each move of the robot.
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We will use the notion of current orientation of the robot. At the beginning of its
navigation, the robot goes in one of the four cardinal directions. Then its orientation is
determined in one of the two ways: either by its last step (North, East, South or West) or
by a turn: we say that the robot turns left (respectively right) meaning that it changes its
orientation in the appropriate way while remaining at the same cell. Clearly the robot can
remember its orientation, using its states. We refer to cardinal directions with respect to this
current orientation. Thus, e.g., if the robot is oriented East then we say that its adjacent
North (resp. East, South or West) cell is left (resp. in front, right, back) of it.

Whenever we say that the robot located at a cell c and not carrying a brick brings a
brick from a full cell c′ to c we mean that the robot moves from c to c′, picks the brick from
c′, moves back to c and restores its original orientation. Whenever we say that the robot
located at a cell c and carrying a brick places it at an empty cell c′ we mean that the robot
moves from c to c′, drops the brick at c′, moves back to c and restores its original orientation.

Whenever the robot selects a cell according to some condition that is fulfilled by more
than one cell, the robot selects the cell that is minimal with respect to the following total
order ≺ on the set of all cells. For cells c = (x, y) and c′ = (x′, y′), c ≺ c′ holds if and only if
either y < y′, or y = y′ and x ≤ x′. We denote by |S| the number of cells in a sequence or a
set S of cells.

We define a disc of radius r ≥ 0 with center c to be the set of all cells at distance at most
r from c, see Fig. 1. A disc of radius r contains zr = 2(1 + 3 + 5 + · · ·+ (2r− 1)) + (2r+ 1) =
2r2 + 2r + 1 cells and has span 2r. A rough disc of size z, where zr ≤ z < zr+1 is defined as
follows. If z = zr, then the rough disc is the disc of radius r. Otherwise, let F be the set
of cells not belonging to the disc D of radius r but adjacent to some cell of it. Add to D
exactly z − zr cells belonging to F , starting from the North neighbor of the East-most cell of
D and going counterclockwise. If zr < z ≤ zr + 2r + 2 then the rough disc of size z has span
2r + 1 and if zr + 2r + 2 < z < zr+1 then the rough disc of size z has span 2r + 2, the same
as the disc of radius r + 1 that has size zr+1.

(a) (b) (c)

Figure 1 (a) disc of size zr for r = 3; (b) a rough disc of size zr + 7 and span 2r + 1, r = 3; (c) a
rough disc of size zr + 11 and span 2r + 2, r = 3.

The proofs of the next two propositions are omitted due to space limitation.

I Proposition 1. Any rough disc is a nest.

The nests built by our automaton will be rough discs. The following proposition shows
that the complexity of our nest-building algorithm is optimal, regardless of the relation
between the size of the initial field and its span (recall that, by definition, the span must be
smaller than the size z and it must be in Ω(

√
z)). Our lower bound on complexity follows

from geometric properties of the grid, and hence it holds regardless of the machine that
builds the nest, i.e., even if the robot is a Turing machine knowing a priori the initial field.

I Proposition 2. Let s′ < z be positive integers such that s′ ∈ Ω(
√
z). There exists an initial

field of size z and span s ∈ Θ(s′), such that any algorithm that builds a nest starting from
this field must use time Ω(sz).
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3 The algorithm

The robot will move bricks from the original field and build two special components. One of
them will be a rough disc that will be gradually extended. The second one will be a one-cell
component whose only cell is called the marker. The robot will periodically get at large
distances from the rough disc being built, and the role of the marker will be to indicate to the
robot that it got back in the vicinity of the rough disc. Any component that is different from
the rough disc and from the marker will be called a free component. During the execution of
the entire algorithm, the robot will not ensure that the full cells outside of the rough disc
and of the marker form one component – they may form several components – but after
adding a new brick to the rough disc these components will be always at a bounded distance,
i.e., at distance O(1), from the rough disc that the robot is constructing.

We are now ready to sketch the high-level idea of the algorithm, whose pseudo-code
is presented at the end of this section as algorithm Nest. First the robot performs some
preliminary actions by establishing the marker and the initial rough disc and by calling
procedure Sweep, which together result in constructing the first rough disc D (of size one),
placing the marker next to it and ensuring that no full cells other than the marker are at
distance at most 7 from D. Then each iteration of the main loop of algorithm Nest performs
three actions. First, it executes procedure FindNextBrick that allows the robot to find a
brick in a free component C. This brick must be carefully chosen. For example, greedily
picking the closest available brick would soon result in creating large empty spaces between
components of the field, in which the robot could get lost. This brick will be later used
to extend the rough disc. However, this procedure may lead the robot far from the rough
disc and may also disconnect C into many components. Disconnecting C is one of the main
tools in our construction. It is done by the robot on purpose to allow it to find its way
back to the marker and so that it is possible to recover the connectivity of C on the way
back. Such a walk back to the marker is the second action performed in the main loop and
described as procedure ReturnToMarker. The third action is done once the robot is back
at the marker, and it is given as procedure ExtendRoughDisc. This procedure extends the
rough disc, ensuring the property that there are no full cells at a prescribed bounded distance
from the rough disc, except the marker. While restoring this property, the robot may again
disconnect some components but all of them are at a bounded distance from the rough disc
and thus the robot will be able to find them easily. Additionally, it may happen that the cell
brought to the rough disc was the last cell of C. In such a case, as the last part of procedure
ExtendRoughDisc, the robot places the marker near another component close to the rough
disc, if one exists. This will be the new free component C in which the robot will find the
next brick in the next iteration of the main loop. If no such C exists, then the robot adds
the brick from the marker to the rough disc, thus completing the construction of the nest.

Many of the difficulties described above come from our desire to keep the complexity
of the algorithm optimal, i.e., O(sz). If complexity were not an issue, the following much
simpler algorithm would be sufficient. The robot first builds a horizontal line at the level
of a South-most cell of the initial field, by gradually squeezing down the field, keeping it
connected at all times. Then it transforms the line into a nest. The squeezing down can be
performed by iteratively repeating the following steps. First, the robot makes sure that it is
not on the lowest level (if the line is not yet constructed, this can be done by finding a full
cell with a full South neighbor). Then the robot goes to some North-West extremity of the
field, i.e., to any full cell that has empty cells to the North and to the West of it. Then it
picks the brick from this cell and drops it one level down, ensuring the connectivity. This
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can be done by first moving one level down and then iteratively going West until an empty
cell is encountered, where the robot drops the brick. When the field is squeezed down to a
line, the robot will recognize this and easily transform it into a nest.

This idea potentially requires time Θ(z) to lower a brick by one level. Since there are z
bricks possibly on Θ(s) levels, the entire time would be Θ(sz2) in the worst case, which is
suboptimal. Thus we proceed with the detailed description of the optimal algorithm Nest
whose high-level idea was described before.

3.1 Moving bricks out of the way

One of the challenges in constructing the rough disc is to have enough room so that, while
expanding, it does not merge with the remainder of the field. This is one of the goals of
procedure Sweep. Its high-level idea is the following. It ensures an invariant that has to hold
whenever the agent goes to retrieve the next brick in order to extend the rough disc. This
invariant is that there are no full cells, other than the cell M that is the marker, within a
given bounded distance from the current rough disc D. This procedure is called when the
robot is at the marker, in two situations. The first one is right before the main loop: in this
case the marker, the rough disc (of size one) and its corresponding neighborhood occupy a
constant number of cells and hence in this case the robot is able to decide whether a given
cell is in D ∪ {M}. The second situation occurs after each extension of the rough disc. In
this case, the size of D may be unbounded but a walk around its border (which can be done
with stop, using the marker) allows to determine if there is a full cell c within a bounded
distance from D, that does not belong to the rough disc itself. Whenever such a full cell c is
found, the robot picks the brick from c and searches for an empty cell at distance at least
7 from the rough disc. This searching walk is done in such a way as to ensure the return
to the rough disc. At the end of the procedure, the robot places the marker next to some
free component. Below is the pseudo-code of procedure Sweep. In this pseudo-code, we use

Procedure Sweep sweeping away bricks that are close to the rough disc.

1 M := the marker
2 go to the closest cell of the rough disc D
3 perform a full counterclockwise traversal of the border of D, executing the following

actions after each step:
4 for each full cell c /∈ D ∪ {M} at distance at most 7 from the robot do
5 c′ := the cell currently occupied by the robot
6 go to c and pick the brick
7 move in direction away from D and stop at the first empty cell at distance at

least 7 from D

8 drop the brick and return to c′

9 if there exists a free component C then
10 pick the brick from marker and place it at distance 3 from the rough disc and at

distance 4 from C, creating a new marker
11 go to the marker

the notion of the robot going in direction away from the rough disc D. This is the direction
which strictly increases the distance between the robot and the rough disc. In the case where
there are two such directions, we use priority North, East, South, West.
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3.2 Finding the next brick
The high-level idea of procedure FindNextBrick is the following. In may happen that the
cells that belong to a free component C and are close to the marker cannot be rearranged in
such a way that the robot be able to obtain a brick that it can then use to extend the rough
disc and at the same time keep the connectivity of C and ensure that C remains close to the
marker. Thus, the robot has to retrieve the needed brick by following a potentially long
walk; we will call it a search walk and formally define it below. The search walk needs to be
carefully chosen to ensure that it ends at a location where it is possible to find the desired
brick and so that the robot be able to return to the marker. Moreover, this walk has to be
sufficiently short to guarantee the time O(sz) of the algorithm, i.e., the length of each walk
must be O(s). We ensure the latter as follows: each search walk W leads alternatingly in
two non-opposite directions, e.g., North and West. The return is guaranteed by repeatedly
performing an action called switch while walking along W, which we formally describe later.
Intuitively speaking, the switch eliminates the cells adjacent to W at which the robot may
incorrectly turn on its way back to the marker. The switch potentially disconnects the
component but the robot is able to recover the connectivity while backtracking along W.
Finally, we will describe how the desired brick can be found at the end of W.

3.2.1 Search walks
Suppose that the robot is currently at a full cell and there is a full cell in front of the robot.
A left-free (respectively right-free) segment consists of all full cells that will be visited by the
robot that moves without changing its direction until one of the following conditions holds:
(S1) the robot arrives at a full cell that has an empty cell in front of it and has an empty

cell to the left (respectively right) of it; such a segment is called terminal,
(S2) the robot arrives at the first special cell such that the cell to the left (respectively right)

of the robot is full.

Whenever the orientation is not important or clear from the context we will refer to a
left-free or right-free segment by saying segment. Note that not every special cell terminates
the above sequence of moves.

We now define a search walk W of the robot in an arbitrary component C (cf. the example
in Fig. 2). A search walk depends on the initial position of the robot in C and on its
orientation. We make two assumptions in the definition: the robot is initially located at a
full cell of C and, if |C| > 1, then there is a full cell in front of the robot. The search walk W
is a concatenation of segments. The first segment is both left-free and right-free. If the cell c
at the end of this segment is a leaf, then the construction of W is completed. Otherwise,
note that there is a full cell to the left of the robot located at c or to the right of it. In
the former case, the search walk is called left-oriented and in the latter it is right-oriented.
Intuitively, a left-oriented search walk prescribes going straight until it is possible to go left,
then going straight until it is possible to go right, and so on, alternating directions, until a
stop condition is satisfied. A similar intuition concerns right-oriented search walks.

More formally, if |C| > 1, then the search walk W consists of a single cell. Otherwise, in
a right-oriented (respectively left-oriented) search walk, the segments are sequentially added
to W, cyclically alternating the following construction steps.

(W1) The robot traverses a right-free (respectively left-free) segment, adding it to W. This
segment becomes the last segment in W if it is a terminal. If the segment is not the
last one, then the robot turns right (respectively left).
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(W2) The robot traverses a left-free (respectively right-free) segment, adding it to W. This
segment becomes the last segment in W if it is a terminal. If the segment is not the
last one, then the robot turns left (respectively right).

w2

w1

w3w4w5w6w7w8

w9

w10w11

w12w13w14w15w16w17w18w19w20

R

Figure 2 An example of a search walk W = (w1, . . . , w20) that is constructed by the robot
initially located at w1 and facing North. This search walk is left-oriented, and has three left-free
segments S1 = (w1, w2, w3), S3 = (w8, w9, w10), S5 = (w11, w12) and three right-free segments
S2 = (w3, . . . , w8), S4 = (w10, w11), S6 = (w12, . . . , w20).

3.2.2 Ensuring the return from a search walk
We start with a high-level idea of the mechanism that will ensure the return from a search
walk. Whenever the robot follows a search walk W, it may a priori not be able to return to
the origin of W. This is due to the fact that, e.g., if W is left-oriented, then any segment
that is right-free may have an unbounded number of special cells such that each of them
is adjacent to a cell that does not belong to W. Thus, the returning robot is not able to
remember, using its bounded memory, which of such cells do not belong to the search walk
and should be skipped. To overcome this difficulty, the robot will make small changes in
the field close to the search walk while traversing it for the first time. These changes may
disconnect the component in which the robot is walking, and this may result in creating
many new components. While doing so, we will ensure two properties. First, thanks to the
modifications in the field performed while traversing W, the robot is able to return to the
first cell of this search walk. Second, while backtracking on W, the robot is able to undo
earlier changes and recover the connectivity of the component.

Each cell c at which the robot stops to perform the above-mentioned modification will
be called a break point and is defined as follows. First, we require that c be an internal
cell of a segment S, i.e., neither the first nor the last cell of S. Second, if S is left-free
(respectively right-free), then when the robot traversing S is at c, there is a full cell f to the
right (respectively left) of it. Clearly, the cell e to the left (respectively right) of the robot is
empty. The following couple of actions performed by the robot located at such a cell c are
called a switch: if the robot is not carrying a brick, then the robot brings the brick from
f and then places it at e, and if the robot is carrying a brick, then the robot places it at
e and then brings the brick from f . Note that the switch may disconnect the component
in which the robot is located thus creating two new components. One new component is
the one in which the robot is located and this is the component that contains the search
walk. The second new component is the one that contains the cell f ′ adjacent to f and at
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distance two from c, if f ′ is full. If the cell f ′ is full and belongs to a separate component,
then this second component containing f ′ will be called a switch-component. Whenever the
robot traversing a segment performs the switch at each internal special cell of the segment,
we say that this is a switch-traversal (cf. the example in Fig. 3).

w2

w1

w3w4w5w6w7w8

w9

w10w11

w12w13w14w15w16w17w18w19

w20

f1f2

f3

f4f5f6

e1e2=e3

e4e5e6

R

Figure 3 The field from Figure 2 after switch-traversal of the search walk from Figure 2. The
cells w6, w7, w9, w13, w15 and w16 are the break points at which the robot moves a brick from a cell
fi to ei for i ∈ {1, . . . , 6}. Note that a brick is moved from f2 to e2 while traversing the second
segment and then the same brick is moved to e3 while traversing the third segment.

3.2.3 Obtaining a brick at the end of a search walk

Informally, the purpose of traversing the entire search walk by a robot is to arrive at a
location in the current component C of the robot, where the robot can start a procedure
aimed at obtaining a brick whose removal will not disconnect C. We will say that such a
brick is free. In our algorithm, we check the condition (S1) to learn if the last segment is
terminal. According to the condition, the terminal segment may end with a leaf, and in such
a case the robot is at a cell with a free brick. If the terminal segment does not end with
a leaf, then there need not exist a free brick located in a close neighborhood of the robot.
However, we will prove that it is possible to perform a series of changes to the field that
results in creating a configuration of bricks that does contain a free brick.

We now define the behavior of the robot that ended the switch-traversal of the last
segment S of a search walk W and arrived at a cell that is not a leaf. The following series of
moves is called shifting (cf. Fig. 4). Suppose that the cell to the right (respectively left) of
the robot is full. Note that this implies that S is left-free (respectively right-free). First the
robot changes its direction so that a cell of S is in front of it (i.e., the robot turns back). The
following three actions are performed until the stop condition specified in the third action
occurs. First, the robot picks the brick from the currently occupied cell. Second, the robot
moves one step forward – thus backtracking along S. Third, when the robot is at a special
cell, then the shifting is completed, and otherwise the robot places the brick at the cell to
the left (respectively right) of it. Note that when the robot arrives at a special cell, it is
carrying a brick and this is the desired free brick.

We now give the pseudo-code of procedure FindNextBrick that obtains this brick.
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Figure 4 The field from Fig. 3 at the end of shifting. The shifting ends with a right-free segment,
at the cell w16 because it has a full neighbor, the cell e6. There is one fewer brick than in Fig. 3
and this is the free brick obtained and carried by the robot.

Procedure FindNextBrick finding a free brick.

1 W := the search walk that starts at the cell where the robot is located
2 go to the nearest cell belonging to a free component
3 perform a switch-traversal of W
4 if the robot is at a leaf then
5 pick the brick
6 else
7 perform shifting

3.3 Back to the marker
Before presenting the high-level idea of procedure ReturnToMarker that takes the robot
carrying a brick back to the marker, we need the following definitions. If S is a segment,
then the reversal of S, denoted by ϕ(S), is the segment composed of the same cells as S but
in the reversed order. For a search walk W that is a concatenation of segments S1, . . . , Sl,
define the reversal of W, denoted by ϕ(W), to be the walk that is the concatenation of
segments ϕ(Sl), ϕ(Sl−1), . . . , ϕ(S1), in this order. Thus, following ϕ(W) means backtracking
along W , and in this section we give a procedure performing it, that reconnects the previous
free component on the way. We also define the orientation of ϕ(W) as follows. If the last
segment of W is left-free, then ϕ(W) is left-oriented, and otherwise ϕ(W) is right-oriented.
Thus, if W ended with a left-free (respectively right-free) segment, then ϕ(W) also starts
with a left-free (respectively right-free) segment.

At a high level, the robot will perform a switch-traversal along ϕ(W), stopping at each
break point to reconnect the corresponding switch-component with the component in which
the robot is walking. However, we need to ensure that, at the end, the robot stops at the
right point, i.e., at the marker. In order to ensure this, we define the following condition:

(S1’) the robot arrives at a cell at distance at most 4 from the marker.

We define a return switch-traversal of ϕ(W) to be a switch-traversal of ϕ(W) in which each
verification of condition (S1) is replaced by the verification of condition (S1’). Recall that the
condition (S1) is checked in the definition of a switch-traversal to determine the termination
of a segment and consequently the termination of the entire search walk. Intuitively, by
replacing condition (S1) with (S1’) we change the behavior of the robot so that it is looking
for the marker while backtracking along W, i.e., going along ϕ(W).
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A high-level sketch of procedure ReturnToMarker is the following. As indicated earlier,
the robot essentially follows ϕ(W) and, as the return switch-traversal dictates, reconnects
the switch components. However, there is one special case in which the robot should not
perform a switch while being at a cell c′ of ϕ(W), although c′ satisfies the definition of a
break point. This case occurs if the shifting moved all internal cells of the last segment
of W. In this case, it is enough for the robot to move to the next cell after c′ and start
the return switch-traversal of ϕ(W) from there. This is feasible because the cell c and its
neighbors are at a bounded distance from the robot when the shifting is completed. Below is
the pseudo-code of procedure ReturnToMarker.

Procedure ReturnToMarker going back to the marker.

1 W := the search walk traversed in the last call to FindNextBrick
2 let S1, . . . , Sl be the segments in W
3 if the robot is at the first cell of Sl then
4 turn towards the penultimate cell of Sl−1
5 move min{2, |Sl−1| − 1} cells forward
6 if |Sl−1| = 2 and l > 2, then make a turn towards the penultimate cell of Sl−2

7 starting at the current location, perform a return switch-traversal of ϕ(W)
8 go to the marker

3.4 Extending the rough disc
The aim of procedure ExtendRoughDisc is double: it adds a new brick to the current rough
disc in a specific place, and it calls procedure Sweep to extend, if necessary, the empty
space around the rough disc and to ensure that the marker is close to some free component.
Whenever procedure ExtendRoughDisc is called, the following conditions will be satisfied:
the robot is at the marker and it is carrying a brick.

Below is the pseudo-code of procedure ExtendRoughDisc.

Procedure ExtendRoughDisc adding one brick to the rough disc D.

1 place the brick at the unique cell e such that D ∪ {e} is a rough disc
2 call procedure Sweep

Now the pseudo-code of the entire algorithm can be succinctly formulated as follows.

Algorithm Nest building a nest from any connected field.

1 if the span of the field is at most 2 then
2 exit . the field is already a nest
3 the cell occupied by the robot becomes the marker
4 a full cell at distance 2 from the marker becomes the initial rough disc
5 call procedure Sweep
6 while there exists a free component C do
7 call procedure FindNextBrick
8 call procedure ReturnToMarker
9 call procedure ExtendRoughDisc . moves the marker if necessary

10 pick the brick (the marker) and place it at the unique cell e of the rough disc D such
that D ∪ {e} is a rough disc
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The following is the main result of this paper. Its proof is omitted due to space limitation.

I Theorem 3. Algorithm Nest builds a nest starting from any connected field of size z and
span s in time O(sz). This time is worst-case optimal.

4 Conclusion

We designed a finite deterministic automaton that builds the most compact structure starting
from any connected field of bricks, and does it in optimal time. An interesting problem
yielded by our research is to characterize the classes of target structures that can be built by
a single automaton, starting from any connected field of bricks in the grid. Another problem
is that of how the building task parallelizes, i.e., how much time many automata use to build
some structure.
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Abstract
In this work we consider three well-studied broadcast protocols: push, pull and push&pull. A key
property of all these models, which is also an important reason for their popularity, is that they
are presumed to be very robust, since they are simple, randomized, and, crucially, do not utilize
explicitly the global structure of the underlying graph. While sporadic results exist, there has been
no systematic theoretical treatment quantifying the robustness of these models. Here we investigate
this question with respect to two orthogonal aspects: (adversarial) modifications of the underlying
graph and message transmission failures.

We explore in particular the following notion of local resilience: beginning with a graph, we
investigate up to which fraction of the edges an adversary may delete at each vertex, so that the
protocols need significantly more rounds to broadcast the information. Our main findings establish a
separation among the three models. On one hand pull is robust with respect to all parameters that
we consider. On the other hand, push may slow down significantly, even if the adversary is allowed
to modify the degrees of the vertices by an arbitrarily small positive fraction only. Finally, push&pull
is robust when no message transmission failures are considered, otherwise it may be slowed down.

On the technical side, we develop two novel methods for the analysis of randomized rumour
spreading protocols. First, we exploit the notion of self-bounding functions to facilitate significantly
the round-based analysis: we show that for any graph the variance of the growth of informed vertices
is bounded by its expectation, so that concentration results follow immediately. Second, in order to
control adversarial modifications of the graph we make use of a powerful tool from extremal graph
theory, namely Szemerédi’s Regularity Lemma.
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1 Introduction

Randomized broadcast protocols are highly relevant for data distribution in large networks
of various kinds, including technological, social and biological networks. Among many others
there are three basic models in the literature, introduced in [19, 9, 24], namely push, pull
and push&pull (or short pp). Consider a connected graph in which some vertex holds a piece
of information; we call this vertex (initially) informed. All three models have the common
characteristic that they proceed in rounds. In the push model, in every round every informed
vertex chooses a neighbour independently and uniformly at random (iuar) and informs it;
this of course has only an effect if the target vertex was previously uninformed. Contrary, in
the pull model every round every uninformed vertex chooses a neighbour iuar and asks for
the information. If the asked vertex has the information, then the asking vertex becomes
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informed as well. The third model push&pull combines both worlds: in each round, each
vertex chooses a neighbour iuar, and if one of both vertices is informed, then afterwards both
become so. We additionally assume that each message transmission succeeds independently
with probability q ∈ (0, 1]. For these algorithms, the main parameter that we consider is the
random variable that counts how many rounds are needed until all vertices are informed,
and we call these quantities the runtimes of the respective algorithms.

In the remainder we will denote the runtime of push by Tpush(G, v, q) where G is the
underlying graph, initially the vertex v is informed and we have a transmission success
probability of q ∈ (0, 1]. Analogously we denote the runtimes of pull and push&pull by
Tpull(G, v, q) and Tpp(G, v, q) respectively. If the choice of v does not matter we will omit it
in our notation. The most basic case is when G is the complete graph Kn with n vertices.
Then, see for example Doerr and Kostrygin [11], it is known that for P ∈ {push, pull, pp}
and q ∈ (0, 1] in expectation and with probability tending to 1 as n→∞

TP(Kn, q) = cP(q) logn+ o(logn),

where, for q ∈ (0, 1),

cpush(q) := 1
log(1 + q) + 1

q
, cpull(q) := 1

log(1 + q) −
1

log(1− q) ,

cpp(q) := 1
log(1 + 2q) + 1

q − log(1− q) ,

and where we set cP(1) := limq→1 cP(q). If q is clear from the context, we write cP instead
of cP(q). Actually, the results in [11] and also [12] are much more precise, but the stated
forms will be sufficient for what follows.

Contribution & Related Work

In this article our focus is on quantifying the robustness of all three models. Indeed, robustness
is a key property that is often attributed to them, since they are simple, randomized, and,
crucially, do not exploit explicitly the structure of the underlying graph (apart, of course, from
considering the neighborhoods of the vertices). Clearly, the runtime can vary tremendously
between different graphs with the same number of vertices. Hence it is essential to understand
which structural characteristics of a graph influence in what way the runtime of rumour
spreading algorithms.

One result in this spirit for the push model was shown in [25]. Roughly speaking, in
that paper it is shown that even on graphs with low density, if the edges are distributed
rather uniformly, then push is as fast as on the complete graph. This can be interpreted as a
robustness result: starting with a complete graph, one can delete a vast amount of edges and
as long as this is done rather uniformly, the runtime of push is affected insignificantly. To
state the result more precisely, we need the following notion.

I Definition 1 ((n, δ,∆, λ)-graph). Let G be a connected graph with n vertices that has
minimum degree δ and maximum degree ∆. Let µ1 ≥ µ2 ≥ · · · ≥ µn be the eigenvalues of
the adjacency matrix of G, and set λ = max2≤i≤n |µi| = max{|µ2|, |µn|}. We will call G an
(n, δ,∆, λ)-graph.

In this paper we are interested in the case where G gets large, that is, when n→∞. Hence all
asymptotic notation in this paper is with respect to n; in particular “with high probability”,
or short whp, means with probability 1− o(1) when n→∞.
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I Definition 2 (Expander Sequence). Let G = (Gn)n∈N be a sequence of graphs, where
Gn is a (n, δn,∆n, λn)-graph for each n ∈ N. We say that G is an expander sequence if
∆n/δn = 1 + o(1) and λn = o(∆n).

Note that if we consider any sequence G = (Gn)n∈N of graphs this always implicitly defines
δn,∆n and λn as in Definition 2. Expander graphs have found numerous applications in
computer science and mathematics, see for example the survey [23]. If G is an expander
sequence, then intuitively this means that for n large enough, the edges of Gn are rather
uniformly distributed. For a more formal statement see Lemma 16. Moreover, note that our
definition of expander sequences excludes the case when ∆n is bounded; this is actually a
necessary condition for our robustness results to hold, see [13]. With all these definitions
at hand we can state the result from [25] that quantifies the robustness of push with
respect to the network topology, that is, the runtime is asymptotically the same as on the
complete graph Kn.

I Theorem 3. Let G = (Gn)n∈N be an expander sequence. Then whp

Tpush(Gn) = cpush(1) logn+ o(logn).

Apart from expander sequences, results in the form of Theorem 3 (where the asymptotic
runtimes of one or more of these algorithms are determined) were also shown for sufficiently
dense Erdös-Renyi random graphs [16], random regular graphs [15] as well as hypercubes [25].
Moreover, the order of the runtime on various models that describe social networks was
investigated. In [17] the Chung-Lu model was studied, [10] explored preferential attachment
graphs and [18] examined geometric graphs. A somewhat different approach is to derive
general runtime bounds that hold for all graphs and depend only on some graph parameter,
e.g. conductance [20, 6], vertex expansion [21] or diameter [14, 5, 22]. Furthermore, several
variants of push,pull and push&pull were studied. These include vertices being restricted to
answer only one pull request per round [7], vertices being allowed to contact multiple
neighbours per round [25, 11], vertices not calling the same neighbour twice [10] and
asynchronous versions [4, 26, 1, 2]. Finally, besides [11], robustness of these rumor spreading
algorithms with respect to message transmission failures was also studied by Elsässer and
Sauerwald in [13]. It was shown for any graph that if a message fails with probability 1− p,
then the runtime of push increases at most by a factor of 6/p.

In this work our focus is on three subjects concerning the robustness of rumour spreading.
Our first (and not unexpected) result extends Theorem 3 to the runtimes of pull and
push&pull. In particular, we show that none of the three protocols slows down or speeds up
on graphs with good expansion properties compared to its runtime on the complete graph.
This motivates to investigate how severely a graph with good expansion properties has to be
modified to increase the respective runtimes.

In our second contribution, which is also the main result and which differs from what was
treated in previous works, we propose and study a novel approach to quantifying robustness.
In particular, we investigate the impact of adversarial edge deletions, where we use the
well-known concept of local resilience, see e.g. [28, 8]. To be specific, we explore up to which
fraction of edges an adversary may delete at each vertex to slow down the process by a
significant amount of time, i.e., by Ω(logn) rounds. Here we discover a surprising dichotomy
in the following sense. On the one hand, we show that both pull and push&pull cannot be
slowed down by such adversarial edge deletions – in essentially all but trivial cases, where
the fraction is so large that the graph may become (almost) disconnected. On the other
hand, we demonstrate that even a small number of edge deletions is sufficient to slow down
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push by Ω(logn) rounds. In other words, we find that in contrast to pull and push&pull, the
push protocol is not resilient to adversarial deletions and lacks (in this specific sense) the
robustness of the other two protocols.

As our third subject, we generalise the previous results by additionally considering message
transmission failures that occur independently with probability 1− q ∈ [0, 1). On the positive
side, we show that for arbitrary q ∈ (0, 1] all three algorithms inform almost all vertices
at least as fast as when run on expander sequence in spite of adversarial edge deletions.
However, if we want to inform all vertices, only pull is not slowed down by adversarial edge
deletions for all values of q; push can be slowed down as before; and push&pull is a mixed
bag, for q = 1 it cannot be slowed down, for q < 1 it can. Furthermore, in general it is also
possible to speed push&pull up by deleting edges, which is however not surprising as the
star-graph deterministically finishes in at most 2 rounds.

Summarizing, this work expands previous (robustness) results, particularly the ones
concerning precise asymptotic runtimes and random transmission failures. Crucially, we
introduce and study the concept of local resilience as a method to investigate robustness.
However, apart from that, in this paper we develop two new general methods for the analysis
of rumour spreading algorithms.

The most common approach in the current literature for the study of the runtime is to
determine the expected number of newly informed vertices in one or more rounds and to
show concentration, for example by bounding the variance. Achieving this, however, is
often quite complex and makes laborious and lengthy technical arguments necessary. Here
we use the theory of self-bounding functions, see Section 2, that allows us to cleanly upper
bound the variance by the expected value. The argument works for all three investigated
algorithms and the bound is valid for all graphs. We are certain that this method will
also facilitate future work on the analysis of rumour spreading algorithms.
Studying the robustness of the protocols is a challenging task, as the adversary (as
described previously) has various options to modify the graph, for example by introducing
a high variance in the degrees of the vertices; this turns out to be particularly problematic
in the case of push&pull. Here we demonstrate that such types of irregularities can be
handled universally by applying a powerful tool from a completely different area, namely
extremal graph theory. In particular, we use Szemerédi’s regularity lemma (see e.g. [27]),
which allows us to partition the vertex set of a graph such that nearly all pairs of sets in
the partition behave nearly like perfect regular bipartite graphs. This allows us to apply
our methods on these regular pairs; eventually we obtain a linear recursion that can be
solved by analysing the maximal eigenvalue of the underlying matrix.

1.1 Results
Our first result addresses the question about how fast rumours spread on expander graphs; in
order to obtain a concise statement also the occurrence of independent message transmission
failures is considered.

I Theorem 4. Let G = (Gn)n∈N be an expander sequence and let q ∈ (0, 1]. Then whp
(a) Tpush(Gn, q) = cpush(q) logn+ o(log(n)),
(b) Tpull(Gn, q) = cpull(q) logn+ o(log(n)),
(c) Tpp(Gn, q) = cpp(q) logn+ o(log(n)).
The first statement is an extension of Theorem 3 and its proof is a straigthforward adaptation
of the proof in [25]. We omit it. The contribution here is the proof of (b) and (c). Next we
consider the case with edge deletions in addition to the message transmission failures.
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I Theorem 5. Let 0 < ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let
G̃ = (G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex
keeps at least a (1/2 + ε) fraction of its edges. Then whp
(a) Tpull(G̃n, q) = cpull(q) logn+ o(logn).
(b) Tpp(G̃n, 1) ≤ cpp(1) logn + o(logn), when additionally assuming that δ(Gn) ≥ αn for

some constant 0 < α ≤ 1.
This result demonstrates uncoditionally the robustness of pull, and conditionally on q = 1
the robustness of push&pull on dense graphs, in the case of edge deletions, that is, the
runtime is asymptotically the same as in the complete graph. It even shows that push&pull
may potentially profit from edge deletions in contrast to being slowed down. The proof of
this result, especially the statement about push&pull, is rather involved, since the original
graph may become quite irregular after the edge deletions. Here we use, among many
other ingredients, the aforementioned decomposition of the graph given by Szemeredi’s
regularity lemma.

Note that Theorem 5 does not consider push and push&pull (when q 6= 1) at all. Indeed,
our next result states that in these cases the behaviour is rather different and that the
algorithms may be slowed down.

I Theorem 6. Let ε > 0 and q ∈ (0, 1]. Then there is an expander sequence G = (Gn)n∈N
and a sequence of graphs G̃ = (G̃n)n∈N with the following properties. Each G̃n is obtained
by deleting edges of Gn such that each vertex keeps at least a (1 − ε) fraction of its edges.
Moreover, whp
(a) Tpush(G̃n, q) ≥ cpush(q) logn+ ε/(2q) logn+ o(logn).
(b) Tpp(G̃n, q) ≥ cpp(q) logn+

(
ε/(8q)− εq3/5

)
logn+ o(logn).

Nevertheless, not all hope is lost. On the positive side, the next result states that push
and push&pull are able to inform almost all vertices as fast as on the complete graph in
spite of adversarial edge deletions. In this sense, we obtain an almost-robustness result
for these cases.

I Theorem 7. Let 0 < ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let
G̃ = (G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex
keeps at least a (1/2 + ε) fraction of its edges. For P ∈ {push, pp} let T̃P denote the number
of rounds needed to inform at least n− n/ logn vertices. Then whp
(a) T̃push(G̃n) = log1+q(n) + o(logn).
(b) T̃pp(G̃n) ≤ log1+2q(n) + o(logn), when additionally assuming that δ(Gn) ≥ αn for some

constant 0 < α ≤ 1.
We conjecture that there is also a version of Theorem 7b that is true for push&pull on
sparse graphs; to be precise we conjecture that in the setting of Theorem 7b it is T̃pp(G̃n) ≤
log1+2q(n)+o(logn), without further restrictions on Gn, i.e. that push&pull cannot be slowed
down informing almost all vertices.

As a final remark note that Theorems 5 and 7 are tight in the sense that if an adversary
may delete up to half of the edges at each vertex, then there are expander graphs that become
disconnected. On those graphs a linear fraction of the vertices will remain uninformed forever.

Outline

The rest of this paper is structured as follows. The first part of Section 2 contains our
technical contribution concerning the analysis through self-bounding functions. In the second
part we state the Expander Mixing Lemma and give some applications to our setting with
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deleted edges. The remaining sections contain the proofs to the main theorems. The proof of
Theorem 4 has two steps: determining the expected growth rates of the number of informed
vertices after performing one round, then concluding the proof for the runtime by using the
tools developed in Section 2. This proof is not included in this version, here instead we
focus on the case with edge deletions, where for every protocol we use a different method to
show the claimed results. In Subsection 3.1 we show that edge deletions do not slow down
pull, by analysing the number of edges between informed and uninformed vertices. Showing
that adversarial edge deletions cannot slow down the time until push has informed almost
all vertices will be archived in Section 3.2 by giving a coupling to the case without edge
deletions. Then, in Subsection 3.3 we show that push&pull informs almost all vertices of
dense graphs fast in spite of adversarial edge deletions. We utilize a version of Szemerédis
Regularity Lemma to get a well-behaved partition of the vertex set that is suitable for
performing a round based analysis. However, if q < 1, adversarial edge deletions can slow
down the time until push&pull has informed all vertices for nearly all values of q; we show
this in Section 3.4. The same example as given there also yields Theorem a. Finally, an
unabridged version of this paper, that contains any proofs that are omitted here, is available
at https://arxiv.org/abs/1902.07618.

Further Notation

Let G = (V,E) denote a graph with vertex set V and edge set E ⊆
(
V
2
)
. Consider v ∈ V and

U,W ⊆ V with U∩W = ∅. We will denote the set of neighbours of v in G byNG(v) or byN(v)
and we will denote its degree by dG(v) := |NG(v)| or by d(v); δG or δ and ∆G or ∆ denote
minimum and maximum degree ofG. Similarly the neighbourhood of any set of vertices S ⊆ V
is defined by NG(S) := ∪v∈SNG(v). Furthermore let E(U,W ) = EG(U,W ) denote the set of
edges with one vertex in U and one vertex in W and let e(U,W ) := eG(U,W ) := |EG(U,W )|.
With EG(U) we denote the set of edges with both vertices in U ; eG(U) = |EG(U)|. For
any round t ∈ N and P ∈ {push, pull, pp}, we denote by I(P)

t (G) the set of vertices of G
informed by push, pull and push&pull respectively at the beginning of round t and |I(P)

1 | = 1;
if the underlying graph is clear from the context we will omit it; if we consider a sequence of
graphs G = (Gn)n∈N and a sequence of times t = (t(n))n∈N, then I(P)

t (G) = (I(P)
t(n)(Gn))n∈N

is also a sequence. Similarly, U (P)
t := V \I(P)

t denotes the set of uninformed vertices. With
log we refer to the natural logarithm. For any event A we will write Et[A] instead of E[A

∣∣It]
for the conditional expectation and Pt[A] instead of P [A

∣∣It] for the conditional probability.
Finally we want to clarify our use of Landau symbols. Let a, b ∈ R and f be a function. The
terms a ≤ b+ o(f) and a ≥ b− o(f) mean that there exist positive functions g, h ∈ o(f) such
that a ≤ b+ g and a ≥ b− h. Consequently a = b+ o(f) means that there exists a positive
function g ∈ o(f) such that a ∈ [b− g, b+ g]

2 Tools & Techniques

In this section we collect and prove statements about our protocols and properties of expander
sequences. We begin with applying the previously mentioned notion of self-bounding functions
to derive universal and simple-to-apply concentration results for our random variables, i.e.,
the number of informed vertices after a particular round. Then we extend the concentration
results to more than one round. In the last part we recall the well known Expander Mixing
Lemma and utilize it to derive properties (weak expansion, path enumeration) for the case
where we delete edges from our graphs.

https://arxiv.org/abs/1902.07618
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Self-bounding functions

Our main technical new result in this section is the following bound on the variance for
the number of informed vertices in any given round; it is true for any graph and any set of
informed vertices.

I Lemma 8. Let G be a graph, t ∈ N and It = I
(P)
t (G) for P ∈ {push, pull, pp}. Then

Var
[
|It+1|

∣∣It] ≤ E
[
|It+1|

∣∣It].
Lemma 8 follows directly from Lemmas 10 and 11. Before stating them we introduce the
notion of self-bounding functions.

I Definition 9 (Self-bounding function). Let X be a set and m ∈ N. A non-negative function
f : Xm → R is self-bounding, if there exist functions fi : Xm−1 → R such that for all
x1, ..., xm ∈ X and all i = 1, ...,m

0 ≤ f(x1, ..., xm)− fi(x1, ..., xi−1, xi+1, ..., xm) ≤ 1

and ∑
1≤i≤m

(f(x1, ..., xm)− fi(x1, ..., xi−1, xi+1, ..., xm)) ≤ f(x1, ..., xm).

A striking property of self-bounding function is the following bound on the variance.

I Lemma 10 ([3]). For a self-bounding function f and independent random variables
X1, ..., Xm, m ∈ N

Var [f(X1, ..., Xm)] ≤ E [f(X1, ..., Xm)] .

I Lemma 11. Let G be a graph, t ∈ N, and let It = I
(P)
t (G) for P ∈ {push, pull, pp}.

Then, conditional on It, there exist m ∈ N, independent random variables X1, ..., Xm and a
self-bounding function f = f (P) such that |It+1| = f(X1, ..., Xm).

I Remark 12. Let G = (V,E) be a graph. Lemma 11 also applies to subsets of It+1, i.e
for any U ⊂ V and conditioned on It we have that |It+1 ∩ U | and |(It+1 ∩ U) \ It| are
self-bounding.
The following lemma gives a tool that we will use in order to extend our round-wise analysis
to longer phases.

I Proposition 13. Let P ∈ {push, pull, pp}, It = I
(P)
t and t1 ≥ t0 ≥ 1 such that |It0 | ≥√

logn. Let further (Ai)i∈N be a sequence of events, c > 1, and δ > 0 such that

Pt0 [At | At0 , . . . ,At−1] ≥ 1− δ
(
ct−t0 |It0 |

)−1/3 for all t0 ≤ t ≤ t1.

Then

Pt0

[
t1⋂
t=t0

At

]
≥ 1−O(|It0 |−1/3)

We give two typical example applications of this lemma below. The first example addresses
the case where we have a lower bound for the expected number of informed vertices after
one round.
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I Example 14. Let P ∈ {push, pull, pp}, It = I
(P)
t . Assume that there is some c > 1

such that Et [|It+1|] ≥ c |It| for all t as long as n/f(n) ≤ |It| ≤ n/g(n) for some functions
1 ≤ f, g ≤ n, f = o(n). Let t0 be such that |It0 | ≥ n/f(n). Then according to Lemma 8 we
have that Vart [|It+1|] ≤ Et [|It+1|] and applying Chebychev’s inequality gives

Pt

[∣∣|It+1| − Et [|It+1|]
∣∣ ≤ Et [|It+1|]2/3

]
≥ 1− Et [|It+1|]−1/3 ≥ 1− |It|−1/3. (1)

Consider the events

At = “|It| ≥ Et−1 [|It|]− Et−1 [|It|]2/3 or |It| ≥ n/g(n)”

The intersection of At0+1, . . . ,At implies inductively that either |It| ≥ n/g(n) or

|It| ≥
(

1− Et−1[|It|]−1/3
)
Et−1[|It|] ≥

((
1− (c|It0 |)−1/3)c)t−t0 |It0 |.

We obtain with (1)

Pt0 [At+1 | At0+1, . . . ,At, |It| < n/g(n)] ≥ 1−
((

1− (c|It0 |)−1/3)c)−(t−t0)/3
|It0 |−1/3,

and otherwise Pt0 [At+1 | At0+1, . . . ,At, |It| ≥ n/g(n)] = 1. Choose τ := t − t0 =
logc(f(n)/g(n)) + o(logn) as small as possible such that this lower bound for |It+1| is
≥ n/g(n), that is, this lower bound is < n/g(n) for t = t0 +τ . Combining the two conditional
probabilities we obtain for all t0 ≤ t ≤ t0 + τ

Pt0 [At+1 | At0+1, . . . ,At] ≥ 1−
((

1− (c|It0 |)−1/3)c)−(t−t0)/3
|It0 |−1/3.

Applying Proposition 13 then yields whp

|It0+τ+1| ≥ n/g(n).

In the second example we make the stronger assumption that we can determine asymptotically
the expected number of informed vertices after one round. Here we assume that we begin
with a “small” set of informed vertices, say of size

√
logn, and want to reach a set of size

nearly linear in n.

I Example 15. Assume that there is some c > 1 such that Et [|It+1|] = (1 + o(1))c |It| for all
t as long as

√
logn ≤ |It| ≤ n/logn. Let At be the event “||It| − Et−1 [|It|]| ≤ Et−1 [|It|]2/3”

and let t0 be such that |It0 | ≥
√

logn. There is h(n) ∈ o(1) such that for c− := (1− h(n))c
and c+ := (1 + h(n))c we have that Et [|It+1|] ≤ c+ |It| and Et [|It+1|] ≥ c− |It|. Using this
notation, the events At0+1, . . . ,At+1 imply together inductively that

|It+1| ≤
(

1 + Et[|It+1|]−1/3
)
Et[|It+1|] ≤

((
1 + (c−|It0 |)−1/3)c+

)t−t0
|It0 |

for all t such that the right-hand side is bounded by n/ logn. Moreover, for all such t

|It+1| ≥
(

1− Et[|It+1|]−1/3
)
Et[|It+1|] ≥

((
1− (c−|It0 |)−1/3)c−)t−t0 |It0 |.

Thus, as At only depends on It it follows with (1)

Pt0 [At+1 | At0+1, . . . ,At] ≥ 1−
((

1− (c−|It0 |)−1/3)c−)−(t−t0)/3
|It0 |−1/3.

Applying Proposition 13 then immediately gives that there is τ1 = logc(n/|It0 |) + o(logn)
such that whp |It0+τ1 | ≤ n/ logn. Example 14, setting f = n/

√
logn and g = logn, gives an

additional τ2 = logc(n/|It0 |) + o(logn) such that |τ1 − τ2| = o(logn) and whp

|It0+τ1 | ≤
n

logn ≤ |It0+τ2 |.
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Expander Sequences

In this section we collect some important properties of expander sequences that we are going
to use later. We start by stating a version of the well-known expander mixing lemma applied
to our setting of expander sequences.

I Lemma 16 ([25, Cor. 2.4]). Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence.
Then for Sn ⊆ Vn such that 1 ≤ |Sn| ≤ n/2 it is∣∣∣∣e(Sn, Vn\Sn)− ∆n|Sn|(n− |Sn|)

n

∣∣∣∣ = o(∆n)|Sn|.

The following result is a consequence of the Expander Mixing Lemma that applies to graphs
in which some edges were removed. It seems very simple but it turns out to be surprisingly
useful.

I Lemma 17. Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence. Let ε > 0 and
set G̃ = (G̃n)n∈N, where each G̃n it is obtained from Gn by deleting edges such that each
vertex keeps at least a (1/2 + ε) fraction of its edges. For each n ∈ N let further Sn ⊆ Vn,
then there is n0 ∈ N such that for all n ≥ n0

eG̃n
(Sn, Vn\Sn) ≥ εeGn

(Sn, Vn\Sn).

3 Proofs

3.1 Proof of Theorems 4b, 5a – edge deletions do not slow down pull
Let 0 < ε ≤ 1/2. In this section we study the runtime of pull in the case in which the input
graph is an expander, and where at each vertex at most an (1/2− ε) fraction of the edges is
deleted. The runtime on expander sequences without edge deletions, that is, the setting in
Theorem 4b, is included as the special case where we set ε = 1/2. In contrast to previous
proofs, in the analysis of pull the “standard” approach that consists of showing, for example,
that Et[|It+1 \ It|] ≈ |It| fails. The main reason is that the graph between It and Ut might
be quite irregular, so that, depending on the actual state, Et[|It+1 \ It|] ≈ c|It| for some
c < 1. However, we discover a different invariant that is preserved, namely that the number
of edges between It and Ut behaves in an exponential way. With Lemmas 16 and 17 we can
then relate this to the number of informed vertices.

I Lemma 18. Consider the setting of Theorem 5a and let It = I
(pull)
t .

(a) Let
√

logn ≤ |It| ≤ n/ logn. Then |e(Ut+1, It+1) − (1 + q)e(Ut, It)| ≤ |It|−1/3e(Ut, It)
with probability at least 1−O(|It|−1/3).

(b) Let |Ut| ≤ n/ logn. Then Et[|Ut+1|] = (1− q + o(1))|Ut|.
Lemma 19 gives a lower bound, that together with an upper bound provided by Lemma 20
imply Theorems 4b and 5a.

I Lemma 19 (Upper bound in Theorem 5a). Consider the setting of Theorem 5a and let
It = I

(pull)
t , then the following statements hold whp.

(a) Let
√

logn ≤ |It| ≤ n/ logn. Then there are τ1, τ2 = log1+q(n/|It|) + o(logn) such that
|It+τ2 | < n/ logn < |It+τ1 |.

(b) Let n/ logn ≤ |It| ≤ n − n/ logn. Then there is τ = o(logn) such that |It+τ | >
n− n/ logn.

(c) Let |It| ≥ n− n/ logn.
1. Case q = 1: Then there is τ = o(logn) such that |It+τ | = n.

2. Case q 6= 1: Then there is τ ≤ − logn/ log (1− q) + o(logn) such that |It+τ | = n.
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Note that for q = 1 this already implies Theorems 4b and 5a. This leaves the case for q 6= 1.

I Lemma 20. Let 0 < ε ≤ 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let
G̃ = (G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex
keeps at least a (1/2+ε) fraction of its edges and abbreviate It = I

(pull)
t . Let further q ∈ (0, 1)

and |It| ≤ n/2. Then for τ = − logn/ log (1− q) and all c < 1 whp |It+cτ | < n.

3.2 Proof of Theorem 7a – push informs almost all vertices fast in
spite of edge deletions

To shorten the notation let us call the setting with deleted edges “new model” and the setting
without “old model”, that is, the term new model corresponds to the graphs in G̃, while
old model refers to the (original) graphs in G. We prove Lemma 21 that directly implies
Theorem a. We write It = I

(push)
t throughout.

I Lemma 21. Under the assumptions of Theorem 7a the following holds for the new model:
(a) There are τ, τ̃ = log1+q(n) + o(logn) such that whp |Iτ̃ | < n/ logn < |Iτ |.
(b) Assume |It| ≥ n/ logn. Then there is a τ = o(logn) such that whp |It+τ | ≥ n− n/ logn.
For the proof of Lemma 21 we will need the following statements, the first one taken from [25].

I Lemma 22 (Proof of Lemma 2.5 in [25]). Consider the old model. Assume |It| < n/ logn
and q = 1. Then

Pt
[
|It+1| = |It| + (1− o(1))|It|

]
= 1− o(1). (2)

I Lemma 23. Consider push on a sequence of graphs (Gn)n∈N, where Gn has n vertices.
Assume that |It| = ω(1) and that (2) holds for q = 1, that is, assume that Pt

[
|It+1| =

|It| + (1− o(1))|It|
]

= 1− o(1) for q = 1. Then for q ∈ (0, 1]

Pt
[
|It+1| = |It| + (q − o(1))|It|

]
= 1− o(1). (3)

Moreover, assume that whenever |It| < n/ logn, for q = 1, (2) holds. Then there are
τ, τ̃ = log1+q(n) + o(logn) such that whp

|Iτ̃ | < n/ logn < |Iτ |. (4)

3.3 Proof of Theorems 5b, 7b – push&pull informs almost all vertices
fast in spite of edge deletions

Before we show the actual proof we will first present an informal argument that contains all
relevant ideas and important observations. Let

√
logn ≤ |It| ≤ n/ logn and assume q = 1.

In Section 3.2 we proved that for push the informed vertices nearly double in every round for
an arbitrary expander sequence with edge deletions and an otherwise arbitrary set It. For
pull this is not true; however, we proved in Section 3.1 that the number of edges between
the informed and the uninformed vertices nearly doubles in every round. The first attempt
towards the proof of Theorems b, b then seems obvious: one would try to show that either
the vertices triple every round, or the the edges do so, or for example that the product of
the two quantities increases by a factor of 9. As it turns out, this is in general not the case;
indeed, it is possible to choose an expander sequence, to delete edges such that each vertex
keeps at least an (1/2 + ε)-fraction of its neighbors, and to choose a (large) set of informed
vertices It such that after one round whp either |It+1| < c|It| or e(It+1, Ut+1) < ce(It, Ut) or
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|It+1|e(It+1, Ut+1) < c2|It|e(It, Ut) for some c < 3. On the other hand and although we have
no explicit description of these “malicious” sets, it seems rather unlikely that such sets will
occur several times during the execution of push&pull.

In order to show the claimed running time of push&pull we will impose some additional
structure. Let ε > 0. In the subsequent exposition we assume that our graph G – obtained
from an expander by deleting edges such that each vertex keeps at least an (1/2 + ε) fraction
of the edges – has a very special structure. In particular, we assume that there is a partition
Π = (Vi)i∈[k] of the vertex set of G into a bounded number k of equal parts such that
EG(Vi) = ∅ for all 1 ≤ i ≤ k and such that the induced subgraph (Vi, Vj) looks like a random
regular bipartite graph for all 1 ≤ i < j ≤ k. Of course, not every relevant G admits such
a partition; however, Szemeredi’s regularity lemma guarantees that every sufficiently large
graph has a partition that is in a well-defined sense almost like the one described previously,
and a substantial part of our proof is concerned with showing that being “almost special”
does not hurt significantly.

Assuming that G is very special let us collect some easy facts. Denote the degree of u ∈ Vi
in the induced subgraph (Vi, Vj) with dij ; this immediately gives that dG(u) =

∑k
`=1 di`, and

note that dii = 0 as there are no edges in Vi. Moreover, regular bipartite random graphs
satisfy an expander property, that is, for all Wi ⊆ Vi,Wj ⊆ Vj , 1 ≤ i < j ≤ k we have

e(Wi,Wj) = di,j |Wi||Wj |/|Vj |+ o(di,j)|Wi| ≈ |Wi||Wj |dijk/n

where we used that all |Vi|’s are of equal size. This is quite similar to the property that we
used in our preceding analysis on expander sequences, see Lemma 16. As a pair in Π behaves
like a bipartite expander sequence we can easily compute the expected number of informed
vertices. We do so now for pull. Let

∣∣Ii,jt+1
∣∣ be the number of vertices in Vi informed after

round t+ 1 by pull from vertices only in Vj and set Iit := It ∩ Vi, U it := Ut ∩ Vi ∀ 1 ≤ i ≤ k.
Thus, as long as Iit is much smaller than Vi (and thus also U it ≈ |Vi| = n/k) we get

Et
[∣∣I(pull),i,j

t+1 \It
∣∣] =

∑
u∈Ui

t

|N(u) ∩ Ijt |
d(u) = e(U it , I

j
t )∑

1≤`≤k di`
≈ dij∑

1≤`≤k di`
|Ijt |.

A similar calculation, which we don’t perform in detail, yields for push

Et
[∣∣I(push),i,j

t+1 \It
∣∣] ≈ dij∑

1≤`≤k d`j
|Ijt |.

Moreover, as in previous proofs it turns out that the number of vertices informed simultan-
eously by push as well as pull is negligible. Thus we obtain that more or less

Et
[∣∣I(pp),i,j

t+1
∣∣] ≈ |Iit |+

(
dij∑

1≤`≤k di`
+ dij∑

1≤`≤k d`j

)
|Ijt |

and by linearity of expectation

Et
[∣∣I(pp),i

t+1
∣∣] ≈ |Iit |+ ∑

1≤j≤k

(
dij∑

1≤`≤k di`
+ dij∑

1≤`≤k d`j

)
|Ijt |.

Set Xt = (|Iit |)i∈[k] and A = (Aij)1≤i,j≤k, the matrix with entries

Aij = dij∑
1≤`≤k di`

+ dij∑
1≤`≤k d`j

for 1 ≤ i 6= j ≤ k
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and Aii = 1 for 1 ≤ i ≤ k. With this notation we obtain the recursive relation

Et[Xt+1] ≈ A ·Xt, (5)

that is, we may expect that Xt ≈ Et[Xt] ≈ AtX0. If we then denote by λmax the greatest
eigenvalue of A, then we obtain that in leading order

|It| ≈ λtmax.

Our aim is to show that push&pull is (at least) as fast as on the complete graph, that
is, |It| - 3t, and so we take a closer look at the eigenvalues of A. By construction A is
symmetric, so that the largest eigenvalue equals sup‖x‖=1 ‖xTAx‖, and the simple choice
x = k−1/21 yields

λmax ≥
∑

(i,j) Ai,j

k

=

∑k
j=1 1 +

∑k
i=1
∑k
j=1 dij/

(∑k
`=1 di`

)
+
∑k
j=1

∑k
i=1 dij/

(∑k
`=1 d`j

)
k

= 3.

This neat property leads us to the expected result Tpp(G) = (1 + o(1)) logλmax n ≤ (1 +
o(1)) log3 n, and it also completes the informal argument that justifies the claim made in
Theorems 5b and 7b. In the unabridged version we turn this argument step by step into a
formal proof by filling in all missing pieces.

3.4 Proof of Theorem 6b – edge deletions may slow down push&pull
For any 0 < ε < 1/2, q ∈ (0, 1) we consider a sequence of graphs (Gn(ε))n∈N = ((Vn, En))n∈N.
Let Vn = An ∪Bn with An := {1, . . . , bn/2c}, Bn := {bn/2c+ 1, . . . , n} and deg(v) = n− 1
for all v ∈ An. Let the induced subgraph of Bn be a random graph in which each edge is
included independently with probability p = 1− 2ε. We know and it is easy to show, see for
example [15, Section IV], that whp this subgraph is almost regular, i.e.,

dBn
(v) = (1 + o(1))(1− 2ε)n/2 for all v ∈ Bn, (6)

and is an expander, which means that for every Sn ⊆ Bn, 1 ≤ |Sn| ≤ n/4 and dBn
:=

(1− 2ε)n/2 we have

e(Sn, Bn\Sn) = (1 + o(1))dBn |Sn||Bn \ Sn|
|Bn|

= (1− 2ε+ o(1))|Sn||Bn \ Sn|. (7)

At first we give a statement that describes the expected number of informed vertices after
performing one round of push&pull.

I Lemma 24. Let Gn(ε) = (An ∪Bn, En) be as above.
(a) Let

√
logn ≤ |It| ≤ n/ logn and set

Xt =
(∣∣I(pp),(A)

t

∣∣, ∣∣I(pp),(B)
t

∣∣) :=
(∣∣I(pp)

t ∩An
∣∣, ∣∣I(pp)

t ∩Bn
∣∣).

Then Et[Xt+1] = (1 + o(1))MXt, where

M =
(

1 + q q
(
1 + ε/(2− 2ε)

)
q
(
1 + ε/(2− 2ε)

)
1 + q

(
1− 2ε/(2− 2ε)

)) .
(b) Let |U (pp)

t | ≤ n/ logn. Then Et[|U (pp)
t+1 |] ≤ (1 + o(1))e−q(1/2+(1/2−ε)/(1−ε)) (1− q) |Ut|.
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I Remark 25. Let λmax be the greatest eigenvalue of M as defined in Lemma 24a. Then

λmax = 1 + 2q + (2q(
√

(ε2/2− ε+ 1)− 1) + qε)/(2− 2ε) > 1 + 2q.

Next comes a lemma that bounds the runtime of push&pull on Gn(ε). In particular, Lemma
26 a) and c) provide a lower bound on the runtime and Lemma 26 a), b) and d) provides an
upper bound.

I Lemma 26. Let It = I
(pp)
t , ε > 0 and λ = λmax(M) be the greatest eigenvalue of M as

given in Lemma 24a. Consider Gn(ε).

(a) Let
√

logn ≤ |It| ≤ n/ logn. Then there are τ1, τ2 = logλ(n/|It|) + o(logn) such that
|It+τ1 | < n/ logn < |It+τ1 |.

(b) Let n/ logn ≤ |It| ≤ n − n/ logn. Then there is τ = o(logn) such that |It+τ | >
n− n/ logn.

(c) Let |It| ≤ n/ logn. Then there is τ ≥ logn/ log((1 − q)−1 exp(q(1/2 + (1/2 − ε)/(1 −
ε))))− o(logn) such that |It+τ | < n.

(d) Let |It| ≥ n− n/ logn and q ∈ (0, 1). Then there is τ ≤ logn/ log((1− q)−1 exp(q(1/2 +
(1/2− ε)/(1− ε)))) + o(logn) such that |It+τ | = n.

Lemma 26 gives that

Tpp(Gn(ε), q) = logλ n+ 1
q(1− 1.5ε)/(1− ε)− log (1− q) logn+ o(logn)

where λ = 1 + 2q + (2q(
√

(ε2/2− ε+ 1) − 1) + qε)/(2 − 2ε) > 1 + 2q. To see whether
push&pull actually slowed down (in terms of order logn) one has to compare the runtime on
this sequence of graphs to cpp(q) logn; the runtime on expander sequences. In the Figure 1
we can see that it slows down for nearly all values of ε and q in question; however, there are
admissible values of ε and q such that the process even speeds up.
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Figure 1 Plotted values of ∆ in Tpp(Gn(ε), q) − cpp log n = ∆ log n + o(log n), for 0.9 < q < 1
and 0 < ε < 1/2.
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Abstract
We develop a framework for generalizing approximation algorithms from the structural graph
algorithm literature so that they apply to graphs somewhat close to that class (a scenario we
expect is common when working with real-world networks) while still guaranteeing approximation
ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an
algorithmically tractable class, apply known approximation algorithms for that class, and then
lift the solution to apply to the original graph. We give a general characterization of when an
optimization problem is amenable to this approach, and show that it includes many well-studied
graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum
Maximal Matching, Chromatic Number, (`-)Dominating Set, Edge (`-)Dominating Set,
and Connected Dominating Set.

To enable this framework, we develop new editing algorithms that find the approximately-
fewest edits required to bring a given graph into one of a few important graph classes (in some
cases these are bicriteria algorithms which simultaneously approximate both the number of editing
operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r logn)-
approximation and a bicriteria (4, 4)-approximation which also extends to a smoother bicriteria
trade-off. For bounded treewidth, we obtain a bicriteria (O(log1.5 n), O(

√
logw))-approximation,

and for bounded pathwidth, we obtain a bicriteria (O(log1.5 n), O(
√

logw · logn))-approximation.
For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove
complementary hardness-of-approximation results assuming P 6= NP: in particular, these problems
are all log-factor inapproximable, except the last which is not approximable below some constant
factor 2 (assuming UGC).
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1 Introduction

Network science has empirically established that real-world networks (social, biological,
computer, etc.) exhibit sparse structure. Theoretical computer science has shown that graphs
with certain structural properties enable significantly better approximation algorithms for
hard problems. Unfortunately, the experimentally observed structures and the theoretically
required structures are generally not the same: mathematical graph classes are rigidly defined,
while real-world data is noisy and full of exceptions. This paper provides a framework for
extending approximation guarantees from existing rigid classes to broader, more flexible
graph families that are more likely to include real-world networks.

Specifically, we hypothesize that most real-world networks are in fact small perturba-
tions of graphs from a structural class, that is, a family of graphs which adhere to
some specified structure (e.g. treewidth at most w) [9, 29]. Intuitively, these perturbations
may be exceptions caused by unusual/atypical behavior (e.g., weak links rarely expressing
themselves), natural variation from an underlying model, or noise caused by measurement
error or uncertainty. Formally, a graph is γ-close to a structural class C, where γ ∈ N, if
some γ edits (e.g., vertex deletions, edge deletions, or edge contractions) bring the graph
into class C1. (Other papers call this the “noisy setting” [44, 12, 4].)

Our goal is to extend existing approximation algorithms for a structural class C to apply
more broadly to graphs γ-close to C. To achieve this goal, we need two algorithmic ingredients:
1. Editing algorithms. Given a graph G that is γ-close to a structural class C, find

a sequence of f(γ) edits that result in a member of C. When the structural class is
parameterized (e.g., treewidth ≤ w), we may also approximate those parameters.

2. Structural rounding algorithms. Develop approximation algorithms for optimization
problems on graphs γ-close to a structural class C by converting ρ-approximate solutions
on an edited graph in class C into g(ρ, γ)-approximate solutions on the original graph.

1.1 Our Results: Structural Rounding
In Section 4, we present a general metatheorem giving sufficient conditions for an optimization
problem to be amenable to the structural rounding framework. Specifically, if a problem
Π has an approximation algorithm in structural class C, the problem and its solutions are
“stable” under an edit operation, and there is an α-approximate algorithm for editing to
C, then we get an approximation algorithm for solving Π on graphs γ-close to C. The new
approximation algorithm incurs an additive error of O(γ), so we preserve PTAS-like (1 + ε)
approximation factors provided γ ≤ δOPTΠ for a suitable constant δ = δ(ε, α) > 0. Our
metatheorem generalizes previous analysis of two specific problems [4].

1 Note that the number of these edits could be super-constant. The number of edits could be as large as
O(m+ n), the size of the graph.
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For example, we obtain (1 +O(δ log1.5 n))-approximation algorithms for Vertex Cover,
Feedback Vertex Set, Minimum Maximal Matching, and Chromatic Number on
graphs (δ ·OPTΠ(G))-close to having treewidth w via vertex deletions (generalizing exact
algorithms for bounded treewidth graphs); and we obtain a (1− 4δ)/(4r + 1)-approximation
algorithm for Independent Set on graphs (δ · OPTΠ(G))-close to having degeneracy r
(generalizing a 1/r-approximation for degeneracy-r graphs). These results use our new
algorithms for editing to treewidth-w and degeneracy-r graph classes as summarized next.

1.2 Our Results: Editing
We develop editing approximation algorithms and/or hardness-of-approximation results for
six well-studied graph classes: bounded degeneracy, bounded treewidth and pathwidth,
bounded clique number, bounded treedepth, bounded weak c-coloring number, and bounded
degree. Refer to the full version of this paper ([18]) for details about these classes. Table 1
summarizes our results for the bounded degeneracy and bounded treewidth classes which
we use in our structural rounding framework to find approximate solutions for some classic
problems. Refer to the full version of this paper ([18]) for an overview of our results for the
rest of the aforementioned graph classes.

Table 1 Summary of results for (Cλ, ψ)-Edit problems, i.e. finding the minimum number of
ψ-edits needed to obtain a graph in class Cλ (including abbreviations and standard parameter
notation). For each combination we give a shorthand problem name in bold (e.g. r-DE-V). “Approx.”
denotes a polynomial-time approximation or bicriteria approximation algorithm (see Section 3);
“inapprox.” denotes inapproximability assuming P 6= NP unless otherwise specified.

Graph
Family Cλ

Edit Operation ψ

Vertex Deletion Edge Deletion

Bounded
Degeneracy (r)

r-DE-V
O(r logn)-approx.( 4m−βrn
m−rn , β

)
-approx.(

1
ε
, 4

1−2ε

)
-approx. (ε < 1/2)

o(log(n/r))-inapprox.

r-DE-E
O(r logn)-approx.

–(
1
ε
, 4

1−ε

)
-approx. (ε < 1)

o(log(n/r))-inapprox.

Bounded
Treewidth (w)

w-TW-V
(O(log1.5 n), O(

√
logw))-approx.

o(logn)-inapprox. for w ∈ Ω(n1/2)

w-TW-E
(O(logn log logn), O(logw))-approx. [4]

–

1.3 Related Work
Editing to approximate optimization problems. The most closely related results are in
the “noisy setting” introduced by Magen and Moharrami [44], which imagines that the “true”
graph lies in the structural graph class that we want, and any extra edges observed in the
given graph are “noise.” In this model, Magen and Moharrami [44] developed a PTAS for
estimating the size of Independent Set (IS) in graphs that are δn edits away from a
minor-closed graph family (for sufficiently small values of δ). However, they provide no
method for actually finding a solution set of vertices that achieves this approximation [44].
Later, Chan and Har-Peled [12] developed a PTAS that returns a (1 + ε)-approximation to
IS in noisy planar graphs. More recently, Bansal et al. [4] developed an LP-based approach
for noisy minor-closed IS whose runtime and approximation factor achieve better dependence
on δ but only for edge edits. Moreover, they provide a similar guarantee for noisy Max
k-CSPs also for edge edits [4]. Their approximation analysis resembles our general analysis
of the structural rounding framework.
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Another related set of approximation algorithms near a graph class are parameterized
approximations, meaning that they run in polynomial time only when the number of edits
is very small (constant or logarithmic input size). This research direction was initiated by
Cai [11]; see the survey and results of Marx [46, Section 3.2] and e.g. [30, 45]. An example of
one such result is a 7

3 -approximation algorithm to Chromatic Number in graphs that become

planar after γ vertex edits, with a running time of f(γ) ·O(n2), where f(γ) is at least 2222Ω(γ)

(from the use of Courcelle’s Theorem), limiting its polynomial-time use to when the number
of edits satisfies γ = O(lg lg lg lgn). In contrast, our algorithms allow up to δOPTΠ edits.

Editing algorithms. Editing graphs into a desired graph class is an active field of research
and has various applications outside of graph theory, including computer vision and pattern
matching [28]. In general, the editing problem is to delete a minimum set X of vertices (or
edges) in an input graph G such that the result G[V \X] has a specific property. Previous work
studied this problem from the perspective of identifying the maximum induced subgraph of
G that satisfies a desired “nontrivial, hereditary” property [39, 41, 42, 56]. A graph property
π is nontrivial if and only if infinitely many graphs satisfy π and infinitely many do not,
and π is hereditary if G satisfying π implies that every induced subgraph of G satisfies
π. The vertex-deletion problem for any nontrivial, hereditary property has been shown to
be NP-complete [42] and even requires exponential time to solve, assuming the ETH [37].
Approximation algorithms for such problems have also been studied in this domain [27, 43, 52],
but in general this problem requires additional restrictions on the input graph and/or output
graph properties in order to develop fast algorithms [17, 20, 22, 33, 38, 48, 49, 55].

Much past work on editing is on parameterized algorithms. For example, Dabrowski et
al. [17] found that editing a graph to have a given degree sequence is W[1]-complete, but if one
additionally requires that the final graph be planar, the problem becomes Fixed Parameter
Tractable (FPT). Mathieson [48] showed that editing to degeneracy d is W[P]-hard (even if
the original graph has degeneracy d+ 1 or maximum degree 2d+ 1), but suggests that classes
which offer a balance between the overly rigid restrictions of bounded degree and the overly
global condition of bounded degeneracy (e.g., structurally sparse classes such as H-minor-free
and bounded expansion [51]) may still be FPT. Some positive results on the parameterized
complexity of editing to classes can be found in Drange’s 2015 PhD thesis [20]; in particular,
the results mentioned include parameterized algorithms for a variety of NP-complete editing
problems such as editing to threshold and chain graphs [22], star forests [22], multipartite
cluster graphs [25], and H-free graphs given finite H and bounded indegree [21].

Our approach differs from this prior work in that we focus on approximations of edit
distance that are polynomial-time approximation algorithms. There are previous
results about approximate edit distance by Fomin et al. [26] and, in a very recent result
regarding approximate edit distance to bounded treewidth graphs, by Gupta et al. [31].
Fomin et al. [26] provided two types of algorithms for vertex editing to planar F -minor-free
graphs: a randomized algorithm that runs in O(f(F) ·mn) time with an approximation
constant cF that depends on F , as well as a fixed-parameter algorithm parameterized by the
size of the edit set whose running time thus has an exponential dependence on the size of this
edit set. Agrawal et al. [1] recently provided a O(log1.5 n)-approximation via a parameterized
algorithm for the Weighted F Vertex Deletion problem (among some other problems)
where F is a minor-closed family excluding at least one planar graph.

Gupta et al. [31] strengthen the results in [26] but only in the context of parameter-
ized approximation algorithms. Namely, they give a deterministic fixed-parameter
algorithm for Planar F-Deletion that runs in f(F) · n logn + nO(1) time and an
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O(log k)-approximation where k is the maximum number of vertices in any planar graph
in F ; this implies a fixed-parameter O(logw)-approximation algorithm with running time
2O(w2 logw) · n logn+ nO(1) for w-TW-V and w-PW-V. They also show that w-TW-E and
w-PW-E have parameterized algorithms that give an absolute constant factor approximation
but with running times parameterized by w and the maximum degree of the graph [31].
Finally, they show that when F is the set of all connected graphs with three vertices, deleting
the minimum number of edges to exclude F as a subgraph, minor, or immersion is APX-hard
for bounded degree graphs [31]. Again, these running times are weaker than our results, which
give bicriteria approximation algorithms that are polynomial without any parameterization
on the treewidth or pathwidth of the target graphs. Here, bicriteria relates to the number of
editing operations and the target parameter.

In a similar regime, Bansal et al. [4] studied w-TW-E (which implies an algorithm for
w-PW-E) and designed an LP-based bicriteria approximation for this problem. For a slightly
different set of problems in which the goal is to exclude a single graph H of size k as a
subgraph (H-Vertex-Deletion), there exists a simple k-approximation algorithm. On the
hardness side, Guruswami and Lee [32] proved that whenever H is 2-vertex-connected, it is
NP-hard to approximate H-Vertex-Deletion within a factor of (|V (H)| − 1− ε) for any
ε > 0 (|V (H)|−ε assuming UGC). Moreover, when H is a star or simple path with k vertices,
O(log k)-approximation algorithms with running time 2O(k3 log k) · nO(1) are known [32, 40].

An important special case of the problem of editing graphs into a desired class is
the minimum planarization problem, in which the target class is planar graphs, and the
related application is approximating the well-known crossing number problem [15]. Refer
to [7, 13, 14, 34, 36, 35, 47, 54] for the recent developments on minimum planarization and
crossing number.

2 Techniques

This section summarizes the main techniques, ideas, and contributions in the paper.

2.1 Structural Rounding Framework

The main contribution of our structural rounding framework (Section 4) is establishing the
right definitions that make for a broadly applicable framework with precise approximation
guarantees. Our framework supports arbitrary graph edit operations and both minimization
and maximization problems, provided they jointly satisfy two properties: a combinatorial
property called “stability” and an algorithmic property called “structural lifting”. Roughly,
these properties bound the amount of change that OPT can undergo from each edit operation,
but they are also parameterized to enable us to derive tighter bounds when the problem has
additional structure. With the right definitions in place, the framework is simple: edit to the
target class, apply an existing approximation algorithm, and lift.

The rest of Section 4 shows that this framework applies to many different graph opti-
mization problems. In particular, we verify the stability and structural lifting properties,
and combine all the necessary pieces, including our editing algorithms from Section 5 and
existing approximation algorithms for structural graph classes. We summarize all of these
results in Table 2 and formally define the framework in Section 4.1.
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Table 2 Problems for which structural rounding (Theorem 4.4) results in approximation algorithms
for graphs near the structural class C, where the problem has a ρ(λ)-approximation algorithm. We
also give the associated stability (c′) and lifting (c) constants, which are class-independent. The last
column shows the running time of the ρ(λ)-approximation algorithm for each problem provided an
input graph from class Cλ. We remark that vertex∗ is used to emphasize the rounding process has
to pick the set of annotated vertices in the edited set carefully to achieve the associated stability
and lifting constants. We provide precise problem statements in the full version of this paper ([18]).

Problem Edit ψ c′ c Class Cλ ρ(λ) runtime
Independent Set (IS) vertex del. 1 0 degeneracy r 1

r+1 polytime
Annotated Dominating Set (ADS) vertex∗ del. 0 1 degeneracy r O(r) polytime [5]a
Independent Set (IS) vertex del. 1 0 treewidth w 1 O(2wn) [2]
Annotated Dominating Set (ADS) vertex∗ del. 0 1 treewidth w 1 O(3wn)
Annotated (`-)Dominating Set (ADS) vertex∗ del. 0 1 treewidth w 1 O((2`+ 1)wn) [10]
Connected Dominating Set (CDS) vertex∗ del. 0 3 treewidth w 1 O(nw)b

Vertex Cover (VC) vertex del. 0 1 treewidth w 1 O(2wn) [2]
Feedback Vertex Set (FVS) vertex del. 0 1 treewidth w 1 2O(w)nO(1) [16]
Minimum Maximal Matching (MMM) vertex del. 0 1 treewidth w 1 O(3wn)c

Chromatic Number (CRN) vertex del. 0 1 treewidth w 1 wO(w)nO(1)

Independent Set (IS) edge del. 0 1 degeneracy r 1
r+1 polytime

Dominating Set (DS) edge del. 1 0 degeneracy r O(r) polytime [5]
(`-)Dominating Set (DS) edge del. 1 0 treewidth w 1 O((2`+ 1)wn) [10]
Edge (`-)Dominating Set (EDS) edge del. 1 1 treewidth w 1 O((2`+ 1)wn) [10]
Max-Cut (MC) edge del. 1 0 treewidth w 1 O(2wn) [19]

a The approximation algorithm of [5] is analyzed only for DS; however, it is straightforward to show that
the same algorithm achieves O(r)-approximation for ADS as well.

b Our rounding framework needs to solve an annotated version of CDS which can be solved in O(nw) by
modifying the O(wwn) dynamic-programming approach of DS.

c The same dynamic-programming approach of DS can be modified to solve ADS and MMM in O(3wn).

2.2 Editing to Bounded Degeneracy and Degree

We first present a O(r logn)-approximation algorithm for finding the fewest vertex or edge
deletions to reduce the degeneracy to a target threshold r. The algorithm is a greedy
algorithm over a type of min-degree ordering computed via the classic algorithm for
finding the degeneracy of a graph G given by Matula and Beck [50]. In addition, we present
two constant-factor bicriteria approximation algorithms for the same editing problem to
degeneracy r. We provide a summary of the techniques used to obtain our results here;
refer to the full version of this paper to see a detailed description of our techniques ([18]).
The first approach uses the local ratio technique by Bar-Yehuda et al. [6] to establish that
good-enough local choices result in a guaranteed approximation. The second approach is
based on rounding a linear-programming relaxation of an integer linear program and works
even when the input graph is weighted (both vertices and edges are weighted) and the goal
is to minimize the total weight of the edit set.

On the lower bound side, we show o(log(n/r))-approximation is impossible for vertex or
edge edits when we forbid bicriteria approximation, i.e., when we must match the target
degeneracy r exactly. This result is based on a reduction from Set Cover. A similar
reduction proves o(log d)-inapproximability of editing to maximum degree d, which proves
tightness (up to constant factors) of a known O(log d)-approximation algorithm [23].
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2.3 Editing to Bounded Treewidth

We present a bicriteria approximation algorithm in the full version ([18]) for finding the
fewest vertex edits to reduce the treewidth to a target threshold w. Our approach builds
on the deep separator structure inherent in treewidth. We combine ideas from Bodlaender’s
O(logn)-approximation algorithm for treewidth with Feige et al.’s O(

√
logw)-approximation

algorithm for vertex separators [24] (where w is the target treewidth). In the end, we
obtain a bicriteria (O(log1.5 n), O(

√
logw))-approximation that runs in polynomial time on

all graphs (in contrast to many previous treewidth algorithms). The tree decompositions that
we generate are guaranteed to have O(logn) height. As a result, we also show a bicriteria
(O(log1.5 n), O(

√
logw · logn))-approximation result for pathwidth, based on the fact that

the pathwidth is at most the width times the height of a tree decomposition.
On the lower bound side, we prove a o(logw)-inapproximability result by another reduction

from Set Cover. By a small modification, this lower bound also applies to editing to
bounded clique number.

3 Preliminaries

This section defines several standard notions and graph classes, and is probably best used as
a reference. The one exception is Section 3.1, which formally defines the graph-class editing
problem (Cλ, ψ)-Edit introduced in this paper.

Graph notation. We consider finite, loopless, simple graphs. Unless otherwise specified,
we assume that graphs are undirected and unweighted. We denote a graph by G = (V,E),
and set n = |V |, m = |E|. Given G = (V,E) and two vertices u, v ∈ V we denote edges by
e(u, v) or (u, v). We write N(v) = {u | (u, v) ∈ E} for the set of neighbors of a vertex v; the
degree of v is deg(v) = |N(v)|. In digraphs, in-neighbors and out-neighbors of a vertex v
are defined using edges of the form (u, v) and (v, u), respectively, and we denote in- and
out-degree by deg-(v),deg+(v), respectively. For the maximum degree of G we use ∆(G), or
just ∆ if context is clear. The clique number of G, denoted ω(G), is the size of the largest
clique in G. Given some subset E′ of the edges in G, we define G[E′] to be the subgraph of
G induced on the edge set E′. Note that if every edge adjacent to some vertex v is in E \E′,
then v does not appear in the vertex set of G[E′].

We present below our definitions of editing problems that we consider in this paper.
Please refer to the full version of this paper ([18]) for complete definitions of the structural
graph classes, hardness reduction techniques, and hard optimization problems for which we
provide approximation algorithms.

3.1 Editing Problems

This paper is concerned with algorithms that edit graphs into a desired structural class, while
guaranteeing an approximation ratio on the size of the edit set. Besides its own importance,
editing graphs into structural classes plays a key role in our structural rounding framework
for approximating optimization problems on graphs that are “close” to structural graph
classes (see Section 4). The basic editing problem is defined as follows relative to an edit
operation ψ such as vertex deletion, edge deletion, or edge contraction:
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Input: An input graph G = (V,E), family C of graphs, edit operation ψ
Problem: Find k edits ψ1, ψ2, . . . , ψk such that ψk ◦ ψk−1 ◦ · · · ◦ ψ2 ◦ ψ1(G) ∈ C.
Objective: Minimize k

(C, ψ)-Edit parametrised by

We can also loosen the graph class we are aiming for, and approximate the parameter
value λ for the family Cλ. Thus we obtain a bicriteria problem which can be formalized
as follows:

Input: An input graph G = (V,E), parameterized family Cλ of graphs, a target parameter
value λ∗, edit operation ψ

Problem: Find k edits ψ1, ψ2, . . . , ψk such that ψk ◦ ψk−1 ◦ · · · ◦ ψ2 ◦ ψ1(G) ∈ Cλ where
λ ≥ λ∗.

Objective: Minimize k.

(Cλ, ψ)-Edit parametrised by

I Definition 3.1. An algorithm for (Cλ, ψ)-Edit is a (bicriteria) (α, β)-approximation
if it guarantees that the number of edits is at most α times the optimal number of edits
into Cλ, and that λ ≤ β · λ∗.

See the full version of this paper for a complete list of the problems considered, along with
their abbreviations. Recall that ρ(λ) is the approximation factor for a problem in class C.
We assume that Ci ⊆ Cj for i ≤ j, or equivalently, that ρ(λ) is monotonically increasing in λ.

4 Structural Rounding

In this section, we show how approximation algorithms for a structural graph class can
be extended to graphs that are near that class, provided we can find a certificate of being
near the class. These results thus motivate our results in later sections about editing to
structural graph classes. Our general approach, which we call structural rounding, is
to apply existing approximation algorithms on the edited (“rounded”) graph in the class,
then “lift” that solution to solve the original graph, while bounding the loss in solution
quality throughout.

4.1 General Framework

First we define our notion of “closeness” in terms of a general family ψ of allowable graph
edit operations (e.g., vertex deletion, edge deletion, edge contraction):

I Definition 4.1. A graph G′ is γ-editable from a graph G under edit operation ψ if there is
a sequence of k ≤ γ edits ψ1, ψ2, . . . , ψk of type ψ such that G′ = ψk ◦ψk−1 ◦ · · · ◦ψ2 ◦ψ1(G).
A graph G is γ-close to a graph class C under ψ if some G′ ∈ C is γ-editable from G under ψ.

To transform an approximation algorithm for a graph class C into an approximation
algorithm for graphs γ-close to C, we will need two properties relating the optimization
problem and the type of edits:
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I Definition 4.2. A graph minimization (resp. maximization) problem Π is stable under
an edit operation ψ with constant c′ if OPTΠ(G′) ≤ OPTΠ(G) + c′γ (resp. OPTΠ(G′) ≥
OPTΠ(G) − c′γ) for any graph G′ that is γ-editable from G under ψ. In the special case
where c′ = 0, we call Π closed under ψ. When ψ is vertex deletion, closure is equivalent to
the graph class defined by OPTΠ(G) ≤ λ (resp. OPTΠ(G) ≥ λ) being hereditary; we also
call Π hereditary.

I Definition 4.3. A minimization (resp. maximization) problem Π can be structurally
lifted with respect to an edit operation ψ with constant c if, given any graph G′ that is
γ-editable from G under ψ, and given the corresponding edit sequence ψ1, ψ2, . . . , ψk with
k ≤ γ, a solution S′ for G′ can be converted in polynomial time to a solution S for G such
that CostΠ(S) ≤ CostΠ(S′) + c · k (resp. CostΠ(S) ≥ CostΠ(S′)− c · k).

Now we can state the main result of structural rounding:

I Theorem 4.4 (Structural Rounding Approximation). Let Π be a minimization (resp. max-
imization) problem that is stable under the edit operation ψ with constant c′ and that can
be structurally lifted with respect to ψ with constant c. If Π has a polynomial-time ρ(λ)-
approximation algorithm in the graph class Cλ, and (Cλ, ψ)-Edit has a polynomial-time
(α, β)-approximation algorithm, then there is a polynomial-time ((1 + c′αδ) · ρ(βλ) + cαδ)-
approximation (resp. ((1− c′αδ) · ρ(βλ)− cαδ)-approximation) algorithm for Π on any graph
that is (δ ·OPTΠ(G))-close to the class Cλ.

Proof. We write OPT(G) for OPTΠ(G). Let G be a graph that is (δ ·OPT(G))-close to the
class Cλ. By Definition 3.1, the polynomial-time (α, β)-approximation algorithm finds edit
operations ψ1, ψ2, . . . , ψk where k ≤ αδ ·OPT(G) such that G′ = ψk ◦ψk−1◦· · ·◦ψ2◦ψ1(G) ∈
Cβλ.Let ρ = ρ(βλ) be the approximation factor we can attain on the graph G′ ∈ Cβλ.

We prove the case when Π is a minimization problem. The proof of the maximization
case can be found in the full version of this paper. Because Π has a ρ-approximation in Cβλ
(where ρ > 1), we can obtain a solution S′ with cost at most ρ · OPT(G′) in polynomial
time. Applying structural lifting (Definition 4.3), we can use S′ to obtain a solution S for G
with Cost(S) ≤ Cost(S′) + ck ≤ Cost(S′) + cαδ ·OPT(G) in polynomial time. Because Π is
stable under ψ with constant c′,

OPT(G′) ≤ OPT(G) + c′k ≤ OPT(G) + c′αδ ·OPT(G) = (1 + c′αδ) OPT(G),

and we have

Cost(S) ≤ ρ ·OPT(G′) + cαδ ·OPT(G) = (ρ+ ρc′αδ + cαδ) OPT(G),

proving that we have a polynomial time (ρ + (c + c′ρ)αδ)-approximation algorithm as
required. J

To apply Theorem 4.4, we need four ingredients: (a) a proof that the problem of interest is
stable under some edit operation (Definition 4.2); (b) a polynomial-time (α, β)-approximation
algorithm for editing under this operation (Definition 3.1); (c) a structural lifting algorithm
(Definition 4.3); and (d) an approximation algorithm for the target class C.

In the remainder of this section, we show how this framework applies to many problems
and graph classes, as summarized in Table 2 on page 6. Most of our approximation algorithms
depend on our editing algorithms described in Section 5.
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Structural rounding for annotated problems. We refer to graph optimization problems
where the input consists of both a graph and subset of annotated vertices/edges as annotated
problems. Hence, in our rounding framework, we have to carefully choose the set of annotated
vertices/edges in the edited graph to guarantee small lifting and stability constants. To
emphasize the difference compared to “standard” structural rounding, we denote the edit
operations as vertex∗ and edge∗ in the annotated cases. Moreover, we show that we can
further leverage the flexibility of annotated rounding to solve non-annotated problems that
cannot normally be solved via structural rounding. In the full version of this paper ([18]), we
consider applications of annotated rounding for both annotated problems such as Annotated
Dominating Set and non-annotated problems such as Connected Dominating Set.

4.2 Applications: Vertex and Edge Deletions
For each problem, we show stability and structural liftability, and use these to conclude
approximation algorithms. Using our structural rounding framework above, we obtain the
following results on a broad set of problems for a number of different target classes. We
point out that these problems are hard-to-solve on general graphs. Table 2 shows a summary
of the set of problems we can obtain efficient approximation algorithms using structural
rounding. The full version of this paper ([18]) contains the stability and structural liftability
proofs used to obtain the corresponding results stated below.

We first use our structural rounding framework with vertex deletions to obtain the
following approximation results.

I Theorem 4.5. For graphs (δ ·OPT(G))-close to degeneracy r via vertex deletions,
Independent Set has a (1− 4δ)/(4r + 1)-approximation.
Annotated Dominating Set has O(r + δ)-approximation.

For graphs (δ ·OPT(G))-close to treewidth w via vertex deletions:
Annotated (`-)Dominating Set has a (1 +O(δ log1.5 n))-approximation for the case
w
√

logw = O(log` n).
Independent Set has a (1−O(δ log1.5 n))-approximation when w

√
logw = O(logn).

The problems Vertex Cover, Chromatic Number, and Feedback Vertex Set
have (1 +O(δ log1.5 n))-approximations when w

√
logw = O(logn).

Minimum Maximal Matching has a (1 + O(δ log1.5 n))-approximation for the case
w log1.5 w = O(logn).
Connected Dominating Set has a (1 +O(δ log1.5 n))-approximation when w = O(1).

Finally, for graphs (δ ·OPT(G))-close to planar-H-minor-free via vertex deletions,
Independent Set has a (1− cHδ)-approximation.
The problems Vertex Cover, Minimum Maximal Matching, Chromatic Number,
and Feedback Vertex Set have (1 + cHδ)-approximations.

We now use our structural rounding framework with edge deletions to obtain the following
approximation results.

I Theorem 4.6. For graphs (δ ·OPT(G))-close to degeneracy r via edge deletions,
Independent Set has a (1/(3r + 1)− 3δ)-approximation.
Dominating Set has an O((1 + δ)r)-approximation.

For graphs (δ ·OPT(G))-close to treewidth w via edge deletions,
(`-)Dominating Set and Edge (`-)Dominating Set have (1 +O(δ logn log logn))-
approximations when w logw = O(log` n).
Max-Cut has a (1−O(δ logn log logn))-approximation when w logw = O(logn).
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Although we do not present any editing algorithms for edge contractions, we point out
that such an editing algorithm would enable our framework to apply to additional problems
such as (Weighted) TSP Tour, and to apply more efficiently to other problems such as
Dominating Set (reducing c′ from 1 to 0).

5 Editing Algorithms

5.1 Degeneracy: Greedy O(r logn)-Approximation

In this section, we give a polytime O(logn)-approximation for reducing the degeneracy of
a graph by one using either vertex deletions or edge deletions. More specifically, given a
graph G = (V,E) with degeneracy r + 1, we produce an edit set X such that G′ = G \X
has degeneracy r and |X| is at most O(log |V |) times the size of an optimal edit set. Note
that this complements an o(log n

r )-inapproximability result for the same problem.
In general, the algorithm works by computing a vertex ordering and greedily choosing an

edit to perform based on that ordering. In our algorithm, we use the min-degree ordering
of a graph. The min-degree ordering is computed via the classic greedy algorithm given
by Matula and Beck [50] that computes the degeneracy of the graph by repeatedly removing
a minimum degree vertex from the graph. The degeneracy of G, degen(G), is the maximum
degree of a vertex when it is removed. In the following proofs, we make use of the observation
that given a min-degree ordering L of the vertices in G = (V,E) and assuming the edges are
oriented from smaller to larger indices in L, deg+(u) ≤ degen(G) for any u ∈ L.

The first ordering L0 is constructed by taking a min-degree ordering on the vertices of G
where ties may be broken arbitrarily. Using L0, an edit is greedily chosen to be added to X.
Each subsequent ordering Li is constructed by taking a min-degree ordering on the vertices
of G \X where ties are broken based on Li−1. Specifically, if the vertices u and v have equal
degree at the time of removal in the process of computing Li, then Li(u) < Li(v) if and only
if Li−1(u) < Li−1(v). The algorithm terminates when the min-degree ordering Lj produces
a witness that the degeneracy of G \X is r.

In order to determine which edit to make at step i, the algorithm first computes the
forward degree of each vertex u based on the ordering Li (equivalently, deg+(u) when edges
are oriented from smaller to larger index in Li). Each vertex with forward degree r + 1
is marked, and similarly, each edge that has a marked left endpoint is also marked. The
algorithm selects the edit that resolves the largest number of marked edges. We say that a
marked edge is resolved if it will not be marked in the subsequent ordering Li+1.

We observe that given an optimal edit set (of size k), removing the elements of the set in
any order will resolve every marked edge after k rounds (assuming that at most one element
from the optimal edit set is removed in each round). If it does not, then the final ordering
Lk must have a vertex with forward degree r + 1, a contradiction. Let mi be the number of
marked edges based on the ordering Li. We show that we can always resolve at least mi

k

marked edges in each round, giving our desired approximation (all proofs of this section are
deferred to the full version of this paper).

By repeatedly applying the O(logn) approximation given above, we can edit a graph
with arbitrary degeneracy to the class of graphs with degeneracy r.

I Theorem 5.1. There exists an O(r · logn)-approximation for finding the minimum size
edit set to reduce the degeneracy of a graph to r.
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5.2 Treewidth: bicriteria-approximation for vertex deletion
Our method for editing to bounded treewidth exploits the general recursive approach of the
approximation algorithms for constructing a tree decomposition [3, 8, 24, 53]. Our algorithm
iteratively subdivides the graph, considering G[Vi] in iteration i. We first apply the result
of [8, 24] (see Theorem 5.2) to determine if G[Vi] has a tree decomposition with “small”
width; if yes, the algorithm removes nothing and terminates. Otherwise, we compute an
approximate vertex (3/4)-separator S of G[Vi], remove it from the graph, and recurse on the
connected components of G[Vi \ S]. The full exposition of our results for editing to bounded
treewidth and pathwidth graphs are given in the full version of this paper.

Algorithm 1 Approximation for Vertex Editing to Bounded Treewidth Graphs.

1: procedure TreeWidthNodeEdit(G = (V,E), w)
2: t← compute tw(G) B refer to Theorem 5.2
3: if t ≤ 32c1 · w

√
logw then

4: return ∅
5: else
6: S ← compute a vertex ( 3

4 )-separator of G by invoking the algorithm of [24]
7: let G[V1], · · · , G[V`] be the connected components of G[V \ S].
8: return

(⋃
i≤` TreeWidthNodeEdit(G[Vi], w)

)
∪ S

9: end if
10: end procedure

I Theorem 5.2 ([8, 24]). There exists an algorithm that, given an input graph G, in
polynomial time returns a tree decomposition of G of width at most c2 · tw(G)

√
log tw(G)

and height O (log |V (G)|) for a sufficiently large constant c2.

Next, we analyze the performance of Algorithm 1. Our approach relies on known results for
vertex c-separators, structures which are used extensively in many other algorithms for
finding an approximate tree decomposition.

I Definition 5.3. For a subset of vertices W , a set of vertices S ⊆ V (G) is a vertex
c-separator of W in G if each component of G[V \ S] contains at most c|W | vertices of
W . The minimum sized vertex c-separator of a graph is a separator with size k, denoted
sepc(G), where k is the minimum integer such that for any subset W ⊆ V there exists a
vertex c-separator of W in G of size k.

I Theorem 5.4. Algorithm 1 removes at most O(log1.5 n) OPTw-TW-V(G) vertices from any
n-vertex graph G. The treewidth of the subgraph of G returned by Algorithm 1 is O(w ·

√
logw).
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Abstract
We describe a new family of k-uniform hypergraphs with independent random edges. The hypergraphs
have a high probability of being peelable, i.e. to admit no sub-hypergraph of minimum degree 2,
even when the edge density (number of edges over vertices) is close to 1.

In our construction, the vertex set is partitioned into linearly arranged segments and each edge
is incident to random vertices of k consecutive segments. Quite surprisingly, the linear geometry
allows our graphs to be peeled “from the outside in”. The density thresholds fk for peelability of our
hypergraphs (f3 ≈ 0.918, f4 ≈ 0.977, f5 ≈ 0.992, . . . ) are well beyond the corresponding thresholds
(c3 ≈ 0.818, c4 ≈ 0.772, c5 ≈ 0.702, . . . ) of standard k-uniform random hypergraphs.

To get a grip on fk, we analyse an idealised peeling process on the random weak limit of
our hypergraph family. The process can be described in terms of an operator on [0, 1]Z and fk
can be linked to thresholds relating to the operator. These thresholds are then tractable with
numerical methods.

Random hypergraphs underlie the construction of various data structures based on hashing, for
instance invertible Bloom filters, perfect hash functions, retrieval data structures, error correcting
codes and cuckoo hash tables, where inputs are mapped to edges using hash functions. Frequently,
the data structures rely on peelability of the hypergraph, or peelability allows for simple linear time
algorithms. Memory efficiency is closely tied to edge density while worst and average case query
times are tied to maximum and average edge size.

To demonstrate the usefulness of our construction, we used our 3-uniform hypergraphs as a
drop-in replacement for the standard 3-uniform hypergraphs in a retrieval data structure by Botelho
et al. [8]. This reduces memory usage from 1.23m bits to 1.12m bits (m being the input size) with
almost no change in running time. Using k > 3 attains, at small sacrifices in running time, further
improvements to memory usage.
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1 Introduction

The core of a hypergraph H = (V,E) is the largest sub-hypergraph of H with minimum
degree at least 2. The core can be obtained by peeling, which means repeatedly choosing a
vertex of degree 0 or 1 and removing it (and the incident edge if present) from the hypergraph,
until no such vertex exists. If the core of H is empty, then H is called peelable.

The significance of peelability. Hypergraphs underlie many hashing based data structures
and peelability is often necessary for proper operation or allows for simple linear time
algorithms. We list a few examples.
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Invertible Bloom Lookup Tables. IBLTs [22] are based on Bloomier filters [10]
which are based on Bloom filters [4]. Each element is inserted in several random positions
in a hash table. Any cell stores the xor of all elements that have been inserted into
it. A List-Entries query on an IBLT can recover all elements of the table precisely
if the underlying hypergraph is peelable. Among other things, IBLTs have been used
to construct error correcting codes [34] and to solve the set reconciliation and straggler
identification problems [16].
Erasure Correcting Codes. To construct capacity achieving erasure codes, the
authors of [28] consider a hypergraph where V corresponds to parity check bits and E to
message bits that were lost during transmission. A message bit is incident to precisely
those check bits to which it contributed. Correct decoding hinges on peelability of the
hypergraph.
Cuckoo Hashing and XORSAT. In the context of cuckoo hash tables [14, 31, 36]
and solving random xorsat formulas [15, 19, 37], (partial) peelability of the underlying
hypergraph makes placing all (some) keys or solving the linear system (eliminating some
variables) particularly simple.
Retrieval and Perfect Hashing. The retrieval problem (considered later in Section 7)
occurs in the context of constructing perfect hash functions [3, 6, 7, 8, 30]. The known
approaches involve finding a solution z : V → R for a system (

∑
v∈e z(v) = f(e))e∈E

of equations where H = (V,E) is a hypergraph, f : E → R a function and R a small
set. If R is a field, then the incidence matrix of H needs to have full rank over R to
guarantee the existence of a solution. If H is peelable however, then the existence of a
solution is guaranteed even if R only has a group structure. Moreover, it can be computed
in linear time.

In these contexts, the hypergraph typically has vertex set [n] = {1, . . . , n} and for each element
x of an input set S, an edge ex ⊂ [n] is created with incidences chosen via hash functions. For
theoretical considerations, the edges (ex)x∈S are often assumed to be independent random
variables. This has proven to be a good model for practical settings, even though perfect
independence is not achieved by most practical hash functions. An important choice left to
the algorithm designer is the distribution of ex.

Previous work. If the distribution is such that O(n) edges have size 2 or less (in particular
if H is a graph with O(n) edges), then – due to the well-known “birthday paradox” – there
is a constant probability that an edge is repeated. In that case, H is clearly not peelable.
The simplest workable candidate for the distribution of ex is therefore to pick a constant
k ≥ 3 and let ex contain k vertices chosen independently and uniformly at random. We refer
to these standard hypergraphs as k-uniform Erdős-Renyi hypergraphs Hk

n,cn where c is the
edge density, i.e. the number of edges over the number of vertices. Corresponding peelability
thresholds ck have been determined in [35] meaning if c < ck then Hk

n,cn is peelable with high
probability (whp), i.e. with probability approaching 1 as n→∞ and if c > ck then Hk

n,cn is
not peelable whp. The largest threshold is c3 ≈ 0.818. Since the edge density is often tightly
linked to a performance metric (e.g. memory efficiency of a dictionary, rate of a code) a
density closer to 1 would be desirable, but we know of only two alternative constructions.

To obtain erasure codes with high rates the authors of [28] construct for any D ∈ N
hypergraphs with edge sizes in {5, . . . , D+ 4}, average edge size ≈ lnD+ 3 and edge density
1 − 1/D that are peelable whp. In particular, this yields peelable hypergraphs with edge
densities arbitrarily close to 1. A downside is that the high maximum edge size can lead
to worst case query times of Θ(D) in certain contexts. Motivated by this, the author of
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Table 1 The erosion thresholds erk and peelability thresholds fk for k-ary fuse graphs satisfy
bk ≤ erk ≤ fk ≤ c∗k. The values Bk play a role in Section 5.

k 3 4 5 6 7

bk 0.9179352469 0.9767692112 0.9924345766 0.9973757381 0.9990561294
c∗k 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
Bk 0.9179353065 0.9767711186 0.9924422067 0.9973833675 0.9990713882

⇒ fk ≈ 0.917935 0.97677 0.99243 0.99738 0.99906

[39] looked into non-uniform hypergraphs with constant maximum edge size. Focusing on
hypergraphs with two admissible edge sizes, he found for example that mixing edges of size 3
and size 21 yields a family of hypergraphs with peelability threshold ≈ 0.92.

Our construction. In this paper we introduce and analyse a new distribution on edges
that yields k-uniform hypergraphs with high peelability thresholds that perform well in
practical algorithms.

We call our hypergraphs fuse graphs (as in the cord attached to a firecracker). There is
an underlying linear geometry and similar to how fire proceeds linearly through a lit fuse,
the peeling process proceeds linearly through our hypergraphs, in the sense that vertices on
the inside of the line tend to only become peelable after vertices closer to the end of the line
have already been removed.

Formally, for k ≥ 3, ` ∈ N and c ∈ R+ we define the family (F (n, k, c, `))n∈N of k-
uniform fuse graphs as follows. The vertex set is V = {1, . . . , n(` + k − 1)} where for
i ∈ I := {0, . . . , `+k−2} the vertices {in+1, . . . , (i+1)n} form the i-th segment1. The edge
set E has size cn`. Each edge e ∈ E is independently determined by one uniformly random
variable j ∈ J := {0, . . . , `− 1} denoting the type of e and k independent random variables
o0, . . . , ok−1 uniformly distributed in [n], yielding e = {(j + t)n+ ot | t ∈ {0, . . . , k − 1}}. In
other words, e contains one uniformly random vertex from each segment j, j+ 1, . . . , j+k−1.
There may be repeating edges but the probability that his happens is O(1/n). The edge
density c `

`+k−1 approaches c for `� k.

Results. Let the peelability threshold for k-ary fuse graphs be defined as

fk := sup{c ∈ R+ | ∀` ∈ N : Pr[F (n, k, c, `) is peelable] n→∞−→ 1}.

Our Main Theorem relates fk to the orientability threshold c∗k of k-ary Erdős-Renyi hyper-
graphs and the erosion threshold erk defined in the technical part of our paper.

I Theorem 1. For any k ≥ 3 we have erk ≤ fk ≤ c∗k.

The orientability thresholds c∗k are known exactly [11, 19, 20] and we determine lower bounds
on the erosion thresholds erk. As shown in Table 1, this makes it possible to narrow down
fk to an interval of size 10−5 for all k ∈ {3, . . . , 7}.

1 Denoting the segment size by n instead of the number of vertices is more convenient. Note that
|V | = Θ(n) still holds.
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Outline. The paper is organised as follows. In Section 2 we idealise the peeling process by
switching to the random weak limit of our hypergraphs, and capture the essential behaviour of
the process in terms of an operator P̂ acting on functions q : Z→ [0, 1]. For this operator, we
identify the properties of being eroding and consolidating as well as corresponding thresholds
erk and cok in Section 3. We then prove the “erk ≤ fk” part of our theorem in Section 4
and give numerical approximations of erk and cok in Section 5. The comparatively simple
“fk ≤ c∗k” part of our theorem is independent of these considerations and is proved in
Section 6. Finally, in Section 7 we demonstrate how using our hypergraphs can improve the
performance of practical retrieval data structures.

2 The Peeling Process and Idealised Peeling Operators

In this section we consider how the probabilities for vertices to “survive” r ∈ N rounds of
peeling changes from one round to the next. In the classical setting this could be described by
a function, mapping the old probability to the new one [35]. In our case, however, there are
distinct probabilities for each segment of the graph. Thus we need a corresponding operator
P̂ that acts on sequences of probabilities. Conveniently, it will be independent of n and `.

We almost always suppress n, k, c, ` in notation outside of definitions, assuming n to be
large. Big-O notation refers to n→∞ while k, c, ` are constant.

Consider the parallel peeling process peel(F ) on F = F (n, k, c, `). In each round of peel(F ),
all vertices of degree 0 or 1 are determined and then deleted simultaneously. Deleting a
vertex implicitly deletes incident edges. We also define the rooted peeling process peelv(F )
for any vertex v ∈ V , which behaves exactly like peel(F ) except that the special vertex v
may only be deleted if it has degree 0, not if it has degree 1. For any i ∈ I and r ∈ N0 we let
q(r)(i) = q(r)(i, n, k, c, `) be the probability that a vertex v of segment i survives r rounds of
peelv(F ), i.e. is not deleted. Note that the probability is well-defined as vertices of the same
segment are symmetric.

By definition, q(0)(i) = 1 for all i ∈ I. Whether a vertex v of segment i ∈ I survives r > 0
rounds is a function of its r-neighbourhood N(n, v, r), i.e. the set of vertices and edges of F
that can be reached from v by traversing at most r hyperedges.

It is standard to consider the random weak limit of F to get a grip on the distribution of
N(n, v, r) and thus on q(r)(i). Intuitively, we identify a (possibly infinite) random tree that
captures the local characteristics of F for n→∞. See [1] for a good survey with examples
and details on how to formally define the underlying topology and metric space. In the limit,
the binomially distributed vertex degrees (e.g. Bin(cn`, 1

n` ) for vertices of segment 0) become
Poisson distributed (Po(c) for segment 0). Short cycles are not only rare but non-existent
and certain weakly correlated random variables become perfectly independent.

I Definition 2 (Limiting Tree). Let k, ` ∈ N, c ∈ R+ and i ∈ I. The random (possibly
infinite) hypertree Ti = Ti(k, c, `) is distributed as follows.

Ti has a root vertex root(Ti) of segment2 i which for each j ∈ {i− k + 1, . . . , i} ∩ J has
dj ∼ Po(c) child edges of type j. Each child edge of type j is incident to k − 1 (fresh) child
vertices of its own, one for each segment i′ ∈ {j, . . . , j+k−1}\{i}. The sub-hypertree at such
a child vertex of segment i′ is distributed recursively (and independently of its sibling-subtrees)
according to Ti′ .

2 In the current context, the segment of a vertex is an abstract label. There can be an unbounded number
of vertices of each segment.
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Since all arguments are standard in contexts where local weak convergence plays a role, we
state the following lemma without proof. For instance, a full argument to show a similar
convergence is given in [25]. See also [24] for the related technique of Poissonisation.

I Lemma 3. Let r ∈ N be constant. Let further N(n, v, r) be the r-neighbourhood of a vertex
v of segment i in F and T (r)

i the r-neighbourhood of root(Ti), both viewed as undirected and
unlabelled hypergraphs. Then N(n, v, r) converges in distribution to T (r)

i as n→∞.

We now direct our attention to survival probabilities in the idealised peeling processes
(peelroot(Ti)(Ti))i∈I , which are easier to analyse than those of peelv(F ).

I Lemma 4. Let r ∈ N0 be constant and q
(r)
T (i) = q

(r)
T (i, k, c, `) be the probability that

root(Ti) survives r rounds of peelroot(Ti)(Ti) for i ∈ I. Then

q
(r+1)
T (i) = 1− exp

(
− c

∑
j∈{i−k+1,...,i}∩J

∏
j≤i′<j+k

i′ 6=i

q
(r)
T (i′)

)
for i ∈ I.

Proof. Let i ∈ I and v = root(Ti). Assume j ∈ {i−k+ 1, . . . , i}∩J is the type of some edge
e incident to v. Edge e survives r rounds of peelv(Ti) if and only if all of its incident vertices
survive these r rounds. Since v itself may not be deleted by peelv(Ti) as long as e exists, the
relevant vertices are the k− 1 child vertices, one for each segment i′ ∈ {j, . . . , j+k− 1}−{i}.
Call these w1, . . . , wk−1 and denote the subtrees rooted at those vertices by W1, . . . ,Wk−1.
Now consider the peeling processes peelw1(W1), . . . , peelwk−1

(Wk−1). Assume one of them,
say peelws

(Ws), deletes ws in round r′ ≤ r, meaning ws has degree 0 before round r′. It
follows that ws has degree at most 1 before round r′ in peelv(Ti), meaning peelv(Ti) deletes
e in round r′ (or earlier). Conversely, if none of peelw1(W1), . . . , peelwk−1

(Wk−1) delete
their root vertex within r rounds, then w1, . . . , wk−1 have degree at least 2 after round r of
peelv(Ti) and e survives round r of peelv(Ti). This makes the probability for e to survive
r rounds of peelv(Ti) equal to pij :=

∏
j≤i′<j+k,i′ 6=i q

(r)
T (i′). Since the number mij of edges

of type j incident to v has distribution mij ∼ Po(c), the number m′ij of edges of type j
incident to v surviving r rounds of peelv(Ti) is a correspondingly thinned out variable, namely
m′ij ∼ Bin(mij , pij), which means m′ij ∼ Po(cpij).

The claim now follows by observing that v survives r + 1 rounds of peelv(Ti) if and only
if at least one of its child edges survives r rounds of peelv(Ti):

q
(r+1)
T (i) = Pr[v survives r + 1 rounds of peelv(Ti)] = 1− Pr

[ ⋂
j∈{i−k+1,...,i}∩J

{m′ij = 0}
]

= 1−
∏

j∈{i−k+1,...,i}∩J

Pr[m′ij = 0] = 1−
∏

j∈{i−k+1,...,i}∩J

exp(−cpij) = 1− exp(−c
∑

j∈{i−k+1,...,i}∩J

pij).

Replacing pij with its definition completes the proof. J

For convenience we define, for k ≥ 3, ` ∈ N and c ∈ R+, the operator P = P(k, c, `),
which maps any q : I → [0, 1] to Pq : I → [0, 1] with

(Pq)(i) = 1− exp
(
− c

∑
j∈{i−k+1,...,i}∩J

∏
j≤i′<j+k

i′ 6=i

q(i′)
)

for i ∈ I.

Together Lemmas 3 and 4 imply that P can be used to approximate survival probabilities.
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I Corollary 5. Let r ∈ N0 be constant. Then for all i ∈ I

Prq(0)(i) def= Prq
(0)
T (i) Lem4= q

(r)
T (i) Lem3= q(r)(i)± o(1).

To obtain upper bounds on survival probabilities, we may remove the awkward restriction
“∩ J” in the definition of P. We define P̂ = P̂(k, c) as mapping q : Z→ [0, 1] to P̂q : Z→ [0, 1]
with

(P̂q)(i) = 1− exp
(
− c

i∑
j=i−k+1

∏
j≤i′<j+k

i′ 6=i

q(i′)
)

for i ∈ Z.

Note that P̂ does not depend on ` or n. To simplify notation, we assume that the old
operator P also acts on functions q : Z → [0, 1], ignoring q(i) for i /∈ I, and producing
Pq : Z→ [0, 1] with Pq(i) = 0 for i /∈ I. We also extend q(0) to be 1I : Z→ [0, 1], i.e. the
characteristic function on I, essentially introducing vertices of segments i /∈ I which are,
however, already deleted with probability 1 before the first round begins. Note that while
q(r)(i) and q(r)

T (i) are by definition non-increasing in r, this is not the case for (P̂rq(0))(i).
For instance, P̂rq(0) has support {−r,−r + 1, . . . , `+ k − 2 + r}, which grows with r.3 The
following lemma lists a few easily verified properties of P̂. All inequalities between functions
should be interpreted point-wise.

I Lemma 6.
(i) ∀q : Z→ [0, 1] : Pq ≤ P̂q.
(ii) P̂ commutes with the shift operators and defined via ( q)(i) = q(i + 1) and

( q)(i) = q(i−1). In other words, we have ∀q : Z→ [0, 1] : P̂( q) = (P̂q)∧ P̂( q) =
(P̂q).

(iii) P̂ is monotonic, i.e. ∀q, q′ : Z→ [0, 1] : q ≤ q′ ⇒ P̂q ≤ P̂q′.
(iv) P̂ respects monotonicity, i.e. if q(i) is (strictly) increasing in i, then so is (P̂q)(i).

3 Two Fixed Points Battling for Territory

In this section we define the erosion and consolidation thresholds at which the behaviour of
P̂ changes in crucial ways.

First, we require a few facts about the function f : [0, 1]→ [0, 1] mapping x 7→ 1−e−ckxk−1 .
It appears in the analysis of cores in k-ary Erdős-Renyi hypergraphsHk

n,cn, essentially mapping
the probability ρr for a vertex to survive r rounds of peeling to the probability ρr+1 = f(ρr)
to survive r + 1 rounds of peeling, see [35, page 5]4.

The threshold ck for the appearance of a core in Hk
n,cn turns out to be the threshold for

the appearance of a non-zero fixed point of f . The following is implicit in the analysis.

I Fact 7 ([35, Proofs of Lemmas 3 and 4]).
(i) For c < ck, f has only the fixed point f(0) = 0, with f ′(0) < 1.
(ii) For c > ck, there are exactly three fixed points 0, ξ1 = ξ1(k, c) and ξ2 = ξ2(k, c) where

f ′(ξ1) > 1 while f ′(0), f ′(ξ2) < 1.

3 It is still possible to interpret P̂rq(0)(i) as survival probabilities in more symmetric extended versions
T̂i of the tree Ti, but we will not pursue this.

4 Our setting corresponds to the choices (rMolloy, kMolloy, cMolloy) = (k, 2, c · (k − 1)!).
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This implies the following behaviour of applying f repeatedly to a starting value x. This
should be immediately clear from the sketches on the right.

fr(x) r→∞−→


0 if c < ck ∧ x ∈ [0, 1],
0 if c > ck ∧ x ∈ [0, ξ1),
ξ2 if c > ck ∧ x ∈ (ξ1, 1].

0.5 1
0

0.5

1

c < ck

ξ1 ξ2 1
0

1

c > ck

(1)

Note that f captures the behaviour of P̂ on constant functions constx(i) := x, in the
sense that P̂constx = constf(x). For c < ck we therefore have for all i ∈ I

Prq(0)(i) Cor 5= q(r)(i)± o(1) and Prq(0) ≤ P̂rq(0) ≤ P̂rconst1 = constfr(1)
r→∞−→ const0.

In conjunction with a later lemma, this is sufficient to show that F is peelable whp in this
case. A similar argument for c = ck is possible as well. Our focus from now on is therefore
on the interesting case c > ck where the three distinct fixed points 0, ξ1, ξ2 of f exist.

We give an intuitive account of the phenomenon underlying the following steps before
continuing formally. Due to (1) we have

P̂rconstx
r→∞−→

{
const0 for x < ξ1

constξ2 for x > ξ1.

Now consider what happens if we iterate P̂ on a function that is “torn” between these
two cases. Concretely, let us consider the function step1

0 where we define stepyx : Z→ [0, 1] to
have value y on N0 and value x on negative inputs. Should we expect P̂rstep1

0 to converge
to const0 or constξ2 as r increases? It turns out both is possible, depending on c.

Speaking more generally, let q : Z→ [0, 1] be any function. If N(i) := {i− k + 1, . . . , i+
k− 1} \ {i} then P̂q(i) depends (monotonically) on (q(i′))i′∈N(i). It is clear that if q(i′) < ξ1

for all i′ ∈ N(i), then P̂q(i) < ξ1 as well. Similarly, if q(i′) > ξ1 for all i′ ∈ N(i) then
P̂q(i) > ξ1. If, however, there are indices i′1, i′2 ∈ N(i) with q(i′1) < ξ1 < q(i′2) then P̂q(i)
could be above or below ξ1; in this case we call the index i contested.

The contested area of step1
0 is [−k + 1, k − 2]. Iterating P̂ we obtain P̂rstep1

0 for r ∈ N0.
For all r ∈ N0 the contested area is an interval of size 2k − 2 with all values to the left of
it (towards −∞) less than ξ1 and all values to the right of it (towards ∞) bigger than ξ1.
However, the contested area may shift. If the domain of values bigger than ξ1 is shrinking
(“eroding”), then we see convergence to const0. If conversely it is growing (“consolidating”),
then we see convergence to constξ2 . In Figure 1 we visualise these effects. There is only a
small range of values c where both fixed points seem equally “strong” and the same area
remains perpetually contested.

With this in mind, we make the following definitions. For a compact formulation in
the coarse terms of shifts (“ ”, “ ”) and point-wise inequalities (“<”, “>”) we use slightly
different step functions.

I Definition 8. Let k ≥ 3, c ∈ R+ and P̂ = P̂(k, c) as above. We say

P̂ is eroding if ∃R ∈ N : P̂Rstep1
ξ1/2 < step1

ξ1/2

and P̂ is consolidating if ∃R ∈ N : P̂Rstep(ξ1+ξ2)/2
0 > step(ξ1+ξ2)/2

0 .
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Figure 1 Depiction of P̂rstep1
0 for c ∈ {0.85, 0.95} and r ∈ {0, 5, 25} on the range i ∈

{−10, . . . , 10}. The phenomenon of erosion can be seen on the top with the plot seemingly moving
towards the right between r = 5 and r = 25. Similarly, consolidation can be seen on the bottom.

We define the corresponding erosion and consolidation thresholds as

erk = sup{c ∈ R+ | P̂(k, c) is eroding}, cok = inf{c ∈ R+ | P̂(k, c) is consolidating}.

Note that c < erk implies that P̂(k, c) is eroding and c > cok implies P̂(k, c) is consolidating
as would be expected. This uses that the definition of P̂ is monotonic in c.

The following lemma states that erosion (consolidation) are sufficient conditions for const0
(constξ2) to “win the battle” when iterating P̂ on step1

0.

I Lemma 9. Let k ≥ 3.
(i) If c < erk and i ∈ Z, then P̂rstep1

0(i) r→∞−→ 0.
(ii) If c > cok and i ∈ Z, then P̂rstep1

0(i) r→∞−→ ξ2.
(iii) erk ≤ cok.

Proof.
(i) Let R ∈ N be the witness to the fact that P̂(k, c) is eroding and i ∈ Z arbitrary.

lim
r→∞

(P̂rstep1
0)(i) ≤ lim

r→∞
(P̂rstep1

ξ1/2)(i) = lim
r→∞

(P̂r((P̂R)krstep1
ξ1/2))(i)

≤ lim
r→∞

(P̂r( kr step1
ξ1/2))(i) = lim

r→∞
( kr(P̂rstep1

ξ1/2))(i)

= lim
r→∞

(P̂rstep1
ξ1/2)(i− kr) = lim

r→∞
(P̂rconstξ1/2)(i− kr)

= lim
r→∞

constfr(ξ1/2)(i− kr) = lim
r→∞

fr(ξ1/2) = 0.

When replacing step1
ξ1/2 by constξ1/2 we exploited that (P̂q)(i) depends only on the

values q(i′) for i′ ∈ {i − k + 1, . . . , i + k − 1} and thus (P̂rq)(i) depends only on the
values q(i′) for i′ ∈ [i− (k − 1)r, i+ (k − 1)r].

(ii) The proof is analogous to the proof of (i).
(iii) This is clear, since the implications of (i) and (ii) are mutually exclusive. J

4 Erosion is Sufficient for Peeling

We now connect the phenomenon of erosion to the survival probabilities q(R)(i) we were
originally interested in. For c < erk and any ` ∈ N, they can be made smaller than any δ > 0
in R = R(δ, `) rounds. For c > cok and ` sufficiently large, no constant number of rounds
suffices to reduce all survival probabilities below ξ1.
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I Lemma 10. Let k ≥ 3.
(i) If c < erk then ∀` ∈ N, δ > 0: ∃R,N ∈ N : ∀n ≥ N, i ∈ I : q(R)(i) < δ.
(ii) If c > cok then ∃L = L(k, c) : ∀` ≥ L : ∃i ∈ I : lim

r→∞
lim
n→∞

q(r)(i) > ξ1.

Proof.
(i) Let ` ∈ N and δ > 0 be arbitrary constants. Using (i) from Lemma 9, there exists a

constant R such that P̂Rstep1
0(i) ≤ δ/2 for all i ∈ I. Therefore for i ∈ I:

q(R)(i) Cor 5= (PRq(0))(i) + o(1) ≤ (P̂Rq(0))(i) + o(1) ≤ (P̂Rstep1
0)(i) ≤ δ/2 + o(1).

which implies the existence of an appropriate N ∈ N.
(ii) Let R ∈ N be the witness to the fact that P̂(k, c) is consolidating and let ` ≥ L(k, c) :=

4d for d = (k− 1)R. Consider the function q∗ : Z→ [0, 1] defined as q∗ = 1{d,...,`−d−1} ·
(ξ1 + ξ2)/2, i.e. the function with value (ξ1 + ξ2)/2 on its support {d, . . . , ` − d − 1}
and 0 outside of it. For any d ≤ i < `− 2d we have

PRq∗(i) = P̂Rq∗(i) = P̂Rstep(ξ1+ξ2)/2
0 (i− d) ≥ step(ξ1+ξ2)/2

0 (i− d)
= (ξ1 + ξ2)/2 = q∗(i).

For the first equality, we exploited that i is so far from the borders of I = {0, . . . , `− 1}
that there is no difference between P and P̂. For the second equality we used that only
the values of q∗ on {i− d, . . . , i+ d} play a role and q∗ is a (shifted) step function on
that domain. By mirroring, the same argument can be made to get PRq∗(i) ≥ q∗(i) for
2d ≤ i < `− d as well and thus the point-wise inequality PRq∗ ≥ q∗. Since q(0) ≥ q∗

we get

lim
r→∞

lim
n→∞

q(r) Cor 5= lim
r→∞

Pr1I ≥ lim
r→∞

Prq∗ ≥ q∗.

Since q∗ exceeds ξ1 on {d, . . . , `− d− 1}, this implies the claim. J

While Lemma 10(i) is sufficient to show that all but a δ-fraction of the vertices is peeled
whp if c < erk, we still need the following combinatorial argument that shows that whp no
non-empty core is contained within the remaining vertices. Arguments such as these are
standard, many similar ones can be found for instance in [18, 19, 23, 27, 29, 35, 32].

I Lemma 11. For any k ≥ 3, ` ∈ N and c ∈ (0, 1) there exists δ = δ(k, `) > 0 such that the
following holds whp. For any non-empty set V ′ ⊆ V of at most δ|V | vertices of F = (V,E),
there exists v ∈ V ′ of degree at most 1 in the sub-hypergraph of H induced by V ′.

Proof. In the course of the proof we will implicitly encounter positive upper bounds on
δ in terms of k and `. Any δ > 0 small enough to respect these bounds is suitable. We
consider the events (Ws,t)k≤s≤δ|V |, 2s

k ≤t≤|E| that some small set V ′ of size s induces t edges.
If none of these events occurs, then all such V ′ induce less than 2|V ′|/k edges and therefore
induce hypergraphs with average degree less than 2, so a vertex of degree at most 1 exists in
each of them.

It is thus sufficient to show that Pr[
⋃
s

⋃
tWs,t] = O(1/n). We shall use a first moment

argument. First note that F has duplicate edges with probability
(
cn`

2
)
(`nk)−1 = O(n−1), so

we restrict our attention to F without duplicate edges. Given s and t there are
((`+k−1)n

s

)
ways to choose V ′ and at most

(
sk

t

)
ways to choose which k-tuples of vertices in V ′ induce

an edge. The probability that any given k-tuple actually does induce an edge is either zero if
the k vertices are not of consecutive segments or 1− (1− (`nk)−1)cn` ≤ cn

nk = 1
nk−1 . Thus,

using constants C,C ′, C ′′, C ′′′ ∈ R+ (that may depend on k and `) where precise values do
not matter, we get
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Pr[
δ|V |⋃
s=k

|E|⋃
t= 2s

k

Ws,t] ≤
δ|V |∑
s=k

|E|∑
t= 2s

k

Pr[Ws,t] ≤
δ|V |∑
s=k

|E|∑
t= 2s

k

(
(`+ k − 1)n

s

)(
sk

t

)(
1

nk−1

)t

≤
δ|V |∑
s=k

|E|∑
t= 2s

k

(
e(`+ k − 1)n

s

)s(
esk

tnk−1

)t
≤

δ|V |∑
s=k

|E|∑
t= 2s

k

(
C
n

s

)s(
C′
sk−1

nk−1

)t

≤ 2
δ|V |∑
s=k

(
C
n

s

)s(
C′
sk−1

nk−1

) 2s
k

= 2
δ|V |∑
s=k

(
C′′

nk

sk
s2k−2

n2k−2

) s
k

= 2
δ|V |∑
s=k

(
C′′′

s

n

) s(k−2)
k

.

To get rid of the summation over t, we assumed (s/n)k−1 ≤ δk−1 ≤ 1
2C′ . Elementary

arguments show that in the resulting bound, the contribution of summands for s ∈ {k, . . . , 2k}
is of order O( 1

n ), the contribution of the summands with s ∈ {2k + 1, . . . , O(logn)} are of
order O( logn

n2 ) (using s
n ≤

logn
n ) and the contribution of the remaining terms with s ≥ 3 log2 n

is of order O(2− log2 n) = O( 1
n ) (using C ′′′ sn ≤ C

′′′δ(`+ 2) ≤ 1
2 ).

This gives Pr[
⋃
s,tWs,t] = O(n−1), proving the claim. J

We are ready to prove the “erk ≤ fk” of Theorem 1, stated here as a theorem of its own.

I Theorem 12. For all k ≥ 3 we have erk ≤ fk.

Proof. We need to prove that for any c < erk and any ` ∈ N the fuse graph F = F (n, k, c, `)
is peelable whp.

First, let δ = δ(k, `) be the constant from Lemma 11 and R = R(δ/2, `) as well as
N = N(δ/2, `) the corresponding constants from Lemma 10(i).

Assuming n ≥ N we have q(R)(i) ≤ δ/2 for all i ∈ I, meaning any vertex v from F is not
deleted within R rounds of peelv(F ) with probability at most δ/2. Since peel(F ) deletes at
least the vertices that any peelv(F ) for v ∈ V deletes, the expected number of vertices not
deleted by peel(F ) within R rounds is at most δ|V |/2.

Now standard arguments using Azuma’s inequality (see e.g. [33, Theorem 13.7]) suffice
to conclude that whp at most δ|V | vertices are not deleted by peel(F ) within R rounds.

By Lemma 11 whp neither the remaining δ|V | vertices, nor any of its subsets induces a
hypergraph of minimum degree 2. Therefore the core of F is empty. J

A natural follow-up question to Theorem 12 would be whether erk = fk, which would also
imply fk ≤ cok. To establish this stronger claim, we would have to exclude the possibility
that for certain densities c there is a function r(n) = ω(1) such that a constant fraction of
vertices survive r(n) rounds but are nevertheless deleted eventually. It seems plausible that
arguments similar to [35, Lemma 4] can be used, but since our main goal is reached we do
not pursue this now.

5 Approximating the Erosion and Consolidation Thresholds

We now approximate the thresholds erk (and analogously cok) with numerical methods. Note
that if c < erk (if c > cok), then this can be verified in a finite computation, because the
correct value of R, together with a bound on the required precision of floating point operations
(when rounding conservatively), constitutes a witness. Moreover, the function P̂rstep1

ξ1/2
can be represented by a finite number of reals, since it is constant on (−∞,−(k − 1)r] and
constant on [(k − 1)r,∞).
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To approximate erk (and cok) with high precision, more efficient approaches are required,
however. We compute upper bounds on P̂rstep1

ξ1/2 by focusing on a finite domain [−D,D]
for some D ∈ N and rounding conservatively outside of it. Concretely we define (ar : Z→
[0, 1])r∈N0 (dependent on k, c and D) with a0 := step1

ξ1/2 (analogously (br : Z→ [0, 1])r∈N0

with b0 := step(ξ1+ξ2)/2
0 ). For r ≥ 0 we let

ar+1(i) :=


ar+1(−D) if i < −D,
P̂ar(i) if −D ≤ i ≤ D,
1 if i > D.

br+1(i) :=


0 if i < −D,
P̂br(i) if −D ≤ i ≤ D,
P̂br(D) if i > D.

Due to the limited effective domain, each ar is given by 2D + 2 values. It is easy to see that
each ar is monotonous and fulfils ar+1 ≤ P̂ar, which implies P̂rstep1

ξ1/2 ≤ ar. If we find
ar(0) < ξ1/2, then by monotonicity we have ar ≤ step1

ξ1/2 and therefore:

∃R ∈ N : aR(0) < ξ1/2 ⇒ ∃R ∈ N : P̂Rstep1
ξ1/2 < step1

ξ1/2
def⇒ c < erk.

(Analogously if bR(−1) > (ξ1 + ξ2)/2 then c > cok follows.)

Experimental Results. For D = 50 and all k ∈ {3, . . . , 7} we computed, using double-
precision floating point values, a1, a2, . . . and b1, b2, . . . for various c. For each pair (k, c),
we either find that P̂(k, c) is consolidating, it is eroding, or none of the two can be verified.
The results suggest that erk < c∗k < cok where c∗k is the orientability threshold for k-ary
Erdős-Renyi hypergraphs.

Concretely, we considered for j = 1, 2, 3, . . . the values c∗k − 2−j and tried to verify that
they are less than erk. The largest for which we succeeded is reported as bk in Table 1 on
page 3. The largest number of iterations required was 6 · 107. For the first value that could
not be shown to be less than erk, our approximations of the sequence of (ai)i∈N became
stationary with a[0] > ξ1/2, i.e. the double-precision floats did not change any more (the
highest number of iterations to reach this point was 2 ·108). It is possible that the value is still
less than erk and our choice of D or the precision of our floats is simply insufficient. Further
experiments with 128-bit floats and larger values of D suggest however, that there is a tiny
but real gap between erk, c∗k and cok and the natural conjecture of equality is misplaced.

In the same way we report the smallest value of the form c∗k + 2−j for which we verified
that it exceeds cok as Bk in Table 1.

6 Peeling Necessitates Orientability of Erdős-Renyi Hypergraphs

We now prove the “fk ≤ c∗k”-half of Theorem 1, stated as Theorem 14. Recall that an
orientation of a hypergraph H = (V,E) is an injective map f : E → V with f(e) ∈ e for all
e ∈ E and that c∗k is the threshold for orientability of k-uniform Erdős-Renyi hypergraphs.

After classical (2-ary) cuckoo hashing was discovered [36] (relying on c∗2 = 1
2 ), the

thresholds for k > 2 were determined independently by [11, 19, 20], with generalisations to
other graphs and hypergraphs studied in [9, 17, 25, 26, 40].

Note that if H is peelable then it is also orientable: Just orient each edge e to a vertex
v ∈ e such that v and e are deleted in the same round of peel(H).

Our proof of Theorem 14 relies strongly on a deep and remarkable theorem due to Lelarge
[27]. To clarify its role in our proof, we restate it in weaker but sufficient form.
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I Theorem 13 (Lelarge [27, Theorem 4.1]). Let (Gn = (An, Bn, En))n∈N be a sequence of
bipartite graphs with |En| = O(|An|). Let further M(Gn) be the size of a maximum matching
in Gn. If the random weak limit ρ of (Gn)n∈N is a bipartite unimodular Galton-Watson
tree, then lim

n→∞
M(Gn)
|An| exists almost surely and depends only on ρ.

To see the connection, note that an orientation of a hypergraph is a left-perfect matching in
its (bipartite) incidence graph.

I Theorem 14. For all k ≥ 3 we have fk ≤ c∗k.

Proof. Let c = c∗k + ε. We need to show that there exists ` ∈ N such that the fuse graph
F = F (n, k, c, `) is not peelable whp.

Let H = Hk
n,cn be the k-ary Erdős-Renyi random hypergraph with density c. By choice

of c, H is not orientable whp. More strongly even, there exists δ = δ(ε) > 0 such that the
largest partial orientation, i.e. the largest subset of the edges that can be oriented, has size
(1− δ)cn+ o(n) whp, see for instance [27].

We set ` = k
δc and consider F as well as the hypergraph F̃ where the vertices i and i+n`

for all i ∈ {1, . . . , (k − 1)n} are merged. This “glues” the last k − 1 segments of F on top of
the first k − 1 segments of F , making F̃ a “seamless” version of our construction. Crucially,
the random weak limit of F̃ and H coincide, i.e. for any constant R ∈ N the distribution of
the R-neighbourhood N

F̃
(v,R) of a random vertex v of F̃ has the same limit (as n→∞) as

the distribution of the R-neighbourhood NH(v,R) of a random vertex v of H.5 It now follows
from [27, Theorem 4.1] that the size of the largest partial orientation of F̃ is essentially also
a (1 − δ)-fraction of the number of edges, namely (1 − δ)c`n + o(n) whp. Switching from
F̃ back to F can increase the size of a largest partial orientation by at most (k − 1)n to
(1− δ+ k−1

c` )c`n+ o(n) = (1− δ
k )c`n+ o(n) whp. Thus F is not orientable whp and therefore

not peelable whp. J

7 Experiments

We used our hypergraphs to implement retrieval data structures and compare it to existing
implementations.

A 1-bit retrieval data structure for a universe U is a pair of algorithms construct and
query, where the input of construct is a set S ⊆ U of size m = |S| and f : S → {0, 1}. If
construct succeeds, then the output is a data structure Df such that query(Df , x) = f(x)
for all x ∈ S. The output of query(Df , y) for y ∈ U \ S may yield an arbitrary element of
{0, 1}. The interesting setting is when the data structure may only occupy O(m) bits. See
[8, 7, 12, 21, 38].

One approach is to map each element x ∈ S to a set ex ⊂ [N ] via a hash function,
where N = m/c for some desired edge density c. One then seeks a solution z : [N ]→ {0, 1}
satisfying

⊕
v∈ex

z(v) = f(x) for all x ∈ S. The bit-vector z and the hash function then form
Df . A query simply evaluates the left hand side of the equation for x to recover f(x). To
compute z, we consider the hypergraph H = ([N ], {ex, x ∈ S}). A peelable vertex v ∈ [N ]
only contained in one edge ex corresponds to a variable z(v) only occuring in the equation
associated with x. It is thus easy to see that if H is peelable, repeated elimination and
back-substitution yields z in O(m) time.

5 The common limit of the incidence graphs of F̃ and H is the bipartite unimodular Galton-Watson tree
described in [27, Section 4]. Standard arguments, e.g. from [24, 25] suffice to establish the identity.
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Table 2 Overheads and average running times per key of various practical retrieval data structures.

Configuration Overhead construct query
[µs/key] [ns]

Botelho et al. [8] c = 0.81 23.5% 0.32 59
〈Fuse Graphs〉 c = 0.910, k = 3, ` = 100 12.1% 0.29 55
〈Fuse Graphs〉 c = 0.960, k = 4, ` = 200 5.7% 0.29 60
〈Fuse Graphs〉 c = 0.985, k = 7, ` = 500 2.7% 0.38 74
Luby et al. [28] c = 0.9, D = 12 11.1% 0.79 94
Luby et al. [28] c = 0.99, D = 150 1.1% 0.87 109

Genuzio et al. [21] c = 0.91, k = 3, C = 104 10.2% 1.30 58
Genuzio et al. [21] c = 0.97, k = 4, C = 104 3.4% 2.20 64
the authors [13] c = 0.9995, ` = 16, C = 104 0.25% 2.47 56

We implemented the following peeling-based variations and report results in6 Table 2.
By the overhead of an implementation we mean N ′

m − 1 where N ′ ≥ N is the total number
of bits used, including auxiliary data structures.
Botelho et al. [8] H is a 3-ary Erdős-Renyi hypergraph with an edge density below the

peelability threshold c3 ≈ 0.818. Construction via peeling and queries are very fast, but
the overhead of 23% is sizeable (i.e. Df occupies roughly 1.23m bits).

Fuse Graphs. The edges are distributed such that H is a fuse graph. Recall that the edge
density is c `

`+k−1 . Note that we let ` grow with k to keep the density close to c. We still
keep ` in a moderate range, as our construction relies on n� `.

Luby et al. [28] The edges are distributed such that H is the peelable hypergraph from
[28] already mentioned on page 2. To our knowledge these hypergraphs have not been
considered in the context of retrieval. They seem to be particularly well suited to achieve
very small overheads at the cost of larger construction and mean query times compared
to our other approaches. Note that the largest edge size is D + 4 and the worst-case
query time is therefore much larger than the reported average query time.

For reference, we also implemented two recent retrieval data structures that do not rely
on peeling but solve linear systems [13, 21]. There, to counteract cubic solving time, the
input is partitioned into chunks of size C. Especially [13] achieves much smaller overheads
than what is feasible with peeling approaches, with the downside of being much slower and
more complicated.

Overall, it seems using fuse graphs in retrieval data structures has a chance of outper-
forming existing approaches when moderate memory overheads of ≈ 5% are acceptable.

However, more research is required to explore the complex space of possible input sizes,
configurations of the data structures and trade-offs between overhead and runtime. Our
implementations are configured reasonably, but arbitrary in some aspects. A full discussion
is beyond the scope of this paper.

6 Experiments were performed on an desktop computer with an Intel® Core i7-2600 Processor @ 3.40GHz.
In all cases, the data set S contains the first m = 107 URLs from the eu-2015-host dataset gathered
by [5] with ≈80 bytes per key, and f : U → {0, 1} is taken to be the parity of the string length. As hash
function we used MurmurHash3_x64_128 [2]. If more than 128 hash bits were needed, techniques
resembling double-hashing were used to generate additional bits to avoid another execution of murmur.
Reported query times are averages obtained by querying all elements of the data set once. They
include the roughly 25 ns needed to evaluate murmur on average. The reported numbers are medians
of 5 executions.

ESA 2019



38:14 Dense Peelable Hypergraphs

8 Conclusion

We introduced for all k ∈ N a new family of k-uniform hypergraphs where the vertex set
is partitioned into a large but constant number of segments. Each edge chooses a random
range of k consecutive segments and one random incidence in each of them.

While we have no asymptotic results on the resulting peelability thresholds fk, at least for
small k they are remarkably close to c∗k with 0 ≤ c∗k−fk ≤ 10−5 for k ∈ {3, 4, 5, 6, 7}. In other
words, fk almost coincides with the orientability threshold c∗k of Erdős-Renyi hypergraphs and
significantly exceeds their peelability threshold ck. Note that c∗k = 1− (1 + ok(1))e−k k→∞−→ 1
(see [19, page 3]) while ck k→∞−→ 0 (see e.g. [35]). When plugging our hypergraphs into the
retrieval framework by [8], we obtained corresponding improvements with respect to memory
usage, with no discernible downsides.

Future Experiments. While our experiments on retrieval data structures are promising, it
is unclear how robustly the advantages translate to other practical settings where peelable
hypergraphs are used, say when implementing Invertible Bloom Lookup Tables [22]. There
are hidden disadvantages of our hypergraphs not considered in this paper – for instance the
number of rounds needed to peel our hypergraphs is higher, possibly hurting parallel peeling
algorithms – as well as hidden advantages – peeling in external memory, a setting considered
in [3], is easy due to the locality of the edges.

A Theoretical Question. Given our results, it is natural to suspect a fundamental connection
between fk and c∗k. Quite possibly, the tiny gap that seems to remain between the values –
clearly negligible from a practical perspective – is merely an artefact of the discreteness of
segments in our construction.

This discreteness, while heavily used in our arguments, may in fact be dispensable. Indeed,
we believe the key idea behind our hypergraphs is limited bandwidth where a hypergraph
on vertex set [n] has bandwidth at most d if each edge e satisfies maxv∈e v −minv∈e v < d

(the incidence matrix can then be sorted to resemble a bandmatrix). Such a hypergraph
can be generated by choosing for each edge a random range of d consecutive vertices and k
incidences independently and uniformly at random from that range. In experiments with
k = 3 and d = εn, such hypergraphs performed similar to the hypergraphs we analysed (with
k = 3 and ` ≈ 1/ε). Note that there are no discrete segments in the modified construction.
It would be nice to see whether in such a variation peelability and orientability are more
elegantly and more intimately linked.
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Abstract

In this paper we identify a new class of sparse near-quadratic random Boolean matrices that have
full row rank over F2 = {0, 1} with high probability and can be transformed into echelon form in
almost linear time by a simple version of Gauss elimination. The random matrix with dimensions
n(1− ε)× n is generated as follows: In each row, identify a block of length L = O((log n)/ε) at a
random position. The entries outside the block are 0, the entries inside the block are given by fair
coin tosses. Sorting the rows according to the positions of the blocks transforms the matrix into a
kind of band matrix, on which, as it turns out, Gauss elimination works very efficiently with high
probability. For the proof, the effects of Gauss elimination are interpreted as a (“coin-flipping”)
variant of Robin Hood hashing, whose behaviour can be captured in terms of a simple Markov model
from queuing theory. Bounds for expected construction time and high success probability follow
from results in this area. They readily extend to larger finite fields in place of F2.

By employing hashing, this matrix family leads to a new implementation of a retrieval data
structure, which represents an arbitrary function f : S → {0, 1} for some set S of m = (1− ε)n keys.
It requires m/(1 − ε) bits of space, construction takes O(m/ε2) expected time on a word RAM,
while queries take O(1/ε) time and access only one contiguous segment of O((log m)/ε) bits in the
representation (O(1/ε) consecutive words on a word RAM). The method is readily implemented and
highly practical, and it is competitive with state-of-the-art methods. In a more theoretical variant,
which works only for unrealistically large S, we can even achieve construction time O(m/ε) and
query time O(1), accessing O(1) contiguous memory words for a query. By well-established methods
the retrieval data structure leads to efficient constructions of (static) perfect hash functions and
(static) Bloom filters with almost optimal space and very local storage access patterns for queries.
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1 Introduction

1.1 Sparse Random Matrices
In this paper we introduce and study a new class of sparse random matrices over finite fields,
which give rise to linear systems that are efficiently solvable with high probability1. For
concreteness and ease of notation, we describe the techniques for the field F2 = {0, 1}. (The
analysis applies to larger fields as well, as will be discussed below.) A matrix A from this
class has n columns and m = (1− ε)n rows for some small ε > 0. We always imagine that
a right hand side ~b ∈ {0, 1}m is given and that we wish to solve the system A~z = ~b for the
vector of unknowns ~z.

The applications (see Section 1.2) dictate that the rows of A are stochastically independent
and are all chosen according to the same distribution R on {0, 1}n. Often, but not always,
R is the uniform distribution on some pool R ⊆ {0, 1}n of admissible rows. The following
choices were considered in the literature.

(1) If R = {0, 1}n, then A has full row rank whp for any ε = ω(1/n). In fact, the probability
for full row rank is > 0.28 even for ε = 0, see e.g. [11, 35]. Solving time is Õ(n3).

(2) A popular choice for R is the set of vectors with 1’s in precisely k positions, for constant
k. Then ε = e−θ(k) is sufficient for solvability whp [34]. Solving time is still Õ(n3) if
Gauss elimination is used and O(n2) if Wiedemann’s algorithm [37] is used, but heuristics
exploiting the sparsity of A help considerably [22].

(3) In the previous setting with k = 3 and ε ≥ 0.19, linear running time can be achieved
with a simple greedy algorithm, since then the matrix can be brought into echelon form
by row and column exchanges alone [7, 24, 32]. Using k > 3 is pointless here, as then
the required value of ε increases.

(4) Luby et al. [29, 30] study “loss-resilient codes” based on certain random bipartite graphs.
Translating their considerations into our terminology shows that at the core of their
construction is a distribution on (1 − ε)n × n-matrices with randomly chosen sparse
rows as well. Simplifying a bit, a number D = O(1/ε) is chosen and a weight sequence
is carefully selected that will give a row at most D many 1’s and on average O(logD)
many 1’s (in random positions). It is shown in [29, 30] that such matrices not only have
full row rank with high probability, but that, as in (3), row and column exchanges suffice
to obtain an echelon form whp. This leads to a solving time of O(n log(1/ε)) for the
corresponding linear system.

(5) The authors of the present work describe in a simultaneous paper [18] the construction of
sparse (1−ε)n×n matrices for very small (constant) ε, with a fixed number of 1’s per row,
which also allow solving the corresponding system by row and column exchanges. (While
behaviour in experiments is promising, determining the behaviour of the construction
for arbitrarily small ε is an open problem.)

(6) In a recent proposal [17] by the authors of the present paper, a row r ∼ R contains two
blocks of Θ(logn) random bits at random positions (block-aligned) in a vector otherwise
filled with 0’s. It turned out that in this case even ε = O((logn)/n) will give solvability
with high probability. Solution time is again about cubic (Gauss) resp. quadratic
(Wiedemann), with heuristic pre-solvers cushioning the blow partly in practice.

Motivated by the last construction, we propose an even simpler choice for the distribution
R: A row r consists of 0’s except for one randomly placed block of some length L, which
consists of random bits. It turns out that L = O((logn)/ε) is sufficient to achieve solvability

1 Events occur “with high probability (whp)” if they occur with probability 1−O(m−1).
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with high probability. The L-bit block fits into O(1) memory words as long as ε is constant.
Our main technical result (Theorem 2) is that the resulting random matrix has full row rank
whp. Moreover, if this is the case then sorting the rows by starting points of the blocks
followed by a simple version of Gauss elimination produces an echelon form of the matrix and
a solution to the linear system. The expected number of field operations is O(nL/ε), which
translates into expected running time O(n/ε2) on a word RAM. For the proof, we establish
a connection to a particular version of Robin Hood hashing, whose behaviour in turn can be
understood by reducing it to a well-known situation in queuing theory. (A detailed sketch of
the argument is provided in Section 2.1.)

To our knowledge, this class of random matrices has not been considered before. However,
deterministic versions of matrices similar to these random ones have been thoroughly studied
in the last century, for both infinite and finite fields. Namely, sorting the rows of our matrices
yields matrices that with high probability resemble band matrices, where the nonzero entries
in row i are within a restricted range around column bi/(1 − ε)c. In the study of band
matrices one usually has ε = 0 and assumes that the matrix is nonsingular. Seemingly the
best known general upper time bound for the number of field operations needed for solving
band quadratic systems with bandwidth L are O(nLω−1) = O(n((logn)/ε)ω−1), where ω is
the matrix multiplication exponent, see [20, 23, 33].

1.2 Retrieval
One motivation for studying random systems as described above comes from data structures
for solving the retrieval problem, which can be described as follows: Some “universe” U
of possible keys is given, as is a function f : S → W , where S ⊆ U has finite size m and
W = {0, 1}r for some r ≥ 1. A retrieval data structure [6, 10, 15, 35] makes it possible to
recover f(x) quickly for arbitrary given x ∈ S. We do not care what the result is when x /∈ S,
which makes the retrieval situation different from a dictionary, where the question “x ∈ S ?”
must also be decided. A retrieval data structure consists of

an algorithm construct, which takes f as a list of pairs (and maybe some parameters) as
input and constructs an object DSf , and
an algorithm query, which on input x ∈ U and DSf outputs an element of W , with the
requirement that query(DSf , x) = f(x) for all x ∈ S.

The essential performance parameters of a retrieval data structure are:
the space taken up by DSf (ideally (1 + ε)m bits of memory for some small ε > 0),
the running time of construct (ideally O(m)), and
the running time of query (ideally a small constant in the worst case, possibly dependent
on ε, and good cache behaviour).

In this paper we concentrate on the case most relevant in practice, namely the case of small
constant r, in particular on2 r = 1.

A standard approach is as follows [6, 10, 15, 35]. Let f : S → {0, 1} be given and let
n = m/(1− ε) for some ε > 0. Use hashing to construct a mapping row : U → {0, 1}n such
that (row(x))x∈S is (or behaves like) a family of independent random variables drawn from
a suitable distribution R on {0, 1}n. Consider the linear system (〈row(x), ~z 〉 = f(x))x∈S .
In case the vectors row(x), x ∈ S, are linearly independent, this system is solvable for ~z.

2 Every solution for this case gives a solution for larger r as well, with a slowdown not larger than r. In our
case, this slowdown essentially only affects queries, not construction, since the Gauss elimination based
algorithm can trivially be extended to simultaneously handle r right hand sides ~b1, . . . ,~br and produce r
solution vectors ~z1, . . . , ~zr. This change slows down construct by a factor of 1 + r/L = 1 +O(εr/ log n).
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Solve the system and store the bit vector ~z of n bits (and the hash function used) as DSf .
Evaluation is by query(DSf , x) = 〈row(x), ~z 〉, for x ∈ U . The running time of construct is
essentially the time for solving the linear system, and the running time for query is the time
for evaluating the inner product.

A common and well-explored trick for reducing the construction time [5, 16, 35, 22] is to
split the key set into “chunks” of size Θ(C) for some suitable C and constructing separate
retrieval structures for the chunks. The price for this is twofold: In queries, one more hash
function must be evaluated and the proper part of the data structure has to be located;
regarding storage space one needs an array of Ω(m/C) pointers. In this paper, we first
concentrate on a “pure” construction. The theoretical improvements possible by applying
the splitting technique will be discussed briefly in Section 4. The splitting technique is also
used in experiments for our construction in Section 5 to keep the block length small. In this
context it will also be noted the related “split-and-share” technique from [16, 19] can be used
to get rid of the assumption that fully random hash functions are available for free.

Our main result regarding the retrieval problem follows effortlessly from the analysis of
the new random linear systems (formally stated as Theorem 2).

I Theorem 1. Let U be a universe. Assume the context of a word RAM with oracle access
to fully random hash functions on U . Then for any ε > 0 there is a retrieval data structure
such that for all S ⊆ U of size m
(i) construct succeeds with high probability.
(ii) construct has expected running time O(mε2 ).
(iii) The resulting data structure DSf occupies at most (1 + ε)m bits.
(iv) query has running time O( 1

ε ) and accesses O( 1
ε ) consecutive words in memory.

1.3 Machine Model and Notation
For a positive integer k we denote {1, . . . , k} by [k]. The number m always denotes the size
of a domain – the number of keys to hash, the size of a function for retrieval or the number
of rows of a matrix. A (small) real number ε > 0 is also given. The number n denotes the
size of a range. We usually have m = (1 − ε)n. In asymptotic considerations we always
assume that ε is constant and m and n tend to∞, so that for example the expression O(n/ε)
denotes a function that is bounded by cm/ε for a constant c, for all m bigger than some
m(ε). By 〈~y, ~z 〉 we denote the inner product of two vectors ~y and ~z. As our computational
model we adopt the word RAM with memory words comprising Ω(logm) bits, in which an
operation on a word takes constant time. In addition to AC0 instructions we will need the
parity of a word as an elementary operation. For simplicity we assume this can be carried
out in constant time, which certainly is realistic for standard word lengths like 64 or 128.
In any case, as the word lengths used are never larger than O(logm), one could tabulate
the values of parity for inputs of size 1

2 logm in a table of size O(
√
m logm) bits to achieve

constant evaluation time for inputs comprising a constant number of words.

1.4 Techniques Used
We use coupling of random variables X and Y (or of processes (Xi)i≥1 and (Yi)i≥1). By
this we mean that we exhibit a single probability space on which X and Y (or (Xi)i≥1 and
(Yi)i≥1) are defined, so that there are interesting pointwise relations between them, like
X ≤ Y , or Xi ≤ Yi + a for all i ≥ 1, for a constant a. Sometimes these relations hold only
conditioned on some (large) part of the probability space. We will make use of the following
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observation. If we have random variables U0, . . . , Uk with couplings, i.e. joint distributions,
of U`−1 and U`, for 1 ≤ ` ≤ k, then there is a common probability space on which all these
random variables are defined and the joint distribution of U`−1 and U` is as given.3

2 Random Band Systems that Can be Solved Quickly

The main topic of this paper are matrices generated by the following random process. Let
0 < ε < 1 and n ∈ N. For a number m = (1 − ε)n of rows and some number L ≥ 1 we
consider a matrix A = (aij)i∈[m], j∈[n+L−1] over the field F2, chosen at random as follows. For
each row i ∈ [m] a starting position si ∈ [n] = {1, . . . , n} is chosen uniformly at random. The
entries aij , si ≤ j < si + L form a block of fully random bits, all other entries in row i are 0.

In this section we show that for proper choices of the parameters such a random matrix
will have full row rank and the corresponding systems A~z = ~b will be solvable very efficiently
whp. Before delving into the technical details, we sketch the main ideas of the proof.

2.1 Proof Sketch
As a starting point, we formulate a simple algorithm, a special version of Gaussian elimination,
for solving linear systems A~z = ~b as just described. We first sort the rows of A by the
starting position of their block. The resulting matrix resembles a band matrix, and we apply
standard Gaussian elimination to it, treating the rows in order of their starting position.
Conveniently, there is no “proliferation of 1’s”, i.e. we never produce a 1-entry outside of
any row’s original block. In the round for row i, the entries aij for j = si, . . . , si + L − 1
are scanned. If column j has been previously chosen as pivot then aij = 0. Otherwise, aij
is a random bit. While this bit may depend in a complex way on the original entries of
rows 1, . . . , i (apart from position (i, j)), for the analysis we may simply imagine that aij is
only chosen now by flipping a fair coin. This means that we consider eligible columns from
left to right, and the first j for which the coin flip turns up 1 becomes the pivot column
for row i. This view makes it possible to regard choosing pivot columns for the rows as
probabilistically equivalent to a slightly twisted version of Robin Hood hashing. Here this
means that m keys x1, . . . , xm with random hash values in {1, . . . , n+ L− 1} are given and,
in order of increasing hash values, are inserted in a linear probing fashion into a table with
positions 1, . . . , n+ L− 1 (meaning that for xi cells si, si+1, . . . are inspected). The twist
is that whenever a key probes an empty table cell flipping a fair coin decides whether it is
placed in the cell or has to move on to the next one. The resulting position of key xi is the
same as the position of the pivot for row i. As is standard in the precise analysis of linear
probing hashing we switch perspective and look at the process from the point of view of
cells 1, 2, . . . , n, . . . , n + L − 1. Associated with position (“time”) j is the set of keys that
probe cell j (the “queue”), and the quantity to study is the length of this queue. It turns
out that the average queue length determines the overall cost of the row additions, and that
the probability for the maximum queue length to become too large is decisive for bounding
the success probability of the Gaussian elimination process. The first and routine step in

3 We do not prove this formally, since arguments like this belong to basic probability theory or measure
theory. The principle used is that the pairwise couplings give rise to conditional expectations E(U` | U`−1).
Arguing inductively, given a common probability space for U1, . . . , U`−1 and E(U` | U`−1), one can
obtain a common probability space for U1, . . . , U` so that (U1, . . . , U`−1) is distributed as before and
E(U` | U1, . . . , U`−1) = E(U` | U`−1). – This is practically the same as the standard argument that
shows that a sequence of conditional expectations gives rise to a corresponding Markov chain on a joint
probability space.
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the analysis of the queue length is to “Poissonise” arrivals such that the evolution of the
queue length becomes a Markov chain. A second step is needed to deal with the somewhat
annoying possibility that in a cell all keys that are eligible for this cell reject it because of
their coin flips. We end up with a standard queue (an “M/D/1 queue” in Kendall notation)
and can use existing results from queuing theory to read off the bounds regarding the queue
length needed to complete the analysis.

The following subsections give the details.

2.2 A Simple Gaussian Solver
We now describe the algorithm to solve linear systems involving the random matrices
described above. This is done by a variant or Gauss elimination, which will bring the
matrix into echelon form (up to leaving out inessential column exchanges) and then apply
back substitution.

Given a random matrix A = (aij)i∈[m], j∈[n+L−1] as defined above, with blocks of length
L starting at positions si, for i ∈ [m], as well as some ~b ∈ {0, 1}m, we wish to find a solution
~z to the system A~z = ~b. Consider algorithm SGAUSS (Algorithm 1). If A has linearly
independent rows, it will return a solution ~z and produce intermediate values (pivi)i∈[m].
(These will be important only in the analysis of the algorithm.) If the rows of A are linearly
dependent, the algorithm will fail.

Algorithm 1 A simple Gaussian solver.

1 Algorithm SGAUSS(A = (aij)i∈[m], j∈[n+L−1], (si)i∈[m],~b ∈ {0, 1}m):
2 sort the rows of the system (A,~b) by si (in time O(m))
3 relabel such that s1 ≤ s2 ≤ · · · ≤ sm
4 piv1,piv2, . . . ,pivm ← 0
5 for i = 1, . . . ,m do
6 for j = si, . . . , si + L− 1 do
7 if aij = 1 then
8 pivi ← j

9 for i′ with i′ > i ∧ si′ ≤ pivi do
10 if ai′,pivi

= 1 then
11 ai′ ← ai′ ⊕ ai // row addition (= subtraction)
12 bi′ ← bi′ ⊕ bi

13 break

14 if pivi = 0 // row i is 0
15 then return Failure

// back substitution:
16 ~z ← ~0
17 for i = m, . . . , 1 do
18 zpivi

← 〈~z, ai〉 ⊕ bi // note: aij = 0 for j outside of {si, . . . , si + L− 1}

19 return ~z // solution to A~z = ~b

// search for leftmost 1 in row i. Can be done
// in time O(L/ log m) on a word RAM.

Algorithm SGAUSS starts by sorting the rows of the system (A,~b) by their starting
positions si in linear time, e.g. using counting sort [13, Chapter 8.2]. We suppress the
resulting permutation in the notation, assuming s1 ≤ s2 ≤ · · · ≤ sm. Rows are then
processed sequentially. When row i is treated, its leftmost 1-entry is found, if possible, and
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the corresponding column index is called the pivot pivi of row i. Row additions are used
to eliminate 1-entries from column pivi in subsequent rows. Note that this operation never
produces nonzero entries outside of any row’s original block, i.e. for no row i are there ever
any 1’s outside of the positions {si, . . . , si + L − 1}. To see this, we argue inductively on
the number of additions performed. Assume i > 1 and row i′ with i′ < i is added to row i.
By choice of pivi′ and the induction hypothesis, nonzero entries of row i′ can reside only in
positions pivi′ , . . . , si′ + L− 1. Again by induction and since row i contains a 1 in position
pivi′ , we have si ≤ pivi′ ; moreover we have si′ +L−1 ≤ si+L−1, due to sorting. Thus, row
i′ contains no 1’s outside of the block of row i and the row addition maintains the invariant.

If an all-zero row is encountered, the algorithm fails (and returns Failure). This happens
if and only if the rows of A are linearly dependent4. Otherwise we say that the algorithm
succeeds. In this case a solution ~z to A~z = ~b is obtained by back-substitution.

It is not hard to see that the expected running time of SGAUSS is dominated by the
expected cost of row additions.

The proof of the following statement, presented in the rest of this section, is the main
technical contribution of this paper.

I Theorem 2. There is some L = O((logm)/ε) such that a run of SGAUSS on the random
matrix A = (aij)i∈[m], j∈[n+L−1] and an arbitrary right hand side ~b ∈ {0, 1}m succeeds whp.
The expected number of row additions is O(m/ε). Each row addition involves entries inside
one block and takes time O(1/ε) on a word RAM.

2.3 Coin-Flipping Robin Hood Hashing

Let {x1, . . . , xm} ⊆ U be some set of keys to be stored in a hash table T . Each key xi has
a uniformly random hash value hi ∈ [n]. An (injective) placement of the keys in T fulfils
the linear probing requirement if each xi is stored in a cell T [posi] with posi ≥ hi and all
cells T [j] for hi ≤ j < posi are non-empty. In Robin Hood hashing there is the additional
requirement that hi > hi′ implies posi > posi′ . Robin Hood hashing is interesting because
it minimises the variance of the displacements posi − hi. It has been studied in detail in
several papers [9, 14, 25, 27, 36].

Given the hash values (hi)i∈[m], a placement of the keys obeying the Robin Hood linear
probing conditions can be obtained as follows: Insert the keys in the order of increasing hash
values, by the usual linear probing insertion procedure, which probes (i.e. inspects) cells
T [hi], T [hi + 1], . . . until the first empty cell is found, and places xi in this cell. We consider
a slightly “broken” variation of this method, which sometimes delays placements. In the
placing procedure for xi, when an empty cell T [j] is encountered, it is decided by flipping a
fair coin whether to place xi in cell T [j] or move on to the next cell. (No problem is caused
by the fact that the resulting placement violates the Robin Hood requirement and even
the linear probing requirement, since the hash table is only used as a tool in our analysis.)
For this insertion method we assume we have an (idealised) unbounded array T [1, 2, . . . ].
The position in which key xi is placed is called posi. At the end the algorithm itself checks
whether any of the displacements posi−hi is larger than L, in which case it reports Failure.5
Algorithm 2 gives a precise description of this algorithm, which we term CFRH.

4 Depending on ~b, the system A~z = ~b may still be solvable. We will not pursue this.
5 The reason we postpone checking for Failure until the very end of the execution is that it is technically
convenient to have the values (posi)i∈[m] even if failure occurs.
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Algorithm 2 The Coin-Flipping Robin Hood hashing algorithm. Without the condition
“coinFlip() = 1” it would compute a Robin Hood placement with maximum displacement L,
if one exists.

1 Algorithm CFRH ({x1, . . . , xm} ⊆ U):
2 sort x1, . . . , xm by hash value h1, . . . , hm
3 relabel such that h1 ≤ · · · ≤ hm
4 T ← [⊥,⊥, . . . ] // empty array, “⊥” means “undefined”
5 pos1, . . . ,posm ← 0
6 for i = 1, . . . ,m do
7 for j = hi, hi + 1, . . . do
8 if T [j] = ⊥ ∧ coinFlip() = 1 (“heads”) then
9 posi ← j

10 T [j]← xi
11 break

12 if ∃i ∈ [m] : posi − hi ≥ L then return Failure
13 return T

2.4 Connection between SGAUSS and CFRH

We now establish a close connection between the behaviour of algorithms SGAUSS and CFRH,
thus reducing the analysis of SGAUSS to that of CFRH. The algorithms have been formulated
in such a way that some structural similarity is immediate. A run of SGAUSS on a matrix with
random starting positions (si)i∈[m] and random entries yields a sequence of pivots (pivi)i∈[m];
a run of CFRH on a key set with random hash values (hi)i∈[m] performing random coin flips
yields a sequence of positions (posi)i∈[m]. We will see that the distributions of (pivi)i∈[m]
and (posi)i∈[m] are essentially the same and that moreover two not so obvious parameters
of the two random processes are closely connected. For this, we will show that outside the
Failure events we can use the probability space underlying algorithm SGAUSS to describe
the behaviour of algorithm CFRH. This yields a coupling of the involved random processes.

The first step is to identify si = hi for i ∈ [m] (both sequences are assumed to be sorted
and then renamed). The connection between posi and pivi is achieved by connecting the
coin flips of CFRH to certain events in applying SGAUSS to matrix A. We construct this
correspondence by induction on i. Assume rows 1, . . . , i− 1 have been treated, x1, . . . , xi−1
have been placed, and pivi′ = posi′ for all 1 ≤ i′ < i.

Now row ai (transformed by previous row additions) is treated. It contains a 0 in columns
that were previously chosen as pivots, so possible candidates for pivi are only indices from
Ji := {si, . . . , si + L− 1} \ {piv1, . . . ,pivi−1}. For each j ∈ Ji, the initial value of aij was a
random bit. The bits added to aij in rounds 1, . . . , i−1 are determined by the original entries
of rows 1, . . . , i − 1 alone. We order the entries of Ji as j(1) < j(2) < · · · < j(|Ji|). Then,
conditioned on all random choices in rows 1, . . . , i−1 of A, the current values ai,j(1) , . . . , ai,j(k)

still form a sequence of fully random bits. We use these random bits to run round i of
CFRH, in which xi is placed. Since each cell can only hold one key, and by excluding
runs where finally failure is declared, we may focus on the empty cells with indices in
{hi, . . . , hi +L− 1} \ {pos1, . . . ,posi−1} = {s1, . . . , si +L− 1} \ {piv1, . . . ,pivi−1} = Ji. We
use (the current value) aij as the value of the coin flip for cell j, for j = j(1), j(2), . . . , j(|Ji|).
The minimal j in this sequence (if any) with aij = 1 equals pivi and posi. If all these bits
are 0, algorithm SGAUSS will fail immediately, and key xi will be placed in a cell T [j] with
j ≥ hi + L, so CFRH will eventually fail as well.
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Thus we have established that the random variables needed to run algorithm CFRH
(outside of Failure) can be taken to belong to the probability space defined by (si)i∈[m] and
the entries in the blocks of A for algorithm SGAUSS, so that (outside of Failure) the random
variables posi and pivi are the same. In the following lemma we state this connection as
Claim (i). In addition, we consider other random variables central for the analysis to follow.
First, we define the height of position j ∈ [n+ L− 1] in the hash table as

Hj := #{i ∈ [m] | hi ≤ j < posi}.

This is the number of keys probing table cell j without being placed in it, either because
the cell is occupied or because it is rejected by the coin flip. Claim (ii) in the next lemma
shows that

∑
j∈[n+L−1]Hj essentially determines the running time of SGAUSS, so that we

can focus on bounding (Hj)j∈N from here on. Further, with Claim (iii), we get a handle on
the question how large we have to choose L in order to keep the failure probability small.

I Lemma 3. With the coupling just described, we get
(i) SGAUSS succeeds iff CFRH succeeds. On success we have pivi = posi for all i ∈ [m].
(ii) A successful run of SGAUSS performs at most

∑
j∈[n+L−1]Hj row additions.

(iii) Conditioned on the event maxj∈[n]Hj ≤ L− 2 logm, the algorithms succeed whp.

Proof. (ii) (Note that a similar statement with a different proof can be found in [26,
Lemma 2.1].) Consider the sets Add := {(i, i′) ∈ [m]2 | SGAUSS adds row i to row i′} and
Displ := {(i, j) ∈ [m] × [n + L − 1] | hi ≤ j < posi}. Since Hj simply counts the pairs
(i, j) ∈ Displ with i ∈ [m], we have |Displ| =

∑
j∈[n+L−1]Hj . To prove the claim we exhibit

an injection from Add into Displ.
Assume (i, i′) ∈ Add. If posi < posi′ , we map (i, i′) to (i′,posi). This is indeed an element

of Displ, since hi′ ≤ pivi = posi < posi′ (if pivi were smaller than si′ , row i would not be
added to row i′). On the other hand, if posi > posi′ , we map (i, i′) to (i,posi′). This is in
Displ since hi = si ≤ s′i ≤ posi′ < posi (recall that rows are sorted by starting position).

The mapping is injective since from the image of (i, i′) ∈ Add we can recover the set
{i, i′} with the help of the injective mapping i 7→ posi, i ∈ [m]. The fact that i < i′ fixes the
ordering in the pair.

(iii) In CFRH, for an arbitrary i ∈ [m] consider the state before key xi probes its first
position j := hi. Any previous key xi′ with i′ < i has a hash value hi′ ≤ hi. Hence it either
was inserted in a cell j′ < j or it has probed cell j. Since at most Hj keys have probed cell
j, at most Hj positions in T [j, . . . , j + L− 1] are occupied and at least 2 logm are free. The
probability that xi is not placed in this region is therefore at most 2−2 logm = m−2. By the
union bound we obtain a failure probability of O(1/m). J

2.5 Bounding Heights in CFRH by a Markov Chain
Lemma 3 tells us that we must analyse the heights in the hashing process CFRH. In this
subsection, we use “Poissonisation” of the hashing positions to majorise the heights in CFRH
by a Markov chain, i.e. a process that is oblivous to the past, apart from the current height.
Poissonisation is a common step in the analysis of linear probing hashing, see e.g. [36].
Further, we wish to replace randomized placement by deterministic placement: Whenever
a key is available for a position, one is put there (instead of flipping coins for all available
keys). By this, the heights may decrease, but only by a bounded amount whp. The details
of these steps are given in this subsection.
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In analysing CFRH (without regard for the event Failure), it is inconvenient that the
starting positions hi are determined by random choices with subsequent sorting. Position
j is hit by a number of keys given by a binomial distribution Bin(m, 1

n ) with expectation
m
n = 1−ε, but there are dependencies. We approximate this situation by “Poissonisation” [31,
Sect. 5.4]. Here this means that we assume that cell j ∈ [n] is hit by kj keys, independently
for j = 1, . . . ,m, where kj ∼ Po(1− ε′) is Poisson distributed, for ε′ = ε/2. Then the total
number m′ =

∑
j∈[n] kj of keys is distributed as m′ ∼ Po((1− ε′)n). Given k1, . . . , kn, we

can imagine we have m′ keys with nondecreasing hash values (hi)i∈[m′], and we can apply
algorithm CFRH to obtain key positions (pos′i)i∈[m′] in {1, 2, . . . } and cell heights (H ′j)j≥1.

Conveniently, with Poissonisation, the heights (H ′j)j∈[n] turn out to form a Markov chain.
This can be seen as follows. Recall that H ′j−1 is the number of keys probing cell j−1 without
being placed there. Hence the number of keys probing cell j is H ′j−1 + kj . One of these
keys will be placed in cell j, unless H ′j−1 + kj coin flips all yield 0, so if gj ∼ Geom( 1

2 ) is
a random variable with geometric distribution with parameter 1

2 (number of fair coin flips
needed until the first 1 appears) and bj is the indicator function 1{gj >H′j−1+kj}, we have
H ′j = H ′j−1 + kj − 1 + bj . (Note that the case H ′j−1 + kj = 0 is treated correctly by this
description. Conditioned on H ′j−1 + kj , the value bj is a Bernoulli variable.) The Markov
property holds since H ′j depends only on H ′j−1 and the two “fresh” random variables kj and gj .

The following lemma allows us to shift our attention from (Hj) to (H ′j).

I Lemma 4. Let m = (1− ε)n and m′ ∼ Po((1− ε′)m) for ε′ = ε/2. There is a coupling
between an ordinary run of CFRH (with m, n and Hj) and a Poissonised run (with m′, n and
H ′j) such that conditioned on the high probability event E≥m = {m′ ≥ m} we have H ′j ≥ Hj

for all j ∈ [n+ L− 1].

Proof. Because ε and ε′ = ε/2 are constants, the event E≥m has indeed high probability,
as can be seen by well-known concentration bounds for the Poisson distribution (e.g. [31,
Th. 5.4]). For m0 ≥ m fixed the distribution of the number of hits in the cells in T [1, . . . , n]
conditioned on {m′ = m0} is the same as what we get by throwing m0 balls randomly into n
bins [31, Th. 5.6]. Thus, we may assume the Poissonised run has to deal with the m keys
of the ordinary run plus m′ −m additional keys with random hash values in [n]. We apply
algorithm CFRH to both inputs. After sorting, the new keys are inserted in some interleaved
way with the ordinary keys. Now if one of the ordinary keys x probes an empty cell T [j], we
use the same coin flip in both runs to decide whether to place it there; for the probing of the
additional keys we use new, independent coin flips. With this coupling it is clear that for all
ordinary keys x the displacement “(position of x) − (hash value of x)” in the Poissonized
run is at least as big as in the ordinary run. As the additional keys can only increase heights,
H ′j ≥ Hj follows. J

As a further simplification, we eliminate the geometrically distributed variable gj and the
derived variable bj in the Markov chain (H ′j)j≥0. For this, let (Xj)j≥0 be the Markov chain
defined as

X0 := 0 and Xj := max(0, Xj−1 + dj − 1) for j ≥ 1, (1)

where dj ∼ Po(1− ε′/2) are independent random variables.

I Lemma 5. There is a coupling between (Xj)j≥0 and (H ′j)j≥0 such that Xj+log(4/ε′) ≥ H ′j
for all j ∈ [n+ L− 1].
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Proof. Assume wlog that log(1/ε′) is an integer. Let b′j ∼ Po(ε′/2) be a random variable
on the same probability space as gj such that gj > log(4/ε′) implies b′j ≥ 1. This is
possible because

Pr[gj > log(4/ε′)] = 2− log(4/ε′) = ε′/4 ≤ 1− e−ε
′/2 = Pr[b′j ≥ 1].

We then define dj := kj + b′j which gives dj ∼ Po(1− ε′/2). Proceeding by induction, and
using (1), we can define (Xj)j≥0 and (H ′j)j≥0 on a common probability space. Then we check
Xj + log(4/ε′) ≥ H ′j , also by induction: In the case H ′j−1 + kj ≤ log(4/ε′) we simply get

Xj + log(4/ε′) ≥ log(4/ε′) ≥ H ′j−1 + kj ≥ H ′j−1 + kj + bj − 1 = H ′j .

Otherwise we can use the inequality bj = 1{gj >H′j−1+kj} ≤ 1{gj > log(4/ε′)} ≤ b′j to obtain

Xj + log(4/ε′) ≥ Xj−1 + dj − 1 + log(4/ε′)
(Ind.Hyp.)
≥ H ′j−1 + dj − 1

= H ′j−1 + kj + b′j − 1 ≥ H ′j−1 + kj + bj − 1 = H ′j . J

2.6 Enter Queuing Theory

It turns out that, in essence, the behaviour of the Markov chain (Xj)j≥0 has been studied in
the literature under the name “M/D/1 queue”, which is Kendall notation [28] for queues
with “Markovian arrivals, Deterministic service times and 1 server”. We will exploit what is
known about this simple queuing situation in order to finish our analysis.

Formally, an M/D/1 queue is a Markov process (Zt)t∈R≥0 in continuous time and discrete
space N0 = {0, 1, 2, . . . }. The random variable Zt is usually interpreted as the number of
customers waiting in a FIFO queue at time t ∈ R≥0. Initially the queue is empty (Z0 = 0).
Customers arrive independently, i.e. arrivals are determined by a Poisson process with a rate
we set to ρ = 1 − ε′/2 (which implies that the number of customers arriving in any fixed
time interval of length 1 is Po(ρ)-distributed). The server requires one time unit to process
a customer which means that if t ∈ R≥0 is the time of the first arrival, then customers will
leave the queue at times t+ 1, t+ 2, . . . until the queue is empty again.

Now consider the discretisation (Zj)j∈N0 of the M/D/1 queue. For j ≥ 1, the number dj
of arrivals in between two observations Zj−1 and Zj has distribution dj ∼ Po(ρ), and one
customer was served in the meantime if and only if Zj−1 > 0. We can therefore write

Zj =
{
dj if Zj−1 = 0,
Zj−1 + dj − 1 if Zj−1 > 0.

By reusing the variables (dj)j≥1 that previously occurred in the definition of (Xj)j≥0, we
already established a coupling between the processes (Xj)j≥0 and (Zj)j≥0. A simple induction
suffices to show

Xj = max(0, Zj − 1) for all j ≥ 0. (2)

Intuitively, the server in the X-process is ahead by one customer because customers are
processed at integer times “just in time for the observation”.

The following results are known in queuing theory:
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I Fact 1.
(i) The average number of customers in the Z-queue at time t ∈ R≥0 is

E[Zt] ≤ lim
τ→∞

E[Zτ ] = ρ+ 1
2

(
ρ2

1− ρ

)
= Θ(1/ε).

(Precise values are known even for general service-time distributions, see [12, Chapter
5.4].)

(ii) [21, Prop 3.4] We have the following tail bound for the event {Zt > k} for any k ∈ N:

Pr[Zt > k] ≤ lim
τ→∞

Pr[Zτ > k] = e−k·Θ(ε), for all t ≥ 0.

2.7 Putting the Pieces Together
We now have everything in place to prove Theorem 2 regarding solving our linear systems.

Proof of Theorem 2. By the observation made in Section 1.4, we may assume that the
random variables (Hj)j∈[n+L−1], (H ′j)j∈[n+L−1], (Xj)j≥0 and (Zj)j≥0 and the three corres-
ponding couplings are realized on one common probability space.

By Fact 1(ii) it is possible to choose L = Θ((logm)/ε) while guaranteeing Pr[Zj > L/2] =
O(m−2) for all j ≥ 0.

By the choice of L and the union bound, the event EmaxZ = {∀j ∈ [n+L−1] : Zj ≤ L/2}
occurs whp. Conditioned on EmaxZ and the high probability event E≥m from Lemma 4
we have

Hj

Lem. 4
≤ H ′j

Lem. 5
≤ Xj +log(4/ε′)

Eq. 2
≤ Zj +log(4/ε′)

Emax Z

≤ L/2+log(4/ε′) ≤ L−2 logm.

By using Lemma 3(iii) we conclude that SGAUSS succeeds with high probability.
Along similar lines we get, for each j ∈ [n+ L− 1]:

E[Hj ]
Lem. 4
≤ E[H ′j | E≥m] ≤ 1

Pr[E≥m] E[H ′j ]
Lem. 5
≤ 1

Pr[E≥m] E[Xj + log(4/ε′)]
Eq. 2
≤ 1

Pr[E≥m] E[Zj + log(4/ε′)]
Fact 1(i)
≤ 1

Pr[E≥m] (O(1/ε) + log(4/ε′)) = O(1/ε).

By Lemma 3(ii) the expected number of row additions performed by a successful run of
SGAUSS is therefore at most E[

∑
j∈[n+L−1]Hj ] = O(m/ε). Since unsuccessful runs happen

with probability O(1/m) and can perform at most mL additions (each row can only be
the target of L row additions), the overall expected number of additions is not skewed by
unsuccessful runs, hence is also in O(m/ε). This finishes the proof of Theorem 2. J

I Remark. The analysis described in this section works in exactly the same way if instead of
F2 a larger finite field F is used. A row in the random matrix is determined by a random
starting position and a block of L random elements from F. A row operation in the Gaussian
elimination now consists of a division, a multiplication of a block with a scalar and a row
addition. The running time of the algorithm will increase at least by a factor of log(|F|) (the
bitlength of a field element), and further increases depend on how well word parallelism in
the word RAM can be utilized for operations like row additions, scalar multiplications and
scalar products. (In [22], efficient methods are described for the field of three elements.) The
queue length will become a little smaller, but not significantly, since even the M/D/1 queue
with arrivals with a Poisson(1− ε) distribution will lead to average queue length Θ(1/ε).
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I Remark. An interesting question was raised by a reviewer of the submission: Is anything
gained if we fix the first bit of each block to be 1? When checking our analysis for this case
we see that this 1-bit need not survive previous row operations. However, such a change does
improve success probabilities in the Robin Hood insertion procedure. If a key xi finds cell
hi empty, it occupies this cell, without a coin being flipped. From the point of view of the
queues, we see that now the derived variable bj in Section 2.5 is 1 if kj > 0 and geometrically
distributed only if kj = 0. As in the preceding remark, this brings the process closer to the
M/D/1 queue with arrivals with a Poisson(1− ε) distribution and deterministic service time
1, but the average queue length remains Θ(1/ε). Still, it may be interesting to check by
experiments if improvements result by this change.

3 A New Retrieval Data Structure

With Theorem 2 in place we are ready to carry out the analysis of the retrieval data structure
based on the new random matrices as described in Section 1.2. The proof of Theorem 1 is
more or less straightforward.

Proof of Theorem 1. Denote the m elements of S by x1, . . . , xm, let n = 1
1−εm, L =

Θ( logm
ε ) the number from Theorem 2 and h : U → [n]×{0, 1}L a fully random hash function.

For construct, we associate the values (si, pi) := h(xi) with each xi for i ∈ [m] and interpret
them as a random band matrix A = (aij)i∈[m], j∈[n+L−1], where for all i ∈ [m] row ai contains
the pattern pi starting at position si and 0’s everywhere else. Moreover, let ~b ∈ {0, 1}m be
the vector with entries bi = f(xi) for i ∈ [m]. We call SGAUSS (Algorithm 1) with inputs
A and ~b, obtaining (in case of success) a solution ~z ∈ {0, 1}n+L−1 of A~z = ~b. The retrieval
data structure is simply DSf = ~z.

By Theorem 2 construct succeeds whp6 (establishing (i)) and performs O(m/ε) row
additions. Since additions affect only L = O( logm

ε ) consecutive bits, and since a word RAM
can deal with O(logm) bits at once, a single row addition costs O(1/ε) time, leading to total
expected running time O(m/ε2) (which establishes (ii)).

The data structure DSf = ~z occupies exactly 1
1−εm+ L− 1 < (1 + 2ε)m bits. Replacing

ε with ε/2 yields the literal result (iii).
To evaluate query(DSf , y) for y ∈ U , we compute (sy, py) = h(y) and the scalar product

by = 〈~z [sy . . . sy+L−1], py〉 :=
⊕L

j=1 ~zsy+j−1 · pyj . By construction, this yields bi = f(xi)
in the case that y = xi. To obtain (iv), observe that the scalar product of two binary
sequences of length L = O(log(n)/ε) can be computed using O(1/ε) bit parallel and and
xor operations, as well as a single parity operation on O(logm) bits, which can be assumed
to be available in constant time. J

I Remark. As the proof of Theorem 2 remains valid for arbitrary fixed finite fields in place
of F2, the same is true for Theorem 1. This is relevant for the compact representation of
functions with small ranges like [3], where binary encoding of single symbols implies extra
space overhead. Such functions occur in data structures for perfect hash functions [7, 22].

6 If success with probability 1 is desired, then in case the construction fails with hash function h0 = h,
we just restart the construction with different hash functions h1, h2, . . . . In this setup, DSf must also
contain the seed s ∈ N0 identifying the first hash function hs that led to success.
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4 Input Partitioning

We examine the effect of a simple trick to improve construction and query times of our
retrieval data structure. We partition the input into chunks using a “first-level hash function”
and construct a separate retrieval data structure for each chunk. Using this with chunk size
C = mε will reduce the time bounds for construction and query by a factor of ε. The main
reason for this is that we can use smaller block sizes L, which in turn makes row additions
and inner products cheaper. Note that the idea is not new. Partitioning the input has
previously been applied in the context of retrieval to reduce construction times, especially
when “raw” construction times are superlinear [15, 22, 35] or when performance in external
memory settings is an issue [3, 7]. Partitioning also allows us to get rid of the full randomness
assumption, which is interesting from a theoretical point of view [7, 19, 16].
I Remark. The reader should be aware that the choice C = mε, which is needed to obtain a
speedup of 1/ε, is unlikely to be a good choice in practice and that this improvement only
works for unrealistically large m. Namely, we use that logm

mε � ε for sufficiently large m.
While the left term is indeed o(1) and the right a constant, even for moderate values of ε like
0.05 implausibly large values of m are needed to satisfy the weaker requirement logm

mε < ε.
In this sense, Theorem 6 taken literally is of purely theoretical value. Still, the general idea
is sound and it can give improvements in practice when partitioning less aggressively, say
with C ≈

√
m. For example, the good running times reported in Section 5 are only possible

with this splitting approach.

I Theorem 6. The result of Theorem 1 can be strengthened in the following ways.
(i) The statements of Theorem 1 continue to hold without the assumption of fully random

hash functions being available for free.
(ii) The expected construction time is O(m/ε) (instead of O(m/ε2)).
(iii) The expected query time is O(1) (instead of O(1/ε)). Queries involve accessing a

(small) auxiliary data structure, so technically not all required data is “consecutive in
memory”.

Proof Sketch. Let C = mε be the desired chunk size. In [7, Section 4] it is described in
detail how a splitting function can be used to obtain chunks that have size within a constant
factor of C with high probability, and how fully random hash functions on each individual
chunk can be provided by a randomized auxiliary structure H that takes only o(m) space.
New functions can be generated by switching to new seeds. (This construction is a variation
of what is described in [16, 19].) This fully suffices for our purposes. We construct an
individual retrieval data structure for each chunk with L = O( logC

ε ) = O(logm). Such a
construction succeeds in expected time O(C/ε) with probability 1 −O(1/C). In case the
construction fails for a chunk, it is repeated with a different seed. At the end we save the
concatenation of all m/C retrieval data structures, the data structure H and an auxiliary
array. This array contains, for each chunk, the offset of the corresponding retrieval data
structure in the concatenation and the seed of the hash function used for the chunk. It is
easy to check that the size of all auxiliary data is asymptotically negligible.

The total expected construction time is O((m/C) · C/ε) = O(m/ε), and since L =
O(logm), a retrieval query can be evaluated in constant time. J

I Remark. The construction from [30] described in item (4) in the list in Section 1.1 can also
be transformed in a retrieval data structure. (This does not seem to have been explored up to
now.) The expected running time for construct is O(m log(1/ε)) (better than our O(m/ε)),
the expected running time for query is O(log(1/ε)), with O(log(1/ε)) random accesses in
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memory. (Worst case is O(1/ε).) In our preliminary experiments, see Section 5, for m = 107,
both construction and query times of our construction seem to be able to compete well with
the construction following [30].

5 Experiments

We implemented our retrieval data structure following the approach explained in the proof
of Theorem 6, except that we used MurmurHash3 [1] for all hash functions. This is a heuristic
insofar as we depart from the full randomness assumption of Theorem 1. We report7 running
times and space overheads in Table 1, with the understanding that a retrieval data structure
occupying N bits of memory in total and accommodating m keys has overhead N

m − 1.
Concerning the choice of parameters, L = 64 has practical advantages on a 64-bit machine
and C = 104 seems to go well with it experimentally. As ε ∈ {7%, 5%, 3%} decreases, the
measured construction time increases as would be expected. This is partly due to the higher
number of row additions in successful constructions, but also due to an increased probability
for a chunk’s construction to fail, which prompts a restart for that chunk with a different
seed. Note that, in our implementation, querying an element in a chunk with non-default
seed also prompts an additional hash function evaluation.

Competing Implementations. For comparison, we implemented the retrieval data struc-
tures from [7, 17, 22] and the one arising from the construction in [29]. (The number D
in Table 1 is the maximum number of 1’s in a row; the average is then Θ(logD).)

In [7], the rows of the linear systems contain three 1’s in independent and uniformly
random positions. If the number of columns is n = m/(1− ε) for ε > 18.2%, the system can
be solved in linear time by row and column exchanges alone. Compared to that method, we
achieve smaller overheads at similar running times.

The approaches from [22] and [17] are different in that they construct linear systems that
require cubic solving time with Gaussian elimination. This is counteracted by partitioning
the input into chunks as well as by a heuristic LazyGauss-phase of the solver that eliminates
many variables before the Method of Four Russians [2] is used on what remains. Construction
times are higher than ours, but the tiny space overhead achieved in [17] is beyond the reach of
our approach. The systems considered in [22] resemble those in [7], except at higher densities.
The systems studied in [17] resemble our systems, except with two blocks of random bits per
row instead of one.

We remark that our approach is easier to implement than those of [17, 22] but more
difficult than that of [7].

6 Conclusion

This paper studies the principles of solving linear systems given by a particular kind of
sparse random matrices, with one short random block per row, in a random position. The
proof works by the point of view from Gaussian elimination to Robin Hood hashing and
then to queuing theory. It might be interesting to find a direct, simpler proof for the main

7 Experiments were performed on a desktop computer with an Intel® Core i7-2600 Processor @ 3.40GHz.
Following [22], we used as data set S the first m = 107 URLs from the eu-2015-host dataset gathered
by [4] with ≈ 80 bytes per key. As hash function we used MurmurHash3_x64_128 [1]. Reported query
times are averages obtained by querying all elements of the data set once and include the evaluation of
murmur, which takes about 25 ns on average. The reported figures are medians of 5 executions.
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Table 1 Space overhead and running times per key of some practical retrieval data structures.

Configuration Overhead construct [µs/key] query [ns]

[7] ε = 19% 23.5% 0.32 59
〈new〉 ε = 7%, L = 64, C = 104 8.8% 0.24 52
〈new〉 ε = 5%, L = 64, C = 104 6.5% 0.27 54
〈new〉 ε = 3%, L = 64, C = 104 4.3% 0.43 61
[29] c = 0.9, D = 12 11.1% 0.79 94
[29] c = 0.99, D = 150 1.1% 0.87 109
[22] ε = 9%, k = 3, C = 104 10.2% 1.30 58
[22] ε = 3%, k = 4, C = 104 3.4% 2.20 64
[17] ε = 0.05%, ` = 16, C = 104 0.25% 2.47 56

theorem. Preliminary experiments concerning an application with retrieval data structures
are promising. The most intriguing property is that evaluation of a retrieval query requires
accessing only one (short) block in memory.

The potential of the construction in practice should be explored more fully and system-
atically, taking all relevant parameters like block size and chunk size into consideration.
Constructions of perfect hash functions like in [7, 22] or Bloom filters that combine perfect
hashing with fingerprinting [8, 15] might profit from our construction.
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Abstract
We study the problem of k-center clustering with outliers in arbitrary metrics and Euclidean space.
Though a number of methods have been developed in the past decades, it is still quite challenging
to design quality guaranteed algorithm with low complexity for this problem. Our idea is inspired
by the greedy method, Gonzalez’s algorithm, for solving the problem of ordinary k-center clustering.
Based on some novel observations, we show that this greedy strategy actually can handle k-center
clustering with outliers efficiently, in terms of clustering quality and time complexity. We further
show that the greedy approach yields small coreset for the problem in doubling metrics, so as
to reduce the time complexity significantly. Our algorithms are easy to implement in practice.
We test our method on both synthetic and real datasets. The experimental results suggest that
our algorithms can achieve near optimal solutions and yield lower running times comparing with
existing methods.
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1 Introduction

Clustering is one of the most fundamental problems in data analysis [25]. Given a set of
elements, the goal of clustering is to partition the set into several groups based on their
similarities or dissimilarities. Several clustering models have been extensively studied, such
as k-center, k-median, and k-means clustering [9]. In reality, datasets often are noisy and
contain outliers. Moreover, outliers could seriously affect the final results in data analysis [14].
Clustering with outliers can be viewed as a generalization of ordinary clustering problems;
however, the existence of outliers makes the problems to be much more challenging.

We focus on the problem of k-center clustering with outliers in this paper. Given a
metric space with n vertices and a pre-specified number of outliers z < n, the problem is
to find k balls to cover at least n − z vertices and minimize the maximum radius of the
balls. The problem also can be defined in Euclidean space so that the cluster centers can
be any points in the space (i.e., not restricted to be selected from the input points). The
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2-approximation algorithms for ordinary k-center clustering (without outliers) were given
in [18, 22], and it was proved that any approximation ratio lower than 2 implies P = NP .
A 3-approximation algorithm for k-center clustering with outliers in arbitrary metrics was
proposed by Charikar et al. [15]; for the problem in Euclidean space, their approximation
ratio becomes 4. A following streaming (4 + ε)-approximation algorithm was proposed by
McCutchen and Khuller [33]. Recently, Chakrabarty et al. [13] proposed a 2-approximation
algorithm for metric k-center clustering with outliers (but it is unclear of the resulting
approximation ratio for the problem in Euclidean space). Existing algorithms often have high
time complexities. For example, the complexities of the algorithms in [15,33] are O(kn2 logn)
and O

( 1
ε (kzn + (kz)2 log Φ)

)
respectively, where Φ is the ratio of the optimal radius to

the smallest pairwise distance among the vertices; the algorithm in [13] needs to solve a
complicated model of linear programming and the exact time complexity is not provided.
The coreset based idea of Badoiu et al. [7] needs to enumerate a large number of possible
cases and also yields a high complexity. Several distributed algorithms for k-center clustering
with outliers were proposed recently [12,19, 30, 32]; most of these distributed algorithms, to
our best knowledge, rely on the sequential algorithm [15].

In this paper, we aim to design quality guaranteed algorithm with low complexity for
the problem of k-center clustering with outliers. Our idea is inspired by the greedy method
from Gonzalez [18] for solving ordinary k-center clustering. Based on some novel insights,
we show that this greedy method also works for the problem with outliers (Section 2). Our
approach can achieve the approximation ratio 2 with respect to the clustering cost (i.e.,
the radius); moreover, the time complexity is linear in the input size. Charikar et al. [16]
showed that if more than z outliers are allowed to remove, the random sampling technique
can be applied to reduce the data size for metric k-center clustering with outliers. Recently,
Huang et al. [23] showed a similar result for instances in Euclidean space (and they name
the sample as “robust coreset”). In Section 2.3, we prove that the sample size of [23] can be
further reduced.

We also consider the problem in doubling metrics, motivated by the fact that many
real-world datasets often manifest low intrinsic dimensions [8]. For example, image sets
usually can be represented in low dimensional manifold though the Euclidean dimension of
the image vectors can be very high. “Doubling dimension” is widely used for measuring the
intrinsic dimensions of datasets [35] (the formal definition is given in Section 1.1). Rather
than assuming the whole (X, d) has a low doubling dimension, we only assume that the
inliers of the given data have a low doubling dimension ρ > 0. We do not have any
assumption on the outliers; namely, the outliers can scatter arbitrarily in the space. We
believe that this assumption captures a large range of high dimensional instances in reality.

With the assumption, we show that our approach can further improve the clustering
quality. In particular, the greedy approach is able to construct a coreset for the problem of
k-center clustering with outliers; as a consequence, the time complexity can be significantly
reduced if running existing algorithms on the coreset (Section 3). Coreset construction is
a technique for reducing data size so as to speedup the algorithms for many optimization
problems; we refer the reader to the surveys [5, 34] for more details. The size of our coreset
is 2z + O

(
(2/µ)ρk

)
, where µ is a small parameter measuring the quality of the coreset;

the construction time is O(( 2
µ )ρkn). Note that z and k are often much smaller than n in

practice; the coefficient 2 of z actually can be further reduced to be arbitrarily close to 1,
by increasing the coefficient of the second term (2/µ)ρk. Moreover, our coreset is a natural
“composable coreset” [24] which could be potentially applied to distributed clustering with
outliers. Very recently, Ceccarello et al. [12] also provided a coreset for k-center clustering
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with z outliers in doubling metrics, where their size is T = O((k + z)( 24
µ )ρ) with O(nT )

construction time. Thus our result is a significant improvement in terms of coreset size and
construction time. Huang et al. [23] considered the coreset construction for k-median/means
clustering with outliers in doubling metrics, however, their method cannot be extended to the
case of k-center. Aghamolaei and Ghodsi [2] considered the coreset construction in doubling
metrics for ordinary k-center clustering without outliers.

Our proposed algorithms are easy to implement in practice. To study the performance
of our algorithms, we test them on both synthetic and real datasets in Section 4. The
experimental results suggest that our method outperforms existing methods in terms of
clustering quality and running time. Also, the running time can be significantly reduced via
building coreset where the clustering quality can be well preserved simultaneously.

Due to the space limit, some details are omitted here, and we refer the reader to the full
version of our paper.

1.1 Preliminaries
We consider the problem of k-center with outliers in arbitrary metrics and Euclidean space
RD. Let (X, d) be a metric, where X contains n vertices and d(·, ·) is the distance function;
with a slight abuse of notation, we also use the function d to denote the shortest distance
between two subsets X1, X2 ⊆ X, i.e., d(X1, X2) = minp∈X1,q∈X2 d(p, q). We assume that
the distance between any pair of vertices in X is given in advance; for the problem in
Euclidean space, it takes O(D) time to compute the distance between any pair of points.
Below, we introduce several important definitions that are used throughout the paper.

I Definition 1 (k-Center Clustering with Outliers). Given a metric (X, d) with two positive
integers k and z < n, k-center clustering with outliers is to find a subset X ′ ⊆ X, where
|X ′| ≥ n − z, and k centers {c1, · · · , ck} ⊆ X, such that maxp∈X′ min1≤j≤k d(p, cj) is
minimized. If given a set P of n points in RD, the problem is to find a subset P ′ ⊆ P ,
where |P ′| ≥ n− z, and k centers {c1, · · · , ck} ⊂ RD, such that maxp∈P ′ min1≤j≤k ||p− cj ||
is minimized.

Note. For the sake of convenience, we describe the following definitions only in terms of
metric space. In fact, the definitions can be easily modified for the problem in Euclidean space.

In this paper, we always use Xopt, a subset of X with size n− z, to denote the subset
yielding the optimal solution. Also, let {C1, · · · , Ck} be the k clusters forming Xopt, and
the resulting clustering cost be ropt; that is, each Cj is covered by an individual ball with
radius ropt.

Usually, optimization problems with outliers are challenging to solve. Thus we often relax
our goal and allow to miss a little more outliers in practice. Actually the same relaxation
idea has been adopted by a number of works on clustering with outliers before [3, 16, 23,30].

I Definition 2 ((k, z)ε-Center Clustering). Let (X, d) be an instance of k-center clustering
with z outliers, and ε ≥ 0. (k, z)ε-center clustering is to find a subset X ′ of X, where
|X ′| ≥ n − (1 + ε)z, such that the corresponding clustering cost of Definition 1 on X ′

is minimized.
(i) Given a set A of cluster centers (|A| could be larger than k), the resulting clustering

cost,

min
{

max
p∈X′

min
c∈A

d(p, c) | X ′ ⊆ X, |X ′| ≥ n− (1 + ε)z
}

(1)

is denoted by φε(X,A).
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(ii) If |A| = k and φε(X,A) ≤ αropt with α > 01, it is called an α-approximation. Moreover,
if |A| = βk with β > 1, it is called an (α, β)-approximation.

Obviously, the problem in Definition 1 is a special case of (k, z)ε-center clustering with
ε = 0. Further, Definition 1 and 2 can be naturally extended to weighted case: each vertex
p has a non-negative weight wp and the total weight of outliers should be equal to z; the
distance d(p, cj) in the objective function is replaced by wp · d(p, cj). Then we have the
following definition of coreset.

I Definition 3 (Coreset). Given a small parameter µ ∈ (0, 1) and an instance (X, d) of
k-center clustering with z outliers, a set S ⊆ X is called a µ-coreset of X, if each vertex of
S is assigned a non-negative weight and φ0(S,H) ∈ (1± µ)φ0(X,H) for any set H ⊆ X of
k vertices.

Given a large-scale instance (X, d), we can run existing algorithm on its coreset S to
compute an approximate solution for X; if |S| � n, the resulting running time can be
significantly reduced. Formally, we have the following claim.

B Claim 4. If the set H yields an α-approximation of the µ-coreset S, it yields an α× 1+µ
1−µ -

approximation of X.

As mentioned before, we also consider the case with low doubling dimension. Roughly
speaking, doubling dimension describes the expansion rate of the metric. For any p ∈ X and
r ≥ 0, we use Ball(p, r) to denote the ball centered at p with radius r.

I Definition 5 (Doubling Dimension). The doubling dimension of a metric (X, d) is the
smallest number ρ > 0, such that for any p ∈ X and r ≥ 0, X ∩Ball(p, 2r) is always covered
by the union of at most 2ρ balls with radius r.

2 Algorithms for (k, z)ε-Center Clustering

For the sake of completeness, let us briefly introduce the algorithm of [18] for ordinary
k-center clustering first. Initially, it arbitrarily selects a vertex from X, and iteratively selects
the following k − 1 vertices, where each j-th step (2 ≤ j ≤ k) chooses the vertex having the
largest minimum distance to the already selected j − 1 vertices; finally, each input vertex is
assigned to its nearest neighbor of these selected k vertices. It can be proved that this greedy
strategy results in a 2-approximation of k-center clustering; the algorithm also works for the
problem in Euclidean space and results in the same approximation ratio. In this section,
we show that a modified version of Gonzalez’s algorithm yields approximate solutions for
(k, z)ε-center clustering.

In Section 2.1 and 2.2, we present our results for metric k-center with outliers. Actually,
it is easy to see that Algorithm 1 and 2 yield the same approximation ratios if the input
instance is a set of points in Euclidean space (the analysis is almost identical, and we omit
the details due to the space limit); only the running times are different, since it takes O(D)
time to compute distance between two points in RD.

1 Since we remove more than z outliers, it is possible to have an approximation ratio α < 1, i.e,
φε(X,A) < ropt.
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Algorithm 1 Bi-criteria Approximation Algorithm.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n;
parameters ε > 0, η ∈ (0, 1), and t ∈ Z+.
1. Let γ = z/n and initialize a set E = ∅.
2. Initially, j = 1; randomly select 1

1−γ log 1
η vertices from X and add them to E.

3. Run the following steps until j = t:
a. j = j + 1 and let Qj be the farthest (1 + ε)z vertices of X to E (for each vertex

p ∈ X, its distance to E is minq∈E d(p, q)).
b. Randomly select 1+ε

ε log 1
η vertices from Qj and add them to E.

Output E.

2.1 (2, O(1
ε
))-Approximation

Here, we consider bi-criteria approximation that returns more than k cluster centers. The
main challenge for implementing Gonzalez’s algorithm is that the outliers and inliers are
mixed in X; for example, the selected vertex, which has the largest minimum distance to
the already selected vertices, is very likely to be an outlier, and therefore the clustering
quality could be arbitrarily bad. Instead, our strategy is to take a small sample from the
farthest subset. We implement our idea in Algorithm 1. For simplicity, let γ denote z/n in
the algorithm; usually we can assume that γ is a value much smaller than 1. We prove the
correctness of Algorithm 1 below.

I Lemma 6. With probability at least 1− η, the set E in Step 2 of Algorithm 1 contains at
least one point from Xopt.

Since |Xopt|/|X| = 1− γ, Lemma 6 can be easily obtained by the following folklore claim.

B Claim 7. Let U be a set of elements and V ⊆ U with |V ||U | = τ > 0. Given η ∈ (0, 1), if
one randomly samples 1

τ log 1
η elements from U , with probability at least 1− η, the sample

contains at least one element from V .

Recall that {C1, C2, · · · , Ck} are the k clusters forming Xopt. Denote by λj(E) the
number of the clusters which have non-empty intersection with E at the beginning of j-th
round in Step 3 of Algorithm 1. For example, initially λ1(E) ≥ 1 by Lemma 6. Obviously,
if λj(E) = k, i.e., Cl ∩ E 6= ∅ for any 1 ≤ l ≤ k, E yields a 2-approximation for k-center
clustering with outliers through the triangle inequality.

B Claim 8. If λj(E) = k, then φ0(X,E) ≤ 2ropt.

I Lemma 9. In each round of Step 3 of Algorithm 1, with probability at least 1− η, either
(1) d(Qj , E) ≤ 2ropt or (2) λj(E) ≥ λj−1(E) + 1.

Proof. Suppose that (1) is not true, i.e., d(Qj , E) > 2ropt, and we prove that (2) is true. Let
J include all the indices l ∈ {1, 2, · · · , k} with E∩Cl 6= ∅. We claim that Qj∩Cl = ∅ for each
l ∈ J . Otherwise, let p ∈ Qj∩Cl and p′ ∈ E∩Cl; due to the triangle inequality, we know that
d(p, p′) ≤ 2ropt which is in contradiction to the assumption d(Qj , E) > 2ropt. Thus, Qj∩Xopt

only contains the vertices from Cl with l /∈ J . Moreover, since the number of outliers is z,
we know that |Qj∩Xopt||Qj | ≥ ε

1+ε . By Claim 7, if randomly selecting 1+ε
ε log 1

η vertices from Qj ,
with probability at least 1− η, the sample contains at least one vertex from Qj ∩Xopt; also,
the vertex must come from ∪l/∈JCl. That is, (2) λj(E) ≥ λj−1(E) + 1 happens. J
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If (1) of Lemma 9 happens, i.e., d(Qj , E) ≤ 2ropt, then it implies that

max
p∈X\Qj

d(p,E) ≤ 2ropt; (2)

moreover, since |Qj | = (1 + ε)z, we have φε(X,E) ≤ 2ropt. Next, we assume that (1)
in Lemma 9 never happens, and prove that λj(E) = k with constant probability when
j = Θ(k). The following idea actually has been used by Aggarwal et al. [1] for achieving a
bi-criteria approximation for k-means clustering. Define a random variable xj : xj = 1 if
λj(E) = λj−1(E), or 0 if λj(E) ≥ λj−1(E)+1, for j = 1, 2, · · · . So E[xj ] ≤ η by Lemma 9 and∑

1≤s≤j
(1− xs) ≤ λj(E). (3)

Also, let Jj =
∑

1≤s≤j(xs − η) and J0 = 0. Then, {J0, J1, J2, · · · } is a super-martingale
with Jj+1 − Jj < 1 (more details are shown in the full version of our paper). Through
Azuma-Hoeffding inequality [4], we have Pr(Jt ≥ J0 + δ) ≤ e− δ

2
2t for any t ∈ Z+ and δ > 0.

Let t = k+
√
k

1−η and δ =
√
k, the inequality implies that

Pr(
∑

1≤s≤t
(1− xs) ≥ k) ≥ 1− e−

1−η
4 . (4)

Combining (3) and (4), we know that λt(E) ≥ k with probability at least 1−e−
1−η

4 . Moreover,
λt(E) = k directly implies that E is a 2-approximate solution by Claim 8. Together with
Lemma 6, we have the following theorem.

I Theorem 10. Let ε > 0. If we set t = k+
√
k

1−η for Algorithm 1, with probability at least
(1− η)(1− e−

1−η
4 ), φε(X,E) ≤ 2ropt.

Quality and Running time. If 1
η and 1

1−γ are constant numbers, |E| will be O(kε ) and
Theorem 10 implies that E is a

(
2, O( 1

ε )
)
-approximation for (k, z)ε-center clustering of X

with constant probability. In each round of Step 3, there are O( 1
ε ) new vertices added to E,

thus it takes O( 1
εn) time to update the distances from the vertices of X to E; to select the

set Qj , we can apply the linear time selection algorithm [10]. Overall, the running time of
Algorithm 1 is O(kεn). If the given instance is in RD, the running time will be O(kεnD).

Further, we consider the instances under some practical assumption, and provide new
analysis of Algorithm 1. In reality, the clusters are usually not too small, compared with the
number of outliers. For example, it is rare to have a cluster Cl that |Cl| � z.

I Theorem 11. If each optimal cluster Cl has size at least εz for 1 ≤ l ≤ k, the set E of
Algorithm 1 is a

(
4, O( 1

ε )
)
-approximation for the problem of (k, z)0-center clustering with

constant probability.

Compared with Theorem 10, Theorem 11 shows that we can exactly exclude z outliers (rather
than (1 + ε)z), though the approximation ratio with respect to the radius becomes 4.

Proof of Theorem 11. We take a more careful analysis on the proof of Lemma 9. If (1)
never happens, eventually λj(E) will reach k and thus φ0(X,E) ≤ 2ropt (Claim 8). So
we focus on the case that (1) happens before λj(E) reaching k. Suppose at j-th round,
d(Qj , E) ≤ 2ropt but λj(E) < k. We consider two cases (i) there exists some l0 /∈ J such
that Cl0 ⊆ Qj and (ii) otherwise.
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Algorithm 2 2-Approximation Algorithm.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n; a
parameter ε > 0.
1. Initialize a set E = ∅.
2. Let j = 1; randomly select one vertex from X and add it to E.
3. Run the following steps until j = k:

a. j = j + 1 and let Qj be the farthest (1 + ε)z vertices to E.
b. Randomly select one vertex from Qj and add it to E.

Output E.

For (i), we have Cl0 ⊆ Qj for some l0 /∈ J . Note that we assume |Cl0 | ≥ εz, i.e.,
|Cl0 |
|Qj | ≥

ε
1+ε . Using the same manner in the proof of Lemma 9, we know that (2) λj(E) ≥ λj−1(E)+1
happens with probability 1 − η. Thus, if (i) is always true, we can continue Step 3 and
eventually λj(E) will reach k, that is, a

(
2, O( 1

ε )
)
-approximation of (k, z)0-center clustering

is obtained with constant probability.
For (ii), we have Cl\Qj 6= ∅ for all l /∈ J . Together with the assumption d(Qj , E) ≤ 2ropt,

we know that there exists ql ∈ Cl \Qj (for each l /∈ J ) such that d(ql, E) ≤ d(Qj , E) ≤ 2ropt.
Consequently, we have that ∀q ∈ Cl,

d(q, E) ≤ ||q − ql||+ d(ql, E) ≤ 4ropt (see the left of Figure. 1). (5)

Note that for any l ∈ J , d(E,Cl) ≤ 2ropt by the triangle inequality. Thus,

φ0(X,E) ≤ max
q∈∪k

l=1Cl
d(q, E) ≤ 4ropt. (6)

So a
(
4, O( 1

ε )
)
-approximation of (k, z)0-center clustering is obtained. J

2.2 2-Approximation
If k is a constant, we show that a single-criterion 2-approximation can be achieved. Actually,
we use the same strategy as Section 2.1, but run only k rounds with each round sampling
only one vertex. See Algorithm 2.

pe ∈ Epe ∈ E

qlql

qq

ClCl

≤ 2ropt≤ 2ropt

≤ 2ropt≤ 2ropt
pe ∈ Epe ∈ E

oeoe

pp

opop

> 4ropt> 4ropt

≥ 2ropt≥ 2ropt

Figure 1 Left: pe is a point of E having distance ≤ 2ropt to pl; right: pe is any point of E, oe
and op are the centers taking charge of pe and p.

Denote by {v1, · · · , vk} the k sampled vertices of E. Actually, the proof of Theorem 12
is similar to the analysis in Section 2.1. The only difference is that the probability that (2)
λj(E) ≥ λj−1(E)+1 happens is at least ε

1+ε . Also note that v1 ∈ Xopt with probability 1−γ
(γ = z/n). If all of these events happen, either we obtain a 2-approximation before k steps

ESA 2019



40:8 Greedy Strategy for k-Center Clustering with Outliers

(i.e., d(E,X \Qj) ≤ 2ropt for some j < k), or {v1, · · · , vk} fall into the k optimal clusters
C1, C2, · · · , Ck separately (i.e., λk(E) = k). No matter which case happens, we always obtain
a 2-approximation with respect to (k, z)ε-center clustering. So we have Theorem 12.

I Theorem 12. Algorithm 2 returns a 2-approximation for the problem of (k, z)ε-center
clustering on X, with probability at least (1− γ)( ε

1+ε )
k−1. The running time is O(kn). If the

given instance is in RD, the running time will be O(knD).

To boost the probability of Theorem 12, we just need to repeatedly run the algorithm;
the success probability is easy to calculate by taking the union bound.

I Corollary 13. If we run Algorithm 2 O
( 1

1−γ ( 1+ε
ε )k−1) times, with constant probability,

at least one time the algorithm returns a 2-approximation for the problem of (k, z)ε-center
clustering.

Similar to Theorem 11, we consider the practical instances. We show that the quality of
Theorem 12 can be preserved even exactly excluding z outliers, if the optimal clusters are “well
separated”. The property was also studied for other clustering problems in practice [17,26].
Let {o1, · · · , ok} be the k cluster centers of the optimal clusters {C1, · · · , Ck}.

I Theorem 14. Suppose that each optimal cluster Cl has size at least εz and ||ol−ol′ || > 4ropt
for 1 ≤ l 6= l′ ≤ k. Then with probability at least (1 − γ)( ε

1+ε )
k−1, Algorithm 2 returns a

2-approximation for the problem of (k, z)0-center clustering.

Proof. Initially, we know that λ1(E) = 1 with probability 1 − γ. Suppose that at the
beginning of the j-th round of Algorithm 2 with 2 ≤ j ≤ k, E already has j − 1 vertices
separately falling in j − 1 optimal clusters; also, we still let J be the set of the indices of
these j − 1 clusters. Then we have the following claim.

B Claim 15. |Qj ∩ (∪l/∈JCl)| ≥ εz.

Proof. For any p ∈ ∪l/∈JCl, we have

d(p,E) > 4ropt − ropt − ropt = 2ropt (7)

from triangle inequality and the assumption ||ol − ol′ || > 4ropt for 1 ≤ l 6= l′ ≤ k (see the
right of Figure. 1). In addition, for any p ∈ ∪l∈JCl, we have

d(p,E) ≤ 2ropt. (8)

We consider two cases. If d(Qj , E) ≤ 2ropt at the current round, then (7) directly implies
that ∪l/∈JCl ⊆ Qj (recall Qj is the set of farthest vertices to E); thus |Qj ∩ (∪l/∈JCl)| =
| ∪l/∈J Cl| ≥ εz by the assumption that any |Cl| ≥ εz. Otherwise, d(Qj , E) > 2ropt. Then
Qj ∩ (∪l∈JCl) = ∅ by (8). Moreover, since there are only z outliers and |Qj | = (1 + ε)z, we
know that |Qj ∩ (∪l/∈JCl)| ≥ εz. C

Claim 15 reveals that with probability at least ε
1+ε , the new added vertex falls in ∪l/∈JCl,

i.e., λj(E) = λj−1(E) + 1. Overall, we know that λk(E) = k, i.e., E is a 2-approximation of
(k, z)0-center clustering (by Claim 8), with probability at least (1− γ)( ε

1+ε )
k−1. J
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2.3 Reducing Data Size via Random Sampling
Given a metric (X, d), Charikar et al. [16] showed that we can use a random sample S to
replace X. Recall γ = z/n. Let |S| = O( k

ε2γ lnn) and E be an α-approximate solution of
(k, z)ε-center clustering on (S, d), then E is an α-approximate solution of (k, z)O(ε)-center
clustering on (X, d) with constant probability. In D-dimensional Euclidean space, Huang et
al. [23] showed a similar result, where the sample size |S| = Õ( 1

ε2γ2 kD)2 (to be consistent
with our paper, we change the notations in their theorem). In this section, we show that
the sample size of [23] can be further improved to be Õ( 1

ε2γ kD), which can be a significant
improvement if 1

γ = n
z is large.

Let P be a set of n points in RD. Consider the range space Σ = (P,Π) where each range
π ∈ Π is the complement of union of k balls in RD. We know that the VC dimension of balls
is O(D) [4], and therefore the VC dimension of union of k balls is O(kD log k) [11]. That is,
the VC dimension of the range space Σ is O(kD log k). Let ε ∈ (0, 1), and an “ε-sample” S of
P is defined as follows: ∀π ∈ Π,

∣∣ |π∩P |
|P | −

|π∩S|
|S|

∣∣ ≤ ε; roughly speaking, S is an approximation
of P with an additive error inside each range π. Given a range space with VC dimension m,
an ε-sample can be easily obtained via uniform sampling [4], where the success probability is
1− λ and the sample size is O

( 1
ε2 (m log m

ε + log 1
λ )
)
for any 0 < λ < 1. For our problem, we

need to replace the “ε” of the “ε-sample” by εγ to guarantee that the number of uncovered
points is bounded by

(
1 +O(ε)

)
γn (we show the details below); the resulting sample size

will be Õ( 1
ε2γ2 kD) that is the same as the sample size of [23] (we assume that the term log 1

λ

is a constant for convenience).
Actually, the front factor 1

ε2γ2 of the sample size can be further reduced to be 1
ε2γ by

a more careful analysis. We observe that there is no need to guarantee the additive error
for each range π (as the definition of ε-sample). Instead, only a multiplicative error for the
ranges covering at least γn points should be sufficient. Note that when a range covers more
points, the multiplicative error is weaker than the additive error and thus the sample size is
reduced. For this purpose, we use relative approximation [21,31]: let S ⊆ P be a subset of
size Õ( 1

ε2γ kD) chosen uniformly at random, then with constant probability,

∀π ∈ Π,
∣∣∣ |π ∩ P ||P |

− |π ∩ S|
|S|

∣∣∣ ≤ ε×max
{ |π ∩ P |
|P |

, γ
}
. (9)

We formally state our result below.

I Theorem 16. Let P be an instance for the problem of k-center clustering with outliers in
RD as described in Definition 1, and S ⊆ P be a subset of size Õ( 1

ε2γ kD) chosen uniformly
at random. Suppose ε ≤ 0.5. Let S be a new instance for the problem of k-center clustering
with outliers where the number of outliers is set to be z′ = (1 + ε)γ|S|. If E is an α-
approximate solution of (k, z′)ε-center clustering on S, then E is an α-approximate solution
of (k, z)O(ε)-center clustering on P , with constant probability.

Proof. We assume that S is a relative approximation of P and (9) holds (this happens with
constant probability). Let Bopt be the set of k balls covering (1− γ)n points induced by the
optimal solution for P , and BS be the set of k balls induced by an α-approximate solution
of (k, z′)ε-center clustering on S. Suppose the radius of each ball in Bopt (resp., BS) is ropt
(resp., rS). We denote the complements of Bopt and BS as πopt and πS , respectively.

2 The asymptotic notation Õ(f) = O
(
f · polylog( kDεγ )

)
.
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First, since Bopt covers (1 − γ)n points of P and S is a relative approximation of P ,
we have∣∣πopt ∩ S∣∣

|S|
≤
∣∣πopt ∩ P ∣∣
|P |

+ ε×max
{ |πopt ∩ P |

|P |
, γ
}

= (1 + ε)γ (10)

by (9). That is, the set balls Bopt cover at least
(
1− (1 + ε)γ

)
|S| points of S, and therefore

it is a feasible solution for the instance S with respect to the problem of k-center clustering
with z′ outliers. Since BS is an α-approximate solution of (k, z′)ε-center clustering on S,
we have

rS ≤ αropt; |πS ∩ S| ≤ (1 + ε)z′ = (1 + ε)2γ|S|. (11)

Now, we claim that

∣∣πS ∩ P ∣∣ ≤ (1 + ε)2

1− ε γ|P |. (12)

Assume that (12) is not true, then (9) implies
∣∣∣ |πS∩P ||P | −

|πS∩S|
|S|

∣∣∣ ≤ ε ×max
{
|πS∩P |
|P | , γ

}
=

ε |πS∩P ||P | . So |πS∩S||S| ≥ (1− ε) |πS∩P ||P | > (1 + ε)2γ, which is in contradiction with the second
inequality of (11), and thus (12) is true. We assume ε ≤ 0.5, so 1

1−ε ≤ 1 + 2ε and
(1+ε)2

1−ε = 1 +O(ε). Consequently (12) and the first inequality of (11) together imply that BS
is an α-approximate solution of (k, z)O(ε)-center clustering on P . J

3 Coreset Construction in Doubling Metrics

In this section, we always assume the following is true by default:
Given an instance (X, d) of k-center clustering with outliers, the metric (Xopt, d), i.e., the
metric formed by the set of inliers, has a constant doubling dimension ρ > 0.

We do not have any restriction on the outliers X \Xopt. Thus the above assumption is
more relaxed and practical than assuming the whole (X, d) has a constant doubling dimension.
From Definition 5, we directly know that each optimal cluster Cl of Xopt can be covered by
2ρ balls with radius ropt/2 (see the left figure in Figure. 2). Imagine that the instance (X, d)
has 2ρk clusters, where the optimal radius is at most ropt/2. Therefore, we can just replace
k by 2ρk when running Algorithm 1, so as to reduce the approximation ratio (i.e., the ratio
of the resulting radius to ropt) from 2 to 1.

roptropt 1
2µropt
1
2µropt

1
2ropt
1
2ropt

Figure 2 Illustrations for Theorem 17 and 18.

I Theorem 17. If we set t = 2ρk+2ρ/2√k
1−η for Algorithm 1, with probability (1−η)(1−e−

1−η
4 ),

φε(X,E) ≤ ropt. So the set E is a
(
1, O( 2ρ

ε )
)
-approximation for the problem of (k, z)ε-center

clustering, and the running time is O(2ρ kεn).
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Algorithm 3 The Coreset Construction.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n;
parameters η and µ ∈ (0, 1).
1. Let l = ( 2

µ )ρk.
2. Set ε = 1 and run Algorithm 1 t = l+

√
l

1−η rounds. Denote by r̃ the maximum distance
between E and X by excluding the farthest 2z vertices, after the final round of
Algorithm 1.

3. Let Xr̃ = {p | p ∈ X and d(p,E) ≤ r̃}.
4. For each vertex p ∈ Xr̃, assign it to its nearest neighbor in E; for each vertex q ∈ E,

let its weight be the number of vertices assigning to it.
5. Add X \Xr̃ to E; each vertex of X \Xr̃ has weight 1.
Output E as the coreset.

If considering the problem in Euclidean space RD where the doubling dimension of the
inliers is ρ, the running time becomes O(2ρ kεnD). Inspired by Theorem 17, we can further
construct coreset for k-center clustering with outliers (see Definition 3). Let µ ∈ (0, 1), and
for simplicity we assume that log 2/µ is an integer. If applying Definition 5 recursively, we
know that each Cl is covered by 2ρ log 2/µ = ( 2

µ )ρ balls with radius µ
2 ropt, and Xopt is covered

by ( 2
µ )ρk such balls in total. See the right figure in Figure. 2. Based on this observation, we

have Algorithm 3 for constructing µ-coreset.

I Theorem 18. With constant probability, Algorithm 3 outputs a µ-coreset E of k-center
clustering with z outliers. The size of E is at most 2z+O

(
( 2
µ )ρk

)
, and the construction time

is O(( 2
µ )ρkn).

Remark. (1) The previous ideas based on uniform sampling [16, 23] (also our idea in
Section 2.3) cannot get rid of the violation on the number of outliers; the sample sizes will
become infinity if not allowing to remove more than z outliers. Our coreset in Theorem 18
works for removing z outliers exactly. Consequently, our coreset can be used for existing
algorithms of k-center clustering with outliers, such as [15], to reduce their complexities.
(2) Another feature is that our coreset is a natural composable coreset. If X (or the point
set P ) is partitioned into L parts, we can run Algorithm 3 for each part, and obtain a coreset
with size

(
2z+O

(
( 2
µ )ρk

))
L in total (the proof is almost identical to the proof of Theorem 18

below). So our coreset construction can potentially be applied to distributed clustering with
outliers. (3) The coefficient 2 of z actually can be further reduced by modifying the value
of ε in Step 2 of Algorithm 3 (we just set ε = 1 for simplicity). In general, the size of E is
(1 + ε)z +O

( 1
ε ( 2
µ )ρk

)
and the construction time is O( 1

ε ( 2
µ )ρkn) (or O( 1

ε ( 2
µ )ρknD) in RD).

Proof of Theorem 18. Similar to Theorem 17, we know that |Xr̃| = n − 2z and r̃ ≤
2× µ

2 ropt = µropt with constant probability in Algorithm 3. Thus, the size of E is |X \Xr̃|+
O
(
( 2
µ )ρk

)
= 2z+O

(
( 2
µ )ρk

)
. Moreover, it is easy to see that the running time of Algorithm 3

is O(( 2
µ )ρkn).

Next, we show that E is a µ-coreset of X. For each vertex q ∈ E, denote by w(q)
the weight of q; for the sake of convenience in our proof, we view each q as a set of w(q)
overlapping unit weight vertices. Thus, from the construction of E, we can see that there is
a bijective mapping f between X and E, where

||p− f(p)|| ≤ r̃ ≤ µropt, ∀p ∈ X. (13)
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Let H = {c1, c2, · · · , ck} be any k vertices of X. Suppose that H induces k clusters
{A1, A2, · · · , Ak} (resp., {B1, B2, · · · , Bk}) with respect to the problem of k-center clustering
with z outliers on E (resp., X), where each Aj (resp., Bj) has the cluster center cj for
1 ≤ j ≤ k. Let rE = φ0(E,H) and rX = φ0(X,H), respectively. Also, let r′E (resp.,
r′X) be the smallest value r, such that for any 1 ≤ j ≤ k, f(Bj) ⊆ Ball(cj , r) (resp.,
f−1(Aj) ⊆ Ball(cj , r)). We need the following claim.

B Claim 19. |r′E − rX | ≤ µropt and |r′X − rE | ≤ µropt.

In addition, since {f(B1), · · · , f(Bk)} also form k clusters for the instance E with the fixed
k cluster centers of H, we know that r′E ≥ φ0(E,H) = rE . Similarly, we have r′X ≥ rX .
Combining Claim 19, we have

rX − µropt ≤ r′X − µropt ≤ rE︸ ︷︷ ︸
by Claim 19

≤ r′E ≤ rX + µropt︸ ︷︷ ︸
by Claim 19

. (14)

So |rX − rE | ≤ µropt, i.e., φ0(E,H) ∈ φ0(X,H)± µropt ⊆ (1± µ)φ0(X,H). Therefore E is
a µ-coreset of (X, d). J

4 Experiments

Our experimental results were obtained on a Windows workstation with 2.8GHz Intel(R)
Core(TM) i5-840 and 8GB main memory; the algorithms were implemented in Matlab
R2018a. We test our algorithms on both synthetic and real datasets. For Algorithm 2, we
take two well known algorithms of k-center clustering with outliers, Base1 of [15] and Base2
of [33], as the baselines. For Algorithm 3, we compare our coreset construction with uniform
random sampling.

To generate the synthetic datasets, we set n = 105 and D = 103, and vary the values of
z and k. First, randomly generate k clusters inside a hypercube of side length 200, where
each cluster is a random sample from a Gaussian distribution with variance 10; each cluster
has a random number of points and we keep the total number of points to be n − z; we
compute the minimum enclosing balls respectively for these k clusters (by using the algorithm
of [6]), and randomly generate z outliers outside the balls. The maximum radius of the balls
is used as ropt.

We also use three real datasets. MNIST dataset [28] contains n = 60, 000 handwritten
digit images from 0 to 9, where each image is represented by a 784-dimensional vector. The
10 digits form k = 10 clusters. Caltech-256 dataset [29] contains 30, 607 colored images with
256 categories, where each image is represented by a 4096-dimensional vector. We choose
n = 2, 232 images of 20 categories to form k = 20 clusters. CIFER-10 training dataset [27]
contains n = 50, 000 colored images in 10 classes as k = 10 clusters, where each image
is represented by a 4096-dimensional vector. For each real dataset, we use the minimum
enclosing ball algorithm of [6] to compute ropt, and randomly generate z = 5%n outliers
outside the corresponding balls.

Results and analysis. Note that we exactly exclude z outliers (rather than (1 + ε)z as
stated in Theorem 10 and 12) in our experiments, and calculate the approximation ratio
φ0(X,E)/ropt for each instance, if E is the set of returned cluster centers.

We first run our Algorithm 1 on synthetic and real datasets. For synthetic datasets, we set
k = 2-20, and β = |E|/k = 8 via modifying the values of ε and η appropriately (that means
we output 8k cluster centers); normally, we set η = 0.1 and ε ≈ 0.7. We try the instances with
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z = {2%n, 4%n, 6%n, 8%n, 10%n}, and report the average results in Figure 3 (a) and (b);
the approximation ratios are within 1.3-1.4 and the running times are less than 30s. Actually,
the performance is quite stable regarding different values of z in our experiments, and the
standard variances of approximation ratios and running times are less than 0.03 and 0.12,
respectively. We also vary the value of β from 4 to 28 with k = 10. Figure 3 (c) shows that
the approximation ratio slightly decreases as β increases. The running times are all around
14s and do not reveal a clear increasing trend as β increases. We think the reason behind
may be that we just use the simple O(n logn) sorting algorithm, rather than the linear time
selection algorithm [10], for computing Qj in practice (see Step 3(a) of Algorithm 1); thus
the running time is not linearly dependent on |E|. The results for real datasets are shown
in the full version of our paper; the approximation ratios are all below 1.3 and the running
times are less than 35s even for the largest CIFER-10 dataset.

(a) (b) (c)

Figure 3 The experimental results of Algorithm 1 on synthetic datasets.

We also test our Algorithm 2 on synthetic and real datasets. We set ε = 1 so that to avoid
to repeat running Algorithm 2 too many times (see Corollary 13), but we still exactly exclude
z outliers for calculating the approximation ratio as mentioned before. Our results are shown
in Table 1. The synthetic and real datasets are too large for the baseline algorithms Base1
and Base2, e.g., they run too slowly or even out of memory in our workstation if n, z, and D
are large (they have complexities Ω(n2D) or Ω(kznD))3. To make a fair comparison, we run
Base1, Base2, and Algorithm 2 on smaller synthetic datasets with (n = 2000, D = 10) and
(n = 2000, D = 100); we also set z = {2%n, 4%n, 6%n, 8%n, 10%n} as before and report the
average results. When D = 10, Base1 and Algorithm 2 achieve approximation ratios < 1.5
generally (Figure 4 (a)); moreover, Base2 and Algorithm 2 run much faster than Base1
(Figure 4 (b)). However, when D = 100, Base1 and Base2 yield much worse approximation
ratios than Algorithm 2 (Figure 4 (c) and (d)). Our experiment reveals that Algorithm 2
can achieve a more stable performance when dimensionality increases.

Finally, we compare the performances of our coresets method (Algorithm 3) and uniform
random sampling in terms of reducing data sizes. Though real-world image datasets often
are believed to have low intrinsic dimenions [8], it is difficult to compute them (e.g., doubling
dimension) accurately. In practice, we can directly set an appropriate value for l in Step
1 of Algorithm 3 (without knowing the value of doubling dimension ρ). For example, the
size of coreset is 2z +O

(
( 2
µ )ρk

)
= 2z +O(l) according to Theorem 18, so we keep the sizes

of our coresets to be {15%n, 20%n, 25%n} via modifying the value of l in our experiments.
Correspondingly, we also set the sizes of random samples to be {15%n, 20%n, 25%n}. We
run Algorithm 2 on the corresponding random samples and coresets, and report the results
in Table 2. Running Algorithm 2 on the coresets yields approximation ratios close to

3 We are aware of several distributed algorithms for k-center clustering with outliers [12,19,30,32], but
we only consider the setting with single machine in this paper.
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(a) (b) (c) (d)

Figure 4 Comparison of Base1, Base2, and Algorithm 2 on smaller synthetic datasets ((a) and
(b) for D = 10; (c) and (d) for D = 100).

Table 1 The results of Algorithm 2 on synthetic and real datasets.

and 4d). Our experiment reveals that Algorithm 2 can achieve a more stable performance when
dimensionality increases.
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Fig. 4: Comparison of Base1, Base2, and Algorithm 2 on smaller synthetic datasets ((a) and (b)
for D = 10; (c) and (d) for D = 100).

Table 1: The results of Algorithm 2 on synthetic and real datasets
Synthetic datasets Real datasets

k=2 k=4 k=6 k=8 MNIST CALTECH256 CIFAR10

Approx. ratio 1.410 1.403 1.406 1.423 1.277 1.378 1.249

Running time(s) 8.097 63.636 374.057 1939.004 2644.709 2864.231 13295.306

Finally, we compare the performances of our coresets method (Algorithm 3) and uniform
random sampling in terms of reducing data sizes. Though real-world image datasets often are
believed to have low intrinsic dimenions [9], it is di�cult to compute them (e.g., doubling
dimension) accurately. In practice, we can directly set an appropriate value for l in Step 1 of
Algorithm 3 (without knowing the value of doubling dimension ⇢). For example, the size of
coreset is 2z +O

�
( 2

µ)⇢k
�

= 2z +O(l) according to Theorem 7, so we keep the sizes of our coresets
to be {15%n, 20%n, 25%n} via modifying the value of l in our experiments. Correspondingly,
we also set the sizes of random samples to be {15%n, 20%n, 25%n}. We run Algorithm 2 on
the corresponding random samples and coresets, and report the results in Table 2. Running
Algorithm 2 on the coresets yields approximation ratios close to those obtained by directly
running the algorithm on the original datasets; the results also remain stably when the level
reduces from 25% to 15%. More importantly, our coresets significantly reduce the running times
(e.g., it only needs 15%-35% time by using 15%-level coreset). Comparing with the random
samples, our coresets can achieve significantly lower approximation ratios especially for the 15%
level. Note that the coreset based approach takes more time than uniform random sampling,
because we count the time spent for coreset construction.

Table 2: The results of Algorithm 2 on random samples, coresets, and original datasets
random sampling coreset

100%15% 20% 25% 15% 20% 25%

MNIST Appro. Ratio 1.591 1.597 1.566 1.275 1.261 1.261 1.277
running time(s) 624.612 769.517 958.549 936.393 1071.926 1262.996 2644.709

CALTECH256 Appro. Ratio 2.144 1.779 1.448 1.431 1.420 1.401 1.378
running time(s) 407.294 510.423 603.713 413.961 516.862 609.979 2864.231

CIFAR10 Appro. Ratio 1.538 1.383 1.446 1.248 1.256 1.249 1.249
running time(s) 2420.943 2170.416 2938.773 3526.752 3264.858 4033.862 13295.306
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5 Future Work

Following our work, several interesting problems deserve to be studied in future. For example,
can the coreset construction time of Algorithm 3 be improved, like the fast net construction
method proposed by Har-Peled and Mendel [20] in doubling metrics? It is also interesting to
study other problems involving outliers by using greedy strategy.
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Abstract
Bidirectional compression algorithms work by substituting repeated substrings by references that,
unlike in the famous LZ77-scheme, can point to either direction. We present such an algorithm that
is particularly suited for an external memory implementation. We evaluate it experimentally on
large data sets of size up to 128 GiB (using only 16 GiB of RAM) and show that it is significantly
faster than all known LZ77 compressors, while producing a roughly similar number of factors. We
also introduce an external memory decompressor for texts compressed with any uni- or bidirectional
compression scheme.
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1 Introduction

Text compression is a fundamental task when storing massive data sets. Most practical text
compressors such as gzip, bzip2, 7zip, etc., scan a text file with a sliding window, replacing
repetitive occurrences within this window. Although this approach is memory and time
efficient [3, 29], two occurrences of the same substring are neglected if their distance is
longer than the sliding window. More advanced solutions [12, 13, 9, 19, to mention only a
few examples] drop the idea of a sliding window, thereby finding also repetitions that are
far apart in the text. These so-called LZ77-algorithms have a better compression ratio in
practice [8, Sect. 6]. In recent years, these algorithms have also been transformed to the
external memory (EM) model [17, 21, 2].
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41:2 Bidirectional Text Compression in External Memory

In this article, we present a modification of LZ77, called plcpcomp, which is based on the
bidirectional compression scheme lcpcomp of [6], but is better suited for an efficient external
memory implementation due to its memory access patterns. We can compute this scheme by
scanning the text and two auxiliary arrays stored in EM (one of them being the permuted
longest common prefix array, hence the acronym plcp). We underline the performance of our
algorithm with evaluations showing that it is faster than any known LZ77 compressor for
massive non-highly repetitive data sets. We also present the first external decompressor for
files that are compressed with a bidirectional scheme.

1.1 Related Work
Our work is the first to join the fields of bidirectional and external memory compression.

1.1.1 Bidirectional Schemes
First considerations started with [29] who also coined this notation. [11] proved that finding
the optimal bidirectional parsing, i.e., a bidirectional parsing with the lowest number of
factors, is NP-complete. [6] were the first to present a greedy algorithm for producing a
bidirectional parsing called lcpcomp, which performs well in practice, but comes with no
theoretical performance guarantees on its size. [25] combined the techniques for lcpcomp [6]
and the longest-first grammar compression [26] in a compression algorithm running in O(n2)
time, which was subsequently improved to O(n lgn) time by [27]. Recently, [10] showed an
upper bound of z = O(b lg(n/b)) and a lower bound of z = Ω(b lgn) for some specific strings,
where b and z denote the minimal number of factors in an optimal bidirectional parsing and in
an optimal unidirectional parsing, respectively. This implies that bidirectional parsing can be
exponentially better than unidirectional parsing. They also proposed a bidirectional parsing
based on the Burrows-Wheeler transform (BWT). [22] introduced so-called string attractors,
showed that a bidirectional scheme is a string attractor and that every string attractor can
be represented with a bidirectional scheme. Last but not least, the bidirectional scheme
of [28] guarantees to produce at most as many factors as LZ77, but has the disadvantage of
a super-quadratic running time.

1.1.2 EM Compression Algorithms
Yanovsky [30] presented a compressor called ReCoil that is specialized on large DNA datasets.
Ferragina et al. [7] gave a construction algorithm of the Burrows-Wheeler transform in
EM. For LZ77 compression, [17] devised two algorithms called EM-LZscan and EM-LPF.
The former performs well on highly-repetitive data, but gets outperformed easily by EM-
LPF on other kinds of datasets. The LZ77 compressed files can be decompressed with an
algorithm due to [2], which also works in general for all files that have been compressed by a
unidirectional scheme. Finally, [21] presented an EM algorithm for computing the LZ-End
scheme [23], a variant of LZ77.

1.2 Preliminaries
Model of computation. We use the commonly accepted EM model by Aggarwal and
Vitter [1]. It features two memory types, namely fast internal memory (IM) which may hold
up to M data words, and slow EM of unbounded size. The measure of the performance
of an algorithm is the number of input and output operations (I/Os) required, where each
I/O transfers a block of B consecutive words between memory levels. Reading or writing
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T a b a b b a b a b a b b a b b a a b a b a $
SA 22 21 16 19 17 6 1 8 13 3 10 20 15 18 5 7 12 2 9 14 4 11
ISA 7 18 10 21 15 6 16 8 19 11 22 17 9 20 13 3 5 14 4 12 2 1
Φ 6 12 13 14 18 17 5 1 2 3 4 7 8 9 20 21 19 15 16 10 22 11
LCP 0 0 1 1 3 5 4 7 2 4 5 0 2 2 4 5 3 5 6 1 3 4
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0

Figure 1 Suffix array, its inverse, Φ, LCP array, and PLCP array of our running example string T .

n contiguous words from or to disk requires scan(n) = Θ(n/B) I/Os. Sorting n contiguous
words requires sort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For realistic values of n, B, and M ,
we stipulate that scan(n) < sort(n)� n.

Text. Let Σ denote an integer alphabet of size σ = |Σ| = nO(1) for a natural number n.
The alphabet Σ induces the lexicographic order ≺ on the set of strings Σ∗. Let |T | denote
the length of a string T ∈ Σ∗. We write T [j] for the j-th character of T , where 1 ≤ j ≤ n.
Given T ∈ Σ∗ consists of the concatenation T = UVW for U, V,W ∈ Σ∗, we call U , V , and
W a prefix, a substring, and a suffix of T , respectively. Given that the substring V starts at
the i-th and ends at the j-th position of T , we also write V = T [i . . j] and W = T [j+ 1. .]. In
the following, we take an element T ∈ Σ∗ with |T | = n, and call it text. We stipulate that T
ends with a sentinel T [n] = $ 6∈ Σ that is lexicographically smaller than every character of Σ.

Text Data Structures. Let SA denote the suffix array [24] of T . The entry SA[i] is
the starting position of the i-th lexicographically smallest suffix such that T [SA[i]. .] ≺
T [SA[i+ 1]. .] for all integers i with 1 ≤ i ≤ n− 1. Let ISA of T be the inverse of SA, i.e.,
ISA[SA[i]] = i for every i with 1 ≤ i ≤ n. The Burrows-Wheeler transform (BWT) [4] of T is
the string BWT with BWT[i] = T [n] if SA[i] = 1 and BWT[i] = T [SA[i]− 1] otherwise, for
every i with 1 ≤ i ≤ n. The LCP array is an array with the property that LCP[i] is the length
of the longest common prefix (LCP) of T [SA[i]. .] and T [SA[i − 1]. .] for i = 2, . . . , n. For
convenience, we stipulate that LCP[1] := 0. The array Φ is defined as Φ[i] := SA[ISA[i]− 1],
and Φ[i] := n in case that ISA[i] = 1. The PLCP array PLCP stores the entries of LCP in
text order, i.e., PLCP[SA[i]] = LCP[i]. Figure 1 illustrates the introduced data structures.

Idea for Using PLCP for Compression. Given a suffix T [i. .] starting at text position i,
PLCP[i] is the length of the longest common prefix of this suffix and the suffix T [Φ[i]. .],
which is its lexicographical predecessor among all suffixes of T . The longest common prefix of
these two suffixes T [i. .] and T [Φ[i]. .] is T [i . . i+ PLCP[i]− 1]. The longest string among all
these longest common prefixes (for each i with 1 ≤ i ≤ n) is one of the longest re-occurring
substrings in the text. Finding this longest re-occurring substring with PLCP and Φ is the
core idea of our compression algorithm. This algorithm produces a bidirectional scheme,
which is defined as follows.

2 Compression Scheme

A bidirectional scheme [29] is defined by a factorization F1 · · ·Fb = T of a text T . A factor Fx
is either a referencing factor or a literal factor. A referencing factor Fx is associated with a
pair (src, `) such that Fx and T [src . . src + `− 1] are two different but possibly overlapping
occurrences of the substring Fx in T . The pair (src, `) and the text position src are called
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41:4 Bidirectional Text Compression in External Memory

. . . . . .

(R)

(D)

(D)

(D)

(D)

(D)

Figure 2 Visualization of Rules (D) and (R) being applied. Bars represent PLCP values.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a b a b b a b a b a b b a b b a a b a b a $
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 4 5 4 3 3 2 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
PLCP3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3 Step-by-step execution of the plcpcomp compression scheme (see Section 2) on T =
ababbabababbabbaababa$. We overwrite values of PLCP according to Rules (D) and (R). Each row
PLCPi shows PLCP after creating the i-th referencing factor starting at a position whose PLCP
entry is surrounded by a box. Changed entries according to Rules (D) and (R) are underlined.

reference and referred position, respectively. A factorization is cycle-free, i.e., references are
not allowed to have cyclic dependencies. A factorization is called ξ-restricted for an integer
ξ ≥ 2 if each referencing factor Fx is at least ξ characters long (i.e., ` ≥ ξ).

A unidirectional scheme is a special case of a bidirectional scheme, with the restriction
that the referred position of a referencing factor Fx must be smaller than the starting position
of Fx. The most prominent example of a unidirectional scheme is the LZ77 factorization,
whose factorization is usually designed to be 2-restricted.

2.1 Coding
A bidirectional scheme codes the factors by substituting referencing factors with their
associated references while keeping literal factors as strings. By doing so, the coding is a
list whose x-th element is either a string (corresponding to a literal factor) or a reference
representing the x-th factor (1 ≤ x ≤ b), which is referencing.

The plcpcomp scheme and its predecessor, the lcpcomp scheme [6], are bidirectional
schemes. Both schemes are greedy, as they create a referencing factor equal to the longest
re-occurring substring of the text that is not yet part of a factor. They differ in the
selection of such a substring in case that there are multiple candidates with the same
length. The plcpcomp scheme can be computed with a rewritable PLCP array and the
following instructions:
1. Compute the set of candidate positions C := {i | PLCP[i] ≥ PLCP[j] for all text

positions j}.
2. Let dst be the leftmost position of all candidate positions C. Terminate if PLCP[dst] < ξ.
3. Create a referencing factor by replacing T [dst . . dst + PLCP[dst]− 1] with the reference

(Φ[dst], PLCP[dst])
4. Apply the following rules to ensure that we do not create overlapping factors (cf. Figure 2):
(D) Decrease PLCP[j]← min(PLCP[j], dst − j) for every j ∈ [dst − PLCP[dst], dst).
(R) Remove the factored positions by setting PLCP[dst + k] ← 0 for every k ∈ [0,

PLCP[dst]).
5. Recurse with the modified PLCP.
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a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(12,5)

(1,7)

(20,2)

(19,3)

Coding: a(12,5)b(1,7)(20,2)(19,3)ba$

dst src = Φ[dst] length

8 1 7
2 12 5
17 19 3
15 20 2

Figure 4 Coding of plcpcomp with ξ = 2. The factorization described in Figure 3 computes
four referencing factors, listed in the table on the right. These factors are coded by their references.
The factorization with PLCP in Figure 3 already determines the starting position and the lengths
of all referencing factors (columns “dst” and “length” in the table). The referred positions are
obtained using Φ (column “src”). The figure on the left illustrates factors as boxed substrings
and the references as arrows from the starting positions of referencing factors to their respective
referred positions.

An application of the above instructions on our running example is given in Figure 3. The
coding is visualized in Figure 4. There and in the following figures, we fix ξ := 2.

2.2 Comparison to lcpcomp
The difference to lcpcomp [6] is that we fix dst to be the leftmost of all candidate positions
in C. [6] presented an algorithm computing the lcpcomp scheme in O(n lgn) time with
a heap storing the candidate positions ranked by their PLCP values. We can adapt this
algorithm to compute the plcpcomp scheme by altering the order of the heap to rank the
candidate positions first by their PLCP values (maximal PLCP values first) and second (in
case of equal PLCP values) by their values themselves (minimal text positions first).

Since lcpcomp is cycle-free [6, Lemma 4] regardless of the selection of dst ∈ C, we conclude
that plcpcomp is also cycle-free, i.e., the substitution of substrings by references is reversible.

3 Computing the Factorization without Random Access

In this section, we present an algorithm for computing the plcpcomp scheme, which linearly
scans PLCP without changing its contents. Instead of maintaining a heap storing all text
positions ranked by their PLCP values, we compute the factorization by scanning the
text sequentially from left to right. Although the algorithm will produce the plcpcomp
factorization, it does not compute it in the order explained previously (starting with the
longest factor). Instead, it first determines a subset of those substrings that define a referencing
factor according to the plcpcomp scheme. The starting positions of these substrings have a
PLCP value that is relatively large compared to their neighboring positions. We call those
starting positions peaks.

Formally, we call a text position dst a peak if PLCP[dst] ≥ ξ and one of the following
conditions holds:
1. dst = 1,
2. PLCP[dst − 1] < PLCP[dst],1 or
3. there is a referencing factor ending at dst − 1.

A peak dst is called interesting if there is no text position j with dst ∈ (j, j+PLCP[j]) and
PLCP[j] ≥ PLCP[dst]. An interesting peak dst is called maximal if there is no interesting
peak j with j ∈ (dst, dst + PLCP[dst]).

1 A subset of the so-called irreducible PLCP entries [20, Lemma 4] have this property.

ESA 2019



41:6 Bidirectional Text Compression in External Memory

Algorithm 1 Computation of plcpcomp factors.
1 L← ∅ // Step 1a
2 for dst = 1 to n do // Step 1b
3 if dst is a maximal peak then // Step 2
4 create a referencing factor replacing T [dst . . dst + PLCP[dst]− 1] // Step 3
5 apply Rule (D) to the peaks in L
6 while L contains maximal peaks do
7 j ← rightmost maximal peak in L
8 create referencing factor replacing T [j . . j + PLCP[j]− 1]
9 apply Rules (D) and (R) to the peaks in L

10 remove those elements of L that are no longer interesting peaks
11 dst ← dst + PLCP[dst]
12 if dst is an interesting peak then
13 L← L ∪ {dst}

Given an interesting peak dst, there is no text position j with PLCP[j] ≥ PLCP[dst] that
becomes the starting position of a referencing factor containing T [dst] (such that PLCP[dst]
cannot be removed according to Rule (R)). Given a maximal peak dst, there is additionally
no text position j with PLCP[j] > PLCP[dst] for which we apply Rule (D) on PLCP[dst]
after factorizing T [j . . j + PLCP[j] − 1]. Informally, we can determine whether a peak is
interesting by looking at the PLCP values before this peak, whereas we need to also look
ahead for determining whether a peak is maximal. Given that there is at least one PLCP
entry with a value of at least ξ, we can find a maximal peak, since the leftmost position
min {i ∈ [1 . . n] | PLCP[i] ≥ PLCP[j] for all j with 1 ≤ j ≤ n} among all positions with the
highest PLCP value is a maximal peak. The following lemma states that we can always
factorize the leftmost maximal peak, regardless of whether the text has even higher peaks.

I Lemma 1. If the text position dst is a maximal peak, then T [dst . . dst + PLCP[dst]− 1] is
a referencing factor.

Our preliminary algorithm consists of the following steps:
1. Scan PLCP for the leftmost maximal peak dst.
2. Terminate if no such peak exists.
3. Create the referencing factor T [dst . . dst + PLCP[dst]− 1].
4. Apply Rules (R) and (D).
5. Interpret T [1 . .dst−1] and T [dst +PLCP[dst] . .n] as two independent strings and recurse

on each of them individually.

This algorithm produces the plcpcomp scheme, because
T [dst . . dst + PLCP[dst]− 1] is a referencing factor for each selected leftmost maximal
peak dst according to Lemma 1, and
the part T [1 . . dst − 1] can be factorized independently from how T [dst + PLCP[dst]. .] is
factorized, and vice versa. That is because, having already T [dst . . dst + PLCP[dst]− 1]
factorized, we can no longer create a factor that covers a text position in the range [dst . .
dst + PLCP[dst]− 1].

Hence, we can factorize T [1 . . dst − 1] without considering the factorization of the rest of the
text to produce the correct plcpcomp scheme. Figure 5 illustrates the computation of the
plcpcomp factorization with this algorithm.

However, as the algorithm overwrites entries of PLCP, it is not yet satisfying. A rewritable
PLCP array would have to be kept in RAM, costing us n lgn bits of space if we require
constant time read and write access. Instead of keeping PLCP[1 . . dst − 1] in RAM, we now
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T a b a b b a b a b a b b a b b a a b a b a $
PLCP 4 5 4 3 4 5 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 1 0 0 0 0 0 5 7 6 5 4 3 2 1 2 1 3 2 1 0 0 0
PLCP1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 3 2 1 0 0 0
PLCP2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 2 1 0 0 0
PLCP3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5 Step-by-step execution of our plcpcomp algorithm on T = ababbabababbabbaababa$.
While the instructions of the scheme (cf. Section 2) always replace the factor starting at a position
with the maximal PLCP value (cf. Figure 3), our algorithm described in Section 3 creates a factor
at the leftmost maximal peak. Our algorithm computes the same factorization as described in the
plcpcomp scheme, but in different order.

show that it suffices to manage only the PLCP values of the interesting peaks. For that, we
enhance the search of the leftmost maximal peak by replacing the first step of the algorithm
by the following instructions:
1a. Create an empty list of peaks L.
1b. Scan T from left to right until a maximal peak dst is found. While doing so, insert all

visited interesting peaks into L.
Another alternation is that we apply Step 4 only to the peaks stored in L. There, we scan
L from right to left while applying Rule (D) and removing all elements that are no longer
interesting peaks. The modified algorithm is sketched as pseudo code in Algo. 1.

I Example 2. Figure 6 illustrates Algo. 1 on the prefix T [1 . . 14] = ababbabababbab of our
running example in three steps. The peaks at positions 1 and 2 are interesting. Since the
peak at position 2 is the highest interesting peak, it is the maximal peak, which is detected
after scanning PLCP[1 . . 6] (Figure 6a). In the second step (Figure 6b), the referencing
factor F1 is introduced, which starts at this maximal peak. As a consequence, Rule (D) is
applied to the only peak stored in L, the one at position 1. However, because the PLCP
value 1 is below the threshold ξ = 2, the peak at position 1 is removed from L. Since L is
then empty, we proceed with the next scan for a maximal peak starting from position 7. By
definition, the peak at position 7 becomes interesting. The next maximal peak is detected at
position 8 (Figure 6c). The factor F2 (Figure 6d) is introduced, and Rule (D) is applied to
the peak at position 7. Its PLCP value drops below our threshold and thus it is removed
from L. Finally, the prefix T [1 . . 14] has been processed.

In Algo. 1, we omit all other peaks that are not stored in L when applying Rules (D)
and (R)). Thus, it suffices to maintain the PLCP value of each peak in L in an extra list
instead of maintaining a complete rewritable PLCP array. In the following, we prove why
this omission still produces the correct factorization (Lemma 5). For that, we show that
we can produce the plcpcomp factors contained in T [1 . . dst + PLCP[dst] − 1] only with
the PLCP values of the peaks stored in L (first recursive call). We start with the following
property of L:

I Lemma 3. The positions stored in L are in strictly ascending order with respect to their
LCP values.

Next, we examine the result of creating the referencing factor T [dst . . dst + PLCP[dst]− 1]
starting at the maximal peak dst. After creating this factor, the PLCP values of peaks near
dst can be decreased. However, this causes at most one new peak as can be seen by the
following lemma.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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(a) A maximal peak has been detected at i = 2,
an interesting peak is at i = 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

1

(D)
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5

7

6

5

4

3
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1

(b) The referencing factor F1 is introduced and
Rule (D) is applied to the peak at i = 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT
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F1

5

7

6

5
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3
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1

(c) A maximal peak has been detected at i = 8,
an interesting peak is at i = 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b b a b a b a b b a bT

i

F1

1

(D)

F2

(d) The referencing factor F2 is introduced and
Rule (D) is applied to the peak at i = 7.

Figure 6 Execution of our algorithm of Section 3 computing the plcpcomp compression scheme
on T = ababbabababbabbaababa$. Due to limited space, we only illustrate the processing of the
prefix T [1 . . 14] in three steps (explained in Example 2). The vertical bars represent the PLCP
array, with the corresponding values written above, in text order from left (i = 1) to right (i = 14).
The shaded vertical bars represent the (current) PLCP value of an interesting peak. Horizontal
bars represent (referencing) factors. In (b), the factor F1, starting at position 2, is displayed as the
maximal peak being tipped over to the right.

I Lemma 4. Applying Rules (D) and (R) after creating a referencing factor Fx does not
cause new peaks, with the only possible exception of the position succeeding the end of Fx.

Since Rule (D) decreases at most the values of PLCP[dst − PLCP[dst] . . dst − 1], the
highest peak dst′ in PLCP[1 . . dst − 1] is an interesting peak that is either

in the interval [dst − PLCP[dst] . . dst − 1], or,
in the case that all interesting peaks in [dst−PLCP[dst] . .dst−1] are no longer interesting
after decreasing their PLCP values, the rightmost peak preceding dst−PLCP[dst] (whose
PLCP value is equal to the PLCP value of the last peak removed from L in Step 4).

We can locate dst′ while applying Rule (D) as a result of creating the factor starting at dst.
After locating dst′, we apply the following steps recursively:
1. Substitute T [dst′ . . PLCP[dst′] − 1] with a reference, because it is the highest peak in

T [1 . . dst − 1].
2. If dst′′ := dst′ + PLCP[dst′] with PLCP[dst′′] ≥ ξ was not a peak, then dst′′ becomes an

interesting peak. In this case, substitute dst′ with dst′′ in L to preserve the order in L.
Otherwise, remove dst′ from L.

3. Split L into two sub-lists:
one containing text positions of the range [1 . . dst′ − 1], and
the other containing text positions of the range [dst′ + PLCP[dst′] . . dst − 1].

4. Recurse on each of the two sub-lists, i.e., find the highest peak in each sub-list and
substitute it.

This recursion is more efficient than the while-loop described in Lines 6 to 10 of Algo. 1.

I Lemma 5. The algorithm emits a valid plcpcomp factorization of T [1. .dst+PLCP[dst]−1].
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a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a b a b b a b a b a b b a b b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

20155122 20
1512

52

Figure 7 Pointer jumping applied to references. Suppose that our example text is represented by
the coding described in Figure 4. To extract the character T [2], we need to resolve the reference (12, 5),
which has a depth of three (bottom left figure). In case that we split all references into references
of length one, we can reduce the depth of the reference associated with T [2] by pointer jumping
(right figure). The order in which this technique is applied to the references has an impact on the
resulting references. Here, we assumed that we can apply this technique in parallel.

After factorizing T [1 . . dst + PLCP[dst]− 1], we proceed with Algo. 1 on the remaining text
T [dst + PLCP[dst]. .] to compute the factorization of the entire text. It is left to explain how
this algorithm can be adapted to the EM model efficiently.

3.1 Factorization in External Memory
Having the text, PLCP, and Φ stored as files in EM, we can compute the plcpcomp scheme
in three sequential scans over n tuples and one sort operation:
1. Proceed with Algo. 1 to find pairs (dst, ` = PLCP[dst]) representing referencing factors

T [dst . . dst + `] by scanning PLCP.
2. Sort these pairs in ascending order of their dst components (i.e., in text order).
3. Simultaneously scan this sorted list of pairs and Φ to compute triplets of the form

(dst, src = Φ[dst], `), where the second component is the referred position of the referencing
factor T [dst . . dst + `− 1].

4. Finally, scan simultaneously the list of references and T to replace each substring T [dst . .
dst + `− 1] by the reference (src, `) on reading the triplet (dst, src, `).

The pairs emitted during the PLCP scan (Step 1) can be stored and then sorted in EM.
The references computed by the second scan can be written to disk for the final scan, which
computes the plcpcomp scheme of T sequentially. By doing so, no random access is required
on the list of references.

During the PLCP scan, the list L can also be maintained on disk efficiently: until a
maximal peak is found, we only append peaks to L. For our experiments, we store L in
RAM, as the number of elements was much lower than the upper bound O(min(

√
n lgn, r))

where r is the number of BWT runs (see the full version of this paper).
Once a maximal peak dst has been found and a reference (dst, `) is emitted, we scan over

L sequentially (a) to apply Rules (D) and (R) and (b) to find a remaining maximal peak, if
any, in the process. We then repeat this process until there are no more maximal peaks in
L. In practice, we scan the last elements of L linearly from right to left, since only the last
interesting peaks need to be updated.

4 Decompression

The task of decompressing a bidirectional scheme is to resolve each reference (srci, `i) of a
referencing factor T [dsti . .dsti+ `i−1], i.e., to copy the characters from T [srci . . srci+ `i−1]
to T [dsti . . dsti + `i − 1].
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Figure 8 The dependency graph (left) and its EM representation (right) of the factorization given
in Figure 4. The multi-dependent factors of length seven and five have a cyclic dependency. The EM
representation of the graph described in Section 4 consists of two copies of the list of all referencing
factors, sorted by their source position (top) as well as sorted by their destination (bottom).

A unidirectional scheme can be decompressed by scanning linearly over the compressed
input from left to right. In that scenario, references can be resolved easily because they
always refer to already decompressed parts of the text [2]. This property does not hold for
a bidirectional scheme in general, as a reference can refer to a part of the text that again
corresponds to a reference.

I Definition 6 (Dependency Graph). Given a bidirectional factorization F1 · · ·Fb = T , we
model its references as a directed graph G with V = {v1, . . . , vb} such that there is a 1-to-1
correlation between nodes vi and factors Fi. We add a directed edge (vi, vj) from vi to vj
with i 6= j iff Fi refers to at least one character in the factor Fj.We put these edges into a
set E to form a graph G := (V,E) that has only literal factors as sinks. A node vi can have
more than one out-going edge if the referred substring is covered by multiple factors; in this
case, we say vi is multi-dependent and call the set of its out-going edges a multi-dependency.
The dependency graph of our example from Figure 4 can be seen in Figure 8.

Bidirectional decompressors face two challenges arising from this graph structure:
The existence of multi-dependent nodes disallows efficient tree-based approaches.
Long dependency chains may affect the time and space complexity of decompression.

Our compression scheme splits multi-dependencies into single dependencies and deploys
the pointer jumping technique [14, Sect. 2.2] for dependency resolution. After the resolution
we obtain a dependency graph in which each reference is single-dependent on a literal factor.
Then the text can be trivially recovered with sort(n) I/Os. The details are as follows.

Let G be the dependency graph of the factorization T = F1 · · ·Fb. For now we assume
that all factors are single-dependent, i.e., each node v representing a referencing factor has
exactly one outgoing edge (v, p(v)). For all other nodes (representing literal factors) we define
p(v) := v. Clearly, G forms a forest in which each tree is rooted in a literal factor. When
applying the pointer jumping technique, we take each referencing factor and attach it to the
parent of its parent (cf. Figure 7). Given that G′ is the resulting graph with p′(v) = p(p(v)),
we thereby halve the depth, i.e., d(G′) = dd(G)/2e if d(G) ≥ 2, where d(G) denotes the
maximum depth of a tree in G. Hence, after Θ(lg d(G)) iterations all indirect references are
resolved and have been replaced by direct references to literal factors.

If we allow multi-dependencies, pointer jumping is only possible for single-dependent
nodes. To apply pointer jumping, we split each multi-dependent reference into the smallest
possible set of single-dependent references. A split is introduced ad-hoc each time it is
required for a pointer jump. The details of the splitting are discussed in the full version
of this paper.

We first construct a representation of the dependency graph consisting of two EM vectors
called requests and factors. Intuitively, each request (child) sends a request message to
the first factor it refers to (parent). Addressing is implemented indirectly in terms of
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Figure 9 Split-Strategy of EM-PJ applied to the first (left figure) and second (right figure)
referencing factor of the factorization given in Figure 4. EM-PJ splits up references in a minimal
number of sub-references on which the pointer jumping technique can be applied. The left figure
shows such an application to the reference of the leftmost referencing factor that is split into two
sub-references. The first and second sub-reference receive new referred positions based on the
referred positions of the second and third referencing factors, respectively. In the right figure, we
split up the next reference (1, 7) in four sub-references, where the first and last sub-reference refer to
literal factors.

text positions rather than factor indices. For each reference (src, `) corresponding to a
factor Fi = T [dst . . dst + `− 1], we push 〈dst, `, src〉 into requests and 〈src, `, dst〉 into factors.
We omit literal factors, since the lack of a reference in factors for a certain text position
indicates the presence of a literal factor.

Subsequently, we sort2 both vectors independently, bringing the messages in requests and
the recipients in factors into the same order. On the right side of Figure 8 we see a visualization
of the lists (after the initial sorting) for our running example. We augment requests with
an initially empty EM priority queue PQSplit. In the following, after processing a factor Fi,
we write Fi either to a vector result if it refers to literal factors, or to a vector nextRequests
otherwise: Let 〈dst, `, src〉 be the smallest unprocessed request of a factor Fi received via
requests or PQSplit. If it originates from requests, we advance requests’s read pointer for the
next iteration, otherwise we dequeue the top element from PQSplit. We process the read
request 〈dst, `, src〉 depending on the following cases (cf. Figure 9):

Jump The request is completely covered by parent Fj in factors. In this case, we substitute
Fi’s reference according to Fj and push it into nextRequests to be processed in the next
iteration.
Finalize No parent (partially) overlapping with Fi is available in factors. Then we know
that Fi points to a substring contained in literal factors. We finalize Fi by pushing it
into result.
Split A prefix of Fi is contained in the parent Fj or points to literals. Let `′ < ` be the
length of the longest such prefix. Then split Fi into a prefix FP

i of length `′ and a suffix
F S
i of length `− `′. By construction, either case “Jump” or case “Finalize” is applicable

to FP
i , and we execute it directly. Then we push 〈src+`′, `−`′, dst + `′〉 representing F S

i

into PQSplit to process it later within the same iteration. Observe that Fi can be split
multiple times during the same iteration.

If nextRequests is not empty, we sort it and recurse by processing nextRequests and the
(unaltered) factors simultaneously as before. With these steps, we obtain the final result:

I Theorem 7. Let F1 · · ·Fb = T be a ξ-restricted bidirectional scheme, and d(G) < b be the
depth of T ’s dependency graph G. Then EM-PJ requires O(lg (d(G)) sort(n/ξ)) I/Os.

2 To sort tuples we always use lexicographic order, i.e., we order tuples by their first unequal elements.
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Table 1 Empirical entropies of our data sets. The alphabet sizes of all instances are 242 and 4
for commoncrawl and dna, respectively.

commoncrawl
prefix length H0 H1 H2 H3 H4 H5 H6 H7

16 GiB 5.99165 4.26109 3.48920 2.94113 2.42738 2.01886 1.64558 1.35130
32 GiB 5.99145 4.26160 3.49006 2.94411 2.43471 2.03284 1.66737 1.37798
64 GiB 5.99119 4.26209 3.49100 2.94669 2.44088 2.04409 1.68482 1.40001

128 GiB 5.99177 4.26148 3.49055 2.94684 2.44231 2.04753 1.69087 1.40839

dna
prefix length H0 H1 H2 H3 H4 H5 H6 H7

16 GiB 1.9715 1.94676 1.93166 1.92232 1.91167 1.89491 1.87101 1.84585
32 GiB 1.97128 1.94561 1.93201 1.92421 1.91507 1.90190 1.88270 1.86160
64 GiB 1.97067 1.94506 1.93145 1.92424 1.91588 1.90445 1.88763 1.86889

128 GiB 1.97528 1.95010 1.93873 1.93273 1.92486 1.91341 1.89601 1.87634

5 Practical Evaluation

Experimental Setup. Our experiments are conducted on a machine with 16 GiB of RAM3,
eight Hitachi HUA72302 hard drives with 1.8 TiB, two Samsung SSD 850 SSDs with 465.8
GiB, and an Intel Xeon CPU i7-6800K. The operating system is a 64-bit version of Ubuntu
Linux 16.04. We implemented plcpcomp4 in the version 1.4.99 (development snapshot) of
the STXXL library [5]. We compiled the source code with the GNU g++ 7.4 compiler.

Text Collections. We conduct our experiments on two texts of different alphabet sizes and
repetitiveness (cf. Table 1):

commoncrawl: A crawl of web pages with an alphabet size of 242 collected by the
commoncrawl organization.
dna: DNA sequences with an alphabet size of 4 extracted from FASTA files.

Algorithms. We compare plcpcomp against EM-LPF [17] by Kärkkäinen et al., which is an
EM algorithm computing the LZ77 factorization by constructing the LPF array. In addition
to the input text, it requires SA and LCP.

In early experiments with EM-LZscan [17], it became clear that its throughput on the text
collection we use is nowhere near competitiveness with EM-LPF and plcpcomp. Therefore,
it is not considered in our experiments. Semi-external LZ77 algorithms like SE-KKP [17]
storing the text or parts of the text in RAM have not been considered.

Data Structures. Currently, the fastest way to compute the data structures PLCP and Φ in
EM is to compute BWT from SA with the parallel EM algorithm pEM-BWT by Kärkkäinen
and Kempa5, and use it for computing PLCP with the parallel EM construction algorithm
of [16]. We modified the source code of the latter to also produce Φ as a side product.

3 In order to avoid swapping, each experiment was conducted with a limit of 14 GiB of RAM.
4 Available at https://github.com/tudocomp/tudocomp.
5 https://www.cs.helsinki.fi/u/dkempa/pem_bwt.html

https://github.com/tudocomp/tudocomp
https://www.cs.helsinki.fi/u/dkempa/pem_bwt.html
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Figure 10 Performance with different prefix lengths. EM-LPF plcpcomp

For EM-LPF, we additionally need to convert PLCP to LCP by a scan over SA and a
subsequent sort step. This is currently the fastest approach for obtaining LCP, as other
approaches building LCP directly from SA like [15] are slower.

Consequently, both contestants need (directly or indirectly) SA. However, it takes a
considerable amount of time to construct it with EM algorithms on a single machine (e.g.,
with pSAScan [18]). To put the focus on the comparison between EM-LPF and plcpcomp,
we do not take into account the construction of SA and LCP when measuring running times.

Measurements and Results. Our experiments measure the throughput, the maximum hard
disk usage, and the number of referencing factors, for EM-LPF and plcpcomp for 2kGiB
prefixes (4 ≤ k ≤ 7) of our data sets dna and commoncrawl. We collected the median
of three iterations and present the results in Figure 10. The plots show that plcpcomp is
magnitudes faster on both data sets (cf. plots “Throughput”). The reason for this could
be that the disk accesses of EM-LPF scale much worse than those of plcpcomp (cf. plots
“Maximum Disk Use”). We point out that plcpcomp is already faster than the step for
computing LCP from PLCP and SA. Regarding the number of factors, plcpcomp is on
par with LZ77 (rightmost plots), producing, relatively speaking, slightly more factors. Our
decompression requires multiple sorts of factor sets depending on the maximum depth of (a
tree in) the dependency graph induced by the factorization. Therefore, it is not surprising
that it is a lot slower than the comparatively simple compression.

Furthermore, and for the same reason, our decompression expectedly runs orders of
magnitudes slower than the external memory Lempel-Ziv decoder of [2], which is why we do
not do a more detailed performance comparison here.

Decompression. We ran our decompressor implementation on the plcpcomp codings of
our datasets. Plots of the scaling experiments are shown in Figure 11. As the decom-
pression algorithm is superlinear, the throughput is decreasing with increasing text size.
However, comparing the results for the 32GiB and 64GiB commoncrawl decompression, the
throughput only decreases by 1%. The throughput between the 32GiB and 64 GiB DNA
decompression differs by only 5%. The maximum external memory allocation rises linearly
with increasing text size.
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Figure 11 Performance of the decompression with different prefix lengths.
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In Figure 12, we measured the impact of the choice of ξ on the compressed output and
the decompression algorithm of our datasets. For larger values of ξ, plcpcomp creates less
referencing factors, but the total number of factors increases (as we obtain much more literal
factors). Having less referencing factors, the decompression needs less disk space.

Our decompression requires multiple sorting steps on the factor lists such as requests
(cf. Section 4). The number of these steps depend on the maximum depth of (a tree in)
the dependency graph induced by the factorization. Therefore, it is not surprising that the
decompressor is magnitudes slower than the comparatively simple compression algorithm.

Furthermore, and for the same reason, our decompression (expectedly) runs slower than
the external memory Lempel-Ziv decoder of [2], which is why we skip a more detailed
performance comparison here.

6 Conclusions

We presented plcpcomp, the first external memory bidirectional compression algorithm, and
showed its practicality by performing experiments on very large data sets, using only very
limited RAM. We also presented a decompression algorithm in external memory, which can
decode the output of any bidirectional compression scheme (not only plcpcomp). Possible
future steps include relating the number of factors of plcpcomp to the minimal number of
factors in a bi- or unidirectional compression scheme, evaluating the whole compression chain
by also experimenting on codings of the output of plcpcomp (similar to [6]), and improving
the performance of the decompression algorithm.
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Abstract
In the Bisection problem, we are given as input an edge-weighted graph G. The task is to find a
partition of V (G) into two parts A and B such that ||A| − |B|| ≤ 1 and the sum of the weights of
the edges with one endpoint in A and the other in B is minimized. We show that the complexity of
the Bisection problem on trees, and more generally on graphs of bounded treewidth, is intimately
linked to the (min,+)-Convolution problem. Here the input consists of two sequences (a[i])n−1

i=0
and (b[i])n−1

i=0 , the task is to compute the sequence (c[i])n−1
i=0 , where c[k] = mini=0,...,k(a[i] + b[k − i]).

In particular, we prove that if (min,+)-Convolution can be solved in O(τ(n)) time, then
Bisection of graphs of treewidth t can be solved in time O(8ttO(1) logn · τ(n)), assuming a tree
decomposition of width t is provided as input. Plugging in the naive O(n2) time algorithm for
(min,+)-Convolution yields a O(8ttO(1)n2 logn) time algorithm for Bisection. This improves
over the (dependence on n of the) O(2tn3) time algorithm of Jansen et al. [SICOMP 2005] at the cost
of a worse dependence on t. “Conversely”, we show that if Bisection can be solved in time O(β(n))
on edge weighted trees, then (min,+)-Convolution can be solved in O(β(n)) time as well. Thus,
obtaining a sub-quadratic algorithm for Bisection on trees is extremely challenging, and could even
be impossible. On the other hand, for unweighted graphs of treewidth t, by making use of a recent
algorithm for Bounded Difference (min,+)-Convolution of Chan and Lewenstein [STOC 2015],
we obtain a sub-quadratic algorithm for Bisection with running time O(8ttO(1)n1.864 logn).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases bisection, convolution, treewidth, fine-grained analysis, hardness in P

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.42

1 Introduction

A bisection of a graph G is a partition of V (G) into two parts A and B such that ||A|−|B|| ≤ 1.
The weight of a bisection (A,B) of an edge-weighted graph G is the sum of the weights of
all edges with one endpoint in A and the other in B. In the Bisection problem the task
is to find a minimum weight bisection in an edge-weighted graph G given as input. The
problem can be seen as a version of Minimum Cut with a balance constraint on the sizes
of two sides of the cut. While Minimum Cut is solvable in polynomial time, Bisection
is one of the classic examples of NP-complete problems [15]. Bisection has been studied
extensively from the perspective of approximation algorithms [14, 13, 18, 21], parameterized
algorithms [7, 11, 22] heuristics [6, 8] and average case complexity [5].
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In this paper we consider Bisection when the input graph is required to be a tree,
or more generally a graph with treewidth at most t. For trees, an O(n3) time algorithm
was given by MacGregor [20] already in 1978, this was improved to a parallel algorithm
running in time O(log2 n log logn) on O(n2) processors by Goldberg and Miller [16]. This
corresponds to a sequential algorithm running in time O(n2 log2 n log logn). For graphs
of bounded treewidth Jansen et al. [17] gave an algorithm that solves Bisection in time
O(2tn3) if a tree decomposition of width t is given as input.

The majority of natural graph problems are solvable in linear time on trees and bounded
treewidth graphs (see e.g. Courcelle’s theorem [10]). Thus, it is quite natural to ask whether
the dependence on n in the algorithm of Jansen et al. [17] could be improved to linear. Our
first result goes “half the way” from Jansen et al.’s cubic algorithm to a linear time one, and
matches (in fact slightly improves) the fastest known algorithm for Bisection on trees1.

I Theorem 1. There is an algorithm that, given an edge-weighted graph G on n vertices
together with a tree decomposition of G of width at most t, computes a minimum weight
bisection of G in time O(8t · t5 · n2 · logn).

Our algorithm crucially uses the (min,+)-convolution operation. The (min,+)-convolution
of two number sequences (a[i])n−1

i=0 and (b[i])n−1
i=0 is a sequence (c[i])n−1

i=0 , where c[k] =
mini=0,...,k(a[i] + b[k − i]). In the (min,+)-Convolution problem the input consists of the
two sequences (a[i])n−1

i=0 and (b[i])n−1
i=0 , the task is to compute their convolution (c[i])n−1

i=0 . A
direct application of the definition of (min,+)-convolution yields a O(n2) time algorithm
to compute it. The bulk of the work of our algorithm consists of making a series of
(min,+)-convolution steps. In fact, the running time of our algorithm can be stated as
O(8t · t · logn · τ(t2n)), where τ(n) is the running time of an algorithm computing the
(min,+)-convolution of two sequences of length n. Therefore, there are two natural avenues
for attempting to improve the algorithm of Theorem 1 to sub-quadratic. The first approach
is to design a sub-quadratic algorithm for (min,+)-convolution, the second is to design an
entirely different algorithm avoiding convolution altogether.

It turns out that the first approach is quite challenging, perhaps even impossible. Indeed,
in the spirit of fine-grained complexity [23] analysis, Cygan et al. [12] identified a number
of problems that admit algorithms with running time O(n2−ε) if and only if (min,+)-
Convolution does. With this background they conjecture that (min,+)-Convolution
does not admit a O(n2−ε) time algorithm.

Thus, if we want to improve the algorithm of Theorem 1 to a sub-quadratic algorithm
without disproving the conjecture of Cygan et al. [12], we need to avoid (min,+)-convolution
altogether. However, it turns out that (min,+)-convolution is unavoidable! In particular,
we prove that a sub-quadratic algorithm for Bisection on trees implies one for (min,+)-
Convolution as well.

I Theorem 2. If there exists an ε > 0 such that Bisection on weighted trees can be solved
in time O(n2−ε), then there exists δ > 0 such that (min,+)-Convolution can be solved in
O(n2−δ)-time.

Theorem 2 together with Theorem 1 (or rather its re-statement in terms of convolutions),
puts Bisection on weighted trees in Cygan et al. [12]’s class of problems equivalent to
(min,+)-Convolution.

1 Note that the Goldberg and Miller’s algorithm [16] is parallel, while ours is sequential.
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In light of Theorem 2, the Bisection problem on unweighted graphs2 becomes a natural
target. Our final contribution is a sub-quadratic algorithm for Bisection on unweighted
graphs of bounded treewidth. Our algorithm also works for the case when all weights are
bounded by a constant W .

I Theorem 3. There is an algorithm that, given an edge-weighted graph G, where all edge
weights are integers between 1 and W , together with a tree decomposition of G of width t,
computes a minimum weight bisection of G in time O(8t · (tW )O(1) · n1.864 logn).

The key observation behind the algorithm of Theorem 3 is that the (min,+)-convolution
steps in the algorithm of Theorem 1 are applied to sequences (a[i])n−1

i=0 and (b[i])n−1
i=0 where

a[i] and b[i] are both essentially equal to the minimum possible sum of weights of the edges
between the two sides A and B of a partition (A,B) of V (G) with |A| = i. Bounded treewidth
graphs have many vertices of small degree, and moving one vertex of small degree from A

to B or vice versa changes the number of edges between A and B by at most its degree.
Thus, a[i] and a[i+ 1] cannot be too different. This allows us to use the faster algorithm for
(min,+)-Convolution of Chan and Lewenstein [9] for “bounded difference” sequences.

Organization of the paper. We start by setting up the needed notation in Section 2.
Section 3 is devoted to proving our algorithmic results - namely Theorems 1 and 3. Theorem 2
is proved in Section 4.

2 Preliminaries

2.1 The (min, +)-Convolution problem
For integer n, we let [n] := {0, 1, . . . , n}. Given a vector or a sequence A ∈ Zn and an integer
i ∈ [n− 1], we denote by Ai the i-th coordinate of A.

I Definition 4 ((min,+)-Convolution problem). Given two sequences (a[i])n−1
i=0 and

(b[i])n−1
i=0 , compute a third sequence (c[i])n−1

i=0 , where c[k] = mini=0,...,k(a[i] + b[k − i]). Equi-
valently, we have c[k] = mini+j=k(a[i] + b[j]).

In the (min,+)-Convolution problem, we sometimes require the target sequence to
be computed all the way up to 2n − 2, i.e., (c[i])2n−2

i=0 . In both cases, the problem is
trivially solvabled in O(n2) time. Recent breakthroughs have shown that computing the
(min,+)-Convolution for monotone non-decreasing sequences with integer values bounded
by O(n) can be achieved in O(n1.864) deterministic time [9]. Moreover, we can relax
these requirements [4] and simply require that the sequences have bounded differences, i.e.,
|a[i]− a[i+ 1]|, |b[i]− b[i+ 1]| ∈ O(1).

2.2 Graphs and the Bisection problem
We assume that each graph G is finite, simple, and undirected. We let V (G) and E(G) denote
the vertex set and edge set of G, respectively. The open neighborhood of a vertex v is denoted
by NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood by NG[v] = NG(v) ∪ {v}.
For a set of vertices S ⊆ V (G), we define NG(S) = {v 6∈ S | {u, v} ∈ E(G), u ∈ S} and
NG[S] = NG(S) ∪ S. The subgraph of G induced by S is denoted by G[S], where G[S] has
vertex set S and edge set {{u, v} ∈ E(G) | u, v ∈ S}. We let G− S = G[V (G) \ S].

2 where all weights are 1
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Given a graph G and two disjoint sets A,B ⊆ V (G), we denote by E(A,B) the subset of
edges of G with one endpoint in A and the other endpoint in B. Given an edge-weighted
graph G and a weight function w : E(G) → N over the edges of G, a bisection of G is a
partition of V (G) into two disjoint sets A,B ⊆ V (G) such that ||A|− |B|| ≤ 1 and the weight
of bisection (A,B) is

∑
e∈E(A,B) w(e). Formally, the Bisection problem is defined as follows:

I Definition 5 (Bisection problem). Given an edge-weighted graph G, find a bisection
(A,B) of G of minimum weight.

2.3 Treewidth and tree decompositions
I Definition 6. A tree decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )),
where {Xi | i ∈ I} is a collection of subsets of V(G), T = (I, F ) is a rooted tree such that
the following conditions hold:⋃

i∈I Xi = V (G);
For all edges {u, v} ∈ E(G), there exists i ∈ I with u, v ∈ Xi;
For every vertex v ∈ V (G), the subgraph of T induced by {i ∈ I | v ∈ Xi} is connected.

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I(|Xi| − 1). The
treewidth of a graph G, tw(G), is the minimum width over all possible tree decompositions of
the graph. We call the vertices of the tree T nodes and the sets Xi bags. A graph of treewidth
O(1) is called a bounded treewidth graph.

Given a tree decomposition ({Xi | i ∈ I}, T = (I, F )) of an n-vertex graph G of treewidth
k, we can turn this decomposition in time in O(kO(1) · n) into a nice tree decomposition
with at most O(k|V (G)|) nodes, i.e., a decomposition of the same width and satisfying the
following properties:

The root bag as well as all leaf bags are empty;
Every node of the tree decomposition is of one of four different types:

Leaf node: a node i with Xi = ∅ and no children;
Introduce node: a node i with exactly one child j such that Xi = Xj ∪ {v} for some
vertex v ∈ Xj ;
Forget node: a node i with exactly one child j such that Xi = Xj \ {v} for some vertex
v ∈ Xj ;
Join node: a node i with two children j1 and j2 such that Xi = Xj1 = Xj2 .

I Theorem 7 (Bodlaender et al. [2]). There exists an algorithm, that given an n-vertex graph
G and an integer k, in time 2O(k)n logn either outputs that the treewidth of G is larger than
k, or constructs a tree decomposition of G of width at most 3k + 4.

Combining Theorem 8 below with standard arguments (we refer the reader to [2] for
more details), we arrive at Proposition 9, which is the form that will be required to obtain
our algorithms.

I Theorem 8 (Bodlaender and Hagerup [3]). There is an algorithm that, given a tree decom-
position of width k with O(n) nodes of a graph G, finds a rooted binary tree decomposition
of G of width at most 3k + 2 with depth O(logn) in O(kn)-time.

I Proposition 9. There is an algorithm that, given an n-vertex graph G and a tree decom-
position of G of width k, runs in O(kn)-time, and computes a nice tree decomposition of G
of width 3k + 2, height O(k logn), and with O(kn) nodes.
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3 Algorithms for Bisection on Bounded Treewidth Graphs

We start by reviewing the O(2t+1 · n3)-time algorithm for solving the Bisection problem
on graphs of treewidth at most t by Jansen et al. [17]. The algorithm is a standard dynamic
programming algorithm over a tree decomposition. Given a graph G together with its nice
tree decomposition ({Xi|i ∈ I}, T = (I, F )) of width t the algorithm works as follows.

For each node i ∈ I, we let Yi denote the set of all vertices inXj , where either j is a descend-
ant of i in T or j = i. The algorithm computes for each i ∈ I, an array mwpi (which stands
for minimum weight partition) containing O(2t · |Yi|) entries. For each ` ∈ {0, 1, . . . , |Yi|}
and each S ⊆ Xi, the entry mwpi(`, S) is set to minS′⊆Yi,|S′|=`,S′∩Xi=S(

∑
e∈E(S′,Yi\S′) w(e)).

That is, mwpi(`, S) is equal to the minimum possible weight of a bisection where S and
Xi \ S are in different parts of the bisection and the side including S is of cardinality exactly
`. When such a partition is not possible, we set mwpi(`, S) to ∞.

We compute the entries of the array following the levels of the tree decomposition in a
bottom-up manner as follows.

Let i be a leaf in T . Note that Yi = Xi = ∅. We set mwpi(0, ∅) = 0.
Let i be a forget node with one child j such that Xi ⊆ Xj . Then, for all ` ∈ {0, 1, . . . , |Yi|}
and S ⊆ Xi, we set

mwpi(`, S) = min
S′⊆Xj ,S′∩Xi=S

(mwpj(`, S′)).

Let i be an introduce node with one child j such that Xj ∪ {v} = Xi and v 6∈ Xj . Then,
for all ` ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, if v ∈ S we set mwpi(`, S) = mwpj(`− 1, S \ {v}).
Otherwise, we set

mwpi(`, S) = mwpj(`, S) +
∑

e∈{{v,s}|s∈S}

w(e).

Let i be a join node with two children j1 and j2, where Xi = Xj1 = Xj2 . For all
` ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, we set

mwpi(`, S) = min`1+`2−|S|=`,`1,`2≥|S|

mwpj1(`1, S) + mwpj2(`2, S)−
∑

e∈E(S,Xi\S)

w(e)

 .

We omit the proof of correctness and refer the reader to [17] for more details. We focus
here on the runtime analysis. Analyzing the above algorithm on the tree decomposition of
width t and height O(t logn), we obtain the following lemma.

I Lemma 10. There is an algorithm that, given an edge-weighted graph G on n vertices
and a nice tree decomposition of width t, height O(t logn), and O(tn) nodes, computes a
minimum weight bisection of G in time O(2t+1 · t · logn · τ(t2n)), where τ(|Yi|) is the time
required to compute the entries mwpi(`, S) for all ` ∈ [|Yi|] and a fixed S in a join node.

Proof. Let ({Xi|i ∈ I}, T = (I, F )) be the nice tree decomposition of G given as input. The
time spent at each leaf node, introduce node, or forget node i is bounded by O(2t+1 · |Yi|).
Moreover, by our assumption the time spend in each join node is O(2t+1τ(|Yi|)).

Now let us split the nodes of T into r = O(t logn) levels L0, . . . , Lr depending on
the distance of the node from the root of T . We analyze the running time on each level
separately. Clearly, the running time at level k is at most O(

∑
i∈Lk

2t+1τ(|Yi|)). Moreover,
given i, j ∈ Lk the nodes i and j cannot be descendants of each other. Therefore, from the
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42:6 Bisection of Bounded Treewidth Graphs by Convolutions

definition of a tree decomposition and Yi and Yj respectively, it follows that Yi∩Yj ⊆ Xi∩Xj .
Hence,

∑
i∈Lk

|Yi| ≤
∑
i∈Lk

|Xi|+n ≤
∑
i∈I |Xi|+n ≤ O(t2n). Clearly τ(|Yi|) = Ω(|Yi|) and

it follows that O(
∑
i∈Lk

2t+1τ(|Yi|)) ≤ O(2t+1(
∑
i∈Lk

τ(|Yi|)) ≤ O(2t+1τ(t2n)). Combined
with the fact that the height of the tree decomposition is O(t logn), we get the claimed
running time of O(2t+1 · t · logn · τ(t2n)). J

I Lemma 11. Let i be a join node with children j1 and j2, where Xi = Xj1 = Xj2 . There
is an algorithm that, for a fixed S ⊆ Xi, computes all the entries mwpi(`, S), for all
` ∈ [|Yi|], in time O(τ(|Yi|)) if and only if there is an O(τ(|Yi|)) time algorithm solving
an instance of (min,+)-Convolution with two sequences (a[p])|Yi|

p=0 and (b[p])|Yi|
p=0, where

a[p] = mwpj1(p, S) for p ∈ [|Yj1 |] and a[p] = ∞ otherwise and b[p] = mwpj1(p, S) for
p ∈ [|Yj2 |] and a[p] =∞ otherwise.

Proof. Recall that

mwpi(`, S) = min`1+`2−|S|=`,`1,`2≥|S|

mwpj1(`1, S) + mwpj2(`2, S)−
∑

e∈E(S,Xi\S)

w(e)

 .

Let W =
∑
e∈E(S,Xi\S) w(e). Note that for a fixed i and a fixed S, both

∑
e∈E(S,Xi\S) w(e)

and |S| are fixed. Hence,

mwpi(`, S) = min`1+`2−|S|=`,`1,`2≥|S|
(
mwpj1(`1, S) + mwpj2(`2, S)

)
−W.

Let (c[p])2|Yi|−1
p=0 be the (min,+)-convolution of the sequences (a[p])|Yi|

p=0 and (b[p])|Yi|
p=0;

that is c[k] = minq+r=k(a[q] + b[r]). Finally, we set mwpi(p, S) = c[p − |S|] − W , for
p ∈ {|S|, |S|+ 1, . . . , |Yi|}. All other entries are set to ∞. J

Combining Lemmas 10 and 11 with Theorem 8 we conclude the proof of Theorem 1. We
remark that if a tree decomposition is not given then we can compute it, using the algorithm
of Theorem 7, at the cost of a worse dependence on t.

Proof of Theorem 1. We assume that (min,+)-Convolution can be solved in O(τ(n))
time. Using Proposition 9, we can compute in O(tn) time a nice tree decomposition
({Xi|i ∈ I}, T = (I, F )) of G, such that the width of the decomposition is 3t+ 2, the height
is O(t logn), and the number of nodes of T is O(tn). Afterwards, we invoke the algorithm
of Lemma 10 to compute the minimum weight bisection in time O(23t+3 · (3t+ 2) · logn ·
τ((3t+ 2)2n)) = O(8t · t · logn · τ(t2n)) using the O(τ(|Yi|)) time algorithm to compute the
(min,+)-convolution needed in the join nodes. Plugging in the naive O(n2) time algorithm
for (min,+)-Convolution gives τ(n) = O(n2), completing the proof. J

3.1 Bounded Edge Weights
We now turn our attention to the case when the maximum weight of every edge in the input
graph is bounded by some constant W . We show that in this case, we can actually compute a
minimum bisection of a bounded treewidth graph of size n in time O(8t ·(tW )O(1) ·n1.864 logn)
or, equivalently, O(8t · (tW )O(1) · n1.864+ε), for ε > 0.

I Lemma 12. Let G be an edge-weighted graph with maximum weight of an edgeW with a tree
decomposition ({Xi | i ∈ I}, T = (I, F )) of width t. Then for every node i ∈ I, every S ⊆ Xi

and every ` ∈ {|S|, . . . |Yi|−|Xi\S|−1} it holds that |mwpi(`, S)−mwpi(`+1, S)| ≤ (2t+1)·W .
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Proof. It is easy to see that mwpi(`, S) = mwpi(|Yi| − `,Xi \ S). Hence, without loss of
generality, we can assume that mwpi(`, S) ≥ mwpi(` + 1, S). Now let A be a set of size
` such that S = A ∩ Xi and mwpi(`, S) =

∑
e∈E(A,A) w(e). It is well-known that we can

order the vertices of a graph G such that every vertex has at most tw(G) neighbors earlier
in the ordering [19]. Let us denote such an ordering σ and let v be the last vertex from
Yi \ (A ∪Xi) in σ. Now E(A ∪ {v}, A ∪ {v}) = (E(A,A) \ E({v}, A)) ∪ E({v}, A ∪ {v}). It
follows that mwpi(` + 1, S) ≤ mwpi(`, S) + |E({v}, A ∪ {v})| ·W . By the choice of v, all
the vertices in A ∪ {v} are either earlier in σ than v or in Xi. Moreover, v has only at most
tw(G) many neighbors that are earlier in σ than v and there are at most t+ 1 vertices in Xi,
hence |E({v}, A ∪ {v})| ≤ tw(G) + t+ 1. Since tw(G) ≤ t, the lemma follows. J

Observe, that the bound of Lemma 12 is tight up to a multiplicative constant. As an
example achieving difference |mwpi(`, S)−mwpi(`+ 1, S)| ≤ (t+ 1) ·W take S = Xi and
an instance where the edges in Yi have all weight W and are precisely all the pairs with one
endpoint in Xi and the other in Yi \Xi.

Lemma 12 tells us that the restriction of the sequences (a[p])|Yi|
p=0 and (b[p])|Yi|

p=0 for which
we need to compute the (min,+)-Convolution in Lemma 11 to entries that are not ∞
has bounded difference. However, these two restricted sequences might not have the same
length and it is not straightforward how to adapt the algorithm by Chan and Lewenstein [9].
To overcome this issue, we use a standard trick to change these sequences to monotone
non-decreasing sequences with integer values bounded by O(n) and pad the shorter sequence
by some large value. This trick is outlined by Chan and Lewenstein [9] but never formally
stated, we repeat it here for completeness.

I Theorem 13 ([9]). Monotone (min,+)-Convolution with all entries in {0, . . . , nD}
can be solved in time O((nD)1.859) by a randomized algorithm, or in time O((nD)1.864)
deterministically.

We remark that Chan and Lewenstein [9] do not explicitly state the dependence on D. It
is easy to see from their arguments that the dependence on D is at most O(D1.864), but we
suspect that it is much better.

I Lemma 14. Let n1, n2 be two integers such that n1 ≤ n2 and let sequences (a[p])n1
p=0 and

(b[p])n2
p=0 be two sequences with the difference bounded by a constant D and all entries in

{0, . . . , n2D
′}, for some constant D′. Then we can compute the sequence (c[p])n1+n2

p=0 such
that c[k] = mini+j=k(a[i] + b[j]) in time O((2n2(D +D′))1.864).

Proof. To compute (c[p])n1+n2
p=0 we start by changing the sequences (a[p])n1

p=0 and (b[p])n2
p=0

to bounded monotone sequences (a′[p])n1
p=0 and (b′[p])n2

p=0 by adding D · i to a′[i] and b′[i],
respectively. Note that mini+j=k(a[i] + b[j]) = mini+j=k(a′[i] + b′[j]) − D · k. Now let
C = max(a′[n1], b′[n2]). Finally, we create sequence (a′′[p])n2

p=0 by setting a′′[p] = a′[p]
if a′[p] is defined and a′′[p] = 2C + 1 otherwise. It is easy to see that mini+j=k(a′[i] +
b′[j]) = mini+j=k(a′′[i] + b′[j]) for all k ∈ {0, . . . , n1 + n2}. Therefore, to compute the
(min,+)-convolution of the sequences (a[p])n1

0 and (b[p])n2
0 it suffices to compute the (min,+)-

convolution of the sequences (a′′[p])n2
p=0 and (b′[p])n2

p=0, which are both monotone with integer
entries between 0 and C ≤ 2(D ·n2 +n2D

′) + 1 and the proof follows due to Theorem 13. J

We are now in position to prove Theorem 3.

Proof of Theorem 3. Same as in the proof of Theorem 1, we start by using Proposition 9
to compute a nice tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G, such that the width of
the decomposition is 3t+ 2, the height is O(t logn), and the number of nodes of T is O(tn).
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Afterwards, we invoke the algorithm of Lemma 10 to compute the minimum weight
bisection in time O(8t · t · logn · τ(t2n)), where O(τ(|Yi|)) is the time required to compute
the entries mwpi(`, S) for all ` ∈ [|Yi|] and a fixed S in a join node.

It remains to show that we can compute mwpi(`, S) for all ` ∈ [|Yi|] and a fixed S in
time O((tW )O(1) · |Yi|1.864). By Lemma 11, this is equivalent to solving an instance of
(min,+)-convolution with two sequences (a[p])|Yi|

p=0 and (b[p])|Yi|
p=0, where a[p] = mwpj1(p, S)

for p ∈ [|Yj1 |] and a[p] = ∞ otherwise and b[p] = mwpj1(p, S) for p ∈ [|Yj2 |] and a[p] = ∞
otherwise. Note that mwpj1(`, S) (mwpj1(`, S)) is set to ∞ if ` < |S| or ` > |Yj1 | − |Xj1 \ S|
(` > |Yj2 | − |Xj2 \ S|). Hence, from Lemma 12 it follows that if both a[p] and a[p + 1]
(respectively b[p] and b[p+ 1]) are finite, then |a[p+ 1]− a[p]| (respectively |b[p+ 1]− b[p]|)
is bounded by (2t+ 1) ·W , where W is the maximum weight of an edge in G, and hence it is
constant. To finish the proof, let nj1 = |Yj1 | − |S| − |Xj1 \S| and nj2 = |Yj2 | − |S| − |Xj2 \S|
and let sequences (a′[p])nj1

p=0 and (b′[p])nj2
p=0 be such that a′[p] = a[p+ |S|] and b′[p] = b[p+ |S|].

That is a′ and b′ are created from a and b by removing ∞ from the sequences. For all
k ∈ {2|S|, . . . , nj1 + nj2 + 2|S|} (that is whenever mini+j=k(a[i] + b[j]) 6=∞) it holds that
mini+j=k(a[i] + b[j]) = mini+j=k(a′[i′ − |S|] + b′[j′ − |S|]) = mini′+j′=k−2|S|(a′[i′] + b′[j′]).
Therefore, to compute the (min,+)-convolution of the sequences (a[p])|Yi|

0 and (b[p])|Yi|
0 ,

it suffices to compute the sequence (c′[p])nj1 +nj2
0 such that c′[k] = mini+j=k(a′[i] + b′[j]).

Clearly, due to Lemma 12, (a′[p])nj1
p=0 and (b′[p])nj2

p=0 have difference bounded by (6t+ 5) ·W .
Moreover, let n′ = max(nj1 , nj2), then it is easy to see that both a[|S|] and b[|S|] are at
most |S| · n′ ·W ≤ (3t+ 3) · n′ ·W and hence the entries in (a′[p])nj1

p=0 and (b′[p])nj2
p=0 are all

integers between 0 and (3t + 3) · n′ ·W + (6t + 5) ·W · n′ = (9t + 8) ·W · n′. Therefore,
we can compute the sequence (c′[p])nj1 +nj2

0 in O(((30t + 26) ·W · n′)1.864) by Lemma 14,
finishing the proof. J

4 Tree Bisection is as Hard as (min, +)-Convolution

We complement Theorem 3 by showing that if the Bisection problem can be solved in
subquadratic time, i.e., in time O(n2−ε) for ε > 0, on weighted trees than the (min,+)-
convolution problem can be solved in subquadratic time as well, i.e., in time O(n2−δ) for
δ > 0. We follow a strategy similar to that of [1] used for proving a lower bound on the
Tree Sparsity problem.

IDefinition 15 (SUM3 problem). Given three sequences A,B,C ∈ Zn, decide if the following
statement is true: ∃i, j : Ai +Bj + Ci+j ≤ 0.

I Theorem 16 ([1, 24]). The (min,+)-Convolution problem can be solved in time O(n2−ε),
for ε > 0, if and only if the SUM3 problem can be solved in O(n2−δ) time, for δ > 0.

Hence, given Theorem 16, we prove the main theorem of this section by a reduction from
SUM3 to the Bisection problem on weighted trees. We start by describing the construction.

Let W be equal to 10 times the largest absolute value of an entry in A, B, and C. We
create a root vertex r. Consider A ∈ Zn. We first construct a path PA = {r, a0, a1, . . . , an−1}
of n vertices (excluding r) such that the weight of the ith edges isW+Ai, for i = 0, 1, . . . , n−1.
Similarly, for B ∈ Zn, we construct a path PB = {r, b0, b1, . . . , bn−1} of n vertices (excluding
r) such that the weight of the ith edges is W +Bi, for i = 0, 1, . . . , n− 1. We then create a
new vertex c and a path PC = {c, c0, c1, . . . , cn−1, cn, cn+1, . . . , c2n−1, r} of 2n + 1 vertices
such that the weight of the ith edges is W + Ci, for i = 0, 1, . . . , n− 1 and the weight is nW
otherwise (i > n− 1). Finally, we attach 30n pendant vertices to r, 10n pendant vertices to
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r

a0 a1 a2 a3

b0 b1 b2 b3

c7 c6 c5 c4 c3 c2 c1 c0 c

10n− 1 pendant vertices

10n pendant vertices

10n pendant vertices

30n pendant vertices

Figure 1 The reduction from SUM3 (for n = 4) to the Bisection problem on weighted trees.

an−1, 10n pendant vertices to bn−1, and 10n− 1 pendant vertices to c. The weight of each
of those edges is nW . We let T denote the resulting tree (see Figure 1). Note that the total
number of vertices in T is 60n+ 4n = 64n.

I Lemma 17. Let A,B,C ∈ Zn be an instance of SUM3 and let T be the corresponding
instance of Bisection. Then ∃i, j : Ai +Bj + Ci+j ≤ 0 if and only if T has a bisection of
weight less than or equal 3W .

Proof. Assume that ∃i, j : Ai +Bj + Ci+j ≤ 0. We claim that T admits a bisection whose
weight is at most 3W . We pick one edge from each of the three paths PA, PB, and PC . In
particular, we pick the i-th edge from PA, the j-th edge from PB, and the k-th edge from
PC , where k = i+ j. The total weight is therefore 3W +Ai +Bj + Ci+j ≤ 3W . The total
number of vertices in the r-partition is 30n+ i+ j + 2n− k = 32n and the total number of
vertices in the abc-partition is 30n+ 2n+ k − (i+ j) = 32n, as needed.

For the other direction, assume that T admits a bisection (X,Y ) whose weight is at most
3W . Notice, that from the choice of W and the construction, it follows that the weight of
any at least four edges is at least 3W + 6W

10 , and consequently |E(X,Y )| ≤ 3. We claim
that E(X,Y ) contains exactly three edges from T , each edge from a different path. Assume
otherwise, i.e., that at least one path remains untouched. Then, the corresponding partition
will contain at least 40n vertices which is greater than 32n vertices. Now, let E(X,Y ) contain
the i-th edge from PA, the j-th edge from PB, and the k-th edge from PC . It remains
to show that k = i + j. The size of the partition containing r is 30n + i + j + 2n − k.
Since the number of vertices in T is 64n and both partitions must have equal size, we get
30n+ i+ j + 2n− k = 32n and therefore i+ j = k, as needed. J

The construction, together with Proposition 16 and Lemma 17 conclude the proof of
Theorem 2.
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Abstract
Packing and covering semidefinite programs (SDPs) appear in natural relaxations of many combinat-
orial optimization problems as well as a number of other applications. Recently, several techniques
were proposed, that utilize the particular structure of this class of problems, to obtain more efficient
algorithms than those offered by general SDP solvers. For certain applications, such as those
described in this paper, it maybe required to deal with SDP’s with exponentially or infinitely many
constraints, which are accessible only via an oracle. In this paper, we give an efficient primal-dual
algorithm to solve the problem in this case, which is an extension of a logarithmic-potential based
algorithm of Grigoriadis, Khachiyan, Porkolab and Villavicencio (SIAM Journal of Optimization 41
(2001)) for packing/covering linear programs.
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1 Introduction

1.1 Packing and Covering SDPs
We denote by Sn the set of all n × n real symmetric matrices and by Sn+ ⊆ Sn the set of
all n × n positive semidefinite matrices. Consider the following pairs of packing-covering
semidefinite programs (SDPs):

z∗I = max C •X (P-I)
s.t. Ai •X ≤ bi,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗I = min bT y (C-I)

s.t.
m∑
i=1

yiAi � C

y ∈ Rm, y ≥ 0

z∗II = min C •X (C-II)
s.t. Ai •X ≥ bi,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗II = max bT y (P-II)

s.t.
m∑
i=1

yiAi � C

y ∈ Rm, y ≥ 0
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43:2 Oracle-Based Algorithms for Packing and Covering SDPs

where C,A1, . . . , Am ∈ Sn+ are (non-zero) positive semidefinite matrices, and b = (b1, . . . , bn)T
∈ Rm+ is a nonnegative vector. In the above, C •X := Tr(CX) =

∑n
i=1
∑n
j=1 cijxij , and “�”

is the Löwner order on matrices: A � B if and only if A−B is positive semidefinite. This
type of SDPs arise in many applications, see, e.g. [19, 18] and the references therein.

We will make the following assumption throughout the paper:
(A) bi > 0 and hence bi = 1 for all i ∈ [m].
It is known that, under assumption (A), strong duality holds for problems (P-I)-(C-I) (resp.,
(P-II)-(C-II)).

Let ε ∈ (0, 1] be a given constant. We say that (X, y) is an ε-optimal primal-dual solution
for (P-I)-(C-I) if (X, y) is a primal-dual feasible pair such that

C •X ≥ (1− ε)bT y ≥ (1− ε)z∗I . (1)

Similarly, we say that (X, y) is an ε-optimal primal-dual solution for (P-II)-(C-II) if (X, y) is
a primal-dual feasible pair such that

C •X ≤ (1 + ε)bT y ≤ (1 + ε)z∗II . (2)

Since in this paper we allow the number of constraints m in (P-I) (resp., (C-II)) to be
exponentially (or even infinitely) large, we will assume the availability of the following oracle:

Max(Y ) (resp., Min(Y )): Given Y ∈ Sn+, find i ∈ argmaxi∈[m]Ai • Y (resp., i ∈
argmini∈[m]Ai • Y ).

Note that an approximation oracle computing the maximum (resp., minimum) above within
a factor of (1− ε) (resp., (1 + ε)) is also sufficient for our purposes.

Our objective in this paper is to develop oracle-based primal-dual algorithms that find ε-
optimal solutions for (P-I)-(C-I) and (P-II)-(C-II). An interesting property of our algorithms
which distinguishes them from most previously known algorithms is that they produce
solutions which are sparse, in the following sense: A primal-dual solution (X, y) to (C-I)
(resp., (P-II)) is said to be η-sparse, if the size of supp(y) := {i ∈ [m] : yi > 0} is at
most η. Two applications for SDP’s with infinite/exponential number of constraints are
given in Section 3.

1.2 Main Result and Related Work
Problems (P-I)-(C-I) and (P-II)-(C-II) can be solved using general SDP solvers, such
as interior-point methods: for instance, the barrier method (see, e.g., [29]) can compute a
solution, within an additive error of ε from the optimal, in time O(

√
nm(n3 +mn2 +m2) log 1

ε )
(see also [1, 34]). However, due to the special nature of (P-I)-(C-I) and (P-II)-(C-II), better
algorithms can be obtained. Most of the improvements are obtained by using first order
methods [4, 6, 7, 2, 13, 19, 20, 21, 22, 28, 30, 31], or second order methods [17, 18]. In general,
we can classify these algorithms according to whether they:
(I) are width-independent: the running time of the algorithm depends polynomially on the

bit length of the input; for example, in the of case of (P-I)-(C-I), the running time
is poly(n,m,L, log τ, 1

ε ), where L is the maximum bit length needed to represent any
number in the input; on the other hand, the running time of a width-dependent algorithm
will depend polynomially on a“width parameter” ρ, which is polynomial in L and τ ;

(II) are parallel: the algorithm takes polylog(n,m,L, log τ) ·poly( 1
ε ) time, on a poly(n,m,L,

log τ, 1
ε ) number of processors;
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(III) output sparse solutions: the algorithm outputs an η-sparse solution to (C-I) (resp.,
(P-II)), for η = poly(n, logm,L, log τ, 1

ε ) (resp., η = poly(n, logm,L, 1
ε )), where τ is a

parameter that bounds the trace of any optimal solution X (see Section 2 for details);
(IV) are oracle-based: the only access of the algorithm to the matrices A1, . . . , Am is via the

maximization/minimization oracle, and hence the running time is independent of m.
Table 1 gives a summary1 of the most relevant results together with their classifications,
according to the four criteria described above. We note that almost all these algorithms for
packing/covering SDP’s are generalizations of similar algorithms for packing/covering linear
programs (LPs), and most of them are essentially based on an exponential potential function
in the form of scalar exponentiation, e.g., [4, 22], or matrix exponentiation [6, 7, 2, 21, 19].
For instance, several of these results use the scalar or matrix versions of the multiplicative
weights updates (MWU) method (see, e.g., [5]), which are extensions of similar methods for
packing/covering LPs [14, 15, 35, 32].

In [16], a different type of algorithm was given for covering LPs (indeed, more generally,
for a class of concave covering inequalities) based on a logarithmic potential function. In this
paper, we show that this approach can be extended to provide oracle-based algorithms for
both versions of packing and covering SDPs:

I Theorem 1. For any ε > 0, there is a randomized algorithm that, for any given instance
of (P-I)-(C-I), outputs an O(nL log(nτ) + n

ε2 )-sparse O(ε)-optimal primal-dual pair in time2

Õ
(
nω+1L log τ

ε2.5 + nLT log τ
ε2

)
, where T is the time taken by a single call to the oracle Max(·)

and ω is the exponent of matrix multiplication.

I Theorem 2. For any ε > 0, there is a randomized algorithm that, for any given instance
of (P-II)-(C-II), outputs an O(nL logn+ n

ε2 )-sparse O(ε)-optimal primal-dual pair in time
Õ(n

ω+1L logn
ε2.5 + nLT

ε2 ), where T is the time taken by a single call to the oracle Min(·).

As we can see from the table, among all the algorithms listed, the logarithmic-potential
algorithm, presented in this paper, is the only one that produces sparse solutions, in the sense
described above. Moreover, the only known other oracle-based algorithm (matrix Matrix
MWU [7]) is not width-independent.It can also be shown (see [12]) that a modified version
of the matrix exponential MWU algorithm [6] can yield sparse solutions for (P-II)-(C-II).
However, the overall running time of this matrix MWU algorithm is larger by a factor of
(roughly) Ω(n3−ω) than that of the logarithmic-potential algorithm. Moreover, we were not
able to extend the matrix MWU algorithm to solve (P-I)-(C-I) (in particular, it seems tricky
to bound the number of iterations).

A work that is also related to ours is the sparsification of graph Laplacians [8] and positive
semidefinite sums [33]. Given matrices A1, . . . , Am ∈ Sn+ and ε > 0, it was shown in [33]
that one can find, in O

(
n
ε2 (nω + T )

)
time, a vector y ∈ Rm+ with support size O( nε2 ), such

that B �
∑
i yiAi � (1 + ε)B, where B :=

∑
iAi and T is the time taken by a single call to

the minimization oracle Min(Y ) (for a not necessarily positive semidefinite matrix Y ). An
immediate corollary is that, given an ε-optimal solution y for (C-I) (resp., (P-I)), one can find
in O

(
n
ε2 (nω + T )

)
time an O(ε)-optimal solution y′ with support size O( nε2 ). Interestingly,

the algorithm in [33] (which is an extension for the rank-one version in [8]) uses the barrier
potential function Φ′(x, F ) := Tr

(
(H − xI)−1) (resp., Φ′(x,H) := Tr

(
(xI −H)−1)), while in

1 We provide rough estimates of the bounds, as some of them are not explicitly stated in the corresponding
paper in terms of the parameters we consider here.

2 Õ(·) hides polylogarithmic factors in n and 1
ε .
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Table 1 Different Algorithms for Packing/covering SDPs.

Paper Problem Technique Most Expensive # Iterations Width- Parallel Sparse Oracle-
Operation indep. based

[4, 22] (P-I) MWU max /min eigenvalue O( ρ logm
ε2 ) No No No∗) No

(C-II) of a PSD matrix Õ(n
2

ε
)

[7] (P-I) Matrix MWU Matrix exponentiation O( ρ
2τ2 logn
ε2(z∗

I
)2 ) No No No∗) Yes

(C-II) O(n3)
[17, 19] (P-I) Nesterov’s smoothing Matrix exponentiation O( τ logm

ε
) No No No No

technique [27, 28] O(n3)
[18] (C-II) Nesterov’s smoothing min eigenvalue of a non O( ρ

2 log(nm)
ε

) No No No No
technique [27, 28] PSD matrix O(n3)

[20] (P-I)& MWU eigenvalue O( log13 n logm
ε13 ) Yes Yes No No

(C-II) technique [27, 28] decomposition O(n3)
[30, 31] (P-II)& Matrix MWU Matrix exponentiation O( log3 m

ε3 ) Yes Yes No No
(C-II) O(n3)

[2] (P-I)& Gradient Descent + Matrix exponentiation O( log2(mn) log 1
ε

ε2 ) Yes Yes No No
(C-II) Mirror Descent O(n3)

[12] (P-II)& Matrix MWU Matrix exponentiation O(n logn
ε2 ) Yes No Yes Yes

(C-II) O(n3)
This (P-II) & Logarithmic Matrix inversion O(n log(nLτ) + n

ε2 ) Yes No Yes Yes
paper (C-II) potential [16] O(nω)

(P-II) & O(n log(n/ε) + n
ε2 )

(C-II)

∗) In fact, these algorithms find sparse solutions, in the sense that the dependence of the size of the support of the dual solution on m is
at most logarithmic; however, the dependence of the size of the support on the bit length L is not polynomial.

our algorithms (generalizing the potential function in [16]) we use the logarithmic potential
function Φ(x,H) = ln x + ε

n ln det
(
H − xI

)
= ln x − ε

n

∫
x

Φ′(x,H)dx (resp., Φ(x,H) =
ln x − ε

n ln det
(
xI − H

)
= ln x − ε

n

∫
x

Φ′(x,H)dx). Sparsification algorithms with better
running times were recently obtained in [3, 24]. Since the sparse solutions produced by our
algorithms may have support size slightly more (by polylogarithmic factors) than O( nε2 ),
we may use, in a post-processing step, the sparsfication algorithms, mentioned above, to
convert the solutions obtained by Theorems 1 and 2 to ones with support size O( nε2 ), without
increasing the overall asymptotic running time.

In Section 4, we give an outline of the algorithm and sketch the proof of Theorem 1;
the proof of Theorem 2 is similar. To motivate our algorithms, in Section 3, we give two
applications that require finding sparse solutions for a packing/covering SDP 3.

2 Reduction to Normalized Form

When C = I = In, the identity matrix in Rn×n and b = 1, the vector of all ones in Rm, we
say that the packing-covering SDPs are in normalized form:

z∗I = max I •X (N-P-I)
s.t. Ai •X ≤ 1,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗I = min 1T y (N-C-I)

s.t.
m∑
i=1

yiAi � I

y ∈ Rm, y ≥ 0.

3 As pointed out by an anonymous reviewer, solution-sparsity and oracle-access to the input can also be
thought of as a way of reducing the space requirement of the algorithm, see [23].
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z∗II = min I •X (N-C-II)
s.t. Ai •X ≥ 1,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗II = max 1T y (N-P-II)

s.t.
m∑
i=1

yiAi � I

y ∈ Rm, y ≥ 0.

It can be shown4 that, at the loss of a factor of (1 + ε) in the objective, any pair of
packing-covering SDPs of the form (P-I)-(C-I) can be brought in O(n3), increasing the oracle
time only by O(nω), where ω is the exponent of matrix multiplication, to the normalized
form (N-P-I)-(N-C-I), under the following assumption:

(B-I) There exist r matrices, say A1, . . . , Ar, such that Ā :=
∑r
i=1Ai � 0. In particular,

Tr(X) ≤ τ := r
λmin(Ā) for any optimal solution X for (P-I).

Similarly, one can show (see [12, 20]) that, at the loss of a factor of (1+ ε) in the objective,
any pair of packing-covering SDPs of the form (P-II)-(C-II) can be brought in O(n3) time,
increasing the oracle time only by O(nω), to the normalized form (N-P-II)-(N-C-II). Moreover,
we may assume in this normalized form that
(B-II) λmin(Ai) = Ω

(
ε
n ·mini′ λmax(Ai′)

)
for all i ∈ [m],

where, for a positive semidefinite matrix B ∈ Sn×n+ , we denote by {λj(B) : j = 1, . . . , n} the
eigenvalues of B, and by λmin(B) and λmax(B) the minimum and maximum eigenvalues of
B, respectively. With an additional O(mn2) time, we may also assume that:
(B-II′) λmax(Ai)

λmin(Ai) = O
(
n2

ε2

)
for all i ∈ [m].

Thus, from now on we focus on the normalized problems.

3 Applications

3.1 Robust Packing and Covering SDPs
Consider a packing-covering pair of the form (P-I)-(C-I) or (P-II)-(C-II). In the framework
of robust optimization (see, e.g. [9, 10]), we assume that each constraint matrix Ai is not
known exactly; instead, it is given by a convex uncertainty set Ai ⊆ Sn+. It is required to find
a (near)-optimal solution for the packing-covering pair under the worst-case choice Ai ∈ Ai
of the constraints in each uncertainty set. A typical example of a convex uncertainty set is
given by an affine perturbation around a nominal matrix A0

i ∈ Sn+:

Ai =
{
Ai := A0

i +
k∑
r=1

δrA
r
i : δ = (δ1, . . . , δk) ∈ D

}
, (3)

where A1
i , . . . , A

k
i ∈ Sn+, and D ⊆ Rk+ can take, for example, one of the following forms:

Ellipsoidal uncertainty: D = E(δ0, D) := {δ ∈ Rk+ : (δ − δ0)TD−1(δ − δ0) ≤ 1}, for given
positive definite matrix D ∈ Sk+ and vector δ0 ∈ Rk+ such that E(δ0, D) ⊆ Rk+;
Polyhedral uncertainty: D := {δ ∈ Rk+ : Dδ ≤ w}, for given matrix D ∈ Rh×k and vector
w ∈ Rh.

4 In fact, unlike previously known reductions, the reduction we give in [12] is simpler to compute, as it is
based on the LDL-decompositions rather than the eigenvalue decompositions of the input matrices.
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Without loss of generality, we consider the robust version of (N-P-I)-(N-C-I), where Ai, for
i ∈ [m], belongs to a convex uncertainty set Ai. Then the robust optimization problem and
its dual can be written as follows:

z∗P = max I •X (R-P-I)
s.t. Ai •X ≤ 1, ∀Ai ∈ Ai ∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗D = inf
m∑
i=1

∫
Ai
yiAidAi

(R-C-I)

s.t.
m∑
i=1

∫
Ai
yiAiAidAi � I

yi is a discrete measure on Ai, ∀i ∈ [m].

As before, we assume (B-I), where A1, . . . , Ar ∈
⋃
i∈[m]Ai. We call a pair of solutions (X, y)

to be ε-optimal for (R-P-I)-(R-C-I), if

z∗P ≥ I •X ≥ (1− ε)
m∑
i=1

∫
Ai
yiAidAi ≥ (1− ε)z∗D.

Note that the number of constraints in (R-P-I) is infinite and hence any algorithm that solves
the problem would have to be oracle-based. The Ellipsoid method is one such algorithm; a
more efficient procedure is given by the following corollary of Theorem 1.

I Theorem 3. For any ε > 0, there is a a randomized algorithm that outputs an O(ε)-
optimal primal-dual pair for (R-P-I)-(R-C-I) in time Õ

(
nω+1 logψ

ε2.5 + nT logψ
ε2

)
, where ψ :=

r·maxi∈[m],Ai∈Ai λmax(Ai)
λmin(Ā) and T is the time to compute, for a given Y ∈ Sn+, a pair (i, Ai)

such that

(i, Ai) ∈ argmaxi∈[m], Ai∈Ai Ai • Y. (4)

Note that (4) amounts to solving a linear optimization problem over a convex set. Moreover,
for simple uncertainty sets, such as boxes or ellipsoids, such computation can be done
very efficiently.

3.2 Carr-Vempala-Type Decomposition
Consider a maximization (resp., minimization) problem over a discrete set S ⊆ Zn and a
corresponding SDP-relaxation over Q ⊆ Sn+:

z∗CO =
{

max
min

}
C • qqT (DOP)

q ∈ S

z∗SDP =
{

max
min

}
C •Q

(SDP-RLX)
Q ∈ Q,

where C ∈ Sn+.

I Definition 4. For α ∈ (0, 1] (resp., α ≥ 1), an α-integrality gap verifier A for (SDP-RLX)
is a polytime algorithm that, given any C ∈ Sn+ and any Q ∈ Q returns a q ∈ S such that
C • qqT ≥ αC •Q (resp., C • qqT ≤ αC •Q).

For instance, if S = {−1, 1}n and Q = {X ∈ Sn+ : Xii = 1 ∀i ∈ [n]}, then a 2
π -integrality

gap verifier for the maximization version of (SDP-RLX) is known [26].
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Carr and Vempala [11] gave a decomposition theorem that allows one to use an α-
integrality gap verifier for a given LP-relaxation of a combinatorial maximization (resp.,
minimization) problem, to decompose a given fractional solution to the LP into a convex
combination of integer solutions that is dominated by (resp., dominates) α times the fractional
solution. Here we derive a similar result for SDP relaxations:

I Theorem 5. Consider a combinatorial maximization (resp., minimization) problem (DOP)
and its SDP relaxation (SDP-RLX), admitting an α-integrality gap verifier A. Assume
the set S is full-dimensional and let ε > 0 be a given constant. Then there is a polytime
algorithm that, for any given Q ∈ Q, finds a set X ⊆ S of size |X | = O(n

3

ε2 log(nW )) (resp.,
of size |X | = O(n log n

ε + n
ε2 )), where W := maxq∈S, i∈[n] |qi|, and a set of convex multipliers

{λq ∈ R+ : q ∈ X},
∑
q∈X λq = 1, such that

(1−O(ε))αQ �
∑
q∈X

λqqq
T (resp., (1 +O(ε))αQ �

∑
q∈X

λqqq
T ). (5)

The proof of Theorem 5 is obtained by considering the following pairs of packing and covering
SDPs (of types I and II, respectively):

z∗I = min
∑
q∈S

λq (CVX-I)

s.t.
∑
q∈S

λqqq
T � αQ (6)

∑
q∈S

λq ≥ 1 (7)

λ ∈ RS , λ ≥ 0

z∗I = max αQ • Y + u

(CVX-dual-I)
s.t. qqT • Y + u ≤ 1,∀q ∈ S (8)

Y ∈ Sn+, u ≥ 0.

z∗II = max
∑
q∈S

λq (CVX-II)

s.t.
∑
q∈S

λqqq
T � αQ (9)

∑
x∈S

λq ≤ 1 (10)

λ ∈ RS , λ ≥ 0

z∗II = min αQ • Y + u

(CVX-dual-II)
s.t. qqT • Y + u ≥ 1,∀q ∈ S (11)

Y ∈ Sn+, u ≥ 0.

It can be shown, using the fact that the SDP relaxation admits an α-integrality gap verifier,
that z∗I = z∗II = 1, and that the two primal-dual pairs can be solved in polynomial time using
the Ellipsoid method. A more efficient (but approximate version) can be obtained using
the algorithms of Theorems 1 and 2. Note that, once we have a set X as in Theorem 5, its
support can be reduced to O(n

2

ε ) using the sparsification techniques of [8, 33].

4 A Logarithmic Potential Algorithm for (P-I)-(C-I)

In this section we give an algorithm for finding a sparse O(ε)-optimal primal-dual solution
for (N-P-I)-(N-C-I). Since the algorithm updates only one component of the dual solution in
each iteration, it follows that the number of positive components of the dual solution when the
algorithm terminates is exactly equal to the number of iterations; from this sparsity follows.
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4.1 High-level Idea of the Algorithm
The idea of the algorithm is quite intuitive. It can be easily seen that problem (N-C-I)
is equivalent to finding a convex combination of the Ai’s that maximizes the minimum
eigenvalue, that is, maxy∈Rm+ :1T y=1 λmin(F (y)), where F (y) :=

∑m
i=1 yiAi, and 1 is the m-

dimensional vector of all ones. Since λmin(F (y)) is not a smooth function in y, it is more
convenient to work with a smooth approximation of it, which is obtained by maximizing
(over x) a logarithmic potential function Φ(x, F (y)) that captures the constraints that each
eigenvalue of F (y) is at least x. The unique maximizer x = θ∗ of Φ(x, F (y)) defines a set
of “weights” (these are the eigenvalues of the primal matrix X computed in line 6 of the
algorithm) such that the weighted average of the λj(F (y))’s is a very close approximation
of λmin(F (y)). Thus, to maximize this average (which is exactly X • F (y)), we obtain a
direction (line 7) along which y is modified with an appropriate step size (line 10). For
numbers x ∈ R+ and δ ∈ (0, 1), a δ-(lower) approximation xδ of x is a number such that
(1− δ)x ≤ xδ < x. For i ∈ [m], 1i denotes the ith unit vector of dimension m.

The algorithm is shown as Algorithm 1. The main while-loop (step 4) is embedded within
a sequence of scaling phases, in which each phase starts from the vector y(t) computed in the
previous phase and uses double the accuracy. The algorithm stops when the scaled accuracy
εs drops below the desired accuracy ε ∈ (0, 1/2). When referring to an arbitrary iteration of
the algorithm, we assume it is iteration t in phase s.

4.2 Analysis

4.2.1 High-level Idea of the Analysis
The analysis is based on a matrix generalization of the scalar arguments given in [16] (as is the
case for all algorithms for SDP’s, which are driven from their LP counterparts; see, e.g., [1]).
Besides the technical details, the algorithm also requires estimating the minimum eigenvalue of
the dual matrix F (y(t)), which is done using Lanczos’ algorithm (see Section 4.2.4 for details).

The proof of ε-optimality follows easily from the stopping condition in line 4 of the
algorithm, the definition of the “approximation error” ν in line 8, and the fact that X • F (y)
is a very close approximation of λmin(F (y(t))). The main part of the proof is to bound
the number of iterations in the inner while-loop (line 4). This is done by using a potential
function argument: we define the potential function Φ(t) := Φ(θ∗(t), F (y(t))) and show in
Claim 23 that, in each iteration, the choice of the step size in line 9 guarantees that Φ(t) is
increased substantially; on the other hand, by Claim 24, the potential difference cannot be
very large, and the two claims together imply that we cannot have many iterations.

4.2.2 Some Preliminaries
Up to Claim 26, we fix a particular iteration s of the outer while-loop in the algorithm. For
simplicity in the following, we will sometimes write F := F (y(t)), θ := θ(t), θ∗ := θ∗(t),
X := X(t), F̂ := Ai(t), τ := τ(t + 1), ν := ν(t + 1), F ′ := F (y(t + 1)), and θ′ := θ(t + 1),
when the meaning is clear from the context. For H � 0 and x ∈ (0, λmin(H)), define the
logarithmic potential function [16, 29]:

Φ(x,H) = ln x+ εs
n

ln det
(
H − xI

)
. (12)

Note that the term ln det
(
H − xI

)
forces the value of x to stay away from the “boundary”

λmin(H), while the term ln x pushes x towards that boundary; hence, one would expect the
maximizer of Φ(x,H) to be a good approximation of λmin(H) (see Claim 8).
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Algorithm 1 Logarithmic-potential Algorithm for (P-I)-(C-I).

1 s← 0; ε0 ← 1
2 ; t← 0; ν(0)← 1; y(0)← 1

r

∑r
i=1 1i

2 while εs > ε do
3 δs ← ε3

s

32n
4 while ν(t) > εs do
5 θ(t)← θ∗(t)δs , where θ∗(t) is the smallest positive number root of the

equation εsθ

n
Tr(F (y(t))− θI)−1 = 1

6 X(t)← εsθ(t)
n

(F (y(t))− θ(t)I)−1 /* Set the primal solution */
7 i(t)← argmaxiAi •X(t) /* Call the maximization oracle */

8 ν(t+ 1)←
X(t) •Ai(t) −X(t) • F (y(t))
X(t) •Ai(t) +X(t) • F (y(t)) /* Compute the error */

9 τ(t+ 1)← εsθ(t)ν(t+ 1)
4n(X(t) •Ai(t) +X(t) • F (y(t))) /* Compute the step size */

10 y(t+ 1)← (1− τ(t+ 1))y(t) + τ(t+ 1)1i(t) /* Update the dual solution */
11 t← t+ 1
12 end
13 εs+1 ← εs

2
14 s← s+ 1
15 end
16 X̂ ← (1−εs−1)X(t−1)

(1+εs−1)2θ(t−1)) ; ŷ ←
y(t−1)
θ(t−1) /* Scale primal and dual to retain feasibility */

17 return (X̂, ŷ, t)

B Claim 6. If F (y(t)) � 0, then θ∗(t) = argmax0<x<λmin(F ) Φ(x, F (y(t))) and X(t) � 0.

For x ∈ (0, λmin(F )), let g(x) := εsx

n
Tr(F − xI)−1. The following claim shows that our

choice of δs guarantees that g(θ) is a good approximation of g(θ∗) = 1.

B Claim 7. g(θ(t)) ∈ (1− εs, 1).

The following two claims show that θ(t) ≈ X(t) • F (y(t)) provides a good approximation
for λmin(F (y(t))).

B Claim 8. (1 − εs)λmin(F (y(t))) < θ(t) < λmin(F (y(t)))
1+εs/n and λmin(F (y(t)))

1+εs ≤ θ∗(t) ≤
λmin(F (y(t)))

1+εs/n .

B Claim 9. θ(t) < X(t) • F (y(t)) < (1 + εs)θ(t).

Throughout the algorithm, we maintain the invariants that the (non-scaled) dual objective
1T y(t) is exactly 1, that the step size τ(t) and the approximation error ν(t) are between 0
and 1, and that the dual matrix F (y(t)) =

∑
i yi(t)Ai is positive definite. This is summarized

in the following claims.

B Claim 10. 1T y(t) = 1.

B Claim 11. For all iterations t, except possibly the last, ν(t+ 1), τ(t+ 1) ∈ (0, 1).

B Claim 12. F (y(t)) � 0.
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4.2.3 Primal Dual Feasibility and Approximate Optimality
Let tf + 1 be the value of t when the algorithm terminates and sf + 1 be the value of s at
termination. For simplicity, we write s = sf .

B Claim 13. (Primal feasibility). X̂ � 0 and maxiAi • X̂ ≤ 1.

Proof. The first claim is immediate from Claim 6. To see the second claim, we use the
definition of ν(tf ) and the termination condition in line 4 (which is also satisfied even if
X(tf ) •Ai(tf ) −X(tf ) • F (y(tf )) = 0):

X(tf ) •Ai(tf ) −X(tf ) • F (y(tf ))
X(t1) •Ai(tf ) +X(tf ) • F (y(tf )) ≤ εs.

∴ (1 + εs)X(tf ) • F (y(tf )) ≥ (1− εs)X(tf ) •Ai(tf )

= (1− εs) max
i
X(tf ) •Ai

(by the defintition of i(tf ))
∴ (1 + εs)2θ(tf ) ≥ (1− εs) max

i
X(tf ) •Ai.

(∵ X(tf ) • F (y(tf )) ≤ (1 + εs)θ(tf ) by Claim 9)

The claim follows by the definition of X̂ in step 16 of the algorithm. C

B Claim 14. (Dual feasibility). ŷ ≥ 0 and F (ŷ) � I.

Proof. The fact that ŷ ≥ 0 follows from the initialization of y(0) in step 1, Claim 11, and
the update of y(t+ 1) in step 10. For the other claim, we have

λmin
(
F (ŷ)

)
= 1
θ(tf )λmin

(
F (y(tf ))

)
≥ 1 + εs

n
. (by Claim 8)

C

B Claim 15. (Approximate optimality). I • X̂ ≥
(

1−εs
1+εs

)2
1T ŷ.

Proof. By Claim 7, we have Tr(X(tf )) ≥ 1− εs, and by Claim 10, we have 1T y(tf ) = 1. The
claim follows by the definition of X̂ and ŷ in step 16. C

4.2.4 Running Time per Iteration
Given F := F (y(t)) � 0, we first compute an approximation λ̃ of λmin(F ) using Lanczos’
algorithm with a random start [25].

I Lemma 16 ([25]). Let M ∈ Sn+ be a positive semidefinite matrix with N non-zeros and
γ ∈ (0, 1) be a given constant. Then there is a randomized algorithm that computes, with
high (i.e., 1− o(1)) probability a unit vector v ∈ Rn such that vTMv ≥ (1− γ)λmax(M). The
algorithm takes O

( logn√
γ

)
iterations, each requiring O(N) arithmetic operations.

By Claim 8, we need λ̃ to lie in the range [λmin(F )
1+εs/n , λmin(F )]. To obtain λ̃, we may apply

the above lemma with M := F−1 and γ := εs
2n . Then in O

(√
n
εs

logn
)
iterations we get

λ̃ := 1−γ
vTF−1v

satisfying our requirement. However, we can save (roughly) a factor of
√
n in



K. Elbassioni and K. Makino 43:11

the running time by using, instead, M := F−n and γ := εs
2 . Let v be the vector obtained

from Lemma 16, and set λ̃ :=
( 1−γ
vTF−nv

)1/n. Then, as λmax(M) ≥ vTMv ≥ (1− γ)λmax(M),
and λmin(F ) = λmax(F−n)−1/n, we get

λmin(F )
1 + εs/n

≤ (1− γ)1/nλmin(F ) ≤ λ̃ ≤ λmin(F ). (13)

Note that we can compute F−n in O(nω logn), where w is the exponent of matrix multiplic-
ation. Thus, the overall running time for computing λ̃ is O(nω logn+ n2 logn√

εs
).

Given λ̃, we know by Claim 8 and (13) that θ∗(t) ∈ [ λ̃
1+εs , λ̃]. Then we can ap-

ply binary search to find θ(t) := θ∗(t)δs as follows. Let θk = λ̃
1+εs (1 + δs)k, for k =

0, 1, . . . ,K := d 2 ln(1+εs)
δs

e, and note that θL ≥ λ̃. Then we do binary search on the exponent

k ∈ {0, 1 . . . ,K}; each step of the search evaluates g(θk) := εsθ`
n

Tr(F − θkI)−1, and depend-
ing on whether this value is less than or at least 1, the value of k is increased or decreased,
respectively. The search stops when the search interval [`, u] has u ≤ `+ 1, in which case we
set θ(t) = θ`; the number of steps until this happens is O(logK) = O(log 1

δs
) = O(log n

εs
).

By the monotonicity of g(x) (in the interval [0, λmin(F )]), and the property of binary search,
we know that θ∗ ∈ [θ`, θu]. Thus, by the stopping criterion,

θ(t) = θ` ≤ θ∗(t) ≤ θu ≤ θ`+1 = (1 + δs)θ`,

implying that (1− δs)θ∗(t) ≤ θ(t) ≤ θ∗(t). Since evaluating g(θ`) takes O(nω), the overall
running time for the binary search procedure is O(nω log n

εs
), and hence the total time needed

for for computing θ(t) is O(nω log n
ε + n2 logn√

ε
).

All other steps of the algorithm inside the inner while-loop can be done in O(T +n2) time,
where T is the time taken by a single call to the oracle Max(X(t)) in step 7 of the algorithm.
Thus, in view of Claim 26 on the number of iterations below, we obtain Theorem 1.

4.2.5 Number of Iterations
Define B = B(t) := n

εsθ

(
τX1/2(F̂ − F )X1/2 − (θ∗ − θ)X

)
. The following (technical) claims

are needed for the proofs of Claims 23 and 24 below (which are, in turn, the main claims
needed for the analysis of the potential function). They can be skipped at a first reading
and recalled when needed.

B Claim 17. (F − θ∗I)−1 =
(
εsθ
n I − (θ∗ − θ)X

)−1
X.

B Claim 18. F ′ − θ∗I = (F − θI)1/2(I +B)(F − θI)1/2.

B Claim 19. maxj |λj(B)| ≤ 1
2 .

B Claim 20. θ∗(t) < λmin(F (y(t+ 1))).

B Claim 21. if ν > εs, then Tr(B) ≥ ν2

8 .

B Claim 22. If ν > εs, then Tr(B2) < ν2

10 .

Define the potential function Φ(t) := Φ(θ∗(t), F (y(t))).
The following claim states that the potential difference between two consecutive iterations

of the algorithm is sufficiently large.
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B Claim 23. For t, t+ 1 in phase s, Φ(t+ 1)− Φ(t) ≥ εsν(t+1)2

40n .

Proof. Note that Claim 20 implies that θ∗ is feasible to the problem max{Φ(ξ, F ′) : 0 ≤ ξ ≤
λmin(F ′)}. Thus,

Φ(t+ 1) = Φ(θ∗(t+ 1), F ′) ≥ ln θ∗ + εs
n

ln det(F ′ − θ∗I).

∴ Φ(t+ 1)− Φ(t) ≥ εs
n

(ln det(F ′ − θ∗I)− ln det(F − θ∗I))

≥ εs
n

(
ln det

(
F ′ − θ∗I

)
− ln det(F − θI)

)
(∵ θ ≤ θ∗)

= εs
n

ln det (I +B) (by Claim 18)

= εs
n

n∑
j=1

ln (1 + λj(B))

≥ εs
n

n∑
j=1

(
λj(B)− λj(B)2)

(by Claim 19 and ln(1 + z) ≥ z − z2,∀z ≥ −0.5)

= εs
n

(
Tr(B)− Tr(B2)

)
>
εs
8nν

2 − εs
10nν

2 (by Claims 21 and 22)

= εs
40nν

2.

C

On the other hand, the following claim states that the overall potential difference between
any iterations cannot be too large.

B Claim 24. For any t, t′ in phase s,

Φ(t′)− Φ(t) ≤ (1 + εs) ln
X(t) •Ai(t)

(1− εs)X(t) • F (y(t)) .

Proof. Write F = F (y(t)), θ∗ := θ∗(t), θ := θ(t), X := X(t), F ′ = F (y(t′)), θ′∗ := θ∗(t′).
Then

Φ(t′)− Φ(t) = ln θ
′∗

θ∗
+ εs
n

ln det
[
(F − θ∗I)−1(F ′ − θ′∗I)

]
= ln θ

′∗

θ∗
+ εs
n

ln det
[(

εsθ

n
I − (θ∗ − θ)X

)−1
X(F ′ − θ′∗I)

]
(by Claim 17)

= ln θ
′∗

θ∗
+ εs
n

[
ln det

(
εsθ

n
I − (θ∗ − θ)X

)−1
+ ln det

[
X(F ′ − θ′∗I)

]]
≤ ln θ

′∗

θ∗
+ εs
n

[
ln
(
εsθ

n
− δsθ

1− δs

)−n
+ ln det

[
X(F ′ − θ′∗I)

]]
(∵ Tr(X) ≤ 1 by Claim 7 and (1− δs)θ∗ ≤ θ)
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≤ ln θ
′∗

θ∗
+ εs
n

[
ln
(

n

(1− εs)εsθ

)n
+ ln detX(F ′ − θ′∗I)

]
(by defintion of δs)

= ln θ
′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs
n

ln
[
detX(F ′ − θ′∗I)

]
= ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs
n

n∑
j=1

lnλj
(
X(F ′ − θ′∗I)

)
≤ ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

(
1
n

n∑
j=1

λj
(
X(F ′ − θ′∗I)

))
(by the concavity of ln(·))

= ln θ
′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

( 1
n
Tr(XF ′ − θ′∗X)

)
≤ ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

n

)
(∵ Tr(X) ≥ 1− εs by Claim 7)

= ln θ
′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

)
≤ ln θ

′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
max

y∈Rm+ : 1T y=1
X • F (y)− θ′∗(1− εs)

)
(∵ 1T y(t′) = 1 by Claim 10)

= ln θ
′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X •Ai(t) − θ′∗(1− εs)

)
(by defintion of i(t))

≤ max
0≤ξ<X•Ai(t)

{
ln ξ

(1− εs)θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X •Ai(t) − ξ

)}
= (1 + εs) ln

X •Ai(t)
(1− εs2)θ + ln θ

θ∗
(max(·) is achieved at ξ = X•Ai(t)

1+εs )

≤ (1 + εs) ln
X •Ai(t)
(1− εs2)θ (∵ θ ≤ θ∗)

≤ (1 + εs) ln
X •Ai(t)

(1− εs)X • F
. (by Claim 9)

C

Recall by assumption (B-I) that Ā :=
∑r
i=1Ai � 0.

B Claim 25. X(0)•Ai(0)
X(0)•F (y(0)) ≤ ψ := r·λmax(Ai(0))

λmin(Ā) ≤ r·maxi λmax(Ai)
λmin(Ā) ≤ nτ2L.

Proof. Let X(0) =
∑n
j=1 λjuju

T
j be the spectral decomposition of X(0). Then,

X(0) •Ai(0) =
n∑
j=1

λjAi(0) • ujuTj ≤
n∑
j=1

λjλmax(Ai(0)) = λmax(Ai(0)) · Tr(X(0))

X(0) • F (y(0)) =
n∑
j=1

λjF (y(0)) • ujuTj ≥
1
r

n∑
j=1

λjλmin(Ā) = 1
r
λmin(Ā) · Tr(X(0)).

The claim follows. C

Now we combine claims 23, 24 and 25 to obtain a bound on the number of iterations.
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B Claim 26. The algorithm terminates in at most O
(
n logψ + n

ε2

)
iterations.

I Remark 27. If we do not insist on a sparse dual solution, then we can use the initialization
y(0)← 1

m1 in step 1 in Algorithm 1, and replace ψ in Claim 25, and hence in the running
time in Claim 26, by m.
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Abstract
The disjoint set cover (DSC) problem is a fundamental combinatorial optimization problem concerned
with partitioning the (hyper)edges of a hypergraph into (pairwise disjoint) clusters so that the number
of clusters that cover all nodes is maximized. In its online version, the edges arrive one-by-one and
should be assigned to clusters in an irrevocable fashion without knowing the future edges. This
paper investigates the competitiveness of online DSC algorithms. Specifically, we develop the first
(randomized) online DSC algorithm that guarantees a poly-logarithmic (O(log2 n)) competitive ratio
without prior knowledge of the hypergraph’s minimum degree. On the negative side, we prove that
the competitive ratio of any randomized online DSC algorithm must be at least Ω( log n

log log n
) (even if

the online algorithm does know the minimum degree in advance), thus establishing the first lower
bound on the competitive ratio of randomized online DSC algorithms.
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1 Introduction

1.1 Model and Problem Statement
A hypergraph G = (V,E) consists of a set V of nodes and a multiset E of hyperedges (or
simply edges), where each edge is a non-empty subset of V .1 Unless stated otherwise, we
denote n = |V | and m = |E|.

The input to the disjoint set cover (DSC) problem is a hypergraph G = (V,E) and the
output is a color assignment C : E → Z>0 to the edges in E. The objective is to maximize
the number of colors c ∈ Z>0 that cover V , where color c is said to cover V (a.k.a. a covering
color) if the union over all edges e ∈ E with color C(e) = c equals V . (The DSC problem

1 The problem we address in this paper is often defined in terms of the equivalent set system terminology,
where the nodes in V are identified with the elements of some abstract universe and the edges in E are
simply referred to as sets or subsets.
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should not be confused with the classic hypergraph edge coloring problem that also involves
assigning colors to the edges. In particular, in the DSC context, it is not required that edges
with the same color are disjoint.)

In the online DSC problem, the nodes in V are known in advance while the edges in
E, assumed hereafter to be totally ordered with edges indexed as E = {e1, . . . , em}, arrive
sequentially in an online fashion so that edge et, 1 ≤ t ≤ m, arrives at time t. An online
DSC algorithm should decide on the color C(et) at (or immediately after) time t, without
knowing the future edges et+1, . . . , em, and this decision is irrevocable.

Let Alg(G) be the number of covering colors obtained by (online or offline) DSC algorithm
Alg when invoked on hypergraph G. Following the common practice in the realm of online
computation (cf. [4]), we measure the quality of online DSC algorithms by means of competitive
analysis. A deterministic online DSC algorithm Alg is α-competitive if for every n, there
exists some β = β(n) ≥ 0 such that for every n-node hypergraph G, it holds that

Alg(G) ≥ Opt(G)
α

− β , (1)

where Opt is an optimal offline algorithm. A randomized online DSC algorithm Alg is
α-competitive in expectation if the bound in (1) holds in expectation; if this bound also holds
with high probability (abbreviated whp), then Alg is said to be α-competitive whp.2 We
emphasize that these probabilistic statements should hold with respect to the coin tosses
of Alg, making no assumptions on the input edge sequence. Notice that since DSC is a
maximization problem, it follows that if Alg is α-competitive whp, then it is O(α)-competitive
in expectation. We refer to α as the online algorithm’s competitive ratio and say that this
competitive ratio is pure if the bound in (1) holds with β = 0 and impure otherwise.

By definition, the minimum degree δ = minv∈V |{e ∈ E : v ∈ e}| of hypergraph G = (V,E)
serves as an obvious upper bound on Opt(G). Recalling that E may exhibit edge multiplicities,
we emphasize that δ (and Opt(G)) may become arbitrarily large with respect to n as the
length m of the input edge sequence increases. To a large extent, this fact is what makes
the online DSC problem interesting: if δ would have been bounded as a function of n,
then one could have included it in the additive term β and trivially obtain an (impure)
competitive ratio of 1.

1.2 Background and Related Work
The DSC problem is a fundamental combinatorial optimization problem with many ap-
plications in both the offline and online domains. These applications include scheduling
the operation of sensors in sensor networks, allocating servers to users in file systems, and
assigning users to tasks in crowd-sourcing platforms; refer to [9] for more details. The offline
version of the problem is known to be NP-hard and it can be approximated to within an
asymptotically tight O(logn) approximation ratio [10].

The rigorous study of the online DSC problem was initiated by Pananjady et al. [9].3
They first prove that a deterministic online DSC algorithm that does not hold a prior

2 Throughout this paper, we say that event A holds whp if P(A) ≥ 1 − n−z for an arbitrarily large
constant z.

3 The authors of [9] also define the DSC problem in terms of a hypergraph, however, in that paper, the
role of the nodes and edges is reversed so that the nodes in V arrive in an online fashion, each reporting
the edges in E to which it belongs. To avoid confusion, we discuss the results of [9] using the current
paper’s model that follows the common convention in the literature on online and streaming hypergraph
algorithms (see, e.g., [12, 7, 8, 6]), where the hypergraph objects that arrive in an online fashion are the
edges in E.
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knowledge of the minimum degree δ cannot admit a pure competitive ratio better than Ω(n).4
Following that, Pananjady et al. focus their attention on online algorithms that know δ (or an
approximation thereof) in advance and develop a deterministic purely O(logn)-competitive
online DSC algorithm. They also establish an Ω(

√
logn) lower bound on the (impure)

competitive ratio of any such algorithm.
The DSC problem can be viewed as a (maximization) extension of the classic (minimiza-

tion) set cover problem, where (using our hypergraph terminology) the goal is to construct
a covering edge subset of minimum size. In its online version, the hypergraph G = (V,E)
is known in advance, but only a subset V ′ ⊆ V of the nodes should be covered. Those are
revealed one-by-one in an online fashion and must be covered immediately upon arrival.
Using the online primal-dual technique (see [5]), Alon et al. [1] developed a (deterministic)
online algorithm for this problem with competitive ratio O(logn logm). They also proved
that this is optimal up to an O(logn+ logm) factor.

1.3 Our Contribution
Our goal in this paper is to lift the assumption that the minimum degree δ is known in
advance, aiming for online DSC algorithms that do not hold any initial knowledge of that
hypergraph parameter, referred to hereafter as δ-oblivious online algorithms. As a warm
up, we develop a simple deterministic δ-oblivious online algorithm with linear (in n) pure
competitive ratio, thus matching the Ω(n) lower bound of [9]. Nevertheless, we wish to
obtain a sublinear competitiveness which means that our online algorithms must be either
randomized or admit an impure competitive ratio (or both). We advocate for this compromise:
randomization as well as impure competitiveness are omnipresent in the online computation
literature and seem like a small price to pay for lifting the often unrealistic assumption that
the online algorithm knows the parameter δ in advance, recalling that this parameter would
typically increase with the length of the input sequence.

The main technical contribution of the current paper is twofold: On the positive side, we
develop a randomized δ-oblivious online DSC algorithm and prove that it is purely O(log2 n)-
competitive in expectation and impurely O(log2 n)-competitive whp. On the negative side,
we prove that no randomized online DSC algorithm can have impure competitive ratio better
than Ω(logn/ log logn) in expectation or whp. Interestingly, this result holds even for online
algorithms that know δ in advance, thus improving upon the Ω(

√
logn) lower bound of [9]. A

comparison between the results of [9] and those established in the current paper is presented
in Table 1.

1.4 Paper’s Organization
The remainder of this paper is organized as follows. Following some preliminaries in Section 2,
we present our simple deterministic δ-oblivious online DSC algorithm in Section 3, where
we also prove that it is O(n)-competitive. Section 4 is then dedicated to our main positive
result: a randomized δ-oblivious online DSC algorithm with competitive ratio O(log2 n).
The Ω(log(n)/ log logn) lower bound on the competitiveness of randomized online DSC
algorithms is established in Section 5. Finally, Section 6 is dedicated to some open questions.

4 This negative result is obtained on hypergraphs whose δ parameter is proportional to n and the authors
of [9] state it as an Ω(δ) lower bound. We prefer to view it as an Ω(n) lower bound since in the current
paper, all competitive ratio bounds are expressed as a function of n, and since it does not rule out the
existence of a deterministic online DSC algorithm with pure competitive ratio O(n) that works even for
instances with δ � n (see Section 1.3).
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Table 1 A comparison between the existing state of the art (top cell in each table entry) and the
new results established in the current paper (bottom cell in each table entry). Empty cells indicate
the lack of known results or lack of improvement over the existing results.

known δ unknown δ
up. bound low. bound up. bound low. bound

deterministic
pure O(logn) Ω

(√
logn

)
Ω(n)

Ω
(

logn
log logn

)
O(n)

impure O(logn) Ω
(√

logn
)

Ω
(√

logn
)

Ω
(

logn
log logn

)
O(n) Ω

(
logn

log logn

)

rand. whp
pure O(logn)

Ω
(

logn
log logn

)
O(n) Ω

(
logn

log logn

)
impure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)

rand. in expect.
pure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)
impure O(logn)

Ω
(

logn
log logn

)
O
(
log2 n

)
Ω
(

logn
log logn

)

2 Preliminaries

Consider some hypergraph G = (V,E). Given node v ∈ V , let E(v) = {e ∈ E | v ∈ e} be the
set of edges that contain v and define the degree of v in G to be the size of this set, denoted
by d(v) = |E(v)|. Let δ = minv∈V d(v) denote the minimum degree in G.

For 1 ≤ t ≤ m, let Et = {e1, . . . , et} be the set of edges that arrive up to (including) time
t. Let Et(v) = Et ∩ E(v) and let dt(v) = |Et(v)| be the degree of node v in the hypergraph
(V,Et). Define ηt = minv∈et

dt(v) to be the minimum degree, at time t, among the nodes
included in edge et.

Recall that the goal in the DSC problem is to assign some color C(e) ∈ Z>0 to each edge
e ∈ E. Color c ∈ Z>0 is said to cover node v ∈ V if C(e) = c for some edge e ∈ E(v). Cast
in this terminology, the objective of the DSC problem is to maximize the number of covering
colors, that is, the colors that cover every v ∈ V (see Section 1.1).

Given two integers x ≤ x′, let [x, x′] denote the set of integers y satisfying x ≤ y ≤ x′

and let [x] = [1, x]. We generalize this notation to x ∈ R>1 by defining [x] = [dxe]. (The
notation [x, x′] is reserved in the current paper only for integral x and x′.) A log(·) operator
with an unspecified base refers to log2(·).

Concentration Bounds

Binary random variables X1, . . . , Xk are said to be non-positively correlated if the following
two properties hold for any I ⊆ [k]:5
(a) P

(∧
i∈I Xi = 0

)
≤
∏
i∈I P(Xi = 0); and

(b) P
(∧

i∈I Xi = 1
)
≤
∏
i∈I P(Xi = 1).

The following theorem, referred to as Chernoff’s bounds for non-positively correlated random
variables, was proved in [11] (see also [3]).

5 In some literature, the term negatively correlated is used instead of non-positively correlated.
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I Theorem 2.1. Let X1, . . . , Xk be non-positively correlated binary random variables and
let 0 ≤ a1, . . . , ak ≤ 1. Let X =

∑
i∈[k] aiXi and let µ = E(X). Then,

P(X ≤ (1− δ)µ) ≤ exp(−δ2µ/2) for any 0 ≤ δ ≤ 1; and
P(X ≥ d) ≤ 2−d for any d ≥ 6µ.

Notice that independent random variables are, in particular, non-positively correlated.
Indeed, by replacing the requirement that the random variables X1, . . . , Xk are non-positively
correlated by the requirement that they are independent, one obtains (two of) the classic
Chernoff bounds.

3 Warmup: a Deterministic Greedy Algorithm

We begin with a simple δ-oblivious deterministic online DSC algorithm, referred to as
Greedy, whose competitive ratio is purely O(n), thus matching the Ω(n) lower bound of
[9] for such algorithms. For each color c ∈ Z>0, the algorithm maintains the variable Ut(c)
defined to be the set of all nodes covered by the edges in Et whose color is c, that is,
Ut(c) =

⋃
1≤t′≤t:C(et′ )=c et′ .

Greedy uses the Ut−1(·) variables to decide on the color assignment of edge et, 1 ≤ t ≤ m,
setting C(et) to be the smallest color c ∈ Z>0 such that et * Ut−1(c). This can be viewed as
coloring et with the smallest color whose cover “benefits” from this assignment. The analysis
of Greedy’s competitive ratio relies on the following two observations.

I Observation 3.1. If δ ≥ 1, then Greedy(G) ≥ 1.

Proof. Follows immediately from the greedy nature of the algorithm that colors edge et with
color C(et) = 1 if et contains a node that does not belong to any edge e1, . . . , et−1. J

I Observation 3.2. Greedy colors at most n edges with color c for every c ∈ Z>0.

Proof. If edge et is assigned with color c, then |Ut(c)| ≥ |Ut−1(c)|. The assertion follows
since Ut(c) ⊆ V for every 1 ≤ t ≤ m. J

We are now ready to prove the following theorem.

I Theorem 3.3. Greedy is purely O(n)-competitive.

Proof. If d(v) = 0 for some node v ∈ V , then clearly Greedy(G) = Opt(G) = 0, so assume
hereafter that δ ≥ 1. We argue that Greedy(G) ≥ bδ/nc. Combined with Observation 3.1,
this implies that

Greedy(G) ≥ max{1, δ/n− 1} ≥ max{1, Opt(G)/n− 1} ≥ Opt(G)/(2n) ,

thus establishing the assertion. To that end, consider some node v ∈ V and recall that
Observation 3.2 ensures that each color c ∈ Z>0 is assigned to at most n edges in E(v).
Therefore, there must exist at least bd(v)/nc ≥ bδ/nc colors c ∈ Z>0 that cover v. Due to
the greedy nature of the algorithm, we deduce that the colors 1, . . . , bδ/nc cover v which
establishes the assertion since this is true for every v ∈ V . J
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4 The Main Algorithm

In this section, we present our main positive contribution: a randomized δ-oblivious online
DSC algorithm, referred to as Oblv. We start by providing an intuitive overview for this
algorithm in Section 4.1. The algorithm itself is then presented in Section 4.2. In Section 4.3,
we establish a combinatorial lemma regarding the online DSC problem in general. This
lemma plays a key role in Section 4.4, where we prove that Oblv is O(log2 n)-competitive in
expectation. Finally, the proof presented in Section 4.4 is extended in Section 4.5 to show
that the same (asymptotic) competitive ratio bound holds also whp.

4.1 Technical Challenges and Intuition

Pananjady et al. [10] developed a randomized offline DSC algorithm that on hypergraph
G = (V,E), simply colors each edge e ∈ E by a color C(e) picked uniformly at random
(abbreviated hereafter by uar) from the palette P = [Θ(δ/ logn)]. Since the degree d(v)
of every node v ∈ V is at least δ, it is easy to see that each color c ∈ P covers v whp,
hence, by the union bound, c covers all V whp. Using standard arguments, one can conclude
that the expected number of covering colors is at least Ω(|P |) = Ω(δ/ logn), which is an
O(logn)-approximation as δ ≥ Opt(G).

In [9], Pananjady et al. observed that the offline algorithm of [10] can be implemented as
an online algorithm assuming that δ is known in advance. Their main technical contribution
was then to derandomize this randomized algorithm by employing the method of conditional
expectation (see, e.g., [2]), carefully adjusted to work in an online fashion.

In contrast, in the current paper we aim for a δ-oblivious online algorithm and hence,
cannot use P = [Θ(δ/ logn)] as the palette from which a color is picked for each edge
et ∈ E. Instead, we estimate δ by the parameter ηt = minv∈et

dt(v) that can be calculated
at time t as it depends only on information that was already exposed to the algorithm. The
combinatorial key to our algorithm is that (at least) a constant fraction of the edges et that
contain node v ∈ V satisfy ηt ≥ Ω(d(v)/n). This means that we can identify (in hindsight) a
sufficiently large subset of the edges et ∈ E(v) for which Ω(δ/n) ≤ ηt ≤ δ, or equivalently,
log ηt ≤ log δ ≤ log ηt +O(logn).

We rely on this combinatorial insight for the design of Oblv: Upon arrival of edge
et, the algorithm assigns the variable rt to be an integer picked uar from the integers
in the range [log ηt, log ηt + O(logn)], thus ensuring that 2rt is a constant approximation
of δ with probability Ω(1/ logn). The algorithm then uses 2rt to construct the palette
Pt = [Ω(2rt/ log2 n)] from which the color C(et) of edge et is picked (uar), where the role
of the extra logn factor in the denominator is to account for the probability that 2rt is a
good estimate for δ. The rest of the analysis follows the aforementioned line of arguments,
concluding that Oblv is O(log2 n)-competitive in expectation.

For whp competitiveness we have to work a little bit harder though. While we identify
(in hindsight) a palette P of size Θ(δ/ log2 n) such that each color c ∈ P covers V whp, the
number of such colors may be too large to apply the union bound over all of them, thus we
cannot simply argue that all colors in P cover V (simultaneously) whp. Instead, we show
that for each node v ∈ V , the random variables that indicate the events that color c ∈ P does
not cover v are non-positively correlated. By applying the Chernoff bound for non-positively
correlated random variables, we conclude that at most a (1/(2n))-fraction of the colors in P
do not cover v whp, hence the total number of colors in P that do not cover the whole of V
is at most |P |/2 whp.
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4.2 Algorithm’s Description
Algorithm Oblv works as follows. Upon arrival of edge et, 1 ≤ t ≤ m, the algorithm calculates
ηt = minv∈et

dt(v) and `t = dlog ηte and then assigns the variable rt to an integer picked uar
from the set [`t, `t + dlog(n− 1)e+ 2]. Following that, the color C(et) of edge et is picked uar
from the palette Pt =

[
ξ · 2rt/ log2 n

]
, where ξ > 0 is a constant whose value is determined

(implicitly) later on. A pseudocode description of Oblv is provided in Algorithm 1.

Algorithm 1 The operation of Oblv upon arrival of edge et, 1 ≤ t ≤ m.
1: ηt ← minv∈et

dt(v)
2: `t ← dlog ηte
3: pick rt uar from [`t, `t + dlog(n− 1)e+ 2]
4: Pt ←

[
ξ · 2rt/ log2 n

]
. ξ > 0 is a constant

5: color edge et with color C(et) picked uar from Pt

4.3 A Combinatorial Lemma
Fix some node v ∈ V . Edge et ∈ E(v) is said to be heavy (for v) if

dt(v) ≤ 2(n− 1)ηt ;

otherwise, we say that it is light (for v).

I Lemma 4.1. For every time 1 ≤ T ≤ m, more than dT (v)/2 of the edges in ET (v)
are heavy.

Proof. Consider the edge sequence σ = (e1, . . . , eT ). By the definition of ηt, edge et ∈ ET (v)
is light if and only if there exists some node u ∈ et − {v} whose degree at time t satisfies
dt(u) < dt(v)/(2(n− 1)). On an intuitive level, this means that the challenge in constructing
an edge sequence σ that contradicts the assertion, is to increase the degree of v while keeping
the degrees of the other nodes small, thus enabling the generation of many light edges with
few heavy edges. We employ this intuition to make the following simplifying assumptions.

The first assumption we make for the sake of simplifying the proof is that v is contained
in all edges of the sequence σ, that is, ET (v) = ET . This assumption is clearly without loss
of generality since the existence of an edge et that does not contain v (and hence is neither
heavy nor light) increases the degrees of the nodes in et without increasing the degree of v.

Next, notice that all singleton edges of the form et = {v} are heavy. The second
assumption we make for the sake of simplifying the proof is that every heavy edge et in σ is
a singleton, i.e., et = {v}. To see that this assumption is without lose of generality, suppose
that et includes additional nodes u 6= v and consider the edge sequence σ′ obtained from σ by
removing these nodes u from et. Comparing σ′ to σ, one observes that dt′(u) decreases and
dt′(v) remains unchanged for every t′ ≥ t, thus if σ contradicts the assertion, then so does σ′.

The third assumption we make for the sake of simplifying the proof is that every light
edge et in σ is of size |et| = 2. To see that this assumption is without lose of generality,
suppose that et is light with |et| ≥ 3 and let u be a node of minimum degree dt(u) in et.
Consider the edge sequence σ′ obtained from σ by removing from et any node u′ ∈ et−{v, u}.
Comparing σ′ to σ, one observes that edge et remains light (due to the existence of u) while
dt′(u′) decreases and dt′(v) remains unchanged for every t′ ≥ t, thus if σ contradicts the
assertion, then so does σ′.
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The fourth assumption we make for the sake of simplifying the proof is that σ is composed
of a prefix of heavy edges followed by a suffix of light edges; i.e., there exists some 1 ≤ t̂ ≤ T
such that edge et is heavy if 1 ≤ t ≤ t̂ and light if t̂+ 1 ≤ t ≤ T . To see that this assumption
is without loss of generality, suppose that there exists some 1 ≤ t ≤ T − 1 such that edge
et = {v, u} is light and edge et+1 = {v} is heavy and consider the edge sequence σ′ obtained
from σ by swapping between et and et+1. By construction, this swap does not turn et (now
arriving at time t+ 1) into a heavy edge as du(t+ 1) = du(t) and dv(t+ 1) > dv(t), thus if
σ contradicts the assertion, then so does σ′. Our assumption is now justified by repeating
these swap operations.

So, based on the aforementioned four assumptions, the edge sequence σ = (e1, . . . , eT )
consists of a prefix (e1, . . . , et̂) of heavy edges of the form et = {v} and a suffix (et̂+1, . . . , eT )
of light edges of the form et = {v, u} for some node u 6= v referred to hereafter as the extra
node of edge et. The fifth and last assumption we make for the sake of simplifying the
proof is that the degrees of the extra nodes are monotonically non-decreasing; that is, if u
is the extra node of edge et, t̂+ 1 ≤ t ≤ T − 1, and u′ is the extra node of edge et+1, then
dt(u) ≤ dt+1(u′). To see that this assumption is without loss of generality, suppose that
dt(u) > dt+1(u′) and consider the edge sequence σ′ obtained from σ by swapping between et
and et+1. By construction, since et and et+1 are light in σ, they are also light in σ′, thus if
σ contradicts the assertion, then so does σ′. Our assumption is now justified by repeating
these swap operations.

Observe that the last simplifying assumption implies that if u is the extra node of edge
et, t̂+ 1 ≤ t ≤ T , and there exists some node u′ /∈ {v, u} with dt−1(u′) < dt−1(u), then u′
does not appear as the extra node of any edge et′ , t ≤ t′ ≤ T . This observation allows us to
conclude that if u is the extra node of edge et, t̂+ 1 ≤ t ≤ T , then dt(u) ≥ (t− t̂)/(n− 1).

We are now ready to establish the assertion by proving that t̂ > T/2. To that end, recall
that by the definition of a light edge, if u is the extra node of edge et, t̂+ 1 ≤ t ≤ T , then

dt(u) < dt(v)
2(n− 1) = t

2(n− 1) .

Put together with the bound dt(u) ≥ (t − t̂)/(n − 1), we conclude that t/2 > t − t̂ which
holds if and only if t̂ > t/2, thus completing the proof by taking t = T . J

I Corollary 4.2. For every time 1 ≤ T ≤ m, if dT (v) ≥ z, then∣∣∣∣{et ∈ ET (v) | ηt >
z

8(n− 1)

}∣∣∣∣ > z/4 .

Proof. Let et(1), . . . , et(z) be the first z edges in the sequence (e1, . . . , eT ) that contain node v,
ordered so that t(1) < · · · < t(z) (we know that these z edges exist as dT (v) ≥ z). Lemma 4.1
ensures that more than z/2 of the edges et(j), 1 ≤ j ≤ z, are heavy (for v), hence even
if all edges in

{
et(j) | 1 ≤ j ≤ z/4

}
are heavy, we still have more than z/4 heavy edges in

H =
{
et(j) | z/4 < j ≤ z

}
. Since dt(j)(v) = j > z/4 for every edge et(j) ∈ H, it follows that

more than z/4 of the edges et(j) ∈ H satisfy ηt(j) > z/(8(n − 1)), thus establishing the
assertion. J

4.4 Competitiveness in Expectation
We now turn to bound the competitive ratio of Oblv in expectation, based on Corollary 4.2.
Let w = blog δc and let

P =
[
ξ · 2w/ log2 n

]
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be the palette from which Oblv picks a color C(et) (uar) when the random variable rt is
assigned to rt = w. Given node v ∈ V , let

T (v) = min {1 ≤ t ≤ m | dt(v) = 2w}

be the first time t at which the degree of v reaches 2w ≤ δ. Let

F (v) =
{
et ∈ ET (v)(v) | ηt >

2w

8(n− 1)

}
,

recalling that ET (v)(v) is the set of edges et ∈ E(v) with 1 ≤ t ≤ T (v), and let

Fw(v) = {et ∈ F (v) | rt = w}

be the (random) set of edges et in F (v) for which Oblv picks a color (uar) from the palette P .

I Lemma 4.3. If δ ≥ Ω(log2 n), then |Fw(v)| ≥ Ω(δ/ logn) whp for every node v ∈ V .

Proof. Consider some edge et ∈ F (v) and let At denote the event et ∈ Fw(v). By definition,

2w

8(n− 1) < ηt ≤ dt(v) ≤ 2w ,

hence

w − (log(n− 1) + 3) < log ηt ≤ w .

Since w is an integer, it follows that

w − (dlog(n− 1)e+ 2) ≤ `t ≤ w ,

where recall that `t = dlog ηte. Therefore, w ∈ [`t, `t + dlog(n− 1)e+ 2] and by the design
of the algorithm, we conclude that rt is assigned to w with probability 1/(dlog(n− 1)e+ 3)
implying that P(At) ≥ Ω(1/ logn).

Corollary 4.2 guarantees that |F (v)| > 2w/4 ≥ Ω(δ), hence

E (|Fw(v)|) =
∑

et∈F (v)

P(At) ≥ Ω(δ/ logn) .

If δ ≥ Ω(log2 n), then E(|Fw(v)|) ≥ Ω(logn), therefore, as the events At are independent,
we can apply Theorem 2.1 to conclude that |Fw(v)| ≥ Ω(δ/ logn) whp. J

I Corollary 4.4. Fix some color c ∈ P . If δ ≥ Ω(log2 n), then c covers v whp for every
node v ∈ V .

Proof. Lemma 4.3 ensures that |Fw(v)| ≥ Ω(δ/ logn) whp; condition hereafter on this event.
The algorithm is designed so that each edge et ∈ Fw(v) is colored C(et)← c with probability
1/|P | = Ω(log2(n)/δ). Therefore, the probability that none of the edges in Fw(v) is colored
c is at most(

1− Ω
(
log2(n)/δ

))Ω(δ/ logn) ≤ exp(−Ω(logn)) ,

thus establishing the assertion. J

We are now ready to establish the desired competitive ratio bound.
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I Theorem 4.5. Oblv is (impurely) O(log2 n)-competitive in expectation.

Proof. We prove the assertion by showing that

E (Oblv(G)) ≥ Ω
(
Opt(G)/ log2 n

)
− 1 .

This bound holds trivially if Opt(G) ≤ δ ≤ O(log2 n), so assume that δ ≥ Ω(log2 n). Applying
the union bound to the promise of Corollary 4.4, we conclude that color c ∈ P covers all
nodes in V whp and, in particular, with probability at least (say) 1/2. Therefore, by the
linearity of expectation,

E(Oblv(G)) ≥ |P | /2 ≥ Ω
(
δ/ log2 n

)
≥ Ω

(
Opt(G)/ log2 n

)
, (2)

thus completing the proof. J

Recall that in Section 3, we presented the deterministic online DSC algorithm Greedy
whose competitive ratio is purely O(n). By combining it with Oblv, we can turn the
competitive ratio bound promised by Theorem 4.5 into a pure one. To that end, consider
the online algorithm Oblvp that runs Oblv with probability 1/2 and Greedy with probability
1/2. If δ = 0, then clearly Opt(G) = Oblvp(G) = 0. If δ ≥ Ω(log2 n), then

E(Oblvp(G)) ≥ E(Oblv(G))/2 ≥ Ω(Opt(G)/ log2 n) ,

where the last transition holds due to (2). If 1 ≤ δ ≤ O(log2 n), then

E(Oblvp(G)) ≥ Greedy(G)/2 ≥ 1/2 ≥ Ω(Opt(G)/ log2 n) ,

where the second transition holds due to Observation 3.1. Put together, we obtain the
following corollary.

I Corollary 4.6. Oblvp is purely O(log2 n)-competitive in expectation.

4.5 Competitiveness with High Probability
We now turn to show that the competitive ratio bound established in Section 4.4 holds also
whp (though not purely). For node v ∈ V and color c ∈ P , define the random variable
Xv(c) to be an indicator for the event that color c does not cover v, namely, Xv(c) = 1 if
and only if C(et) 6= c for all edges et ∈ E(v). Recall that Corollary 4.4 guarantees that if
δ ≥ Ω(log2 n), then

E (Xv(c)) ≤ n−z (3)

for an arbitrarily large constant z.
The analysis in this section relies on proving that the random variables Xv(·) are non-

positively correlated (Lemma 4.8), based on the following observation.

I Observation 4.7. For every node v ∈ V , color subset Q ⊂ P , and color c′ ∈ P −Q, we
have
(a) P

(∧
c∈QX

v(c) = 0 | Xv(c′) = 0
)
≤ P

(∧
c∈QX

v(c) = 0
)
; and

(b) P
(∧

c∈QX
v(c) = 1 | Xv(c′) = 1

)
≤ P

(∧
c∈QX

v(c) = 1
)
.
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Proof. To see that property (a) holds, notice that if Xv(c′) = 0, then at least one edge in
E(v) is colored c′ which means that there is one less edge available for the colors in Q, hence
P
(∧

c∈QX
v(c) = 0

)
decreases. To see that property (b) holds, notice that if Xv(c′) = 1,

then none of the edges in P is colored c′ which means that there is one less color in P to
compete with the colors in Q, hence P

(∧
c∈QX

v(c) = 1
)
decreases. J

I Lemma 4.8. For every node v ∈ V , the random variables Xv(c), c ∈ P , are non-positively
correlated.

Proof. Fix some Q ⊆ P . We prove that P
(∧

c∈QX
v(c) = 0

)
≤
∏
c∈Q P(Xv(c) = 0); the

proof that P
(∧

c∈QX
v(c) = 1

)
≤
∏
c∈Q P(Xv(c) = 1) is analogous. To that end, we let

Q = {c1, . . . , ck} and prove by induction on k that

P

(
k∧
i=1

Xv(ci) = 0
)
≤

k∏
i=1

P (Xv(ci) = 0) .

The case k = 1 holds trivially, so assume that the inequality holds for k − 1 and develop

P

(
k∧
i=1

Xv(ci) = 0
)

=P

(
k−1∧
i=1

Xv(ci) = 0 | Xv(ck) = 0
)
· P (Xv(ck) = 0)

≤P

(
k−1∧
i=1

Xv(ci) = 0
)
· P (Xv(ck) = 0)

≤
k−1∏
i=1

P (Xv(ci) = 0) · P (Xv(ck) = 0) =
k∏
i=1

P (Xv(ci) = 0) ,

where the second transition follows from Observation 4.7 and the third transition holds due
to the inductive hypothesis. J

Assume hereafter that δ ≥ z′n log3 n for a sufficiently large constant z′ which means that
|P | ≥ 2zn logn for a constant z that can be made arbitrarily large. Consider some node
v ∈ V and let Xv =

∑
c∈P X

v(c). Applying the linearity of expectation to (3), we deduce
that E(Xv) ≤ |P | · n−z for an arbitrarily large constant z. Lemma 4.8 allows us to apply
Theorem 2.1, thus obtaining the bound

P
(
Xv ≥ |P |2n

)
≤ 2−|P |/(2n) ≤ 2−2zn logn/(2n) = n−z (4)

for an arbitrarily large constant z. We are now ready to establish the desired competitive
ratio bound.

I Theorem 4.9. Oblv is (impurely) O(log2 n)-competitive whp.

Proof. We prove the assertion by showing that

Oblv(G) ≥ Ω
(
Opt(G)/ log2 n

)
−O(n logn)

whp. This bound holds trivially if Opt(G) ≤ δ < z′n log3 n (recall that z′ is a constant), so
assume that δ ≥ z′n log2 n which means that the bound in (4) holds for every node v ∈ V .
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Let X be the random variable that takes on the number of colors in P that do not
cover V . Notice that by the definition of Xv, we know that X ≤

∑
v∈V X

v. Applying the
union bound over all nodes to (4), we conclude that Xv < |P |/(2n) for all nodes v ∈ V
simultaneously whp; condition hereafter on this event. We can now develop

X ≤
∑
v∈V

Xv < |P |/2

which means that Oblv(G) > |P |/2. The assertion follows since |P | ≥ Ω(δ/ log2 n). J

5 Lower Bound

This section is dedicated to our main negative result: there does not exist a randomized
online DSC algorithm with (impure) competitive ratio better than Ω(log(n)/ log logn) in
expectation (and thus also whp). This lower bound is derived from the following theorem by
Yao’s min-max principle.

I Theorem 5.1. For every n0 and δ0, there exist n ≥ n0, δ ≥ δ0, and a distribution D over
n-node hypergraphs with minimum degree δ such that (1) Opt(G) = δ for every hypergraph
G in the support of D; and (2) EG∼D(Alg(G)) ≤ O

(
δ log logn

logn

)
for any deterministic online

DSC algorithm Alg.

Theorem 5.1 is established in two stages. First, in Section 5.1, we construct the promised
distribution D for the special case that δ = Θ(log(n)/ log logn) (and Alg(G) ≤ O(1)).
Then,in Section 5.2, we show how this construction is extended for arbitrarily large values of
the parameter δ

5.1 The Basic Construction
Let q = 22z for an arbitrarily large integer z and let r = q/(2 log q) (an integer by the choice
of q). Each hypergraph in the support of D has 2q nodes, q + r edges, and minimum degree
δ = r. We present the construction of a random hypergraph G = (V,E) in D and then show
that Opt(G) = r, whereas

EG (Alg(G)) < 3 (5)

for any deterministic online DSC algorithm Alg, thus establishing Theorem 5.1 under the
restriction that δ = Θ(log(n)/ log logn).

The nodes in V are identified with the vectors in {0, 1}q. The edges in E arrive in the
form of a deterministic prefix ep1, . . . , epq followed by a random suffix es1, . . . , esr. The prefix is
defined by setting

epi = {v ∈ {0, 1}q | v(i) = 1}

for every i ∈ [q]. For the suffix, we pick a partition S = {S1, . . . , Sr} of [q] into r equally
sized clusters (each of size |S`| = q/r = 2 log q) uar among the collection of all such partitions.
The suffix is then defined by setting

es` = {v ∈ {0, 1}q | v(i) = 0 for all i ∈ S`}

for every ` ∈ [r]. Refer to Figure 1 for an illustration of the suffix edges.

I Lemma 5.2. The hypergraph G satisfies Opt(G) = δ = r.
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Figure 1 The construction of the suffix edges for q = 16 assuming that the random partition
S = {S1, S2} consists of the clusters S1 = {4, 5, 6, 7, 8, 12, 13, 16} and S2 = {1, 2, 3, 9, 10, 11, 14, 15}.
The × symbol represents a ’dont-care’ vector entry, i.e., it can be a 0 or a 1.

Proof. Since the zero vector v0 = (0, . . . , 0) is included in all suffix edges es` , ` ∈ [r] and
is not included in any prefix edge vpi , i ∈ [q], it follows that δ ≤ d(v0) = r. The proof is
completed by showing that Opt(G) ≥ r, recalling that Opt(G) ≤ δ.

Consider the color assignment C∗ : E → [r] that colors each suffix edge es` , ` ∈ [r], by
color C∗(es`) = ` and each prefix edge epi , i ∈ [q], by color C∗(epi ) = `(i) defined to be the
unique ` ∈ [r] that satisfies i ∈ S` (this is well defined since S = {S1, . . . , Sr} is a partition
of [q]). We argue that under color assignment C∗, color ` covers V for every ` ∈ [r]. Indeed,
if vector v ∈ {0, 1}q is not included in es` , then v(i) = 1 for some i ∈ S`, hence v is included
in edge epi . This means that `(i) = `, thus C∗(epi ) = `. The assertion follows. J

The rest of this section is dedicated to proving that (5) holds. Fix some deterministic
DSC algorithm Alg. We assume that Alg uses only (a subset of) the colors in [q]. To see that
this assumption is without loss of generality, notice that if color c ∈ Z>0 is not assigned to
any prefix edge epi , i ∈ [q], then it cannot cover V since the vector (1, . . . , 1) is not included
in any suffix edge.

So, let C : E → [q] be the color assignment returned by Alg. Color c ∈ [q] is said to
be heavy, if it is assigned to at least q/2 prefix edges, i.e., |{i ∈ [q] | C(epi ) = c}| ≥ q/2;
otherwise, it is said to be light. By definition, there exists at most 2 heavy colors, so Alg(G)
is bounded from above by 2 plus the number of covering light colors. The proof that (5)
holds is completed by the following lemma due to the linearity of expectation as clearly,
there are at most q light colors in [q].

I Lemma 5.3. If color c ∈ [q] is light, then c covers V with probability smaller than 1/q.

Proof. Consider some light color c and let I = {i ∈ [q] | C(epi ) = c}. Color c is said to be
`-free, ` ∈ [r], if S` * I, that is, if there exists some index j ∈ S` such that the prefix edge
epj is not colored c. It is said to be free if it is `-free for all ` ∈ [r].

We argue that if c is free, then it does not cover V even if all suffix edges are colored c.
To that end, let b`, ` ∈ [r], be some index in S` − I (this is well defined since c is `-free) and
let B = {b` | ` ∈ [r]}. Consider the vector v defined by setting v(i) = 1 if i ∈ B; and v(i) = 0
otherwise. The vector v is not included in any prefix edge epi , i ∈ I, because B ∩ I = ∅, hence
v(i) = 0 for all i ∈ I. It is also not included in any suffix edge es` , ` ∈ [q], because v(b`) = 1.
Therefore, if c is free, then there exists at least one vector in {0, 1}q that it does not cover.
Refer to Figure 2 for an illustration. To complete the proof, we show that c is free with
probability greater than 1− 1/q. Fix some ` ∈ [q] and recall that the cluster S` is a random
subset of [q] of size q/r = 2 log q. For the sake of this proof, we think of S` as being formed
by randomly choosing 2 log q indices from [q] without repetitions; denote these indices by
i1, . . . , i2 log q. By definition, color c is not `-free if and only if ij ∈ I for all 1 ≤ j ≤ 2 log q.
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Figure 2 Building on the example depicted in Figure 1, the color c with I = {2, 4, 7, 11, 14} is
free: it is 1-free because 5 ∈ S1 − I; it is 2-free because 3 ∈ S2 − I. Therefore, the vector v is not
covered by any edge in {ep

2, e
p
4, e

p
7, e

p
11, e

p
14} ∪ {e

s
1, e

s
2}.

We can now develop

P

2 log q∧
j=1

ij ∈ I

 =
2 log q∏
j=1

P

ij ∈ I | j−1∧
j′=1

ij′ ∈ I

 =
2 log q−1∏
j=0

|I| − j
q − j

≤ (|I|/q)2 log q .

As c is assumed to be light, we have |I| < q/2, hence the probability that c is not `-free is
smaller than (1/2)2 log q = 1/q2. By the union bound over all ` ∈ [r], we conclude that the
probability that c is not `-free for any (at least one) ` ∈ [r] is smaller than r/q2 < 1/q, thus
establishing the assertion. J

5.2 The Multiplied Construction
In this section, we extend the distribution D presented in Section 5.1 to a distribution Dk,
where k is an arbitrarily large (positive) integer. Each hypergraph in the support of Dk has
2q nodes, k(q + r) edges, and minimum degree δk = kr. We present the construction of a
random hypergraph Gk = (Vk, Ek) in Dk and then show that Opt(Gk) = kr, whereas

EGk
(Alg(Gk)) < 3k (6)

for any deterministic online DSC algorithm Alg, thus completing the proof of Theorem 5.1.
Like the construction of G = (V,E) presented in Section 5.1, the nodes in Vk are also

identified with the vectors in {0, 1}q. The basic idea behind the construction of the edge
set Ek is to multiply the edges in E, creating k copies for each one of them. A naive
attempt to do so would be to simply introduce k independent instantiations of E one after
the other with the hope that the arguments used in Section 5.1 can be applied to each
instantiation separately. The problem with this approach is that the prefix edges of the
(j + 1)-st instantiation arrive after the suffix edges of the j-th instantiation, allowing the
online algorithm to “color them together” optimally.

To overcome this obstacle, we design the edge sequence so that (all copies of) the prefix
edges arrive before (all copies of) the suffix edges. Specifically, the edges in Ek arrive in the
form of a deterministic prefix ep1,1, . . . , e

p
1,k, e

p
2,1, . . . , e

p
2,k, . . . , e

p
q,1, . . . , e

p
q,k followed by a ran-

dom suffix es1,1, . . . , es1,k, es2,1, . . . , es2,k, . . . , esr,1, . . . , esr,k, where e
p
i,1, . . . , e

p
i,k and es`,1, . . . , es`,k

are k identical copies of the edges epi , i ∈ [q], and es` , ` ∈ [r], respectively, as defined in
Section 5.1. We emphasize that the same (random) partition S = {S1, . . . , Sr} is used to
determine all copies of the suffix edges and that this partition is revealed to the online
algorithm only after (all copies of) all prefix edges have been colored.
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Since Gk is obtained from G by edge multiplicity, it follows that δk = kδ = kr, and by
Lemma 5.2, we conclude that Opt(Gk) = δk = kr, so it remains to show that (6) holds. To
that end, we employ the same proof scheme as in Section 5.1: Fix some deterministic online
DSC algorithm Alg. Since a color that is not assigned to any prefix edge does not cover the
vector (1, . . . , 1), we assume without loss of generality that Alg uses only (a subset of) the
colors in [kq]. As in Section 5.1, we classify the colors in [kq] according to the number of
prefix edges they are assigned to, with heavy colors assigned to at least q/2 prefix edges and
light colors assigned to less than q/2 prefix edges. Lemma 5.3 ensures that each light color
covers V = Vk with probability smaller than 1/q, hence, since there are at most kq light
colors, we conclude by the linearity of expectation that the expected gain of Alg from all
light colors is smaller than k. The proof that (6) holds is completed by noticing that there
are at most kq/(q/2) = 2k heavy colors.

6 Discussion

Our investigation of the online DSC problem leaves several interesting open questions. The
first one concerns the gap between our O(log2 n) upper bound and Ω(log(n)/ log logn) lower
bound on the competitive ratio of randomized δ-oblivious online DSC algorithms. Since
our lower bound holds for online DSC algorithms that know δ in advance as well, one also
wonders about the gap it leaves from the O(logn) upper bound of Pananjady et al. [9] for
such algorithms.

The role of randomization in δ-oblivious online DSC algorithms is also not fully understood
yet. While the lower bound of [9] states that a deterministic δ-oblivious online DSC algorithm
cannot have a pure competitive ratio better than Ω(n), we still do not know if this is true
also for the impure competitiveness of such online algorithms. In particular, it is not clear if
the method of conditional expectation applied by Pananjady et al. [9] to derandomize their
online algorithm can be applied also to our randomized online algorithm, especially since the
derandomization technique of Pananjady et al. relies heavily on the knowledge of δ.

Finally, recall our assumption that the nodes of the hypergraph, and in particular their
number n, are known in advance. While the simple deterministic online algorithm presented
in Section 3 can be implemented to operate without this assumption, coming up with such an
implementation of the randomized online algorithm of Section 4 seems to be a challenging task.
More generally, it would be interesting to design online DSC algorithms that are (initially)
oblivious to all “global” parameters of the input hypergraph, including both n and δ.
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Abstract
We study network coordination problems, as captured by the setting of generalized network design
(Emek et al., STOC 2018), in the face of uncertainty resulting from partial information that the
network users hold regarding the actions of their peers. This uncertainty is formalized using Alon
et al.’s Bayesian ignorance framework (TCS 2012). While the approach of Alon et al. is purely
combinatorial, the current paper takes into account computational considerations: Our main technical
contribution is the development of (strongly) polynomial time algorithms for local decision making
in the face of Bayesian uncertainty.
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1 Introduction

In real-life situations, network users are often required to coordinate actions for perfor-
mance optimization. This challenging coordination task becomes even harder in the face
of uncertainty, as users often act with partial information regarding their peers. Can users
overcome their local views and reach a good global outcome? How far would this outcome
be from optimal?
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For a formal treatment of the aforementioned questions, we adopt the Bayesian ignorance
framework of Alon et al. [4]. Consider N agents in a routing scenario, where each agent
i ∈ [N ] should decide on a (ui, vi)-path ai in the network with the objective of minimizing
some global cost function that depends on the links’ load. The (ui, vi) pair, also referred to
as the type of agent i, is drawn from a distribution pi. All agents know this distribution, but
the actual realization (ui, vi) of each agent i is only known to i herself.

Our goal is to construct a strategy for each agent i that determines her action ai based
only on her individual type (ui, vi). These strategies are computed in a “preprocessing stage”
and the actual decision making happens in real-time without further communication. We
measure the quality of a tuple of strategies in terms of its Bayesian competitive ratio (BCR)
defined as the ratio of the expected cost obtained by these strategies to that of an optimal
solution computed by an omnipotent algorithm (refer to Sec. 1.1.1 for the exact definition).
To the best of our knowledge, this algorithmic evaluation measure has not been studied so far.

Our main technical contribution is a generic framework that yields strongly polynomial-
time algorithms constructing agent strategies with low BCR for Bayesian generalized network
design (BGND) problems – a setting that includes routing and many other network coordi-
nation problems. Our framework assumes cost functions that exhibit diseconomy of scale
(DoS) [5, 6, 28], capturing the power consumption of devices that employ the popular speed
scaling technique.

1.1 Model

For clarity of the exposition, we start with the special case of Bayesian routing in Sec. 1.1.1 and
then present the more general BGND setting in Sec. 1.1.2. Conceptually, the new algorithmic
problem of Bayesian routing that we define here is related to oblivious routing [21, 17, 35],
where routing requests should be performed without any knowledge about actual network
traffic. This means that the routing path chosen for a routing request may only depend
on the network structure and the other parameters of the problem. Oblivious algorithms
are attractive as they can be implemented very efficiently in a distributed environment as
they base routing decisions only on local knowledge. As will become formally clear below,
Bayesian routing has a similar flavor, but with an important additional ingredient. We will
assume that the algorithm is equipped with statistical (“Bayesian”) knowledge about network
traffic. Thus, in a sense, we replace internal randomization techniques, that oblivious routing
usually employs, with actual data, while still being oblivious to other actual routing decisions
and thus still maintaining the locality principle.1

1.1.1 Special Case: Bayesian Routing

In the full information variant of the routing problem, we are given a (directed or undirected)
graph G = (V,E) and a set of N agents, where each agent i ∈ [N ] is associated with a node
pair (ui, vi) ∈ V × V , referred to as the (routing) request of agent i. This request should be
satisfied by choosing some (ui, vi)-path in G, referred to as the (feasible) action of agent i,
and the collection of all such paths is denoted by Ai.

1 This is different from stochastic network design as these algorithms are not oblivious. More details are
given below.
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Let A = A1 × · · · ×AN be the collection of all action profiles. The load on edge e ∈ E
with respect to action profile a ∈ A, denoted by lae , is defined to be the number of agents
whose actions include e, that is, lae = |{i ∈ [N ] : e ∈ ai}|. The cost incurred by load lae on
edge e is determined by an (edge specific) superadditive cost function Fe : R≥0 7→ R≥0 such
that for any l ≥ 0,

Fe(l) = ξe · lα , (1)

where ξe > 0 (a.k.a. the speed scaling factor) is a parameter of edge e and α > 1 (a.k.a. the
load exponent) is a global constant parameter. Such a superadditive cost function captures,
for example, the power consumption of network devices employing the popular speed scaling
technique [37, 25, 7, 29, 12, 3] that allows the device to adapt its power level to its actual
load. In particular, for those network devices that employ the speed scaling technique, the
value of α generally satisfies 1 < α ≤ 3 [24, 36]. Another application of the cost function (1)
with α = 2 is to model the queuing delay of users in a TCP/IP communication networks [18].
The goal in the (full information) routing problem is to construct an action profile a ∈ A
with the objective of minimizing the total cost C(a) =

∑
e∈E Fe(lae ).

1.1.1.1 Extending to Partial Information

In the current paper, we extend the full information routing problem to the Bayesian routing
problem, where the request of agent i ∈ [N ] is not fully known to all other agents. In this
problem variant, agent i ∈ [N ] is associated with a set Ti of types so that each type ti ∈ Ti
specifies its own routing request (utii , v

ti
i ) ∈ V ×V . Let Atii be the set of all (feasible) actions

for (the request of) type ti, namely, all (utii , v
ti
i )-paths in G and let Ai =

⋃
ti∈Ti A

ti
i .

Agent i is also associated with a prior distribution pi over the types in Ti and the crux of
the Bayesian routing problem is that agent i should decide on her action while knowing the
realization of her own prior distribution pi (that is, the routing request she should satisfy)
but without knowing the realizations of the prior distributions of the other agents j 6= i.
Formally, let T = T1 × · · · × TN be the collection of type profiles and A = A1 × · · · ×AN be
the collection of action profiles. The set of (feasible) action profiles for a type profile t ∈ T is
denoted by At = At11 × · · · × A

tN
N and the prior distribution over the type profiles in T is

denoted by p. In this paper, p is assumed to be a product distribution, i.e., the probability
of type profile t ∈ T is p(t) =

∏N
i=1 pi(ti).

The goal in the Bayesian routing problem is to construct for each agent i ∈ [N ], a strategy
si : Ti 7→ Ai that maps agent i’s realized type ti ∈ Ti to an action ai ∈ Atii . We emphasize
that the decision of agent i is taken irrespective of the other agents’ realized types which
are not (fully) known to agent i. Intuitively, a strategy si can be viewed as a lookup table
constructed in the “preprocessing stage”, and queried at real-time to determine a (fixed)
path for every (ui, vi) pair associated with i (cf. oblivious routing [30, 35]).

The set of strategies available for agent i is denoted by Si and S = S1× · · · ×SN denotes
the set of strategy profiles. For each type profile t ∈ T , the strategy profile s ∈ S determines
an action profile a = s(t) ∈ A defined so that ai = si(ti), i ∈ [N ]. Using this notation,
the objective in the Bayesian routing problem is to construct a strategy profile s ∈ S that
minimizes the total cost C(s) = Et∼p

[∑
e∈E Fe

(
l
s(t)
e

)]
.

1.1.1.2 Bayesian Competitive Ratio

Consider an algorithm A that given a Bayesian routing instance, constructs a strategy profile
s. To evaluate the performance of A, we compare the total cost C(s) to Et∼p[OPT(t)], where
OPT(t) = mina∈At

∑
e∈E Fe(lae ) is the cost of an optimal action profile for the type profile

t ∈ T . This can be regarded as the expectation, over the same prior distribution p, of the
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total cost incurred by an omnipotent algorithm that has a global view of the whole type
profile t and enjoys unlimited computational resources. The Bayesian competitive ratio
(BCR) of algorithm A is the smallest β ≥ 1 such that for every Bayesian routing instance,
the strategy profile s constructed by A satisfies C(s) ≤ β · Et∼p[OPT(t)].

Alon et al. [4] introduced the related criterion of Bayesian ignorance defined as C(s∗)
Et∼p[OPT(t)] ,

where s∗ = argmins∈S C(s) is an optimal strategy profile for the given instance. This crite-
rion quantifies the implication of the agents’ partial knowledge regarding the global system
configuration, irrespective of the computational complexity of constructing this optimal
strategy profile. By definition, for any strategy profile s ∈ S, C(s) = Et∼p

[∑
e∈E Fe

(
l
s(t)
e

)]
≥

Et∼p
[

mina∈At
∑
e∈E Fe(lae )

]
, which implies that the Bayesian ignorance is at least 1. Notice

that the BCR is equivalent to the product of the approximation ratio C(s)
C(s∗) and the Bayesian

ignorance, therefore it evaluates the loss caused by both algorithmic (computational com-
plexity) considerations and the absence of the global information. The first contribution of
the current paper is cast in the following theorem.

I Theorem 1. For the Bayesian routing problem, there exists an algorithm whose BCR
depends only on the load exponent parameter α. This algorithm is fully combinatorial and
runs in strongly polynomial time.

We emphasize that the BCR of the algorithm promised in Theorem 1 is independent of
the number of agents N , the underlying graph G, the speed scaling factors ξe, e ∈ E, and
the probability distribution p. Therefore, as α is assumed to be a constant, so is the BCR.

1.1.2 Bayesian Generalized Network Design
1.1.2.1 Generalized Network Design

The (full information) routing problem has recently been generalized by Emek et al. [15]
to the wider family of generalized network design (GND) problems. In its full information
form (the form considered in [15]), a GND instance is defined over N agents and a set E of
resources. Each agent i ∈ [N ] is associated with an abstract (not necessarily routing) request
characterized by a set Ai ⊆ 2E of (feasible) actions out of which , some action ai ∈ Ai
should be selected. As in the routing case, the action profile a = (a1, . . . , aN ) induces a
load of lae = |{i ∈ [N ] : e ∈ ai}| on each resource e ∈ E that subsequently incurs a cost of
Fe(lae ), where Fe : R≥0 7→ R≥0 is a resource specific cost function. The goal is to construct
an action profile a ∈ A = A1 × · · · × AN with the objective of minimizing the total cost
C(a) =

∑
e∈E Fe(lae ).

The request of agent i ∈ [N ] is said to be succinctly represented [15] if its corresponding
action set Ai can be encoded using poly(|E|) bits. Identifying the resource set E with the
edge set of an underlying graph G, the routing requests defined in Sec. 1.1.1 are clearly
succinctly represented since each Ai corresponds to the set of (ui, vi)-paths in G, hence Ai
can be encoded by specifying ui and vi (and G). Other examples for succinctly represented
requests, where the resource set E is identified with the edge set of an underlying (directed
or undirected) graph G = (V,E), include:

multi-routing requests in directed or undirected graphs, where given a collection Di ⊆
V × V of terminal pairs, the action set Ai consists of all edge subsets F ⊆ E such that
the subgraph (V, F ) admits a (u, v)-path for every (u, v) ∈ Di; and
set connectivity (resp., set strong connectivity) in undirected (resp., directed) graphs,
where given a set Ti ⊆ V of terminals, the action set Ai consists of all edge subsets F ⊆ E
that induce on G a connected (resp., strongly connected) subgraph that spans Ti.

All requests mentioned (implicitly or explicitly) hereafter are assumed to be succinctly
represented.



Y. Emek, S. Kutten, R. Lavi, and Y. Shi 45:5

1.1.2.2 Bayesian GND

In the current paper, we extend the (full information) GND setting to Bayesian GND
(BGND). This extension is analogous to the extension of full information routing to Bayesian
routing as defined in Sec. 1.1.1. In particular, agent i ∈ [N ] is now associated with a set Ti
of types, where each type ti ∈ Ti corresponds to a request whose action set is denoted by
Atii , and a prior distribution pi over the types in Ti. A strategy si of agent i is a function
that maps the agent’s realized type ti ∈ Ti to an action si(ti) ∈ Atii .

Similarly to the notation introduced in Sec. 1.1.1, let T = T1 × · · · × TN be the set of
type profiles. Let Ai =

⋃
ti∈Ti A

ti
i and let A = A1 × · · · × AN be the set of action profiles.

Let Si be the set of strategies available for agent i and let S = S1 × · · · × SN be the set of
strategy profiles. Given a strategy profile s ∈ S and a type profile t ∈ T , let a = s(t) ∈ A be
the action profile defined so that ai = si(ti), i ∈ [N ]. The goal in the BGND problem is to
construct a strategy profile s ∈ S with the objective of minimizing the total cost

C(s) = Et∼p

[∑
e∈E

Fe

(
ls(t)
e

)]
. (2)

The BCR of Algorithm A is the smallest β ≥ 1 such that for every BGND instance, the
strategy profile s ∈ S constructed by A satisfies C(s) ≤ β · Et∼p[OPT(t)], where OPT(t) =
mina∈At

∑
e∈E Fe(lae ) .

1.1.2.3 Generalized Cost Functions

In addition to the generalization of (full information) routing to GND, [15] also generalizes
the cost functions defined in Eq. (1) to cost functions of the form

Fe(l) =
∑
j∈[q]

ξe,j · lαj , (3)

where q is a positive integer, ξe,j is a positive real for every e ∈ E and j ∈ [q], and αj is
a constant real no smaller than 1 for every j ∈ [q].2 We define αmax = maxj∈[q] αj and
assume hereafter that αmax > 1. As discussed in [15], this generalization of Eq. (3) is not
only interesting from a theoretical perspective, but also makes the model more applicable to
practical network energy saving applications. Indeed, in realistic communication networks, a
link often consists of several different devices (e.g., transmitter/receiver, amplifier, adapter),
all of which are operating when the link is in use. As their energy consumption can vary in
terms of the load exponents and speed scaling factors [36], Eq. (3) may often provide a more
accurate abstraction of the actual link’s power consumption.

1.1.2.4 Action Oracles

For a BGND problem P, this paper develops a framework which generates an algorithm
with BCR O(%αmax) when provided with an action %-oracle for P. An action %-oracle with
parameter % ≥ 1 for BGND problem P (cf. the reply %-oracles of [15]) is a procedure that
given agent i ∈ [N ], type ti ∈ Ti, and a weight vector w ∈ RE≥0, generates an action ai ∈ Atii
such that

∑
e∈ai w(e) ≤ % ·

∑
e∈a′

i
w(e) for any action a′i ∈ A

ti
i . An exact action oracle is an

action %-oracle with parameter % = 1.

2 The cost functions considered in [15] have a fixed additional term, capturing the resource’s startup cost,
that makes them even more general. Due to technical difficulties, in the current paper we were not able
to cope with this additional term.
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Notice that the optimization problem behind the action oracle is not a BGND problem:
It deals with a single type of a single agent and the role of the resource cost functions is now
taken by the weight vector. These differences often make it possible to implement the action
oracle with known (approximation) algorithms.

For example, the Bayesian routing problem, which requires paths between the given node
pairs, admit an exact action oracle implemented using, e.g., Dijkstra’s shortest path algorithm
[14, 19]. In contrast, the BGND problem with set connectivity requests in undirected graphs
(P1), the BGND problem with set strong connectivity requests in directed graphs (P2),
the BGND problem with multi-routing requests in undirected graphs (P3), and the BGND
problem with multi-routing requests in directed graphs (P4) do not admit exact action
oracles unless P = NP as these would imply exact (efficient) algorithms for the Steiner tree,
strongly connected Steiner subgraph, Steiner forest, and directed Steiner forest problems,
respectively. However, employing known approximation algorithms for the latter (Steiner)
problems, one concludes that BGND problem (P1) admits an action %-oracle for % ≤ 1.39
[9]; BGND problem (P2) admits an action νε-oracle, where ν is the number of terminals
[10]; BGND problem (P3) admits an action 2-oracle [1]; and BGND problem (P4) admits
an action k1/2+ε-oracle, where k is the number of terminal pairs [11]. This means, in
particular, that BGND problems (P1) and (P3) always admit an action %-oracle with a
constant approximation ratio %, whereas BGND problems (P2) and (P4) admit such an
oracle when ν and k are fixed [1, 10, 11, 9]. The guarantees of our approximation framework
are cast in the following theorem.

I Theorem 2. Consider a BGND problem P with an action %-oracle OP . When provided
access to OP , the framework proposed in this paper generates an algorithm AP whose BCR
depends only on the load exponent parameters α1, . . . , αq of Eq. (3). This framework is fully
combinatorial and runs in strongly polynomial time, hence if OP can be implemented to run
in strongly polynomial time, then so can AP .

Again, we emphasize that the BCR of the algorithm promised in Theorem 2 is independent
of the number of agents N , the number of resources |E|, the speed scaling factors ξe,j , j ∈ [q],
e ∈ E, and the probability distribution p. Therefore, as α1, . . . , αq are assumed to be
constants, so is the BCR. Since the Bayesian routing problem admits an exact action oracle,
Theorem 1 follows trivially from Theorem 2. Throughout the remainder of this paper, we
focus on the BGND framework promised in Theorem 2.

1.2 Related Works
The technical framework that we use is inspired by [15]. Sec. 3 gives a detailed technical
overview including a full comparison.

In the full information case, network design problems with superadditive cost functions
as defined in Eq. (1) have been extensively studied with the motivation of improving the
energy efficiency of networks [5, 6, 28]. To the best of our knowledge, none of these studies
has been extended to the Bayesian case.

In the research works on oblivious routing (e.g., [17, 35, 27, 23]), the absence of global
information in routing is modeled in an adversarial (non-Bayesian) manner. In particular,
oblivious routing assumes that no knowledge about t−i is available when determining every
ai, and the performance of the algorithm is evaluated by means of its competitive ratio
maxt∈T

∑
e∈E

Fe(ls(t)
e )

OPT(t) . For the cost function Fe(l) = lα with α > 1, Englert and Räcke [17]
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propose an O(logα |V |)-competitive oblivious routing algorithm for the scenario where the
traffic requests are allowed to be partitioned into fractional flows. Shi et al. [35] prove that
for such a cost function, there exists no oblivious routing algorithm with competitive ratio
O
(
|E|

α−1
α+1

)
when it is required to choose an integral path for every request.

The Bayesian approach is often used in the game theoretic literature to model the uncer-
tainty a player experiences regarding the actions taken by the other players. Roughgarden
[32] studies a routing game (among other things) in which the players share (equally) the
cost of the edges they use and proposes a theoretical tool called smoothness to analyze the
price of anarchy (PoA) of this game in a Bayesian setting, defined as max

s∈SBNE C(s)
Et∼p[OPT(t)] , where

SBNE denotes the set of Bayes-Nash equilibria. In particular, he proves that with the cost
function Fe(l) = ξe,1 · l + ξe,2 · l2, the PoA is bounded by 5

2 . We employ the smoothness
toolbox in our algorithmic construction, as further described in Sec. 5 (see also the overview
in Sec. 3, as well as the detail in Sec. 6 of the full version [16]).

Alon et al. [4] investigate the Bayesian routing game with a constant cost function Fe = ξe
and prove that the Bayesian ignorance C(s∗)

Et∼p[OPT(t)] is bounded by O(N) (resp., O(log |E|)) in
directed (resp., undirected) graphs G = (V,E). They also introduce game theoretic variants
of the Bayesian ignorance notion and analyze them in that game.

To deal with the inherent uncertainty of the demand in realistic networks, many research
works have been conducted on stochastic network design [22, 13, 31], formulated as a two-stage
stochastic optimization problem: in the first stage, each link in the network has a fixed
cost and the algorithm needs to make decisions to purchase links knowing the probability
distribution over the network demands; in the second stage, the network demands are realized
(according to the aforementioned probability distribution) and should be satisfied, which
may require purchasing additional links, this time with an inflated cost. The objective is to
minimize the total cost of the two stages plus a load dependent term, in expectation.

The BGND setting considered in the current paper is different from two-stage stochastic
optimization (particularly, stochastic network design) in several aspects, the most significant
one is that in BGND, an agent’s strategy should dictate her “complete action” (e.g., a path
for routing requests) for every possible type, obliviously of the realized types of the other
agents. In particular, one cannot “update” the agents’ actions and purchase additional
resources at a later stage to satisfy the realized demands. Moreover, the current paper
evaluates the performance of a BGND algorithm by means of its BCR that takes into
consideration computational complexity limitations as well as the lack of global information
(see Sec. 1.1) whereas the literature on two-stage stochastic optimization typically evaluates
algorithms using standard approximation guarantees that accounts only for computational
complexity limitations.

In [20], Garg et al. investigate online combinatorial optimization problems where the
requests arriving online are drawn independently and identically from a known distribution.
As an example, Garg et al. [20] study the online Steiner tree problem on an undirected graph
G = (V,E). In this problem, at each step the algorithm receives a terminal that is drawn
independently from a distribution over V , and needs to maintain a subset of edges connecting
all the terminals received so far.

Our work differs from [20] in following four aspects. First, in the stochastic online
optimization problem studied in [20], when each request i arrives, the previous requests
{1, · · · , i− 1} have been realized, and the realization is known. By contrast, in the BGND
problem, every agent i needs to be served without knowing the actual realization of the other
agents. Second, the cost function studied in [20] maps each resource e to a fixed toll, which
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is subaddtive in the number of requests using e, while our cost function is superaddtive.
Third, in the BGND problem with the set connectivity requests, for each agent i, each type
ti is a set of terminals rather than a single terminal, and each action in Atii is a Steiner tree
spanning over the set of terminals corresponding to ti. Fourth, in the BGND problem, each
prior distribution pi is over the types of agent i, while there is no distribution over the agents.

1.3 Paper Organization
The rest of this paper is organized as follows. Sec. 2 introduces some of the concepts
employed in our approximation framework together with some notation and terminology.
The main challenges that we had to overcome when developing this framework and some of
the techniques used for that purpose are discussed in Sec. 3. Sec. 4 is dedicated to a detailed
exposition of our approximation framework. Its performance is then analyzed in Sec. 5 using
certain game theoretic properties.

2 Preliminaries

We follow the common convention that for an N -tuple x = (x1, . . . , xN ) and for i ∈ [N ], the
notation x−i denotes the (N−1)-tuple (x1, . . . , xi−1, xi+1, . . . , xN ). Likewise, for a Cartesian
product X = X1×· · ·×XN and for i ∈ [N ], the notation X−i denotes the Cartesian product
X1 × · · · ×Xi−1 ×Xi+1 × · · · ×XN .

2.1 The BGND Game
Given an instance I =

〈
N,E, {Ti, pi}i∈[N ], {ξe,j}e∈E,j∈[q], {αj}j∈[q]

〉
of a BGND problem P ,

we define a BGND game by associating every agent i ∈ [N ] with a strategic player who
decides on the strategy si with the objective of minimizing her own individual cost defined
as follows. Given an action profile a ∈ A and a resource e ∈ E, the corresponding cost Fe(lae )
is equally divided among the players i ∈ [N ] satisfying e ∈ ai; in other words, the cost share
of player i in resource e under action profile a, denoted by fi,e(a), is defined to be

fi,e(a) =
{

0 , e /∈ ai
Fe(lae )
|i:e∈ai| =

∑
j ξe,j (lae )αj−1

, otherwise
.

Informally, the individual cost of player i is the sum of her cost shares over all resources.
For a more formal treatment of the BGND game, we occasionally need to explicitly

specify the type ti of player i in the expressions involving her cost share in which case we
use the notation fi,e(ti; a), following the convention that fi,e(ti; a) = fi,e(a) if ai ∈ Atii ;
and fi,e(ti; a) =∞ otherwise. The individual cost of a player i with respect to the type ti
and a fixed action profile a is defined as Ci(ti; a) =

∑
e∈E fi,e(ti; a). Correspondingly, for

each player i ∈ [N ] and each type ti ∈ Ti, we define the type-specified expected individual
cost Ci(ti; s) = Et−i∼p−i

[
Ci(ti; s(ti, t−i))

]
. The objective function that player i wishes to

minimize is her type-averaged expected individual cost Ci(s) = Eti∼pi
[
Ci(ti; s)

]
, irrespective

of the total cost C(s), often referred to as the social cost.
Let fi,e(ai; s−i) = Et−i∼p−i [fi,e(ai, s−i(t−i))] be the expected cost share of player i ∈ [N ]

on resource e ∈ E with respect to action ai ∈ Ai and strategy profile s−i ∈ S−i. Fixing a−i ∈
A−i (resp., s−i ∈ S−i), the cost share fi,e(ai, a−i) (resp., expected cost share fi,e(ai; s−i)) of
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player i on resource e is the same for every action ai ∈ Ai such that e ∈ ai. Therefore, it is
often convenient to ignore the specifics of action ai and use the notations fi,e(+, a−i) and
fi,e(+; s−i) instead of fi,e(ai, a−i) and fi,e(ai; s−i), respectively, given that e ∈ ai.3

2.2 Definitions for the Algorithm Design and Analysis
The following definitions play key roles in the design and analysis of our framework.

I Definition (Choice Function [32]). A choice function σ : T 7→ A maps every type profile
t ∈ T to an action profile a ∈ At. The action specified by σ for player i ∈ [N ] with respect
to type profile t is denoted by σi(t). In particular, the choice function that maps each type
profile t to an action profile that realizes OPT(t) is denoted by σ∗.

I Definition (Smoothness [32]). Given parameters λ > 0 and 0 < µ < 1, a BGND game is
said to be (λ, µ)-smooth if

∑
i∈[N ]

Ci(ti; (σ∗i (t), a−i)) ≤ λ · OPT(t) + µ ·
∑
i∈[N ]

Ci(t′i, a) for every

type profiles t, t′ ∈ T and action profile a ∈ At′ .

I Definition (Potential Function). A function Φ : S 7→ R≥0 is said to be a potential function
of the BGND game if Φ(s)− Φ(s′i, s−i) = Ci(s)− Ci(s′i, s−i) for every strategy profile s ∈ S,
player i ∈ [N ], and strategy s′i ∈ Si. The potential function Φ(·) is said to be K-bounded for
a parameter K ≥ 1 if Φ(s) ≤ C(s) ≤ K · Φ(s) for every strategy profile s ∈ S.

I Definition ((η, η)-Estimation). Given real parameters η, η ≥ 1, a value x is said to be
an (η, η)-estimation of the expected cost share fi,e(ai; s−i) (resp., fi,e(+; s−i)) if it satisfies
x/η ≤ fi,e(ai; s−i) ≤ x · η (resp., x/η ≤ fi,e(+; s−i) ≤ x · η). We typically denote this
estimation x by f̂i,e(ai; s−i) (resp., f̂i,e(+; s−i)). The BGND game is said to be poly-time
(η, η)-estimable if for every player i ∈ [N ] and strategy profile s−i ∈ S−i, there exists an
algorithm which runs in time poly(N, q, |T1|, · · · , |TN |) and outputs an (η, η)-estimation of
the expected cost share fi,e(+; s−i). The BGND game is said to be tractable if it is poly-time
(η, η)-estimable with η = η = 1.

Fix some player i ∈ [N ], type ti ∈ Ti, and (η, η)-estimations f̂i,e(si(ti); s−i), e ∈
E. With respect to these variables, let Ĉi(ti; s) =

∑
e∈E f̂i,e(si(ti); s−i) and Ĉi(s) =

Eti∼pi [Ĉi(ti; s)]. By the linearity of expectation, we know that Ĉi(ti; s)/η ≤ Ci(ti; s) ≤
Ĉi(ti; s) · η and Ĉi(s)/η ≤ Ci(s) ≤ Ĉi(s) · η . Consequently, we refer to Ĉi(ti; s) and Ĉi(s) as
(η, η)-estimations of Ci(ti; s) and Ci(s), respectively.

I Definition (Approximate Best Response). For strategy profile s ∈ S and player i ∈ [N ],
strategy si ∈ Si is said to be an approximate best response (ABR) of i with approximation
parameter χ ≥ 1 if Ci(si, s−i) ≤ χ · Ci(s′i, s−i) holds for any s′i ∈ Si. We may omit the
explicit mention of the approximation parameter χ when it is clear from the context. A best
response (BR) is an ABR with approximation parameter χ = 1.

I Definition (Approximate Best Response Dynamics). An approximate best response dynamic
(ABRD) is a procedure that starts from a predetermined strategy profile s0 ∈ S and generates
a series of strategy profiles s1, · · · , sR such that for every 1 ≤ r ≤ R, there exists some player
i ∈ [N ] satisfying (1) sr−i = sr−1

−i ; and (2) sri is an ABR of i to sr−1
−i .

3 To avoid ambiguity concerning the definition of fi,e(+, a−i) and fi,e(+; s−i) for resources e /∈ Ai, we
assume (in the scope of using these notations) that Ai = E for all i ∈ [N ]. This is without loss of
generality as one can augment Ti with a virtual type t̃i such that At̃i

i = {E} and pi(t̃i) is arbitrarily small.
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3 Overview of the Main Challenges and Techniques

The approximation framework presented in Sec. 4 for BGND problems is inspired by the
framework designed in [15] for full information GND problems only in the conceptual sense
that both algorithms employ approximate best response dynamics. In a high-level, for a
certain number R of rounds that will be carefully chosen in order to achieve the approximation
promise, and starting from some properly chosen initial strategy profile s0, for each round
1 ≤ r ≤ R the strategy profile sr is generated from sr−1 in the following manner:

1. For every player i ∈ [N ] and resource e ∈ E, compute an (η, η)-estimation f̂i,e(+; sr−1
−i ) of

the expected cost share fi,e(+; sr−1
−i ).

2. For every player i ∈ [N ], construct the strategy s′i by mapping each type ti ∈ Ti to the
action ai ∈ Atii computed by invoking the action %-oracle with weight vector w defined
by setting w(e) = f̂i,e(+; sr−1

−i ).
3. Choose player i ∈ [N ] according to the game theoretic criterion presented in Sec. 4 regard-

ing the estimations Ĉi(sr−1) and Ĉi(s′i, sr−1
−i ) of the type-averaged expected individual

costs. Construct sr by updating the strategy of the chosen player i to s′i.

However, beyond the similar high-level structure, the technical construction in this paper
is entirely different from [15] since the incomplete information assumption of the BGND
setting exhibits new algorithmic challenges that require novel techniques. Specifically, the
main challenges that our technical analysis in this paper handles are as follows.

A first obstacle here is the difficulty in computing the estimation f̂i,e(+; sr−1
−i ) =

Et−i∼p−i [fi,e(+, s−i(t−i))] in step 1 since there are exponentially (in N) many possibili-
ties for t−i. Another source of difficulty in this regard is that the function fi,e(+, s−i(t−i))
is nonlinear in ls−i(t−i)e . One may hope that Jensen’s inequality [26] can resolve this issue,
however, as we explain in the technical sections, it is not enough for obtaining proper bounds
on both η and η. This obstacle is addressed in Sec. 5 (and Sec. 8 of the full version [16])
where we employ probabilistic tools from [8] and using Cantelli’s inequality [34] to obtain
the required estimation of the expression Et−i∼p−i [fi,e(+, s−i(t−i))].

A second obstacle is that the ABRD-based approximation framework expresses its
approximation guarantees in terms of smoothness parameters and bounded potential functions.
However, neither the smoothness parameters nor the existence of a bounded potential function
are known for the BGND game that we have defined here. We provide a new analysis for
these two issues in Sec. 6 and Sec. 7 of the full version [16], respectively.

A third obstacle involves the stopping condition of the best response dynamics. A stopping
condition for the full information case, via the smoothness framework, was developed by
[33] (showing that if the current outcome in a best response dynamics is far from optimal
there must exist a player whose best response significantly improves his own utility). For the
Bayesian case, to the best of our knowledge, no such general stopping condition was known
prior to the current paper. In fact, the smoothness framework for the Bayesian case which
was developed in [32] did not include any results on best response dynamics. One specific
technical difficulty is that Bayesian smoothness is defined in [32] w.r.t. a deviation to the
optimal choice function rather than to a best response. This obstacle is resolved in Sec. 5
of the full version [16] where we provide such a stopping condition by proving that if the
outcome of the current step of the ABRD in the Bayesian case is far from optimal, there
must exist a player whose approximate best response must significantly improve her utility.

A fourth obstacle regards the output of the algorithm, once the ABRD terminates.
Although we prove that there exists at least one strategy profile sr, 1 ≤ r ≤ R, with a
sufficiently small social cost C(sr), we do not know how to find it. In particular, we wish to
emphasize that we cannot simply evaluate the social cost function C(·) (see Eq. (2)) due
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to the exponential number of type profiles. This obstacle does not exist in [15] where they
can explicitly go over all steps of the full information ABRD and find the exact step whose
outcome has minimal cost. To resolve this issue, we output the last strategy profile sR
generated in the ABRD and bound its loss. This is described in Sec. 5 of the full version [16].

Our technical constructions and our analysis employ various techniques from algorithmic
game theory, demonstrating once again (as in [15]) the usefulness of this literature as a
toolbox for algorithmic constructions that, on the face of it, have nothing to do with selfish
agents. In particular, in this paper (and as assumed in the literature on oblivious routing
[21, 17, 35]), we construct an algorithm that receives a correct input and outputs routing
tables that the agents are going to follow without issues of selfish deviations.

4 The Algorithm

In this part, we present an algorithm, which is referred to as Bayes-ABRD, for a given BGND
problem P. The algorithm is assumed to have free access to an action %-oracle for P, which
is denoted by OP .

With an input instance I =
〈
N,E, {Ti, pi}i∈[N ], {ξe,j}e∈E,j∈[q], {αj}j∈[q]

〉
, the first step of

the algorithm is to (conceptually) construct a BGND game, and choose a tuple of parameters
(λ, µ,K, η, η) such that the BGND game
1. is (λ, µ)-smooth with %(ηη)2µ < 1,
2. has a potential function Φ that is K-bounded,
3. is poly-time (η, η)-estimable.
The existence and exact values of the parameters in this tuple are presented in Sec. 5.

I Lemma 3. For any i ∈ [N ] and any s−i ∈ S−i, there exists a poly(|E|, N, q, {|Ti|}i∈[N ])-
time procedure which generates a strategy si ∈ Si and the corresponding (η, η)-estimation
Ĉi(si, s−i) of the individual costs such that Ĉi(si, s−i) ≤ % · η · Ci(s′i, s−i) for any s′i ∈ Si.
This means in particular that si is an ABR of i to s−i with approximation parameter % · ηη.4

Employing the procedure promised by Lemma 3, Bayes-ABRD simulates an ABRD of at
most R rounds s0, s1, . . . for the BGND game induced by I. Here R is a positive integer
depending on the tuple (λ, µ,K, η, η), and its exact value is also deferred to the following
parts (Sec. 5). The ABRD simulated in our algorithm is done as follows.

Each player i chooses her initial strategy s0
i by taking each s0

i (ti) to be the action generated
by OP for type ti with respect to the weight vector w0 defined by setting w0(e) =

∑
j∈[q] ξe,j ,

that is, as if i is playing alone. The obtained strategy s0
i is broadcast by player i to all the

other players such that the full strategy profile s0 is known by every player. Assuming that
sr−1, 1 ≤ r ≤ R, was already constructed and known by all the players, sr is obtained as
follows. Every player i ∈ [N ] employs the procedure promised by Lemma 3 to generate an
ABR ŝ r−1

i to sr−1
−i , and computes ∆r

i = Ĉi(sr−1)− (ηη) · Ĉi(ŝ r−1
i , sr−1

−i ). Both the strategy
ŝ r−1
i and the value ∆r

i are broadcast to all the other players. If ∆r
i ≤ 0 for all i ∈ [N ],

then the ABRD stops, and every player i sets sri = sr−1
i ; in this case, we say that the

ABRD converges. Otherwise, fix ∆r =
∑
i∈[N ] ∆r

i and choose some player i′ ∈ [N ] so that
∆r
i′ > 0 and ∆r

i′ ≥ 1
N∆r to update her strategy, setting sr = (ŝ r−1

i′ , sr−1
−i′ ) (the existence

of such a player is guaranteed by the pigeonhole principle, and ties are always broken by
choosing the player with the smallest index). Such an update can be performed by each

4 All subsequent occurrences of the term ABR (and ABRD) share the same approximation parameter
%ηη, hence we may refrain from mentioning this parameter explicitly.
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player in a distributed manner, as every player has the knowledge of the full vectors {sri }i∈[N ]
and {∆r

i }i∈[N ]. When the ABRD terminates (either because it has reached round r = R or
because it converges), Bayes-ABRD outputs the strategy generated in the last round.

I Remark. Note that Bayes-ABRD is designed for computing the strategy profile, not for
invoking the strategies to decide the actions in real-time. All the operations of Bayes-ABRD,
including broadcasting the strategy ŝ r−1

i and the value ∆r
i for every player i in every round

r ∈ [R], are carried out in a “precomputing stage” without seeing the realized type profile.
The decision making that happens in real-time does not involve any further communication.

5 Analysis Sketch

Using the property of smoothness parameters, our analysis first gives the upper bound on
the BCR with the tuple (λ, µ,K, η, η) of parameters.5

I Theorem 4. Let Q = 2(ηη)N
1−%(ηη)2µ . If R =

⌈
Q · ln

(
KNαmax−1)⌉, then the output sout of

Bayes-ABRD satisfies C(sout) ≤ 2K%(ηη)2λ

1−%(ηη)2µ · Et∼T
[
OPT(t)

]
.

Next, we consider the case where the parameters %, η and η are fixed, and focus on
finding proper smoothness parameters (λ, µ) such that the BGND game is (λ, µ)-smooth
with µ < 1/[%(ηη)2]. For any µ′ ∈ (0, 1

%(ηη)2 ), define gµ′(x) = (x + 1)αmax−1 − µ′ · xαmax

and h(x) =
[
(αmax − 1)(x + 1)αmax−2

]/[
αmax · xαmax−1

]
. Define γz′ to be the unique

positive root of (x + 1)z′−1 = xz
′ for any z′ ≥ 1 [2]. Let µα = h

(
%(ηη)2 · γαmax

)
, and

λα = gµα

(
%(ηη)2 · γαmax

)
. Then we have the following result on the smoothness.

I Theorem 5. The BGND game is (λα, µα)-smooth, and %(ηη)2µα < 1− 1/αmax.

We then proceed to prove that the BGND game admits a potential function that is
K-bounded with K = dαmaxe.

I Theorem 6. For the BGND game, there exists a potential function Φ(s) that satisfies
Φ(s) ≤ C(s) ≤ dαmaxe · Φ(s) for any strategy profile s.

Now it remains to compute and analyze the (η, η)-estimation of the expected cost shares.
For any z ∈ (0, 1) and z′ ≥ 1, define bz =

(
(β◦)2 + 1

)(
1− 1

β◦

)−z with β◦ being the unique
root of 2β3 − (z + 2)β2 − 2 = 0 in the interval (1,+∞), and Bz′ to be the fractional Bell
number with the parameter z′ [6, 28]. Our analysis utilizes the following propositions.

I Lemma 7 ([8]). Let {X1, X2, · · · , Xk, · · · } be a finite set of mutually independent random
variables following the Bernoulli distribution supported on {0, 1}. Then for any z ≥ 1,
E
[(∑

kXk

)z] ≤ Bz ·max
{
E
[∑

kXk

]
,
(
E
[∑

kXk

])z}
.

I Lemma 8. Let {X1, X2, · · · , Xk, · · · } be a finite set of Bernoulli random variables that are

mutually independent. For any z′ ∈ (0, 1), 1
bz′
≤ E

[(
1 +

∑
kXk

)z′]
≤
(
E
[
1 +

∑
kXk

])z′
.

5 The proof of Theorem 4 bears similarity to the analysis in [33, 15]. Hence it is deferred to the attached
full version. The main differences between that proof of Theorem [33, 15] are discussed in Sec. 3.
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For each action ai of player i and each resource e, denote the indicator of whether e is
contained in ai by δ(ai, e). Formally,

δ(ai, e) =
{

0 if e /∈ ai
1 otherwise

.

I Theorem 9. For any player i, any edge e, any action ai, and any strategies s−i, let

f̂i,e(+; s−i) =
∑
j∈[q]

ξe,j

[
1 +

∑
i′ 6=i

∑
ti′∈Ti′

pi′(ti′)δ
(
si′(ti′), e

)]αj−1
, (4)

then f̂i,e(+;s−i)

max
{

1,maxj:αj∈(1,2) bαj−1

} ≤ fi,e(+; s−i) ≤ f̂i,e(+; s−i) ·
{

1, maxj:αj≥2 Bαj−1

}
.

Sketch of Proof. Let ai be an action in Ai satisfying e ∈ ai. By definition, we have

fi,e(+; s−i) = Et−i∼p−i
[
fi,e(ai, s−i(t−i))

]
=
∑
j∈[N ]

ξe,j · Et−i∼p−i
[(
lai,s−i(t−i)e

)αj−1]
=
∑
j∈[N ]

ξe,j · Et−i∼p−i
[(

1 +
∑

i′∈[N ]:i′ 6=i

δ(si′(t−i(i′)), e)
)αj−1]

=
∑
j∈[N ]

ξe,jE{ti′∼pi′}i′ 6=i
[(

1 +
∑
i′ 6=i

δ(si′(ti′), e)
)αj−1]

.

The last transition holds because the prior distribution p is assumed to be a product
distribution.

Now define a finite set of mutually independent Bernoulli random variables {Xi′,e(s)}i′ 6=i
such that each Xi′,e(s) takes the value 1 with probability

∑
ti′ :e∈si′ (ti′ )

pi′(ti′). Then it can
be inductively proved that

E{ti′∼pi′}i′ 6=i
[(

1 +
∑
i′ 6=i

δ(si′(ti′), e)
)αj−1] = E

[(
1 +

∑
i′ 6=i

Xi′,e(s)
)αj−1]

.

Recall that the constant 1 in the last expression above can also be viewed as a Bernoulli
random variable which equals to 1 with probability 1. For every αj ≥ 2, Lemma 7 gives

E
[(

1 +
∑
i′ 6=i

Xi′,e(s)
)αj−1] ≤Bαj−1 ·max

{
E
[
1 +

∑
i′ 6=i

Xi′,e(s)
]
,
(
E
[
1 +

∑
i′ 6=i

Xi′,e(s)
])αj−1}

=Bαj−1 ·
(
E
[
1 +

∑
i′ 6=i

Xi′,e(s)
])αj−1

.

The second line holds because E
[
1 +

∑
i′ 6=iXi′,e(s)

]
> 1. Similarly, it can be derived from

Lemma 8 that for every αj ∈ (1, 2),

E
[(

1 +
∑
i′ 6=i

Xi′,e(s)
)αj−1

]
≤
(
E
[
1 +

∑
i′ 6=i

Xi′,e(s)
])αj−1

,

which also trivially holds for αj = 1. So, E
[(

1 +
∑
i′ 6=iXi′,e(s)

)αj−1
]
≤

max
{

1, maxj:αj≥2 Bαj−1

}(
E
[
1 +

∑
i′ 6=iXi′,e(s)

])αj−1
, and in a similar way, it also be
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inferred from Lemma 7 and Lemma 8 that E
[(

1 +
∑
i′ 6=iXi′,e(s)

)αj−1
]
≥
(
E
[
1 +

∑
i′ 6=iXi′,e(s)

])αj−1/
max

{
1,maxj:αj<2 bαj−1

}
. Since E

[
1 +

∑
i′ 6=iXi′,e(s)

]
= 1 +∑

i′ 6=i
∑
ti′
pi′(ti′)δ

(
si′(ti′), e

)
, this proposition holds. J

Theorem 9 shows that for any i ∈ [N ], e ∈ E and any s−i, there exists a
(max{1,maxαj∈(1,2) bαj−1}, max{maxαj≥2 Bαj−1, 1})-estimation f̂i,e(+; s−i) of fi,e(+; s−i),
and the following proposition indicates that such an estimation can be obtained in
poly(q,N, {|Ti|}i∈[N ])-time.

I Corollary 10. By computing Eq. (4), the desired estimation of each expected cost share is
obtained in O(q ·

∑
i∈[N ] |Ti|)-time.

Plugging Theorem 5, Theorem 6, Theorem 9, and Corollary 10 into Theorem 4 proves
our main result, Theorem 2.
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Abstract
Catering to the incentives of people with limited rationality is a challenging research direction
that requires novel paradigms to design mechanisms and approximation algorithms. Obviously
strategyproof (OSP) mechanisms have recently emerged as the concept of interest to this research
agenda. However, the majority of the literature in the area has either highlighted the shortcomings
of OSP or focused on the “right” definition rather than on the construction of these mechanisms.

We here give the first set of tight results on the approximation guarantee of OSP mechanisms
for scheduling related machines. By extending the well-known cycle monotonicity technique, we
are able to concentrate on the algorithmic component of OSP mechanisms and provide some novel
paradigms for their design.
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1 Introduction

Mechanism design has been a very active research area that aims to develop algorithms that
align the objectives of the designer (e.g., optimality of the solution) with the incentives of
self-interested agents (e.g., maximize their own utility). One of the main obstacles to its
application in real settings is the assumption of full rationality. Where theory predicts that
people should not strategize, lab experiments show that they do (to their own disadvantage):
this is, for example, the case for Vickrey’s renown second-price auction; proved to be
strategyproof and yet bidders lie when submitting sealed bids. Interestingly, however, lies are
less frequent when the very same mechanism is implemented via an ascending auction [18].
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A vague explanation of this phenomenon is that, from the point of view of a bidder, the
strategyproofness of an ascending price auction is easier to grasp than the strategyproofness
of the second-price sealed bid auction [3]. The key difference is the way these auctions
are implemented:

In the second-price sealed-bid auction (direct-revelation implementation), each bidder
submits her own bid once (either her true valuation or a different value). This mechanism
is strategyproof meaning that truth-telling is a dominant strategy: for every report of the
other bidders, the utility when truth-telling is not worse than the utility when bidding
untruthfully.
In the ascending price auction (extensive-form implementation), each bidder is repeatedly
offered some price which she can accept (stay in the auction) or reject (leave the auction).
In this auction, momentarily accepting a good price guarantees a non-negative utility,
while rejecting a good price or accepting a bad price yield non-positive utility. Here good
price refers to the private valuation of the bidder and, intuitively, truth-telling in this
auction means accepting prices as long as they are not above the true valuation.

Intuitively speaking, in the second type of auction, it is obvious for a bidder to decide her
strategy, because the utility for the worst scenario when truth-telling is at least as good
as that of the best scenario when cheating. The recent definition of obviously strategyproof
(OSP) mechanisms [23] formalizes this argument: ascending auctions are OSP mechanisms,
while sealed-bid auctions are not. Interestingly, [23] proves that a mechanism is OSP if and
only if truth-telling is dominant even for bidders who lack contingent reasoning skills.

As being OSP is stronger than being strategyproof, it is natural to ask if this has an
impact on what can be done by such mechanisms. For instance, the so-called deferred-
acceptance (DA) auctions [26] are OSP (as they essentially are ascending price auctions),
but unfortunately their performance (approximation guarantee) for several optimization
problems is quite poor compared to what strategyproof mechanisms can do [9]. Whether
this is an inherent limitation of OSP mechanisms or just of this technique is not clear.

One of the reasons behind this open question might be the absence of a general technique
for designing OSP mechanisms and the lack of an algorithmic understanding of OSP mechan-
isms. Specifically, it is well known that strategyproofness is equivalent to certain monotonicity
conditions of the algorithm used by the mechanism for computing the solution (be it an
allocation of goods or a path in a network with self-interested agents). Therefore, one can
essentially focus on the algorithmic part and study questions regarding the approximation
and the complexity. The same type of questions seems much more challenging for OSP
mechanisms, as such characterizations are not known. Recent work in the area [5, 27, 24]
aims at simplifying the notion of OSP, by looking at versions of the revelation principle
for OSP mechanisms. This, for example, allows to think, without loss of generality, at
deterministic (rather than randomized) extensive-form mechanisms where each agent moves
sequentially (rather than concurrently).

The goal of this work is build the foundations to reason about OSP algorithmically. In
particular, we advance the state of the art by providing an algorithmic characterization of
OSP mechanisms. Among others, our results show why deferred acceptance auctions [26] –
essentially the only known technique to design OSP mechanisms with money – do not fully
capture the power of a “generic” OSP mechanism, as the latter may exploit some aspects of
the implementation (i.e., extensive-form game) in a crucial way.

Our Contribution. To give an algorithmic characterization of OSP mechanisms, we extend
the well known cycle-monotonicity (CMON) technique. This approach allows to abstract the
truthfulness of an algorithm in terms of non-negative weight cycles on suitably defined graphs.
We show that non-negative weight cycles continue to characterize OSP when the graph of
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interest is carefully defined. Our main conceptual contribution is a way to accommodate
the OSP constraints, which depend on the particular extensive-form implementation of the
mechanism, in the machinery of CMON, which is designed to focus on the algorithmic output
of mechanism. Interestingly, our technique shows the interplay between algorithms (which
solution to return) and how this is implemented as an extensive-form game (what we call
the implementation tree). Roughly speaking, our characterization says which algorithms
can be used for any choice of the implementation tree. The ability to choose between
different implementation trees is what gives extra power to the designer: for example, the
construction of OSP mechanisms based on DA auctions [26] uses always the same fixed tree
for all problems and instances. Though this yields a simple algorithmic condition, it can be
wasteful in terms of optimality (approximation guarantee) as we show herein. In fact, for our
results, we will use CMON two ways to characterize both algorithmic properties (having fixed
an implementation tree) and implementation properties (having fixed the approximation
guarantee we want to achieve).

Armed with the OSP CMON technique, we are able to give the first tight bounds on
the approximation ratio of OSP mechanisms. In particular, we consider the problem of
scheduling n related machines (for identical jobs). While the lower bound holds regardless of
the size of the domain, the mechanisms that we provide are shown to be OSP only for two-
and three-value domains, as we prove that these are the only cases in which non-negative
two-cycles are necessary and sufficient.

We show that the optimum for machine scheduling can be implemented OSP-ly when the
agents’ domains have size two. We prove that given a “balanced” optimum (i.e., a greedy
allocation of jobs to machines) we can always find an implementation tree for which OSP
is guaranteed. The mechanism directly asks the queried agents to reveal their type; given
that the domain only contains two values, this is basically a descending/ascending auction.
For domains of size three, instead, we give a lower bound of

√
n and an essentially tight

upper bound of d
√
ne. Interestingly, the latter is proved with two different mechanisms – one

assuming more than d
√
ne2 number of jobs and the second under the hypothesis that there

are less than that. On the technical level, these results are shown by using our approach of
CMON two ways. We prove that any better than

√
n-approximate OSP mechanism must

have the following structure: for a number of rounds, the mechanism must (i) separate, in its
implementation tree, largest and second largest value in the domain; (ii) assign nothing to
agents who have maximum value in the domain. The former property restricts the family of
implementation trees we can use, whilst the latter restricts the algorithmic output. Our lower
bound shows that there is nothing in this intersection. Our matching upper bounds need to
find both implementation tree and algorithm satisfying OSP and approximation guarantee.

IMain Theorem (informal). The tight approximation guarantee of OSP mechanisms that can
be guaranteed over all three-valued domains is

√
n. The OSP mechanisms use a descending

auction (to find the n− d
√
ne slowest machines) followed by an ascending auction (to find

the fastest machine(s)).

While the general idea of the implementation is that of a descending auction followed by
an ascending auction independently of the number of jobs, we need to tailor the design of
the mechanisms (namely, their ascending phase) according to the number of jobs to achieve
OSP and desired approximation simultaneously. This proves two important points. On one
hand, the design of OSP mechanisms is challenging yet interesting as one needs to carefully
balance algorithms and their implementation. On the other hand, it proves why fixing the
implementation, as in DA auctions, might be the wrong choice. It is indeed straightforward
to extend and adapt our analysis in order to prove that any ascending and descending (thus
including DA) auction has an approximation of n.

ESA 2019



46:4 OSP Mechanisms for Machine Scheduling

We remark that our mechanisms are, to the best of our knowledge, the first examples of
OSP mechanisms with money that do not follow a clock or a posted price auction format
(other mechanisms that do not follow these formats have been proposed only for setting
without money, namely matching and voting [23, 2, 5, 27]). One of the main messages
of our work is exactly that it is possible to combine ascending and descending phases for
the implementation trees of algorithms with good approximation guarantees and obtain
OSP mechanisms.

Related Works. The notion of OSP mechanism has been introduced recently by [23] and
has received a lot of attention in the community. As mentioned above, the class of deferred-
acceptance auctions [26] yields OSP mechanisms since every such auction can be implemented
as a (suitable) ascending price auction. One of the main advantages of DA auctions is that the
construction boils down to the problem of defining a suitable scoring function for the bidders
[26]. [9] studied the approximability of DA auctions for several optimization problems, and
showed that in some cases DA auctions must have an approximation guarantee significantly
worse than the best strategyproof mechanism; [9, 19] provide a number of positive results
where DA auctions are instead optimal. [15] studies also DA auction for the job scheduling
problem: they design an approximate mechanism, but for a different objective function,
namely the weighted completion time.

Several works have focused on understanding better the notion of OSP mechanism, and
studying settings without money, namely matching and voting. In particular [2, 5, 24] mainly
attempt to simplify the notion, whilst [27, 31, 14] define, among other results, stronger and
weaker versions of OSP. A couple of recent papers related to ours are [12], where among
other settings the authors consider OSP mechanisms with money for machine scheduling,
and [21], where this problem is studied in the setting without money. In particular, the lower
bound for machine scheduling in [12] is constant and uses a particular definition of payments,
while here we prove a

√
n lower bound that follows from the CMON characterization of OSP;

their upper bound instead uses monitoring, a model wherein agents pay their reported costs
whenever they overbid. Monitoring is also used in [21] to prove an encouraging bound for
OSP mechanisms without money and a single task; the bound (asymptotically) matches the
performances of strategyproof mechanisms.

Research in algorithmic mechanism design [17, 7] has suggested to focus on “simple”
mechanisms to deal with bounded rationality. For example, posted-price mechanisms received
huge attention very recently and have been applied to many different settings [4, 11, 1, 10, 8].
In these mechanisms one’s own bid is immaterial for the price paid to get some goods of
interest – this should immediately suggest that trying to play the mechanism is worthless
no matter the cognitive abilities of the agents. However, posted price mechanisms do not
fully capture the concept of simple mechanisms: e.g., ascending price auctions are not posted
price mechanisms and still turn out to be “simple” to play and understand.

CMON is a widely used technique in mechanism design that dates back to [28] – a
general treatment is given in [25, 16]. This method has been used quite extensively to prove
strategyproofness of mechanisms in the classical setting, cf., e.g., [6, 22] and when some form
of verification can be adopted, see [30, 20]. Particularly relevant for our work is the research
which shows that in order to establish strategyproofness it is sufficient to study cycles of
length 2 as in [29].
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2 Preliminaries

A mechanism design setting is defined by a set of n selfish agents and a set of allowed
outcomes S. Each agent i has a type ti ∈ Di, where Di is called the domain of i. The type
ti is usually assumed to be private knowledge of agent i. We will let ti(X) ∈ R denote the
cost of agent i with type ti for the outcome X ∈ S. In our application, we will assume
that costs are non-negative; however, our framework and characterization hold in general no
matter the sign.

A mechanism is a process for selecting an outcome X ∈ S. To this aim, the mechanism
interacts with agents. Specifically, agent i is observed to take actions (e.g., saying yes/no)
that may depend on her presumed type bi ∈ Di (e.g., saying yes could “signal” that the
presumed type has some properties that bi enjoys). We say that agent i takes actions
compatible with (or according to) bi to stress this. We highlight that the presumed type bi
can be different from the real type ti.

For a mechanismM, we letM(b) denote the outcome returned by the mechanism when
agents take actions according to their presumed types b = (b1, . . . , bn). In our context, this
outcome is given by a pair (f,p), where f = f(b) (termed social choice function or, simply,
algorithm) maps the actions taken by the agents according to b (i.e., each agent i takes actions
compatible with bi) to a feasible solution in S, and p = p(b) = (p1(b), . . . , pn(b)) ∈ Rn

maps the actions taken by the agents according to b to payments from the mechanism
to the agents.

Each selfish agent i is equipped with a utility function ui : Di × S → R. For ti ∈ Di and
for an outcome X ∈ S returned by a mechanism M, ui(ti, X) is the utility that agent i
has for outcome X when her type is ti. We define utility as a quasi-linear combination of
payments and costs, i.e., ui(ti,M(bi,b−i)) = pi(bi,b−i)− ti(f(bi,b−i)).

A mechanismM is strategy-proof if, for each i, the utility of player i is maximized by
playing the extensive-form implementation of M according to her true type ti. That is,
in a strategy-proof mechanism the actions taken according to the true type are dominant
for each agent.

For our application, we will be focusing on single-parameter settings, that is, the case in
which the private information of each bidder i is a single real number ti and ti(X) can be
expressed as tiwi(X) for some publicly known function wi. To simplify the notation, we will
write tifi(b) when we want to express the cost of a single-parameter agent i of type ti for
the output of social choice function f on input the actions corresponding to a bid vector b.

Obvious Strategyproofness. We now formally define the concept of obviously strategy-
proof deterministic mechanisms. This concept has been introduced in [23]. However, our
definition is built on the more accessible ones given by [2] and [12]. As shown in [5, 24], our
definition is equivalent to Li’s.1

Let us first formally model how a mechanism works. An extensive-form mechanism M is
defined by a directed tree T = (V,E), called the implementation tree, such that:

Every leaf ` of the tree is labeled with a possible outcome X(`) ∈ S of the mechanism;
Every internal vertex u ∈ V is labeled with an agent S(u) ∈ [n];

1 More in detail, our definition of implementation tree is equivalent to the concept of round-table mechanism
in [24]. Consequently, our definition of OSP is equivalent to the concept of SP-implementation through a
round table mechanism, that is proved to be equivalent to the original definition of OSP for deterministic
mechanisms. For a discussion of randomization for OSP mechanisms, we kindly refer the reader to [2, 13].
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Every edge e = (u, v) ∈ E is labeled with a subset T (e) ⊆ D = ×iDi of type profiles such
that:

The subsets of profiles that label the edges outgoing from the same vertex u are disjoint,
i.e., for every triple of vertices u, v, v′ such that (u, v) ∈ E and (u, v′) ∈ E, we have
that T (u, v) ∩ T (u, v′) = ∅;
The union of the subsets of profiles that label the edges outgoing from a non-
root vertex u is equal to the subset of profiles that label the edge going in u, i.e.,⋃
v : (u,v)∈E T (u, v) = T (φ(u), u), where φ(u) is the parent of u in T ;

The union of the subsets of profiles that label the edges outgoing from the root vertex
r is equal to the set of all profiles, i.e.,

⋃
v : (r,v)∈E T (r, v) = D;

For every u, v such that (u, v) ∈ E, where u is not the root, and for every two profiles
b,b′ ∈ T (φ(u), u) such that bi = b′i, i = S(u), if b belongs to T (u, v), then b′ must
belong to T (u, v) also.

Roughly speaking, the tree represents the steps of the execution of the mechanism. As
long as the current visited vertex u is not a leaf, the mechanism interacts with the agent
S(u). Different edges outgoing from vertex u are used for modeling the different actions that
the agent S(u) can take during this interaction with the mechanism. In particular, each
possible action is assigned to an edge outgoing from u. As suggested above, the action that
agent i takes may depend on her presumed type bi ∈ Di. That is, different presumed types
may correspond to taking different actions, and thus to different edges. The label T (e) on
edge e = (u, v) then lists the type profiles that enable the agent S(u) to take those actions
that have been assigned to e. In other words, when the agent takes the actions assigned to
edge e, then the mechanism (and the other agents) can infer that the type profile must be
contained in T (e). The constraints on the edges’ label can be then explained as follows: first
we can safely assume that different actions must correspond to different type profiles (indeed,
if two different actions are enabled by the same profiles we can consider them as a single
action); second, we can safely assume that each action must correspond to at least one type
profile that has not been excluded yet by actions taken before node u was visited (otherwise,
we could have excluded this type profile earlier); third, we have that the action taken by
agent S(u) can only inform about her types and not about the type of the remaining agents.
The execution ends when we reach a leaf ` of the tree. In this case, the mechanism returns
the outcome that labels `.

Observe that, according to the definition above, for every profile b there is only one leaf
` = `(b) such that b belongs to T (φ(`), `). Similarly, to each leaf ` there is at least a profile
b that belongs to T (φ(`), `). For this reason we say thatM(b) = X(`). Moreover, for every
type profile b and every node u ∈ V , we say that b is compatible with u if b ∈ T (φ(u), u).
Finally, two profiles b, b′ are said to diverge at vertex u if there are two vertices v, v′ such
that (u, v) ∈ E, (u, v′) ∈ E and b ∈ T (u, v), whereas b′ ∈ T (u, v′).

For every node u in a mechanismM such that there are two profiles b,b′ that diverge at
u, we say that u is a divergent node, and i = S(u) the corresponding divergent agent. For
each agent i, we define the current domain at node u, denoted Di(u), such that Di(r) = Di

for the root r and Di(u) = ∪b∈T (φ(u),u)bi. In words, this is the set of types of i that are
compatible with the actions that i took during the execution of the mechanism until node
u is reached. Indeed, according to the definition, at each node u in which i diverges, M
partitions Di(u) in k subsets, where k is the number of children of u, and where for every
child v of u, Di(v) ⊂ Di(u) contains the types of bidder i compatible with the action that
she takes when interacting with the mechanism at node u.



D. Ferraioli, A. Meier, P. Penna, and C. Ventre 46:7

We are now ready to define obvious strategyproofness. An extensive-form mechanism
M is obviously strategy-proof (OSP) if for every agent i with real type ti, for every vertex
u such that i = S(u), for every b−i,b′−i (with b′−i not necessarily different from b−i), and
for every bi ∈ Di, with bi 6= ti, such that (ti,b−i) and (bi,b′−i) are compatible with u, but
diverge at u, it holds that ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b′−i)). Roughly speaking, an
obviously strategy-proof mechanism requires that, at each time step agent i is asked to take a
decision that depends on her type, the worst utility that she can get if she behaves according
to her true type is at least the best utility achievable by behaving differently. We stress
that our definition does not restrict the alternative behavior to be consistent with a fixed
type. Indeed, as noted above, each leaf of the tree Tu rooted in u corresponds to a profile
b = (bi,b′−i) compatible with u: then, our definition implies that the utility of i in the leaves
where she plays truthfully is at least as much as the utility in every other leaf of Tu. Hence,
if a mechanism is obviously strategy-proof, then it is also strategy-proof.

We say that an extensive-form mechanism is trivial if for every vertex u ∈ V and for every
two type profiles b,b′, it holds that b and b′ do not diverge at u. That is, a mechanism is
trivial if it never requires agents to take actions that depend on their type. If a mechanism
is not trivial, then there is at least one divergent node. On the other hand, every execution
of a mechanism (i.e., every path from the root to a leaf in the mechanism implementation
tree) may go through at most

∑
i(|Di| − 1) divergent nodes, the upper bound being the case

in which at each divergent node u, the agent i = S(u) separates Di(u) in Di(u) \ {b} and
{b} for some b ∈ Di(u).

Machine Scheduling. Here, we are given a set of m identical jobs to execute and the n
agents control related machines. That is, agent i has a job-independent processing time ti
per unit of job (equivalently, an execution speed 1/ti that is independent from the actual
jobs). The social choice function f must choose a possible schedule f(b) = (f1(b), . . . , fn(b))
of jobs to the machines, where fi(b) denotes the job load assigned to machine i when
agents take actions according to b. The cost that agent i faces for the schedule f(b) is
ti(f(b)) = ti · fi(b). We focus on social choice functions f∗ minimizing the makespan, i.e.,
f∗(b) ∈ arg minx maxni=1 bi(x). We say that f is ρ-approximate if it returns a solution whose
cost is at most ρ times the optimum.

3 Cycle-monotonicity for OSP Mechanisms

We now show how to generalize the cycle-monotonicity technique to design OSP mechanisms.
Let us consider an extensive-form mechanismM = (f,p) with implementation tree T .

I Definition 1 (separating vertices). A vertex u in the implementation tree T is αβ-separating
for agent i if the following holds: Node u is labelled with i, i.e., i = S(u); there are
two profiles (α,a−i) and (β,b−i) which are compatible with u but diverge at u, where
a−i,b−i ∈ D−i(u) = ×j 6=iDj(u).

Note that there might exist several αβ-separating vertices for agent i as the agent may be
asked to separate α from β in different paths from the root to a leaf (but only once for
every such path).

The algorithmic characterization of OSP we provide herein is based on the following
observation.

I Observation 2. An extensive-form mechanism M = (f,p) with implementation tree
T is OSP if and only if for all i, for all α, β ∈ Di, α 6= β, for all vertices u that are
αβ-separating for i:

pi(β,b−i)− pi(α,a−i) ≤ α(f(β,b−i))− α(f(α,a−i)) for all a−i,b−i ∈ D−i(u) . (1)
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We next restate these conditions in terms of suitable weighted graphs and their cycles.

I Definition 3 (OSP-graph). Let f be a social choice function and T be an implementation
tree. We define for every agent i, the OSP-graph OSP (f,T )

i as follows: There is a node for
each type profile in D, and a directed edge e = ((α,a−i), (β,b−i)) for every α, β ∈ Di, α 6= β,
and a−i,b−i ∈ D−i(u), where u is an αβ-separating vertex of T . The weight of the edge is
w(e) = α(f(β,b−i))− α(f(α,a−i)).

I Definition 4 (OSP CMON). We say that the OSP cycle monotonicity (OSP CMON)
property holds if, for all i, the graph OSP (f,T )

i does not have negative weight cycles. Moreover,
we say that the OSP two-cycle monotonicity (OSP 2CMON) holds if the same is true when
considering cycles of length two only, i.e., cycles with two edges only.

I Theorem 5. A mechanism with implementation tree T is an OSP mechanism for a social
function f on finite domains if and only if OSP CMON holds.

The proof of the theorem follow standard arguments used for the classical definition
of strategyproofness. For our application, it is useful to recast the OSP CMON and OSP
2CMON for the case of single-parameter agents.

I Proposition 6. For single-parameter settings, OSP 2CMON is equivalent to the following
condition. For every i, for any α, β ∈ Di with α < β, for any αβ-separating node u of T ,
with i = S(u), it holds

fi(α,a−i) ≥ fi(β,b−i) for all a−i,b−i ∈ D−i(u) . (2)

Warm-up: Using OSP CMON to Bound Approximation Guarantee. We next give a
simple lower bound for the machine scheduling problem. This simple result gives a taster of
the power of OSP CMON as a tool to answer algorithmic questions about OSP.

I Proposition 7. For the machine scheduling problem, no OSP mechanism can be better than
2-approximate, even for two jobs and two agents with three-value domains Di = {L,M,H},
where L < M < H, with M > 3L and H > 3M .

Proof. Assume by contradiction that there is an OSP mechanism M that is better than
2-approximate, and let T be its implementation tree. Since M > 3L and H > 3M , every
trivial OSP mechanism must have approximation guarantee at least 2. HenceM must be
non trivial. Let i be the first divergent agent ofM implemented with T , and let u be the
node where this agent diverges (such an agent exists because the mechanism is not trivial).
We show that this mechanism cannot satisfy OSP 2CMON, thus a contradiction.

If i diverges at u on M and H, then consider b = (β,b−i) = (H,H) and a = (α,a−i) =
(M,L). Since the mechanism is better than 2-approximate, it must satisfy fi(β,b−i) = 1
and fi(α,a−i) = 0. Note that this violates the OSP 2CMON condition (Equation 2 in
Proposition 6): Since i is the first divergent agent, and u is the corresponding node, the set
D−i(u) consists of all types in the domain of the other agent, and therefore H,L ∈ D−i(u)
as required to invoke (2) with our choice b−i = H and a−i = L. If i diverges at u on L and
M , then consider a = (α,a−i) = (L,L) and b = (β,b−i) = (M,H). Since the mechanism is
better than 2-approximate, it must satisfy fi(α,a−i) = 1 and fi(β,b−i) = 2. Similarly to
the previous case, this violates the OSP 2CMON condition (2). J

Note that for this bound we require the domain to have at least three different values; we
will in fact prove in Section 4 that we can design an optimal OSP mechanism for scheduling
related machines when Di = {Li, Hi} for every i. We will also show how to use a more
involved argument to prove a substantially higher (and tight) bound of

√
n.
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Two-cycles are Sufficient for Single-parameter Domains of Size at most Three. Two-
cycle monotonicity is a property easier to work with than CMON. We will now observe
that, for single parameter settings, these properties turns out to be equivalent if and only if
Di = {Li,Mi, Hi} for each i, with Li ≤Mi ≤ Hi.

I Theorem 8. Consider a single-parameter setting where |Di| ≤ 3 for each agent i. A mech-
anism with implementation tree T and social choice function f is OSP iff OSP 2CMON holds.

We next show that this result is essentially tight in the sense that OSP 2CMON does not
imply OSP CMON (and thus OSP-ness) already in four-value domains.

I Theorem 9. There exists a mechanism for which OSP 2CMON holds for every agent, but
there is an agent i for which the mechanism does not satisfy OSP CMON, whenever |Di| ≥ 4.
The claim holds even for a single-item auction setting and Dj = D for every j 6= i.

4 Scheduling Related Machines

In this section, we show how the domain structure impacts on the performance guarantee
of OSP mechanisms, for the problem of scheduling related machines. Roughly speaking,
the problem is easy for two-value domains, while it becomes difficult already for three-value
domains and two jobs.

We can prove that an OSP optimal mechanism exists for the case in which each agent’s
domain has size two. Specifically, we have the following theorem.

I Theorem 10. For the machine scheduling problem, there exists an optimal polynomial-time
OSP mechanism for any number of agents with two-value domains Di = {Li, Hi}.

Lower Bound for Three-value Domain

We now show how to strengthen Proposition 7 and prove a
√
n-inapproximability result for

three-value domains.

I Theorem 11. For the machine scheduling problem, no OSP mechanism can be better than√
n-approximate. This also holds for three-value domains Di = {L,M,H}.

For the proof, we consider m = n = c2, for some c > 1, and a three-value domain Di =
{L,M,H} such that M ≥ m · L and H ≥ m

√
n ·M . Observe that, in such domains, every

trivial mechanism must have an approximation ratio not lower than
√
n. Consider then a

non-trivial mechanismM and let T be its implementation tree. Let us rename the agents
as follows: Agent 1 is the 1st agent that diverges in T ; since the mechanism is not trivial
agent 1 exists. We now call agent 2, the 2nd distinct agent that diverges in the subtree of
T defined by agent 1 taking an action compatible with type H; if no agent diverges in this
subtree of T we simply call 2 an arbitrary agent different from 1. More generally, agent i
is the ith distinct agent that diverges, if any, in the subtree of T that corresponds to the
case that the actions previously taken by agents are compatible with their type being H.
As above, if no agent diverges in the subtree of interest, we just let i denote an arbitrary
agent different from 1, 2, . . . , i− 1. We denote with ui the node in which i first diverges in
the subtree in which all the other agents have taken actions compatible with H; if i does not
diverge (i.e., got her id arbitrarily) we denote with ui a dummy node in which we will say
that i does not diverge and i takes an action compatible with every type in Di. We then
have the following lemma.
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I Lemma 12. Any OSP mechanismM which is k-approximate, with k <
√
n, must satisfy:

1. For every i ≤ n−
√
n+ 1, if agent i diverges at node ui, it must diverge on M and H.

2. For every i ≤ n−
√
n, if agent i diverges at node ui and takes an action compatible with

her type being H, thenM does not assign any job to i, regardless of the actions taken by
the other agents.

Proof. Let us first prove part (1). Suppose that there is i ≤ n−
√
n+ 1 such that at node ui

i diverges on L and {M,H}. Consider the type profile x such that xi = M , and xj = H for
every j 6= i. Observe that x is compatible with node ui. The optimal allocation for the type
profile x assigns all jobs to machine i, with cost OPT (x) = mM . SinceM is k-approximate,
then it also assigns all jobs to machine i. Indeed, if a job is assigned to a machine j 6= i, then
the cost of the mechanism would be at least H ≥

√
n ·mM > k ·OPT (x), that contradicts

the approximation bound.
Consider now the profile y such that yi = L, yj = H for every j < i, and yj = L for

every j > i. Observe that also y is compatible with node ui. It is not hard to see that
OPT (y) ≤

⌈
m

n−i+1

⌉
·L. SinceM is k-approximate, then it cannot assign all jobs to machine

i. Indeed, in this case the cost of the mechanism contradicts the approximation bound,
since it would be mL ≥

√
n
⌈

m
n−i+1

⌉
L > k · OPT (y), where we used that

√
n
⌈

m
n−i+1

⌉
≤

√
n
⌈
m√
n

⌉
=
√
n
⌈
n√
n

⌉
=
√
n ·
√
n = n = m.

Hence, we have that if i takes actions compatible with M , then there exists a type profile
compatible with ui such that i receives n jobs, whereas, if i takes a different action compatible
with a lower type, then there exists a type profile compatible with ui such that i receives
less than n jobs. However, this contradicts the OSP CMON property.

Let us now prove part (2). Suppose that there is i ≤ n−
√
n and x−i compatible with ui

such that if i takes an action compatible with type H, thenM assigns at least a job to i.
According to part (1), machine i diverges at node ui on H and M .

Consider then the profile y such that yi = M , yj = H for j < i, and yj = L for j > i.
It is easy to see that the optimal allocation has cost OPT (y) =

⌈
m
n−i

⌉
· L. Since M is

k-approximate, then it does not assign any job to machine i. Otherwise, the mechanism con-
tradicts the approximation bound since his cost would be at least M ≥ mL ≥

√
n
⌈
m
n−i

⌉
L >

k ·OPT (x), where we used that
√
n
⌈
m
n−i

⌉
≤
√
n
⌈
m√
n

⌉
=
√
n
⌈
n√
n

⌉
=
√
n ·
√
n = n = m.

Hence, we have that if i takes actions compatible with H, then there exists a type
profile compatible with ui such that i receives one job, whereas, if i takes a different action
compatible with a lower type, then there exists a type profile compatible with ui such that i
receives zero jobs. However, this contradicts the OSP CMON property. J

Proof of Theorem 11. Suppose that there is an OSP k-approximate mechanismM for some
k <
√
n, thus implying that the mechanism is not trivial.

Assume first that for all i ≤ n−
√
n agent i diverges at ui. Consider x such that xi = H

for every i. Observe that x is compatible with ui for every i. The optimal allocation consists
in assigning a job to each machine, and has cost OPT (x) = H. According to Part (2) of
Lemma 12, if machines take actions compatible with x, then the mechanismM does not
assign any job to machine i, for every i ≤ n −

√
n. Hence, the best outcome thatM can

return for x consists in assigning
√
n jobs to each of the other

√
n machines. Therefore, the

cost ofM is at least
√
nH > kOPT (x), which contradicts the approximation ratio ofM.

Consider now the case that there is 1 < i ≤ n−
√
n that does not diverge at ui (since the

mechanism is not trivial i > 1). This means that all the machines j ≥ i will not diverge at ui;
let S denote this set of machines. Note that the n− i+ 1 ≥

√
n+ 1 machines in S will have



D. Ferraioli, A. Meier, P. Penna, and C. Ventre 46:11

the same outcome no matter their types when the machines not in S have type H; in other
words, any profile x where xj = H for j 6∈ S is compatible with ui. Consider x such that
xj = H for j 6∈ S and xj = L otherwise. Since H ≥ n5/2L, to guarantee approximation k,
the mechanism must return a solution for x which keeps the machines not in S empty; then
there is a j∗ ∈ S which is allocated at least

⌈
n√
n+1

⌉
jobs. Consider now y where yj = H for

j 6∈ S \ {j∗} and yj = L otherwise. The mechanism must give in output the same allocation
given in output for x since it cannot distinguish x from y. However, giving that many jobs
to machine j∗ contradicts the approximation guarantee on y. J

The arguments above can be used to prove that ascending and descending auctions do
not help in this setting. Specifically, they cannot return an approximation better than n.

Upper bound for Three-value Domain

We describe our mechanisms for a generic domain, as this turns out to be useful in the
analysis. In what follows, the usual bold notation x denotes vectors of n entries, while a
“hat-bold” notation x̂ denotes vectors of d

√
ne entries only.

A Mechanism for Many Jobs (Large m). We now introduce mechanismMmany whose
approximation ratio approaches d

√
ne, whenever m � d

√
ne. The mechanism consists of

a descending Phase (Algorithm 1) followed by an ascending Phase (Algorithm 2). The
descending phase simply queries the agents to identify (and forget about) the n−

√
n slowest

machines; the ascending phase instead identifies the fastest machine and then computes the
optimal solution to a vector where the types of the remaining

√
n− 1 machines is set to the

best type of the slow machines found in the descending phase.

Algorithm 1 Descending Phase (for both mechanismsMmany andMfew).

1 Set A = [n], and ti = max{d ∈ Di}
2 while |A| >

⌈√
n
⌉

do
3 Set p = maxa∈A{ta} and i = min{a ∈ A : ta = p}
4 Ask machine i if her type is equal to p
5 if yes then remove i from A

6 else set ti = max{t ∈ Di : t < p}

I Proposition 13. MechanismMmany is OSP for any three-value domain Di = {Li,Mi, Hi}.

Proof. We prove thatMmany satisfies OSP 2CMON. The claim then follows from Theorem 8.
Specifically, for each machine i, for each node u in which the mechanism makes a query to i,
for each pair of type profiles x,y compatible with u such that i diverges at u between xi and
yi, we need to prove that if xi > yi, then fi(Mmany(x)) ≤ fi(Mmany(y)).

Let us first consider a node u corresponding to the descending phase of the mechanism.
In this case, xi = p, where p is as at node u. Moreover, in all profiles compatible with u
there are at least d

√
ne machines that either have a type lower than p, or they have type

p but are queried after i. However, for every x−i satisfying this property, we have that
fi(Mmany(x)) = 0, which implies that these two-cycles have non-negative weight.

Suppose now that node u corresponds to the ascending phase of the mechanism. In this
case, yi = p, where p is as at node u. Observe that for every y−i compatible with node u,
fi(Mmany(y)) = f?i (yi, ẑ−i), where f?i (yi, ẑ−i) is the number of jobs assigned to machine
i by the optimal outcome on input profile (yi, ˆz)−i, ẑ−i being such that ẑj = maxk∈A tk
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for every j ∈ A \ {i}. Observe that for every x compatible with u, it must be the case
that xj ≥ yi for every j ∈ A. Hence, we can distinguish two cases: if minj xj = xi, then
fi(Mmany(x)) = f?i (xi, ẑ−i) ≤ f?i (yi, ẑ−i) = fi(Mmany(y)); if instead minj xj = xk, for
some k 6= i, then fi(Mmany(x)) = f?i (xk, ẑ−k) ≤ f?k (xk, ẑ−k) ≤ f?i (yi, ẑ−i) = fi(Mmany(y)),
where we used that ẑ−k = ẑ−i and the inequalities follow since: (i) in the optimal outcome
the fastest machine must receive at least as many jobs as slower machines; (ii) the optimal
outcome is monotone, (i.e., given the speeds of other machines, the number of jobs assigned
to machine i decreases as its speeds decreases). J

Algorithm 2 Ascending Phase
(Mmany).

1 Set si = min {d ∈ Di}
2 while |A| > 0 do
3 Set p = mina∈A{sa} and

i = min{a ∈ A : sa = p}
4 Ask machine i if her type is p
5 if yes then
6 Let ẑ be s.t. ẑi = p and

ẑj = mink /∈A tk for j ∈ A, j 6= i

7 Let f?(ẑ) = (f?
i (ẑ))i∈A be the

optimal assignment for profile ẑ
8 Assign f?

j (ẑ) jobs to each j ∈ A
9 Set A = ∅

10 else set si = min{d ∈ Di : d > p}

Algorithm 3 Ascending Phase
(Mfew).

1 Set ta = mini {d ∈ Di} and C = m

2 while |A| > 0 do
3 Set q = mina∈A{ta} and

i = min{a ∈ A : ta = q}
4 Ask machine i if her type is q
5 if yes then
6 Let ζ = dC/|A|e
7 Let z be the largest integer in

[ζ, C] such that z · q ≤
⌈√

n
⌉
· p

8 Assign z jobs to i
9 Set C = C − z

10 Remove i from A

11 else set ti = min{d ∈ Di : d > p}

The next theorem bounds the approximation ratio of the mechanism

I Theorem 14. MechanismMmany is (d
√
ne+ 1)-approximate for m > d

√
ne2.

A Mechanism for Few Jobs (Small m). We now introduce a mechanism Mfew which
is OSP and d

√
ne-approximate whenever m ≤ d

√
ne2. Like Mmany, Mfew consists of a

descending phase followed by an ascending phase. The descending phase is exactly the same
(Algorithm 1) with the difference that the ascending phase (Algorithm 3) does not need the
information on the type of the machines that are not in A at that point.

We show next thatMfew is well defined under our assumption on m, is OSP and has
approximation d

√
ne.

I Lemma 15. If m ≤ d
√
ne2 then there exists a z in line 7 of Algorithm 3.

Proof. We next show that it never occurs during the ascending phase that ζ · q > d
√
ne · p.

Indeed, for the first machine to reveal the type during the ascending phase, we have that
|P0| = m ≤ d

√
ne2, and, thus ζ ≤ d

√
ne. Hence, ζ · q ≤ d

√
ne · p since q ≤ p. If a set

Q ⊂ A of machines has previously revealed the type during the ascending phase, and
the execution of this phase has not been stopped, then these machines received at least
m′ = b|Q|m/|A|c+ min{|Q|,m mod |A|} jobs. Then |P0| = m−m′ ≤ (|A|− |Q|) d

√
ne, and

thus ζ ≤ d
√
ne, and, since q ≤ p, ζ · q ≤ d

√
ne · p. J

I Proposition 16. MechanismMfew is OSP for three-value domains Di = {Li,Mi, Hi}.
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Proof. We prove that Mmany satisfies the OSP 2CMON. The claim then follows from
Theorem 8. Specifically, for each machine i, for each node u in which the mechanism makes
a query to i, for each pair of type profiles x,y compatible with u such that xi and yi diverge
at u, we need to prove that if xi > yi, then fi(Mfew(x)) ≤ fi(Mfew(y)).

Let us first consider a node u corresponding to the descending phase of the mechanism.
In this case, xi = p, where p is as at node u. Moreover, in all profiles compatible with u
there are at least d

√
ne machines that either have a type lower than p, or they have type

p but they are queried after i. Hence, for every x−i satisfying this property, we have that
fi(Mfew(x)) = 0, that implies the claim.

Suppose now that node u corresponds to the ascending phase of the mechanism. Let
C(u), A(u), p(u) and q(u) be the value of C, A, p and q at that node. Observe that for
every profile compatible with u, the type of machines not in A(u) is fixed, whereas for every
machine in A(u), the type is at least q(u). Moreover, yi = q(u). Hence, fi(Mfew(y)) is the
largest integer z ≤ C(u) such that z · yi ≤ d

√
ne · p(u). On the other side, for every xi > yi,

fi(Mfew(x)) is at most the largest integer z′ ≤ C(u) such that z′ · xi ≤ d
√
ne · p(u). Since

xi > yi, then z′ ≤ z, and the lemma follows. J

I Proposition 17. MechanismMfew is d
√
ne-approximate.

5 Conclusions

We have focused on OSP mechanisms, a compelling and needed notion of incentive compatibil-
ity for bounded rationality; [23] proves that OSP is the notion that captures strategyproofness
for agents who lack contingent reasoning skills. It is thus paramount to understand the
limitations and the power of these mechanisms.

We have introduced a new technique to look at OSP mechanisms, and shown its power
by giving tight results on the approximation for a paradigmatic problem in the area. Our
contribution highlights how there are two dimensions, algorithms and their implementation,
to the design of these mechanisms. The interplay between these dimensions is encapsulated by
OSP CMON and plays a central role, as shown by the limitations of fixing the implementation
beforehand (as in DA auctions or direct revelation mechanisms).

Furthermore, the significance of the technique can be seen by comparing the previously
known lower bounds on the approximation guarantee of OSP mechanisms given in [12, 5].
These results focus on the first divergent agent only and bound the strategyproof payments
for the identified instances in order to understand and limit the behavior of the algorithm.
As a result, their bounds are small constants (2 for machine scheduling in [12] and 1 + ε, for
combinatorial auctions with additive bidders in [5]).

We leave a number of open problems. A technical one is about the domain size and
the difference between 2-cycles and longer ones; to what extent adding an extra type in
the domain can deteriorate the approximation ratio of OSP mechanisms? A second, more
conceptual question, is about dealing with multi-parameter agents. Even with the machinery
of OSP CMON, it does not seem immediate to characterize the implementation trees for this
kind of agents as there is not a concept of relative ordering of types. Hence, the common
pattern of OSP mechanisms, where at each node of the implementation tree an extreme of
the current domain is separated from the rest, cannot be adopted.
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Abstract
An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree at most d. By
the classical theorem of Erdős and Gallai from 1959, every graph of degeneracy d > 1 contains a
cycle of length at least d + 1. The proof of Erdős and Gallai is constructive and can be turned
into a polynomial time algorithm constructing a cycle of length at least d + 1. But can we decide
in polynomial time whether a graph contains a cycle of length at least d + 2? An easy reduction
from Hamiltonian Cycle provides a negative answer to this question: Deciding whether a graph
has a cycle of length at least d + 2 is NP-complete. Surprisingly, the complexity of the problem
changes drastically when the input graph is 2-connected. In this case we prove that deciding whether
G contains a cycle of length at least d + k can be done in time 2O(k)|V (G)|O(1). In other words,
deciding whether a 2-connected n-vertex G contains a cycle of length at least d + log n can be done
in polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that
deciding whether a graph has a path of length at least d + 1 is NP-complete. However, we prove
that if graph G is connected, then deciding whether G contains a path of length at least d + k can
be done in time 2O(k)nO(1). We complement these results by showing that the choice of degeneracy
as the “above guarantee parameterization” is optimal in the following sense: For any ε > 0 it is
NP-complete to decide whether a connected (2-connected) graph of degeneracy d has a path (cycle)
of length at least (1 + ε)d.
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1 Introduction

The classical theorem of Erdős and Gallai [11] says that

I Theorem 1 (Erdős and Gallai [11]). Every graph with n vertices and more than (n− 1)`/2
edges (` ≥ 2) contains a cycle of length at least `+ 1.

Recall that a graph G is d-degenerate if every subgraph H of G has a vertex of degree at
most d, that is, the minimum degree δ(H) ≤ d. Respectively, the degeneracy of graph G, is
dg(G) = max{δ(H) | H is a subgraph of G}. Since a graph of degeneracy d has a subgraph
H with at least d · |V (H)|/2 edges, by Theorem 1, it contains a cycle of length at least
d+ 1. Let us note that the degeneracy of a graph can be computed in polynomial time, see
e.g. [28], and thus by Theorem 1, deciding whether a graph has a cycle of length at least
d+ 1 can be done in polynomial time. In this paper we revisit this classical result from the
algorithmic perspective.

We define the following problem.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle of length at least dg(G) + k.

Longest Cycle Above Degeneracy

Let us first sketch why Longest Cycle Above Degeneracy is NP-complete for k = 2
even for connected graphs. We can reduce Hamiltonian Cycle to Longest Cycle Above
Degeneracy with k = 2 as follows. For a connected non-complete graph G on n vertices,
we construct connected graph H from G and a complete graph Kn−1 on n− 1 vertices as
follows. We identify one vertex of G with one vertex of Kn−1. Thus the obtained graph H
has |V (G)|+ n− 2 vertices and is connected; its degeneracy is n− 2. Then H has a cycle
with dg(H) + 2 = n vertices if and only if G has a Hamiltonian cycle.

Interestingly, when the input graph is 2-connected, the problem becomes fixed-parameter
tractable being parameterized by k. Let us recall that a connected graph G is (vertex)
2-connected if for every v ∈ V (G), G − v is connected. Our first main result is the
following theorem.

I Theorem 2. On 2-connected graphs Longest Cycle Above Degeneracy is solvable
in time 2O(k) · nO(1).

Similar results can be obtained for paths. Of course, if a graph contains a cycle of length
d+ 1, it also contains a simple path on d+ 1 vertices. Thus for every graph G of degeneracy
d, deciding whether G contains a path on dg(G) + 1 vertices can be done in polynomial time.
Again, it is easy to show that it is NP-complete to decide whether G contains a path with
d+ 2 vertices by a reduction from Hamiltonian Path. The reduction is very similar to the
one we sketched for Longest Cycle Above Degeneracy. The only difference that this
time graph H consists of a disjoint union of G and Kn−1. The degeneracy of H is d = n− 2,
and H has a path with d+ 2 = n vertices if and only if G contains a Hamiltonian path. Note
that graph H used in the reduction is not connected. However, when the input graph G is
connected, the complexity of the problem changes drastically. We define
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Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with at least dg(G) + k vertices.

Longest Path Above Degeneracy

The second main contribution of our paper is the following theorem.

I Theorem 3. On connected graphs Longest Path Above Degeneracy is solvable in
time 2O(k) · nO(1).

Let us remark that Theorem 2 does not imply Theorem 3, because Theorem 2 holds only
for 2-connected graphs.

We also show that the parameterization lower bound dg(G) that is used in Theorems 2
and 3 is tight in some sense. We prove that for any 0 < ε < 1, it is NP-complete to decide
whether a connected graph G contains a path with at least (1 + ε)dg(G) vertices and it
is NP-complete to decide whether a 2-connected graph G contains a cycle with at least
(1 + ε)dg(G) vertices.

Related work. Hamiltonian Path and Hamiltonian Cycle problems are among the
oldest and most fundamental problems in Graph Theory. In parameterized complexity the
following generalizations of these problems, Longest Path and Longest Cycle, were
heavily studied. The Longest Path problem is to decide, given an n-vertex (di)graph G
and an integer k, whether G contains a path of length at least k. Similarly, the Longest
Cycle problem is to decide whether G contains a cycle of length at least k. There is
a plethora of results about parameterized complexity (we refer to the book of Cygan at
al. [9] for the introduction to the field) of Longest Path and Longest Cycle (see, e.g.,
[4, 5, 7, 6, 12, 14, 22, 23, 24, 32]) since the early work of Monien [29]. The fastest known
randomized algorithm for Longest Path on undirected graph is due to Björklund et al. [4]
and runs in time 1.657k ·nO(1). On the other hand very recently, Tsur gave the fastest known
deterministic algorithm for the problem running in time 2.554k · nO(1) [31]. Respectively
for Longest Cycle, the current fastest randomized algorithm running in time 4k · nO(1)

was given by Zehavi in [33] and the best deterministic algorithm constructed by Fomin et al.
in [13] runs in time 4.884k · nO(1).

Our theorems about Longest Path Above Degeneracy and Longest Cycle
Above Degeneracy fit into an interesting trend in parameterized complexity called
“above guarantee” parameterization. The general idea of this paradigm is that the natural
parameterization of, say, a maximization problem by the solution size is not satisfactory if
there is a lower bound for the solution size that is sufficiently large. For example, there always
exists a satisfying assignment that satisfies half of the clauses or there is always a max-cut
containing at least half the edges. Thus nontrivial solutions occur only for the values of the
parameter that are above the lower bound. This indicates that for such cases, it is more
natural to parameterize the problem by the difference of the solution size and the bound.
The first paper about above guarantee parameterization was due to Mahajan and Raman [26]
who applied this approach to the Max Sat and Max Cut problem. This approach was
successfully applied to various problems, see e.g. [1, 8, 16, 17, 18, 19, 20, 25, 27].

For Longest Path, the only successful above guarantee parameterization known prior
to our work was parameterization above shortest path. More precisely, let s, t be vertices of
an undirected graph G. Clearly, the length of any (s, t)-path in G is lower bounded by the
shortest distance, d(s, t), between these vertices. Based on this observation, Bezáková et al.
in [3] introduced the Longest Detour problem that asks, given a graph G, two vertices
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s, t, and a positive integer k, whether G has an (s, t)-path with at least d(s, t) + k vertices.
They proved that for undirected graphs, this problem can be solved in time 2O(k) · nO(1). On
the other hand, the parameterized complexity of Longest Detour on directed graphs is
still open. For the variant of the problem where the question is whether G has an (s, t)-path
with exactly d(s, t) + k vertices, a randomized algorithm with running time 2.746k · nO(1)

and a deterministic algorithm with running time 6.745k · nO(1) were obtained [3]. These
algorithms work for both undirected and directed graphs. Parameterization above degeneracy
is “orthogonal” to the parameterization above the shortest distance. There are classes of
graphs, like planar graphs, that have constant degeneracy and arbitrarily large diameter. On
the other hand, there are classes of graphs, like complete graphs, of constant diameter and
unbounded degeneracy.

Our approach. Our algorithmic results are based on classical theorems of Dirac [10], and
Erdős and Gallai [11] on the existence of “long cycle” and “long paths” and can be seen as
non-trivial algorithmic extensions of these classical theorems. Let δ(G) be the minimum
vertex degree of graph G.

I Theorem 4 (Dirac [10]). Every n-vertex 2-connected graph G with minimum vertex degree
δ(G) ≥ 2, contains a cycle with at least min{2δ(G), n} vertices.

I Theorem 5 (Erdős and Gallai [11]). Every connected n-vertex graph G contains a path with
at least min{2δ(G) + 1, n} vertices.

Theorem 4 is used to prove Theorem 2 and Theorem 5 is used to prove Theorem 3.
We give a high-level overview of the ideas used to prove Theorem 2. The ideas behind the

proof of Theorem 3 are similar. Let G be a 2-connected graph of degeneracy d. If d = O(k),
we can solve Longest Cycle Above Degeneracy in time 2O(k) · nO(1) by making use of
one of the algorithms for Longest Cycle. Assume from now that d ≥ c ·k for some constant
c, which will be specified in the proof. Then we find a d-core H of G (a connected subgraph
of G with the minimum vertex degree at least d). This can be done in linear time by one of
the known algorithms, see e.g. [28]. If the size of H is sufficiently large, say |V (H)| ≥ d+ k,
we use Theorem 4 to conclude that H contains a cycle with at least |V (H)| ≥ d+ k vertices.

The most interesting case occurs when |V (H)| < d+ k. Suppose that G has a cycle of
length at least d+ k. It is possible to prove that there is also a cycle of length at least d+ k

that hits the core H. We do not know how many times and in which vertices of H this cycle
enters and leaves H, but we can guess these terminal points. The interesting property of the
core H is that, loosely speaking, for any “small” set of terminal points, inside H the cycle
can be rerouted in such a way that it will contain all vertices of H.

A bit more formally, we prove the following structural result. We define a system of
segments in G with respect to V (H), which is a family of internally vertex-disjoint paths
{P1, . . . , Pr} in G (see Figure 1). Moreover, for every 1 ≤ i ≤ r, every path Pi has at least 3
vertices, its endpoints are in V (H) and all internal vertices of Pi are in V (G) \ V (H). Also
the union of all the segments is a forest with every connected component being a path.

We prove that G contains a cycle of length at least k + d if and only if
either there is a path of length at least k + d− |V (H)| with endpoints in V (H) and all
internal vertices outside H, or
there is a system of segments with respect to V (H) such that the total number of vertices
outside H used by the paths of the system, is within the interval [k + d− |V (H)|, 2 · (k +
d− |V (H)|)].
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H

P1 Pr

Figure 1 Reducing Longest Cycle Above Degeneracy to finding a system of segments
P1, . . . , Pr; complementing the segments into a cycle is shown by dashed lines.

The proof of this structural result is built on Lemma 8, which describes the possibility of
routing in graphs of large minimal degree. The crucial property is that we can complement
any system of segments of bounded size by segments inside the core H to obtain a cycle that
contains all the vertices of H as is shown in Figure 1.

Since |V (H)| > d, the problem of finding a cycle of length at least k+d in G boils down to
one of the following tasks. Either find a path of length c′ · k with all internal vertices outside
H, or find a system of segments with respect to V (H) such that the total number of vertices
used by the paths of the system is c′′ ·k, here c′ and c′′ are the constants to be specified in the
proof. In the first case, we can use one of the known algorithms to find in time 2O(k) · nO(1)

such a long path. In the second case, we can use color-coding to solve the problem.

Organization of the paper. In Section 2 we give basic definitions and state some known
fundamental results. Sections 3–4 contain the proof of Theorems 3 and 2. In Section 3 we
state structural results that we need for the proofs and in Section 4 we complete the proofs.
In Section 5, we give the complexity lower bounds for our algorithmic results. We conclude
the paper in Section 6 by stating some open problems.

2 Preliminaries

We consider only finite undirected graphs. For a graph G, we use V (G) and E(G) to denote
its vertex set and edge set, respectively. Throughout the paper we use n = |V (G)| and
m = |E(G)|. For a graph G and a subset U ⊆ V (G) of vertices, we write G[U ] to denote
the subgraph of G induced by U . We write G− U to denote the graph G[V (G) \ U ]; for a
single-element set U = {u}, we write G− u. For a vertex v, we denote by NG(v) the (open)
neighborhood of v, i.e., the set of vertices that are adjacent to v in G. For a set U ⊆ V (G),
NG(U) = (

⋃
v∈U NG(v)) \ U . The degree of a vertex v is dG(v) = |NG(v)|. The minimum

degree of G is δ(G) = min{dG(v) | v ∈ V (G)}. A d-core of G is an inclusion maximal induced
connected subgraph H with δ(H) ≥ d. Every graph of degeneracy at least d contains a
d-core and that can be found in linear time (see [28]). A vertex u of a connected graph G
with at least two vertices is a cut vertex if G− u is disconnected. A connected graph G is
2-connected if it has no cut vertices. An inclusion maximal induced 2-connected subgraph
of G is called a biconnected component or block. Let B be the set of blocks of a connected
graph G and let C be the set of cut vertices. Consider the bipartite graph Block(G) with
the vertex set B∪C, where (B, C) is the bipartition, such that B ∈ B and c ∈ C are adjacent
if and only if c ∈ V (B). The block graph of a connected graph is always a tree (see [21]).

A path in a graph is a self-avoiding walk. Thus no vertex appears in a path more than
once. A cycle is a closed self-avoiding walk . For a path P with end-vertices s and t, we
say that the vertices of V (P ) \ {s, t} are internal. We say that G is a linear forest if each
component of G is a path. The contraction of an edge xy is the operation that removes the
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vertices x and y together with the incident edges and replaces them by a vertex uxy that
is adjacent to the vertices of NG({x, y}) of the original graph. If H is obtained from G by
contracting some edges, then H is a contraction of G.

We summarize below some known algorithmic results which will be used as subroutines
by our algorithm.

I Proposition 6. Longest Path and Longest Cycle are solvable in time 2O(k) · nO(1).

We also need the result about the variant of Longest Path with fixed end-vertices. In
the (s, t)-Longest Path, we are given two vertices s and t of a graph G and a positive
integer k. The task is to decide, whether G has an (s, t)-path with at least k vertices. Using
the results of Bezáková et al. [2], we immediately obtain the following.

I Proposition 7. (s, t)-Longest Path is solvable in time 2O(k) · nO(1).

3 Segments and rerouting

In this section we define systems of segments and prove structural results about them. These
combinatorial results are crucial for our algorithms for Longest Path Above Degeneracy
and Longest Cycle Above Degeneracy.

The following rerouting lemma is crucial for our algorithms.

I Lemma 8. Let G be an n-vertex graph and k be a positive integer such that δ(G) ≥
max{5k − 3, n − k}. Let {s1, t1}, . . . , {sr, tr}, r ≤ k, be a collection of pairs of vertices of
G such that (i) si, ti /∈ {sj , tj} for all i 6= j, i, j ∈ {1, . . . , r}, and (ii) there is at least one
index i ∈ {1, . . . , r} such that si 6= ti. Then there is a family of pairwise vertex-disjoint paths
P = {P1, . . . , Pr} in G such that each Pi is an (si, ti)-path and

⋃r
i=1 V (Pi) = V (G), that is,

the paths cover all vertices of G.

Proof. We prove the lemma in two steps. First we show that there exists a family P ′ of
pairwise vertex-disjoint paths connecting all pairs {si, ti}. Then we show that if the paths of
P ′ do not cover all vertices of G, it is possible to enlarge a path such that the new family of
paths covers more vertices.

We start by constructing a family of vertex-disjoint paths P ′ = {P1, . . . , Pr} in G such
that each Pi ∈ P ′ is an (si, ti)-path. We prove that we can construct paths in such a
way that each Pi has at most 3 vertices. Let T =

⋃r
i=1{si, ti} and S = V (G) \ T . Notice

that |S| ≥ n − 2k ≥ δ(G) + 1 − 2k ≥ 3k − 2. We consecutively construct paths of P ′ for
i ∈ {1, . . . , r}. If si = ti, then we have a trivial (si, ti)-path. If si and ti are adjacent, then
edge siti forms an (si, ti)-path with 2 vertices. Assume that si 6= ti and siti /∈ E(G). The
already constructed paths contain at most r − 1 ≤ k − 1 vertices of S in total. Hence, there
is a set S′ ⊆ S of at least 2k− 1 vertices that are not contained in any of already constructed
paths. Since δ(G) ≥ n − k, each vertex of G has at most k − 1 non-neighbors in G. By
the pigeonhole principle, there is v ∈ S′ such that siv, tiv ∈ E(G). Then we can construct
the path Pi = sivti.

We proved that there is a family P ′ = {P1, . . . , Pr} of vertex-disjoint (si, ti)-paths in
G. Among all such families, let us select a family P = {P1, . . . , Pr} covering the maximum
number of vertices of V (G). If

⋃r
i=1 V (Pi) = V (G), then the lemma holds. Assume that

|
⋃r

i=1 V (Pi)| < |V (G)|. Suppose |
⋃r

i=1 V (Pi)| ≤ 3k − 1. Since si 6= ti for some i, there
is an edge uv in one of the paths. Since n ≥ δ(G) + 1 ≥ 5k − 2, there are at least 2k − 1
vertices uncovered by paths of P. Since δ(G) ≥ n− k, each vertex of G has at most k − 1
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non-neighbors in G. Thus there is w ∈ V (G) \ (
⋃r

i=1 V (Pi)) adjacent to both u and v. But
then we can extend the path containing uv by replacing uv by the path uwv. The paths of
the new family cover more vertices than the paths of P, which contradicts the choice of P.

Suppose |
⋃r

i=1 V (Pi)| ≥ 3k. Because the paths of P are vertex-disjoint, the union of
edges of paths from P contains a k-matching. That is, there are k edges u1v1, . . . , ukvk of
G such that for every i ∈ {1, . . . , k}, vertices ui, vi are consecutive in some path from P
and ui 6= uj , ui 6= vj for all non-equal i, j ∈ {1, . . . , k}. Let w ∈ V (G) \ (

⋃r
i=1 V (Pi)). We

again use the observation that w has at most k − 1 non-neighbors in G and, therefore, there
is j ∈ {1, . . . , k} such that ujw, vjw ∈ E(G). Then we extend the path containing ujvj by
replacing edge ujvj by the path ujwvj , contradicting the choice of P . We conclude that the
paths of P cover all vertices of G. J

Let G be a graph and let T ⊂ V (G) be a set of terminals. We need the following
definitions.

I Definition 9 (Terminal segments). We say that a path P in G is a one-terminal T -segment
if it has at least two vertices, exactly one end-vertex of P is in T and other vertices are
not in T . Respectively, P is a two-terminal T -segment if it has at least three vertices, both
end-vertices of P are in T and internal vertices of P are not in T .

For every cycle C hitting H, removing the vertices of H from C turns it into a set of
two-terminal T -segments for T = V (H). So here is the definition.

I Definition 10 (System of T -segments). We say that a set {P1, . . . , Pr} of paths in G is a
system of T -segments if it satisfies the following conditions.
(i) For each i ∈ {1, . . . , r}, Pi is a two-terminal T -segment,
(ii) P1, . . . , Pr are pairwise internally vertex-disjoint, and
(iii) the union of P1, . . . , Pr is a linear forest.

Let us remark that we do not require that the end-vertices of the paths {P1, . . . , Pr}
cover all vertices of T . System of segments will be used for solving Longest Cycle Above
Degeneracy.

For Longest Path Above Degeneracy we need to modify the definition of a system
of T -segments to include the possibility that path can start or end in H.

I Definition 11 (Extended system of T -segments). We say that a set {P1, . . . , Pr} of paths
in G is an extended system of T -segments if the following holds.
(i) At least one and at most two paths are one-terminal T -segments and the others are

two-terminal T -segments.
(ii) P1, . . . , Pr are pairwise internally vertex-disjoint and the end-vertices of each one-

terminal segment that is in V (G) \ T is pairwise distinct with the other vertices of the
paths.

(iii) The union of P1, . . . , Pr is a linear forest and if {P1, . . . , Pr} contains two one-terminal
segments, then the vertices of these segments are in distinct components of the forest.

The following lemma will be extremely useful for the algorithm solving Longest Path
Above Degeneracy. Informally, it shows that if a connected graph G is of large degeneracy
but has a small core H, then deciding whether G has a path of length k + d can be reduced
to checking whether G has an extended system of T -segments with terminal set T = V (H)
such that the total number of vertices used by the system is O(k).
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I Lemma 12. Let d, k ∈ N. Let G be a connected graph with a d-core H such that d ≥ 5k−3
and d > |V (H)| − k. Then G has a path on d+ k vertices if and only if G has an extended
system of T -segments {P1, . . . , Pr} with terminal set T = V (H) such that the total number
of vertices contained in the paths of the system in V (G) \ V (H) is p = d+ k − |V (H)|.

Proof. We put T = V (H). Suppose first that G has an extended system {P1, . . . , Pr} of
T -segments and that the total number of vertices of the paths in the system outside T is
p = d+ k− |T |. Let si and ti be the end-vertices of Pi for i ∈ {1, . . . , r} and assume without
loss of generality that for 1 ≤ i < j ≤ r, the vertices of Pi and Pj are pairwise distinct with
the possible exception ti = sj when i = j − 1. We also assume without loss of generality that
P1 is a one-terminal segment and t1 ∈ T and if {P1, . . . , Pr} has two one-terminal segments,
then the second such segment is Pr and sr ∈ T . Note that because |V (H)| > d, we have that
p = d+ k − |V (H)| < k.

Suppose that {P1, . . . , Pr} contains one one-terminal segment P1. Let sr+1 be an arbitrary
vertex of T \ (

⋃r
i=1 V (Pi)). Notice that such a vertex exists, because |T ∩ (

⋃r
i=1 V (Pi))| ≤

2p − 1 < 2k − 1 and |T | ≥ d + 1 ≥ 5k − 3. Consider the collection of pairs of vertices
{t1, s2}, {t2, s3}, . . . , {tr, sr+1}. Notice that vertices from distinct pairs are distinct and
tr 6= sr+1. By Lemma 8, there are vertex-disjoint paths P ′1, . . . , P ′r in H that cover T such
that P ′i is a (ti, si+1)-path for i ∈ {1, . . . , r}. By concatenating P1, P

′
1, P2, . . . , Pr, P

′
r we

obtain a path in G with |T |+ p = d+ k vertices.
Assume now that {P1, . . . , Pr} contains two one-terminal segments P1 and Pr. Consider

the collection of pairs of vertices {t1, s2}, . . . , {tr−1, sr}. Notice that vertices from distinct
pairs are distinct and there is i ∈ {2, . . . , r} such that ti−1 6= si by the condition (iii) of the
definition of an extended system of segments. By Lemma 8, there are vertex-disjoint paths
P ′1, . . . , P

′
r−1 in H that cover T such that P ′i is a (ti, si+1)-path for i ∈ {1, . . . , r − 1}. By

concatenating P1, P
′
1, . . . , P

′
r−1, Pr we obtain a path in G with |T |+ p = d+ k vertices.

To show the implication in the opposite direction, let us assume that G has an (x, y)-path
P with d+ k vertices. We distinguish several cases.

Case 1: V (P ) ∩ T = ∅. Consider a shortest path P ′ with one end-vertex s ∈ V (P ) and
the second end-vertex t ∈ T . Notice that such a path exists, because G is connected.
Denote by Px and Py the (s, x) and (s, y)-subpaths of P respectively. Because d ≥ 5k− 3,
|V (Px)| ≥ k or |V (Py)| ≥ k. Assume that |V (Px)| ≥ k. Then the concatenation of P ′
and Px is a path with at least k + 1 vertices and it contains a subpath P ′′ with the
end-vertex t with p+ 1 vertices. We have that {P ′} is an extended system of T -segments
and P ′′ has p vertices outside T .

Case 2: V (P ) ∩ T 6= ∅ and E(P ) ∩ E(H) = ∅. Let S = V (P ) ∩ T . Since H is an in-
duced subgraph of G and E(P ) ∩ E(H) = ∅, |V (P ) \ S| ≥ (d+ k)/2− 1 ≥ 3k − 5/2 >
3p− 5/2 ≥ 2p− 2. Then for every t ∈ S, either the (t, x)-subpath Px of P contains at
least p vertices outside T or the (t, y)-subpath Py of P contains at least p vertices outside
T . Assume without loss of generality that Px contains at least p vertices outside T .
Consider the minimal subpath P ′ of Px ending at t such that |V (P ′) \ T | = p. Then the
start vertex s of P ′ is not in T . Let {t1, . . . , tr} = V (P ′) ∩ T and assume that t1, . . . , tr
are ordered in the same order as they occur in P ′ starting from s. In particular, tr = t.
Let t0 = s. Consider the paths P1, . . . , Pr where Pi is the (ti−1, ti)-subpath of P ′ for
i ∈ {1, . . . , r}. Since k > p, r ≤ k. We obtain that {P1, . . . , Pr} is an extended system of
T -segments with p vertices outside T .

Case 3: E(P ) ∩ E(H) 6= ∅. Then there are distinct s, t ∈ T ∩ V (P ) such that the (s, t)-
subpath of P lies in H. Since P has at least p vertices outside T , there are s′, t′ ∈ V (P )\T
such that the (s′, t′)-subpath P ′ of P is a subpath with exactly p vertices outside T with
s, t ∈ V (P ′). Let P1, . . . , Pr be the family of inclusion maximal subpaths of P ′ containing
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the vertices of V (P ′) \T such that the internal vertices of each Pi are outside T . Observe
that since s 6= t, the union of these paths is a linear forest with at least two components.
We conclude that the set {P1, . . . , Pr} is a required extended system of T -segments. J

The next lemma will be used for solving Longest Cycle Above Degeneracy.

I Lemma 13. Let d, k ∈ N. Let G be a 2-connected graph with a d-core H such that
d ≥ 5k − 3 and d > |V (H)| − k. Then G has a cycle with at least d+ k vertices if and only
if one of the following holds (where p = d+ k − |V (H)|).
(i) There are distinct s, t ∈ V (H) and an (s, t)-path P in G with all internal vertices

outside V (H) such that P has at least p internal vertices.
(ii) G has a system of T -segments {P1, . . . , Pr} with terminal set T = V (H) and the total

number of vertices of the paths outside V (H) is at least p and at most 2p− 2.

Proof. We put T = V (H). First, we show that if (i) or (ii) holds, then G has a cycle with
at least d + k vertices. Suppose that there are distinct s, t ∈ T and an (s, t)-path P in G
with all internal vertices outside T such that P has at least p internal vertices. By Lemma 8,
H has a Hamiltonian (s, t)-path P ′. By taking the union of P and P ′ we obtain a cycle with
at least |T |+ p = d+ k vertices.

Now assume that G has a system of T -segments {P1, . . . , Pr} and the total number of
vertices of the paths outside T is at least p. Let si and ti be the end-vertices of Pi for
i ∈ {1, . . . , r} and assume without loss of generality that for 1 ≤ i < j ≤ r, the vertices of Pi

and Pj are pairwise distinct with the possible exception ti = sj when i = j − 1. Consider
the collection of pairs of vertices {t1, s2}, . . . , {tr−1, sr}, {tr, s1}. Notice that vertices from
distinct pairs are distinct and tr 6= s1. By Lemma 8, there are vertex-disjoint paths P ′1, . . . , P ′r
in H that cover T such that P ′i is a (ti, si+1)-path for i ∈ {1, . . . , r − 1} and P ′r is a (tr, s1)-
path. By taking the union of P1, . . . , Pr and P ′1, . . . , P ′r we obtain a cycle in G with at least
|T |+ p = d+ k vertices.

To show the implication in the other direction, assume that G has a cycle C with at least
d+ k vertices.

Case 1: V (C) ∩ T = ∅. Since G is a 2-connected graph, there are pairwise distinct vertices
s, t ∈ T and x, y ∈ V (C) and vertex-disjoint (s, x) and (y, t)-paths P1 and P2 such
that the internal vertices of the paths are outside T ∪ V (C). The cycle C contains an
(x, y)-path P with at least (d+ k)/2 + 1 ≥ p vertices. The concatenation of P1, P and P2
is an (s, t)-path in G with at least p internal verices and the internal vertices are outside
T . Hence, (i) holds.

Case 2: |V (C) ∩ T | = 1. Let V (C) ∩ T = {s} for some vertex s. Since G is 2-connected,
there is a shortest (x, t)-path P in G − s such that x ∈ V (C) and t ∈ T . The cycle C
contains an (s, x)-path P ′ with at least (d+ k)/2 + 1 ≥ p vertices. The concatenation of
P ′ and P is an (s, t)-path in G with at least p internal vertices and the internal vertices
of the path are outside T . Therefore, (i) is fulfilled.

Case 3: |V (C) ∩ T | ≥ 2. Since |V (C)| ≥ d and |T | < d, we have that V (C) \ T 6= ∅.
Then we can find pairs of distinct vertices {s1, t1} . . . , {s`, t`} of T ∩ V (C) and segments
P1, . . . , P` of C such that (a) Pi is an (si, ti)-path for i ∈ {1, . . . , `} with at least one
internal vertex and the internal vertices of Pi are outside T , (b) for 1 ≤ i < j ≤ `, the
vertices of Pi and Pj are distinct with the possible exception ti = sj if i = j − 1 and,
possibly, t` = s1, and (c)

⋃`
i=1 V (Pi) \ T = V (C) \ T . If there is i ∈ {1, . . . , `} such that

Pi has at least p internal vertices, then (i) is fulfilled.
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Now assume that each Pi has at most p−1 internal vertices; notice that p ≥ 2 in this case.
We select an inclusion minimal set of indices I ⊆ {1, . . . , `} such that |

⋃
i∈I V (Pi) \ T | ≥ p.

Notice that because each path has at most p− 1 internal vertices, |
⋃

i∈I V (Pi) \ T | ≤ 2p− 2.
Let I = {i1, . . . , ir} and i1 < . . . < ir. By the choice of Pi1 , . . . , Pir , the union of Pi1 , . . . , Pir

is either the cycle C or a linear forest. Suppose that the union of the paths is C. Then
I = {1, . . . , `}, ` ≤ p and |V (P ) ∩ T | = `. Note that because |V (H)| > d, we have that
p = d+k−|V (H)| < k. We obtain that C has at most (2p−2) +p ≤ 3p−2 < 3k−2 < d+k

vertices (the last inequality follows from the fact that d ≥ 5k − 3); a contradiction. Hence,
the union of the paths is a linear forest. Therefore, {Pi1 , . . . , Pir

} is a system of T -segments
with terminal set T = V (H) and the total number of vertices of the paths outside T is at
least p and at most 2p− 2, that is, (ii) is fulfilled. J

We have established the fact that the existence of a long (path) cycle is equivalent to
the existence of an (extended) system of T -segments for some terminal set T with at most
p ≤ k vertices from outside T . Towards designing algorithms for Longest Path Above
Degeneracy and Longest Cycle Above Degeneracy, we define two auxiliary problems
which can be solved using well known color-coding technique.

Input: A graph G, T ⊂ V (G) and a positive integers p and r.
Task: Decide whether G has a system of segments {P1, . . . , Pr} w.r.t. T such

that the total number of internal vertices of the paths is p.

Segments with Terminal Set

Input: A graph G, T ⊂ V (G) and a positive integers p and r.
Task: Decide whether G has an extended system of segments {P1, . . . , Pr} w.r.t.

T such that the total number of vertices of the paths outside T is p.

Extended Segments with Terminal Set

I Lemma 14 (?). 1 Segments with Terminal Set and Extended Segments with
Terminal Set are solvable in time 2O(p) · nO(1).

4 Putting all together: Final proofs

Proof of Theorem 3. Let G be a connected graph of degeneracy at least d and let k be a
positive integer. If d ≤ 5k − 4, then we check the existence of a path with d+ k ≤ 6k − 4
vertices using Proposition 6 in time 2O(k) · nO(1). Assume from now that d ≥ 5k − 3. Then
we find a d-core H of G. This can be done in linear time using the results of Matula and
Beck [28]. If |V (H)| ≥ d + k, then by Theorem 5, H, and hence G, contains a path with
min{2d+ 1, |V (H)|} ≥ d+ k vertices. Assume that |V (H)| < d+ k. By Lemma 12, G has a
path with d+ k vertices if and only if G has paths P1, . . . , Pr such that {P1, . . . , Pr} is an
extended system of T -segments for T = V (H) and the total number of vertices of the paths
outside T is p = d+ k − |T |. Since the number of vertices in every graph is more than its
minimum degree, we have that |T | > d, and thus p < k. For each r ∈ {1, . . . , p}, we verify
if such a system exists in time 2O(k) · nO(1) by making use of Lemma 14. Thus the total
running time of the algorithm is 2O(k) · nO(1).

1 Proofs of results marked with (?) are omitted in this extended abstract.
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Proof of Theorem 2. Let G be a 2-connected graph of degeneracy at least d and let k ∈ N.
If d ≤ 5k − 4, then we check the existence of a cycle with at least d+ k ≤ 6k − 4 vertices
using Proposition 6 in time 2O(k) · nO(1). Assume from now on that d ≥ 5k − 3. Then we
find a d-core H of G in linear time using the results of Matula and Beck [28].

We claim that if |V (H)| ≥ d+k, then H contains a cycle with at least d+k vertices. If H
is 2-connected, then this follows from Theorem 4. Assume that H is not a 2-connected graph.
By the definition of a d-core, H is connected. Observe that |V (H)| ≥ d+ 1 ≥ 5k − 2 ≥ 3.
Hence, H has at least two blocks and at least one cut vertex. Consider the block graph
Block(H) of H. Recall that the vertices of Block(H) are the blocks and the cut vertices of H
and a cut vertex c is adjacent to a block B if and only if c ∈ V (B). Recall also that Block(H)
is a tree. We select an arbitrary block R of H and declare it to be the root of Block(H).
Let S = V (G) \ V (H). Observe that S 6= ∅, because G is 2-connected and H is not. Let
F1, . . . , F` be the components of G[S]. We contract the edges of each component and denote
the obtained vertices by u1, . . . , u`. Denote by G′ the obtained graph. It is straightforward
to verify that G′ has no cut vertices, that is, G′ is 2-connected. For each i ∈ {1, . . . , `},
consider ui. This vertex has at least 2 neighbors in V (H). We select a vertex vi ∈ NG′(ui)
that is not a cut vertex of H or, if all the neighbors of ui are cut vertices, we select vi be
a cut vertex at maximum distance from R in Block(H). Then we contract uivi. Observe
that by the choice of each vi, the graph G′′ obtained from G′ by contracting u1v1, . . . , u`v` is
2-connected. We have that G′′ is a 2-connected graph of minimum degree at least d with at
least d+ k vertices. By Theorem 4, G′′ has a cycle with at least min{2d, |V (G′′)|} ≥ d+ k

vertices. Because G′′ is a contraction of G, we conclude that G contains a cycle with at least
d+ k vertices as well.

From now we can assume that |V (H)| < d+ k. By Lemma 13, G has a cycle with d+ k

vertices if and only if one of the following holds for p = d+ k − |T | where T = V (H).
(i) There are distinct s, t ∈ T and an (s, t)-path P in G with all internal vertices outside

T such that P has at least p internal vertices.
(ii) G has a system of T -segments {P1, . . . , Pr} and the total number of vertices of the

paths outside T is at least p and at most 2p− 2.

Notice that p ≤ k (because d− |T | ≤ 0). We verify whether (i) holds using Proposition 7.
To do it, we consider all possible choices of distinct s, t. Then we construct the auxiliary
graph Gst from G by the deletion of the vertices of T \ {s, t} and the edges of E(H).
Then we check whether Gst has an (s, t)-path of length at least p+ 1 in time 2O(k) · nO(1)

applying Proposition 7.
Assume that (i) is not fulfilled. Then it remains to check (ii). For every r ∈ {1, . . . , p},

we verify the existence of a system of T -segments {P1, . . . , Pr} in time 2O(k) · nO(1) using
Lemma 14. We return the answer yes if we get the answer yes for at least one instance of
Segments with Terminal Set and we return no otherwise.

5 Hardness for Longest Path and Cycle above Degeneracy

In this section we complement Theorems 3 and 2 by some hardness observations.

I Proposition 15 (?). 2 Longest Path Above Degeneracy is NP-complete even if
k = 2 and Longest Cycle Above Degeneracy is NP-complete even for connected
graphs and k = 2.

2 Proposition 15 and its proof was pointed to us by Nikolay Karpov.
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Recall that a graph G has a path with at least dg(G) + 1 vertices and if dg(G) ≥ 2,
then G has a cycle with at least dg(G) + 1 vertices. Moreover, such a path or cycle can
be constructed in polynomial (linear) time. Hence, Proposition 15 gives tight complexity
bounds. Nevertheless, the construction used to show hardness for Longest Path Above
Degeneracy uses a disconnected graph, and the graph constructed to show hardness for
Longest Cycle Above Degeneracy has a cut vertex. Hence, it is natural to consider
Longest Path Above Degeneracy for connected graphs and Longest Cycle Above
Degeneracy for 2-connected graphs. We show in Theorems 3 and 2 that these problems
are FPT when parameterized by k in these cases. Here, we observe that the lower bound
dg(G) that is used for the parameterization is tight in the following sense.

I Proposition 16. For any 0 < ε < 1, it is NP-complete to decide whether a connected graph
G contains a path with at least (1 + ε)dg(G) vertices and it is NP-complete to decide whether
a 2-connected graph G contains a cycle with at least (1 + ε)dg(G) vertices.

Proof. Let 0 < ε < 1.
First, we consider the problem about a path with (1 + ε)dg(G) vertices. We reduce

Hamiltonian Path that is well-known to be NP-complete (see [15]). Let G be a graph
with n ≥ 2 vertices. We construct the graph G′ as follows.

Construct a copy of G.
Let p = 2dn

ε e and construct p pairwise adjacent vertices u1, . . . , up.
For each v ∈ V (G), construct an edge vu1.
Let q = d(1 + ε)(p− 1)− (n+ p)e. Construct vertices w1, . . . , wq and edges u1w1, wqu2
and wi−1wi for i ∈ {2, . . . , q}.

Notice that q = d(1 + ε)(p − 1) − (n + p)e = d2εdn
ε e − n − 1 − εe ≥ dn − 1 − εe ≥ 1 as

n ≥ 2. Observe also that G is connected. We claim that G has a Hamiltonian path if and
only if G′ has a path with at least (1 + ε)dg(G′) vertices. Notice that dg(G′) = p− 1 and
|V (G′)| = n+ p+ q = d(1 + ε)dg(G′)e. Therefore, we have to show that G has a Hamiltonian
path if and only if G′ has a Hamiltonian path. Suppose that G has a Hamiltonian path P with
an end-vertex v. Consider the path Q = vu1w1 . . . wqu2u3 . . . up. Clearly, the concatenation
of P and Q is a Hamiltonian path in G′. Suppose that G′ has a Hamiltonian path P . Since
u1 is a cut vertex of G′, we obtain that P has a subpath that is a Hamiltonian path in G.

Consider now the problem about a cycle with at least (1 + ε)dg(G) vertices. We again
reduce Hamiltonian Path and the reduction is almost the same. Let G be a graph with
n ≥ 2 vertices. We construct the graph G′ as follows.

Construct a copy of G.
Let p = 2dn

ε e and construct p pairwise adjacent vertices u1, . . . , up.
For each v ∈ V (G), construct edges vu1 and vu2.
Let q = d(1 + ε)(p− 1)− (n+ p)e. Construct vertices w1, . . . , wq and edges u2w1, wqu3
and wi−1wi for i ∈ {2, . . . , q}.

As before, we have that q ≥ 1. Notice additionally that p ≥ 3, i.e., the vertex u3 exists. It is
straightforward to see that G′ is 2-connected. We claim that G has a Hamiltonian path if and
only if G′ has a cycle with at least (1 + ε)dg(G′) vertices. We have that dg(G′) = p− 1 and
|V (G′)| = d(1+ε)dg(G′)e. Hence, we have to show that G has a Hamiltonian path if and only
if G′ has a Hamiltonian cycle. Suppose that G has a Hamiltonian path P with end-vertices
x and y. Consider the path Q = xu2w1 . . . wqu3u4 . . . upy. Clearly, P and Q together form a
Hamiltonian cycle in G′. Suppose that G′ has a Hamiltonian cycle C. Since {u1, u2} is a cut
set of G′, we obtain that C contains a path that is a Hamiltonian path of G. J
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6 Conclusion

We considered the lower bound dg(G) + 1 for the number of vertices in a longest path or
cycle in a graph G. It would be interesting to consider the lower bounds given in Theorems 4
and 5. More precisely, what can be said about the parameterized complexity of the variants
of Long Path (Cycle) where given a (2-connected) graph G and k ∈ N, the task is to
check whether G has a path (cycle) with at least 2δ(G) + k vertices? Are these problems
FPT when parameterized by k? It can be observed that the bound 2δ(G) is “tight”. That is,
for any 0 < ε < 1, it is NP-complete to decide whether a connected (2-connected) G has a
path (cycle) with at least (2 + ε)δ(G) vertices. See also [30] for related hardness results.
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Abstract
The Group Activity Selection Problem (GASP) models situations where a group of agents needs
to be distributed to a set of activities while taking into account preferences of the agents w.r.t.
individual activities and activity sizes. The problem, along with its well-known variants sGASP
and gGASP, has previously been studied in the parameterized complexity setting with various
parameterizations, such as number of agents, number of activities and solution size. However, the
complexity of the problem parameterized by the number of types of agents, a natural parameter
proposed already in the first paper that introduced GASP, has so far remained unexplored.

In this paper we establish the complexity map for GASP, sGASP and gGASP when the number
of types of agents is the parameter. Our positive results, consisting of one fixed-parameter algorithm
and one XP algorithm, rely on a combination of novel Subset Sum machinery (which may be of
general interest) and identifying certain compression steps which allow us to focus on solutions which
are “acyclic”. These algorithms are complemented by matching lower bounds, which among others
close a gap to a recently obtained tractability result of Gupta, Roy, Saurabh and Zehavi (2017). In
this direction, the techniques used to establish W[1]-hardness of sGASP are of particular interest:
as an intermediate step, we use Sidon sequences to show the W[1]-hardness of a highly restricted
variant of multi-dimensional Subset Sum, which may find applications in other settings as well.
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1 Introduction

In this paper we consider the Group Activity Selection Problem (Gasp) together
with its two most prominent variants, the Simple Group Activity Selection Problem
(sGasp), and the Group Activity Selection Problem with Graph Structure
(gGasp) [6, 18]. Since their introduction, these problems have received considerable attention,
notably in venues dedicated to multi-agent systems and game theory [3, 4, 5, 19, 14, 15]. In
Gasp one is given a set of agents, a set of activities, and a set of preferences for each agent
in the form of a complete transitive relation (also called the preference list) over the set of
pairs consisting of an activity a and a number s, expressing the willingness of the agent to
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participate in the activity a if it has s participants. The aim is to find a “good” assignment
from agents to activities subject to certain rationality and stability conditions. Specifically,
an assignment is individually rational if agents that are assigned to an activity prefer this
outcome over not being assigned to any activity, and an assignment is (Nash) stable if every
agent prefers its current assignment over moving to any other activity. In this way GASP
captures a wide range of real-life situations such as event organization and work delegation.

sGasp is a simplified variant of Gasp where the preferences of agents are expressed
in terms of approval sets containing (activity, size) pairs instead of preference lists. In
essence sGasp is Gasp where each preference list has only two equivalence classes: the
class of the approved (activity, size) pairs (which contains all pairs that are preferred over
not being assigned to any activity), and the class of disapproved (activity, size) pairs (all
possible remaining pairs). On the other hand, gGasp is a generalization of Gasp where
one is additionally given an undirected graph (network) on the set of all agents that can
be employed to model for instance acquaintanceship or physical distance between agents.
Crucially, in gGasp one only considers assignments for which the subnetwork induced by all
agents assigned to some activity is connected. Note that if the network forms a complete
graph, then gGasp is equivalent to the underlying Gasp instance.

Related Work. sGasp, Gasp, and gGasp, are known to be NP-complete even in very
restricted settings [6, 18, 14, 15]. It is therefore natural to study these problems through the
lens of parameterized complexity [8, 2]. Apart from parameterizing by the solution size (i.e.,
the number of agents assigned to any activity in a solution) [19], the perhaps most prominent
parameterizations thus far have been the number of activities, the number of agents, and in
the case of gGasp parameterizations tied to the structure of the network [6, 17, 18, 14, 9].
Consequently, the parameterized complexity of all three variants of Gasp w.r.t. the number
of activities and/or the number of agents is now almost completely understood.

Namely, computing a stable assignment for a given instance of Gasp is known to be
W[1]-hard and contained in XP parameterized by either the number of activities [6, 17, 15] or
the number of agents [18, 15] and known to be fixed-parameter tractable parameterized by
both parameters [17, 15]. Even though it has never been explicitly stated, the same results
also hold for gGasp when parameterizing by the number of agents as well as when using
both parameters. This is because both the XP algorithm for the number of agents as well as
the fixed-parameter algorithm for both parameters essentially brute-force over every possible
assignment and are hence also able to find a solution for gGasp. Moreover, the fact that
gGasp generalizes Gasp implies that the W[1]-hardness result for the number of agents also
carries over to gGasp.

On the other hand, if we consider the number of activities as a parameter then gGasp
turns out to be harder than Gasp: Gupta et al. ([14]) showed that gGasp is NP-complete
even when restricted to instances with a single activity. The hardness of gGasp has inspired
a series of tractability results [14, 18, 17] obtained by employing additional restrictions on the
structure of the network. One prominent result in this direction has been recently obtained
by Gupta et al. ([14]), showing that gGasp is fixed-parameter tractable parameterized by
the number of activities if the network has constant treewidth.

Already with the introduction of Gasp [6] the authors argued that instead of putting
restrictions on the total number of agents, which can be very large in general, it might be
much more useful to consider the number of distinct types of agents. It is easy to imagine
a setting with large groups of agents that share the same preferences (for instance due to
inherent limitations of how preferences are collected). In contrast to the related parameter
number of activity types, where it is known that sGasp remains NP-complete even for a



R. Ganian, S. Ordyniak, and C. S. Rahul 48:3

constant number of activity types [6], the complexity of the problems parameterized by the
number of agent types (with or without restricting the number of activities) has remained
wide open thus far.

Our Results. In this paper we obtain a complete classification of the complexity of Gasp
and its variants sGasp and gGasp when parameterized by the number of agent types (t)
alone, and also when parameterized by t plus the number of activities (a). In particular, for
each of the considered problems and parameterizations, we determine whether the problem
is in FPT, or W[1]-hard and in XP, or paraNP-hard. One distinguishing feature of our lower-
and upper-bound results is that they make heavy use of novel Subset-Sum machinery. Below,
we provide a high-level summary of the individual results presented in the paper.

Result 1. sGasp is fixed-parameter tractable when parameterized by t + a

This is the only fixed-parameter tractability result presented in the paper, and is essentially
tight: it was recently shown that sGasp is W[1]-hard when parameterized by a alone [9],
and the W[1]-hardness of the problem when parameterized by t is obtained in this paper.
Our first step towards obtaining the desired fixed-parameter algorithm for sGasp is to show
that every YES-instance contains a solution which is acyclic – in particular, a solution with
no cycles formed by interactions between activities and agent types (captured in terms of
the incidence graph G of an assignment). This is proved via the identification of certain
compression steps which can be applied on a solution in order to remove cycles.

Once we show that it suffices to focus on acyclic solutions, we branch over all acyclic
incidence graphs (i.e., all acyclic edge sets of G); for each such edge set, we can reduce the
problem of determining whether there exists an assignment realizing this edge set to a variant
of Subset Sum embedded in a tree structure. The last missing piece is then to show that
this problem, which we call Tree Subset Sum, is polynomial-time tractable; this is done
via dynamic programming, whereas each step boils down to solving a simplified variant of
Subset Sum.

Result 2. sGasp is W1-hard when parameterized by t

Our second result complements Result 1. As a crucial intermediate step towards Result 2,
we obtain the W[1]-hardness of a variant of Subset Sum with three distinct “ingredients”:
1. Partitioning: items are partitioned into sets, and precisely one item must be selected

from each set,
2. Multidimensionality: each item is a d-dimensional vector (d being the parameter)

where the aim is to hit the target value for each component, and
3. Simplicity: each vector contains precisely one non-zero component.
We call this problem Simple Multidimensional Partitioned Subset Sum (SMPSS).
Note that SMPSS is closely related to Multidimensional Subset Sum (MSS), which
(as one would expect) merely enhances Subset Sum via Ingredient 2. MSS has recently
been used to establish W[1]-hardness for parameterizations of Edge Disjoint Paths [13]
and Bounded Degree Vertex Deletion [12]. However, Ingredient 1 and especially
Ingredient 3 are critical requirements for our reduction to work, and establishing the W[1]-
hardness of SMPSS was the main challenge on the way towards the desired lower-bound
result for sGasp. Since MSS has already been successfully used to obtain lower-bound
results and SMPSS is a much more powerful tool in this regard, we believe that SMPSS
will find applications in establishing lower bounds for other problems in the future.
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Result 3. Gasp is in XP when parameterized by t

This is the only XP result required for our complexity map, as it implies XP algorithms for
sGasp parameterized by t and for Gasp parameterized by t. We note that the techniques
used to obtain Result 3 are disjoint from those used for Result 1; in particular, our first step is
to reduce Gasp parameterized by t to solving “XP-many” instances of sGasp parameterized
by t. This is achieved by showing that once we know a “least preferred alternative” for every
agent type that is active in an assignment, then the Gasp instance becomes significantly
easier – and, in particular, can be reduced to a (slightly modified version of) sGasp. It
is interesting to note that the result provides a significant conceptual improvement over
the known brute force algorithm for Gasp parameterized by the number of agents which
enumerates all possible assignments of agents to activities [16, Theorem 3] (see also [15]):
instead of guessing an assignment for all agents, one merely needs to guess a least preferred
alternative for every agent type.

The second part of our journey towards Result 3 focuses on obtaining an XP algorithm
for sGasp parameterized by t. This algorithm has two components. Initially, we show
that in this setting one can reduce sGasp to the problem of finding an assignment which
is individually rational (i.e., without the stability condition) and satisfies some additional
minor properties. To find such an assignment, we once again make use of Subset Sum: in
particular, we develop an XP algorithm for the MPSS problem (i.e., Subset Sum enhanced
by ingredients 1 and 2) and apply a final reduction from finding an individually rational
assignment to MPSS.

Result 4. Gasp is W1-hard when parameterized by t + a

Result 5. gGasp is W1-hard when parameterized by t + a and the vertex cover
number [11] of the network

The final two results are hardness reductions which represent the last pieces of the presented
complexity map. Both are obtained via reductions from Partitioned Clique (also called
Multicolored Clique in the literature [2]), and both reductions essentially use k +

(
k
2
)

activities whose sizes encode the vertices and edges forming a k-clique. The main challenge
lies in the design of (a bounded number of) agent types whose preference lists ensure that
the chosen vertices are indeed endpoints of the chosen edges. The reduction for gGasp then
becomes even more involved, as it can only employ a limited number of connections between
the agents in order to ensure that vertex cover of the network is bounded.

We note that Result 5 also followed up on previous work by Gupta, Roy, Saurabh and
Zehavi [14], who showed that gGasp is fixed-parameter tractable parameterized by the
number of activities if the network has constant treewidth. In this sense, our hardness result
represents a substantial shift of the boundaries of (in)tractability: in addition to excluding
fixed-parameter tractability when parameterizing by the number of activities and treewidth,
it also rules out the use of agent types as a parameter and replaces treewidth by the more
restrictive vertex cover number. An overview of our results is provided in Table 1.

2 Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N the set of
natural numbers, by N0 the set N ∪ {0}. For a set S and an integer k, we denote by Sk and
2S the set of all k dimensional vectors over S and the set of all subsets of S, respectively.
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Table 1 Lower and upper bounds for sGasp, Gasp, and gGasp parameterized by the number
of agent types (t), with or without additionally parameterizing by the number of activities (a). In
the case of gGasp, also the parameter vertex cover number (vc) of the network is considered. The
numbers 1 to 5 in the upper index are used to identify results 1 to 5. Entries in bold are shown in
this paper; previously known entries follow from the work of Gupta et al. [14].

Parameter Lower Bound Upper Bound

sGasp
t

2W[1]2 XP
Gasp W[1] 3XP3

gGasp paraNP

sGasp
t+ a

1FPT1

Gasp 4W[1]4 XP
gGasp paraNP

gGasp t+ a+ vc 5W[1]5 XP

We refer to the handbook by Diestel ([7]) for standard graph terminology. Due to space
constraints, we also refer to the respective handbooks [8, 2] for standard terminology and
basic notions in parameterized complexity. The vertex cover number of a graph G is the size
of a minimum vertex cover of G.

2.1 Group Activity Selection
The task in the Group Activity Selection Problem (Gasp) is to compute a stable
assignment π from a given set N of agents to a set A of activities, where each agent
participates in at most one activity in A. The assignment π is (Nash) stable if and only if it
is individually rational and no agent has an NS-deviation to any other activity (both of these
stability rules are defined in the next paragraph). We use a dummy activity a∅ to capture all
those agents that do not participate in any activity in A and denote by A∗ the set A ∪ {a∅}.
Thus, an assignment π is a mapping from N to A∗, and for an activity a ∈ A we use π−1(a)
to denote the set of agents assigned to a by π; we set |π−1(a∅)| = 1 if there is at least one
agent assigned to a∅ and 0 otherwise.

The set X of alternatives is defined as X = (A×[|N |])∪{(a∅, 1)}. Each agent is associated
with its own preferences defined on the set X. In the case of the standard Gasp problem, an
instance I is of the form (N,A, (�n)n∈N ) where each agent n is associated with a complete
transitive preference relation (list) �n over the set X. An assignment π is individually rational
if for every agent n ∈ N it holds that if π(n) = a and a 6= a∅, then (a, |π−1(a)|) �n (a∅, 1)
(i.e., n weakly prefers staying in a over moving to a∅). An agent n where π(n) = a is defined
to have an NS-deviation to a different activity a′ in A if (a′, |π−1(a′)|+ 1) �n (a, |π−1(a)|)
(i.e., n prefers moving to an activity a′ over staying in a). The task in Gasp is to compute a
stable assignment.

gGasp is defined analogously to Gasp, however where one is additionally given a set L of
links L ⊆ {{n, n′} | n, n′ ∈ N ∧ n 6= n′ } between the agents on the input; specifically, L can
be viewed as a set of undirected edges and (N,L) as a simple undirected graph. In gGasp,
the task is to find an assignment π which is not only stable but also connected; formally,
for every a ∈ A the set of agents π−1(a) induces a connected subgraph of (N,L). Moreover,
an agent n ∈ N only has an NS-deviation to some activity a 6= π(n) if (in addition to the
conditions for NS-deviations defined above) n has an edge to at least one agent in π−1(a).
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In sGasp, an instance I is of the form (N,A, (Pn)n∈N ), where each agent has an approval
set Pn ⊆ X \ {(a∅, 1)} of preferences (instead of an ordered preference list). We denote by
Pn(a) the set { i | (a, i) ∈ Pn } for an activity a ∈ A. An assignment π : N → A∗ is said
to be individually rational if every agent n ∈ N satisfied the following: if π(n) = a and
a 6= a∅, then |π−1(a)| ∈ Pn(a). Further, an agent n ∈ N where π(n) = a∅, is said to have an
NS-deviation to an activity a in A if (|π−1(a)|+ 1) ∈ Pn(a).

We now introduce the notions and definitions required for our main parameter of interest,
the “number of agent types”. We say that two agents n and n′ in N have the same agent
type if they have the same preferences. To be specific, Pn = Pn′ for sGasp and �n=�n′ for
Gasp and gGasp. In the case of sGasp and Gasp n and n′ are indistinguishable, while
in gGasp n and n′ can still have different links to other agents. For a subset N ′ ⊆ N , we
denote by T (N ′) the set of agent types occurring in N ′. Note that this notation requires
that the instance is clear from the context. If this is not the case then we denote by T (I)
the set T (N) if N is the set of agents for the instance I of sGasp, Gasp, or gGasp.

For every agent type t ∈ T (I), we denote by Nt the subset of N containing all agents of
type t; observe that {Nt | t ∈ T (I) } forms a partition of N . For an agent type t ∈ T (I) we
denote by Pt (sGasp) or �t (Gasp) the preference list assigned to all agents of type t and
we use Pt(a) (for an activity a ∈ A) to denote Pt restricted to activity a, i.e., Pt(a) is equal
to Pn(a) for any agent n of type t. For an assignment π : N → A∗, t ∈ T (I), and a ∈ A we
denote by πt,a the set {n | n ∈ Nt ∧ π(n) = a } and by πt the set

⋃
a∈A πt,a. Further, π(t)

is the set of all activities that have at least one agent of type t participating in it. We say
that π is a perfect assignment for some agent type t ∈ T (I) if π(n) 6= a∅ for every n ∈ Nt.
We denote by PE(I, π) the subset of T (I) consisting of all agent types that are perfectly
assigned by π, and say that π is a perfect assignment if PE(I, π) = T (I).

One notion that will appear through the paper is that of compatibility: for a subset
Q ⊆ T (I), we say that π is compatible with Q if PE(I, π) = Q. We conclude this section
with a technical lemma which provides a preprocessing procedure that will be used as a basic
tool for obtaining our algorithmic results. In particular, Lemma 1 allows us to reduce the
problem of computing a stable assignment for a sGasp instance compatible with Q to the
problem of finding an individually rational assignment.

I Lemma 1. Let I = (N,A, (Pn)n∈N ) be an instance of sGasp and Q ⊆ T (I). Then in
time O(|N |2|A|) one can compute an instance γ(I,Q) = (N,A, (P ′n)n∈N ) and A 6=∅(I,Q) ⊆ A
with the following property: for every assignment π : N → A∗ that is compatible with Q, it
holds that π is stable for I if and only if π is individually rational for γ(I,Q) and π−1(a) 6= ∅
for every a ∈ A 6=∅(I,Q).

3 Subset Sum Machinery

In this section we introduce the Subset Sum machinery required for our algorithms and lower
bound results. In particular, we introduce three variants of Subset Sum, obtain algorithms
for two of them, and provide a W[1]-hardness result for the third.

Tree Subset Sum. Here we introduce a useful generalization of Subset Sum, for which we
obtain polynomial-time tractability under the assumption that the input is encoded in unary.
Intuitively, our problem asks us to assign values to edges while meeting a simple criterion on
the values of edges incident to each vertex.
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Tree Subset Sum (TSS)

Input: A vertex-labeled undirected tree T with labeling function λ : V (T )→ 2N.
Question: Is there an assignment α : E(T )→ N such that for every v ∈ V (T ) it holds

that
∑

e∈E(T )∧v∈e
α(e) ∈ λ(v).

Let us briefly comment on the relationship of TSS with Subset Sum. Recall that given
a set S of natural numbers and a natural number t, the Subset Sum problem asks whether
there is a subset S′ of S such that

∑
s∈S′ s = t. One can easily construct a simple instance

(G,λ) of TSS that is equivalent to a given instance (S, t) of Subset Sum as follows. G
consists of a star having one leaf ls for every s ∈ S with λ(ls) = {0, s} and λ(c) = {t} for
the center vertex c of the star. Given this simple reduction from Subset Sum to TSS it
becomes clear that TSS is much more general than Subset Sum. In particular, instead of a
star TSS allows for the use of an arbitrary tree structure and moreover one can use arbitrary
subsets of natural numbers to specify the constrains on the vertices. The above reduction in
combination with the fact that Subset Sum is weakly NP-hard implies that TSS is also
weakly NP-hard. In the remainder of names paragraph we will show that TSS (like Subset
Sum) can be solved in polynomial-time if the input is given in unary. This will later be used
to obtain Result 1 (in Section 4).

Let I = (T, λ) be an instance of TSS. We denote by max(I) the value of the maximum
number occurring in any vertex label. The main idea behind our algorithm for TSS is to
apply leaf-to-root dynamic programming. In order to execute our dynamic programming
procedure, we will need to solve a special case of TSS which we call Partitioned Subset
Sum; this is the problem that will later arise when computing the dynamic programming
tables for TSS. In the Partitioned Subset Sum problem one is given a target set R of
natural numbers and ` source sets S1, . . . S` of natural numbers and the aim is to compute
the set S of all natural numbers s such that there are s1, . . . , s`, where si ∈ Si for every i
with 1 ≤ i ≤ `, satisfying (

∑
1≤i≤` si) + s ∈ R.

I Lemma 2. An instance I = (T, λ) of TSS can be solved in time O(|V (T )|2 ·max(I)2).

Multidimensional Partitioned Subset Sum. Our second generalization of Subset Sum is
a multi-dimensional variant of the problem that allows to separate the input set of numbers
into several groups, and restricts the solution to take at most 1 vector from each group. For
technical reasons, we will only search for solutions of size at most r.

Multidimensional Partitioned Subset Sum (MPSS)

Input: k ∈ N, r ∈ N0, and a family P = {P1, . . . Pl} of sets of vectors over Nk
0 .

Question: Compute the set of all vectors t̄ ∈ {0, . . . , r}k such that there are p̄1, . . . , p̄l

with p̄i ∈ Pi for every i with 1 ≤ i ≤ l such that
∑

1≤i≤l
p̄i = t̄.

It is easy to see that Subset Sum is a special case of MPSS: given an instance of Subset
Sum, we can create an equivalent instance of MPSS by setting r to a sufficiently large
number and simply making each group Pi contain two vectors: the all-zero vector and the
vector that is equal to the i-th number of the Subset Sum instance in all entries. The
following algorithm is used as a subprocedure for Result 3 (in Section 6).

I Lemma 3. An instance I = (k, r,P) of MPSS can be solved in time O(|I| · rk).
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Simple Multidimensional Partitioned Subset Sum. Here, we are interested in a much more
restrictive version of MPSS, where all vectors (apart from the target vector) are only allowed
to have at most one non-zero component. Surprisingly, we show that the W[1]-hardness of
the previously studied Multidimensional Subset Sum problem [13, 12] carries over to
this more restrictive variant using an intricate and involved reduction. This result forms the
main ingredient needed for our Result 2 (provided in Secction 5). To formalize our problem,
we say that a set P of vectors in Nd0 is simple if each vector in P has at most one non-zero
component and the values of the non-zero components for any two distinct vectors in P

are distinct.

Simple Multidimensional Partitioned Subset Sum (SMPSS)

Input: d ∈ N, t̄ ∈ Nd
0, and a family P = {P1, . . . Pl} of simple sets of vectors in Nd

0.
Parameter: d.
Question: Are there vectors p̄1, . . . , p̄l with p̄i ∈ Pi for every i with 1 ≤ i ≤ l such that∑

1≤i≤l
p̄i = t̄.

I Theorem 4. SMPSS is strongly W[1]-hard.

Proof Sketch. We will employ a parameterized reduction from the Partitioned Clique
problem, which is well-known to be W[1]-complete [20]. In Partitioned Clique we are given
an integer k along with a graph G whose vertex set V is partitioned into k given independent
sets V1, . . . , Vk, and are asked to decide whether G contains a k-clique. We denote by Ei,j
the set of edges of G that have one endpoint in Vi and one endpoint in Vj and we assume
w.l.o.g. that |Vi = {vi1, . . . , vin}| = n and |Ei,j | = m for every i and j with 1 ≤ i < j ≤ k (see
the standard textbooks for a justification of these assumptions [2, 8]).

Given an instance (G, k) of Partitioned Clique with partition V1, . . . , Vk, we construct
an equivalent instance I = (d, t̄,P) of SMPSS in polynomial time, where d = k(k − 1) +

(
k
2
)

and |P| =
(
k
2
)

+nk(2k− 3). We will also make use of the following notation. For i and j with
1 ≤ i ≤ k and 1 ≤ j < k, we denote by indJ(i, j) the j-th smallest number in [k] \ {i} and we
denote by indMin(i) and indMax(i) the numbers indJ(i, 1) and indJ(i, k − 1), respectively.

We assign to every vertex v of G a unique number S(v) from a Sidon sequence S of length
|V (G)| [10]. A Sidon sequence is a sequence of natural numbers such that the sum of each
pair of numbers is unique; it can be shown that it is possible to construct such sequences
whose maximum value is bounded by a polynomial in its length [1, 10].

To simplify the description of I, we will introduce names and notions to identify both
components of vectors and sets in P. Every vector in I has the following components:

For every i and j with 1 ≤ i, j ≤ k and i 6= j, the vertex component ciV (j). We set
t̄[ciV (j)] to:
n6 + n4 if j = indMin(i),
(n− 1)n8 + n6 + n4 +

∑n
`=1(`+ `n2) if j > indMin(i) and j < indMax(i), and

(n− 1)n8 + n6 +
∑n
`=1 `, otherwise.

For every i and j with 1 ≤ i < j ≤ k, the edge component cE(i, j) with t̄[cE(i, j)] =∑
v∈Vi∪Vj

S(v).
Note that the total number of components d is equal to k(k − 1) +

(
k
2
)
and that for every

i with 1 ≤ i ≤ k, there are k − 1 vertex components, i.e., the components ciV (indJ(i, 1)),
. . . , ciV (indJ(i, k − 1)), which intuitively have the following tasks. The first component, i.e.,
the component ciV (indJ(i, 1)) identifies a vertex v ∈ Vi that should be part of a k-clique
in G. Moreover, every component ciV (indJ(i, j)) (including the first component), is also
responsible for: (1) Signalling the choice of the chosen vertex v ∈ Vi to the next component,
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i.e., the component ciV (indJ(i, j + 1)) and (2) Signalling the choice of the vertex v ∈ Vi to
the component cE(i, j) that will then verify that there is an edge between the vertex chosen
for Vi and the vertex chosen for Vj . This interplay between the components will be achieved
through the sets of vectors in P that will be defined and explained next.

Table 2 An illustration of the vectors contained in the sets P 1
EV (2, `), . . . , P 1

EV (4, `) and
P 1

V (2, `), . . . , P 1
V (3, `). For example the column for the set P 1

EV (2, `) shows that the set contains
two vectors, one whose only non-zero component c1

V (2) has the value n6 + ` and a second one
whose only non-zero component cE(1, 2) and has the value S(v1

` ). The last column provides the
value for the target vector for the component given by the row. Finally, the value Z is equal to
(n− 1)n8 + n6 +

∑n

l=1(`).

P 1
EV (2, `) P 1

V (2, `) P 1
EV (3, `) P 1

V (3, `) P 1
EV (4, `) t̄

c1
V (2) n6 + ` n4 − ` n6 + n4

c1
V (3) n8 + `+ `n2 n6 + ` n4 + `n2 Z + n4 +

∑n

`=1(`n2)
c1

V (4) n8 + ` n6 + ` Z

cE(1, 2) S(v1
` )

∑
v∈V1∪V2

S(v)
cE(1, 3) S(v1

` )
∑

v∈V1∪V3
S(v)

cE(1, 4) S(v1
` )

∑
v∈V1∪V4

S(v)

Table 3 An illustration of the vectors contained in the sets P i
EV (j, `), P j

EV (i, `), and PE(i, j)
and their interplay with the components ci

V (j), cj
V (i), and cV (i, j). For the conventions used in the

table please refer to Table 2. Additionally, note that the column for PE(i, j) indicates that the set
contains one vector for every edge {v, u} ∈ Ei,j , whose only non-zero component cE(i, j) has the
value S(v) + S(u).

P i
EV (j, `) P j

EV (i, `) PE(i, j) t̄

ci
V (j) n6 + `

cj
V (i) n6 + `

cE(i, j) S(vi
`) S(vj

` ) {S(v) + S(u) | {v, u} ∈ Ei,j }
∑

v∈Vi∪Vj
S(v)

P consists of the following sets, which are illustrated in Table 2 and 3:
For every i, j′, and ` with 1 ≤ i ≤ k, 1 ≤ j′ ≤ k − 2, and 1 ≤ ` ≤ n, the vertex set
P iV (j, `), where j = indJ(i, j′), containing two vectors v̄+

i,j,` and v̄
−
i,j,` defined as follows:

if j′ = 1, then v̄+
i,j,`[ciV (j)] = n4 − ` and v̄−i,j,`[ciV (indJ(i, j′ + 1))] = n8 + `+ `n2 or

if 1 < j′ < k−2, then v̄+
i,j,`[ciV (j)] = n4 +`n2 and v̄−i,j,`[ciV (indJ(i, j′+1))] = n8 +`+`n2

or
if j′ = k − 2, then v̄+

i,j,`[ciV (j)] = n4 + `n2 and v̄−i,j,`[ciV (indJ(i, j′ + 1))] = n8 + `.
We denote by P iV (j), P iV+(j), and P iV−(j) the sets

⋃n
`=1(P iV (j, `)), P iV (j) ∩ { v̄+

i,j,` | 1 ≤
` ≤ n }, and P iV (j) \ P iV+(j), respectively.
For every i, j, and ` with 1 ≤ i, j ≤ k, i 6= j, and 1 ≤ ` ≤ n, the vertex incidence set
P iEV (j, `), which contains the two vectors ā+

i,j,` and ā
−
i,j,` such that ā+

i,j,`[ciV (j)] = n6 + `

and ā−i,j,`[cE(i, j)] = S(vi`). We denote by P iEV (j), P iEV+(j), and P iEV−(j) the sets⋃n
`=1(P iEV (j, `)), P iV (j) ∩ { ā+

i,j,` | 1 ≤ ` ≤ n }, and P iEV (j) \ P iEV+(j), respectively.
For every i, j with 1 ≤ i < j ≤ k, the edge set PE(i, j), which for every e = {v, u} ∈ Ei,j
contains the vector ē such that ē[cE(i, j)] = S(v) + S(u); note that PE(i, j) is indeed a
simple set, because S is a Sidon sequence.

Note that altogether there are nk(k − 2) +
(
k
2
)

+ nk(k − 1) =
(
k
2
)

+ nk(2k − 3) sets in P.
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Informally, the two vectors v̄+
i,j,` and v̄−i,j,` in P iV (j, `) represent the choice of whether

or not the vertex vi` should be included in a k-clique for G, i.e., if a solution for I chooses
v+
i,j,` then vi` should be part of a k-clique and otherwise not. The component ciV (j), more
specifically the value for t̄[ciV (j)], now ensures that a solution can choose at most one such
vector in P iV+(j). Moreover, the fact that all but one of the vectors v̄−i,j,1, . . . , v̄

−
i,j,n need to

be chosen by a solution for I signals the choice of the vertex for Vi to the next component,
i.e., either the component ciV (j+ 1) if j+ 1 6= i or the component ciV (j+ 2) if j+ 1 = i. Note
that we only need k − 2 sets P iV (j) for every i, because we need to copy the vertex choice
for Vi to only k − 1 components. A similar idea underlies the two vectors ā+

i,j,` and ā
−
i,j,` in

P iEV (j, `), i.e., again the component ciV (j) ensures that ā+
i,j,` can be chosen for only one of

the sets P iEV (j, 1), . . . , P iEV (j, n) and ā−i,j,` must be chosen for all the remaining ones. Note
that the component ciV (j) now also ensures that the choice made for the sets in P iV (j) is the
same as the choice made for the sets in P iEV (j). Moreover, the choice made for the sets in
P iEV (j) is now propagated to the component cE(i, j) (instead of the next vertex component).
Finally, the vectors in the set PE(i, j) represent the choice of the edge used in a k-clique
between Vi and Vj and the component cE(i, j) ensures that only an edge, whose endpoints
are the two vertices signalled by the sets P iEV (j) and P jEV (i) can be chosen. J

4 Result 1: Fixed-Parameter Tractability of sGasp

In this section we will establish that sGasp is FPT when parameterized by the number of
agent types and the number of activities by proving Theorem 5.

I Theorem 5. sGasp can be solved in time O(2|T (N)|·(1+|A|) · ((|N |+ |A|)|N |)2).

Let I = (N,A, (Pn)n∈N ) be a sGasp instance and let π : N → A∗ be an assignment of
agents to activities. We denote by GI(π) the incidence graph between T (N) and A, which is
defined as follows. GI(π) has vertices T (N)∪A and contains an edge between an agent type
t ∈ T (N) and an activity a ∈ A if πt,a 6= ∅. We say that π is acyclic if GI(π) is acyclic.

Our first aim towards the proof of Theorem 5 is to show that if I has a stable assignment,
then it also has an acyclic stable assignment (Lemma 7). We will then show in Lemma 9 that
finding a stable assignment whose incidence graph is equal to some given acyclic pattern graph
can be achieved in polynomial-time via a reduction to the TSS problem (see Lemma 2). Since
the number of (acyclic) pattern graphs is bounded in our parameters, we can subsequently
solve sGasp by enumerating all acyclic pattern graphs and checking for each of them whether
there is an acyclic solution matching the selected pattern.

A crucial notion towards showing that it is sufficient to consider only acyclic solutions is
the notion of (strict) compression. We say that an assignment τ is a compression of π if it
satisfies the following conditions:
(C1) for every t ∈ T (N) it holds that |πt| = |τt|,
(C2) for every a ∈ A it holds that |π−1(a)| = |τ−1(a)|, and
(C3) for every a ∈ A it holds that the set of agent types τ assigns to a is a subset of the

agent types π assigns to a.

Intuitively, an assignment τ is a compression of π if it maintains all the properties required
to preserve stability and compatibility with a given subset Q ⊆ T (N). We note that condition
(C3) can be formalized as T (π−1(a)) ⊆ T (π−1(a)). The following lemma shows that every
assignment that is not acyclic admits a compression.

I Lemma 6. Let π : N → A∗ be an assignment for I. Then there exists an acyclic assignment
π′ that compresses π.
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The next lemma provides the first cornerstone for our algorithm by showing that it is
sufficient to consider only acyclic solutions. Intuitively, it is a consequence of Lemma 6 along
with the observation that compression preserves stability and individual rationality.

I Lemma 7. If I has a stable assignment, then I has an acyclic stable assignment.

Our next step is the introduction of terminology related to the pattern graphs mentioned
at the beginning of this section. Let G be a bipartite graph with bi-partition {T (N), A}.
We say that G models an assignment π : N → A∗ if GI(π) = G; in this sense every such
bipartite graph can be seen as a pattern (or model) for assignments. For a subset Q ⊆ T (N)
we say that G is compatible with Q if every vertex in Q and every vertex in A 6=∅(I,Q) (recall
the definition of A 6=∅(I,Q) given in Lemma 1) has at least one neighbor in G; note that if G
is compatible with Q then any assignment π modeled by G satisfies τ−1(a) 6= ∅ for every
a ∈ A 6=∅(I,Q). Intuitively, the graph G captures information about which types of agents
are mapped to which activities (without specifying numbers), while Q captures information
about which agent types are perfectly (i.e., “completely”) assigned.

Let Q ⊆ T (N) and let G be a bipartite graph with bi-partition {T (N), A} that is com-
patible with Q. The following simple lemma shows that, modulo compatibility requirements,
finding a stable assignment for I can be reduced to finding an individually rational assignment
for γ(I,Q) (recall the definition of γ(I,Q) given in Lemma 1).

I Lemma 8. Let Q ⊆ T (N) and let G be a bipartite graph with bi-partition {T (N), A} that
is compatible with Q. Then for every assignment π : N → A∗ modeled by G and compatible
with Q, π is stable for I if and only if π is individually rational for γ(I,Q).

The next lemma forms (along with Lemma 7) the core component for our proof.

I Lemma 9. Let Q ⊆ T (N) and let G be an acyclic bipartite graph with bi-partition
{T (N), A} that is compatible with Q. Then one can decide in time O((|N | + |A|)2|N |2)
whether I has a stable assignment which is modeled by G and compatible with Q.

We now have all the ingredients needed to establish Theorem 5 (?).

5 Result 2: Lower Bound for sGasp

In this section we complement Theorem 5 by showing that if we drop the number of activities
in the parameterization, then sGasp becomes W[1]-hard. We achieve this via a parameterized
reduction from SMPSS that we have shown to be strongly W[1]-hard in Theorem 4.

I Theorem 10. sGasp is W[1]-hard parameterized by the number of agent types.

6 Result 3: XP Algorithms for sGasp and Gasp

In this section, we present our XP algorithm for Gasp parameterized by the number of agent
types. In order to obtain this result, we observe that the stability of an assignment for Gasp
can be decided by only considering the stability of agents that are assigned to a “minimal
alternative” w.r.t. their type. We then show that once one guesses (i.e., branches over) a
minimal alternative for every agent type, the problem of finding a stable assignment for
Gasp that is compatible with this guess can be reduced to the problem of finding a perfect
and individual rational assignment for a certain instance of sGasp, where one additionally
requires that certain activities are assigned to at least one agent. Our first task will hence be
to obtain an XP algorithm which can find such a perfect and individually rational assignment
for sGasp. To that end, we obtain Lemma 11, which allows us to find certain individually
rational assignments in sGasp instances and forms a core part of our XP algorithm for Gasp.
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I Lemma 11. Let I = (N,A, (Pn)n∈N ) be an instance of sGasp, Q ⊆ T (N), and A 6=∅ ⊆
A. Then one can decide in time O(|A| · (|N |)|T (N)|) whether I has an individual rational
assignment π that is compatible with Q such that π−1(a) 6= ∅ for every a ∈ A 6=∅.

As a secondary result, we can already obtain an XP algorithm for sGasp parameterized
by the number of agent types, which may also be of independent interest, as the obtained
running time is strictly better than that of the algorithm obtained for the more general Gasp.

I Theorem 12. An instance I = (N,A, (Pn)n∈N ) of sGasp can be solved in time |A| ·
|N |O(|T (N)|).

Our next aim is to use Lemma 11 to obtain an XP algorithm for Gasp. To simplify the
presentation of our algorithm, we start by introducing the notion of an NS∗-deviations that
combines and unifies individual rationality and NS-deviations. Namely, let I = (N,A, (�n
)n∈N ) be a Gasp instance, π : N → A∗ be an assignment, and n ∈ N . We say that n has
an NS∗-deviation to an activity a′ ∈ A∗ \ {π(n)} if (a′, |π−1(a′)|+ 1) �T (n) (a, |π−1(a)|). In
order to deal with the case that a′ = a∅, we let (a∅, i+ 1) stand for (a∅, 1) for every i.

I Observation 13. An assignment π for I is stable if and only if no agent n ∈ N has an
NS∗-deviation to any activity in A∗ \ {π(n)}.

Let I and π be as above and let t ∈ T (I). We denote by π∗t the set of activities πt if t is
perfectly assigned by π and πt ∪ {a∅}, otherwise. We say an activity a ∈ π∗t is minimal with
respect to t if (a′, |π−1(a′)|) �t (a, |π−1(a)|) for each a′ ∈ π∗t and we address the alternative
(a, |π−1(a)|) as a minimal alternative with respect to t.

The following lemma uses Observation 13 and allows us to characterize the stability
condition of an assignment in terms of minimial activities for each agent type.

I Lemma 14. An assignment π for I is stable if and only if for each t ∈ T (N) and each
a ∈ A∗ \ {am}, it holds that (am, |π−1(am)|) �t (a, |π−1(a)| + 1), where am is a minimal
activity w.r.t. t.

The next theorem now employs the above lemma to construct an instance I ′ of sGasp
together with a subset A 6=∅ of activities such that for every function fmin : T (I)→ X (or in
other words for every guess of minimal alternatives in an assignment), it holds that I has a
stable assignment such that fmin(t) is a minimal alternative w.r.t. t for every t ∈ T (I) if and
only if I ′ has a perfect and individual rational assignment π such that π−1(a) 6= ∅ for every
a ∈ A 6=∅. For brevity, we will say that an assignment π is compatible with fmin if and only if
fmin(t) is a minimal alternative w.r.t. t for every t ∈ T (I).

I Theorem 15. Let I = (N,A, (�n)n∈N ) be an instance of Gasp and let fmin : T (N)→ X,
which informally represents a guess of a minimal alternative for every agent type. Then one
can in time O(|N |2|A|) construct an instance I ′ = (N,A∪{aφ}, (Pn)n∈N ) of sGasp together
with a subset A 6=∅ of activities such that |T (I ′)| ≤ 2|T (I)| and I has a stable assignment
compatible with fmin(t) if and only if I ′ has a perfect individual rational assignment π with
π−1(a) 6= ∅ for every a ∈ A 6=∅.

We now have all the ingredients needed to prove the main result of this section.

I Theorem 16. An instance I = (N,A, (�n)n∈N ) of Gasp can be solved in time (|A| ·
|N |)O(|T (I)|).
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Proof Sketch. Given an instance I = (N,A, (�n)n∈N ) of Gasp, the algorithm enumerates
all of the at most (|A| · |N |)|T (I)| possible functions fmin and for each such function fmin the
algorithm uses Theorem 15 to construct the instance I ′ = (N,A ∪ {aφ}, (Pn)n∈N ) of sGasp
with |T (I ′)| ≤ |T (I)| together with the set A 6=∅ of activities in time O(|N |2|A|). It then uses
Lemma 11 to decide whether I ′ has a perfect individual rational assignment π1 such that
π−1

1 (a) 6= ∅ for every a ∈ A 6=∅ in time O((|A|+ 1)(|N |)|T (I′)|) = O((|A|+ 1)(|N |2|T (I)|). If
this is true for at least one of the functions fmin, the algorithm returns that I has a solution,
otherwise the algorithm correctly returns that I has no solution. J

7 Results 4 and 5: Two Lower Bounds

Our next result shows that Gasp is unlikely to be fixed-parameter tractable parameterized
by both the number of activities (a) and the number of agent types (t).

I Theorem 17. Gasp is W[1]-hard parameterized by t+ a.

Since Gasp and gGasp are equivalent on complete networks the above hardness result
clearly also applies to gGasp. However, to our surprise, the hardness does even hold if we
additionally parameterize gGasp with the vertex cover number (vc) of the network.

I Theorem 18. gGasp is W[1]-hard parameterized by t+ a+ vc.

8 Conclusion

We obtained a comprehensive picture of the parameterized complexity of Group Activity
Selection problems parameterized by the number of agent types, both with and without the
number of activities as an additional parameter. Our positive results suggest that using the
number of agent types is a highly appealing parameter for Gasp and its variants; indeed, this
parameter will often be much smaller than the number of agents due to the way preference
lists are collected or estimated (as also argued in initial work on Gasp [6]). For instance,
in the large-scale event management setting of Gasp (or sGasp), one would expect that
preference lists for event participants are collected via simple questionnaires – and so the
number of agent types would remain fairly small regardless of the size of the event.

We believe that the techniques used to obtain the presented results, and especially the
Subset Sum tools developed to this end, are of broad interest to the algorithms community.
For instance, Multidimensional Subset Sum (MSS) has been used as a starting point for
W[1]-hardness reductions in at least two different settings over the past year [13, 12], but
the simple and partitioned variant of the problem (i.e., SMPSS) is much more restrictive
and hence forms a strictly better starting point for any such reductions in the future.
This is also reflected in our proof of the W[1]-hardness of SMPSS, which is significantly
more involved than the analogous result for MSS. Likewise, we expect that the developed
algorithms for Tree Subset Sum and Multidimensional Partitioned Subset Sum
may find applications as subroutines for (parameterized and/or classical) algorithms in
various settings.

Note that there is now an almost complete picture of the complexity of Group Activity
Selection problems w.r.t. any combination of the parameters number of agents, number of
activities, and number of agent types (see also Table 1). There is only one piece missing,
namely, the parameterized complexity of sGasp parameterized by the number of agents,
which we resolve for completeness with the following theorem.

I Theorem 19. sGasp is fixed-parameter tractable parameterized by the number of agents.
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Proof. Let I = (N,A, (Pn)n∈N ) be a sGasp instance. The main idea behind the algorithm is
to guess (i.e., branch over) the set M∅ of agents that are assigned to a∅ as well as a partition
M of the remaining agents, i.e., the agents in N \M∅, and then check whether there is a
stable assignment π for I such that:
(P1) π−1(a∅) = M∅ and
(P2) {π−1(a) | a ∈ A } \ {∅} = M, i.e., M corresponds to the grouping of agents into

activities by π.
Since there are at most nn possibilities for M∅ and M and those can be enumerated in
time O(nn), it remains to show how to decide whether there is a stable assignent for I
satisfying (P1) and (P2) for any given M∅ andM. Towards showing this, we first consider
the implications for a stable assignment resulting from assigning the agents in M∅ to a∅.
Namely, let P ′n for every n ∈ N be the approval set obtained from Pn after removing all
alternatives (a, i) such that i 6= 0 and there is an agent n∅ ∈ M∅ with (a, i + 1) ∈ Pn∅ .
Moreover, let A 6=∅ be the set of all activities that cannot be left empty if the agents in M∅
are assigned to a∅, i.e., the set of all activities such that there is an agent n∅ ∈ M∅ with
(a, 1) ∈ Pn∅ . Now consider a set M ∈M, and observe that the set AM of activities that the
agents in M can be assigned to in any stable assignment satisfying (P1) and (P2) is given
by: AM = { a | |M | ∈

⋂
n∈M Pn(a)′ }. Let B be the bipartite graph havingM on one side

and A on the other side and having an edge between a vertex M ∈M and a vertex a ∈ A if
a ∈ AM . We claim that I has a stable assignment satisfying (P1) and (P2) if and only if B
has a matching that saturatesM∪ A 6=∅. Since deciding the existence of such a matching
can be achieved in time O(

√
|V (B)||E(B)|) = O(

√
|N ∪A||N ||A|) (see e.g. [13, Lemma 4]),

establishing this claim is the last component required for the proof of the theorem.
Towards showing the forward direction, let π be a stable assignment for I satisfying (P1)

and (P2). Then O = { {a, φ−1(a)} | a ∈ A } is a matching in B that saturates M∪ A 6=∅.
Note that O saturates M due to (P2), moreover, O saturates A 6=∅ since otherwise there
would be an activity a ∈ A 6=∅ with π−1(a) = ∅, which due to the definition of A 6=∅ and (P1)
implies there is an agent n with π(n) = a∅ such that 1 ∈ Pn(a), contradicting our assumption
that π is stable.

Towards showing the reverse direction, let O be a matching in B that saturatesM∪A.
Then the assignment π mapping all agents in M (for every M ∈ M) to its partner in
O and all other agents to a∅ clearly already satisfies (P1) and (P2). It remains to show
that it is also stable. Note that π is individually rational because of the construction of B.
Moreover, assume for a contradiction that there is an agent n ∈ N∅ with π(n) = a∅ and an
activity a ∈ A such that (a, |π−1(a)| + 1) ∈ Pn. If |π−1(a)| = 0, then a ∈ A 6=∅ and hence
|π−1(a)| > 0 (because O saturates A 6=∅), a contradiction. If on the other hand |π−1(a)| 6= 0,
then {M,a} ∈ O (for some M ∈M), but (a, |π−1(a)|) /∈ P ′n and hence {M,a} /∈ E(B), also
a contradiction. J

For future work, we believe that it would be interesting to see how the complexity map
changes if one were to consider the number of activity types instead of the number of activities
in our parameterizations.
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Abstract
We consider the problem of sorting n elements in the case of persistent comparison errors. In this
problem, each comparison between two elements can be wrong with some fixed (small) probability p,
and comparisons cannot be repeated (Braverman and Mossel, SODA’08). Sorting perfectly in this
model is impossible, and the objective is to minimize the dislocation of each element in the output
sequence, that is, the difference between its true rank and its position. Existing lower bounds for
this problem show that no algorithm can guarantee, with high probability, maximum dislocation
and total dislocation better than Ω(logn) and Ω(n), respectively, regardless of its running time.

In this paper, we present the first O(n logn)-time sorting algorithm that guarantees both
O(logn) maximum dislocation and O(n) total dislocation with high probability. This settles the
time complexity of this problem and shows that comparison errors do not increase its computational
difficulty: a sequence with the best possible dislocation can be obtained in O(n logn) time and, even
without comparison errors, Ω(n logn) time is necessary to guarantee such dislocation bounds.

In order to achieve this optimality result, we solve two sub-problems in the persistent error
comparisons model, and the respective methods have their own merits for further application. One
is how to locate a position in which to insert an element in an almost-sorted sequence having
O(logn) maximum dislocation in such a way that the dislocation of the resulting sequence will still
be O(logn). The other is how to simultaneously insert m elements into an almost sorted sequence
of m different elements, such that the resulting sequence of 2m elements remains almost sorted.
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49:2 Optimal Sorting with Persistent Comparison Errors

1 Introduction

We study the problem of sorting n distinct elements under persistent random comparison
errors, where each comparison is wrong with some fixed (small) probability p, and the errors
are independent over all possible pairs of elements. There are two types of comparison errors,
persistent and non-persistent. For non-persistent errors, it is possible to repeat the same
comparison several times and each result is wrong with probability p independently of the
others. In the 80s and 90s, non-persistent errors have received considerable attention, and it
has been shown that the perfectly sorted sequence can be computed in O(n logn) time with
high probability. For persistent errors the repetition of a single comparison always yields the
same outcome and this makes impossible to consistently recover the perfectly sorted sequence,
as we explain below. The goal is therefore that of computing an almost sorted sequence.
This seems a challenging task as all known algorithms have rather high running time and
only recently a sub-quadratic running time has been achieved (see below for details). In
particular, whether an optimal O(n logn) running time is sufficient for sorting with persistent
comparison errors is a fundamental open question.

The above persistent-errors model is a well-studied theoretical abstraction of the errors
that arise in hardware architectures. Here, avoiding these errors requires involved fault-
tolerant mechanisms that reduce performances and increase manufacturing costs and energy
consumption. Recently, a contrasting trend of simplifying hardware architectures has
emerged: errors are traded for cheaper manufacturing costs, lower energy consumption, or
better performances. The study of sorting algorithms with persistent comparison errors has
been also motivated in [5, 13] by experts comparing items according to their importance,
by ranking in sports where comparisons correspond to matches between teams, and –more
generally– by situations where one wants to aggregate noisy comparisons into a global ranking
and repeating a comparison is impossible or too expensive.

A common way to measure the quality of an output sequence in terms of sortedness, is
to consider the dislocation of an element, which is the difference between its position in the
output and its position in the correctly sorted sequence. In particular, a reasonable measure
is the maximum dislocation of any element in the sequence or the total dislocation of the
sequence, i.e., the sum of the dislocations of all n elements.

To see why sorting with persistent errors is much more difficult than the case in which
comparisons can be repeated, note that in the latter case there is a trivial O(n log2 n) time
solution to sort perfectly with high probability (simply repeat each comparison O(logn)
times and take the majority of the results). Instead, in the model with persistent errors, it
is impossible to sort perfectly as, for any constant p, no algorithm can achieve a maximum
dislocation that is smaller than Ω(logn) w.h.p., or total dislocation smaller than Ω(n) in
expectation [10]. This problem has been extensively studied in the literature, and several
algorithms have been devised with the goal of sorting quickly with small dislocation (see
Table 1). Unfortunately, even though all the algorithms achieve the best possible maximum
dislocation of Θ(logn), they use a truly superlinear number of comparisons (specifically,
Ω(nc) with c ≥ 1.5), and/or require significant amount of time (namely, O(n3+cp) where cp
is a big constant that depends on p). This naturally suggests the following question:

What is the time complexity of sorting optimally with persistent errors?
In this work, we answer this basic question by showing the following result:

There exists an algorithm with optimal running time O(n logn) which achieves
simultaneously optimal maximum dislocation O(logn) and optimal total
dislocation O(n), both with high probability.
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Table 1 The existing approximate sorting algorithms and our result. The constant cp in the
exponent of the running time of [5] depends on the error probability p and it is typically quite large.
We write Ω(f(n)) w.h.p. (resp. exp.) to mean that no algorithm can achieve dislocation o(f(n))
with high probability (resp. in expectation).

Upper bounds

Running Time Max Dislocation Tot Dislocation Reference
O(n3+cp ) O(logn) w.h.p. O(n) w.h.p. [5]
O(n2) O(logn) w.h.p. O(n logn) w.h.p. [13]
O(n2) O(logn) w.h.p. O(n) expected [10]
Õ(n3/2) O(logn) w.h.p. O(n) expected [11]

O(n logn) O(logn) w.h.p. O(n) w.h.p. this work

Lower bounds

Any Ω(logn) w.h.p. Ω(n) expected [10]

The dislocation guarantees of our algorithm are optimal, due to the lower bound of [10],
while the existence of an algorithm achieving a maximum dislocation of d = O(logn) in
time T (n) = o(n logn) would immediately imply the existence of an algorithm that sorts n
elements in T (n) +O(n log logn) = o(n logn) time, even in the absence of comparison errors,
thus contradicting the classical Ω(n logn) lower bound for comparison-based algorithms.1
Along the way to our result, we consider the problem of searching with persistent errors,
defined as follows:

We are given an approximately sorted sequence S, and an additional element x 6∈ S.
The goal is to compute, under persistent comparison errors, an approximate rank
(position) of x which differs from the true rank of x in S by a small additive error.

For this problem, we show an algorithm that requires O(logn) time to compute, w.h.p.,
an approximate rank that differs from the true rank of x by at most O(max{d, logn}), where
d is the maximum dislocation of S. For d = Ω(logn) this allows to insert x into S without
any asymptotic increase of the maximum (and total) dislocation in the resulting sequence.
Notice that, if d is also in O(n1−ε) for any constant ε > 0, this is essentially the best we
can hope for, as an easy decision-tree lower bound shows that any algorithm must require
Ω(logn) time. Finally, we remark that [13] considered the variant in which the original
sequence is sorted, and the algorithm must compute the correct rank. For this problem,
they present an algorithm that runs in O(logn · log logn) time and succeeds with probability
1− f(p), with f(p) vanishing as p goes to 0. As by-product of our result, we can obtain the
optimal O(logn) running time with essentially the same success probability. Similarly to
other prior related works, all our results apply when p is below a sufficiently small constant,
e.g., p < 1/20 in [13]. For technical simplicity, throughout this work we assume p < 1/32,
though the results hold for p < 1/16 as in [10].2

1 Indeed, the smallest d elements of a sequence S having dislocation d = 2o(log n) can be found in time
O(d log d) using any O(n logn)-time sorting algorithm on the first 2d elements of S. Removing those
elements and repeating the above procedure O( n

d ) times, would allow to sort in T (n) +O( n
d · d log d) =

o(n logn) time.
2 Except for the derandomization technique of Section 5, all our results also hold for the case in which

each comparison is wrong with an adversarially chosen and unknown probability in [0, p].
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1.1 Main Intuition and Techniques
Approximate Sorting

In order to convey the main intuitions behind our O(n logn)-time optimal-dislocation
approximate sorting algorithm, we consider the following ideal scenario: we already have a
perfectly sorted sequence A containing a random half of the elements in our input sequence S
and we, somehow, also know the position in which each element x ∈ S \A should be inserted
into A so that the resulting sequence is also sorted (i.e, the rank of x in A). If these positions
alternate with the elements of A, then, to obtain a sorted version of S, it suffices to merge
S and S \ A, i.e., to simultaneously insert all the elements of S \ A into their respective
positions of A. Unfortunately, we are far from this ideal scenario for several reasons: first of
all, multiple elements in S \A, say δ of them, might have the same rank in A. Since we do
not know the order in which those elements should appear, this will already increase the
dislocation of the merged sequence to Ω(δ). Moreover, due to the lower bound of [10], we
are not actually able to obtain a perfectly sorted version of A and we are forced to work
with a permutation of A having dislocation d = Ω(logn), implying that the natural bound
on the resulting dislocation can be as large as d · δ. This is bad news, as one can show that
δ = Ω(logn). However, it turns out that the number of elements in S \A whose positions lie
in a O(logn)-wide interval of A is still O(logn), w.h.p., implying that the final dislocation of
A is just O(logn).

But how do we obtain the approximately sorted sequence A in the first place? We
could just recursively apply the above strategy on the (unsorted) elements of A, except that
this would cause a blow-up in the resulting dislocation due to the constant hidden by the
big-O notation. We therefore interleave merge steps with invocations of (a modified version
of) the sorting algorithm of [10], which essentially reduces the dislocation by a constant
factor, so that the increase in the worst-case dislocation will be only an additive constant
per recursive step.

An additional complication is due to the fact that we are not able to compute the
exact ranks in A of the elements in S \ A. We therefore have to deal, once again, with
approximations that are computed using the other main contribution of this paper: noisy
binary search trees, whose key ideas are described in the following.

Noisy Binary Search

As a key ingredient of our approximate sorting algorithm, we need to merge an almost-sorted
sequence with a set of elements, without any substantial increase in the final maximum
dislocation. More precisely, given a sequence S with maximum dislocation d and an element
x 6∈ S, we want to compute an approximate rank of x in S, i.e., a position that differs
by O(max{d, logn}) from the position that x would occupy if the elements S ∪ {x} were
perfectly sorted. This same problem has been solved optimally in O(logn) time in the easier
case in which errors are not persistent and S is already sorted [9]. The idea of [9] is to locate
the correct position of x using a binary decision tree: ideally each vertex v of the tree tests
whether x appears to belong to a certain interval of S and, depending on the result, one of
the children of v is considered next. Since these intervals become narrower as we move from
the root towards the leaves (that are in a one-to-one correspondence with positions of S) we
eventually discover the correct rank of x in S. In order to cope with failures, this process is
allowed to backtrack when inconsistent comparisons are observed, thus repeating some of
the comparisons involving ancestors of v. Moreover, to obtain the correct result with high
probability, a logarithmic number of consistent comparisons with a leaf are needed before
the algorithm terminates.
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Notice how the above process relies on the fact that it is possible to gather more information
on the true relative position of x by repeating a comparison multiple times (in fact, it is
trivial to design a simple O(log2 n)-time algorithm in this error model). Unfortunately, this
is no longer the case when errors are persistent. To overcome this problem we design a noisy
binary search tree in which testing whether x belongs to the interval associated with a vertex
v also causes the interval itself to grow thus ensuring that, in future tests involving v, x will
always be compared with different elements. This, however, is a source of other difficulties:
first, the intervals of the descendants of v also need to be suitably updated to account for
the new elements in v’s interval. Moreover, since intervals are now dynamic, it is possible for
multiple tests on the same vertex to report different results even when no comparison errors
occur: this is because an interval that did not initially contain x might eventually grow into
one that does. Finally, since growing intervals need to overlap, one also has to be careful in
avoiding repeated comparisons arising from unrelated vertices (i.e., vertices that are not in
ancestor–descendant relation in the tree). We overcome these problems by using two search
trees that initially comprise of disjoint intervals and ensure that all the vertices exhibiting
the problematic behaviours discussed above will be confined to only one of the two trees: in
some sense, we guarantee that one of two search trees will behave similarly to the one of [9],
where leaves now represent groups of O(logn) positions in S.

1.2 Related work
Sorting with persistent errors has been studied in several works, starting from [5] who
presented the first algorithm achieving optimal dislocation (matching lower bounds appeared
only recently in [10]) by finding a maximum-likelihood permutation of the input elements
given the observed errors. The algorithm in [5] uses only O(n logn) comparisons and is
able to handle any constant comparison error probability p ∈ (0, 1

2 ) (later improved to
p ≤ 1

2 −Ω( log logn
logn ) 1

6 in [17]), but unfortunately its running time O(n3+cp) is quite large. For
example, if we require the algorithm to succeed with a probability of 1−1/n, the analysis in [5]
yields cp = 110525

(1/2−p)4 . On the contrary, all subsequent faster algorithms [10,11,13] – see Table 1
– use a number of comparisons which is asymptotically equal to their respective running time
and work for a smaller range of values of p (i.e., p ≤ 1

20 in [13] and p < 1
16 in [10,11]).

Other works considered error models in which repeating comparisons is possible, although
expensive. For example, [4] studied algorithms which use a bounded number of rounds for
some “easier” versions of sorting (e.g., distinguishing the top k elements from the others).
Note that each round consists of a set of comparison operations, where it is possible to
compare the same pair of elements several times using independent comparisons like in the
non-persistent model; Also, the comparisons made in each round are decided a priori, i.e.,
they do not depend on the results of the comparisons in this round. In each round, a fresh
set of comparison results is generated, and each round consists of δ · n comparisons. They
evaluate the algorithm’s performance by estimating the number of “misclassified” elements
and also consider a variant in which errors now correspond to missing comparison results.

In general, sorting in presence of errors seems to be computationally more difficult than
the error-free counterpart. For instance, [1] provides algorithms using subquadratic time (and
number of comparisons) when errors occur only between elements whose difference is at most
some fixed threshold. Also, [8] gives a subquadratic time algorithm when the number k of
errors is known in advance.

As mentioned above, an easier error model is the one with non-persistent errors, meaning
that the same comparison can be repeated and the errors are independent, and happen with
some probability p < 1/2. In this model it is possible to sort n elements in time O(n log(n/q)),
where 1− q is the success probability of the algorithm [9] (see also [2, 12] for the analysis of
the classical Quicksort and recursive Mergesort algorithms in this error model).
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More generally, computing with errors is often considered in the framework of a two-person
game called Rényi-Ulam Game. In this game a questioner tries to identify an unknown
object x from a universe U by asking yes-or-no questions to a responder, but some of the
answers might be wrong. The case in which U = {1, . . . , n}, the questions are of the form
“is s > x?”, and each answer is independently incorrect with probability p < 1

2 has been
considered by [9], where the authors provide a binary search algorithm that succeeds with
probability 1− δ and requires O(log n

δ ) worst-case time. In [3], the authors then showed how
to find s using an optimal amount of queries up to additive polylogarithmic terms. The
variant in which responder is allowed to adversarially lie up to k times has been proposed
by Rényi [15] and Ulam [18], which has then been solved by Rivest et al. [16] using only
logn+ k log logn+O(k log k) question, which is tight. Among other results, near-optimal
strategies for the distributional version of the game have been devised in [7]. For more
related results on the topic, we refer the interested reader to [14] for a survey and to [6]
for a monograph.

1.3 Paper Organization
The rest of this work is organized as follows: in Section 2 we give some preliminary definitions;
then, in Section 3, we present our noisy binary search algorithm, which will be used in
Section 4 to design an optimal randomized sorting algorithm. Finally, in Section 5, we briefly
argue on how our sorting algorithm can be adapted so that it does not require any external
source of randomness. Due to space limitations, this manuscript only includes the core parts
of the analysis of our sorting algorithm. We refer the reader to the full version of the paper
for the formal analysis of other claims of Section 4, and of the results in the remaining
sections. Moreover, Section 4 makes use of an improved analysis of the sorting algorithm
of [10] which can also be found in the full version of the paper.

2 Preliminaries

According to our error model, elements possess a true total linear order, however this order
can only be observed through noisy comparisons. In the following, given two distinct elements
x and y, we will write x ≺ y (resp. x � y) to mean that x is smaller (resp. larger) than y
according to the true order, and x < y (resp. x > y) to mean that x appears to be smaller
(resp. larger) than y according to the observed comparison result.

Given a sequence or a set of elements A and an element x (not necessarily in A), we define
rank(x,A) = |{y ∈ A : y ≺ x}| as the true rank of element x in A (notice that ranks start
from 0). Moreover, if A is a sequence and x ∈ A, we denote by pos(x,A) ∈ [0, |A| − 1] the
position of x in A (notice that positions are also indexed from 0), so that the dislocation of x
in A is disl(x,A) = |pos(x,A)− rank(x,A)|, and the maximum dislocation of the sequence
A is disl(A) = maxx∈A disl(x,A).

For z ∈ R+, ln z and log z refer to the natural and the binary logarithm of z, respectively.

3 Noisy Binary Search

Given a sequence S = 〈s0, . . . , sn−1〉 of n elements with maximum dislocation d ≥ logn, and
an additional element x not in S, we want to compute in time O(logn) an approximate rank
of x in S, that is, a position where to insert x in S while preserving a O(d) upper bound on
dislocation of the resulting sequence. More precisely, we want to compute index rx such that
|rx − rank(x, S)| = O(d), in presence of persistent comparison errors: Errors between x and
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the elements in S happen independently with probability p, and whether the comparison
between x and an element y ∈ S is correct or erroneous does not depend on the position of y
in S, nor on the actual permutation of the sorted elements induced by their order in S (i.e.,
we are not allowed to pick the order of the elements in S as a function of the comparison
errors involving x). We do not impose any restriction on the errors of comparisons that do
not involve x.

In the following, we will show an algorithm that computes such a rank rx in time O(logn).
This immediately implies that O(logn) time also suffices to insert x into S so that the
resulting sequence 〈s0, . . . , srx−1, x, srx , sn−1〉 still has maximum dislocation O(d).

I Remark 1. The O(logn) running time is asymptotically optimal for all d = n1−ε, for
constant ε < 1, since a Ω(logn− log d) = Ω(logn) decision-tree lower bound holds even in
absence of comparison errors.

In the following, for the sake of simplicity, we let c = 103 and we assume that n = 2cd·2h−1
for some non-negative integer h. Moreover, we focus on p ≤ 1

32 even though this restriction
can be easily removed to handle all constant p < 1

2 , as we argue at the end of the section.
We consider the set {0, . . . , n} of the possible ranks of x in S and we subdivide them into

2 · 2h ordered groups g0, g1, . . . each containing cd contiguous positions, namely, group gi
contains positions cid, . . . , c(i+ 1)d− 1. Then, we further partition these 2 · 2h groups into
two ordered sets G0 and G1, where G0 contains the groups gi with even i (i ≡ 0 (mod 2))
and G1 the groups gi with odd i (i ≡ 1 (mod 2)). Notice that |G0| = |G1| = 2h. In the next
section, for each Gj , we shall define a noisy binary search tree Tj , which will be the main
ingredient of our algorithm.

3.1 Constructing T0 and T1

Let us consider a fixed j ∈ {0, 1} and define η = 2dlogne. The tree Tj comprises of a binary
tree of height h+ η in which the first h+ 1 levels (i.e., those containing vertices at depths 0
to h) are complete and the last η levels consists of 2h paths of η vertices, each emanating
from a distinct vertex on the (h + 1)-th level. We index the leaves of the resulting tree
from 0 to 2h − 1, we use h(v) to denote the depth of vertex v in Tj , and we refer to the
vertices v at depth h(v) ≥ h as path-vertices. Each vertex v of the tree is associated with one
interval I(v), i.e., as a set of contiguous positions, as follows: for a leaf v having index i, I(v)
consists of the positions in g2i+j ; for a non-leaf path-vertex v having u as its only child, we
set I(v) = I(u); finally, for an internal vertex v having u and w as its left and right children,
respectively, we define I(v) as the interval containing all the positions between min I(u) and
max I(w), endpoints included.

Moreover, each vertex v of the tree has a reference to two shared pointers L(v) and R(v)
to positions in Z \

⋃
gi∈Gj

gi. Intuitively, L(v) (resp. R(v)) will always point to positions
of S occupied by elements that are smaller (resp. larger) than all the elements si with
i ∈ I(v). For each leaf v, let L(v) initially point to min I(v)− d− 1 and R(v) initially point
to max I(v) + d. A non-leaf path-vertex v shares both its pointers with the corresponding
pointers of its only child, while a non-path vertex v shares its left pointer L(v) with the left
pointer of its left child, and its right pointer R(v) with the right pointer of its right child.
See Figure 1 for an example.

Notice that we sometimes allow L(v) to point to negative positions and R(v) to point to
positions that are larger than n− 1. In the following we consider all the elements si with
i < 0 (resp. i ≥ n) to be copies a special −∞ (resp. +∞) element such that −∞ ≺ x and
−∞ < x in every observed comparison (resp. +∞ � x and +∞ > x).

ESA 2019



49:8 Optimal Sorting with Persistent Comparison Errors

. . .

u
R(u)L(u)

−∞ g0 g1

h

gn−1

v

I(w)

w

i∗

r

g2 g3

L(r)

η

I(u)

I(v)

I(r)

cd

Figure 1 An example of the noisy tree T0. On the left side the shared pointers L(·) and R(·) are
shown. Notice how L(r) (and, in general, all the L(·) pointers on the leftmost side of the tree) points
to the special −∞ element. Good (resp. bad) vertices are shown in black (resp. while). Notice that,
since i∗ ∈ I(w), T ∗ = T0 and all the depicted vertices are either good or bad.

3.2 Walking on Tj

The algorithm will perform a discrete-time random walk on each Tj . Before describing such
a walk in more detail, it is useful to define the following operation:

I Definition 2 (test operation). A test of an element x with a vertex v is performed by
(i) comparing x with the elements sL(v) and sR(v), (ii) decrementing L(v) by 1 and, (iii)
incrementing R(v) by 1. The tests succeeds if the observed comparison results are x > sL(v)
and x < sR(v), otherwise the test fails.

The walk on Tj proceeds as follows. At time 0, i.e., before the first step, the current
vertex v coincides with the root r of Tj . Then, at each time step, we walk from the current
vertex v to the next vertex as follows:
1. We test x with all the children of v and, if exactly one of these tests succeeds, we walk to

the corresponding child.
2. Otherwise, if all the tests fail, we walk to the parent of v, if it exists.
In the remaining cases we “walk” from v to itself. We also define τ = 240blognc and we stop
the walk as soon as one of the following two conditions is met:
Success: The current vertex v is a leaf of Tj . In this case we say that the walk returns v;
Timeout: The τ -th time step is completed and the success condition is not met.
It turns out that at least one of the walks on T0 and T1 will succeed w.h.p., while the other
can either succeed or timeout. If any of the walks succeeds and returns v, we output any
position in the interval I(v). Otherwise, we return an arbitrary position. We are then to
prove the following result, whose analysis can be found in the full version of the paper:

I Theorem 3. Let S be a sequence of n elements having maximum dislocation at most d ≥
logn and let x 6∈ S. Under our error model, an index rx ∈ [rank(x, S)−αd, rank(x, S) +αd]
can be found in O(logn) time with probability at least 1 − O(n−6), where α > 1 is an
absolute constant.

To conclude this section, we remark that our assumption that p ≤ 1
32 can be easily

relaxed to handle any constant error probability p < 1
2 . This can be done by modifying

the test operation so that, when x is tested with a vertex v, the majority result of the
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comparisons between x and the set {sL(v), sL(v)−1, . . . , sL(v)−k+1} (resp. x and the set
{sR(v), sR(v)+1, . . . , sR(v)+k−1}) of η elements is considered, where k is a constant that only
depends on p. Consistently, the pointers L(v) and R(v) are shifted by k positions, and the
group size is increased to k · c. Notice how our description for p ≤ 1

32 corresponds exactly to
the case k = 1. The only difference in the statement Theorem 3 is that α is no longer an
absolute constant, but rather, it depends (only) on the value of p.

4 Optimal Sorting Algorithm

4.1 The algorithm
Here we present an optimal sorting algorithm that, given a sequence S of n elements,
computes, in O(n logn) worst-case time, a permutation of S having maximum dislocation
O(logn) and total dislocation O(n), w.h.p. In order to avoid being distracted by roundings,
we assume that n is a power of two.3 Our algorithm will make use of the noisy binary search
of Section 3 and of the WindowSort algorithm [10]. For our purposes, we need the following
stronger version of the original result in [10], in which the bound on the total dislocation
was only given in expectation:

I Theorem 4. Consider a set of n elements that are subject to random persistent comparison
errors. For any dislocation d, and for any (adversarially chosen) permutation S of these
elements such that disl(S) ≤ d, WindowSort(S, d) requires O(nd) worst-case time to compute,
with probability at least 1 − 1

n4 , a permutation of S having maximum dislocation at most
cp ·min{d, logn} and total dislocation at most cp · n, where cp is a constant depending only
on the error probability p < 1

32 .

We give a brief description of WindowSort and prove the above theorem in Section 5 of
the full version of the paper. Notice that WindowSort also works in a stronger error model in
which S can be chosen adversarially after the comparison errors between all pairs of elements
have been randomly fixed, as long as its maximum dislocation is at most d. In the remaining
of this section, we assume p ≤ 1/32 in order to be consistent with Section 3, though both
the above theorem and the algorithm we are going to present will only require p < 1/16.4
Using the noisy binary search in Section 3, we now define an operation that allows us to add
a linear number of elements to an almost-sorted sequence without any asymptotic increase
in the resulting dislocation, as we will formally prove in the sequel. More precisely, if A and
B are two disjoint subsets of S, we denote by Merge(A,B) the sequence obtained as follows:

For each x∈ B, compute an index rx such that | rank(s,A)− rx| ≤ αd. This can be done
using the noisy binary search of Section 3, which succeeds with probability at least 1− 1

|A|6 .
Insert simultaneously all the elements x ∈ B into A in their computed positions rx,
breaking ties arbitrarily. Return the resulting sequence.

Our sorting algorithm, that we call RiffleSort (see the pseudocode in Algorithm 1), works
as follows. For k = logn

2 , we first partition S into k + 1 subsets T0, T1, . . . , Tk: Each Ti, with
1 ≤ i ≤ k, contains 2i−1√n elements chosen uniformly at random from S\{Ti+1, Ti+2, . . . , Tk},
and T0 = S\{T1, T2, . . . , Tk} contains the remaining n−

√
n

∑k
i=1 2i−1 =

√
n elements. As its

3 This assumption can be easily removed by adding dummy +∞ elements to S. Since WindowSort, the
noisy binary search of Section 3, and ultimately our algorithm will also work when p is an upper bound
on the error probability, it is not necessary to simulate errors when comparisons involving dummy
elements are performed.

4 In fact, Theorem 4 is the only reason preventing our novel sorting algorithm to work for any constant
p ∈ [0, 1

2 ).

ESA 2019
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Algorithm 1 RiffleSort(S).

1 T0, T1, . . . , Tk ← partition of S computed as explained in Section 4.1;
2 S0 ← WindowSort(T0,

√
n);

3 foreach i = 1, . . . , k = log n
2 do

4 Si ← Merge(Si−1, Ti);
5 Si ← WindowSort(Si, γ · cp · logn);
6 return Sk;

first step, RiffleSort will approximately sort T0 using WindowSort, and then it will alternate
merge operations with calls to WindowSort. On one hand the merge operations allow us to
iteratively grow the set of approximately sorted elements to ultimately include all the elements
in S but, on the other hand, each operation also increases the dislocation by a constant
factor. This is a problem since the rate at which the dislocation increases is faster than the
rate at which new elements are inserted. The role of the sorting operations is exactly to
circumvent this issue: each WindowSort call has the effect of locally rearranging the elements,
so that all newly inserted elements are now closer to their intended positions, causing (an
upper bound to) the resulting maximum dislocation to increase by only an additive constant.
The corresponding pseudocode is shown in Algorithm 1, in which γ ≥ max{202α, 909} is an
absolute constant (recall that α is the constant from Theorem 3).

4.2 Analysis
I Lemma 5. The worst-case running time of Algorithm 1 is O(n logn).

Proof. Clearly the random partition T0, . . . , Tk can be computed in time O(n logn),5 and the
first call to WindowSort requires time O(|T0| ·

√
n) = O(n) (see Theorem 4). We can therefore

restrict our attention to the generic i-th iteration of the for loop. The call to Merge(Si−1, Ti)
can be performed in O(|Si| logn) time since, for each x ∈ Ti, the required approximation of
rank(x, Si−1) can be computed in time O(log |Si−1|) and |Ti| = |Si−1| ≤ n, while inserting
the elements of Ti in their computed ranks requires linear time in |Si−1|+ |Ti| = |Si|. The
subsequent execution of WindowSort with d = O(logn) requires time O(|Si| logn), where
the hidden constant does not depend on i. Therefore, for a suitable constant c, the time
spent in the i-th iteration is c|Si| logn and total running time of Algorithm 1 can be upper
bounded by:

c

k∑
i=1
|Si| logn = c

√
n logn ·

k∑
i=1

2i < 2k+1c
√
n logn = 2cn logn. J

The following lemma, that concerns a thought experiment involving urns and randomly
drawn balls, will be useful to upper bound the dislocation of the sequences returned by the
Merge operations. Since it can be proved using arguments that do not depend on the details
of RiffleSort, we omit its proof, which can be found in the full version of the paper.

5 The exact complexity depends on whether we can sample u.a.r. an integer from a range in O(1) time. If
this is not the case, then integers can be generated bit-by-bit using rejection, and the total number of
required random bits will be O(n) with probability at least 1 − n−2, as shown in the full version of
this paper. To maintain a worst-case upper bound on the running time also in the unlikely event that
Θ(n logn) bits do not suffice, we can stop the algorithm and return any arbitrary permutation of S.
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I Lemma 6. Consider an urn containing N = 2M balls, M of which are white, while the
remaining M are black. Balls are iteratively drawn from the urn without replacement until
the urn is empty. If N is sufficiently large and 9 logN ≤ k ≤ N

16 holds, the probability that
any contiguous subsequence of at most 100k drawn balls contains k or fewer white balls is
at most N−6.

We can now show that, if A and B contain randomly selected elements, the dislocation
of Merge(A,B) is likely to be at most a constant factor larger than the dislocation of A:

I Lemma 7. Let A be a sequence containing m randomly chosen elements from S and having
maximum dislocation at most d, with logn ≤ d = o(m). Let B be a set of m randomly chosen
elements from S \ A. Then, for a suitable constant γ, and for large enough values of m,
merge(A,B) has maximum dislocation at most γd with probability at least 1−m−4.

Proof. Let β = max{α, 9/2}, S′ = Merge(A,B), and S∗ = 〈s∗0, s∗1, . . . , s∗2m−1〉 be the
sequence obtained by sorting S′ according to the true order of its elements. Assume that:

all the approximate ranks rx, for x ∈ B, are such that |rx − rank(x,A)| ≤ βd; and
all the contiguous subsequences of S∗ containing no more than 2βd+ 2 elements in A
have length at most 200βd+ 200.

We will show in the sequel that the above assumptions are likely to hold.
Pick any element x ∈ S′. We now show that our assumptions imply that the dislocation

of x in S′ is at most 201d. An element y ∈ B can affect the final dislocation of x in S′ only
if one of the following two (mutually exclusive) conditions holds: (i) y ≺ x and ry ≥ rx,
or (ii) y � x and ry ≤ rx. All the remaining elements in B will be placed in the correct
relative order w.r.t. x in S′, and hence they do not affect the final dislocation of x. If (i)
holds, we have:

rx − βd ≤ ry − βd ≤ rank(y,A) ≤ rank(x,A) ≤ rx + βd,

while, if (ii) holds, we have:

rx − βd ≤ rank(x,A) ≤ rank(y,A) ≤ ry + βd ≤ rx + βd,

and hence, all the elements y ∈ B that can affect the dislocation of x in S′ are contained in
the set Y = {y ∈ B : rx − βd ≤ rank(y,A) ≤ rx + βd}.

We now upper bound the cardinality of Y . Let y− be the (rx − βd− 1)-th element of A;
if no such element exists, then let y− = s∗0. Similarly, let y+ be the (rx + βd)-th element
of A; if no such element exists, then let y+ = s∗2m−1. Due to our choice of y− and y+ we
have that ∀y ∈ Y, y− � y � y+, implying that all the elements in Y appear in the contiguous
subsequence S of S∗ having y− and y+ as its endpoints. Since no more than 2βd+2 elements
of A belong to S , our assumption guarantees that S contains at most 200βd+ 200 elements.
This implies that the dislocation of x in S′ is at most βd+ |Y | ≤ βd+ |S| ≤ 201βd+200 ≤ γd,
where the last inequality holds for large enough n once we choose γ = 202β.

To conclude the proof we need to show that our assumptions hold with probability at
least 1− |S′|−4. Regarding the first assumption, for x ∈ B, a noisy binary search returns a
rank rx such that |rx− rank(x,A)| ≤ αd ≤ βd with probability at least 1−O( 1

m6 ). Therefore
the probability that the assumption holds is at least 1−O( 1

m5 ).
Regarding our second assumption, notice that, since the elements in A and B are randomly

selected from S, we can relate their distribution in S∗ with the distribution of the drawn
balls in the urn experiment of Lemma 6: the urn contains N = 2m balls each corresponding
to an element in A ∪B, a ball is white if it corresponds to one of the M = m elements of A,
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while a black ball corresponds one of the M = m elements of B. If the assumption does not
hold, then there exists a contiguous subsequence of S∗ of at least 200βd+ 200 elements that
contains at most 2βd + 2 elements from A. By Lemma 6 with k = 2βd + 2, this happens
with probability at most (2m)−6 (for sufficiently large values of n). The claim follows by
using the union bound. J

We can now use Lemma 7 and Theorem 4 together to derive an upper bound to the final
dislocation of the sequence returned by Algorithm 1.

I Lemma 8. The sequence returned by Algorithm 1 has maximum dislocation O(logn) and
total dislocation O(n) with probability at least 1− 1

n
√
n
.

Proof. For i = 1, . . . , k, we say that the i-th iteration of Algorithm 1 is good if the sequence
Si computed at its end has both (i) maximum dislocation at most cp logn, and (ii) total
dislocation at most cp|Si|. As a corner case, we say that iteration 0 is good if S0 also satisfies
conditions (i) and (ii) above, which happens with probability at least 1− 1

|S0|4 ≥ 1− 1
n2 as

shown by Theorem 4.
We now focus on a generic iteration i ≥ 1 and show that, assuming that iteration i− 1

is good, iteration i is also good with probability at least 1− 1
n2 . Since iteration i− 1 was

good, the sequence Si−1 has maximum dislocation cp logn and hence, by Lemma 7, the
sequence resulting from call to Merge(Si−1, Ti) returns a sequence with dislocation at most
γcp logn with probability at least 1− 1

|Ti|4 ≥ 1− 1
n2 . If this is indeed the case, we have that

the sequence Si returned by the subsequent call to WindowSort satisfies (i) and (ii) with
probability at least 1 − 1

|Si+1|4 ≥ 1 − 1
n2 (see Theorem 4). The claim follows by using the

union bound on the k = O(logn) iterations, and by noticing that the returned sequence is
exactly Sk. J

We can therefore state the following result, which follows directly from Lemma 8 and
Lemma 5:

I Theorem 9. Consider a set of n elements that are subject to random persistent comparison
errors. For any (adversarially chosen) input permutation of these elements, RiffleSort
is a randomized algorithm that returns, in O(n logn) worst-case time, a sequence having
maximum (resp. total) dislocation O(logn) (resp. O(n)), w.h.p.

5 Derandomization

In Section 4 we showed how it is possible to design a randomized algorithm that approximately
sorts a sequence S of n elements achieving simultaneously asymptotically optimal maximum
dislocation, total dislocation, and running time, w.h.p.6 In this section we sketch how
RiffleSort can be adapted to obtain a deterministic algorithm with the same asymptotic
guarantees on running time, dislocation, and success probability (over the comparison errors),
as long as the order of the elements in S does not depend of the comparison errors.7

In order to run RiffleSort, we need to partition the input sequence S into a collection of
random sets T0, T1, . . . , Tk where k = logn

2 and each Ti contains m =
√
n · 2i−1 elements that

are chosen uniformly at random from the n−
√
n

∑k
j=i+1 2i−1 = 2m elements in S\

⋃k
j=i+1 Tj .

6 The randomized result also holds when each comparison c has an adversarially chosen and unknown
probability of error pc ∈ [0, p]. The deterministic result holds if pc ∈ [p0, p] for some constant p0 > 0.

7 An adversary could make the algorithm fail by first observing all comparison results among the input
elements, and then choosing a suitable input permutation S. In other words, our result holds if the
comparison errors do not depend on the element values nor on the positions in S of the involved elements.



B. Geissmann, S. Leucci, C.-H. Liu, and P. Penna 49:13

Notice also that this is the only step in the algorithm that is randomized. To obtain a
version of RiffleSort that does not require any external source of randomness, i.e., that
depends only on the input sequence and on the comparison results, we will generate such a
partition by exploiting the intrinsic random nature of the comparison results. As shown in
the full version of the paper, with probability at least 1− 1

n3 , the partition T0, . . . , Tk can be
found in O(n) time using only 6n random bits. Moreover, with a technique similar to that
of [11], it is possible to simulate “almost-fair” coin flips by xor-ing together a sufficiently
large number of comparison results. Indeed, we can associate the two possible results of
a comparison with the values 0 and 1, so that each comparison behaves as a Bernoulli
random variable whose (unknown) parameter is either p or 1 − p. We can then use the
following fact: let c1, . . . , ck be k = Θ(logn) independent Bernoulli random variables such
that P (ci = 1) ∈ {p, 1−p} ∀i = 1, . . . , k, then |Pr(c1⊕c2⊕· · ·⊕ck = 0)− 1

2 | ≤
1
n4 . Therefore,

if we consider the set A containing the first 7k elements from S and we compare each element
in A to all the elements in S \ A, we obtain a collection of 7k(n − 7k) ≥ 6kn comparison
results (for sufficiently large values of n) from which we can generate 6n almost-fair coin
flips. A coupling argument shows that, with probability at least 1− 6kn

n4 − 1
n3 > 1− 1

n2 , all
these almost-fair coin flips behave exactly as unbiased random bits, and they suffice to select
a partition T0, . . . , Tk of S \ A. It is now possible to use RiffleSort on S \ A to obtain
a sequence S′ having maximum dislocation d = O(logn) and total dislocation O(n). This
requires time O(n logn) and succeeds with probability at least 1 − |S \ A|− 3

2 > 1 − 3n− 3
2

since |S \A| ≥ n
2 .

What is left to do is to reinsert all the elements of A into S′ without causing any asymptotic
increase in the total and in the maximum dislocation. While one might be tempted to use
the result of Section 1, this is not actually possible since the errors between the elements in
A and the elements in S′ now depend on the permutation S′. In the full version of this work
we show a simple, but slower, O(n)-time strategy to compute rank(x, S′) with an additive
error of O(logn), even when S′ is adversarially chosen as a function of the errors. Since
A contains O(logn) elements, simultaneously reinserting them in S′ affects the maximum
dislocation by at most an O(logn) additive term, while their combined contribution to the
total dislocation is at most O(log2 n). We summarize the discussion of this section in the
following theorem:

I Theorem 10. Consider a set of n elements that are subject to random persistent comparison
errors. For any input permutation of these elements that is chosen independently of the
errors, there exists a deterministic algorithm that returns, in O(n logn) worst-case time, a
sequence having maximum (resp. total) dislocation O(logn) (resp. O(n)), w.h.p.
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Abstract
We consider practical algorithms for maintaining the dominator tree and a low-high order in directed
acyclic graphs (DAGs) subject to dynamic operations. Let G be a directed graph with a distinguished
start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor
of a vertex w if and only if all paths from s to w in G include v. The dominator tree is a central
tool in program optimization and code generation, and has many applications in other diverse areas
including constraint programming, circuit testing, biology, and in algorithms for graph connectivity
problems. A low-high order of G is a preorder of D that certifies the correctness of D, and has
further applications in connectivity and path-determination problems.

We first provide a practical and carefully engineered version of a recent algorithm [ICALP 2017]
for maintaining the dominator tree of a DAG through a sequence of edge deletions. The algorithm
runs in O(mn) total time and O(m) space, where n is the number of vertices and m is the number
of edges before any deletion. In addition, we present a new algorithm that maintains a low-high
order of a DAG under edge deletions within the same bounds. Both results extend to the case of
reducible graphs (a class that includes DAGs). Furthermore, we present a fully dynamic algorithm
for maintaining the dominator tree of a DAG under an intermixed sequence of edge insertions and
deletions. Although it does not maintain the O(mn) worst-case bound of the decremental algorithm,
our experiments highlight that the fully dynamic algorithm performs very well in practice. Finally,
we study the practical efficiency of all our algorithms by conducting an extensive experimental study
on real-world and synthetic graphs.
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50:2 Dynamic Dominators and Low-High Orders in DAGs

1 Introduction

Dynamic graph algorithms have been extensively studied for several decades, and many
important results have been achieved for fundamental problems, including connectivity,
minimum spanning tree, transitive closure, shortest paths (see, e.g., the survey in [13]).
Typically, the goal of a dynamic graph algorithm is to update the solution of a problem,
following the insertion or deletion of an edge, as quickly as possible (usually much faster
than recomputing from scratch). A dynamic graph problem is said to be fully dynamic if it
is required to process both insertions and deletions of edges, incremental if it requires to
process edge insertions only and decremental if it requires to process edge deletions only.
Here we consider two decremental problems in directed graphs, namely maintaining the
dominator tree and a low-high order of a flow graph.

A flow graph G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex
s ∈ V . A vertex v is reachable in G if there is a path from s to v; v is unreachable if no
such path exists. The dominator relation in G is defined for the set of reachable vertices
as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path from s

to w contains v; v is a proper dominator of w if v dominates w and v 6= w. The dominator
relation in G can be represented by a tree rooted at s, the dominator tree D, such that v
dominates w if and only if v is an ancestor of w in D. See Figure 1. If w 6= s is reachable, we
denote by d(w) the parent of w in D. The dominator tree of a flow graph can be computed
in linear time [2, 8, 14, 15]. The dominator tree is a central tool in program optimization and
code generation [11], and it has many applications in other diverse areas including constraint
programming [40], circuit testing [4], biology [1, 29], memory profiling [38], the analysis of
diffusion networks [28], and in connectivity problems [17, 18, 21, 22, 24, 31, 32, 33, 34].

A low-high order of G [25] is a preorder of the dominator tree D such that for all reachable
vertices v 6= s, (d(v), v) ∈ E or there are two edges (u, v), (w, v) ∈ E, where u and w are
reachable, w is not a descendant of v in D, and u < v < w in low-high order. See Figure 1.
Every flow graph G has a low-high order, computable in linear-time [25]. Low-high orders
provide a correctness certificate for dominator trees that is straightforward to verify [46].
By augmenting an algorithm that computes the dominator tree D of a flow graph G so
that it also computes a low-high order of G, one obtains a certifying algorithm to compute
D. Low-high orders also have applications in path-determination problems [45] and in
fault-tolerant network design [5, 6, 26].

In this paper we consider how to maintain the dominator tree and a low-high order of
acyclic flow graphs subject to dynamic operations. We believe that acyclic graphs are not a
significant restriction, since several real-world networks, such as certain types of biological
networks, are acyclic [29]. Furthermore, our results extend to reducible flow graphs (defined
below), a class that includes acyclic flow graphs. Reducible flow graphs are important in
program optimization since one notion of a “structured” program is that its flow graph is
reducible. The dynamic dominator problem arises in various applications, such as data flow
analysis and compilation [10, 16]. Moreover, dynamic dominators can be used for dynamically
testing various connectivity properties in digraphs, such as 2-vertex connectivity, strong
bridges and strong articulation points [32].

The problem of updating the dominator relation has been studied for several decades
(see, e.g., [3, 9, 10, 20, 23, 41, 42]). While for the incremental dominators problem there
are simple algorithms that achieve total O(mn) running time for processing a sequence of
edge insertions in a flow graph with n vertices, where m is the number of edges after all
insertions [3, 10, 23], the decremental version seems much harder. Cicerone et al. [10] achieved
a total O(mn) update bound for the decremental problem in reducible flow graphs, where
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Figure 1 (Top) A flow graph G and its dominator tree D. The numbers correspond to a preorder
numbering of D that is a low-high order of G. (Bottom) The flow graph G′ and its dominator tree
D′ after the deletion edge (g, d).

m is the initial number of edges, but using O(n2) space. For general digraphs, Georgiadis
et al. [20] presented an algorithm that can process a sequence of edge deletions in a flow
graph in O(mn logn) total time and O(n2 logn) space, and can answer dominance queries in
constant time. For reducible flow graphs, Georgiadis et al. [20] presented an algorithm that
achieves O(mn) total running time using only O(m+ n) space. A conditional lower bound
in [20] suggests that it might be hard to substantially improve the O(mn) update bounds
in the partial dynamic (incremental or decremental) problem of maintaining the dominator
tree, even for acyclic flow graphs. As the algorithms in [20] are quite sophisticated, their
implementation was a challenging task. Nevertheless, we show here that this is really worth
the effort, since their efficient implementation performs very well in practice. To produce an
implementation of practical value, we performed a careful engineering and choice of data
structures, including a data structure for an extension of the dynamic list order maintenance
problem [7, 12] and a data structure for maintaining and updating derived edges [25]. To
assess the merits of our implementation in practical scenarios, we conducted a thorough
experimental study.

As a second contribution, we show that we can maintain decrementally a low-high order
of a reducible flow graph in O(mn) total time. This implies the first decremental certifying
algorithm [39] for computing dominators in O(mn) total time in reducible flow graphs. It
also immediately provides O(mn)-time algorithms for the following problems:

A data structure that maintains an acyclic flow graph G decrementally, and answers the
following queries in constant time: (i) For any two query vertices v and w, find a path
πsv from s to v and a path πsw from s to w that are maximally vertex-disjoint, i.e., such
that πsv and πsw share only the common dominators of v and w. We can output these
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50:4 Dynamic Dominators and Low-High Orders in DAGs

paths in O(|πsv|+ |πsw|) time. (ii) For any two query vertices v and w, find a path πsv

from s to v that avoids w, if such a path exists. We can output this path in O(|πsv|)
time. Such a data structure (in the static case) was used by Tholey [45] in a linear-time
algorithm for the 2-disjoint paths problem in a directed acyclic graph (DAG).
A decremental version of the fault-tolerant reachability problem [5, 6] in DAGs. We
maintain an acyclic flow graph G = (V,E, s) through a sequence of edge deletions, so that
we can answer the following query in O(n) time. Given a spanning forest F = (V,EF ) of
G rooted at s, find a set of edges E′ ⊆ E \ EF of minimum cardinality, such that the
subgraph G′ = (V,EF ∪ E′, s) of G has the same dominators as G.

An incremental low-high order algorithm with O(mn) total update time was presented in
[19]. As in the dynamic dominators problem, the decremental version seems more difficult
than the incremental. To highlight this aspect, note that a single edge deletion can cause
O(n) changes in a given low-high order even if the dominator tree remains unaltered. See
Figure 2. On the other hand, in the incremental setting, it suffices to update the low-high
order only for the vertices that change parent in the dominator tree.

Our third contribution is an efficient fully dynamic algorithm for maintaining the dom-
inator tree of a DAG under an intermixed sequence of edge insertions and deletions. We
obtain this algorithm by incorporating the insertion method of [23] in our decremental
algorithm. The fully dynamic algorithm does not preserve the O(mn) worst case bound of
the decremental algorithm because the vertex depths in the dominator tree no longer change
monotonically. Despite this, however, our experimental results show that it performs very
well in practice.

𝑥 𝑦 𝑣 𝑢 𝑧 𝑤 𝑡

𝑑(𝑦)

(a)

𝑥 𝑦𝑣 𝑢 𝑧 𝑤 𝑡

𝑑(𝑦)

(b)

𝑥 𝑦𝑣 𝑢𝑧 𝑤 𝑡

𝑑(𝑦)

(d)

𝑥 𝑦𝑣𝑢 𝑧 𝑤 𝑡

𝑑(𝑦)

(c)

Figure 2 An example of propagation of changes in the low-high order after the deletion of an
edge. Vertices are arranged from left to right in low-high order. (a) After the deletion of (x, y), y

violates the given low-high order. (b)-(c) Moving y between z and t causes a new violation at vertex
v, which in turn causes another violation at vertex u after v is placed between z and y. (d) The
low-high order is finally restored when we place u between v and t.

2 Preliminaries

Let G = (V,E, s) be a flow graph with start vertex s, and let D be the dominator tree of G.
For any vertex v ∈ V , we let In(v) denote the set of vertices that have an edge in G entering
v, i.e., In(v) = {u ∈ V : (u, v) ∈ E}. An edge (x, y) of flow graph G is a bridge if its deletion
makes y unreachable from s. Given a rooted tree T , we denote by T (v) the subtree of T
rooted at v (we also view T (v) as the set of descendants of v). Let T be a tree rooted at s
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with vertex set VT ⊆ V , and let t(v) denote the parent of a vertex v ∈ VT in T . If v is an
ancestor of w, T [v, w] is the path in T from v to w. In particular, D[s, v] consists of the
vertices that dominate v. If v is a proper ancestor of w, T (v, w] is the path to w from the
child of v that is an ancestor of w. Analogously, T [v, w) denotes the path from v to t(w).
Suppose now that the vertex set VT of T consists of the vertices reachable from s. Tree T
has the parent property if for all (v, w) ∈ E with v and w reachable, v is a descendant of
t(w) in T . If T has the parent property and has a low-high order, then T = D [25]. For any
vertex v ∈ V , we denote by C(v) the set of children of v in D. A preorder of T is a total
order of the vertices of T such that, for every vertex v, the descendants of v are ordered
consecutively, with v first. A preorder of D is a low-high order of G, if (d(v), v) ∈ E or there
are two edges (u, v), (w, v) ∈ E such that u < v < w, and w is not a descendant of v in D.

A reducible flow graph [30, 44] is one in which every strongly connected subgraph S

has a single entry vertex v ∈ S such that every path from s to a vertex in S contains v. A
flow graph is reducible if and only if it becomes acyclic when every edge (v, w) such that w
dominates v is deleted [44]. We refer to such an edge as a back edge. Deletion of such edges
reduces the problem of computing dominators on a reducible flow graph to the same problem
on an acyclic graph.

3 Decremental dominators

The algorithm of Georgiadis et al. [20] is based on the concept of derived edges. Recall that
from the parent property of D, for any edge (v, w) of G, d(w) is an ancestor of v in D. Let
(v, w) be an edge of G, with w not an ancestor of v in D. (Such edges do not exist if G is
acyclic.) Then, the derived edge of (v, w) is the edge (v, w), where v = v if v = d(w), v is the
sibling of w in D that is an ancestor of v if v 6= d(w). If w is an ancestor of v in D, then the
derived edge of (v, w) is null. Note that a derived edge (v, w) may not be an original edge of
G. Given the dominator tree D of a flow graph G = (V,E, s) and a list of edges S ⊆ E, we
can compute the derived edges of S in O(|V |+ |S|) time [25].

Now consider the effect of an edge deletion on the dominator tree D. Let (x, y) be the
deleted edge. We call the deletion of (x, y) regular if (x, y) is not a bridge of G, i.e., y
remains reachable from s after the deletion. We let G′ and D′ denote the flow graph and
its dominator tree after the update (G′ = G \ (x, y)). Similarly, for any function f on V ,
we let f ′ be the function after the update. In particular, d′(v) denotes the parent of v in
D′. By definition, D′ 6= D only if x is reachable before the update. We say that a vertex
v is affected by the update if d′(v) 6= d(v), and unaffected otherwise. If v is affected then
d′(v) does not dominate v in G. Since the effect of an edge deletion is the reverse of an edge
insertion, [23, Lemma 1], and [25, Lemma 4.1] imply the following:

I Lemma 1. Suppose x is reachable and the deletion of edge (x, y) is regular, i.e., y does
not become unreachable after the deletion. Then the following statements hold:
(a) All affected vertices become descendants in D′ of a child c of d(y).
(b) A vertex v is affected if and only if (d(v), v) is not an edge of G′ and all edges (u, v) ∈

E \ (x, y) correspond to the same derived edge (u, v) = (c, v) of G.
(c) After the deletion, each affected vertex v becomes a child of a vertex on the critical path

D′[c, d′(y)].
(d) No vertex on D′[c, d′(y)] is affected. Hence, D′[c, d′(y)] = D[c, d′(y)].

We note that statements (a) and (c) hold for arbitrary flow graphs, while (b) and (d) are
true only for acyclic (and reducible) flow graphs. The algorithm of [20] applies Lemma 1 in
order to locate the affected vertices in some topological order of G as follows. For each vertex
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50:6 Dynamic Dominators and Low-High Orders in DAGs

v we maintain a count InSiblings(v) which corresponds to the number of distinct siblings w of
v such that (w, v) is a derived edge. We also maintain the lists DerivedOut(v) of the derived
edges (v, u) leaving each vertex v. As we locate each affected vertex, we find its new parent
in the dominator tree and update the counts InSiblings for the siblings of v. The first step is
to update InSiblings(y). If InSiblings(y) = 1, then we compute the nearest common ancestor
z = d′(y) in D′ of all vertices in In(y). In this case, by Lemma 1(c), z is a descendant of
a sibling c of y in D. Next, we update the InSiblings(v) counts for all v ∈ DerivedOut(y).
Specifically, we decrement InSiblings(v) if v ∈ DerivedOut(c); if InSiblings(v) = 1 then we
identify v as affected and inserted into a FIFO queue Q. Then we repeat the same process
for each vertex extracted from Q. We can locate the new parent d′(v) of each affected vertex
v in D′ as for y, i.e., by computing the nearest common ancestor in D′ of all vertices in In(v).
This way, however, does not guarantee the desired O(mn) total update time. Therefore,
we locate d′(v) by traversing the critical path D[c, d′(y)] in top-down order, until we find a
vertex u such that In(v) contains a vertex that is not a descendant of u in D′. Then we have
d′(v) = d(u). Finally, we can compute the updated InSiblings counts and DerivedOut lists
in a postprocessing step. The analysis in [20] is based on the fact that the affected vertices
that remain reachable increase their depth in D.

3.1 Efficient implementation
Providing a practical version and an efficient implementation of the above algorithm turns
out to be a very challenging task. In particular, we need to incorporate efficient solutions
to the following subproblems: (i) answering ancestor-descendant queries in the dominator
tree D that changes dynamically, (ii) maintaining dynamically the derived edges of G, and
(iii) handling the deletion of bridges. We note that (i) and (ii) are not needed when we
update D incrementally.

Ancestor-descendant queries. Throughout the execution of the deletion sequence, we need
to test in O(1) time the ancestor-descendant relation between pairs of vertices in D, in order
to locate the new parent of each affected vertex v 6= y. To that end, it suffices to recompute
a preorder and a postorder numbering of the vertices in D after each update, since this
takes O(n) time by simply performing a dfs traversal of D. Then, v is a descendant of u
in D if and only if u ≤ v in preorder and v ≤ u in postorder [43]. Another option is to
represent each order (preorder and postorder) with a data structure for the dynamic list
order problem [7, 12]. Both methods guarantee the desired O(mn) total update bound, but
the use of a dynamic list order data structure gives a much faster implementation in practice.

Here, we also take advantage of the fact that for each affected vertex v we can move
the entire subtree of D(v) in the new location in the dynamic lists, rather than inserting
the vertices in D(v) one by one. Specifically, we remove the subtree D(v) from its current
locations in the two dynamic lists and insert them immediately after d′(v) in the preorder
list and immediately before the first descendant of d′(v) in the postorder list. Thus, we have
immediate access to the appropriate location in the preorder list, but we still need to find
the corresponding location in the postorder list. In order to do this search fast, we maintain,
for each v ∈ D, the list C(v) of the children of v in D ordered in preorder. Then, we can
find the first descendant of a vertex u in the postorder list by repeatedly following the links
to the first child in preorder, until we reach a leaf.

We implemented the dynamic preorder and postorder lists by adapting the dynamic list
order data structure of Bender et al. [7] that uses a two-level structure (implementing a
numbering scheme) and supports insertions, deletions and order queries in constant amortized
time. We extend this structure so that it can also support the following operation:
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move(u, v, w): Move the items between u and v (inclusive) from their current location in
the dynamic list and insert them right after w.

We implement the above operation as follows. First, we find the representative nodes (in
the top-level structure) for u and v. We check if the left-representative (right-representative,
respectively) has items in the second-level list that do not belong to the moved set of items;
if there are such items then we split the second-level lists and create new representative
items. After this step, both representative items and every other representative item between
them, have only second-level items that belong to the set we want to move. Hence, we can
quickly move the entire set by linking the left-representative and right-representative to
their new position in the dynamic list, right after w. Finally, we check if we can merge the
representatives that we move or split with their neighbours.

In our experiments, we observed that the above method was several orders of magnitude
faster compared to recomputing a preorder and a postorder numbering in D.

Derived edges. Recall that after finding the affected vertices of an edge deletion, we need
to compute the updated InSiblings counts and DerivedOut lists. The only types of edges
that may change their corresponding derived edge are (i) edges entering affected vertices,
and (ii) edges that enter a former sibling of y from a descendant of an affected vertex. Let S
be the set of these edges. As mentioned above, we can compute the derived edges of S in
O(n+ |S|) time [25], which suffices for our O(mn) bound since every edge in S is adjacent
to at least one vertex that changes depth in D. The method given in [25] for computing
derived edges is based on bucket sorting using a preorder numbering of D. This is not
suitable for our framework, since we do not maintain a preorder numbering of the vertices,
but use a dynamic list order data structure instead. Here we propose a more practical
method. First we note that for each edge (u, v) of type (ii), i.e., u is a descendant of an
affected vertex and d(v) = d′(v) = d(y), we have u = c. Now let (u, v) be of type (i), i.e.,
v is affected so d′(v) ∈ D′[c, y) and u is a descendant of d′(v). If u = d′(v) then u = u, so
suppose u is a proper descendant of d′(v). Let wv be the next vertex on D′[c, y] following
d′(v) (wv = d′(d′(v))), and let zu be the nearest ancestor of u such that d′(zu) ∈ D′[c, y].
Then, u = wv if d′(zu) 6= d′(v), and u = zu if d′(zu) = d′(v). Note that we have already
computed wv, for each affected vertex v, when we locate its new parent in D′. Hence, it
suffices to compute zu for all edges (u, v) where u is a proper descendant of d′(v). We do
that by visiting the ancestors of u until we reach zu. First we mark all vertices on D′[c, y],
so we stop our search when reaching a vertex that has a marked parent. To avoid multiple
visits to the same vertices, we maintain at each vertex w a label l(w), initially null. After
we locate zu, we set l(w) = zu for each visited vertex w. Thus, the next search stops at a
vertex w such that d′(w) is marked or l(w) is not null. Therefore, we can compute all the
new derived edges in O(n+ |S|) time as desired.

Unreachable vertices. After the deletion of an edge (x, y), some vertices may become
unreachable. This happens when (x, y) is a bridge of the current flow graph. Since we deal
with acyclic graphs, this means that (x, y) is the only edge entering y from a reachable vertex.
Hence, we can detect easily if (x, y) is a bridge, since we have InSiblings(y) = 0 and d(y) = x.
In order to achieve O(mn) total running time, we can simply recompute the dominator tree
from scratch after each such deletion, since the total number of bridges that can appear is
at most n− 1. In practice, however, this causes a significant slowdown of our algorithm. A
better idea is to handle the deletion of a bridge (x, y) as follows:
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1. Compute the set of edges Y from vertices in D(y) to vertices in D \D(y). Note that
no edge e ∈ Y is a bridge in G \ (Y \ e), since for any vertex v ∈ D \D(y), all edges in
(w, v) ∈ Y correspond to the same derived edge (w, v).

2. Process each edge e ∈ Y as a regular deletion.
3. Delete D(y) from the dominator tree D′ of G′, and update accordingly the data structures.
Note that Steps 1 and 3 take O(m) time. Also, since in Step 2 we have regular deletions, the
total running time remains O(mn).

4 Decremental low-high order

Now we consider how to update a low-high order of an acyclic flow graph G = (V,E, s) after
the deletion of an edge (x, y). First, we show how to achieve an O(mn) total update bound
using a sparsification technique, similar to the one used for the incremental problem in [19].
The idea is to maintain a subgraph H = (V,EH) of G with O(n) edges that has the same
dominator tree as G. By Lemma 1(c), each vertex v with (d(v), v) 6∈ E has two entering
edges (u, v) and (w, v) such that u 6= w; then, it suffices to add two such edges in H.

I Corollary 2. Let H = (V,EH) be subgraph of an acyclic flow graph G such that EH

contains:
(a) All edges (u, v) ∈ E such that u = d(v).
(b) Two edges (u, v) and (w, v) such that u 6= w for each vertex v with (d(v), v) 6∈ E.
Then H has the same dominator tree as G. Moreover, a low-high order of H is also a valid
low-high order of G.

Note that the two edges in Corollary 2(b) exist by Lemma 1(c). Clearly H = (V,EH)
has O(n) edges as required. Now, we can compute a low-high order of H in O(|EH |) = O(n)
time using the static algorithm of [25]. The algorithm arranges the children C(x) of each
non-leaf vertex x of D in a local low-high order δx. First, we place all vertices v ∈ C(x)
with (x, v) ∈ E in arbitrary order in δx. Then, we process the remaining children of x in
topological order. For each such vertex v, H contains edges (u, v) and (w, v) such that u 6= w,
so u and w precede v in the topological order and are already located in δx. Hence, it suffices
to insert v in any location in δx between u and w. When we have computed all the local
low-high orders, we can get the complete low-high order of G by arranging each subtree D(v)
of D immediately after v. After the deletion of (x, y) we need to update H in order to ensure
that it still satisfies Corollary 2. We can do this during the update of the derived edges, after
we have located all their affected vertices and their new parents in D′. Therefore, we get the
following result.

I Theorem 3. We can maintain a low-high order of a reducible flow graph G with n vertices
through a sequence of edge deletions in O(mn) total time, where m is number of edges in G
before all deletions.

4.1 Bounded search algorithm
Here we present an algorithm that updates a low-high order much faster in practice than
the above algorithm. To that end, we also need to maintain the lists DerivedIn(v) of the
derived edges (u, v) entering each vertex v. The algorithm is based on two ideas. First, we
observe that it is easy to update the low-high order for the affected vertices. The problematic
case is to update the low-high order for unaffected vertices. For the latter case, we propose
a bounded search process that identifies the vertices that may need to be relocated in
low-high order.
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Affected vertices. The crucial observation is that the decremental dominators algorithm
of Section 3 discovers the affected vertices in topological order. Thus, after we move all
the affected vertices in their new locations in D′ and update their incoming derived edges,
we can position them in low-high order. For each affected vertex v, if (d(v), v) 6∈ E, then
DerivedIn(v) contains two vertices u and w such that u < w in low-high order, so we can
insert v between these two vertices.

Unaffected vertices. Now we deal with the more challenging case of updating the low-high
order of unaffected vertices. As we already observed, a single edge deletion may cause many
changes in a given low-high order, even if there are no affected vertices. (See Figure 2.) Our
first step is to identify the initial set I of unaffected vertices that violate the low-high order
after updating the dominator tree and the low-high order of the affected vertices. Fixing the
low-high order of the vertices in I may invalidate the low-high order of other vertices that
are reachable from I. So, our next step is to compute a set X (I ⊆ X) of vertices that may
need to be relocated in low-high order due to the changes in the low-high order of I. The
next lemma determines the location of the vertices in I.

I Lemma 4. Let v be an unaffected vertex that violates the given low-high order after
updating the dominator tree in response to an edge deletion (i.e., v ∈ I). Then d′(v) = d(y).

Proof. A vertex v may violate the low-high order only if it has an entering edge (u, v) such
that u is a descendant of an affected vertex and the derived edge of (u, v) changes. From
the parent property of the dominator tree we have that for all (v, w) ∈ E with v and w

reachable, v is a descendant of d(w) in D. Since, by Lemma 1(c), all affected vertices become
descendants of a child c of d(y), the derived edge of (u, v) changes only if v is a child of d(y).
Since v is unaffected, d′(v) = d(v) = d(y). J

The above lemma also helps us limit our search for candidate vertices that may need to
be relocated in the low-high order in response to the update of the position of the vertices in
I. Since I consists only of children of d(y), we only need to search among the unaffected
children of d(y) that are reachable from I. As we relocate vertices in low-high order, this
process may cascade. See Figure 2.

In order to bound the total running time of our algorithm by O(mn), we maintain a
sparse spanning subgraph H = (V,EH) of G with O(n) edges that satisfies Corollary 2,
together with the derived edges EH of EH . We also maintain the invariant that for each
vertex v such that (d(v), v) 6∈ E, the two derived edges (u, v), (w, v) ∈ EH are such that
u < v < w in low-high order.

Our algorithm, FixLH(y), computes a set of vertices X ⊆ C ′(d(y)) that we will need to
process in order to ensure that they satisfy a low-high order of G′. Initially, we set X = I

and execute a search from each vertex in I in order to discover vertices that may violate
the given low-high order due the replacement of the vertices in I. During this search, we
would like to avoid any unnecessary propagation of changes in the low-high order. To achieve
this, when we process a vertex u ∈ X, we examine its outgoing derived edges in EH . For
each such edge (u, v) we test if v satisfies the current low-high order without considering the
derived edges from X. If this is not the case, then we insert v into X. This bounded search
is outlined by Procedure scan. Note that we can only afford to check a constant number k of
entries in DerivedIn(v) in order to have O(n) running time per deletion. (In our experiments
we set k ≤ 3.) Thus, we get the following result.

I Lemma 5. Algorithm FixLH correctly updates the low-high order of the children of d(y) in
D′ in O(n) time.
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Algorithm 1 FixLH(y).

1 I = children of d(y) that violate the low-high order of G after the deletion /*I ⊆ {y}
if y is not affected; otherwise, I contains unaffected children of d(y) that

have an entering edge from a descendant of an affected vertex */

2 initialize X = I /*X will contain the unaffected children of d(y) that need to be

relocated in low-high order */

3 foreach vertex u ∈ I do
4 if u not scanned then scan(u)
5 end
6 Process vertices in X in topological order to place them in low-high order using the

edges in EH

Procedure scan(u).

1 foreach derived edge (u, v) ∈ EH do
2 if v 6∈ X and (d(v), v) 6∈ E then
3 if u < v in low-high order then
4 examine the first k = O(1) edges in DerivedIn(v) to find a replacement

derived edge e = (w, v) with w 6∈ X and w < v in low-high order
5 end
6 else
7 examine the first k = O(1) edges in DerivedIn(v) to find a replacement

derived edge e = (z, v) with z 6∈ X and v < z in low-high order
8 end
9 if a replacement derived edge e was found then

10 replace (u, v) with e in EH

11 end
12 else
13 insert v into X
14 scan(v)
15 end
16 end
17 end

Proof. To prove the correctness of algorithm FixLH, first note that it correctly updates the
low-high order of all vertices in X. Now we need to argue that the remaining vertices satisfy
the updated low-high order. Observe that any vertex v that is visited during the search for
X, is not inserted into X only if (d(v), v) ∈ EH or if both derived edges in EH entering v
are not in X. Clearly, the same holds for all vertices that are not visited during this process.
Hence, any vertex v 6∈ X does not violate the computed low-high order before and after
relocating the vertices in X.

Now we argue that the algorithm runs in O(n) time. Each vertex v may change its two
entering edges in EH at most O(1) times, since we look for replacement edges only in the
first O(1) edges in DerivedIn(v). Thus, DerivedIn(v) will be examined in lines 4 and 7 of
Procedure scan a constant number of times in total for each v, so we spend constant time for
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each vertex. Finally, we need to process the vertices of X in topological order. Note that
the vertices may be inserted in X in arbitrary order. We can sort them topologically by
computing a topological order of the of subgraph of H = (V,EH) that is induced by the
vertices of X. Since EH has O(n) edges, this steps also takes O(n) time. J

I Remark 6. We also test the following, slightly more complicated, variant of Algorithm
FixLH. In line 6, where we place each vertex of u ∈ X in low-high order, we do not use
only the derived edges entering u that are contained in EH , but also consider a constant
number of derived edges entering u contained in E \ EH . Let E(u) be the set of derived
edges entering u that we consider in order to decide the location of u in the low-high order.
Also, let V (u) = {w ∈ V : (w, u) ∈ E(u)}, i.e., the vertices from which the derived edges in
E(u) originate. Then, we place u right after the median vertex in V (u), sorted with respect
to the low-high order. By doing this placement for u, we hope that Procedure scan will have
better chances for locating replacement derived edges.

4.2 Implementation issues
We extend our decremental dominators algorithm of Section 3 so that it also maintains a
low-high order as described above. The following implementation issues affect the efficiency
of our algorithm in practice.

Representation of a low-high order. Since a low-high order is a preorder of D, we can use
the same dynamic list order data structure as in Section 3.1. This choice, however, has the
serious drawback that we may need to update the data structures for both the preorder and
the postorder of D much more often than in Section 3.1. For this reason, we use a separate
dynamic list order data structure for the low-high order, which is updated independently of
the preorder and the postorder of D.

Unreachable vertices. As in the decremental dominators algorithm of Section 3.1, we have
to take special care of how the deletion of a bridge (x, y) is handled. To that end, we first
tested the two methods mentioned in Section 3.1: (a) Run a static algorithm to recompute
the dominator tree D and a low-high order from scratch, and (b) Process each edge e = (u, v)
with u a descendant of y in D and v not a descendant of y in D as a regular deletion (e
cannot be a bridge) and update the low-high order after each such deletion. Then delete
(x, y), making all descendants of y in D unreachable from s.

Unlike the decremental dominators algorithm, choice (b) here is not always superior to (a)
because during the sequence of regular deletions a vertex may be scanned several times when
the FixLH process is executed. Hence, we also implemented the following improvement, which
updates the low-high order of unaffected vertices after the sequence of regular deletions is
processed. Specifically, we first update the dominator tree as in (b) but do not compute the
complete low-high order after each regular deletion of an edge e = (u, v). As we process each
regular deletion (u, v), we also fix the low-high order of each affected vertex. Let A? denote
the set of all affected vertices found during all regular deletions. For each edge (w, t) such
that w is a descendant of an affected vertex in A? we insert t in a list I?. We compute a set
X? of vertices which may need their low-high to be updated by executing scan(v), starting
from all vertices v in I? that have not been scanned yet. Finally, we sort X? topologically
and update the low-high order of all vertices in X?.

All of the above three methods are executed in O(m) time per bridge deletion, so they
all guarantee the O(mn) total running time. In our experiments, however, the last method
turned out to be an order of magnitude faster than (a) and (b).
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5 Empirical Analysis

We wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3)
to compile the code. We report the running times on a Dell Precision Tower 7820 CTO
Base machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118 2.3 GHz
processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666 MHz. We did not use
any parallelization, and each algorithm ran on a single core. We report CPU times measured
with the getrusage function.

Table 1 Graph instances used in the experiments. The original graphs are taken from [35] and
[37], and were converted to DAGs by including vertices and edges reachable from the start vertex and
deleting depth-first search back edges. The graph categories are: source code (SC), social network
(SN), peer to peer network (P2P), web graph (WG), communication network (CN), and product
co-purchasing network (PN). The number of vertices n and edges m refer to the produced instances.

Graph Details
Graph Type n m Reference

linux SC 1524 3687 KONECT [35]
advogato SN 2320 17809 KONECT [35]
p2p-Gnutella31 P2P 14149 32363 SNAP [37]
Amazon0302 PN 55414 126663 SNAP [37]
Soc-Epinions1 SN 17117 158754 SNAP [37]
web-BerkStan WG 29145 169870 SNAP [37]
WikiTalk CN 49430 664139 SNAP [37]
Amazon0601 PN 276049 1259198 SNAP [37]
web-Google WG 600493 2013471 SNAP [37]

Table 1 shows some statistics about the graphs used in our experimental evaluation. In
all test instances we select the first vertex of the graph as the start vertex. (Choosing a
random start vertex produces similar results.) We produce decremental instances as follows.
The number of edges that will be deleted is controlled by a parameter p ∈ [0, 1]. Let m be
the initial number of edges in the graph. We create a sequence of deletions by choosing
bp ·mc edges in the original graph uniformly at random. For each graph and each choice of p,
we create 10 such random instances using different seeds for the initialization of the random
functions, and report the average running times. (For a given input graph, two values p1 < p2
of p, and a fixed seed, the deletion sequence for p1 is a subsequence of the deletion sequence
for p2.) The algorithms compute (in static mode) the dominator tree (and a low-high order
for the decremental low-high order algorithms) of the original graph and then they run in
decremental mode, processing the sequence of deletions. Note that during the execution of
the algorithms some vertices may become unreachable, and thus some subsequent deletions
may involve a disconnected portion of the graph. These deletions are detected and ignored
by all algorithms. For computing dominators in static mode we use the SNCA algorithm
from [27], which is a simplified variant of the classic Lengauer-Tarjan algorithm [36] that
performs very well in practice. (Algorithm SNCA was generally faster than other well-known
algorithms tested in [27].) As an intermediary, this algorithm computes a sparse subgraph H
of the input graph G that has the same dominators as G. The indegree of each vertex in
H is at most 2, so H has at most 2(n− 1) edges (the start vertex has zero indegree). For
computing a low-high order, we augment this algorithm with the low-high order algorithm
for acyclic graphs from [25]. We speedup the computation of a low-high order by using only
the edges in H (instead of all the edges of G).
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Dominators. We compare our efficient algorithm, Decr of Section 3, with two dynamized
versions of SNCA. (We did not consider the algorithm of Cicerone et al. [10] since it requires
O(n2) space, and therefore is impractical for large graphs.) The first algorithm, DSNCA1,
first tests if the deleted edge (x, y) belongs to the sparse subgraph H. If not, then the
dominator tree is not affected and the algorithm does nothing. Otherwise, it simply runs
SNCA from scratch. The second algorithm, DSNCA2, also performs the same test, but if
(x, y) ∈ H, then it computes the nearest common ancestor z of x and y in D and runs SNCA
only for the subgraph of G induced by D(z).

The average running times are reported in Table 3. Our experimental results show that
the new algorithm Decr is much faster than both DSNCA1 and DSNCA2. In particular, Decr
is consistently at least two orders of magnitude faster than DSNCA1 and DSNCA2. For
several graphs considered in our experiments, a large fraction of the vertices tended to get
disconnected from the start vertex after the deletion of about 50% of the edges, and therefore
many subsequent deletions are ignored. We also observe that recomputing the dominator
tree only for the subgraph induced by D(z) (where z is the nearest common ancestor of x
and y in D) does not provide a significant improvement in the running time of DSNCA, and
it may even cause slowdown in some instances, due to the overhead of computing the nearest
common ancestor of x and y in D.

Fully-dynamic case. We also report some experimental results for our fully dynamic al-
gorithm, that we refer to as Dyn, that maintains the dominator tree of a DAG under a mixed
sequence of edge insertions and deletions. We obtain this algorithm by incorporating the
insertion method of [23] in our decremental algorithm. Note that, as in our decremental
algorithm, we need to maintain the same data structures for the derived edges and for
the dynamic preorder and postorder lists. (These data structures are not required in the
incremental setting.) The fully dynamic algorithm does not preserve the O(mn) worst case
bound of the incremental or the decremental algorithm because the vertex depths in the
dominator tree no longer change monotonically. Despite this, however, our experimental
results show that it performs very well in practice.

We produce fully dynamic instances as follows. The number of edges that will be inserted
and deleted are controlled by parameters pi ∈ [0, 1] and pd ∈ [0, 1], respectively. Let m be
the initial number of edges in the graph. We create a sequence of insertions and deletions by
choosing mi = bpi ·mc random edge insertions and md = bpd ·mc random edge deletions.
This means that the flow graph initially has m′ = m−mi edges. For each graph and each
choice of pi, pd, we create 10 such random instances using different seeds for the initialization
of the random functions, and report the average running times. The algorithms compute (in
static mode) the dominator tree of the original graph and then they run in fully-dynamic
mode, processing the (intermixed) sequence of insertions and deletions. As in the decremental
algorithm, we compute the dominator tree in static mode with the SNCA algorithm from [27].
In the fully-dynamic mode, the type of each update operation is chosen uniformly at random,
so that there are mi insertions interspersed with md deletions. During this simulation that
produces the dynamic graph instance we keep track of the edges currently present in the
graph. If the next operation is a deletion then the edge to be deleted is chosen uniformly at
random from the edges in the current graph.

Here we only give some preliminary experimental results, presented in Table 2, and defer
to the full version of the paper for a more comprehensive experimental study. As in the
decremental setting, we observe significant speed ups with respect to DSNCA1 and DSNCA2.
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Table 2 Average running times in seconds over 10 random intermixed update sequences of edge
insertions and deletions. The suffixes in the graph names correspond to the percentage of inserted
edges and deleted edges, respectively.

Graph_insertion_deletion Fully Dynamic Dominators
DSNCA1 DSNCA2 Dyn

soc-Epinions1_10_10 11.720 9.072 0.248
soc-Epinions1_30_40 10.620 8.956 0.228
soc-Epinions1_40_20 10.696 7.396 0.268
Amazon0302_30_40 0.900 1.424 0.104
web-BerkStan_30_40 0.156 0.284 0.080
web-BerkStan_40_20 0.992 1.584 0.072

Low-high order. Here we examine the efficiency of our algorithm Decr-LH, using the slightly
more complicated variant for placing of a vertex in low-high order, described in Remark 6.
In some instances, this variant performed significantly better than the simple version, as
shown in Figure 3. We compare the running time of Decr-LH with a dynamized version of
SNCA that also computes a low-high order of an acyclic flow graph. This algorithm, that
we refer to as DSNCA-LH, works as follows. It maintains a sparse subgraph H = (V,EH)
of G such that for each v 6= s, (d(v), v) ∈ EH , or EH contains edges (u, v) and (w, v) with
u < v < w. When we delete an edge (x, y) we test if this edge belongs to H. If not, then
the dominator tree and the low-high order are not affected, so we do nothing. Otherwise,
we look into the entering edges of v and try to find a replacement edge for (x, y) so that y
satisfies the current low-high order. If this fails, then we compute the dominator tree and
the low-high from scratch.
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Decr-LH-Simple

Figure 3 Running time of two implementations of Decr-LH. The first, Decr-LH-Simple, uses the
simple method for placing of a vertex in low-high order, as described in Algorithm FixLH, while the
second, Decr-LH-Median, uses the method described in Remark 6.
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Table 3 Average running times in seconds over 10 random deletion sequences. The suffixes in
the graph names correspond to the percentage of deleted edges p = 5%, 10%, 20%, 40%, and 80%.
Running times exceeding 2.5 hours are not reported.

Graph_deletion Decremental Dominators Decremental Low-High
DSNCA1 DSNCA2 Decr DSCNA-LH Decr-LH

linux_05 0.060 0.056 0.001 0.272 0.001
linux_10 0.108 0.116 0.001 0.604 0.001
linux_20 0.228 0.212 0.004 0.974 0.004
linux_40 0.428 0.396 0.004 1.488 0.004
linux_80 0.620 0.640 0.004 2.212 0.004
advogato_05 0.084 0.084 0.008 0.760 0.008
advogato_10 0.080 0.080 0.004 0.828 0.012
advogato_20 0.084 0.080 0.004 0.780 0.008
advogato_40 0.084 0.080 0.008 0.684 0.008
advogato_80 0.084 0.080 0.008 0.784 0.008
p2p-Gnutella31_05 0.916 0.788 0.020 4.648 0.064
p2p-Gnutella31_10 1.924 1.712 0.032 4.912 0.072
p2p-Gnutella31_20 2.696 2.520 0.040 6.340 0.100
p2p-Gnutella31_40 2.260 2.116 0.048 5.096 0.104
p2p-Gnutella31_80 2.504 2.188 0.044 5.368 0.088
Amazon0302_05 6.936 10.276 0.188 32.136 1.740
Amazon0302_10 7.720 11.148 0.168 38.216 1.920
Amazon0302_20 6.480 10.088 0.152 34.404 1.668
Amazon0302_40 7.436 11.040 0.170 41.552 1.860
Amazon0302_80 8.376 11.892 0.172 45.224 2.084
soc-Epinions1_05 5.116 3.480 0.072 10.188 0.092
soc-Epinions1_10 10.708 7.684 0.092 21.540 0.112
soc-Epinions1_20 20.996 14.480 0.124 45.308 0.144
soc-Epinions1_40 43.012 31.372 0.204 97.144 0.204
soc-Epinions1_80 100.472 62.528 0.312 198.832 0.340
web-BerkStan_05 5.204 4.464 0.060 16.300 0.224
web-BerkStan_10 10.524 8.976 0.072 31.724 0.348
web-BerkStan_20 18.176 14.468 0.152 63.608 0.656
web-BerkStan_40 26.252 17.928 0.204 118.252 0.900
web-BerkStan_80 31.044 23.872 0.212 401.040 0.992
WikiTalk_05 71.068 97.160 0.984 159.068 2.120
WikiTalk_10 141.392 192.788 1.212 329.100 2.888
WikiTalk_20 282.890 386.008 1.772 945.708 4.100
WikiTalk_40 569.240 746.324 2.480 1533.260 6.436
WikiTalk_80 923.448 1122.870 3.364 2010.560 7.956
Amazon0601_05 871.088 790.916 1.424 2879.210 36.380
Amazon0601_10 1564.340 1417.060 2.524 4723.031 41.568
Amazon0601_20 2202.820 2118.520 1.920 4878.070 43.888
Amazon0601_40 2388.700 2068.550 3.756 7674.280 50.004
Amazon0601_80 2505.030 2395.961 4.276 7706.976 55.644
web-Google_05 2644.380 >2.5h 1.320 11914.512 6.792
web-Google_10 4767.340 >2.5h 1.756 >2.5h 10.420
web-Google_20 7160.680 >2.5h 3.344 >2.5h 16.476
web-Google_40 >2.5h >2.5h 4.444 >2.5h 20.108
web-Google_80 >2.5h >2.5h 4.892 >2.5h 20.528
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The corresponding average running times are reported in the last two columns of Table 3.
As above, our efficient algorithm Decr-LH is much faster than DSNCA-LH. We also observe
that in most instances, maintaining a low-high order with our decremental algorithm Decr-LH
incurs a relatively low overhead with respect to Decr. For some instances, such as product
co-purchasing networks and web graphs (Amazon0302, Amazon0601, web-BerkStan and
web-Google), however, the overhead of maintaining a low-high order is significantly higher.
In our experiments this was due to the fact that a low-high order may change substantially
(i.e., many vertices will be inserted into set X maintained by Algorithm FixLH), even if the
dominator tree remains the same. (See Figure 2.)
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Abstract
In recent years several compressed indexes based on variants of the Burrows-Wheeler transformation
have been introduced. Some of these are used to index structures far more complex than a single
string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005]. As such,
there has been an increasing effort to better understand under which conditions such an indexing
scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al., Theor. Comput.
Sci., 2017]. Gagie et al. showed that de Bruijn graphs, generalized compressed suffix arrays, and
several other BWT related structures can be represented as Wheeler graphs, and that Wheeler
graphs can be indexed in a way which is space efficient. Hence, being able to recognize whether a
given graph is a Wheeler graph, or being able to approximate a given graph by a Wheeler graph,
could have numerous applications in indexing. Here we resolve the open question of whether there
exists an efficient algorithm for recognizing if a given graph is a Wheeler graph. We present:

The problem of recognizing whether a given graph G = (V,E) is a Wheeler graph is NP-complete
for any edge label alphabet of size σ ≥ 2, even when G is a DAG. This holds even on a restricted,
subset of graphs called d-NFA’s for d ≥ 5. This is in contrast to recent results demonstrating
the problem can be solved in polynomial time for d-NFA’s where d ≤ 2. We also show the
recognition problem can be solved in linear time for σ = 1;
There exists an 2e logσ+O(n+e) time exact algorithm where n = |V | and e = |E|. This algorithm
relies on graph isomorphism being computable in strictly sub-exponential time;
We define an optimization variant of the problem called Wheeler Graph Violation, abbreviated
WGV, where the aim is to remove the minimum number of edges in order to obtain a Wheeler
graph. We show WGV is APX-hard, even when G is a DAG, implying there exists a constant
C ≥ 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned on
the Unique Games Conjecture, for all C ≥ 1, it is NP-hard to find a C-approximation;
We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the largest
subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we prove that
the WS problem is in APX for σ = O(1);

The above findings suggest that most problems under this theme are computationally difficult.
However, we identify a class of graphs for which the recognition problem is polynomial time solvable,
raising the open question of which parameters determine this problem’s difficulty.
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1 Introduction

Within the last two decades, there has been the development of Burrows Wheeler Transform
(BWT) [7] based indices for compressing a diverse collection of data structures. This list
includes labeled trees [31], certain classes of graphs [14, 29], and sets of multiple strings [16, 26].
This has motivated the search for a set of general conditions under which a structure can
be indexed by a BWT based index, and consequently the introduction of Wheeler graphs.
A Wheeler graph is a directed graph with edge labels which satisfies two simple axioms
related to the ordering of its vertices. They were introduced by Gagie et al. [17] (also see [2]).
Although not general enough to encompass all BWT-based structures (e.g., [18]), the authors
demonstrated that Wheeler graphs offer a unified way of modeling several BWT based data
structures such as representations of de Bruijn graphs [6, 10], generalized compressed suffix
arrays [31], multistring BWTs [27], XBWTs [14], wavelet matrices [9], and certain types of
finite automaton [1, 5, 24]. They also showed that there exists an encoding of a Wheeler
graph G = (V,E) which requires only 2(e+ n) + e log σ + σ log e+ o(n+ e log σ) bits where
σ is the size of the edge label alphabet, e = |E|, and n = |V |. This encoding allows for
the efficient traversal of multiple edges while processing characters in a string, using an
algorithm similar to the backward search in the FM-index [15]. Since their introduction
Wheeler graphs have been further developed using techniques such as tunneling by Alanko
et al. [2]. Also, ideas closely coupled to Wheeler graphs have shown up in the recent work by
Equi et al. for exact pattern matching on graphs [12, 13]. However, not all directed edge
labeled graphs are Wheeler graphs, and thus not all directed edge labeled graphs can have
such techniques applied to them. The authors of [17] posed the question of how to reasonably
recognize whether a given graph is a Wheeler graph.

The question is of both theoretical and practical value, as it might be the first step before
attempting to apply some compression scheme to a given graph. For example, one could use
the existence of a Wheeler subgraph to encode a graph. To do so, you could maintain an
encoding of the subgraph using the framework presented in [17] in addition to an adjacency
list of the edges not included in the encoding. Depending on the size of the subgraph, such
an encoding might provide a large space savings at the cost of a modest time trade-off while
traversing the graph. This concept also motivates the portion of the paper where we look
at optimization versions of this problem that seek subgraphs of the given graph which are
Wheeler graphs. Unfortunately for practitioners of such a method, this problem turns out
to be computationally difficult as well. As a positive result, we show that the problem of
finding a maximal Wheeler subgraph admits a polynomial time algorithm which has solution
size within some constant factor of optimal for constant alphabet size. We also show that the
problem of recognizing Wheeler graphs is similar to that of identifying the queue number of
a graph, indicating a class of graphs where the problem becomes computationally tractable.

1.1 Wheeler Graphs
The notation (u, v, k) is used for the directed edge from u to v with label k. We will assume
the usual ordering on the edge labels which come from the alphabet {1, 2, ..., σ}.

I Definition 1. A Wheeler graph is a directed graph with edge labels where there exists an
ordering π on the vertices such that for any two edges (u, v, k) and (u′, v′, k′):
(i) k < k′ =⇒ v <π v

′;
(ii) (k = k′) ∧ (u <π u′) =⇒ v ≤π v′.

In addition, vertices with in-degree zero must be placed first in the ordering.
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We consider an ordering of the vertices of the graph a proper ordering if it satisfies the axioms
of the Wheeler graph definition. See Figure 1 for an illustration. One critical property of
Wheeler graphs is called path coherence. This property is characterized by the fact that if you
start at any consecutive range of vertices under the proper ordering π, and traverse the graph
following edge labels matching the characters in a string P , then when finished processing
P the vertices ended on will form a consecutive range. This property is key to allowing
the efficient traversal of multiple edges simultaneously, as well as achieving a compressed
representation of the graph.

Figure 1 An example of a Wheeler graph with σ = 3. The ordering on the edge labels is:
red (solid) < blue (long-dash) < green (short-dash).

The following list of properties for a Wheeler graph can be deduced from Definition 1.

I Property 1. All edges inbound to a vertex v have the same edge label.

I Property 2. In a proper ordering all vertices with same inbound edge label are ordered
consecutively.

I Property 3. It is possible for a vertex to have multiple outbound edges with the same label.
It is also possible for a vertex to have more than σ inbound or outbound edges.

I Property 4. We call two edges (u, v, k) and (u′, v′, k) with the same label a rainbow if
u < u′ and v′ < v. No rainbows can exist in a proper ordering (see Figure 2).

I Property 5. For σ = 1, ignoring self-loops, any proper ordering is also a topological
ordering. The vertices with self-loops must be placed last in the ordering otherwise a rain-
bow is created.

1.2 Problem Definitions
The first question we wish to answer is given a directed graph with edge labels, does a proper
ordering π exist? We define this problem formally as the following.

I Problem 1 (Wheeler Graph Recognition). Given a directed edge labeled graph G = (V,E),
answer “YES” if G is a Wheeler graph and “NO” otherwise.

Although we do not demand it here, ideally, a solution to the above problem would also
return a proper ordering.

Figure 2 In a proper ordering all of the above configurations cannot occur.
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Motivated by the compression of general graphs (which are not necessarily Wheeler
graphs), we next define two optimization versions of Problem 1 where we seek to find
Wheeler subgraphs.

I Problem 2 (Wheeler Graph Violation (WGV)). Given a directed edge labeled graph G = (V,E)
identify the smallest E′ ⊆ E such that G′ = (V,E\E′) is a Wheeler graph.

We also consider the dual of this problem.

I Problem 3 (Wheeler Subgraph (WS)). Given a directed edge labeled graph G = (V,E)
identify the largest E′′ ⊆ E such that G′′ = (V,E′′) is a Wheeler graph.

1.3 Our Contribution
In Section 2 we show that the problem of recognizing whether a given graph is a Wheeler
graph is NP-complete even for an edge alphabet of size σ = 2. The result holds even
when the input is a directed acyclic graph (DAG) and when the number of edges leaving
a vertex with the same label is at most five. In the full version of this paper [19] we show
that for σ = 1 the recognition problem can be reduced to that of determining if a DAG
has queue number one which can be solved in linear time [22].
In Section 3 we provide an exponential time algorithm which solves the recognition
problem on a graph G = (V,E) in time 2O(n+e logσ) where n = |V | and e = |E|. It uses
the idea of enumerating through all possible encodings (of bounded size) of Wheeler
graphs, and the fact that we can test whether there exists an isomorphism between two
undirected graphs in sub-exponential time. This technique also gives us exact algorithms
for the optimization problems presented in this paper which run in time 2O(n+e logσ).
Section 4 examines the optimization versions of this problem called Wheeler Graph
Violation (WGV) and Wheeler Subgraph (WS). We show via a reduction of the Minimum
Feedback Arc Set problem that the Wheeler Graph Violation problem is APX-hard,
and assuming the Unique Games Conjecture, cannot be approximated within a constant
factor. This holds even when the graph is a DAG. On the other hand, we show that the
Wheeler Subgraph problem is in the complexity class APX for σ = O(1). We do so by
providing a poly-time algorithm whose solution size is Ω(1/σ) times the optimal value.
Using PQ-trees and ideas similar to those used in detecting if the queue number of a
DAG is one, we demonstrate a class of graphs where Wheeler graph recognition can be
done in linear time (see full version [19]).

2 NP-completeness of Wheeler Graph Recognition

I Theorem 2. The Wheeler Graph Recognition Problem is NP-complete for any σ ≥ 2.

We first show a simple reduction from the Betweenness problem to Wheeler Graph Recognition.
Although straightforward, it requires graphs with either O(n) sources or O(n) edges with
the same label leaving a single vertex. In Section 2.3, by expanding on the techniques used
in the first reduction we show that even if these quantities are limited to at most five the
recognition problem remains NP-complete.

2.1 The Betweenness Problem
The Betweenness Problem was established as NP-complete by Opatrný in 1979 [30]. Like our
problem, it deals with finding a total ordering on a set of elements subject to some constraints.
The input to the Betweenness problem is a list of distinct elements T = t1, . . . , tn and a
collection of k < n3 ordered triples of (t11, t12, t13), (t21, t22, t23), . . . (tk1 , tk2 , tk3) where every element
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in a triple is in T . The list T should be placed into a total ordering with the property that
for each of the given triples the middle item in the triple appears somewhere between the
other two items. The items of each triple are not required to be consecutive in the total
ordering. The decision problem is determining if such an ordering is possible.

As an example, consider the input T = 1, 2, 3, 4, 5, 6 and the triples: (5, 2, 3), (1, 5, 2),
(4, 5, 6), (4, 6, 2). A total ordering which satisfies the given triples is 1, 4, 5, 6, 2, 3. An ordering
which does not satisfy the given triples is 1, 2, 3, 4, 5, 6 since it violates the triples (5, 2, 3),
(1, 5, 2), and (4, 6, 2).

2.2 Reduction from Betweenness to Wheeler Graph Recognition

Figure 3 An example of the reduction with input list 1,2,3,4,5,6 and triples (5, 2, 3),(1, 5, 2),(4, 5, 6).

Suppose we are given as input to the Betweenness Problem the list t1, t2, . . . , tn and
triples (t11, t12, t13), (t21, t22, t23), . . . , (tk1 , tk2 , tk3). We construct a DAG of size O(nk) as follows:

Create a source vertex v0 and vertices vji for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
For each triple (tj1, t

j
2, t

j
3) create a vertex for each element of the triple, we call them wj1,

wj2, and w
j
3 respectively.

Create the edges (v0, v
1
i , 1) and edges (vji , v

j+1
i , 1) for 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1.

Create the following edges:
(vji , w

j
1, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj2

(vji , w
j
3, 2) if ti = tj3

(vji , w
j
2, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj3

I Lemma 3. An instance of the Betweenness problem has an ordering satisfying all of the
constraints iff the graph constructed as above is a Wheeler graph.

Proof Sketch. The intuition is that the vertices with inbound edge label 1 represent the
permutation of the elements in T . The edges labeled 1 force the permutation to be duplicated
k times, once for each constraint. The vertices with the inbound edge label 2 represent the
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elements in each triple. The edges with label 2 enforce that the only valid orderings of the
vertices representing elements in T are orderings that satisfy the Betweenness constraints.
This is enforced by having no edges labeled 2 which are crossing in the figure. The detailed
proof can be found in the full version of this paper [19]. J

Theorem 2 follows from Lemma 3. The fact that being a Wheeler graph implies (arched)
level planarity with respect to each edge label is the key to the reduction.

The Wheeler graph recognition problem can be solved in linear time for an alphabet of
size one. This follows from relating the notion of queue number to Wheeler graphs, and
previous results which give a linear time algorithm for finding a one-queue DAG [21, 22, 23].
This also gives an upper bound on the number of edges which can be in a Wheeler graph [11].
The proof can be found in the full version of this paper [19].

I Theorem 4. The Wheeler graph recognition problem can be solved in linear time for an
edge alphabet of size σ = 1.

I Theorem 5. For σ = 1, the number of edges in a Wheeler graph is O(n).

2.3 NP-completeness of Wheeler Graph Recognition on d-NFA’s
Now we restrict the number of edges with the same label that can leave a single vertex. We
adopt the terminology used by Alanko, Policriti and Prezza and consider the problem of
recognizing whether a d-NFA is also a Wheeler graph [3]. A d-NFA is defined as follows:

I Definition 6. A d-NFA G is an NFA where the number of edges with the same character
leaving a vertex is at most d. We refer to the value d as the non-determinism of G.

We emphasize that here an NFA contains a single start state, from which we assume each
vertex is reachable. The results in this section are in contrast to the recent work of Alanko,
Policriti and Prezza who showed that it can be recognized in polynomial time whether a
2-NFA is a Wheeler graph [3]. Their result coupled with the observation that the reduction
in Section 2 requires a nΘ(1)-NFA suggests an interesting question about what role non-
determinism plays in the tractability of Wheeler graph recognition. To this end, we prove
Theorem 7.

I Theorem 7. The Wheeler Graph Recognition Problem is NP-complete for d-NFA’s, d ≥ 5.

The strategy of the proof is to reduce the NP-complete problem 4-NAESAT to Wheeler
Graph Recognition. In 4-NAESAT each clause is of length 4, and an expression is satisfiable
iff there exists a truth assignment such that each clause contains both a true literal and a
false literal. We start with 4-NAESAT, rather than 3-NAESAT, to obtain a 3-NAESAT
instance with the special property highlighted by Lemma 8.

I Lemma 8. An instance φ of 4-NAESAT can be reduced in poly-time to an instance φ′ of
3-NAESAT where a variable occurring in the middle of a clause appears at most twice in φ′.

Proof. Convert the 4-NAESAT instance φ to a 3-NAESAT instance φ′ by converting each
clause (ak, bk, ck, dk) into the clauses (ak, wk, bk) and (ck, wk, dk). Both clauses have a
satisfying not-all-equal assignment iff it is not the case that ak = bk = ck = dk. We note
that the variable used in the middle of the clauses, wk, is used only twice in φ′. J

For convenience, we define a case of 3-NAESAT where each variable occuring in the
middle occurs at most twice, we call this 3-NAESAT∗. We next describe the construction of
a one source DAG from an instance of 3-NAESAT∗.
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Figure 4 Vertex Z1 and Z2 could be for clauses (x1, x2, x3), (x2, x3, x4). Each “betweenness”
constraint adds a layer. (x4, X, x4) constraint shown.

Suppose we are given an instance φ of 3-NAESAT∗ with variables x1, x2, . . . , xn and the
clauses (ak, bk, ck) where we assume ak, bk, ck can represent either a Boolean variable or its
negation. We create a single source DAG G based on φ. The first step creates a menorah
like structure which allows for the vertices representing xi and xi to swap places in G, but
otherwise fixes the positions of the vertices. We begin by adding the vertices which represent
our variables, x1, . . . , xn, X, x1, . . . , xn; (the role of X will become clear). Next, we add the
structure to constrain their possible positions.

Add to G the vertices:
s0

1 . . . , s
0
n;

For 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i: sji and s
j
i ;

Add to G the red edges:
(s0

1, s
0
2, 1), . . . (s0

n, X, 1);
For 1 ≤ i ≤ n− 1, 2 ≤ j ≤ n− i: (sj−1

i , sji , 1) and (sj−1
i , sji , 1);

For 1 ≤ i ≤ n− 1: (s0
i , s

1
i , 1) and (s0

i , s
1
i , 1);

For 1 ≤ i ≤ n: (sn−ii , xi, 1) and (sn−ii , xi, 1);

For clause k, denoted (ak, bk, ck), we add a vertex Zk. Suppose the middle variable of
the clause, bk, is xh (positive or negated), then we add the vertices zjk for 1 ≤ j ≤ n− h, and
red edges (s0

h, z
1
k, 1), (z1

k, z
2
k, 1) . . . (zn−hk , Zk, 1).

Now we wish add a set of betweenness type constraints on any proper ordering given of the
vertices L0 = {x1, . . . , X, xn . . . x1, Z1, Z2, . . .}. Given a constraint (y1, y2, y3) we insist y2 be
between y1 and y3 in the ordering. This can be enforced by adding a layer of new vertices
L1 = {x1

1, . . . , X
1, x1

n . . . x
1
1, Z

1
1 , Z

1
2 , . . .} with red edges labeled 1 from vertices in layer L0

to their corresponding vertices in L1. We use the same gadget that was used in Section
2. Consider adding a betweenness on the vertices y1, y2, y3 in L0. Add the vertices w1

1,
w1

2, and w1
3 and the blue edges (y1

1 , w
1
1, 2), (y1

2 , w
1
2, 2), (y1

3 , w
1
3, 2), (y1

1 , w
1
2, 2) and (y1

3 , w
1
2, 2).

Additional betweenness constraints can be similarly enforced by adding a new layer on top
of L1 with a new gadget. Add the betweenness constraints (xi, X, xi) for 1 ≤ i ≤ n fixing X,
and betweenness constraints (ak, Zk, bk) and (ck, X, Zk) for every clause (ak, bk, ck).
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Table 1 Possible relative orderings of ak, bk, ck, Zk, X subject to (ak, Zk, bk) and (ck, X, Zk).

Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

FFT ck . . . X . . . bk, Zk . . . ak ck . . . X . . . bk, Zk . . . ak

FTF bk, Zk . . . X . . . ck . . . ak bk, Zk . . . X . . . ak . . . ck

TFF ak . . . bk, Zk . . . X . . . bk . . . ck ak . . . bk, Zk . . . X . . . bk . . . ck

FTT ck . . . bk . . . X . . . bk, Zk . . . ak ck . . . bk . . . X . . . bk, Zk . . . ak

TFT ak . . . ck . . . X . . . Zk, bk ck . . . ak . . . X . . . Zk, bk

TTF ak . . . Zk, bk . . . X . . . ck ak . . . Zk, bk . . . X . . . ck

Table 2 Orderings implied by all-equal assignment are not possible while satisfying constraints.

(Not) Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

TTT ak . . . bk . . . ck . . . X ck . . . bk . . . ak . . . X

FFF X . . . ck . . . bk . . . ak X . . . ak . . . bk . . . ck

Before proving the correctness of the reduction, we make the observation that because
any variable occurring in the middle of a clause occurs as most twice in the whole expression,
the maximum number of edges leaving a vertex s0

i is bounded by 3 + 2 = 5. All of the other
vertices have at most three edges with the same label leaving them.

I Lemma 9. The leveled graph G constructed as above from an instance φ′ of 3-NAESAT∗
is a Wheeler graph iff φ′ is satisfiable.

Proof. Given a truth assignment that satisfies the 3-NAESAT∗ instance φ′, put the vertices
in L0 whose variables are assigned the value T on the left side of X in Figure 4, and the
vertices whose variables are assigned F on the right side of X. For example, if x1 = T, x2 = F ,
the two left-most vertex on level L0 would be x1 followed by x2. Now, for clause (ak, bk, ck)
we have the possible not-all-equal truth assignments and relative orderings of L0 which
satisfy the Wheeler graph axioms in Table 1. This shows that a Wheeler graph ordering of
the vertices is possible by placing Zk’s correctly given the truth assignment.

In the other direction, if G is a Wheeler graph then the ordering of the menorah structure
is fixed with the exception of zji vertices and the ordering duplicated across layers L0,L1, . . ..
We will show the ordering given to L0 must have every clause getting a not-all-equal
assignment. Suppose to the contrary that L0 was given an ordering where either ak, bk, ck
are all on the left(true) or the right side(false) of X. Then we have the options in Table 2.

In all cases listed in Table 2, placing Zk between ak and bk violates the constraint
(ck, X, Zk), implying we violate a Wheeler graph constraint as well, a contradiction. Hence,
if G is a Wheeler graph, a valid ordering for L0 implies a valid truth assignment for φ′. J

This leaves open the complexity of the recognition problem for 3-NFA’s and 4-NFA’s.

3 An Exponential Time Algorithm

We can apply the encoding introduced by Gagie et al. [17] to develop exponential time
algorithms to solve all of the problems presented in this paper. The idea is to enumerate
over all possible encodings of Wheeler graphs with the proper number of vertices, edges, and
labels, checking whether the encoding is isomorphic with the given graph. This idea exploits
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the fact that having such a space efficient encoding also implies have a limited search space
of Wheeler graphs. The graph isomorphism can be checked efficiently enough to maintain
the desired time complexity. The results are summarized in the following two theorems.

I Theorem 10. Recognizing whether G = (V,E) is a Wheeler graph can be done in time
2e logσ+O(n+e), where n = |V |, e = |E|, and σ is the size of the edge label alphabet.

Before describing the algorithm that proves Theorem 10 we need to describe the encoding
of a Wheeler graph given in [17]. A Wheeler graph can be completely specified by three
bit vectors. Two bit vectors I and O both of length e + n and a bit vector L of length
e log σ. We assume that the vertices of the Wheeler graph G are listed in a proper ordering
x1 <π x2 <π . . . <π xn. The array I is of the form 0`110`21 . . . 0`n1 and O is of the form
0k110k21 . . . 0kn1. Here `i is the out-degree of xi whereas ki is the in-degree of xi. The array
L indicates which of the e character symbols are assigned to each edge. Specifically, the ith
character in L gives us the label of the edge corresponding to the ith zero in O. In [17] an
additional C array is added, and these arrays are equipped with additional rank and select
structures to allow for efficient traversal as is done in the FM-index [15]. For our purposes,
however, the arrays O, I, and L are adequate.

The outline of the algorithm is given below as Algorithm 1. It essentially enumerates all
bit vectors of a given length, checks whether or not the bit vector encodes a valid Wheeler
graph, and if so then checks whether the encoding matches our given graph G. Let S
represent the set of all possible encodings we wish to check. Note that |S| ≤ 22(e+n)+e logσ.

Algorithm 1 IdentifyWheelerGraph(G).

for all (O, I, L) ∈ S do
if (O, I, L) defines a valid wheeler graph G′ then

convert G to undirected graph α(G)
convert G′ to undirected graph α(G′)
if α(G) and α(G′) are isomorphic then

return “Wheeler Graph”
end if

end if
end for
return “Not a Wheeler Graph”

The Wheeler graph corresponding to the encoding can be extracted by working from
right to left reading the array I. For each zero in I, we know which symbol should be on the
inbound edge going into the corresponding vertex. We only need to decide where the edge’s
tail was. Let k be the edge label and j be the index of the label k in L which is furthest to
the right in L and yet to be used. If no such j exists we reject the encoding. When assigning
the tail for an edge, take as the tail the vertex xi where i = rank1(O, select0(O, j)). We call
the graph constructed in this way G′.

We now wish to check whether G′ and G are the same graphs only with a reordering of
the vertices, that is, G′ is the result of applying an isomorphism to G. Unlike the typical
isomorphism for labeled graphs, where a bijection between the symbols on the edge alphabet
is all that is required, here we wish for the adjacency and the label on the edge to be preserved
in the mapping between G and G′. Specifically, we wish to know if there exists a bijective
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function f : V (G)→ V (G′), such that if u, v ∈ V (G) are adjacent via an edge (u, v, k) with
label k in G, then f(u) and f(v) are also adjacent via an edge (f(u), f(v), k) with label k in
G′. Using ideas similar to those presented by Miller in [28], this problem can be reduced in
polynomial time to checking whether two undirected graphs are isomorphic.

I Lemma 11. Checking whether the direct edge labeled graph G′ is edge label preserving
isomorphic to G can be reduced in polynomial time to checking if two undirected graphs are
isomorphic.

Proof. See full version [19]. J

The final step in this algorithm is to check whether α(G) and α(G′) are isomorphic.
Using well established techniques this can be done in time 2

√
n′+O(1) where n′ is the number

of vertices in α(G) [4]. The total time complexity of Algorithm 1 is the number of bit
strings tested, multiplied by the time it takes to (1) validate whether the bit string encodes a
Wheeler graph G′ and decode it, (2) convert G and G′ to undirected graphs α(G) and α(G′),
and (3) test whether α(G) and α(G′) are isomorphic. This yields an overall time complexity
of |S|nO(1)2

√
n+2e(σ+1)+O(1), i.e., 2e logσ+O(n+e) for Algorithm 1.

4 Optimization Variants to Wheeler Graph Recognition

4.1 The Wheeler Graph Violation Problem is APX-hard
In this section, we show that obtaining an approximate solution to the WGV problem that
comes within a constant factor of the optimal solution is NP-hard. We do this through a
reduction that shows that WGV is at least as hard as solving the Minimum Feedback Arc
Set problem (FAS). FAS in its original formulation is phrased in terms of a directed graph
where the objective is to find the minimum number of edges which need to be removed in
order to make the directed graph a DAG. A slightly different formulation proves more useful
for us. Letting Fπ = {(vi, vj) ∈ E | π(vi) > π(vj)} we have the following:

I Lemma 12 (Younger [32]). Determining a minimum feedback arc set for G = (V,E) is
equivalent to finding an ordering π on V for which |Fπ| is minimized.

From this, we can present the equivalent formulation of FAS.

I Definition 13 (Minimum Feedback Arc Set (FAS)). The input is a list T = t1t2 . . . tn of n
numbers and a set of k inequalities of the form ti < tj. This task is to compute an ordering
π on T so that the number of inequalities violated in minimized.

Interestingly, we could not have used FAS for proving that the Wheeler graph recognition
problem is NP-complete, as FAS is fixed-parameter tractable in terms of the size of the
feedback arc set [8]. Indeed, setting the size of the feedback arc-set to zero is equivalent to
checking if the given graph is a DAG and the problem becomes solvable in polynomial time.

On the other hand, it has been shown that FAS is APX-hard, meaning that every problem
in APX is reducible to it [25]. It also implies, assuming NP 6= P, that there is a constant
C ≥ 1 such that there is no polynomial time algorithm which provides a C-approximation.
The reduction provided in this section implies:

I Theorem 14. The WGV problem is APX-hard.
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Figure 5 A bold edge in Figure 6 is actually k + 1 subdivided edges.

In addition, Guruswami et al. demonstrated that assuming the Unique Games Conjecture
holds, and NP 6= P, there is no constant C ≥ 1 such that a polynomial-time algorithm’s
approximate solution to FAS is always a factor C from the optimal solution. We state this
as a lemma.

I Lemma 15 (Guruswami et al. [20]). Conditioned on the Unique Games Conjecture, for
every C ≥ 1, it is NP-hard to find a C-approximation to FAS.

An approximation preserving reduction from FAS to WGV combined with Lemma 15
proves the other main result of this section:

I Theorem 16. Conditioned on the Unique Games conjecture, for every constant C ≥ 1, it
is NP-hard to find a C-approximation to WGV.

4.2 The Reduction of FAS to WGV
Let T = t1, t2, . . . , tn and inequalities t11 < t12, t

2
1 < t22, . . . , t

k
1 < tk2 be the input to FAS.

We define a heavy edge between the vertices u and v with label ` as k + 1 subdivided
edges between u and v each with label `. That is, a heavy edge between u and v with label `
consists of the edges (u,wi, `) and (wi, v, `) for 1 ≤ i ≤ k+ 1. See Figure 5 for an illustration.
Use the following steps to create a graph (which is a DAG):

Create a vertex v0 and vertices vji for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ k.
For each inequality tj1 < tj2 create a vertex for both tj1 and tj2, labeled w

j
1 and wj2,

respectively.
Create heavy edges (v0, v

1
i , 1) for 1 ≤ i ≤ n + 1 and heavy edges (vji , v

j+1
i , 1) for

1 ≤ i ≤ n+ 1, 1 ≤ j ≤ k − 1.
Create heavy edges (v0, w

1
1, 2), and heavy edges (vjn+1, w

j
2, 2) and (vjn+1, w

j+1
1 , 2) for

1 ≤ j ≤ k − 1, and heavy edge (vkn+1, w
k
2 , 2).

Add the regular (not heavy) edges (vji , w
j
1, 2) if ti = tj1, and (vji , w

j
2, 2) if ti = tj2 for

1 ≤ i ≤ n, 1 ≤ j ≤ k.

An example of the reduction is given in Figure 6. The intuition is that the vertices with
an inbound heavy edge labeled 1 represent the permutation of the elements in T . The heavy
edges labeled 1 force the permutation to be duplicated k times, once for each constraint.
The vertices with the inbound edge label 2 represent the elements in each inequality. We
will show that this is an approximation preserving reduction.

Let E′ be a solution to WGV and G′ = (V,E\E′) and let π represent a proper ordering
on the vertices of G′. Lemma 17 indicates that, other than permuting the ordering found on
the vertices vji for 1 ≤ i ≤ n (with the ordering duplicated for 1 ≤ j ≤ k), the ordering for
the vertices in Figure 6 is fixed.
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Figure 6 An example of the reduction from FAS to WGV where T = 1, 2, 3, 4, 5, 6 and the set of
inequalities is 5 < 3, 1 < 5, and 6 < 4.

I Lemma 17. Let φ represent a permutation of the set [n + 1]. Any ordering π which
provides a solution to the WGV instance is of the form

v0, v
1
φ(1), v

1
φ(2), . . . v

1
φ(n+1), . . . v

k
φ(1), v

k
φ(2), . . . v

k
φ(n+1), w

1
1, w

1
2, w

2
1, w

2
2, . . . w

k
1 , w

k
2 .

Proof. See full version [19]. J

Let f(x) refer to the reduction described above applied to an instance x of FAS creating
an instance f(x) of WGV. We also refer to the solution to either of these problems as OPT(·),
and val(·) as the cost function. For instance x of FAS val(x) is the number of violated
inequalities and for an instance f(x) of WGV val(f(x)) it is the number of violating edges.

I Lemma 18. Given an instance x of FAS, a solution(or sub-optimal solution) to the instance
f(x) of WGV that has ` ≤ k axiom violating edges yields a solution(or sub-optimal solution)
to x with ` violated inequalities. The converse holds as well.

Proof. See full version [19]. J

I Lemma 19. Given an instance x of FAS, a C-approximation to the solution OPT(f(x))
yields a C-approximation to the solution OPT(x).

Proof. By Lemma 18 any (sub-optimal) solution with objective value C · val(OPT(f(x))) to
f(x), gives us a (sub-optimal) solution to x with the same objective value, C ·val(OPT(x)). J

Theorem 14 follows from Lemma 19 and Theorem 16 follows from Lemma 19 and Lemma 15.



D. Gibney and S. V. Thankachan 51:13

Figure 7 Arborescences have their roots aligned in level L0. The relative ordering for each type
of vertex can be read from top to bottom, left to right.

4.3 The Wheeler Subgraph Problem is in APX
The dual problem to WGV is the problem of finding the largest subgraph of G which
is a Wheeler graph. This problem (defined in Section 1.2) is called Wheeler Subgraph
problem, abbreviated WS. Unlike WGV, this problem yields a Θ(1)-approximate solution
for constant σ.

We first prove the result for σ = 1. We then apply this result to get an approximation
for σ > 1. The proof for σ = 1 uses a branching of a directed graph. A branching is a set of
arborescence where an arborescence is a directed, rooted tree where all edges point away
from the root. A branching is spanning in that every vertex in V is included exactly one
arborescence in the branching.

I Lemma 20. There exists a linear time Θ(1)-approximation algorithm for WS when the
alphabet set size σ is one.

Proof. Let V0 be the set of sources in G (vertices with in-degree zero). There are two cases:

Case |V0| ≤ n/2: Take a branching F of the input graph G such that each vertex with
in-degree greater than zero is included in some non-singleton arborescence whose root
is a source vertex in V0. Let |F| denote the total number of arborescences in F . Since
|V0| ≤ n/2, it follows that |F| ≤ n/2 as well.
We create a planar leveling (L0, L1, . . .) of F by aligning all roots of the branching on
level L0 in an arbitrary order. Then set Li to be all of the vertices which are distance i
from some root in L0. Because these are trees, we can order the vertices in levels in such
a way that the leveling is planar (and for the purpose of visualization say left to right as
in Figure 7).
We claim that F is a Wheeler graph and that we can obtain a proper ordering π for the
vertices of F from this leveling. Starting with V0, we order the vertices on each level
from the bottom to top before proceeding right to the next level. One can check that the
Wheeler graph axioms are satisfied.
The number of edges in F , denoted e(F), is equal to n− |F|. And, since |F| ≤ n/2, we
have that e(F) ≥ n/2. At the same time, by Theorem 5 the optimal number of edges,
denoted |E∗|, is Θ(n). The ratio of the optimal solution value over the branching solution
value is bounded. In particular, |E∗|/e(F) ≤ Θ(n)/(n/2) = Θ(1). The construction of
the branching, the planar leveling, and the extracting π can all be done in linear time.
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Case |V0| > n/2: Take one outbound edge from each vertex in V0. We obtain a Wheeler
graph with |V0| > n/2 edges. This gives us a solution with an approximation ratio of
|E∗|/|V0| < Θ(n)/(n/2) = Θ(1).

In either case, we have an approximate solution with ẽ edges where ẽ ∈ Θ(|E∗|). J

Next, we consider when σ > 1. Suppose G∗ = (V,E∗) is the optimal solution for
G. Then E∗ = E∗1 ∪ E∗2 . . . E∗σ where E∗k = {(u, v, k) ∈ E∗}. Let Gk = (V,Ek) where
Ek = {(u, v, k) ∈ E} and let G′k = (V,E′k) be the optimal solution for Gk. Then, since
|E∗k | ≤ |E′k| we have

|E∗| =
σ∑
k=1
|E∗k | ≤ σ ·max

k
|E∗k | ≤ σ ·max

k
|E′k|.

Applying the result for σ = 1 (Lemma 20), we can approximate maxk |E′k| with a solution
having ẽ = α ·maxk |E′k| edges for some constant α ≤ 1. Therefore,

α

σ
|E∗| ≤ αmax

k
|E′k| = ẽ ≤ max

k
|E′k| ≤ |E∗|.

So the solution provides Ω(1/σ)-approximation for G as well.

I Theorem 21. There exists a linear time Ω(1/σ)-approximation algorithm for WS.

As a final result, we note that the algorithm presented in Section 3 also provides us with
an exponential time solution to the two optimization problems defined in Section 4. The
solution is to iterate over all possible subsets of edges in E, take the corresponding induced
subgraph, and apply Algorithm 1 to identify if the induced subgraph is isomorphic to a
Wheeler graph. For both the WGV and WS problems the optimal solution is the encoding
with the fewest edges removed. The resulting time complexity is the same as in Theorem 10
with the addition of one e term in the exponent. We have shown the following:

I Theorem 22. The WGV problem and WS problem for an input G = (V,E) with n = |V |,
e = |E| and σ is the size of the edge label alphabet can be solved in time 2e logσ+O(n+e).
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Abstract
In this paper, we propose HyperFlowCutter, an algorithm for balanced hypergraph bipartitioning
that is based on minimum S-T hyperedge cuts and maximum flows. It computes a sequence of
bipartitions that optimize cut size and balance in the Pareto sense, being able to trade one for the
other. HyperFlowCutter builds on the FlowCutter algorithm for partitioning graphs. We propose
additional features, such as handling disconnected hypergraphs, novel methods for obtaining starting
S, T pairs as well as an approach to refine a given partition with HyperFlowCutter. Our main
contribution is ReBaHFC, a new algorithm which obtains an initial partition with the fast multilevel
hypergraph partitioner PaToH and then improves it using HyperFlowCutter as a refinement algorithm.
ReBaHFC is able to significantly improve the solution quality of PaToH at little additional running
time. The solution quality is only marginally worse than that of the best-performing hypergraph
partitioners KaHyPar and hMETIS, while being one order of magnitude faster. Thus ReBaHFC
offers a new time-quality trade-off in the current spectrum of hypergraph partitioners. For the
special case of perfectly balanced bipartitioning, only the much slower plain HyperFlowCutter yields
slightly better solutions than ReBaHFC, while only PaToH is faster than ReBaHFC.
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1 Introduction

Given a hypergraph H = (V,E), a hyperedge cut C ⊂ E is a set of hyperedges whose removal
disconnects H. The balanced hypergraph bipartioning problem is to find a hyperedge cut of
minimum cardinality whose removal separates H into two blocks of roughly equal size – up
to (1 + ε) |V |2 . Hypergraph partitioning has applications in VLSI design, database sharding,
and high performance computing, in particular load balancing and reducing communication
for highly parallel computations as well as accelerating sparse matrix vector multiplications.
This problem is NP-hard [35] and it is hard to approximate, even for graphs [12]. Therefore,
practical algorithms use heuristics. Most of them are based on the multilevel framework [28].
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In this paper we consider a different approach based on the max-flow min-cut duality.
The basic idea has already been used in the Flow-Balanced-Bipartition algorithm (FBB) of
Yang and Wong [51]. So far it has not been of further consideration due to being too slow
compared to multilevel algorithms and too slow to solve current instances in feasible time.
More recently, FlowCutter [27] for graph bipartitioning has been introduced independently
of FBB. It is designed for computing very small node separators in road networks with a
rather loose balance constraint; ε = 0.33 is recommended for the application of accelerating
shortest path computations [20]. Based on similar ideas as FBB but equipped with more
engineering, it computes both unbalanced and highly balanced bipartitions of high quality
on the Walshaw graph partitioning benchmark [47].

Contribution. We present HyperFlowCutter, an algorithm which computes a series of
hypergraph bipartitions with increasing balance, up to perfectly balanced solutions. With
HyperFlowCutter, we extend FlowCutter to hypergraphs and contribute additional features.
We provide a method to handle disconnected hypergraphs, which FlowCutter and FBB
cannot handle. Our main contribution is ReBaHFC, an algorithm to refine a given partition
using HyperFlowCutter. It is a natural extension of the max-flow based refinement of
the k-way hypergraph partitioner KaHyPar [29]. We provide a thoroughly engineered
implementation as well as an extensive experimental evaluation on the benchmark set of
Heuer and Schlag [30], comparing HyperFlowCutter and ReBaHFC against the state-of-the-
art hypergraph partitioning tools KaHyPar [30, 29], PaToH [13] and hMETIS [31, 32].

In our experiments we use the fast algorithm PaToH to obtain initial partitions for
ReBaHFC. When using the quality preset of PaToH, ReBaHFC computes solutions for
ε = 0.03, which are only slightly worse than those of the best-performing partitioners
KaHyPar and hMETIS and significantly better than those of PaToH. ReBaHFC is only
marginally slower than PaToH and thus, like PaToH, it is one order of magnitude faster
than KaHyPar and hMETIS, when using the quality preset, and two orders of magnitude
faster, when using the default preset. Furthermore, ReBaHFC with the PaToH default preset
computes better solutions than PaToH with its quality preset. Thus ReBaHFC offers new
time-quality trade-offs. For the special case of perfectly balanced bipartitioning, only the
much slower plain HyperFlowCutter yields marginally better solutions than ReBaHFC, while
only PaToH is faster than ReBaHFC.

Outline. After discussing related work in Section 2 and presenting notation and preliminaries
in Section 3, we introduce the core algorithm of HyperFlowCutter for S-T hyperedge cuts in
Section 4.1. Then we show how to handle disconnected hypergraphs in Section 4.2, propose
our refinement algorithm ReBaHFC in Section 4.3 and finally discuss the experimental
evaluation in Section 5.

2 Related Work

For an overview of the field of hypergraph partitioning we refer to survey articles [7, 40, 5].
The most common approach among hypergraph partitioning tools is the multilevel framework.
Multilevel algorithms repeatedly contract vertices to obtain a hierarchy of coarser hypergraphs
while trying to preserve the cut structure. On the coarsest hypergraph an initial partition
is computed in some way. Then the contractions are reversed step-by-step and after every
uncontraction a refinement algorithm tries to improve the solution. Most multilevel algorithms
use a variant of the Fiduccia-Mattheyses (FM) [23] or Kernighan-Lin (KL) [33] local vertex



L. Gottesbüren, M. Hamann, and D. Wagner 52:3

moving heuristics. These algorithms move vertices between blocks, prioritized by cut
improvement. The multilevel framework has been immensely successful because it provides
a global view on the problem through local operations on the coarse levels. Furthermore,
it allows a great deal of engineering and tuning, which have a drastic impact on solution
quality. Even though this framework has been used since the 1990s, the implementations
are still improving today. A selection of well-known multilevel hypergraph partitioners are
PaToH [13] (scientific computing), hMETIS [31, 32] (VLSI design) KaHyPar [30, 29] (general
purpose, n-level), Zoltan [19] (scientific computing, parallel), Zoltan-AlgD [46] (algebraic
distances based coarsening, sequential), Mondriaan [49] (sparse matrices), MLPart [4] (circuit
partitioning) and Parkway [48] (parallel).

Compared to graph partitioning, the performance of local vertex moving suffers from the
presence of large hyperedges with vertices scattered over multiple blocks, since many moves
have zero cut improvement. On coarse levels of the multilevel hierarchy, this problem is
alleviated since hyperedges contain fewer vertices. A second remedy are flow-based refinement
algorithms. For graphs, Sanders and Schulz [43] extract a size-constrained corridor around
the cut and compute a minimum cut within this corridor. If the cut is balanced, an improved
solution was found, otherwise the step is repeated with a smaller corridor. Heuer et al. [29]
extend their approach to hypergraphs by using Lawler networks [34]. The Lawler network of
a hypergraph is a flow network such that minimum S-T hyperedge cuts can be computed
via max-flow.

In their Flow-Balanced-Bipartition algorithm (FBB), Yang and Wong [51] use incremental
maximum flows on the Lawler network to compute ε-balanced hypergraph bipartitions. Liu
and Wong [37] enhance FBB with a most-desirable-minimum-cut heuristic, which is inspired
by the correspondence between S-T minimum cuts and closed node sets due to Picard
and Queyranne [41]. It is similar to the most-balanced-minimum-cut heuristics used in the
multilevel graph partitioning tool KaHiP [43] and KaHyPar-MF [29] as well as the avoid-
augmenting-paths piercing heuristics of FlowCutter [27] and HyperFlowCutter. Li et al. [36]
propose a push-relabel algorithm, which operates directly on the hypergraph. Furthermore
they present heuristics rooted in VLSI design for choosing sets of initial seed vertices S and
T as well as piercing vertices. The performance of their approach in other contexts than
VLSI design remains unclear.

For perfectly balanced graph partitioning, diffusion-based methods have been success-
ful [38]. Furthermore Sanders and Schulz [44] propose an algorithm based on detecting
negative cycles, which is used on top of their evolutionary partitioner. Delling and Wer-
neck [18] provide an efficient implementation of an optimal branch-and-bound algorithm.
Additionally there are metaheuristic approaches such as PROBE [14], as well as multilevel
memetic algorithms due to Benlic and Hao [9, 10, 11].

3 Preliminaries

A hypergraph H = (V,E) consists of a set of n vertices V and a set of m hyperedges E,
where a hyperedge e is a subset of the vertices V . A vertex v ∈ V is incident to hyperedge
e ∈ E if v ∈ e. The vertices incident to e are called the pins of e. We denote the incident
hyperedges of v by I(v) and its degree by deg(v) := |I(v)|. Furthermore let p :=

∑
e∈E |e|

denote the total number of pins in H. All hypergraphs in this paper are unweighted. H can
be represented as a bipartite graph G = (V ∪E, {(v, e) ∈ V ×E | v ∈ e}) with bipartite node
set V ∪E and an edge for every pin. This is also referred to as the star expansion of H. H
is connected if its star expansion is connected. Let V [E′] :=

⋃
e′∈E′ e′ denote the vertex set

induced by the hyperedge set E′. To avoid confusion, we use the terms vertices, hyperedges
and pins for hypergraphs, and we use the terms nodes and edges for graphs.
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3.1 Hypergraph Partitioning
A bipartition of a hypergraph H is a partition (A,B) of the vertices V into two non-empty,
disjoint sets (called blocks). The cut cut(A,B) := {e ∈ E | e ∩A 6= ∅ ∧ e ∩B 6= ∅} consists
of all hyperedges with pins in both blocks. The size of a cut is the number of cut hyperedges
| cut(A,B)|. Let ε ∈ [0, 1). A bipartition (A,B) is ε-balanced if max(|A|, |B|) ≤ d(1 + ε) n

2 e.
The balanced hypergraph bipartitioning problem is to find an ε-balanced bipartition (A,B)
which minimizes the cut. The special case ε = 0 is called perfectly balanced bipartitioning.

3.2 Maximum Flows
A flow network N = (V, E , S, T, c) is a simple symmetric directed graph (V, E) with two
non-empty terminal node sets S, T ( V, S ∩ T = ∅, the source and target node set, as
well as a capacity function c : E 7→ R≥0. Any node that is not a source node and not a
target node is a non-terminal node. A flow in N is a function f : E 7→ R subject to the
capacity constraint f(e) ≤ c(e) for all edges e, flow conservation

∑
(u,v)∈E f((u, v)) = 0 for

all non-terminal nodes v and skew symmetry f((u, v)) = −f((v, u)) for all edges (u, v). The
value of a flow |f | :=

∑
s∈S,(s,u)∈E f((s, u)) is the amount of flow leaving S. The residual

capacity rf (e) := c(e)−f(e) is the additional amount of flow that can pass through e without
violating the capacity constraint. The residual network with respect to f is the directed
graph Nf = (V, Ef ) where Ef := {e ∈ E|rf (e) > 0}. A node v is source-reachable if there is a
path from S to v in Nf , it is target-reachable if there is a path from v to T in Nf . We denote
the source-reachable and target-reachable nodes by Sr and Tr, respectively. An augmenting
path is an S-T path in Nf . The flow f is a maximum flow if |f | is maximal of all possible
flows in N . This is the case iff there is no augmenting path in Nf . An S-T edge cut is a set
of edges whose removal disconnects S and T . The value of a maximum flow equals the weight
of a minimum-weight S-T edge cut [24]. The source-side cut consists of the edges from Sr

to V \ Sr and the target-side cut consists of the edges from Tr to V \ Tr. The bipartition
(Sr,V \ Sr) is induced by the source-side cut and (V \ Tr, Tr) is induced by the target-side
cut. Note that V \ Sr \ Tr is not necessarily empty.

3.3 Hyperedge Cuts via Maximum Flows
Lawler [34] uses maximum flows to compute minimum S-T hyperedge cuts without balance
constraints. On the star expansion, the standard construction to model node capacities as
edge capacities [1] is applied to the hyperedge-nodes. A hyperedge e is expanded into an
in-node ei and an out-node eo joined by a directed bridge edge (ei, eo) with unit capacity.
For every pin u ∈ e there are two directed external edges (u, ei), (eo, u) with infinite capacity.
The transformed graph is called the Lawler network. A minimum S-T edge cut in the Lawler
network consists only of bridge edges, which directly correspond to S-T cut hyperedges in H.

Instead of using the Lawler network, we emulate max-flow algorithms directly on the
hypergraph, using an approach first proposed by Pistorius and Minoux [42]. In the paper it is
formulated for unit weight hyperedges and the Edmonds-Karp flow algorithm [22] but it can
be easily extended to handle weighted hyperedges and emulate any flow algorithm. For every
hyperedge e ∈ E, we store the pins sending and receiving flow via e. In this work, we consider
only unit weight hyperedges and thus need to store only one pin flow-from(e) sending flow
into e, and one pin flow-to(e) receiving flow from e. To keep the description simple, it relies
on this assumption as well. Let u be a fixed vertex. The idea is to enumerate short paths
of the form u → e ∈ I(u)→ v ∈ e that correspond to paths in the residual Lawler network.
This allows us to emulate algorithms for traversing the residual Lawler network directly on
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Sr

TS Tr

(a) Compute minimum S-T cuts.

Tr T

S = Sr

(b) Add Sr to S and choose a pier-
cing vertex.

isolated vertex

(c) Mixed hyperedge (white
square) with incidence relations
(orange) and an isolated vertex
(white disk).

Figure 1 Flow augmentation and computing Sr, Tr in Fig.1a; adding Sr to S and piercing the
source-side cut in Fig.1b. S in blue, Sr \ S in yellow, T in green, Tr \ T in red, V \ Sr, \Tr in white.

the hypergraph, such as Breadth-First-Search or Depth-First-Search, as well as other types of
local operations, e. g., the discharge and push operations in push-relabel algorithms [25]. For
every hyperedge e ∈ I(u) we do the following. If e has no flow, we enumerate all pins v ∈ e.
These paths correspond to (u, ei, eo, v) in the Lawler network. If e has flow and u = flow-to(e)
we also enumerate all pins v ∈ e. However, these paths correspond to (u, eo, ei, v) in the
Lawler network. If e has flow and u = flow-from(e), there is no path in the residual Lawler
network starting at u that uses e. If e has flow and flow-from(e) 6= u 6= flow-to(e), we
enumerate just one path (u, e,flow-from(e)), corresponding to (u, ei,flow-from(e)) in the
Lawler network. If we can push flow from the vertex flow-from(e) to T , we can redirect
the flow that the vertex flow-from(e) sends into e, and instead route flow coming from u to
flow-to(e). Then u becomes the new flow-from(e).

We use this approach in our implementation because it is significantly more efficient than
the Lawler network in practice. In the last case we can avoid scanning all pins of e. In a
preliminary experiment, computing flow directly on the hypergraph yielded a speedup of 15
over using the Lawler network, for a hypergraph with maximum hyperedge size of only 36.
The speedup will be more extreme on hypergraphs with larger hyperedges.

Via the Lawler network and the above emulation approach, the notions of flow, source-
reachable vertices and source-side cuts translate naturally from graphs to hypergraphs. We
use the notation and terminology already known from max-flows in graphs.

4 HyperFlowCutter

In the following we outline the core HyperFlowCutter algorithm, which can only be used
on connected hypergraphs. Then we discuss how to handle disconnected hypergraphs, and
finally show how to improve an existing partition using HyperFlowCutter.

4.1 The Core Algorithm
The idea of the core HyperFlowCutter algorithm is to solve a sequence of incremental S-T
max-flow min-cut problems with monotonically increasing cut size and balance, until an
ε-balanced bipartition is found. They are incremental in the sense that the terminals S, T of
the current flow problem are subsets of the terminals in the next flow problem, which allows
us to reuse previously computed flows.

Given starting terminal sets Sinit, Tinit, we set S := Sinit, T := Tinit First, we compute a
maximum S-T flow. We terminate if the bipartition (Sr, V \ Sr) induced by the source-side
cut or (V \ Tr, Tr) induced by the target-side cut is ε-balanced. Otherwise, we add the
source-reachable vertices Sr to S, if |Sr| ≤ |Tr|, or we add Tr to T if |Sr| > |Tr|. Assume
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|Sr| ≤ |Tr| without loss of generality. Further, we add one or more vertices, called piercing
vertices, to S. This step is called piercing the cut. It ensures that the next flow problem
yields a different bipartition. Subsequently, we augment the previous flow to a max-flow that
respects the new sources. We repeat these steps until an ε-balanced bipartition is found.

Note that after adding Sr to S, the flow is still a maximum S-T flow, even though the
added vertices are now exempt from flow conservation. Using the smaller side allows it to
catch up with the larger side. In particular, this ensures that ε-balance is always possible, as
neither side grows beyond dn/2e vertices.

A hyperedge with pins in both S and T is mixed, all other hyperedges are non-mixed.
We consider two options to find piercing vertices. The preferred option is to choose all pins
e \S \T of a non-mixed hyperedge e in the source-side cut. Adding multiple vertices is faster
in practice. This small detail is a major difference to FBB [51] and is necessary to make the
running time feasible on the used benchmark set. If the source-side cut contains only mixed
hyperedges, we choose a single non-terminal vertex incident to the source-side cut. We prefer
piercing vertices which are not reachable from T , as these avoid augmenting paths in the
next iteration, and thus the cut size does not increase. Avoiding augmenting paths has the
highest precedence, followed by choosing hyperedges over single vertices. Ties are broken
randomly. If the piercing vertices are not reachable from T , we do not recompute Tr and we
skip flow augmentation, but we do recompute Sr.

We experimented with other piercing methods, including trying to avoid mixed hyperedges,
the distance-based piercing of FlowCutter, as well as piercing based on a machine learning
technique named ensemble classification. We discuss ensemble classification again in the
experimental section, although in a different context. None of these approaches yielded
consistent or significant quality improvements over just avoiding augmenting paths and
random tie-breaking, which is why we use only those.

Asymptotic Complexity. The asymptotic running time of Core HyperFlowCutter is O(cp)
where c is the cut size of the ε-balanced partition and p is the number of pins in the
hypergraph. Roughly speaking, the term p stems from performing up to one hypergraph
traversal per flow unit. Here we use that n ≤ p,m ≤ p holds for connected hypergraphs.
Note that the running time is output-sensitive, however the factor c is rather pessimistic
in practice, since the flow algorithm finds many augmenting paths in a single traversal.
The original proof for FlowCutter [27] is applicable, but implementing the piercing step
requires a little care. Selecting piercing vertices takes O(c) per iteration, and we have at
most n ≤ p iterations. Selecting a non-mixed hyperedge for piercing takes O(c) time, by
iterating over the cut hyperedges. Selecting single piercing vertices which avoid augmenting
paths whenever possible, is slightly more involved, when restricted to O(c) time. For every
cut hyperedge e we additionally track its pins that are not reachable from either side. This
can be implemented with a linked list, from which we delete vertices once they get reachable
from a side. An alternative implementation divides the memory storing the pins of e into
three regions: the pins in Sr, in Tr or not reachable. Then we can check, whether e has pins
that are not reachable from either side, and if so pick one. In practice, this adds significantly
to the complexity of the implementation and the piercing step is never critical for running
time, so our implementation simply scans all non-terminal boundary vertices.

Our implementation has O(n+m) memory footprint by transferring and re-engineering
the implementation details from [27]. This is dominated by the O(n+m+ p) memory for
storing the hypergraph.
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Isolated Vertices. We call a vertex v /∈ S ∪ T isolated if every incident hyperedge e ∈ I(v)
is mixed. Figure 1c illustrates an isolated vertex. An isolated vertex cannot be reached
from either S or T via hyperedges not in the cut. Mixed hyperedges remain in both the
source-side cut and the target-side cut. Thus isolated vertices can be moved freely between
the two blocks to increase balance. It never makes sense to permanently add them to a side,
so we exclude them from the piercing step. Furthermore, this needs to be reflected when
checking for ε-balance. For checking the bipartition (Sr, V \ Sr) we assume up to n/2− |Sr|
of the isolated vertices were part of Sr, analogously for Tr.

Maximum Flow Algorithm. In our implementation, we adapt Dinic maximum flow al-
gorithm [21] to operate directly on the hypergraph, as described in Section 3.3. Dinic
algorithm has two alternating phases that are repeated until a maximum flow is found: com-
puting hop distance labels of nodes, using Breadth-First-Search, and finding augmenting paths
using Depth-First-Search, such that the distance labels always increase by one along the path.
We interleave the first phase of Dinic algorithm with the computation of reachable vertices,
in order to avoid duplicate hypergraph traversal. This intrusive optimization is important
for improving the running time of flow augmentation in practice, as the part of the running
time of the flow algorithm that cannot be charged towards computing reachable vertices is
dominated by the part that can be. This is not possible with push-relabel algorithms [25],
which is why they were ruled out after short experimentation. We experimented with the
Edmonds-Karp flow algorithm [22], modified to augment flow along multiple vertex-disjoint
paths in one Breadth-First-Search by propagating vertex labels through the layers. It is
slightly slower than Dinic for plain HyperFlowCutter but unfeasible for the refinement variant
of HyperFlowCutter, since there are fewer vertices to route flow through and thus the amount
of flow augmented per Breadth-First-Search is limited by a few bottleneck vertices.

4.2 Disconnected Hypergraphs
The HyperFlowCutter core algorithm is limited to connected hypergraphs since it computes S-
T -cuts. An obvious approach for handling disconnected hypergraphs is connecting components
artifically. We refrained from this because a component that intersects neither S nor T
would be added to S or T in its entirety. Instead, we run the core algorithm up to ε = 0
on every connected component. The core algorithm computes multiple bipartitions with
different balances. We systematically try all possible ways to combine the bipartitions of the
components into a bipartition of H.

This can be stated as a generalization of the well-known SubsetSum problem. Sub-
setSum is a weakly NP-hard decision problem, which asks whether a subset of an input
multiset of positive integers A = {a1, . . . , az}, the items, sums to an input target sum W .
Finding a bipartition with zero cut is equivalent to SubsetSum, where the items are the
sizes of the components and W is the minimum size of the smaller block. We are interested
in any subset summing to at least W . Let A be sorted in increasing order and let Q(i, S) be
a boolean variable, which is true iff a subset of the first i items sums to S. The standard
pseudo-polynomial time dynamic program (DP) [15, Section 35.5] for SubsetSum computes
solutions for all possible target sums. It fills the DP table Q by iterating through the items
in increasing order and setting Q(i, S) to true if Q(i− 1, S − ai) or Q(i− 1, S) is true. For
filling row i, only row i− 1 is required, so the memory footprint is not quadratic.

We now turn to non-zero cut bipartitions by allowing to split items in different ways and
associating costs with the splits. The core algorithm computes multiple bipartitions Pi on
component Ci, at most one for every possible size of the smaller side. These correspond
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directly to the different ways we can split items. The associated cost is the cut size. We
modify the standard SubsetSum DP to minimize the added cuts instead of finding any
subset, ensuring every component/item is split only one way in a solution, i. e., select a
bipartition, and trying the smaller and larger side of the component bipartition for the
smaller side of the bipartition of H. The worst case asymptotic running time of this DP is
O(

∑z
i=1

∑i−1
j=1 |Pi||Pj |).

We propose some optimizations to make the approach faster in practice. First we solve
standard SubsetSum to check whether H has an ε-balanced bipartition with zero cut. For
the gap-filler optimization, we find the largest g ∈ N such that for every x ∈ [0, g] there
are connected components, whose sizes sum to x. Computing g is possible in O(n) time.
Let C1, . . . , Cz be sorted by increasing size, which takes O(n) time using counting sort [15,
Section 8.2]. Then g =

∑k−1
j=1 |Cj | for the smallest k such that |Ck| > 1 +

∑k−1
j=1 |Cj |. It is

never beneficial to split the components C1, . . . , Ck−1. For most hypergraphs we consider
in our experiments, we do not invoke the DP because, due to gap-filler, we split only the
largest component. For the hypergraphs on which we do invoke the DP, its running time is
negligible. Nonetheless, it is easy to construct a worst case instance, where the quadratic
running time is prohibitive. For a robust algorithm, we propose to sample bipartitions from
every Pi so that the worst case running time falls below some input threshold. The samples
should include balanced bipartitions to guarantee that a balanced partition on H can be
combined from those on H[Ci].

4.3 HyperFlowCutter as a Refinement and Balancing Algorithm
Instead of partitioning from scratch, HyperFlowCutter can be used to refine an existing
balanced bipartition π = (V1, V2), or repair the balance of an unbalanced bipartition. We
fix two blocks of vertices V ′i ⊂ Vi such that |V ′i | ≤ α · n for a relative block-size threshold
parameter α ∈ [0, 0.5]. To obtain V ′i we run Breadth-First-Search from the boundary vertices
on the side of Vi until |Vi| − α · n vertices have been visited. The α · n vertices not visited by
the Breadth-First-Search are set as V ′i . Then we run HyperFlowCutter with S = V ′1 , T = V ′2 .
We call this algorithm ReBaHFC. This idea is equivalent to the way KaHyPar and KaHiP
extract corridors around the cut for their flow-based refinement. Only the semantics of the
size constraint are different to our approach. However, KaHyPar and KaHiP only compute
one flow. If the associated bipartition is not balanced, a smaller flow network is derived.
This is repeated until the bipartition is balanced. ReBaHFC does not need to repeatedly
re-scale flow networks.

In this work we only perform refinement as a post-processing step to a given partition,
whereas KaHyPar and KaHiP employ flow-based refinement on the multilevel hierarchy. In
a future work we hope to integrate HyperFlowCutter based refinement into KaHyPar. Using
ReBaHFC could eliminate the significant overhead of repeated rescaling and improve solution
quality – in particular when the minimum cut is just short of being balanced.

We use the fast multilevel partitioner PaToH [13] to obtain initial partitions. We briefly
discuss properties of PaToH and differences between its presets. For coarsening, PaToH uses
agglomerative clustering, based on the number of common hyperedges divided by cluster
size. For initial partitioning, a portfolio of graph growing, bin packing and neighborhood
expansion algorithms is used. For refinement PaToH uses a pass of FM [23] followed by a
pass of KL [33], each initialized with boundary nodes.

In order to improve cut size, Walshaw [50] proposed to iterate the multilevel scheme by
contracting only nodes from the same block, which maintains the cut size, thus allowing
refinement on coarse levels starting from a relatively high quality partition. The existing
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Table 1 Average and quantile speedups of the hybrid and interleaved execution strategies.

avg min 0.1 0.25 median 0.75 0.9 max

hybrid 2.21 0.4 0.96 1.07 1.29 1.55 2.57 49.66
interleaved 3.88 0.55 1.0 1.14 1.38 1.74 2.66 175.47

partition serves as initial partition on the coarsest level. One iteration is called a V-cycle.
Contraction can be stopped at different stages. The quality preset PaToH-Q, uses 3 full V-
cycles and 3 shorter V-cycles as opposed to the single V-cycle of the default preset PaToH-D.
To accelerate partitioning, both presets temporarily discard hyperedges which have more
pins than some threshold. PaToH-D sets a lower threshold than PaToH-Q.

5 Experimental Evaluation

We implemented HyperFlowCutter and ReBaHFC in C++17 and compiled our code using
g++8 with flags -O3 -mtune=native -march=native. The source code is available on
GitHub1. Experiments are performed sequentially on a cluster of Intel Xeon E5-2670 (Sandy
Bridge) nodes with two Octa-Core processors clocked at 2.6 GHz with 64 GB RAM, 20 MB
L3- and 8×256 KB L2-Cache, using only one core of a node.

We use the benchmark set2 of Heuer and Schlag [30], which has been used to evaluate
KaHyPar. It consists of 488 hypergraphs from four sources: the ISPD98 VLSI Circuit
Benchmark Suite [3] (VLSI, 18 hypergraphs), the DAC 2012 Routability-Driven Placement
Benchmark Suite [39] (DAC, 10), the SuiteSparse Matrix Collection [17] (SPM, 184) and the
international SAT Competition 2014 [8] (Literal, Primal, Dual, 92 hypergraphs each). The
set contains 173 disconnected hypergraphs, in particular all DAC instances are disconnected.
Refer to [30] for more information on how the hypergraphs were derived. Unless mentioned
otherwise, experiments are performed on the full benchmark set.

In the following we describe the configuration of ReBaHFC and plain HyperFlowCutter,
before comparing them to competing algorithms in Section 5.4.

5.1 General HyperFlowCutter Configuration
To improve the solution quality of HyperFlowCutter, we run it q ∈ N times with different
terminal pairs and take the minimum cut. To improve running time we run them simultan-
eously, in an interleaved fashion, as already described in [27], so that the output-sensitive
running time depends on the smallest found ε-balanced cut, not the largest. We always
schedule the terminal pair with the currently smallest cut to progress.

Table 1 shows the average and some quantile speedups when interleaving the execution of
20 random terminal vertex pairs, instead of running them one after another; repeated for 5
random seeds. Because consecutive execution exhibits more memory locality, we also tested
a hybrid strategy where the instance with the currently smallest cut is allowed to make
multiple progress iterations. Interleaving outperforms consecutive execution by a factor of
3.88 on average and also consistently beats hybrid execution. This shows that saving work is
more important than memory locality. These numbers stem from a preliminary experiment

1 Souce code available at https://github.com/kit-algo/HyperFlowCutter
2 Benchmark set and detailed statistics available at https://algo2.iti.kit.edu/schlag/sea2017/
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Figure 2 Improvement ratios 1 − cut(ReBaHFC)
cut(PaToH) of the two ReBaHFC variants and ε = 0, 0.03

compared to their initial partitions. The curves are independent from one another. Higher values
are better. Ratios of zero mean ReBaHFC did not improve the initial partition. We count partitions
with zero cut as an improvement ratio greater than 1, since ReBaHFC does not invoke PaToH
in this case.

on a 139 hypergraph subset of the full benchmark set. The subset contains 78 sparse matrices,
17 Primal, 23 Dual, 6 Literal SAT instances, 15 VLSI and 0 DAC instances. It contains only
connected hypergraphs (all DAC instances are disconnected) in order to measure the impact
of interleaving, not the setup overhead for many small connected components.

5.2 ReBaHFC Configuration
We now discuss the configuration for ReBaHFC. The imbalance for the initial partition is
set to the same value as the desired imbalance ε for the output partition, which proved
superior to larger imbalances on initial partitions. The block-size threshold parameter α
should depend on ε, so we settled on α = 0.4 for ε = 0.03 and α = 0.46 for ε = 0. In the
TR [26] we conduct a thorough parameter study for these choices. We resize the blocks once
and run HyperFlowCutter five times, interleaved as described in the previous section. This
number seems to provide decent quality without increasing running time too much. We
consider two variants: ReBaHFC-D, which uses PaToH with default preset and ReBaHFC-Q,
which uses PaToH with quality preset.

Figure 2 shows how much ReBaHFC improves the initial partition. We run the two
ReBaHFC variants for ε = 0, 0.03 on all hypergraphs of the benchmark set with five different
random seeds and plot the ratio 1− cut(ReBaHFC)

cut(PaToH) per run. Note that there is no comparison
between the curves, and higher values are better for ReBaHFC. Table 2 reports how often
ReBaHFC improves the initial partition, for different hypergraph classes. As expected,
ReBaHFC-Q could improve fewer solutions than ReBaHFC-D since the PaToH baseline is
already better. Furthermore, ReBaHFC has more opportunities for refinement with ε = 0.03,
in particular on the DAC and VLSI instances, whereas it struggles with the Primal and
Literal SAT instances for ε = 0. Note that other refinement algorithms do not always
improve solutions either. In particular, local moving based refinement algorithms struggle
with zero-gain moves in the presence of large hyperedges, and the flow-based refinement in
KaHyPar can yield unbalanced solutions or reproduce the existing solution. These results
show that HyperFlowCutter is a promising candidate for a refinement algorithm integrated
in a multilevel partitioner, which is a direction we hope to investigate in future work.
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Table 2 Overview by hypergraph class, how often ReBaHFC improves the initial partition.

Algorithm ε all SPM Dual Primal Lit DAC VLSI

ReBaHFC-Q 0.00 37.3 39.8 47.4 23.9 33.0 66.0 34.4
ReBaHFC-D 0.00 49.2 58.4 59.8 27.4 41.3 58.0 47.8
ReBaHFC-Q 0.03 52.5 47.2 51.5 50.9 57.8 82.0 76.7
ReBaHFC-D 0.03 64.5 61.5 65.9 56.7 71.1 76.0 86.7

The PaToH runs in the experiments from Section 5.4 use other random seeds than those
used internally in ReBaHFC. This makes sure that stand-alone PaToH can find smaller cuts
than ReBaHFC.

5.3 Plain HyperFlowCutter Configuration

For the experiments on perfectly balanced partitioning we run plain HyperFlowCutter with
up to q = 100 terminal pairs and take the minimum cut. This value was used already for
FlowCutter [27]. With plain HyperFlowCutter we want to push the envelope on solution
quality for ε = 0, regardless of running time – because, as the experiments show, ReBaHFC
already provides a good time-quality trade-off. The most simple method for choosing starting
terminals is to select random vertices. We unsuccessfully experimented with pseudo-peripheral
terminals, i. e. two vertices that are intuitively far away from each other and at the boundary
of the hypergraph. Instead we propose a selection method based on ensemble classification.
Ensemble classification is a technique used in machine learning to build a strong classifier
from multiple weak ones. We compute 10 bipartitions π1, . . . , π10 with PaToH-D. Let
x ≡ y ⇔ πi(x) = πi(y) for all i = 1, . . . , 10 be the equivalence relation, in which two vertices
are equivalent if they are in the same block for all ensemble bipartitions. An equivalence
class is likely in the same block of a good bipartition and is thus suited as a terminal set. We
order the equivalence classes by size in descending order and group two successive classes as
one terminal pair. Generally speaking, the larger equivalence classes make for better terminal
pairs. Based on experiments in the TR [26], we use 3 ensemble terminal pairs and 97 random
vertex pairs. The reported running time for plain HyperFlowCutter always includes the
running time for the 10 PaToH-D runs.

On 42 of the 488 hypergraphs, plain HyperFlowCutter with 100 terminal pairs exceeds
the eight hour time limit. One downside of interleaving executions is that the solution is
only available once all terminal pairs have been processed. Instead of interleaving all 100
executions, we run four waves of 〈1, 5, 14, 80〉 terminal pairs consecutively and interleave
execution within waves. An improved bipartition is available after every wave, so that, even if
the time limit is exceeded, a solution is available as long as the first wave has been completed.
We chose wave sizes, so that completing waves four and three corresponds to 100 and 20
terminal pairs, respectively, as these values were used in [27]. The first wave consists of the
first ensemble terminal pair, the second/third wave consist of 5/14 random terminal pairs
and the fourth wave consists of 78 random as well as two additional ensemble terminal pairs.
There are 438 hypergraphs for which the fourth wave finishes, 35 for which the third but not
the fourth wave finishes, 6 for the second, 1 for the first and there are 8 hypergraphs which
are partitioned with zero cut, using just the subset sum preprocessing.
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Figure 3 Comparison between the algorithms for ε = 0.03. Left: Absolute running times for every
hypergraph and random seed. Right: Performance plot relating the minimum cut per algorithm and
hypergraph to the overall best cut for that hypergraph. Lower values are better.

5.4 Comparing ReBaHFC and HyperFlowCutter against
State-of-the-Art Hypergraph Partitioners

In this section, we compare ReBaHFC and plain HyperFlowCutter against state-of-the-art
hypergraph partitioners. After discussing our comparison methodology, we present results
for two settings, namely ε = 0.03 and ε = 0.

Methodology. We run each partitioner five times with different random seeds and report the
minimum cut. For every run we set a time limit of eight hours. We use the performance plots
introduced in [45] to compare algorithms on a per-hypergraph basis regarding cut size. For
each algorithm and hypergraph these plots contain a performance ratio 1− best/algorithm,
which relates the minimum cut found by any algorithm to the minimum cut found by this
algorithm. The ratios of each algorithm are sorted in increasing order. A ratio of 0 means
that this algorithm found the smallest overall cut, the number of achieved ratios of 0 is
the number of hypergraphs on which this algorithm is the best. Furthermore, algorithm A
dominates algorithm B if the curve of A is strictly below that of B. We use values greater than
1 to indicate that algorithms exceeded the time limit or produced unbalanced solutions. This
is clearly marked in the plots. To include partitions with zero cut, we set the performance
ratio to 0, if the algorithm found the zero cut partition, and 1 otherwise. The performance
plots use a cube root scaled y-axis in order to reduce right skewness [16] and to give a
fine-grained view on the smaller improvements. For comparing algorithms regarding running
time we use a combination of a scatter plot, which shows every measured running time, and
a box plot (0.25, median, 0.75 quantiles, whiskers at most extreme points within distance
1.5 · IQR from the upper/lower quartile). The running time plots use a fifth root scaled y-axis
for a fine-grained view on areas with smaller running times, which contain more data points.

Comparison for 3% imbalance. For ε = 0.03 we compare ReBaHFC against the state-of-
the-art hypergraph partitioning tools KaHyPar-MF (the latest version of KaHyPar with
flow-based refinement) and hMETIS-R (the recursive bisection variant of hMETIS), as well
as PaToH-D (default preset) and PaToH-Q (quality preset). We use the library interface
of PaToH. According to the hMETIS manual, hMETIS-R is preferred over hMETIS-K
(direct k-way) for bipartitions, so we exclude hMETIS-K. These tools were chosen because
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they provide the best solution quality according to [2, 30]. We chose ε = 0.03 as this is a
commonly used value in the literature. Plain HyperFlowCutter is excluded from this part of
the experiments because it is not competitive.

Figure 3 shows the running times and a performance plot on the full benchmark set for
ε = 0.03. In addition to the running time plot, we compare algorithms by the geometric mean
of their running times. We use the geometric mean in order to give instances of different sizes
a comparable influence. KaHyPar-MF finds the smallest cut on 292 hypergraphs, hMETIS-R
on 257, ReBaHFC-Q on 228, ReBaHFC-D on 177, PaToH-Q on 136 and PaToH-D on 75 of
the 488 hypergraphs. While KaHyPar-MF is the best algorithm regarding solution quality,
it is also the slowest, exceeding the time limit on 11 hypergraphs. For the instances on
which ReBaHFC-Q does not find the best solution it provides solution quality similar to
hMETIS-R and only marginally worse than KaHyPar-MF. In particular its solution quality
compared to the best cut deteriorates less than that of hMETIS-R. With 2.23s PaToH-Q
is one order of magnitude faster than KaHyPar (34.1s) and hMETIS-R (20.1s), whereas
ReBaHFC-Q (2.32s) is only slightly slower than PaToH-Q. Furthermore ReBaHFC-D (0.68s)
finds more of the best solutions than PaToH-Q at a running time between PaToH-D (0.5s) and
PaToH-Q. Thus ReBaHFC-Q and ReBaHFC-D provide new Pareto points in the time-quality
trade-off. In the TR [26], we also report performance plots for the different hypergraph
classes of the benchmark set. ReBaHFC is particularly good on the DAC and SPM instances.
There are hypergraphs on which ReBaHFC is faster than PaToH. These are disconnected
hypergraphs, for which ReBaHFC invokes PaToH on smaller sub-hypergraphs, due to the
gap-filler optimization and the SubsetSum preprocessing described in Section 4.2.

Comparison for perfectly balanced partitioning. Even though the setting ε = 0 has
received no attention in hypergraph partitioning and only some attention in graph partition-
ing [44, 38, 14, 9, 10, 11, 18], we consider it here. Previous studies on perfectly balanced
partitioning for graphs have focused on high quality solutions through running time intensive
metaheuristics such as evolutionary algorithms [44, 10, 9] or tabu search [11] and even
an exact branch-and-bound algorithm [18]. Therefore, we include KaHyPar-EVO [6] (the
evolutionary algorithm of KaHyPar) as well as plain HyperFlowCutter in addition to the
already considered algorithms. We exclude hMETIS-R from this comparison since it rejects
ε < 0.002 for bipartitions.
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We include plain HyperFlowCutter with up to 100 terminal pairs as described in Section 5.1
and denote this configuration as HFC-100. The evolutionary algorithm KaHyPar-EVO
generates, manages and improves a pool of solutions until a time limit is exceeded, and
outputs the minimum cut out of all generated solutions. We set the instance-wise time
limit to the maximum of the running times of HFC-100 and KaHyPar-MF to evaluate
whether KaHyPar-EVO can yield better solution quality when given the same running time
as HFC-100. As opposed to the original paper, we configure KaHyPar-EVO to use flow-based
refinement, which further improves solution quality.

KaHyPar-MF is unable to find any balanced bipartition on 4 hypergraps, whereas
KaHyPar-EVO always finds one. Furthermore, KaHyPar-MF exceeds the time limit on 7
hypergraphs and KaHyPar-EVO on an additional 17, without reporting intermediate solutions.
Figure 4 shows the running times and a performance plot of all tested algorithms. HFC-100
produces the best solutions on 245 hypergraphs, followed by ReBaHFC-Q (230), ReBaHFC-D
(122), PaToH-Q (121), PaToH-D (40), KaHyPar-EVO (28) and finally KaHyPar-MF (15).
This shows that with exorbitant running time, HFC-100 produces high quality solutions for
ε = 0. However the time-quality trade-off is clearly in favor of ReBaHFC-Q, especially since
the solution quality of the latter is closer to the best cut for the instances on which it does not
find the best cut, as opposed to HFC-100. PaToH is better than KaHyPar for ε = 0 because
it includes a KL [33] refinement pass as opposed to KaHyPar which only uses FM [23].

6 Conclusion

In this paper we propose and evaluate HyperFlowCutter, a hypergraph bipartitioning
algorithm based on maximum flow computations. It enumerates partitions with increasing
balance up to perfect balance. We also propose and evaluate ReBaHFC, a refinement
algorithm based on HyperFlowCutter.

In our experimental evaluation on a large set of hypergraphs, we show that while ReBaHFC
is unable to beat the state-of-the-art hypergraph partitioners in terms of quality, it is still
close in terms of quality and at the same time an order of magnitude faster. Thus, it offers a
new trade-off between quality and running time. For the special case of perfectly balanced
bipartitioning, the plain HyperFlowCutter algorithm, while being slow, computes the highest-
quality solutions. In this setting, ReBaHFC not only still beats all other partitioners but is
also much faster.

In future work, it would be interesting to integrate the refinement step of ReBaHFC into
multilevel partitioners to see if it can further improve their solution quality.
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Abstract
The area of parameterized approximation seeks to combine approximation and parameterized
algorithms to obtain, e.g., (1 + ε)-approximations in f(k, ε)nO(1) time where k is some parameter of
the input. The goal is to overcome lower bounds from either of the areas. We obtain the following
results on parameterized approximability:

In the maximum independent set of rectangles problem (misr) we are given a collection of
n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset
of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx,
ESA’05]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook
and Chuzhoy, SODA’09] and it admits a QPTAS [Adamaszek and Wiese, FOCS’13; Chuzhoy
and Ene, FOCS’16]. Here we present a parameterized approximation scheme (PAS) for misr, i.e.
an algorithm that, for any given constant ε > 0 and integer k > 0, in time f(k, ε)ng(ε), either
outputs a solution of size at least k/(1 + ε), or declares that the optimum solution has size less
than k.
In the (2-dimensional) geometric knapsack problem (2dk) we are given an axis-aligned square
knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate
a maximum cardinality subset of items into the knapsack so that the selected items do not overlap.
In the version of 2dk with rotations (2dkr), we are allowed to rotate items by 90 degrees. Both
variants are NP-hard, and the best-known polynomial-time approximation factor is 2 + ε [Jansen
and Zhang, SODA’04]. These problems admit a QPTAS for polynomially bounded item sizes
[Adamaszek and Wiese, SODA’15]. We show that both variants are W[1]-hard. Furthermore, we
present a PAS for 2dkr.

For all considered problems, getting time f(k, ε)nO(1), rather than f(k, ε)ng(ε), would give FPT
time f ′(k)nO(1) exact algorithms by setting ε = 1/(k + 1), contradicting W[1]-hardness. Instead, for
each fixed ε > 0, our PASs give (1 + ε)-approximate solutions in FPT time.

For both misr and 2dkr our techniques also give rise to preprocessing algorithms that take ng(ε)

time and return a subset of at most kg(ε) rectangles/items that contains a solution of size at least
k/(1 + ε) if a solution of size k exists. This is a special case of the recently introduced notion of a
polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC’17].
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1 Introduction

Approximation algorithms and parameterized algorithms are two well-established ways to deal
with NP-hard problems. An α-approximation for an optimization problem is a polynomial-
time algorithm that computes a feasible solution whose cost is within a factor α (that might
be a function of the input size n) of the optimal cost. In particular, a polynomial-time
approximation scheme (PTAS) is a (1 + ε)-approximation algorithm running in time ng(ε),
where ε > 0 is a given constant and g is some computable function. In parameterized
algorithms we identify a parameter k of the input, that we informally assume to be much
smaller than n. The goal here is to solve the problem optimally in fixed-parameter tractable
(FPT) time f(k)nO(1), where f is some computable function. Recently, researchers started
to combine the two notions (see, e.g., the survey by Marx [34]). The idea is to design
approximation algorithms that run in FPT (rather than polynomial) time, e.g., to get (1 + ε)-
approximate solutions in time f(k, ε)nO(1). In this paper we continue this line of research on
parameterized approximation, and apply it to two fundamental rectangle packing problems.

1.1 Our results and techniques
Our focus is on parameterized approximation algorithms. Unfortunately, as observed by
Marx [34], when the parameter k is the desired solution size, computing (1 + ε)-approximate
solutions in time f(k, ε)nO(1) implies fixed-parameter tractability. Indeed, setting ε = 1/(k+1)
guarantees to find an optimal solution when that value equals to k ∈ N and we get time
f(k, 1/(k + 1))nO(1) = f ′(k)nO(1). Since the considered problems are W[1]-hard (in part,
this is established in our work), they are unlikely to be FPT and similarly unlikely to have
such nice approximation schemes.

Instead, we construct algorithms (for two maximization problems) that, given ε > 0 and
an integer k, take time f(k, ε)ng(ε) and either return a solution of size at least k/(1 + ε)
or declare that the optimum is less than k. We call such an algorithm a parameterized
approximation scheme (PAS). Note that if we run such an algorithm for each k′ ≤ k then
we can guarantee that we compute a solution with cardinality at least min{k,OPT}/(1 + ε)
where OPT denotes the size of the optimal solution. So intuitively, for each ε > 0, we have
an FPT-algorithm for getting a (1 + ε)-approximate solution.

In this paper we consider the following two geometric packing problems, and design PASs
for them.

Maximum Independent Set of Rectangles. In the maximum independent set of rectangles
problem (misr) we are given a set of n axis-parallel rectangles R = {R1, . . . , Rn} in the
two-dimensional plane, where Ri is the open set of points (x(1)

i , x
(2)
i )× (y(1)

i , y
(2)
i ). A feasible

solution is a subset of rectangles R′ ⊆ R such that for any two rectangles R,R′ ∈ R′ we
have R ∩ R′ = ∅. Our objective is to find a feasible solution of maximum cardinality |R′|.
W.l.o.g. we assume that x(1)

i , y
(1)
i , x

(2)
i , y

(2)
i ∈ {0, . . . , 2n− 1} for each Ri ∈ R (see e.g. [1]).

misr is very well-studied in the area of approximation algorithms. The problem is
known to be NP-hard [24], and the current best polynomial-time approximation factor is
O(log logn) for the cardinality case [11] (addressed in this paper), and O(logn/ log logn) for
the natural generalization with rectangle weights [12]. The cardinality case also admits a

https://arxiv.org/abs/1906.10982
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(1 + ε)-approximation with a running time of npoly(log log(n/ε)) [15] and there is a (slower)
QPTAS known for the weighted case [1]. The problem is also known to be W[1]-hard
w.r.t. the number k of rectangles in the solution [33], and thus unlikely to be solvable in
FPT time f(k)nO(1).

In this paper we achieve the following main result:

I Theorem 1. There is a PAS for misr with running time kO(k/ε8)nO(1/ε8).

In order to achieve the above result, we combine several ideas. Our starting point is a
polynomial-time construction of a k × k grid such that each rectangle in the input contains
some crossing point of this grid (or we find a solution of size k directly). By applying (in a
non-trivial way) a result by Frederickson [21] on planar graphs, and losing a small factor in
the approximation, we define a decomposition of our grid into a collection of disjoint groups
of cells. Each such group defines an independent instance of the problem, consisting of the
rectangles strictly contained in the considered group of cells. Furthermore, we guarantee
that each group spans only a constant number Oε(1) of rectangles of the optimum solution.
Therefore in FPT time we can guess the correct decomposition, and solve each corresponding
subproblem in nOε(1) time. We remark that our approach deviates substantially from prior
work, and might be useful for other related problems.

An adaptation of our construction also leads to the following (1 + ε)-approximative
kernelization.

I Theorem 2. There is an algorithm for misr that, given k ∈ N, computes in time nO(1/ε8) a
subset of the input rectangles of size kO(1/ε8) that contains a solution of size at least k/(1 +ε),
assuming that the input instance admits a solution of size at least k.

Similarly as for a PAS, if we run the above algorithm for each k′ ≤ k we obtain a set of
size kO(1/ε8) that contains a solution of size at least min{k,OPT}/(1 + ε). Observe that
any c-approximate solution on the obtained set of rectangles is also a feasible, and c(1 + ε)-
approximate, solution for the original instance if OPT ≤ k and otherwise has size at least
k/(c(1 + ε)). Thus, our result is a special case of a polynomial-size approximate kernelization
scheme (PSAKS) as defined in [32].1

2-Dimensional Geometric Knapsack. In the (2-Dimensional) Geometric Knapsack problem
(2dk) we are given a square knapsack [0, N ]× [0, N ], N ∈ N, and a set of n items I, where
each item i ∈ I is an open rectangle (0, wi)× (0, hi), N ≥ wi, hi ∈ N. The goal is to find a
feasible packing of a subset I ′ ⊆ I of the items of maximum cardinality |I ′|. Such packing
maps each item i ∈ I ′ into a new translated rectangle (ai, ai + wi)× (bi, bi + hi)2, so that
the translated rectangles are fully contained in the knapsack and do not overlap with each
other. Here we also consider a variant of 2dk with rotations (2dkr) where we can rotate
each input rectangle by 90 degrees.

Both 2dk and 2dkr are NP-hard [31] and admit a polynomial-time (2+ε)-approximation
for any constant ε > 0 [28]. These problems admit a QPTAS if N = nO(1) [2]. Somewhat
surprisingly, these problems are not known to be W[1]-hard when parameterized by the
output number k of items. Note that showing W[1]-hardness is important in our case to
motivate the search for a PAS.

1 The definition due to Lokshtanov et al. [32] is not restricted to generating a small subset of the input
and a dedicated solution lifting algorithm may be used.

2 Intuitively, i is shifted by ai to the right and by bi to the top.
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I Theorem 3. 2dk and 2dkr are W[1]-hard when parameterized by k.

The result is proved by parameterized reductions from a variant of the W[1]-hard subset
sum problem, where we need to determine whether a set of m positive integers contains a
k-tuple of numbers with sum equal to some given value t. The difficulty for reductions to
2dk or 2dkr is of course that rectangles may be freely selected and placed (and possibly
rotated) to get a feasible packing.

We complement the W[1]-hardness result by giving a PAS for the case with rota-
tions (2dkr) and a corresponding kernelization procedure like in Theorem 2 (which also
yields a PSAKS).

I Theorem 4. For 2dkr there is a PAS with running time kO(k/ε)nO(1/ε3) and an algorithm
that, given k ∈ N, computes in time nO(1/ε3) a subset of the input items of size kO(1/ε) that
contains a solution of size at least k/(1 + ε), assuming that the input instance admits a
solution of size at least k.

The above result is based on a simple combination of the following two (non-trivial) building
blocks: First, we show that, by losing a fraction ε of the items of a given solution of size
k, it is possible to free a vertical strip of width N/kOε(1) (unless the problem can be solved
trivially). This is achieved by first sparsifying the solution using the above mentioned result
by Frederickson [21]. If this is not sufficient we construct a vertical chain of relatively wide
and tall rectangles that split the instance into a left and right side. Then we design a resource
augmentation algorithm, however in an FPT sense: we can compute in FPT time a packing
of cardinality k if we are allowed to use a knapsack where one side is enlarged by a factor
1 + 1/kOε(1). Note that in typical resource augmentation results the packing constraint is
relaxed by a constant factor while here this amount is controlled by our parameter.

1.2 Related work
One of the first fruitful connections between parameterized complexity and approximability
was observed independently by Bazgan [3] and Cesati and Trevisan [10]: They showed that
EPTASs, i.e., (1 + ε)-approximation algorithms with f(ε)nO(1) time, imply fixed-parameter
tractability for the decision version. Thus, proofs for W[1]-hardness of the decision version
became a strong tool for ruling out improvements of PTASs, with running time ng(ε), to
EPTASs. More recently, Boucher et al. [8] improved this approach by directly proving
W[1]-hardness of obtaining a (1 + ε)-approximation, thus bypassing the requirement of a
W[1]-hard decision version (see also [17]).

The systematic study of parameterized approximation as a field was initiated independ-
ently by three separate publications [9, 13, 19]. A very good introduction to the area
including key definitions as well as a survey of earlier results that fit into the picture was
given by Marx [34]. In particular, Marx also defined a so-called standard FPT-approximation
algorithm (with performance ratio c) that, given input (x, k) will run for f(k)|x|O(1) time
and return (say, for a maximization problem) a solution of value at least k/c if the optimum
is at least k. As mentioned earlier, Marx pointed out that a standard FPT-approximation
scheme that finds a solution of value at least k/(1 + ε) in time f(k, ε)|x|O(1) if OPT ≥ k

is not interesting to study: By setting ε = 1/(k + 1) we can decide the decision problem
“OPT ≥ k?” in FPT time. Thus, such a scheme is not helpful if the decision problem is
W[1]-hard and therefore unlikely to have an FPT-algorithm. Nevertheless, PASs can be
useful in this case, as they imply standard FPT-approximation algorithms with ratio 1 + ε

for each fixed ε > 0 despite W[1]-hardness.
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Figure 1 (Left) Dashed lines define the grid G. (Middle) Rectangles from an optimal solution
and the edges that form the graph G1. Note that in G1 there is no edge representing the dotted
connection since otherwise the graph would not be planar anymore. (Right) The graph G2, that
captures the missing connections of G1.

A central goal of parameterized approximation is to settle the status of problems like dom-
inating set or clique, which are hard to approximate and also parameterized intractable.
Recently, Chen and Lin [14] made important progress by showing that dominating set
admits no constant-factor approximation with running time f(k)nO(1) unless FPT = W[1].
Generally, for problems without exact FPT-algorithms, the goal is to find out whether
one can beat inapproximability bounds by allowing FPT-time in some parameter; see
e.g. [23, 4, 5, 6, 30, 29, 16, 22, 7]).

For the special case of misr where all input objects are squares a PTAS is known [20] but
there can be no EPTAS [33]. Recently, Galvez et al. [25] found polynomial-time algorithms for
2dk and 2dkr with approximation ratio smaller than 2 (also for the weighted case). For the
special case that all input objects are squares there is a PTAS [27] and even an EPTAS [26].

2 A Parameterized Approximation Scheme for MISR

In this section we present a PAS and an approximate kernelization for misr. We start by
showing that there exists an almost optimal solution for the problem with some helpful
structural properties (Sections 2.1 and 2.2). The results are then put together in Section 2.3.

2.1 Definition of the grid
We try to construct a non-uniform grid with k rows and k columns such that each input
rectangle overlaps a corner of this grid (see Figure 1). To this end, we want to compute k− 1
vertical and k − 1 horizontal lines such that each input rectangle intersects one line from
each set. There are instances in which our routine fails to construct such a grid (and in fact
such a grid might not even exist). For such instances, we directly find a feasible solution
with k rectangles and we are done.

I Lemma 5. There is a polynomial time algorithm that either computes a set of at most
k − 1 vertical lines LV with x-coordinates `V1 , . . . , `Vk−1 such that each input rectangle is
crossed by one line in LV or computes a feasible solution with k rectangles. A symmetric
statement holds for an algorithm computing a set of at most k − 1 horizontal lines LH with
y-coordinates `H1 , . . . , `Hk−1.
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Proof. Let `V0 := 0. Assume inductively that we defined the x-coordinates `V0 , `V1 , . . . , `Vk′ such
that `V1 , . . . , `Vk′ are the x-coordinates of the first k′ constructed vertical lines. We define the x-
coordinate of the (k′+1)-th vertical line by `Vk′+1 := min

Ri∈R:x(1)
i
≥`V

k′
x

(2)
i −1/2. We continue

with this construction until we reach an iteration k∗ such that {Ri ∈ R : x(1)
i ≥ `Vk∗−1} = ∅.

If k∗ ≤ k then we constructed at most k−1 lines such that each input rectangle is intersected
by one of these lines. Otherwise, assume that k∗ > k. Then for each iteration k′ ∈ {1, . . . , k}
we can find a rectangle Ri(k′) := arg min

Ri∈R:x(1)
i
≥`V

k′−1
x

(2)
i . By construction, using the fact

that all coordinates are integer, for any two such rectangles Ri(k′), Ri(k′′) with k′ 6= k′′ we
have that (x(1)

i(k′), x
(2)
i(k′))∩(x(1)

i(k′′), x
(2)
i(k′′)) = ∅. Hence, Ri(k′) and Ri(k′′) are disjoint. Therefore,

the rectangles Ri(1), . . . , Ri(k) are pairwise disjoint and thus form a feasible solution.
The algorithm for constructing the horizontal lines works symmetrically. J

We apply the algorithms due to Lemma 5. If one of them finds a set of k independent
rectangles then we output them and we are done. Otherwise, we obtain the sets LV and
LH . For convenience, we define two more vertical lines with x-coordinates `V0 := 0 and
`V|LV |+1 = 2n− 1, resp., and similarly two more horizontal lines with y-coordinates `H0 = 0
and `H|LH |+1 = 2n−1, resp.. We denote by G the set of grid cells formed by these lines and the
lines in LV ∪LH : for any two consecutive vertices lines (i.e., defined via x-coordinates `Vj , `Vj+1
with j ∈ {0, . . . , |LV |}) and two consecutive horizontal grid lines (defined via y-coordinates
`Hj′ , `

H
j′+1 with j′ ∈ {0, . . . , |LH |}) we obtain a grid cell whose corners are the intersection of

these respective lines. We interpret the grid cells as closed sets (i.e., two adjacent grid cells
intersect on their boundary).

I Proposition 6. Each input rectangle Ri contains a corner of a grid cell of G. If a rectangle
R intersects a grid cell g then it must contain a corner of g.

2.2 Groups of rectangles
Let R∗ denote a solution to the given instance with |R∗| = k. We prove that there is a special
solution R′ ⊆ R∗ of large cardinality that we can partition into s ≤ k groups R′1∪̇ . . . ∪̇R′s
such that each group has constant size O(1/ε8) and no grid cell can be intersected by
rectangles from different groups. The remainder of this section is devoted to proving the
following lemma.

I Lemma 7. There is a constant c = O(1/ε8) such that there exists a solution R′ ⊆ R∗
with |R′| ≥ (1− ε)|R∗| and a partition R′ = R′1∪̇ . . . ∪̇R′s with s ≤ k and |R′j | ≤ c for each
j and such that if any two rectangles in R′ intersect the same grid cell g ∈ G then they are
contained in the same set R′j.

Given the solution R∗ we construct a planar graph G1 = (V1, E1). In V1 we have one vertex
vi for each rectangle Ri ∈ R∗. We connect two vertices vi, vi′ by an edge if and only if there
is a grid cell g ∈ G such that Ri and Ri′ intersect g and

Ri and Ri′ are crossed by the same horizontal or vertical line in LV ∪ LH or if
Ri and Ri′ contain the top left and the bottom right corner of g, resp.

Note that we do not introduce an edge if Ri and Ri′ contain the bottom left and the top
right corner of g, resp. (see Fig. 1): this way we preserve the planarity of the resulting graph,
however we will have to deal with the missing connections in a later stage.

I Lemma 8. The graph G1 is planar.
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Next, we use a result by Frederickson [21] to obtain a subgraph G′1 of G1 in which each
connected component has constant size.
I Lemma 9. Let ε′ > 0. There exists a value c′ = O(1/(ε′)2) such that the following holds:
let G = (V,E) be a planar graph. There exists a set of vertices V ′ ⊆ V with |V ′| ≥ (1− ε′)|V |
such that in the graph G′ := G[V ′] each connected component has at most c′ vertices.

Let G′1 be the graph obtained when applying Lemma 9 to G1 with ε′ := ε/2 and let
c1 = O((1/ε)2) be the respective value c′. Now we would like to claim that if two rectangles
Ri, Ri′ intersect the same grid cell g ∈ G then vi, vi′ are in the same component of G′1.
Unfortunately, this is not true. It might be that there is a grid cell g ∈ G such that Ri
and Ri′ contain the bottom left corner and the top right corner of g, resp., and that vi
and vi′ are in different components of G′1. We fix this in a second step. We define a graph
G2 = (V2, E2). In V2 we have one vertex for each connected component in G′1. We connect
two vertices wi, wi′ ∈ V2 by an edge if and only if there are two rectangles Ri, Ri′ such
that their corresponding vertices vi, vi′ in V1 belong to the connected components of G′1
represented by wi and wi′ , resp., and there is a grid cell g whose bottom left and top right
corner are contained in Ri and Ri′ , resp.
I Lemma 10. The graph G2 is planar.

Similarly as above, we apply Lemma 9 to G2 with ε′ := ε
2c1

and let c2 = O((1/ε′)2) =
O(1/ε6) denote the corresponding value of c′. Denote by G′2 the resulting graph. We define
a group R′q for each connected component Cq of V ′2 . The set R′q contains all rectangles Ri
such that vi is contained in a connected component Cj of G′1 such that wj ∈ Cq. We define
R′ := ∪̇qR′q.
I Lemma 11. Let Ri, Ri′ ∈ R′ be rectangles that intersect the same grid cell g ∈ G. Then
there is a set R′q such that {Ri, Ri′} ⊆ R′q.
Proof. Assume that in G1 there is an edge connecting vi, vi′ . Then the latter vertices are in
the same connected component Cj′ of G′1 and thus they are in the same group R′q. Otherwise,
if there is no edge connecting vi, vi′ in G1 then Ri and Ri′ contain the bottom left and top
right corners of g, resp. Assume that vi and vi′ are contained in the connected components
Cj and Cj′ of G′1, resp. Then wj , wj′ ∈ V ′2 , {wj , wj′} ∈ E2 and wj , wj′ are in the same
connected component of V ′2 . Hence, Ri, Ri′ are in the same group R′q. J

It remains to prove that each group R′q has constant size and that |R′| ≥ (1− ε)|R∗|.
I Lemma 12. There is a constant c = O(1/ε8) such that for each group R′q it holds
that |R′q| ≤ c.
Proof. For each group R′q there is a connected component Cq of G′2 such that R′q contains
all rectangles Ri such that vi is contained in a connected component Cj of G′1 and wj ∈ Cq.
Each connected component of G′1 contains at most c1 = O(1/ε2) vertices of V ′1 and each
component of G′2 contains at most c2 = O(1/ε6) vertices of V ′2 . Hence, |R′q| ≤ c1 · c2 =: c
and c = O((1/ε2)(1/ε6)) = O(1/ε8). J

I Lemma 13. We have that |R′| ≥ (1− ε)|R∗|.
Proof. At most ε

2 · |V1| vertices of G1 are deleted when we construct G′1 from G1. Each
vertex in G′1 belongs to one connected component Cj , represented by a vertex wj ∈ G2. At
most ε

2c1
|V2| vertices are deleted when we construct G′2 from G2. These vertices represent

at most c1 · ε
2c1
|V2| ≤ ε

2 |V
′

1 | ≤ ε
2 |V 1| vertices in G1 (and each vertex in G1 represents one

rectangle in R∗). Therefore, |R′| ≥ |R∗| − ε
2 · |V1| − ε

2 · |V1| = (1− ε)|R∗|. J

This completes the proof of Lemma 7.
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2.3 The algorithm
In our algorithm, we compute a solution that is at least as good as the solution R′ as given
by Lemma 7. For each group R′j we define by Gj the set of grid cells that are intersected by
at least one rectangle from R′j . Since in R′ each grid cell can be intersected by rectangles
of only one group, we have that Gj ∩ Gq = ∅ if j 6= q. We want to guess the sets Gj . The
next lemma shows that the number of possibilities for one of those sets is polynomially
bounded in k.

I Lemma 14. Each Gj belongs to a set G of cardinality at most kO(1/ε8) that can be computed
in polynomial time.

Proof. The cells Gj intersected by R′j are the union of all cells G(R) with R ∈ R′j where
for each rectangle R the set G(R) denotes the cells intersected by R. Each set G(R) can be
specified by indicating the 4 corner cells of G(R), i.e., top-left, top-right, bottom-left, and
bottom-right corner. Hence there are at most k4 choices for each such R. The claim follows
since |R′j | = O(1/ε8). J

We hence achieve the main result of this section.

Proof of Theorem 1. Using Lemma 14, we can guess by exhaustive enumeration all the sets
Gj in time kO(k/ε8). We obtain one independent problem for each value j ∈ {1, . . . , s} which
consists of all input rectangles that are contained in Gj . For this subproblem, it suffices to
compute a solution with at least |R′j | rectangles. Since |R′j | ≤ c = O(1/ε8) we can do this in
time nO(1/ε8) by complete enumeration. Thus, we solve each of the subproblems and output
the union of the computed solutions. The overall running time is as in the claim. If all the
computed solutions have size less than (1− ε)k, this implies that the optimum solution is
smaller than k. Otherwise we obtain a solution of size at least (1− ε)k ≥ k/(1 + 2ε) and the
claim follows by redefining ε appropriately. J

Essentially the same construction as above also gives an approximate kernelization
algorithm as claimed in Theorem 2, see the full version of this work for details.

3 A Parameterized Approximation Scheme for 2DKR

In this section we present a PAS and an approximate kernelization for 2dkr. W.l.o.g.,
we assume that k ≥ Ω(1/ε3), since otherwise we can optimally solve the problem in time
nO(1/ε3) by exhaustive enumeration. In Section 3.1 we show that, if a solution of size k exists,
there is a solution of size at least (1− ε)k in which no item intersects some horizontal strip
(0, N) × (0, (1/k)O(1/ε)N) at the bottom of the knapsack. In Section 3.2 we show that, if
there exists a solution of size k′ that does not use the mentioned strip, then we can compute
in polynomial time a set of size (k′)O(1/ε) that contains a solution of size k′ (where we are
allowed to use the full knapsack). Combining these two results gives Theorem 4.

3.1 Freeing a Horizontal Strip
In this section, we prove the following lemma that shows the existence of a near-optimal
solution that leaves a sufficiently tall empty horizontal strip in the knapsack (assuming
k ≥ Ω(1/ε3)). W.l.o.g., ε ≤ 1. Since we can rotate the items by 90 degrees, we can assume
w.l.o.g. that wi ≥ hi for each item i ∈ I.
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i1

i2

i3

i4

Figure 2 The left figure shows the arcs of the graph G. Each item corresponds to one vertex of
the graph. The right figure shows the items i1, . . . , iK and the deletion rectangles between them.

I Lemma 15. Let k ∈ N, k = Ω(1/ε3), and ε > 0. Given an instance of 2dkr with a
solution of size k, there exists a solution of size at least (1 − ε)k in which no packed item
intersects (0, N)× (0, (1/k)cN), for a proper constant c = O(1/ε).

We classify items into large and thin items. Via a shifting argument, we get the following
lemma.

I Lemma 16. There is an integer B ∈ {1, . . . , d8/εe} such that by losing a factor of 1 + ε in
the objective we can assume that the input items are partitioned into

large items L such that hi ≥ (1/k)BN (and thus also wi ≥ (1/k)BN) for each item i ∈ L,
thin items T such that hi < (1/k)B+2N for each item i ∈ T .

Let B be the integer due to Lemma 16 and we work with the resulting item classification.
If |T | ≥ k then we can create a solution of size k satisfying the claim of Lemma 15 by simply
stacking k thin items on top of each other: any k thin items have a total height of at most
k · (1/k)B+2N ≤ (1/k)2N . Thus, from now on assume that |T | < k.

Sparsifying large items. Our strategy is now to delete some of the large items and move
the remaining items. This will allow us to free the area [0, N ] × [0, (1/k)O(1/ε)N ] of the
knapsack. Denote by OPT′ the almost optimal solution obtained by applying Lemma 16.
We remove the items in OPT′T := OPT′ ∩ T temporarily; we will add them back later.

We construct a directed graph G = (V,A) where we have one vertex vi ∈ V for each
item i ∈ OPT′L := OPT′ ∩ L. We connect two vertices vi, vi′ by an arc a = (vi, vi′) if and
only if we can draw a vertical line segment of length at most (1/k)BN that connects item i

with item i′ without intersecting any other item such that i′ lies above i, i.e., the bottom
coordinate of i′ is at least as large as the top coordinate of i, see Figure 2 for a sketch. We
obtain the following proposition since for each edge we can draw a vertical line segment and
these segments do not intersect each other.

I Proposition 17. The graph G is planar.

Next, we apply Lemma 9 to G with ε′ := ε. Let G′ = (V ′, A′) be the resulting graph. We
remove from OPT′L all items i ∈ V \ V ′ and denote by OPT′′L the resulting solution. We
push up all items in OPT′′L as much as possible. If now the strip (0, N)× (0, (1/k)BN) is
not intersected by any item then we can place all the items in T into the remaining space.
Their total height can be at most k · (1/k)B+2N ≤ (1/k)B+1N and thus we can leave a strip
of height (1/k)BN − (1/k)B+1N ≥ (1/k)O(1/ε)N and width N empty. This completes the
proof of Lemma 15 for this case.
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Assume next that the strip (0, N)×(0, (1/k)BN) is intersected by some item: the following
lemma implies that there is a set of c′ = O(1/ε2) vertices whose items intuitively connect
the top and the bottom edge of the knapsack.

I Lemma 18. Assume that in OPT′′L there is an item i1 intersecting (0, N)× (0, (1/k)BN).
Then G contains a path vi1 , vi2 , . . . , viK with K ≤ c′ = O(1/ε2), such that the distance
between iK and the top edge of the knapsack is less than (1/k)BN .

Proof. Let C denote all vertices v in G′ such that there is a directed path from vi1 to v in
G′. The vertices in C are contained in the connected component C ′ in G′ that contains vi1 .
Note that |C| ≤ |C ′| ≤ c′. We claim that C must contain a vertex vj whose corresponding
item j is closer than (1/k)BN to the top edge of the knapsack. Otherwise, we would have
been able to push up all items corresponding to vertices in C by (1/k)BN units: first we
could have pushed up all items such that their corresponding vertices have no outgoing
arc, then all items such that their vertices have outgoing arcs pointing at the former set of
vertices, and so on. By definition of C, there must be a path connecting vi1 with vj . This
path vi1 , vi2 , . . . , viK = vj contains only vertices in C and hence its length is bounded by c′.
The claim follows. J

Our goal is now to remove the items i1, . . . , iK due to Lemma 18 and O(K) = O(1/ε2)
more large items from OPT′′L. Since we can assume that k ≥ Ω(1/ε3) this will lose only
a factor of 1 + O(ε) in the objective. To this end we define K + 1 deletion rectangles, see
Figure 2. We place one such rectangle R` between any two consecutive items i`, i`+1. The
height of R` equals the vertical distance between i` and i`+1 (at most (1/k)BN) and the
width of R` equals (1/k)BN . Since vi` , vi`+1 are connected by an arc in G′, we can draw a
vertical line segment connecting i` with i`+1. We place R` such that it is intersected by this
line segment. Note that for the horizontal position of R` there are still several possibilities
and we choose one arbitrarily. Finally, we place a special deletion rectangle between the item
iK and the top edge of the knapsack and another special deletion rectangle between the item
i1 and the bottom edge of the knapsack. The heights of these rectangles equal the distance of
i1 and iK with the bottom and top edge of the knapsack, resp. (which is at most (1/k)BN),
and their widths equal (1/k)BN . They are placed such that they touch the bottom edge of
i1 and the top edge of iK , resp.

I Lemma 19. Each deletion rectangle can intersect at most 4 large items in its interior.
Hence, there can be only O(K) ≤ O(c′) = O(1/ε2) large items intersecting a deletion rectangle
in their interior.

Observe that the deletion rectangles and the items in {i1, . . . , iK} separate the knapsack
into a left and a right part with items OPT′′left and OPT′′right, resp. We delete all items
in i1, . . . , iK and all items intersecting the interior of a deletion rectangle. Each deletion
rectangle and each item in {i1, . . . , iK} has a width of at least (1/k)BN . Thus, we can move
all items in OPT′′left simultaneously by (1/k)BN units to the right. After this, no large item
intersects the area (0, (1/k)BN) × (0, N). We rotate the resulting solution by 90 degrees,
hence getting an empty horizontal strip (0, N) × (0, (1/k)BN). The total height of items
in OPT ′T is at most k · (1/k)B+2N ≤ (1/k)B+1N . Therefore, the items in OPT ′T can be
stacked (one on top of the other) inside a horizontal strip of height (1/k)B+1N that can be
placed right below the rectangles in OPT′′left ∪OPT′′right. This leaves an empty horizontal
strip of height (1/k)BN − (1/k)B+1N ≥ (1/k)O(1/ε)N at the bottom of the knapsack. This
completes the proof of Lemma 15.
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3.2 FPT-algorithm with resource augmentation
We now compute a packing that contains as many items as the solution due to Lemma 15.
However, it might use the space of the entire knapsack. In particular, we use the free space in
the knapsack in the latter solution in order to round the sizes of the items. In the following
lemma the reader may think of k′ = (1− ε)k and k̃ = kO(1/ε).

I Lemma 20. Let k′, k̃ ∈ N. There is an algorithm for 2dkr with a running time of
(k̃k′)O(k′)nO(1) that computes a solution of size k′ or asserts that there is no solution of
size k′ fitting into a restricted knapsack [0, N ]× [0, (1− 1/k̃)N ]. Also, in time nO(1) we can
compute a set of size O(k̃(k′)2) that contains a solution of size k′ if there is such a solution
that fits into the latter knapsack.

Note that Lemma 20 yields an FPT algorithm if we are allowed to increase the size of the
knapsack by a factor 1 +O(1/k̃) where k̃ is a second parameter.

In the remainder of this section, we prove Lemma 20 and we do not differentiate between
large and thin items anymore. Assume that there exists a solution OPT′′ of size k′ that
leaves the area [0, N ]× [0, N/k̃] of the knapsack empty. We want to compute a solution of
size k′. We use the empty space in order to round the heights of the items in the packing of
OPT′′ to integral multiples of N/(k′k̃). Note that in OPT′′ an item i might be rotated. Thus,
depending on this we actually want to round its height hi or its width wi. To this end, we
define rounded heights and widths by ĥi :=

⌈
hi

N/(k′k̃)

⌉
N/(k′k̃) and ŵi :=

⌈
hi

N/(k′k̃)

⌉
N/(k′k̃)

for each item i.

I Lemma 21. There exists a feasible packing for all items in OPT′′ even if for each rotated
item i we increase its width wi to ŵi and for each non-rotated item i′ ∈ OPT′′ we increase
its height hi′ to ĥi′ .

To visualize the packing due to Lemma 21 one might imagine a container of height ĥi
and width wi for each non-rotated item i and a container of height hi′ and width ŵi′ for each
rotated item i′. Next, we group the items according to their values ĥi and ŵi. We define
I

(j)
h := {i ∈ I | ĥi = jN/(k′k̃)} and I(j)

w := {i ∈ I | ŵi = jN/(k′k̃)} for each j ∈ {1, . . . , k′k̃}.
The crucial observation is now that from each set I(j)

h it suffices to consider only the k′ items
with smallest width. If OPT′′ uses an item from I

(j)
h with larger width then we can replace

it by one of the k′ thinner items that is not contained in OPT′′. A symmetric statement
holds for the sets I(j)

v .

I Lemma 22. We can assume that from each set I(j)
h the solution OPT′′ contains only items

among the k′ items in I
(j)
h with smallest width. Similarly, from each set I(j)

w the solution
OPT′′ contains only items among the k′ items in I(j)

w with smallest height.

We eliminate from each set L(j)
h and L(j)

w the items that are not among the k′ items with
smallest width and height, resp. At most 2k′ · k′k̃ = O(k̃(k′)2) items remain, denote them by
Ī. Then, in time (k̃k′)O(k′) we can solve the remaining problem by completely enumerating
over all subsets of Ī with at most k′ elements. For each enumerated set we check within the
given time bounds whether its items can be packed into the knapsack (possibly via rotating
some of them) by guessing sufficient auxiliary information. Therefore, if a solution of size k′
for a knapsack of width N and height (1− 1/k̃)N exists, then we will find a solution of size
k′ that fits into a knapsack of width and height N .

Now the proof of Theorem 4 follows by using Lemma 15 and then applying Lemma 20
with k′ = (1− ε)k and k̃ = kO(1/ε). The set Ī is the claimed set (which intuitively forms the
approximative kernel), we compute a solution of size at least (1− ε)k ≥ k/(1 + 2ε) and we
can redefine ε appropriately.
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4 Hardness of Geometric Knapsack

We show that 2dk and 2dkr are both W[1]-hard for parameter k by reducing from a variant
of subset sum. Recall that in subset sum we are given m positive integers x1, . . . , xm as
well as integers t and k, and have to determine whether some k-tuple of the numbers sums
to t; this is W[1]-hard with respect to k [18]. In the variant multi-subset sum it is allowed
to choose numbers more than once. It is easy to verify that the proof for W[1]-hardness of
subset sum due to Downey and Fellows [18] extends also to multi-subset sum. In our
reduction to 2dkr we prove that rotations are not required for optimal solutions, making
W[1]-hardness of 2dk a free consequence.

Proof sketch for Theorem 3. We give a polynomial-time parameterized reduction from
multi-subset sum to 2dkr with output parameter k′ = O(k2); this establishes W[1]-
hardness of 2dkr.

Observe that, for any packing of items into the knapsack, there is an upper bound of
N on the total width of items that intersect any horizontal line through the knapsack, and
similarly an upper bound of N for the total height of items along any vertical line. We will let
the dimensions of some items depend on numbers xi from the input instance (x1, . . . , xm, t, k)
of multi-subset sum such that, using these upper bound inequalities, a correct packing
certifies that y1 + . . .+ yk = t for some k of the numbers. The key difficulty is that there is a
lot of freedom in the choice of which items to pack and where in case of a no instance.

To deal with this, the items corresponding to numbers xi from the input are all almost
squares and their dimensions are incomparable. Concretely, an item corresponding to some
number xi has height L + S + xi and width L + S + 2t − xi; we call such an item a tile.
(The exact values of L and S are immaterial here, but L� S � t > xi holds.) Thus, when
using, e.g., a tile of smaller width (i.e., smaller value of xi) it will occupy “more height” in
the packing. The knapsack is only slightly larger than a k by k grid of such tiles, implying
that there is little freedom for the placement. Let us also assume for the moment, that no
rotations are used.

Accordingly, we can specify k vertical lines that are guaranteed to intersect all tiles of any
packing that uses k2 tiles, by using pairwise distance L− 1 between them. Moreover, each
line is intersecting exactly k private tiles. The same holds for a similar set of k horizontal
lines. Together we get an upper bound of N for the sum of the widths (heights) along any
horizontal (vertical) line. Since the numbers xi occur negatively in widths, we effectively
get lower bounds for them from the horizontal lines. When the sizes of these tiles (and the
auxiliary items below) are appropriately chosen, it follows that all upper bound equalities
must be tight. This in turn, due to the exact choice of N , implies that there are k numbers
y1, . . . , yk with sum equal to t.

Unsurprisingly, using just the tiles we cannot guarantee that a packing exists when given
a yes-instance. This can be fixed by adding a small number of flat/thin items that can be
inserted between the tiles (see Figure 3, but note that it does not match the size ratios
from this proof); these have dimension L × S or S × L. Because one dimension of these
items is large (namely L) they must be intersected by the above horizontal or vertical lines.
Thus, they can be proved to enter the above inequalities in a uniform way, so that the proof
idea goes through.

Finally, let us address the question of why we can assume that there are no rotations.
This is achieved by letting the width of any tile be larger than the height of any tile, and
adding a final auxiliary item of width N and small height, called the bar. To get the desired
number of items in a solution packing, it can be ensured that the bar must be used as no
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1 3 6

6 1 3

3 6 1

Figure 3 A sketch of the packing used in Theorem 3 for a solution with k = 3 and 1 + 3 + 6 = 10.
Items corresponding to the same number have the same size. The figure is not to scale: The gray
items should be much flatter and the clear ones should look like squares of almost identical size.

1 2 3 k/2...

k/2 items {
Figure 4 Example showing that Lemma 15 cannot be generalized to 2dk (without rotations).

The total height of the k/2 items on the bottom of the knapsack can be made arbitrarily small.
Suppose that we wanted to free up an area of height f(k) ·N and width N or of height N and width
f(k) ·N (for some fixed function f). If the total height of the items on the bottom is smaller than
f(k) · N then we would have to eliminate the k/2 items on the bottom or the k/2 items on top.
Thus, we would lose a factor of 2 > 1 + ε in the approximation ratio.

more than k2 tiles can fit into N×N and there is a limited supply of flat/thin items. W.l.o.g.,
the bar is not rotated. It can then be checked that using at least one tile in its rotated form
will violate one of the upper bounds for the height. This completes the proof sketch. J

5 Open Problems

This paper leaves several interesting open problems. A first obvious question is whether
there exists a PAS also for 2dk (i.e., in the case without rotations). We remark that the
algorithm from Lemma 20 can be easily adapted to the case without rotations. Unfortunately,
Lemma 15 does not seem to generalize to the latter case. Indeed, there are instances in
which we lose up to a factor of 2 if we require a strip of width Ωε,k(1) ·N to be emptied, see
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Figure 4. We also note that both our PASs work for the cardinality version of the problems:
an extension to the weighted case is desirable. Unlike related results in the literature (where
extension to the weighted case follows relatively easily from the cardinality case), this seems
to pose several technical issues.

We remark that all the problems considered in this paper might admit a PTAS in the
standard sense, which would be a strict improvement on our PASs. Indeed, the existence of
a QPTAS for these problems [1, 2, 15] suggests that such PTASs are likely to exist. However,
finding those PTASs is a very well-known and long-standing problem in the area. We hope
that our results can help to achieve this challenging goal.
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Abstract
In the Highway problem, we are given a path with n edges (the highway), and a set of m drivers, each
one characterized by a subpath and a budget. For a given assignment of edge prices (the tolls), the
highway owner collects from each driver the total price of the associated path when it does not exceed
drivers’s budget, and zero otherwise. The goal is to choose the prices to maximize the total profit.
A PTAS is known for this (strongly NP-hard) problem [Grandoni,Rothvoss-SODA’11,SICOMP’16].

In this paper we study the limited supply generalization of Highway, that incorporates capacity
constraints. Here the input also includes a capacity ue ≥ 0 for each edge e; we need to select, among
drivers that can afford the required price, a subset such that the number of drivers that use each
edge e is at most ue (and we get profit only from selected drivers). To the best of our knowledge, the
only approximation algorithm known for this problem is a folklore O(logm) approximation based
on a reduction to the related Unsplittable Flow on a Path problem (UFP). The main result of this
paper is a PTAS for limited supply highway.

As a second contribution, we study a natural generalization of the problem where each driver i
demands a different amount di of capacity. Using known techniques, it is not hard to derive a QPTAS
for this problem. Here we present a PTAS for the case that drivers have uniform budgets. Finding a
PTAS for non-uniform-demand limited supply highway is left as a challenging open problem.
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1 Introduction

In the Highway problem we are given a path graph G = (V,E) with n edges (the highway)
and a set D of m drivers. Each driver i is characterized by a subpath Pi of G, and by a
budget Bi ∈ N+. We have to fix a price pe ≥ 0 one each edge e (the same for all drivers).
Then, for each driver i, we get a profit of p(i) :=

∑
e∈Pi pe (i.e., the total price over the

edges used by i), provided that p(i) ≤ Bi, and otherwise 0. Intuitively, each driver wishes to
travel along subpath Pi, but it is not going to do that if the total requested price exceeds
her budget. Our goal is to choose the prices to maximize the total profit from all drivers.

It is not hard to imagine applications for this problem, besides the obvious one suggested
by its name. For example, highway edges might represent links of a (high-bandwidth)
telecommunication network. Alternatively, one might interpret the highway as a period of
time, and the edges as time slots: now drivers are clients who need a service for a given
interval of time.
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Highway is well studied. It was shown to be weakly NP-hard in [9] via a reduction from
Partition, and strongly NP-hard in [20] via a reduction from Max-2-SAT. There is a simple
O(logm)-approximation that works for much more general instances. This was improved
to O(logn) in [3] using ideas in [26], and to O(logn/ log logn) in [22]. A QPTAS for the
problem was presented in [21]. Finally, a PTAS was given in [25].

In this paper we study the Limited Supply Highway problem (Ls-Highway), which is a
natural generalization of Highway with capacity constraints. Here we are additionally given
an integral capacity ue ∈ N+ for each edge e. A solution is now given by a price pe ≥ 0 on
each edge e plus a subset S ⊆ D of drivers that satisfy the following capacity constraint: the
total number of selected drivers that use each edge e is at most ue, i.e. |{i ∈ S : e ∈ Pi}| ≤ ue.
The profit from each driver is defined in the same way as in Highway, however now we obtain
profit only from the selected drivers S. Observe that there might be drivers that can afford
to pay for the considered prices and are still excluded (i.e., they cannot take the highway)
due to capacity constraints. Capacity constraints make sense in some of the mentioned
applications, e.g., optimal networks might have insufficient bandwidth to accommodate all
candidate users and the authority handling the network could exclude some of these users
(regardless of their budget). The same argument applies to a company selling a limited
resource, such as computational power, over time slots. The best known approximation for
Ls-Highway is, to the best of our knowledge, a folklore O(logm) approximation based on
a reduction to the related Unsplittable Flow on Path problem (UFP). Details about this
reduction are given later.

In this paper we also consider a non-uniform demand generalization of Ls-Highway, next
denoted as NuLs-Highway, where each driver i has a demand di ∈ N. W.l.o.g., we can assume
that di ≤ mine∈Pi{ue} (otherwise driver i can be discarded). Now the subset S of selected
drivers has to satisfy

∑
i∈S:e∈Pi di ≤ ue for each edge e. In particular, Ls-Highway is the

special case of NuLs-Highway where di = 1 for all i. Essentially the same reduction to UFP
as mentioned above provides a O(logm) approximation also for NuLs-Highway.

1.1 Our Results and Technique
The main result of this paper is a PTAS for Ls-Highway (see Section 2).

I Theorem 1. There is a deterministic PTAS for Ls-Highway.

Our starting point is a hierarchical decomposition of G into subpaths (called intervals)
of different levels as introduced in [25]. The whole path G forms the (only) interval of
level 0. Then G is subdivided into Γ = Oε(1) subintervals of level 1 such that for each
subinterval the sum of the prices of the edges in the optimal solution is identical. Note that
this decomposition depends on the unknown optimal solution and cannot be inferred directly
from the input. Recursively, each interval of level ` is subdivided into Γ subintervals of level
` + 1 with the latter property. A driver is said to be in level ` if its path is contained in
an interval of level ` but not in an interval of level ` + 1. The PTAS in [25] guesses this
decomposition recursively. First, it guesses the partition of G into intervals of level 1. This
implies which drivers are of level 0 and – using some additional arguments – for which of them
the total price of the edges of their respective paths exceeds the budget. In more detail, using
some shifting arguments one ensures that essentially each driver of level 0 crosses at least 1/ε
intervals of level 1 completely (and at most two such intervals partially). Since all intervals
of level 1 have the same total price in the optimal solution, up to a factor of 1 + ε this implies
the amount that each driver of level 0 would have to pay if it is contained the optimal set of
drivers. Then all drivers of level 0 are selected whose budget is not exceeded. Afterwards, the
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algorithm continues recursively in the intervals of level 1. Importantly, in order to process an
interval of a level `, one does not need to know which drivers of smaller levels were selected
previously. Instead, each arising subproblem can be described by an interval and a level.
Therefore, the number of possible subproblems is bounded by a polynomial and the whole
algorithm can easily be embedded into a polynomial time dynamic program.

In Ls-Highway this sitution is drastically different. When we want to process an interval
of level ` then it is not clear that we want to select all drivers of level ` whose budget is
not exceeded since we might want to use the available edge capacity for drivers of larger
levels instead. Also, we need to know the previously selected drivers of smaller levels since
they might use capacity on the edges that we then cannot use for drivers of level ` anymore.
Unfortunately, there is an exponential number of possibilities for which drivers have been
selected before and hence we would get a super-polynomial number of possible subproblems.
One could use the profiling technique in [5] in order to ensure that there are only a polynomial
number of possibilities for the capacity taken by drivers from each previous level (with a
small loss in the profit). However, since the number of levels is Ω(logn) this yields a quasi-
polynomial number of combinations for the used capacity from all levels together which is
still too much.

At this point our main idea comes into play. We would like that the path of each driver
of each level `′ starts and ends at the boundary vertex of an interval of level `′ + 1. Then,
when we process an interval of level ` it would be easy to describe the total capacity taken
away from drivers of smaller levels: the total number of such drivers would suffice, knowing
that each of them spans the entire interval. Therefore, consider the drivers of level ` that
start or end in the middle of an interval G′ of level `+ 1, let us say there are m′ such drivers.
For each of them we try to delete a minimal set of drivers of level `+ 1 or larger such that
each edge of G′ is used by at least one deleted driver. If we succeed then this frees up one
unit of capacity along each edge of G′ for each considered driver of level `, and we can use
this extra space to forget the actual portion of G′ that is spanned by this driver. In other
terms, we can imagine that its path spans the entire subinterval G′. If we do not succeed to
delete enough drivers using some edge e then we allocate all remaining capacity on e to the
drivers of level `. In other words, the remaining capacity on each edge of G′ is reduced by
m′ or to zero. Hence, when we process an interval G′ of level ` + 1 in our recursion then
one number in {0, ...,m} suffices to describe by how much the capacity on each edge in G′ is
reduced due to drivers from smaller levels. We perform this deletion procedure for each level
and each interval. This allows us then to devise a polynomial time dynamic program that
computes a solution whose profit is at least as large as the profit of the remaining drivers.

To bound the cost of the above deletion step, by losing a factor 1 + ε in the approximation
ratio the construction in [25] ensures that the path of each driver i of a level ` spans at
least Ω(1/ε) intervals of level ` + 1 and hence its profit is by a factor Ω(1/ε) larger than
the sum of the edge prices in an interval of level ` + 1. Up to constant factors, the latter
is the total profit of the drivers of level at least `+ 1 that we delete for i in the procedure
above. Therefore, the total profit due to the deleted tasks can be charged to i, losing only a
factor of 1 +O(ε).

The non-uniform demand case

Given the above PTAS, it is natural to address the non-uniform version of the problem. In
particular:

I Question 2. Is there a PTAS for NuLs-Highway?

ESA 2019
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Using the hierarchical decomposition from above and ideas from [5] it is not hard to derive
a QPTAS for the problem, i.e., a (1 + ε)-approximation that runs in quasi-polynomial
time (at least for quasi-polynomially bounded capacities). Let Umax = maxe∈G{ue} be the
largest capacity.

I Theorem 3. For any constant ε > 0, there is a deterministic algorithm that computes a
(1 + ε)-approximation for NuLs-Highway in time (n logUmax)Oε(logUmax logm).

Also, using a folklore reduction to UFP one can obtain a O(logm)-approximation for
NuLs-Highway.

I Lemma 4. There is a polynomial-time deterministic O(logm)-approximation for NuLs-
Highway.

We were able to design a PTAS for the interesting special case of uniform budgets (see
Section 3). Suppose that each driver has a budget of B. We partition G into blocks of total
price B/ε each and ensure via a shifting argument that the path of essentially each driver is
contained in some block. We guess this partition via a dynamic program step by step. For
each block, on a high level we show that there is a near-optimal solution in which only Oε(1)
edges within the block have a non-zero price and hence we can guess these edges and their
prices in polynomial time. The problem of selecting the drivers yields an instance of UFP in
which each task uses one of the latter Oε(1) edges. We invoke the known PTAS [23] for this
case and obtain a (1 + ε)-approximation overall.

I Theorem 5. There is a deterministic PTAS for NuLs-Highway in the special case that the
budgets of all drivers are identical.

1.2 Other Related Work
The tollbooth problem is the generalization of the highway problem where G is a tree. A
O(logn) approximation was developed in [20], and later improved to O(logn/ log logn) in [22].
Cygan et al. [18] present a O(log logn) approximation for the case of uniform budgets. The
tollbooth problem is APX-hard [26].

The highway and tollbooth problems belong to the family of pricing problems with
single-minded customers and unlimited supply. Here we are given a set of customers: Each
customer wants to buy a subset of items (bundle), if its total price does not exceed her
budget. In the highway terminology, each driver is a subset of edges (rather than a path).
For this problem a O(logn+ logm) approximation is given in [26]. This bound was refined
in [9] to O(logL+ logB), where L denotes the maximum number of items in a bundle and
B the maximum number of bundles containing a given item. Chalermsook et al. [12] showed
that this problem is hard to approximate within log1−ε n for any constant ε > 0. A O(L)
approximation is given in [3]. The latter approximation factor is asymptotically the best
possible for constant values of L unless P = NP as recently proved by Chalermsook et al. [13].

Elbassioni et al. [19] studied the limited-supply highway and tollbooth problems, however
for non-single-minded drivers. Limited-supply pricing problems have also been studied in
their envy-free version [26]: the goal here is to compute a maximum-profit pricing so that
each client that can afford her bundle actually gets it. Cheung and Swamy [17] provided
a O(logU) approximation for envy-free limited-supply highway with uniform capacities U .
Observe that our algorithm does not guarantee envy-freeness. We also remark that requiring
envy-freeness can substantially decrease the optimal profit, hence studying limited-supply
pricing problems without this additional constraint makes sense in many applications.
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The NuLs-Highway problem has several aspects in common with the well-studied Unsplit-
table Flow on a Path problem (UFP). In this problem we are given a path graph G = (V,E),
with edge capacities {ue}e∈E , and a set of tasks T , where each task i is characterized by a
demand di, a subpath Pi of G, and a weight wi. The goal is to select a maximum weight
subset S of tasks such that the total demand

∑
i∈S:e∈Pi di of selected tasks using each edge e

is at most ue. The current best approximation for this problem is 5/3 + ε [24], improving on
earlier results [2, 10, 6, 27, 15, 11, 8, 4]. The problem also admits a QPTAS [5, 7]. There is
also a line of research on finding LP relaxations with small integrality gap for UFP [1, 11, 14].

1.3 Preliminaries
For any positive integer q let [q] := {1, 2, . . . , q}. We are given an ε > 0 and assume w.l.o.g.
that 1/(2ε) is integral and ε ≤ 1/2. Let (OPT, p∗) denote an optimum solution to the
considered instance, with drivers OPT and prices p∗, and opt be its profit. W.l.o.g., OPT
contains only drivers with strictly positive profit. Standard reductions (see e.g. [25]) imply
the following.

I Lemma 6. By losing a factor 1 + ε in the approximation, we can reduce in polynomial time
a given instance of Ls-Highway to an instance of the same problem with O(m2/ε) edges such
that: (1) Budgets are integers between 1 and m

ε ; (2) Optimal prices take values in {0, 1}.

Given the above reduction, we can assume that the sum P ∗ of the optimal prices is known
by trying all the O(m2/ε) possibilities.

For each edge e let De := {i ∈ D : e ∈ Pi} be the drivers whose path contains e, and,
for a subpath G′, D(G′) := {i ∈ D : Pi ⊆ G′} be the drivers whose path is contained in G′.
Given prices p and a subpath G′, we let p(G′) =

∑
e∈G′ pe. Given a driver i and prices p,

we let the associated profit pro(i, p) be p(Pi) if this quantity is at most Bi, and 0 otherwise.
For a subset of drivers S, pro(S, p) =

∑
i∈S pro(i, p) is the total profit of those drivers. In

case of non-uniform demands, we define d(S′) :=
∑
i∈S′ di.

2 A PTAS for Ls-Highway

In this section we present our PTAS for Ls-Highway.

2.1 Hierarchical decomposition
Consider the input instance after applying the preprocessing step from Lemma 6, with
optimal solution (OPT, p∗). We next describe how to extract an almost optimal solution
OPT′ ⊆ OPT with a convenient structure. Here we use the same construction as in [25].

Let Γ = (1/ε)1/ε and γ = 1/(2ε). We add dummy edges on the right of G (w.l.o.g. having
a price of 1 each in the optimal solution) such that we can assume that P ∗ = Γ`∗ for some
integer `∗ = Oε(logm). Since n ≤ m2

ε we can guess in polynomial time the number of dummy
edges that we need and the resulting value of P ∗. Let x ∈ {1, . . . , P ∗} and y ∈ {1, . . . , 1/ε}
be two parameters to be fixed later. We append P ∗ · ((1/ε)y − 1) − x additional dummy
edges to the left of G and x additional dummy edges to the right of G, resp., and we assume
w.l.o.g. that p∗ assigns a price of 1 to each one of them. To simplify the notation, we denote
by G the resulting path, by p∗ the resulting prizing, and by P ∗ the sum of prices in p∗.
Observe that now P ∗ = Γ`∗(1/ε)y.
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Based on p∗, we define a hierarchical decomposition of G into nested subpaths (invervals).
The starting point is the interval G of level 0. Given an interval G′ of level `, we partition it
into Γ subintervals G′1, . . . , G′Γ of level `+ 1, with uniform price. Observe that intervals of
level ` have price P ` := P ∗/Γ` = Γ`∗−`(1/ε)y. We stop the recursion at intervals of level `∗,
which have constant price (1/ε)y = Oε(1).

For each interval G′ we denote by `(G′) its level. We say that a driver i is at level ` if Pi
is fully contained in an interval of level ` but in no interval of level `+ 1. For each driver i,
we let `(i) be its level and q(i) be the number of intervals of level `(i) + 1 which are fully
contained in Pi. Based on the above decomposition and notation, we define an approximate
profit function pro∗ for each driver i of level `(i) < `∗ as follows

pro∗(i) =
{

0 if q(i) < γ or q(i) · P `(i)+1 > Bi

q(i) · P `(i)+1 otherwise.
(1)

For drivers i of level `∗, we use the standard definition of profit, i.e. pro∗(i) = p∗(Pi) for
p∗(Pi) ≤ Bi, and pro∗(i) = 0 otherwise. Intuitively, pro∗ counts the profit of a driver i in
level ` only if Pi spans many subintervals of level `+ 1, i.e., at least γ many. For counting
the profit, we ignore the two subintervals that Pi only partially overlaps with. Since Pi gets
the full profit of at least γ subintervals, the difference is only a factor of 1 +O(ε). On the
other hand, it could be that pro∗(i) > 0 but i’s budget is exceeded. In this case it is still true
that pro(i, p∗) ≥ pro∗(i) if i had a budget of γ+2

γ Bi ≤ (1 +O(ε))Bi. Therefore, intuitively
we will pretend in the sequel that all drivers have a (larger) budget of γ+2

γ Bi and repair this
by scaling all edge prices at the very end. As usual, for S ⊆ D, pro∗(S) =

∑
i∈S pro∗(i). We

next let OPT′ ⊆ OPT be the drivers i ∈ OPT with strictly positive pro∗(i) (hence of profit
at least γP `(i)+1).

I Lemma 7 ([25]). There exist values of x and y such that pro∗(OPT) = pro∗(OPT′) ≥
(1−O(ε))opt.

In the following we assume that the input graph is preprocessed according to the pair (x, y)
given by Lemma 7: this is w.l.o.g. since we can try all the constantly many options. By pro∗
we will denote the approximate profit function given by this choice.

2.2 A Structured Solution
At this point we introduce the most critical and novel idea in our PTAS. We extract from
OPT′ a large profit subset OPT′′ that is even more structured. Intuitively, our goal is to
limit the interaction between drivers of different levels. More formally, in OPT′′ for each
interval G′ of some level `′ there exists a value m′ such that on each edge e of G′ the drivers
of level `′ or larger use at most max{0, ue −m′} units of capacity and the drivers of levels
`′ − 1 or smaller use the remaining capacity. Our algorithm will later select the drivers
in the order of their levels, from small to large. Hence, in order to describe the capacity
available on G′ for the drivers level `′ or larger it suffices to know m′ for which there are
only m+ 1 possibilities. This will be useful to define our algorithm as a polynomial time
dynamic program.

Initially we set OPT′′ = OPT′. Then we gradually move some drivers from OPT′′ to a
set of deleted drivers DEL. We will guarantee that the profit of deleted drivers is a small
fraction of the profit of drivers that are still in OPT′′ at the end of the process.
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G′
j ...

m(G′
j)

...

Figure 1 For the red driver we delete a set of short drivers whose paths are contained in G′j ,
depicted in striped red, that together completely cover G′j . For the yellow driver we do not find
such a set among the remaining drivers and delete drivers (depicted in striped yellow) that cover a
maximal set of edges in G′j . The gray drivers remain in the solution.

It is convenient to describe the construction of DEL in terms of a recursive procedure
delete. This procedure, described in Algorithm 1, takes as input a tuple (G′, `′,m′) where G′ is
a subpath, `′ ∈ {0, . . . , `∗} is a level, and m′ ∈ {0, . . . ,m} is some capacity. Note that w.l.o.g.
we can assume that ue ≤ m for each edge e. Furthermore, OPT′′ and DEL are considered as
global variables. We initialize (OPT′′,DEL) to (OPT′, ∅), and run delete(G, 0, 0).

The high-level idea behind delete is as follows. Intuitively, G′ is some interval of level `′,
and m′ is some uniform capacity that is reserved along G′ to allocate drivers from previous
levels whose path overlaps with G′. We remark thatm′ might exceed the capacity ue available
on some edge e ∈ G′, in which case drivers from level `′ or larger cannot use edge e (in
other words, the residual capacity on edge e is max{0, ue −m′}). Consider the subdivision
of G′ into subintervals G′1, . . . , G′Γ. Let us focus on a specific G′j , and consider the drivers of
level `′ in OPT′′ ∩D(G′) whose path intersects Gj , let us denote them by OPT′′`′(G′j). Let
OPT′′`′,part(G′j) and OPT′′`′,span(G′j) be the subset of them with G′j 6⊆ Pi and G′j ⊆ Pi, resp.
In order to define the residual capacity for drivers in D(G′j) the drivers in OPT′′`′,span(G′j)
are not problematic: they use a uniform amount of capacity along G′j . In order to handle
the problematic drivers OPT′′`′,part(G′j), the procedure delete removes some drivers from
OPT′′ ∩D(G′j) of level `′ + 1 or larger. This leaves some free capacity that can be used to
ignore the exact extend by which each i ∈ OPT′′`′,part(G′j) overlaps with G′j . Ideally, for each
i ∈ OPT′′`′,part(G′j), we would like to find a minimal set of drivers DELi(G′j) ⊆ OPT′′∩D(G′j)
that spans G′j , i.e., such that each edge of G′j is used by at least one driver in DELi(G′j).
However, there might not be enough drivers available for this in which case we rather take
one such set with the largest possible span of edges of G′j . This process is illustrated in Figure
1. After deleting all drivers in the sets DELi(G′j) for all i ∈ OPT′′`′,part(G′j) we can safely set
the (residual) capacity on edge e for drivers of level larger than `′ (whose path is contained
in G′j) to max{0, ue −m′ −m`′(G′j)} where m`′(G′j) := |OPT′′`′(G′j)|. We then recurse in
each subinterval G′j of G′ by calling delete(G′j , `′ + 1,m′ +m`′(G′j)). We stop the recursion
once we reach an interval of level `∗ in which case we do not delete any further drivers.

Consider OPT′′ at the end of the root call delete(G, 0, 0). This is obviously a feasible
solution (being a subset of OPT′). Let us show that it has large profit.

I Lemma 8. We have that pro∗(OPT′′) ≥ (1−O(ε))pro∗(OPT′)

Proof. Let us show that pro∗(DEL) ≤ 4
γpro∗(OPT′′) = O(ε)pro∗(OPT′′). We use a charging

argument. Consider an interval G′ of level `′ and one of its subintervals G′j . Note that, by
construction, the total price over G′ and G′j is P `

′ and P `′+1 = P `
′
/Γ, respectively. Consider
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Algorithm 1 Procedure to build the sets OPT′′ and DEL.
delete(G′, `′,m′)
1: if `′ = `∗ then
2: halt;
3: Let G′1, . . . , G′Γ be the partition of G′ into subintervals of level `+ 1;
4: for j = 1, . . . ,Γ do
5: Let OPT′′`′(G′j):={i ∈ OPT′′ ∩D(G′):`(i)=`′, E(Pi) ∩ E(G′j) 6=∅};
6: Let m`′(G′j)=|OPT′′`′(G′j)|;
7: Let OPT′′`′,part(G′j) := {i ∈ OPT′′`′(G′j) : G′j 6⊆ Pi};
8: for every i ∈ OPT′′`′,part(G′j) do
9: Let Ei(G′j) be the edges used by OPT′′ ∩D(G′j);
10: Let DELi(G′j) be a minimal subset of OPT′′ ∩D(G′j) that spans Ei(G′j);
11: Set OPT′′ ← OPT′′ \DELi(G′j) and DEL← DEL ∪DELi(G′j);
12: delete(G′j , `′ + 1,m′ +m`′(G′j));

any i ∈ OPT′′`′,part(G′j). Observe that i cannot be deleted in the next recursive calls, hence
it finally belongs to OPT′′. Let us charge the loss due to the removal of DELi(G′j) to i.

By the minimality of DELi(G′j), each edge e ∈ G′j can be used by at most two drivers in
DELi(G′j). It thus follows that pro∗(DELi(G′j)) ≤ 2p∗(G′j) ≤ 2P `′+1. On the other hand,
pro∗(i) ≥ γP `

′+1, hence pro∗(DELi(G′j)) ≤ 2
γpro∗(i). Observe that each driver i in OPT′′

of level `′ can be charged by at most two sets DELi(G′a) and DELi(G′b), associated with the
(at most) two subintervals G′a and G′b of level `′ + 1 that partially overlap with Pi (since the
subintervals that are fully spanned by Pi do not charge i). It follows that

pro∗(DEL) =
∑
G′
j
,i

pro∗(DELi(G′j)) ≤
2
γ

∑
G′
j
,`′,i∈OPT′′

`′,part
(G′

j
)

pro∗(i) ≤ 4
γ

pro∗(OPT′′). J

One can show that, if in the recursion above a call delete(G′, `′,m′) arises, then in OPT′′

on each edge e of G′ the drivers of level `′ or larger use at most max{0, ue −m′} units of
capacity. We will use this property in our dynamic program below.

2.3 Dynamic program
We describe an algorithm that computes a solution with a profit of at least pro∗(OPT ′′),
pretending that each driver i has an increased budget of γ+2

γ Bi. Afterwards, we scale down
the prices by a factor γ+2

γ in order to respect the original budgets. Together with Lemma 8
this yields an approximation factor of 1 +O(ε). For the sake of simplicity, in the sequel we
will compute only the value of the desired solution while a straightforward extension yields
an algorithm that finds the corresponding set of drivers and also the pricing for the edges.

A natural idea is to define a recursive algorithm that guesses the hierarchical decomposition
into intervals and the values m(G′j) corresponding to OPT′′. Suppose we are given a tuple
(G′, `′,m′) consisting of an interval G′, a level `′, and an integer m′. The reader may imagine
that in the hierarchical decomposition above G′ is of level `′ and m′ units of capacity are
taken away on each edge of G′ due to drivers of levels smaller than `′. If `′ < `∗ we guess the
corresponding subdivision into subintervals G′1, . . . , G′Γ of level `′ + 1 (each of them having
length at least P `′+1), and the associated values m(G′j), i.e., we try all possibilities for them.
Via a reduction to UFP we select the drivers of level `′: for each driver i with Pi ⊆ G′ but
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Pi 6⊆ G′j for each G′j , we introduce a task i′ with path Pi′ := Pi and demand di′ := 1. For
q(i) being the number of intervals G′j with G′j ⊆ Pi we define

wi′ :=
{

0 if q(i) < γ or q(i) · P `′+1 > Bi

q(i) · P `′+1 otherwise.
(2)

Observe that to guarantee that we get a profit of wi′ from driver i we would need that i has a
budget of at least γ+2

γ Bi. This can be fixed at the end by scaling down prices by a factor γ+2
γ

(with a small profit loss). We define the edge capacities by u′e := min{m(G′j),max{0, ue−m′}}
for each edge e in a subinterval G′j . Since all drivers have unit demand this instance of UFP
can be solved exactly in polynomial time (see, e.g., [16]). Then we recurse on each interval
G′j such that the corresponding subproblem consists of the tuple (G′j , `′ + 1,m′ +m(G′j)).
Finally, the solution for (G′, `′,m′) is the most profitable solution obtained in this way over
all of the guesses above.

If we are given a tuple (G′, `′,m′) with `′ = `∗ (the reader may again imagine that G′
is an interval of level `∗) then we guess directly the optimal pricing p∗ which is one of the
polynomially many options to assign a total price of (1/ε)y = Oε(1) to the edges of G′ such
that each edge gets a price in {0, 1}. Selecting the drivers yields again an instance of UFP.
For each driver i with Pi ⊆ G′ we introduce a task i′ with path Pi′ := Pi, demand di′ := 1,
and weight wi′ = p(Bi) if p(Bi) ≤ Bi and wi′ = 0 otherwise. Each edge e has a capacity of
u′e := max{0, ue −m′}. Again, since all drivers have unit demand we can solve this instance
of UFP in polynomial time [16]. The solution for (G′, `′,m′) is then the most profitable
solution over all guesses. We return the solution to (G, 0, 0).

As it is described above, this algorithm does not have polynomial running time since in
each subproblem we enumerate a polynomial number of guesses and the recursion depth is
Ω(logn). However, each recursive call is specified by a tuple (G′, `′,m′) and there are only a
polynomial number of those. Hence, we can embed our algorithm into a polynomial time
dynamic program, see Algorithm 2. For each cell (G′, `′,m′) denote by DP (G′, `′,m′) the
value stored in it.

Algorithm 2 Dynamic program to approximate Ls-Highway. Here G′ denote a subpath of G of
length at least P `′ , `′ ∈ {0, . . . , `∗} a level, and m′ ∈ {0, . . . ,m} a capacity.
compute DP (G′, `′,m′)
1: if `′ < `∗ then
2: for all possible subdivisions of G′ into subpaths G′1, . . . , G′Γ of length at least P `′+1 each do
3: for all possible values m(G′j) ∈ {0, . . . ,m}, j = 1, . . . ,Γ do
4: construct the UFP instance I ′ associated with (G′,m′, {G′j}j , {m(G′j)}j);
5: solve I ′ optimally, let wufp(I ′) be the resulting profit
6: compute

w(G′,m′, {G′j}j , {m(G′j)}j) := wufp(I ′) +
Γ∑

j=1

DP (G′j , `′ + 1,m′ +m(G′j))

7: DP (G′, `′,m′)← largest value w(G′,m′, {G′j}j , {m(G′j)}j) computed in Step 6
8: if `′ = `∗ then
9: for all possible assignments p = {0, 1}E(G′) with p(G′) = P `∗ = (1/ε)y do
10: construct the UFP instance I ′ associated with (G′,m′, p);
11: solve I ′ optimally, let wufp(I ′) be the resulting profit
12: DP (G′, `′,m′)← largest value wufp(I ′) computed in Step 11
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Let us consider the recursive partition of G that corresponds to (G, 0, 0), i.e., the intervals
of the partition achieving the maximum in Line 7 and recursively their subpartitions achieving
the maximum in their respective subproblems. Let G be the intervals in this partition. For a
given G′ ∈ G we let `′(G′) andm′(G′) denote the associated values of `′ andm′. Furthermore,
if `′(G′) < `∗, let {G′j}j and {m(G′j)}j be the corresponding values achieving the maximum in
Step 7. By ALG(G′) we denote the UFP solution corresponding to the cell (G′, `′(G′),m′(G′))
that achieves the maximum value in Step 7 or 12. Note that the solution associated with
(G, 0, 0) is ALG = ∪G′∈GALG(G′). By pALG we denote the pricing induced by the values p
achieving the maximum in Step 12.

I Lemma 9. ALG respects the capacity constraints.

Proof. For a given G′ ∈ G, let ALG↓(G′) := ∪G′′∈G:G′′⊆G′ALG(G′′) be the union of all the
UFP solutions corresponding to subintervals contained in G′ (G′ included). We will show by
induction on decreasing values of `′(G′) that ALG↓(G′) is a feasible solution w.r.t. residual
capacities max{0, ue −m′(G′)} i.e.

|De ∩ALG↓(G′)| ≤ max{0, ue −m′(G′)}, ∀e ∈ G′.

The claim then follows since m′(G) = 0 and ALG↓(G) = ALG.
For the base case `′(G′) = `∗ this is true by the definition of the edges capacities for the

case that `′ = `∗. Suppose next the claim is true up to the value `′ + 1, and consider G′ with
`′(G′) = `′. Consider any edge e ∈ G′j , for some j ∈ [Γ].

|De ∩ALG↓(G′j)| ≤ max{0, ue −m′(G′)−m(G′j)}.

By construction and the definition of the edge capacities for the case that `′ < `∗ we have

|De ∩ALG(G′)| ≤ min{m(G′j),max{0, ue −m′(G′)}}.

Thus

|De ∩ALG↓(G′)| = |De ∩ALG(G′)|+ |De ∩ALG↓(G′j)|
≤min{m(G′j),max{0, ue −m′(G′)}}+ max{0, ue −m′(G′)−m(G′j)}
≤max{0, ue −m′(G′)},

where the last inequality follows easily by distinguishing the cases ue −m′(G′) ≤ 0, 0 <
ue −m′(G′) ≤ m(G′j), and ue −m′(G′) > m(G′j). J

The proof of the following lemma follows by constraining the choices of the algorithm
in order to mimic the construction of OPT′′. The crucial step is to show that, for a
subproblem (G′, `′,m′) (corresponding to an interval G′ in the hierarchical decomposition due
to Section 2.1) the drivers in OPT′′∩D(G′) of level `′ (denote them by OPT′′(G′, `′)) define a
feasible solution for the associated UFP instance whose weight is precisely pro∗(OPT′′(G′, `))
by the definition of the tasks weights of these instances.

I Lemma 10. DP (G, 0, 0) = pro∗(ALG) ≥ pro∗(OPT′′).

Finally, we scale down the price on each edge by a factor γ+2
γ ≤ 1 +O(ε), i.e. we return the

solution (ALG, γ
γ+2p

ALG). This way, all drivers in ALG respect the original budgets and we
achieve a profit almost as large as DP (G, 0, 0).

I Lemma 11. pro(ALG, γ
γ+2p

ALG) ≥ γ
γ+2DP (G, 0, 0).
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Proof. It is sufficient to show that, after scaling prices, the budget of each driver i ∈ ALG
is not exceeded. It then follows that the profit associated with i is precisely γ

γ+2 times its
weight wi′ in the corresponding UFP instance. W.l.o.g. we can assume that wi′ > 0. If the
level ` of i is `∗, the claim is trivial since pro(i, pALG) = wi′ . In other words, the budget of i
is respected even without scaling the prices. Otherwise, with the usual notation, by definition
we have that q(i) ≥ γ and q(i) · P ` ≤ Bi. By construction the total price associated with i is

pALG(Pi) ≤ (q(i) + 2)P ` ≤ γ + 2
γ

q(i)P ` ≤ γ + 2
γ

Bi.

Hence γ
γ+2p

ALG does not violate the budget of i as required. J

Our algorithm runs in polynomial time since we have a polynomial number of DP-cells
and the computation for each takes polynomial time. Now the proof of Theorem 1 follows
immediately from Lemmas 8-11.

3 A PTAS for NuLs-Highway with Uniform Budgets

In this section we present a PTAS for NuLs-Highway when all drivers have the same budget
B. It is not hard (modulo technicalities) to extend our result to the case that the ratio of
largest to smallest budget is upper bounded by a given constant.

We will use the following folklore result for the highway problem (and more generally for
item pricing problems), that immediately extends to Ls-Highway and NuLs-Highway.

I Lemma 12 (Close To Budget Lemma). Given any α ∈ (0, 1], in any optimal solution
(OPT, p∗) to NuLs-Highway at least a fraction (1− α) of the profit is due to drivers whose
profit is at least α times their budget.

Proof. Assume by contradiction the claim is not true, and consider the drivers i ∈ S ⊆ OPT
whose profit in p∗ is less than α · Bi. Then the pricing p∗/α achieves a profit larger than
OPT from S, a contradiction. J

Let us first show that a solution with a convenient structure exists. Let (OPT, p∗) be
an optimal solution. Using Lemma 6 we can assume that the price of each edge is in {0, 1}
and that B ∈ {1, ...,m/ε}. Let P ∗ be the sum of the optimal prices, and h∗ be the smallest
integer such that P ∗ ≤ (h∗ − 1)Bε . We guess P ∗ and hence we then also know h∗. For a
choice of x ∈ {0, . . . , 1

εB − 1} to be defined later, we append x edges to the left of the input
graph G, and y = (h∗ − 1)Bε − P

∗ + 1
εB − x edges to its right. W.l.o.g. we assume that each

new edge has a price of 1 in (OPT, p∗). For simplicity, we still denote by G the resulting
graph, by p∗ its optimal pricing, by P ∗ the total price of all edges and we define h∗ := P ∗ε/B.
Observe that p∗(G) = h∗Bε .

By OPT′ ⊆ OPT we denote the drivers i whose profit in p∗ is at least ε ·Bi. By applying
Lemma 12 with α = ε one has that pro(OPT′, p∗) ≥ (1− ε)opt. We next define a solution
(APX, papx), with APX ⊆ OPT′. Subdivide G in h∗ subpaths Bj (blocks) with total price
exactly B

ε each. Discard all drivers i ∈ OPT′ whose path Pi contains edges in two different
blocks: let APX be the remaining drivers. Subdivide each Bj into 1/ε3 subpaths Bj,k of
optimal price exactly ε2B each (sub-blocks). In papx set the price of the rightmost edge
in each sub-block to 1

1+ε · ε
2B and the price of any other edge to zero (note that we use

fractional prices even though we assumed the optimal solution to have prices in {0, 1}).
Let us show that the profit of the new solution is large enough for a proper choice of x.
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I Lemma 13. There is a choice of x in the above construction such that pro(APX, papx) ≥
(1−O(ε))opt.

We devise now a dynamic program that computes a solution with a profit of at least
pro(APX, papx). Intuitively, it guesses step by step the above partition into blocks. Then for
each block B it guesses its partition into subblocks, sets a price of 1

1+ε · ε
2B to the rightmost

edge of each subblock and computes a subset of drivers from D(B) maximizing the profit
from the selected drivers. The problem of selecting these drivers yields special instances of
UFP (one for each block) in which there are 1/ε3 special edges (the edges with non-zero
price) such that each input task uses at least one of them (all other drivers yield zero profit
and can be discarded). We invoke the known PTAS for this special case [23].

Formally, first we guess the value for x ∈ {0, . . . , 1
εB − 1} due to Lemma 12. Observe

that B ≤ m/ε due to Lemma 5 and hence there are only m/ε2 options for x. We start by
preprocessing the instance as described before for the considered x: let N be the final number
of edges, and let us label them from 1 to N from left to right. Let G`,r be the subpath of G
with leftmost edge ` and rightmost edge r. The DP table is indexed by pairs (r, h) where r
is some edge and h ∈ {1, . . . , h∗}. Intuitively, the value of DP (r, h) is the maximum profit
that is achievable by drivers whose path is contained in G1,r in the following way:
1. We divide G1,r into h blocks Bj , subdivide each block into 1/ε3 sub-blocks, and assign

the price ε2B
1+ε to the rightmost edge of each sub-block (and 0 otherwise).

2. We select a set of drivers such that the path of each driver is fully contained in some
block.

As usual, we can associate to DP (r, h) a specific solution of the same profit. At the end, we
output the solution in the cell DP (N,h∗).

Consider a given DP-cell DP (r, h). For all values ` with 1 ≤ ` < r we do the following:
we partition G1,r into a block G`,r and a remaining part G1,`−1. We consider all the possible
O(n1/ε3) ways to subdivide G`,r into sub-blocks B1

`,r, . . . , B
1/ε3

`,r such that none of them is
empty. For any such choice, we define a UFP instance UFP ({Bk`,r}k) as follows. The graph
is G`,r, with the corresponding edge capacities ue, e ∈ G`,r. For each driver i with Pi ⊆ G`,r,
we define a task i′ with path Pi′ := Pi and demand di′ := di. We define its weight wi′ as
follows: assign price ε2B

1+ε to the rightmost edge in each sub-block; set wi′ to the total price on
the edges of Pi′ if this is at most Bi, and 0 otherwise. We discard a task i′ if with wi′ = 0.

Note that in this instance of UFP each task must use one of the 1/ε3 edges with non-zero
price. We invoke the PTAS in [23, Theorem 3.3] for this special case. Let alg(`, r) be the
maximum weight of any computed UFP solution for this choice of ` (over all partitions
B1
`,r, . . . , B

1/ε3

`,r ). Observe that this value depends only on ` and r. If r − ` + 1 < 1/ε3
then there can be no partition in which all sub-blocks are non-empty and therefore we set
alg(`, r) = 0. Given the above quantities, we define

DP (r, h) := max
1≤`<r

{alg(`, r) +DP (`− 1, h− 1)}

where we define DP (0, h) = 0 for all h and DP (r, 0) = 0 for all r. Finally, we output the
solution in the DP-cell DP (N,h∗).
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Abstract
In a wind farm turbines convert wind energy into electrical energy. The generation of each turbine
is transmitted, possibly via other turbines, to a substation that is connected to the power grid.
On every possible interconnection there can be at most one of various different cable types. Each
cable type comes with a cost per unit length and with a capacity. Designing a cost-minimal
cable layout for a wind farm to feed all turbine production into the power grid is called the
Wind Farm Cabling Problem (WCP).

We consider a formulation of WCP as a flow problem on a graph where the cost of a flow on
an edge is modeled by a step function originating from the cable types. Recently, we presented a
proof-of-concept for a negative cycle canceling-based algorithm for WCP [14]. We extend key steps
of that heuristic and build a theoretical foundation that explains how this heuristic tackles the
problems arising from the special structure of WCP.

A thorough experimental evaluation identifies the best setup of the algorithm and compares it to
existing methods from the literature such as Mixed-integer Linear Programming (MILP) and
Simulated Annealing (SA). The heuristic runs in a range of half a millisecond to under two minutes
on instances with up to 500 turbines. It provides solutions of similar quality compared to both
competitors with running times of one hour and one day. When comparing the solution quality after
a running time of two seconds, our algorithm outperforms the MILP- and SA-approaches, which
allows it to be applied in interactive wind farm planning.
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1 Introduction

Wind energy becomes increasingly important to help reduce effects of climate change. As
of 2017, 11.6 % of the total electricity demand in the European Union is covered by wind
power [24]. Across the Atlantic, the state of New York aims at installing 2.4 GW of offshore
wind energy capacity by 2030, which could cover the demand of 1.2 million homes [19].

In an offshore wind farm a set of turbines generate electrical energy. From offshore
substations the energy is transmitted via sea cables to an onshore grid point. One of the
biggest wind farms currently planned is Hornsea Project Three in the North Sea with
up to 300 turbines and twelve substations [1]. To transport turbine production to the
substations, a system of cables links turbines to substations (internal cabling) where multiple
turbines may be connected in series. The designer of a wind farm has various cable types
available, each of which with respective costs and thermal capacities. The latter restricts
the amount of energy that can be transmitted through a cable. Planning a wind farm
as a whole consists of various steps, including determining the locations for turbines and
substations, layouting the connections from substations to the grid point, and designing
the internal cabling. The planning process comes with a high level of complexity, which
automated approaches struggle with [23]. Therefore, one might opt for decoupling the
planning steps. We call the task of finding a cost-minimal internal cabling of a wind
farm with given turbine and substation positions, as well as given turbine production
and substation capacities, the Wind Farm Cabling Problem (WCP). Since WCP is
a generalization of the NP-hard problem Capacitated Minimum Spanning Tree [21],
it is NP-hard as well.

Due to the overall cost of a wind farm, using one day of computation time or more
arguably is a reasonable way to approach WCP. Such computation times, however, are
not appropriate for an interactive planning process: Imagine a wind farm planner uses a
planning tool which allows altering turbine positions to explore their influence on possible
cable layouts. In that case, computation times of at most several seconds are desirable.

1.1 Contribution and Outline
We extend our recent proof-of-concept, in which negative cycle canceling is applied to a
formulation of WCP as a network flow problem (cf. Section 3) with a step cost function
representing the cable types [14]. The idea of negative cycle canceling is to iteratively identify
cycles in a graph in which the edges are associated with the costs of (or gains from) changing
the flow. Normally, a cycle of negative total cost corresponds to a way to decrease the cost of
a previously found flow. Due to the step cost function, however, not every negative cycle helps
improve a solution to WCP. We explore this and other issues for negative cycle canceling
that arise from the step cost function in the flow problem formulation for WCP. We present
a modification of the Bellman-Ford algorithm [3, 9] and build a theoretical foundation that
explains how the modified algorithm addresses the aforementioned issues, e. g., by being able
to identify cycles that actually improve a solution. This modification works on a subgraph of
the line graph (cf. page 6) of the input graph and can be implemented in the same asymptotic
running time as the original Bellman-Ford algorithm.

We further extend that heuristic by identifying two key abstraction layers and applying
different strategies in those layers. Using different initializations is hinted at in the section on
future work in [14]. We follow this hint and design eight concrete initialization strategies. In
another layer, we propose a total of eight so-called “delta strategies” that specify the order
in which different values for flow changes are considered.
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In [14] we compared the Negative Cycle Canceling (NCC) algorithm to a Mixed-integer
Linear Program (MILP) using the MILP solver Gurobi with one-hour running times on
benchmark sets from the literature [17]. We extend this evaluation by identifying the best of
our variants and by comparing its results to the results of MILP experiments after running
times of two seconds, one hour, and one day on the same benchmark sets. A running
time of two seconds helps identify the usefulness of the NCC algorithm to an interactive
planning process. The other running times stand for non-time-critical planning. We also
compare the algorithm to an approach using Simulated Annealing [17] with different running
times. The results show that our heuristic is very fast since it terminates on instances with
up to 500 turbines in under two minutes. At two seconds our algorithm outperforms its
competitors, making it feasible for interactive wind farm planning. Even with longer running
times for the MILP- and SA-approaches, our algorithm yields solutions to WCP of similar
quality but in tens of seconds.

In Section 2 we review existing work on WCP and negative cycle canceling. In Section 3
we define WCP as a flow problem. We give theoretical insights on the difference to standard
flow problems and present and analyze our Negative Cycle Canceling algorithm in Section 4.
An extensive experimental evaluation of the algorithm is given in Section 5. We conclude
with a short summary of the results and outline possible research directions (see Section 6).

2 Related Work

In one of the first works on WCP, a hierarchical decomposition of the problem was intro-
duced [4]. The layers relate to well-known graph problems and heuristics for various settings
are proposed. Since then, considerable effort has been put into solving different variants
of WCP. Exact solutions can be computed using Mixed-integer Linear Program (MILP)
formulations including various degrees of technical constraints, e. g., line losses, component
failures, and wind stochasticity [18]. However, sizes of wind farms that are solved to op-
timality in reasonable time are small. Metaheuristics such as Genetic Algorithms [25, 6] or
Simulated Annealing [17] can provide good but not necessarily optimal solutions in relatively
short computation times.

We applied negative cycle canceling to a suitable flow formulation for WCP [14], but
there is still an extensive agenda of open questions such as investigating the effect of other
cable types, a comparison to existing heuristics, and using the solution as warm start for a
MILP solver. Originally, negative cycle canceling is proposed in the context of minimum cost
circulations when linear cost functions are considered [16]. The algorithm for the Minimum-
Cost Flow Problem based on cycle canceling with strongly polynomial running time runs
in O(nm(logn) min{log(nC),m logn}) time on a network with n vertices, m edges, and
maximum absolute value of costs C [12]. The bound for the running time of this algorithm
was later tightened to Θ(min{nm log(nC), nm2}) [22]. Negative cycle canceling has also been
used for problems with non-linear cost functions. Among these are multicommodity flow
problems with certain non-linear yet convex cost functions based on a queueing model [20]
and the Capacity Expansion Problem for multicommodity flow networks with certain non-
convex and non-smooth cost functions [7]. A classic algorithm for finding negative cycles is
the Bellman-Ford algorithm [3, 9] with heuristic improvements [13, 11]. An experimental
evaluation of these heuristics and other negative cycle detection algorithms is given in [5].

A step cost function similar to the one in WCP appears in a multicommodity flow problem,
for which exact solutions can be obtained by a procedure based on Benders Decomposition [10].
However, this procedure is only evaluated on instances with up to 20 vertices and 37 edges and
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some running times exceed 13 hours. While our approach does not guarantee to solve WCP to
optimality, our evaluation shows that the solution quality is very good compared to the MILP
with running times not exceeding two minutes on wind farms with up to 500 turbines.

3 Model

The model presented in this paper is based on an existing flow model for WCP [14]. We
briefly recall the model. Given a wind farm, let VT and VS be the sets of turbines and
substations, respectively. We define a vertex set V of a graph by V = VT ∪ VS . For any
two vertices u and v that can be connected by a cable in the wind farm, we define exactly
one directed edge e = (u, v), where the direction is chosen arbitrarily. We obtain a directed
graph G = (V,E) with V = VT ∪ VS and E ⊆ (V × V ) \ (VS × VS) such that (u, v) ∈ E
implies (v, u) /∈ E. There are no edges between any two substations since we consider the wind
farm planning step in which all positions of turbines and substations, as well as the cabling
from substations to the onshore grid point have been fixed. We assume that all turbines
generate one unit of electricity. Note that our algorithm can be easily generalized to handle
non-uniform integral generation. Substations have a capacity capsub : VS → N representing
the maximum amount of turbine production they can handle and each edge has a length given
by len : E → R≥0 representing the geographic distance between the endpoints of the edge.

A flow on G is a function f : E → R and for an edge (u, v) with f(u, v) > 0 (resp. < 0), we
say that f(u, v) units of flow go from u to v (resp. −f(u, v) units go from v to u). For a flow f

and a vertex u we define the net flow in u by fnet(u) =
∑

(w,u)∈E f(w, u)−
∑

(u,w)∈E f(u,w).
A flow f is feasible if the conditions on flow conservation for both turbines (Equation (1))
and substations (Equation (2)) are satisfied and if there is no outflow from any substation
(Equations (3) and (4)).

fnet(u) = −1 ∀u ∈ VT , (1)
fnet(v) ≤ capsub(v) ∀v ∈ VS , (2)
f(u, v) ≥ 0 ∀(u, v) ∈ E : v ∈ VS , (3)
f(v, u) ≤ 0 ∀(v, u) ∈ E : v ∈ VS . (4)

Let c : R≥0 → R≥0 ∪ {∞} be a non-decreasing, left-continuous step function with c(0) = 0.
This function represents the cable costs and sup{x ∈ R≥0 : c(x) <∞} is the maximum cable
capacity, which we assume to be a natural number. Note that such a function is neither
convex nor concave in general. The cost of a flow on a wind farm graph is then given by

cost(f) =
∑
e∈E

c (|f(e)|) · len(e). (5)

The value of c (|f(e)|) stands for the cost per unit length of the cheapest cable type with
sufficient capacity to transmit |f(e)| units of turbine production. With all that, WCP is
the problem of finding a feasible flow f on a given wind farm graph that minimizes the
cost. There is an analogon to the linear-cost integer flow theorem (e. g. [2, Thm. 9.10]) that
guarantees an optimal flow with integral values.

I Lemma 1. Suppose the cost function is discontinuous only at integers and there is a
feasible flow. Then, there is a cost-minimal integral flow.
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4 Algorithm

Given a wind farm graph G we define the residual graph R of G with vertices V (R) and
edges E(R) by V (R) = V (G) ∪ {s} and E(R) = {e, ē : e ∈ E(G)} ∪ {(v, s), (s, v) : v ∈ VS}
where ē is the reverse of e. The new vertex s, the super substation, is a virtual substation
without capacity, that is connected to all substations. The edges to and from s are used to
model the substation capacity constraints and to allow the production of one turbine to be
reassigned to another substation.

For a given feasible flow f in G of finite cost and ∆ ∈ N we further define residual
costs, which represent by how much the cost for the edge changes if the flow on the edge
is increased by ∆ (cf. Figure 1 (a) – (d) for an example). Note that for negative quant-
ities of flow this implies that the absolute value of the flow may be reduced or even the
direction of the flow on an edge may change. More formally, we define γ : E(R) → R
by γ(e) =

(
c(|f(e) + ∆|)− c(|f(e)|)

)
· len(e) for all e ∈ E(R) that are neither incident to s

nor lead to a substation where we alias f(ē) = −f(e) for all e ∈ E(G). By this definition the
residual costs are infinite if c(|f(e) + ∆|) =∞, i. e., if the maximal capacity on e is exceeded.
For u ∈ VS and v ∈ VT , we set γ(u, v) =∞ whenever f(v, u) < ∆ because sending f(u, v)+∆
units from u to v would otherwise imply that flow leaves a substation. On edges into s, we
set γ(u, s) = 0 if and only if f(u, s) + ∆ ≤ capsub(u) and γ(u, s) =∞ otherwise. On edges
leaving the super substation, we set γ(s, u) = 0 if and only if f(u, s) ≥ ∆ and γ(s, u) =∞
otherwise to prevent flow from leaving the substation.

In a nutshell, the Negative Cycle Canceling (NCC) algorithm (Algorithm 1) starts with
an initial feasible flow and some value of ∆, computes the residual costs, and looks for a
negative cycle1. If the algorithm finds a negative cycle, it cancels the cycle, i. e., it changes
the flow by adding ∆ units of flow on all (residual) edges of the cycle. Note that this may
decrease the actual amount of flow on edges of G. Then this procedure is repeated with the
new flow and a (possibly new) value of ∆. If no negative cycle is found, a new value of ∆ is
chosen and new residual costs are computed. This loop is repeated until all sensible values
of ∆ have been considered for a single flow, which is then returned by the algorithm. This
flow is of integer-value, since the initial flow is designed to only have integer values and we
solely consider natural values for ∆. Without loss of generality we can restrict ourselves to
integer flows according to Lemma 1, even though our algorithm does not necessarily find an
optimal solution of WCP. One question we answer is to what extent the algorithm benefits
from different initial flows and different orders in which the values of ∆ are chosen. We
present different strategies in Sections 4.3 and 4.4.

The details of the algorithm (cf. Sections 4.1 and 4.2) address problems that arise from the
special structure of WCP, namely the non-linear cost function c. Firstly, in classical min-cost
flow problems, when c is linear, the cost for changing flow by a certain amount is proportional
to the amount of flow change (and the length of the respective edge) and does not depend on
the current amount of flow on that edge. Hence, there is no need for computing residual costs
for different values of ∆. Secondly, short cycles, i. e., cycles of two edges, may have non-zero
total cost in WCP (cf. cycle uv2u in Figure 1 (d)). Canceling such a cycle, however, does
not change the flow and therefore does not improve the solution. Hence, only cycles of at
least three edges (long cycles) are interesting to us because they do not contain both an edge

1 A cycle is a sequence of consecutive edges such that the first edge starts at the same vertex where the
last edge ends and such that no two edges start at the same vertex. That is, all cycles are simple. A
cycle is said to be negative if the sum of residual costs over all edges is negative.
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Figure 1 Examples of flows and corresponding residual graphs. (a) shows a wind farm graph.
Edges between turbines are of length 2, edges between the substation u and any turbine are of
length 3. (b) depicts a cost function induced by two cable types. (c) displays a feasible flow. Dashed
lines do not carry any flow. The thickness of solid lines represents the necessary cable type to carry
the respective flow. (d) is the residual graph for the flow in (c) and ∆ = 1. The super substation
is omitted for ease of presentation. There are three negative cycles: uv2u, uv2v1u, and uv3v2u.
(e) shows the flow obtained by sending one unit of flow along uv3v2u in (c). (f) is the residual graph
for (e) and ∆ = 1. (g) depicts the flow obtained by sending one unit of flow along uv2v1u in (c).
(h) displays the residual graph for (g) and ∆ = 1.

and its reverse. Finding any negative cycle can be done in polynomial time but finding long
negative cycles is NP-hard for general directed graphs [15, Theorem 4 for k = 3]. Thirdly,
the order of canceling cycles matters (Figure 1 (c) – (g)). In (d), there are two long negative
cycles: uv2v1u and uv3v2u. After canceling uv3v2u (Figure 1 (e)), the other cycle uv2v1u

is not negative anymore. Ultimately, Figure 1 (e) and (f) show that the non-existence of
negative cycles in (all) residual graphs does not imply that the underlying flow is optimal
– contrary to min-cost flow problems with linear cost functions. In other words, there are
flows that represent local but not global minima.

4.1 Detecting Long Negative Cycles
We assume that the reader is familiar with the standard Bellman-Ford algorithm [3, 9], which
is a common approach to finding negative cycles. We observed in preliminary experiments
that it mostly reports short cycles even if long cycles exist. The reason is that negative
residual costs on an edge are repeatedly used if the cost of the reverse edge is, say, zero. In
that case, the negative residual cost strongly influences the distance labels on close vertices
and overshadows long cycles (see cycle uv2u in comparison to cycle uv2v1u in Figure 1 (d)).

One solution is to prohibit propagating the residual cost of an edge over its reverse edge.
To this end, we employ the Bellman-Ford algorithm on the subgraph L of the directed line
graph2 of R which we obtain from the line graph by removing all edges representing U-turns,
i. e., edges of the form (e, ē) for e ∈ E(R). We define the cost of an edge (e1, e2) in L as γ(e2).
At every vertex e of L we maintain a distance label `(e) initialized as γ(e). Thus, throughout

2 The line graph L(G) of a directed graph G shows which edges are incident to each other. It is defined
by V (L(G)) = E(G) and E(L(G)) = {((u, v), (v, w)) : (u, v), (v, w) ∈ E(G)}.
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the Bellman-Ford algorithm, `(e) represents the length of some walk3 in L starting at any
vertex of L and ending at e. By construction of L, the label `(e) also stands for some walk in R
which ends at the target vertex of e and which does not traverse an edge of R directly after its
reverse. Consequently, a cycle C in L corresponds to a closed walk W without U-turns of the
same cost in R. In particular, W is not a short cycle, which is what we wanted. It may still
occur, however, that W includes an edge and its reverse. In that case, W consists of more
cycles that may be negative themselves. Therefore, we decompose the closed walk W into
cycles, which, in turn, can be canceled one after another. For more details, refer to Section 4.2.

A downside of running the Bellman-Ford algorithm on the line graph is that more labels
have to be stored and the running time of the algorithm is in O(|V (L)| · |E(L)|), which
is worse than the running time on R. We present how to implement an algorithm that
directly works on R, that is equivalent to the Bellman-Ford algorithm on L, and that has the
asymptotic running time as the original Bellman-Ford algorithm on R. When running the
Bellman-Ford algorithm on L, there is one label for every vertex of L. Each of those labels
gives rise to a label on an edge of R. The labels at incoming edges of v ∈ V (R) are used to
compute the labels at outgoing edges of v. Let (v, w) and (v, x) be two edges leaving v. Let
us assume that (x, v) has the smallest label of all edges entering v. Then, (x, v) is used to
relax (v, w). But it cannot be used to relax (v, x). To do so, we need the second smallest
label of all edges entering v. This yields the following observation.

I Observation 2. For each vertex v of R only the two smallest labels of incoming edges of v
are required to correctly update the labels on outgoing edges of v.

Consequently, throughout our modified version of the Bellman-Ford algorithm, we main-
tain two distance labels `1(v) and `2(v), and two parent pointers parent1(v) and parent2(v)
for every v ∈ V (R), respectively. As above, `i(v) with i = 1, 2 stands for the length of a
U-turn-free walk whose first edge is arbitrary and whose last edge is (parenti(v), v). That
means that the parent pointers hold the edges that have been used to build the values of the
distance labels. The algorithm ensures that parent1(v) 6= parent2(v) and `1(v) ≤ `2(v) for
every v ∈ V (R). If, during a relaxation step, several incumbent labels and a newly computed
candidate label have the same value, we break ties in favor of the older labels – as in the
original algorithm. With Observation 2 we show reduced bounds for the number of iterations
and the overall running time compared to a straightforward implementation on L.

I Theorem 3. If after 2 · |V (R)| iterations there is an edge whose label can still be reduced,
then there is a negative cycle in L.

I Corollary 4. A negative cycle in L can be computed in O(|V (R)| · |E(R)|) time if one exists.

4.2 Algorithm in Detail
The previously described Bellman-Ford algorithm on L is encapsulated in Algorithm 1. We
first compute some initial flow (line 1) using one of eight initialization strategies presented in
Section 4.3. In line 3 we compute the residual graph R using a given flow f and a given ∆
and run the modified Bellman-Ford algorithm (line 4). In the repeat-loop, we consider one
edge after another and check in line 7 if it can be relaxed (again) after the Bellman-Ford
algorithm. In that case, we extract a walk W in R with negative costs leading to that edge

3 A walk is a sequence of consecutive edges. A walk is called closed if the start vertex of the first edge
equals the target vertex of the last edge. In particular, every cycle is a closed walk.
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by traversing parent pointers. However, canceling W directly may not always improve the
costs of the flow as W may still contain an edge and its reverse. We decompose W into a set
of simple cycles C = {C1, . . . , Ck} in line 8 and cancel each cycle independently if it is long
and has negative costs (lines 9 to 12). Note that even though W has negative costs, it may
happen that only short cycles in C have negative costs and all long cycles have non-negative
costs. In this case we search for another negative cycle in L (line 13).

If no negative cycle in the current graph L is canceled, a new value for ∆ is determined
according to the delta strategy (cf. Section 4.4) in line 14 and new residual costs γ are
computed. Line 14 also checks if every possible value for ∆ has been used after the last
update of f without improving the solution. If so, f is returned.

We apply two well-known speed-up techniques to the Bellman-Ford algorithm. Firstly, if
one iteration does not yield any update of any label, then the computation is aborted and
no negative cycle can be found in the current residual graph. Secondly, after sorting edges
by start vertices, we track whether the labels at a vertex v have been updated since last
considering its outgoing edges. If not, then there is no need to relax the outgoing edges.

Algorithm 1 Negative Cycle Canceling.

Input: Graph G, costs c, edge lengths len
Result: A feasible flow f in G

1 f := InitializeFlow(G, len), ∆ := InitialDelta
2 while ∆ 6= NULL do
3 (R, γ) := ComputeResidualGraph(G, c, f,∆)
4 RunBellmanFord(R, γ)
5 found := false
6 foreach e ∈ E(R) do
7 W := FindNegativeClosedWalk(R, e)
8 C := DecomposeWalkIntoCycles(W )
9 foreach C ∈ C do

10 if |C| ≥ 3 and γ(C) < 0 then
11 f := AddFlowOnCycle(f, C,∆)
12 found := true

13 if found then break
14 ∆ := NextDelta(∆, found)
15 return f

4.3 Initialization Strategies
Before we can start searching for and canceling negative cycles, we need some feasible initial
flow. To obtain such a flow, we consider eight strategies, which all roughly work as follows.
We pick a turbine u whose production has not been routed to a substation yet. We then
search for a shortest path P from u to a substation v with free capacity using Dijkstra’s
algorithm [8]. The search only considers edges on which the production of the turbine can
be routed, i. e., it ignores congested edges. We then route the production of u along P to v.

We consider two metrics to compute shortest paths. Either we use the lengths defined
by len (cf. Section 3) or we assume a length of 1 for every edge. Turbine production can either
be routed to a nearest or a farthest (in the sense of the respective metric) substation with
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free capacity. There are two ways in which the flow is updated: The simpler variant routes
only the production of u along P , i. e., the flow along P is increased by 1. The other variant
greedily collects as much production from u and other turbines on P as possible without
violating any capacity constraints. The resulting flows are integral since the substation
capacities and the maximum cable capacity are natural numbers. If no feasible flow of finite
cost is found during the initialization, the algorithm returns without a result.

This yields eight initialization strategies, which we name as follows. The base part of
each name is either BFS if unit distances are used or Dijkstra (abbr. Dijk) if the distances
given by len are used. This part is followed by a suffix specifying the target substation:
Any (abbr. A) for the nearest and Last (abbr. L) for the farthest substation. An optional
prefix of Collecting (abbr. C) means that the production is greedily collected along shortest
paths. For example, CollectingDijkstraLast (abbr. C-Dijk-L) iterates over all turbines
and for each turbine u it finds the substation v such that the shortest path given by len
from u to v is longest among all substations. Along a shortest path from u to v, turbine
production is collected greedily.

4.4 Delta Strategies
A delta strategy consists of two parts: an initial value for ∆ and a function that returns the
value of ∆ for the following iteration. We discuss eight delta strategies. The simplest one
starts with ∆ = 1 and increments ∆ until a negative cycle is canceled. Then, ∆ is reset to 1.
We call this strategy Inc (as in increasing). Similarly, Dec (as in decreasing) starts with the
largest possible value for ∆, which is twice the largest cable capacity. Then, ∆ is decremented
until a cycle is canceled and reset to the largest value. The third strategy IncDec behaves like
Inc until a negative cycle is canceled. Then, it decrements ∆ until ∆ = 1 and behaves like
Inc again. To improve performance, all ∆ can be skipped during incrementation up to the
last value of ∆ for which a negative cycle was canceled. The fourth strategy Random returns
random natural numbers between one and the maximum possible value for ∆. Between any
two cycle cancellations, no value is repeated.

For each strategy, we consider the following modification: After canceling a negative cycle,
we retain the current value of ∆, recompute the residual costs with the new flow, and run
the Bellman-Ford algorithm again. We repeat this, until ∆ does not yield a negative cycle.
In that case, ∆ is changed according to the respective delta strategy. We call the strategies
after the modification StayInc, StayDec, StayIncDec, and StayRandom (or S-Inc, S-Dec,
S-IncDec, and S-Random for short).

5 Experimental Evaluation

In the previous sections, we introduce a heuristic with various strategies for the WCP. We first
use statistical tests to evaluate these strategies and identify the best ones. Using the result
we compare the best variant (i. e., best combination of initialization and delta strategy) with
different base line algorithms for the WCP namely solving an exact MILP formulation and
a Simulated Annealing algorithm [17]. In preliminary experiments a comparison of the MILP
solvers Gurobi and CPLEX shows that Gurobi tends to produce better solutions. We therefore
use Gurobi to solve the MILP formulation. However, getting an optimal solution takes too
long in almost all instances. Thus, we restrict Gurobi to different maximum running times.

For our evaluation we use benchmark sets for wind farms from the literature [17] con-
sisting of wind farms of different sizes and characteristics: small wind farms with exactly one
substation (N1: 10–79 turbines), wind farms with multiple substations (N2: 20–79 turbines,
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Table 1 Comparison of delta strategies over all initialization strategies. An entry in row i and
column j shows on how many instances strategy i produces better solutions than strategy j. Values
are marked by a star if they are significant with p < 10−2 and by two stars if p < 10−4. The best
strategy is marked in green.

Inc Dec IncDec Random S-Inc S-Dec S-IncDec S-Random
Inc — 64.1 %?? 46.2 % 58.1 %?? 53.5 % 64.0 %?? 52.0 % 56.9 %?

Dec 35.9 % — 34.3 % 43.1 % 37.1 % 49.2 % 35.1 % 39.6 %
IncDec 53.8 % 65.7 %?? — 59.1 %?? 55.2 % 64.3 %?? 52.7 % 57.9 %??

Random 41.9 % 56.9 %? 40.9 % — 46.9 % 56.3 %? 44.1 % 44.8 %
S-Inc 46.5 % 62.9 %?? 44.8 % 53.1 % — 59.1 %?? 46.4 % 52.9 %
S-Dec 36.0 % 50.8 % 35.7 % 43.7 % 40.9 % — 38.6 % 42.1 %
S-IncDec 48.0 % 64.9 %?? 47.3 % 55.9 % 53.6 % 61.4 %?? — 55.4 %
S-Random 43.1 % 60.4 %?? 42.1 % 55.2 % 47.1 % 57.9 %?? 44.6 % —

N3: 80–180 turbines, N4: 200–499 turbines), and complete graphs (N5: 80–180 turbines).
Our code is written in C++14 and compiled with GCC 7.3.1 using the -O3 -march=native
flags. All simulations are run on a 64-bit architecture with four 12-core CPUs of AMD clocked
at 2.1 GHz with 256 GB RAM running OpenSUSE Leap 15.0. We use Gurobi 8.0.0 and all com-
putations are run in single-threaded mode to ensure comparability of the different algorithms.

5.1 Comparing Variants of our Algorithm
In a first step, we want to determine which delta strategy works best. To this end, we
randomly select 200 instances per benchmark set. We run our algorithm on each instance
with every pair of delta and initialization strategy. We first observe that all variants are fast,
with running times between tenths of milliseconds to 4.5 minutes on large instances in the
worst case. Since all variants have similarly small running times, we base our decision which
variant to choose solely on their solution qualities.

To compare the variants in terms of solution quality, we compute for each delta strategy i
and instance m the mean X(i)

m of the solution values over all eight initialization strategies.
This gives us 1000 data points per delta strategy. For delta strategies i, j we perform a
Binomial Sign Test counting instances with X(i)

m < X
(j)
m and X(j)

m < X
(i)
m , that means for

this test we are rather interested in whether strategy i performs better than strategy j on
instance m and not by how much i is better than j on m. Table 1 summarizes the results
of all tests after Bonferroni-correction by 112 (the number of tests from both delta and
initialization strategies). The percentage given in an entry in row i and column j states on
how many instances i performes strictly better than j after averaging over all initialization
strategies. Note that entries (i, j) and (j, i) need not represent 1000 instances, as two variants
may return equal solution values.

In the row IncDec, all values are above 50 %, four of which are significant at the 10−4-level.
The smallest value (52.7 % in column StayIncDec) stands for 481 instances on which IncDec
performs better than StayIncDec. To the contrary, there are 431 instances on which
StayIncDec yields better solutions (cf. entry 47.3 % in row StayIncDec and column IncDec).
While the differences between the four delta strategies involving Inc and IncDec are not
statistically significant, IncDec does seem to have a slight advantage over the others. Hence
we consider IncDec as the best delta strategy.

In Figure 2 (left), for the dark green curve all instances are ordered by X(Random)
m /X

(IncDec)
m

in ascending order. For a given value α on the abscissa, the curve shows the relative cost
factor of the instance at the α-quantile in the computed order. The other curves work



S. Gritzbach, T. Ueckerdt, D. Wagner, F. Wegner, and M. Wolf 55:11

0.995

1.000

1.005

1.010

0 20 40 60 80 100
Instances in %

R
el

at
iv

e
C

os
ts

Inc

S-Inc

Dec

S-Dec

IncDec

S-IncDec

Rand

S-Rand

0.99

1.00

1.01

1.02

0 20 40 60 80 100
Instances in %

R
el

at
iv

e
C

os
ts

Dijk-A

Dijk-L

BFS-A

BFS-L

C-Dijk-A

C-Dijk-L

C-BFS-A

C-BFS-L

Figure 2 Evaluation of the NCC Algorithm using different strategies. For each strategy and for
each instance, the ratio of the best solution value found by that NCC variant to the best solution value
found by the reference variant (marked in red) are computed. They are shown in increasing order.
The dashed lines represent the 25% and 75% quantiles of the instances. Left: The delta strategies are
presented relative to the IncDec strategy. Solution values represent the average over all initialization
strategies. Right: The initialization strategies are presented relative to the CollectingDijkstraAny
strategy with fixed delta strategy IncDec.

accordingly. We see, for example, that IncDec works strictly better than StayInc on 50.9 %
of all instances and on 7.3 % of all instances IncDec outperforms Inc by at least 0.5 % in
cost ratio. The minimum ratios range between 0.868 (Random) and 0.918 (StayIncDec) and
the maximum ratios are between 1.069 (StayDec) and 1.126 (StayIncDec).

Next, we want to find an initialization strategy after fixing IncDec as the delta strategy.
We pair each initialization strategy with IncDec on the same 1000 instances. Table 2
summarizes the results of all pairwise tests after Bonferroni-correction with factor 112.
We see that initialization strategies that route turbine production to the nearest substa-
tions outperform their counterparts choosing the farthest substations. Among the former,
strategies using Euclidean distances work significantly better than strategies involving BFS.
In Figure 2 (right) we depict ratios of solution values compared to CollectingDijkstraAny.
The minimum ratios are between 0.65 and 0.72 for all initialization strategies other than
DijkstraAny, which is at 0.971. The maximum ratios range between 1.05 and 1.10 for
DijkstraAny, BFSLast, and CollectingBFSLast and are around 1.17 for all others. We
see that for the main part there is hardly any difference between collecting strategies
and their non-collecting counterparts. It stands out that on roughly 40 % of all instances
CollectingDijkstraAny is better than BFSAny and CollectingBFSAny by 0.5 % and better
than BFSLast and CollectingBFSLast by 1 %. CollectingDijkstraAny has a slight but
not significant advantage over DijkstraAny. We therefore declare CollectingDijkstraAny
paired with IncDec as our best variant.

Table 3 shows the running time characteristics of CollectingDijkstraAny paired with
IncDec. Running times range between tenths of milliseconds to under two minutes.
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Table 2 Comparison of the initialization strategies when the delta strategy IncDec is fixed. An
entry in row i and column j shows on how many instances strategy i produces better solutions
than strategy j. Values are marked by a star if they are significant with p < 10−2 and by two stars
if p < 10−4. The best strategy is marked in green.

Dijk-A BFS-A C-Dijk-A C-BFS-A Dijk-L BFS-L C-Dijk-L C-BFS-L
Dijk-A — 65.5 %?? 47.5 % 66.8 %?? 88.9 %?? 76.7 %?? 85.3 %?? 76.1 %??

BFS-A 34.5 % — 32.7 % 50.2 % 70.2 %?? 66.2 %?? 68.5 %?? 64.4 %??

C-Dijk-A 52.5 % 67.3 %?? — 66.9 %?? 88.7 %?? 78.1 %?? 88.4 %?? 77.9 %??

C-BFS-A 33.2 % 49.8 % 33.1 % — 71.5 %?? 64.7 %?? 69.6 %?? 65.7 %??

Dijk-L 11.1 % 29.8 % 11.3 % 28.5 % — 41.9 % 46.7 % 42.6 %
BFS-L 23.3 % 33.8 % 21.9 % 35.3 % 58.1 %?? — 56.6 %? 51.5 %
C-Dijk-L 14.7 % 31.5 % 11.6 % 30.4 % 53.3 % 43.4 % — 43.5 %
C-BFS-L 23.9 % 35.6 % 22.1 % 34.3 % 57.4 %? 48.5 % 56.5 %? —

Table 3 Minimum, average and maximum of running times in milliseconds of the best NCC
variant IncDec, CollectingDijkstraAny. Running time measurement starts before the initial flow
is computed and ends with the termination of the algorithm prior to outputting the solution.

N1 N2 N3 N4 N5

min 0.46 3.40 183 3.0k 1.9k
avg 36.0 53.2 717 27.3k 14.0k
max 215 314 3.1k 89.6k 106k

5.2 Comparing our Best Variant with Gurobi

We compare our algorithm in its best variant, i. e., CollectingDijkstraAny with IncDec,
with Gurobi on a MILP formulation which uses a binary variable for each edge and cable
type to model the step cost function. We randomly select 200 instances per benchmark set
from the benchmark sets in [17].

In Figure 3 we plot the ratio of the best solution value found by our algorithm to Gurobi’s
best solution at running times of two seconds, one hour, and one day for each benchmark set
separately. As mentioned before, these running times represent both interactive and non-
time-critical planning. Since our algorithm terminates in under two minutes, the comparisons
in Figure 3 (middle and right) use the solution our algorithm provides at termination. While
discussing the plots, we also discuss the so-called relative gaps, a standard notion from
Mixed-integer Linear Programming. From the one-day MILP experiments we know a
proven lower bound (lb) on the optimal solution value for each instance. For any instance,
any maximum running time and for both the MILP and the NCC algorithm take best solution
value (ub) found at the maximum running time and compute ub−lb/ub. This value is in the
unit interval and gives information on how “bad” the solution value can be compared to the
(unknown) optimal value. Note, however, that a solution might be optimal even though the
gap is positive. We refer to the relative gaps as MILP gap and NCC gap, respectively.

After two seconds our algorithm outperforms Gurobi on all benchmark sets except N4
and produces better solutions on 89 % of the instances across all benchmark sets. On N1 the
NCC gaps are on average 14.1 % with a maximum of 24.8 % compared to MILP gaps of 16.9 %
on average and at most 43 %. For N3, the NCC gaps are on average 37.8 % with a spread
of only seven percentage points, compared to a mean of 34.6 % and a maximum of 45.4 %
for the MILP gap. The values for N2 range between those for N1 and N3. The ratios of
solution values range between 0.699 and 1.019 for N1, N2, and N3. On N4, which contains
the largest instances, our algorithm computes better solutions on 62 % of the instances.
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Figure 3 Comparison of the NCC algorithm to Gurobi on 200 instances per benchmark set. The
ordinate shows the ratio of objective values at various maximum running times of our algorithm to
objective values of Gurobi. Running times: Left: two seconds, Middle: one hour, Right: one day.

However, on six instances Gurobi does not find a solution. The instances on which Gurobi
is better are on average larger than the other instances in N4. There are 16 instances on
which the ratio of solution values exceeds 1.1 with a maximum of 1.223. On those very large
instances, detecting negative cycles takes longer and fewer iterations are performed in two
seconds. The NCC gaps spread between 31.4 % and 57.4 % with an average of 42.6 %. The
MILP gaps are even worse with a mean value of 48.2 % and 18 instances above 88.5 %. On
the complete graphs of N5, our algorithm produces solutions that are at least 75 % cheaper
than Gurobi’s on all but one instance (which has a ratio of 0.420). The gaps, however, are
on average at 53.2 % for the NCC algorithm and at 99.2 % for Gurobi. The large spread in
solution values indicates that both Gurobi and our algorithm seem unable to reliably find
good solutions within a maximum running time of two seconds.

Within one hour (middle plot in Figure 3) Gurobi finds better solutions than our algorithm
on a majority of the instances in all benchmark sets except N4. There our algorithm still
yields better solutions in 57.5 % of the instances. However, our algorithm is within 1 %
of Gurobi’s best solution on 85.9 % and within 2 % on 96.8 % of all instances. Only on
four of 1000 instances (all in N5), the ratio exceeds 1.10 with a maximum of 1.203. That
means, our algorithm is comparable to Gurobi in solution quality but much faster since it
terminates in under two minutes. We make similar observations for running times of one
day (right plot in Figure 3). While our algorithm is at least as good as Gurobi only on
between 7 % (N4) and 38.5 % (N1) of the instances, it is within 1 % of Gurobi’s solution
on 77.6 % of all instances. Again, there are only four instances with a ratio worse than 1.10
with a maximum of 1.210. Our algorithm does not profit from long running times since
it gets stuck in local minima. Thus, the MILP solver is the better choice if more time is
available. Between running times of one hour and day, the gaps look vastly the same and
there is hardly any difference between NCC gaps and MILP gaps. They range between zero
and 25.0 % on N1, clot around 28 % for N3 and N4 and around 34 % for N5 with seven
outliers to the worse by the NCC algorithm.
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Figure 4 Comparison of Negative Cycle Canceling algorithm to the Simulated Annealing algorithm
on 200 instances per benchmark set. The ordinate represents the ratio of objective values at different
maximum running times of our algorithm to objective values of the Simulated Annealing algorithm.
Left: Running time of two seconds. Right: Running time of one hour.

5.3 Comparison to Metaheuristic Simulated Annealing

We compare our best algorithm variant with the best variant of a Simulated Annealing (SA)
algorithm [17]. We run the SA algorithm on 200 randomly selected instances per benchmark
set (independently selected from other experiments). We compare the best solutions found
after two seconds and one hour (Figure 4). After two seconds, our algorithm outperforms the
SA algorithm on all instances from N3 and on 74.5 % and 86.5 % on N1 and N2, respectively.
The minimum ratios are 0.381 for N1 and around 0.90 for N2 and N3 with one instance in N2
where the SA algorithm does not find a solution. The maximum ratio on those benchmark
sets is at most 1.024. On the larger instances of N4 and N5, our algorithm presumably
cannot perform sufficient iterations, as the SA algorithm is better on 70 % of those instances.
Yet, the SA algorithm does not find feasible solutions on 38.5 % of instances from N5. The
ratios have a wide spread: from 0.203 to 1.256 for N4 and 0.788 to 1.482 for N5 (save for
the instances without a solution from the SA algorithm). After one hour, the SA algorithm
provides better solutions than our algorithm on 83 % and 90.5 % of instances from N2 and
N3, respectively. Our algorithm, however, stays within 1 % in solution quality on 77 % on
the benchmark sets N1–N3. Again, our algorithm seems to be stuck in local minima. On
N4 and N5, our algorithm performs better than the SA algorithm on 65.5 % and 56.5 %,
respectively. Apparently, the SA algorithm needs more time to explore the solution space.
The minimum ratios of solution values are as low as 0.716 for N1 and between 0.908 and 0.996
for the other benchmark sets. The maximum ratios are at most 1.055 for all benchmark sets
except N5 (1.179). This supports our findings from the MILP experiments that our algorithm
is competitive to other approaches to solving WCP within very short amounts of time. In
view of an interactive planning process, it stands out that the SA algorithm struggles to find
solutions quickly in dense graphs.
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6 Conclusion

Based on recently presented ideas [14] we propose and compare numerous variants of a
Negative Cycle Canceling heuristic for the Wind Farm Cabling Problem. While all
variants run in the order of milliseconds up to 4.5 minutes, they differ significantly in quality.
We identify the best variant and use it to compare our heuristic to the MILP solver Gurobi
and a Simulated Annealing algorithm from the literature. With these comparisons we are
able to solve several open questions [14]. While the MILP solver Gurobi has the potential
to find optimal solutions if it runs long enough, our heuristic is able to find solutions of
comparable quality in only a fraction of the time. Our algorithm beats Gurobi in finding
good solutions in a matter of seconds. We make similar observations when we compare
ourselves with a Simulated Annealing approach.

Moving forward, one may investigate how to improve the solution quality of our heuristic.
Visually comparing flows from our algorithm and other solution methods may help to identify
what kind of more complex circulations improve the solution. It then remains to investigate
how these circulations can be detected. Also, methods for escaping local minima such as
temporarily allowing worse solutions could help to improve our algorithm. It also remains
open whether one can prove any theoretical guarantees on the solution quality or the number
of iterations. Along the same lines, any theoretical insights on why one delta or initialization
strategy works better than another, or on the order in which cycles should be canceled could
help improve the NCC algorithm.

In a broader algorithmic view, the heuristic can be easily generalized to minimum-cost
flow problems with other types of cost functions provided that one searches for integral flows.
It would be interesting to see how well the heuristic performs there.
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Abstract
We study the traveling salesman problem (TSP) in the case when the objective function of the
subtour linear programming relaxation is minimized by a half-cycle point: xe ∈ {0, 1

2 , 1} where
the half-edges form a 2-factor and the 1-edges form a perfect matching. Such points are sufficient
to resolve half-integer TSP in general and they have been conjectured to demonstrate the largest
integrality gap for the subtour relaxation.

For half-cycle points, the best-known approximation guarantee is 3
2 due to Christofides’ famous

algorithm. Proving an integrality gap of α for the subtour relaxation is equivalent to showing
that αx can be written as a convex combination of tours, where x is any feasible solution for this
relaxation. To beat Christofides’ bound, our goal is to show that ( 3

2 − ε)x can be written as a convex
combination of tours for some positive constant ε. Let ye = 3

2 − ε when xe = 1 and ye = 3
4 when

xe = 1
2 . As a first step towards this goal, our main result is to show that y can be written as a

convex combination of tours. In other words, we show that we can save on 1-edges, which has several
applications. Among them, it gives an alternative algorithm for the recently studied uniform cover
problem. Our main new technique is a procedure to glue tours over proper 3-edge cuts that are
tight with respect to x, thus reducing the problem to a base case in which such cuts do not occur.
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1 Introduction

In the traveling salesman problem (TSP) we are given a complete graph G = (V,E)
together with a vector c ∈ RE≥0 of edge costs satisfying the triangle inequality: cuv+cvw ≥ cuw
for u, v, w ∈ V . The goal is to find a minimum cost Hamiltonian cycle of G. The following
formulation is a classic linear programming relaxation for TSP [9].

min{
∑
e∈E

cexe :
∑

u∈V \{v}

xvu = 2 for v ∈ V ,
∑

v∈S,u/∈S

xvu ≥ 2 for ∅ ⊂ S ⊂ V , x ∈ RE≥0}.
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Let Subtour(G) denote the feasible region of this relaxation. We will refer to
∑
e∈E cexe

as the objective function. A tour of G is a connected, spanning, Eulerian multi-subgraph of
G. It is well known that due to the triangle inequality on the edge costs, a tour of G can
be turned into a Hamiltonian cycle of G of no greater cost. For any x ∈ Subtour(G), the
vector 3

2x can be decomposed into a convex combination of tours of G. This follows from a
polyhedral analysis of Christofides’ famous 3

2 -approximation algorithm [7, 21, 20]. For a point
x ∈ Subtour(G), define Gx = (V,Ex = {e ∈ E : xe > 0}) to be the support graph of x. Let
TSP(Gx) be the convex hull of characteristic vectors of tours of Gx. The following conjecture
is well-known and widely studied and implies a 4

3 -approximation algorithm for TSP.

I Conjecture 1 (The Four-Thirds Conjecture). If x ∈ Subtour(G), then 4
3x ∈ TSP(Gx).

However, more than four decades after the publication of Christofides’ algorithm, there is
still no ( 3

2 − ε)-approximation algorithm known for TSP. For special cases, there has been
some progress in the past few years. For example, in the unweighted case where the edge
costs correspond to the shortest path metric of an unweighted graph, a series of papers
improved the 3

2 factor to 7
5 [16, 15, 19].

One interesting special case of weighted TSP is when the solution x ∈ Subtour(G) that
minimizes the objective function is half-integer. In the unweighted case, if a half-integer
point x ∈ Subtour(G) minimizes the objective function, then there is a 4

3 -approximation
algorithm for TSP [15].

I Problem 2 (Half-integer TSP). For x ∈ Subtour(G)∩{0, 1
2 , 1}

E, henceforth a half-integer
point, show αx ∈ TSP(Gx) for constant α ∈ [1, 3

2 ).

Consider a half-integer point x ∈ Subtour(G)∩{0, 1
2 , 1}

E and let Hx = {e ∈ E : xe = 1
2}

and Wx = {e ∈ E : xe = 1}. Carr and Vempala showed that in Problem 2, we can assume
without loss of generality a stronger condition for x ∈ Subtour(G): a half-integer Carr-
Vempala point is a half-integer point such that the support graph Gx is a cubic graph and
for every vertex u ∈ V , there is exactly one edge e incident on u with xe = 1 and two edges
f, g incident on u with xf = xg = 1

2 . Moreover, Hx forms a Hamilton cycle of Gx, and
Wx forms a perfect matching of Gx. If for any half-integer Carr-Vempala point x we have
αx ∈ TSP(Gx), then for any half-integer point y we have αy ∈ TSP(Gy) [6, 4].

We consider a generalization of a half-integer Carr-Vempala point called a half-cycle point,
which is a half-integer point x ∈ Subtour(G) such that the graph Gx is a cubic graph and
for every vertex u ∈ V , there is exactly one edge e incident on u with xe = 1 and two edges
f, g incident on u with xf = xg = 1

2 . This implies that Hx, the half-edges in Gx, forms a
2-factor of G (in which the minimum cycle length is three). Formally, we define a half-cycle
point as follows.

I Definition 3. A vector x ∈ Subtour(G) is called a half-cycle point if the support graph
Gx of x is cubic and 2-edge-connected and xe ∈ {1, 1

2} for all e ∈ Ex.

Half-cycle points have been studied in restricted cases when all cycles in the 2-factor are
triangles [2, 3] or squares [4, 11]. Schalekamp, Williamson and van Zuylen conjectured that
the largest gap between Subtour(G) and TSP(Gx) occurs for half-cycle points in which
the 2-factor consists of odd-cycles [17].1 We can restate Problem 1 as follows.

1 Their precise conjecture is that instances of TSP that have an optimal solution x ∈ Subtour(G) that is
also an optimal fractional 2-matching exhibit the largest integrality gap for Subtour(G). The extreme
points of the fractional 2-matching polytope are half-cycle points in which all cycles in the 2-factor
are odd [1].
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I Problem 4 (Half-integer TSP). Let x ∈ RE≥0 be a half-cycle point. Show αx ∈ TSP(Gx)
for constant α ∈ [1, 3

2 ).

We can also state Problem 4 in different way.

I Problem 5 (Half-integer TSP). Let x ∈ RE≥0 be a half-cycle point. Define vector y ∈ REx

as follows: ye = 3
2 − ε for e ∈ Wx and ye = 3

4 − δ for e ∈ Hx. Show there exists constants
ε, δ > 0 such that y ∈ TSP(Gx).

The aforementioned polyhedral analysis of Christofides’ algorithm implies the following
theorem.

I Theorem 6 ([7, 21, 20]). Let x ∈ RE≥0 be a half-cycle point. Define vector y ∈ REx as
follows: ye = 3

2 for e ∈Wx and ye = 3
4 for e ∈ Hx. Then y ∈ TSP(Gx).

Our main result is the following.

I Theorem 7. Let x ∈ RE≥0 be a half-cycle point. Define vector y ∈ REx as follows:
ye = 3

2 −
1
20 for e ∈Wx and ye = 3

4 for e ∈ Hx. Then y ∈ TSP(Gx).

While Theorem 7 is not strong enough to resolve Problem 5 (and therefore Problem 4),
it does have several applications. For example, given an edge cost function c for which a
half-cycle point x ∈ Subtour(G) minimizes the objective function, if the total edge costs of
the 1-edges is a constant fraction of the total cost of the half-edges, then by Theorem 7, we
obtain an approximation factor better than 3

2 .
Another application is related to the problem of uniform covers posed by Sebő [18]. Let x

be a cubic point if x ∈ Subtour(G)∩{0, 2
3}. Observe that Gx is cubic and 3-edge-connected.

I Problem 8 (Uniform cover problem). Let x be a cubic point. Show that αx ∈ TSP(Gx) for
constant α ∈ [1, 3

2 ).

Recently, Haddadan, Newman and Ravi gave a positive answer to Problem 8 and showed
α ≤ 27

19 ≈ 1.421 [13]. Previously, Boyd and Sebő had shown that α ≤ 9
7 ≈ 1.286 if Gx

is additionally Hamiltonian [4]. In fact, Theorem 7 gives an alternative way to answer
Problem 8.

I Lemma 9. Let x be a half-cycle point. Define vector y ∈ REx as follows: ye = 3
2 − ε for

e ∈Wx and ye = 3
4 − δ for e ∈ Hx for constants ε, δ ≥ 0. Suppose y ∈ TSP(Gx). Then for

any cubic point z, we have αz ∈ TSP(Gz) for α = 3
2 −

ε
2 − δ.

In other words, suppose that we can save either on the 1-edges or on the half-edges. Then
we can solve the uniform cover problem. Moreover, Theorem 7 can be used to slightly improve
the currently best-known factors for Problem 8. The proofs of Lemma 9 and Theorem 10
can be found in the full version [12].

I Theorem 10. Let x be a cubic point. Then αx ∈ TSP(Gx) for α = 1.416. If Gx is
Hamiltonian, then 1.279x ∈ TSP(Gx).

On a high level, our proof of Theorem 7 is based on Christofides’ algorithm: We show
that a half-cycle point x can be written as a convex combination of spanning subgraphs with
certain properties and then we show that vector y ∈ REx , where ye = 9

20 for e ∈ Wx and
ye = 1

4 for e ∈ Hx, can be used for parity correction. Our main new tool is a procedure to
glue tours over critical cuts. For S ⊂ V , let δ(S) ⊂ Ex denote the subset of edges crossing
the cut (S, V \ S).

ESA 2019
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I Definition 11. Let x be a half-cycle point. A proper cut2 S ⊂ V in Gx is called critical
if |δ(S)| = 3 and δ(S) contains exactly one edge e with xe = 1. Moreover, for each pair of
edges in δ(S), their endpoints in S (and in V \ S) are distinct.

Observe that a critical cut in Gx is a proper 3-edge cut that is tight: the x-values of the
three edges crossing the cut sum to 2. Thus, critical cuts are difficult to handle using an
approach based on Christofides’ algorithm. In particular, using ( 1

2 − ε)x would be insufficient
for parity correction of a critical cut if it is crossed by an odd number of edges in the
spanning subgraph.

Applying our gluing procedure, we can reduce TSP on half-cycle points to a problem
(i.e., base case) where there are only two types of tight 3-edge cuts. The first type of cut is a
vertex cut, which we show are easier to handle. In particular, the parity of vertex cuts can
be addressed with a key tool used by Boyd and Sebő [4] called rainbow v-trees (see Theorem
17). We refer to the second type of cut as a degenerate tight cut, which is a cut S ⊂ V such
that |δ(S)| = 3, |S| > 3 and |V \ S| > 3 and the two half-edges in δ(S) share an endpoint in
either S or V \ S. (Observe that for every degenerate tight cut in Gx, there is a 2-edge cut
in Gx.) These cuts are also easier to handle. Using this in combination with a decomposition
of the 1-edges into few induced matchings (see Definition 18), which have some additional
required properties, we can prove Theorem 7 for the base case. We discuss gluing procedures
in more detail in Section 1.1.

Let us look back at Problem 2. Let x be a quartic point if x ∈ Subtour(G) ∩ {0, 1
2}.

Observe that Gx is 4-regular and 4-edge-connected. Yet another equivalent version of Problem
2 is as follows.

I Problem 12 (Half-integer TSP). Let x be a quartic point. Show αx ∈ TSP(Gx) for
α ∈ [1, 3

2 ).

If we assume that the only 4-edge cuts of Gx are its vertex cuts and the number of vertices
is even, we can answer this problem.

I Theorem 13. Let x be a quartic point. If Gx has an even number of vertices, and Gx
does not have any proper 4-edge cuts, then ( 3

2 −
1
42 )x ∈ TSP(Gx).

In the case of a quartic point, Theorem 13 could serve as the base case for if we were
able to glue over proper 4-edge cuts of Gx. However, the main difference here is that the
gluing arguments we presented for half-cycle points can not easily be extended to this case
due to the increased complexity of the distribution of patterns. The proof of Theorem 13
can be found in the full version [12].

1.1 Gluing tours over cuts
The approach of gluing solutions over (often) 3-edge cuts and thereby reducing to an instance
without such cuts has been used previously for TSP (e.g., [8]) and extensively in the case
of two related problems: the 2-edge-connected multigraph problem (2EC) and the
2-edge-connected subgraph problem (2ECSS). In 2EC, we want to find a minimum
cost 2-edge-connected spanning multi-subgraph (henceforth, multigraph for brevity), and
in 2ECSS, we want to find a minimum cost 2-edge-connected spanning subgraph (i.e., we
are not allowed to double edges). Let 2ec(Gx) and 2ecss(Gx) denote that convex hulls of
characteristic vectors of 2-edge-connected multigraphs and subgraphs, respectively, of Gx.
Observe that TSP(Gx) ⊆ 2ec(Gx) and 2ecss(Gx) ⊆ 2ec(Gx).

2 A cut S ⊂ V is proper if |S| ≥ 2 and |V \ S| ≥ 2.
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For example, consider the problem of showing 6
5x ∈ 2ecss(Gx) for a cubic point x [3].

Here, we can assume that Gx is essentially 4-edge-connected due to the following commonly
used observation. Let S ⊂ V be a subset of vertices such that |δ(S)| = 3 in Gx. We construct
graphs, GS and GS̄ by contracting the sets S̄ and S, respectively, in Gx to a pseudovertex.
Suppose that the graphs GS and GS̄ contain no proper 3-edge cuts and suppose we can write
αx restricted to the edge set of each graph as a convex combination of 2-edge-connected
subgraphs of the respective graph. Let us consider the patterns around the pseudovertices;
each vertex can be adjacent to two or three edges and therefore, there are only four possible
patterns around a vertex. Moreover, since each pattern appears the same percentage of time
(in the respective convex combinations) for each pseudovertex, tours with corresponding
patterns can be glued over the 3-edge cut. (For a more formal presentation of this argument,
see Lemma 3.3 in [11] or Case 2 in Section 3.1.2 in [14].) Thus, for 2ECSS, this gluing
procedure is quite straightforward. Gluing has also been used for 2EC, but here it is necessary
to make certain extra assumptions to control the number of patterns around a vertex, due to
the fact that the distribution of possible patterns is more complex. Carr and Ravi proved that
the vector 4

3x ∈ 2ec(Gx) for a half-integer point x [5]. To control the number of patterns so
that they can use gluing, they require some strong assumptions on the multigraphs in their
convex combinations: for example, no edge e with xe = 1

2 is doubled and some arbitrarily
chosen edge is never used.

In contrast, it appears that no such gluing procedure has been used in approximation
algorithms for TSP. Indeed, gluing proofs for 2ECSS and 2EC [5, 3, 14] can not be easily
extended to TSP for several reasons: (1) As just discussed, they are used for gluing subgraphs
(no doubled edges), while for multigraphs, there are often too many different patterns around
a vertex. (For TSP, we must allow doubled edges.) (2) They do not necessarily preserve
parity of the vertex degrees. Finally, (3) many of the results for 2ECSS and 2EC based on
gluing do not result in polynomial-time algorithms.

The main technical contribution of this paper is to show that for a carefully chosen set of
tours, we can design a gluing procedure over critical cuts. In particular, we can fix a critical
cut S ⊂ V in Gx and find a convex combination of tours for GS . Then we can find a set of
tours for GS̄ such that the distribution of patterns around the pseudovertex corresponding
to S matches that of the pseudovertex corresponding to S̄ in GS . This is done by separately
matching the pattern for the spanning subgraphs and for the parity correction. In fact, while
each vertex may have a different set of patterns around it, we show that the patterns around
each vertex can be encapsulated by a single parameter: the fraction of times in the convex
combination of spanning subgraphs that a vertex is a leaf. There can be some flexibility in
this degree distribution for some arbitrarily chosen vertex, and this is what we exploit to
sufficiently control the patterns around a pseudovertex to enable gluing.

1.2 Definitions, tools and notation
I Definition 14. Let G = (V,E) be a graph. For a vertex v ∈ V , a v-tree of G is a subset
F of E such that |F ∩ δ(v)| = 2 and F \ δ(v) induces a spanning tree of V \ {v}.

Denote by v-tree(G) the convex hull of incidence vectors of v-trees of G. The v-tree(G)
is characterized by the following linear inequalities.

v-tree(G) ={x ∈ [0, 1] : x(δ(v)) = 2,
x(E[U ]) ≤ |U | − 1 for all ∅ ⊂ U ⊆ V \ {v}, x(E) = |V |}.
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I Definition 15. Let G = (V,E) and v be a vertex of G. Let P a collection of disjoint
subsets of E. A P-rainbow v-tree of G, is a v-tree of G such that |T ∩ P | = 1 for P ∈ P.

I Definition 16. Let G = (V,E) and let x be a vector (0, 1]E. Let S denote a set of subgraphs
of G (i.e., each S ⊆ E for each S ∈ S). If there is a probability distribution λ = {λS}S∈S
such that x =

∑
S∈S λSχ

S, then we say {λ,S} is a convex combination for x. If such a
probability distribution exists, then we say that x can be decomposed into (or written as) a
convex combination of subgraphs in S.

I Theorem 17 (Boyd, Sebő [4]). Let x ∈ Subtour(G) and P be a collection of disjoint
subsets of E such that x(P ) = 1 for P ∈ P. Then, x can be decomposed into a convex
combination of P-rainbow v-trees of Gx for any v ∈ V .

I Definition 18. Given a graph G = (V,E), a set of edges M ⊆ E forms an induced
matching in G if the subgraph of G induced on the endpoints of M forms a matching (i.e., if
edges e and f belong to an induced matching M , then there is no 3-edge path in G containing
both e and f).

Consider a half-cycle point x. For a vertex u in Gx we denote by eu the unique 1-edge
incident on u and by γ(u) the two vertices that are the other endpoints of the half-edges
incident on v. In other words, suppose δ(u) = {eu, f, g} and suppose that w1 and w2 are the
other endpoints of f and g, respectively. Then γ(u) = {w1, w2}.

2 Saving on 1-edges for half-cycle points

Let x be a half-cycle point. In this section, we present an algorithm to write x as a convex
combination of tours of Gx. Following Christofides’ algorithm, we first construct a convex
combination of spanning subgraphs in Section 2.1. Next, we address parity correction in
Section 2.2. We combine these two steps in Section 2.3 for the base case, in which Gx contains
no critical cuts. In Section 2.4, we show how to iteratively glue tours for base cases together
to construct tours for general Gx.

2.1 Convex combinations of spanning subgraphs
I Definition 19. Let x be a half-cycle point and let v be a vertex of Gx. Suppose M ⊂Wx

is a subset of 1-edges of Gx. Let 0 ≤ Λ ≤ 1
2 . Let T be a set of spanning connected

subgraphs of Gx and let λ = {λT }T∈T be a probability distribution such that {λ, T } is a
convex combination for x. Then we say P (v,M,Λ) holds for the convex combination {λ, T }
if it has the following properties.
1.

∑
T∈T :|δT (v)|=1 λT =

∑
T∈T :|δT (v)|=3 λT = Λ and

∑
T∈T :|δT (v)|=2 λT = 1− 2Λ.

2. For each edge st ∈M , |δT (s)| = |δT (t)| = 2 for T ∈ T .
3. T \ δT (v) induces a spanning subgraph on V \ {v}.

I Lemma 20. Suppose M ⊂ Wx forms an induced matching in Gx and edge ev ∈ M .
Then there is a set of spanning connected subgraphs T of Gx and a probability distribution
λ = {λT }T∈T such that {λ, T } is a convex combination for x for which P (v,M, 0) holds.

Proof. For each st ∈ M , pair the half-edges incident on s and pair those incident on t to
obtain disjoint subsets of edges P and decompose x into a convex combination of P-rainbow
v-trees T (i.e., x =

∑
T∈T λTχ

T ) via Theorem 17. This is the desired convex combination
since for all T ∈ T , we have |δT (v)| = 2 and |δT (u)| = 2 for all endpoints u of edges in M .
Thus, the first and second conditions are satisfied. The third condition holds by definition
of v-trees. J
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I Lemma 21. Let γ(v) = {w1, w2} and let Λ be any constant such that 0 ≤ Λ ≤ 1
2 . If

M ⊂Wx forms an induced matching in Gx, ev /∈M and |M ∩ {ew1 , ew2}| ≤ 1. Then there
is a set of spanning connected subgraphs T of Gx and a probability distribution λ = {λT }T∈T
such that {λ, T } is a convex combination for x for which P (v,M,Λ) holds.

Proof. As in the proof of Lemma 20, for each st ∈M , pair the half-edges incident on s and
pair those incident on t to obtain a collection of disjoint subsets of edges P . Apply Theorem
17 to obtain {λ, T } which is a convex combination for x, where T is a set of P-rainbow
v-trees (i.e., x =

∑
T∈T λTχ

T ). Notice that this convex combination clearly satisfies the
second requirement in Definition 19.

Now let δ(v) = {ev, f, g}, where w1 and w2 are the other endpoints of f and g, respectively.
Without loss of generality, assume ew1 /∈ M . Since x =

∑
T∈T λTχ

T , we have ev ∈ T for
T ∈ T , since xev = 1. In addition, we have |δT (v)| = 2 for all T ∈ T by the definition of
v-trees. Hence,

∑
T∈T :f∈T,g/∈T λT =

∑
T∈T :f /∈T,g∈T λT = xf = 1

2 . Without loss of generality,
assume f ∈ T and g /∈ T for T ∈ Tf , and f /∈ T and g ∈ T for T ∈ Tg, where Tf ∪ Tg = T
and Tf ∩ Tg = ∅.

We can also assume that there are subsets T 1
f ⊆ Tf and T 1

g ⊆ Tg such that
∑
T∈T 1

f
λT = Λ

and
∑
T∈T 1

g
λT = Λ, since Λ ≤ 1

2 . For T ∈ T
1
f , replace T with T − f . Similarly, for T ∈ T 1

g ,
replace T with T + f . For all T ∈ T \ (T 1

f ∪ T 1
g ), keep T as is. Observe that T \ δT (v) still

induces a spanning subgraph on V \ {v} since we did not remove any edge in T \ δ(v) from
the v-tree T . We want to show that the new convex combination {λ, T } is the desired convex
combination for x. Notice that∑

T∈T
λTχ

T
f =

∑
T∈T 1

f

λTχ
T
f +

∑
T∈Tf\T 1

f

λTχ
T
f +

∑
T∈T 1

g

λTχ
T
f +

∑
T∈Tg\T 1

g

λTχ
T
f

= 0 + (1
2 − Λ) + Λ + 0 = xf .

So x =
∑
T∈T λTχ

T . Also, T ∈ T is a connected subgraph of Gx since each T ∈ T 1
f is

obtained by removing an edge incident on v, which does not disconnect it. Finally, for each
vertex s with es ∈ M , we have |δT (s)| = 2 for all T ∈ T . To observe this, notice that the
initial convex combination satisfies this property for vertex s (since the convex combination
is obtained via Theorem 17). In the transformation of the convex combination we only
change edges incident on w1 and w2, so if s 6= w1, w2 the property clearly still holds after the
transformation. If s = w1 or w2, we only remove or add an edge incident on s if es 6= M . J

2.2 Tools for parity correction
Let G = (V,E) be an arbitrary graph and O ⊆ V where |O| is even. An O-join of G is a
subgraph J of G in which the set of odd-degree vertices of J are exactly O. The convex hull
of characteristic vectors of O-joins of G, denoted by O-join(G) can be described as follows.

O-join(G) = {x ∈ [0, 1]E :
x(δ(S) \ U)− x(U) ≥ 1− |U | for S ⊆ V, U ⊆ δ(S), |S ∩O|+ |U | odd}.

I Lemma 22. Let x be a half-cycle point and assume that Gx = (V,Ex) has no critical
cuts. Let M ⊂ Wx be a subset of 1-edges of Gx such that each 3-edge cut in Gx contains
at most one edge from M . Let O ⊆ V be a subset of vertices such that |O| is even and for
all e = st ∈M , neither s nor t is in O. Also for any set S ⊆ V such that |δ(S)| = 2, both
|S ∩O| and |δ(S) ∩M | are even. Define vector z as follows: ze = 1

2 if e ∈Wx and e /∈M ,
and ze = 1

4 otherwise. Then vector z ∈ O-join(Gx).
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The proof of Lemma 22 can be found in the full version [12].

I Observation 1. Let G = (V,E) be a cubic graph, and let O ⊆ V be a subset of vertices
such that |O| is even. Let z ∈ O-join(G), and z(δ(u)) ≤ 1 for all u ∈ V . Then there exists a
set of O-joins of G, namely J , and a probability distribution ψ = {ψJ}J∈J such that {ψ,J }
is a convex combination for z. Moreover, for each vertex v ∈ V , the following properties hold.
1. If u ∈ O, then we have |J ∩ δ(u)| = 1 for each J ∈ J . (Notice that in this case we must

have z(δ(u)) = 1.)
2. If u /∈ O and δ(u) = {e, f, g}, then we have the following (four) cases. (Notice that sum

of the right hand sides is exactly 1.)

∑
J∈J :J∩δ(u)=∅

ψJ = 1− z(δ(u))
2 ,

∑
J∈J :J∩δ(u)={h,h′}

ψJ = z(δ(u))
2 − zh′′ for any distinct h, h′, h′′ ∈ δ(u).

The proof of this observation follows from the fact that if z ∈ O-join(G), then it can be
efficiently decomposed into a convex combination of O-joins of G [10].

2.3 Convex combinations of tours: Base case
Let x be a half-cycle point such that Gx = (V,Ex) has no critical cuts. Let v be a fixed
vertex in V and let γ(v) = {w1, w2}. Let {M1, . . . ,Mh} be a partition of Wx into induced
matchings such that |Mi ∩ {ev, ew1 , ew2}| ≤ 1 for all i ∈ [h], ev ∈M1, each 3-edge cut of Gx
contains at most one edge from each Mi, and each 2-edge cut of Gx contains an even number
of edges from each Mi. Let α = 1

h and Λ be some constant where 0 ≤ Λ ≤ 1−α
2 .

For i = 1, let T1 be a set of spanning subgraphs of Gx and let {θ, T1} be a convex
combination for x for which P (v,M1, 0) holds (by Lemma 20). For i ∈ {2, . . . , `}, let Ti be
a set of spanning subgraphs of Gx and let {θ, Ti} be a convex combination for x for which
P (v,Mi,

Λ
1−α ) holds (by Lemma 21). Notice that Λ

1−α ≤
1
2 since Λ ≤ 1−α

2 . Let T = ∪i∈[h]Ti.
We can write x as a convex combination of the spanning subgraphs in T, by weighting

each set Ti by α. In particular, we have x = α
∑h
i=1

∑
T∈Ti

θTχ
T . For each T ∈ T, let

σT = α · θT . Then {σ,T} is a convex combination for x. From Definition 19 and Lemmas 20
and 21, we observe the following.

B Claim 23. For each T ∈ T, T \ δ(v) induces a connected, spanning subgraph on V \ {v}.

For each i ∈ [h], define zie = 1
2 if e ∈Wx \Mi and zie = 1

4 otherwise. For each T ∈ Ti, let
OT ⊆ V be the set of odd-degree vertices of T . By construction, we have V (Mi) ∩OT = ∅.
By Lemma 22, we have zi ∈ OT -join(G), so there exists a set of O-joins JT and a probability
distribution ψ = {ψJ}J∈JT

such that {ψ,JT } is a convex combination for zi. This implies
that x+ zi can be written as a convex combination of tours of Gx. We denote this set of
tours by Fi and we let F = ∪i∈[h]Fi. We claim that

∑h
i=1 α(x + zi) can be written as a

convex combination of tours of Gx in F using the probability distribution φ = {φF }F∈F,
constructed as follows: For a tour F that is the union of T ∈ T and J ∈ JT , set φF = σT ·ψJ .

B Claim 24. Let x be a half-cycle point such that Gx = (V,Ex) contains no critical cuts.
Define vector y ∈ RE as ye = 3

2 −
α
4 for e ∈ Wx and ye = 3

4 for e ∈ Hx. Then {φ,F} is a
convex combination for y.
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Proof. We need to show that y =
∑h
i=1 α(x+zi). First, let e be a 1-edge of Gx andMj be the

induced matching that contains e. Then, xe = 1, zie = 1
2 for i ∈ [h] \ {j} and zje = 1

4 . Hence,

h∑
i=1

α(xe + zie) =
h∑
`=1

α · 3
2 − α ·

1
4 = 3

2 −
α

4 .

For a half-edge e of Gx, we have xe = 1
2 and zie = 1

4 for i ∈ [h], so
∑h
i=1 α(xe + zie) = 3

4 . C

Now we prove some additional useful properties of the convex combination {φ,F}. For a
vertex u such that δ(u) = {eu, f, g} (i.e., where eu is a 1-edge and f and g are half-edges), let
Pu denote the following set of patterns of edges such that u has even degree and the 1-edge
eu is included at least once.

Pu = {{2eu}, {eu, f}, {eu, g}, {2eu, 2f}, {2eu, 2g}}, {2eu, f, g}, {eu, 2f, g}, {eu, f, 2g}}.

Let P = ∪u∈V Pu. For 0 ≤ α, ρ ≤ 1, define the function ζα,ρ : P→ [0, 1] as follows.

ζα,ρ(pu) =



2−α
8 for pu = {2eu, f, g};

ρ
2 for pu = {2eu};
α+4ρ

16 for pu ∈ {{eu, 2f, g}, {eu, f, 2g}};
4+α−4ρ

16 for pu ∈ {{eu, f}, {es, g}};
2−α−4ρ

16 for pu ∈ {{2eu, 2f}, {2eu, 2g}}.

B Claim 25. The convex combination {φ,F}, has the following properties.
(i) For each vertex u ∈ V there is a some constant ηu where 0 ≤ ηu ≤ 1−α

2 and∑
F∈F:F∩δ(u)=pu

φF = ζα,ηu(pu) for pu ∈ Pu.

(ii) ηv = Λ.
The proof of Claim 25 can be found in the full version [12].

I Lemma 26. Let x be a half-cycle point, and assume Gx = (V,Ex) does not have any
critical cuts. Let r be a vertex in V and let γ(r) = {w1, w2}. The set of 1-edges in Gx, Wx,
can be partitioned into five induced matchings {M1, . . . ,M5} such that for i ∈ {1, . . . , 5}, the
following properties hold.
(i) Mi ∩ {er, ew1 , ew2}| ≤ 1,
(ii) For S ⊆ V such that |δ(S)| = 3, |δ(S) ∩Mi| ≤ 1.
(iii) For S ⊆ V such that |δ(S)| = 2, |δ(S) ∩Mi| is even.

The proof of Lemma 26, which can be found in the full version, uses induction (i.e., gluing
solutions for base cases) and the proof of the base case is an application of Brooks’ theorem
on a slight modification of the line graph of Gx [12].

Let γv = {w1, w2}. By Lemma 26, there are {M1, . . . ,M5} that partitionWx into induced
matchings such that |Mi ∩ {ev, ew1 , ew2}| ≤ 1 for all i ∈ [5], and each induced matching
intersects a 3-edge-cut at most once and a 2-edge cut an even number of times. The following
Lemma follows from Claim 25 by setting α = 1

5 .

I Lemma 27. Let x be a half-cycle point such that Gx = (V,Ex) contains no critical cuts.
Fix any vertex in v ∈ V and Λ with 0 ≤ Λ ≤ 2

5 . Define y ∈ RE as ye = 3
2 −

1
20 for e ∈ Wx

and ye = 3
4 if e ∈ Hx. Then there is a set of tours of Gx denoted by F and a probability

distribution φ = {φF }F∈F such that {φ,F} is a convex combination for y. Moreover, this
convex combination has the following properties.
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(i) For each vertex u ∈ V , there is a some constant ηu where 0 ≤ ηu ≤ 2
5 and∑

F∈F:F∩δ(u)=pu

φF = ζ 1
5 ,ηu

(pu) for pu ∈ Pu.

(ii) ηv = Λ.
(iii) F \ δF (v) induces a connected multigraph on V \ {v} for each F ∈ F.

2.4 Convex combinations of tours: Gluing over critical cuts
I Theorem 7. Let x ∈ RE≥0 be a half-cycle point. Define vector y ∈ REx as follows:
ye = 3

2 −
1
20 for e ∈Wx and ye = 3

4 for e ∈ Hx. Then y ∈ TSP(Gx).

For a graph G = (V,E) and nonempty subset of vertices S ⊂ V , contract the component
induced on S̄ = V \ S into a vertex and call this vertex vS̄ . We define the graph GS to be
the graph induced on vertex set S ∪ vS̄ . The graph GS̄ is analogously defined on the vertex
set S̄ ∪ vS .

I Lemma 28. Consider a graph G = (V,E) and nonempty S ⊂ V such that δ(S) is a
minimum cardinality cut in G = (V,E). Let FS be a tour in GS and let FS̄ be a tour in GS̄
such that χFS

e = χ
FS̄
e for e ∈ δ(S). Moreover, assume that FS \ δ(vS̄) induces a connected

multigraph on S. Then the multiset of edges F defined as χFe = χFS
e for e ∈ E(GS) and

χFe = χ
FS̄
e for e ∈ E(GS̄) is a tour of G.

Proof. It is clear that F induces an Eulerian multigraph on G, but we need to ensure that F
is connected. For example, the tour induced on FS̄ \ δ(vS) might not be connected. However,
since the subgraph of FS induced on the vertex set S is connected, the tour F is connected:
each vertex in S̄ is connected to some vertex in S. J

I Lemma 29. Let x be a half-cycle point such that Gx = (V,Ex). Define y ∈ RE as
ye = 3

2 −
1
20 for e ∈Wx and ye = 3

4 if e ∈ Hx. Then there is a set of tours of Gx denoted by
F and a probability distribution φ = {φF }F∈F such that {φ,F} is a convex combination for
y. Moreover, this convex combination has the following property.

For each vertex u ∈ V , there is a some constant ηu where 0 ≤ ηu ≤ 2
5 and∑

F∈F:F∩δ(u)=pu

φF = ζ 1
5 ,ηu

(pu) for pu ∈ Pu.

Proof. If Gx does not contain a critical cut, we apply Lemma 27. Otherwise, set G := Gx
and conduct the following procedure: Find a cut S1 ⊂ V (G) such that G1 = GS1 contains
no critical cuts. Then set G := GS̄ and find a cut S2 ∈ V (G) such that G2 = GS2 contains
no critical cuts, etc.

At the end of this procedure, we have a series of graphs {G1, . . . , Gk} such that for each
j ∈ [k], Gj is the support graph of a half-cycle point and contains no critical cuts. Therefore,
each Gj is a base case and we can find a convex combination of tours applying the procedure
described in Section 2.3.

We glue the tours together in reverse order according to their index beginning with Gk
and Gk−1. The graph Gk−1 corresponds to GS for some vertex set S of G, where G is the
graph at the beginning of iteration k − 1 of the above procedure. Note that GS̄ equals Gk
and it has no critical cuts. Therefore, after invoking Lemma 27 to find a convex combination
of tours for GS̄ , we invoke Lemma 27 on GS with v = vS̄ and Λ = ηvS

based on the convex
combination of tours returned for GS̄ . Now in the tours returned, the patterns on vertex vS̄
match those of vS in the convex combination of tours previously found for GS̄ .
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After having glued together the tours from Gk−1 and Gk in this manner, we glue the
resulting tours with those in Gk−2, etc., until we have found a convex combination of
tours for Gx. J

3 Discussion

In this paper, we presented an algorithm to save on 1-edges for a half-cycle point. To fully
resolve half-integer TSP, we need to be able to save on half-edges. Towards this goal, we
proposed a “base case” when there is no proper minimum cut (Theorem 13). It is not clear
how to combine this with a gluing approach similar to the one for half-cycle points described
in Section 2. Thus, we close with the following open problem.

I Problem 30. Let x be a half-cycle point. vector y ∈ REx as follows: ye = 3
2 for e ∈ Wx

and ye = 3
4 − δ for e ∈ Hx. Show there exists a constant δ > 0 such that y ∈ TSP(Gx).
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Abstract
We consider the task of measuring time with probabilistic threshold gates implemented by bio-
inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds,
where in each round, neurons fire in pulses in response to a sufficiently high membrane potential.
This potential is induced by spikes from neighboring neurons that fired in the previous round, which
can have either an excitatory or inhibitory effect.

Discovering the underlying mechanisms by which the brain perceives the duration of time is one of
the largest open enigma in computational neuro-science. To gain a better algorithmic understanding
onto these processes, we introduce the neural timer problem. In this problem, one is given a time
parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum
sized neural network (measured by the number of auxiliary neurons) in which every spike from x in
a given round i, makes the output y fire for the subsequent t consecutive rounds.

We first consider a deterministic implementation of a neural timer and show that Θ(log t)
(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether
randomness can be leveraged to reduce the number of neurons. We answer this question in the
affirmative by considering neural timers with spiking neurons where the neuron y is required to
fire for t consecutive rounds with probability at least 1− δ, and should stop firing after at most 2t
rounds with probability 1− δ for some input parameter δ ∈ (0, 1). Our key result is a construction
of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one
spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement
this construction with a matching lower bound of Ω(min{log log 1/δ, log t}) neurons. This provides
the first separation between deterministic and randomized constructions in the setting of spiking
neural networks.

Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural
networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we provide a general
transformation (or simulation) that can take any synchronized network solution and simulate it in
an asynchronous setting (where edges have arbitrary response latencies) while incurring a small
overhead w.r.t the number of neurons and computation time.
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1 Introduction

Understanding the mechanisms by which brain experiences time is one of the major research
objectives in neuroscience [26, 2, 9]. Humans measure time using a global clock based on
standardized units of minutes, days and years. In contrast, the brain perceives time using
specialized neural clocks that define their own time units. Living organisms have various
other implementations of biological clocks, a notable example is the circadian clock that gets
synchronized with the rhythms of a day.

In this paper we consider the algorithmic aspects of measuring time in a simple yet
biologically plausible model of stochastic spiking neural networks (SNN) [23, 24], in which
neurons fire in discrete pulses, in response to a sufficiently high membrane potential. This
model is believed to capture the spiking behavior observed in real neural networks, and has
recently received quite a lot of attention in the algorithmic community [18, 19, 20, 17, 15, 28, 6].
In contrast to the common approach in computational neuroscience and machine learning,
the focus here is not on general computation ability or broad learning tasks, but rather on
specific algorithmic implementation and analysis.

The SNN network is represented by a directed weighted graph G = (V,A,W ), with a
special set of neurons X ⊂ V called inputs that have no incoming edges, and a subset of
output neurons1 Y ⊂ V . The neurons in the network can be either deterministic threshold
gates or probabilistic threshold gates. As observed in biological networks, and departing
from many artificial network models, neurons are either strictly inhibitory (all outgoing edge
weights are negative) or excitatory (all outgoing edge weights are positive). The network
evolves in discrete, synchronous rounds as a Markov chain, where the firing probability of
every neuron in round τ depends on the firing status of its neighbors in the preceding round
τ − 1. For probabilistic threshold gates this firing is modeled using a standard sigmoid
function. Observe that an SNN network is in fact, a distributed network, every neuron
responds to the firing spikes of its neighbors, while having no global information on the
entire network.

Remark. In the setting of SNN, unlike classical distributed algorithms (e.g., LOCAL or
CONGEST), the algorithm is fully specified by the structure of the network. That is, for a
given network, its dynamic is fully determined by the model. Hence, the key complexity
measure here is the size of the network measured by the number of auxiliary neurons2. For
certain problems, we also care for the tradeoff between the size and the computation time.

1.1 Measuring Time with Spiking Neural Networks
We consider the algorithmic challenges of measuring time using networks of threshold gates
and probabilistic threshold gates. We introduce the neural timer problem defined as follows:

Given an input neuron x, an output neuron y, and a time parameter t, it is required to
design a small neural network such that any firing of x in a given round invokes the
firing of y for exactly the next t rounds.

In other words, it is required to design a succinct timer, activated by the firing of its input
neuron, that alerts when exactly t rounds have passed.

1 In contrast to the definition of circuits, we do allow output neurons to have outgoing edges and self loops.
The requirement will be that the value of the output neurons converges over time to the desired solution.

2 I.e., neurons that are not the input or the output neurons.
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A trivial solution with t auxiliary neurons can be obtained by taking a directed chain of
length t (Fig. 1): the head of the chain has an incoming edge from the input x, the output y
has incoming edges from the input x, and all the other t neurons on the chain. All these
neurons are simple OR-gates, they fire in round τ if at least one of their incoming neighbors
fired in round τ − 1. Starting with the firing of x in round 0, in each round i, exactly one
neuron, namely the ith neuron on the chain fires, which makes y keep on firing for exactly t
rounds until the chain fades out. In this basic solution, the network spends one neuron that
counts +1 and dies. It is noteworthy that the neurons in our model are very simple, they do
not have any memory, and thus cannot keep track of the firing history. They can only base
their firing decisions on the firing of their neighbors in the previous round.

With such a minimal model of computation, it is therefore intriguing to ask how to
beat this linear dependency (of network size) in the time parameter t. Can we count to
ten using only two (memory-less) neurons? We answer this question in the affirmative, and
show that even with just simple deterministic threshold gates, we can measure time up to
t rounds using only O(log t) neurons. It is easy to see that this bound is tight when using
deterministic neurons (even when allowing some approximation). The reason is that o(log t)
neurons encode strictly less than t distinct configurations, thus in a sequence of t rounds,
there must be a configuration that re-occurs, hence locking the system into a state in which
y fires forever.

I Theorem 1 (Deterministic Timers). For every input time parameter t ∈ N>0, (1) there
exists a deterministic neural timer network N with O(log t) deterministic threshold gates,
(2) any deterministic neural timer requires Ω(log t) neurons.

This timer can be easily adapted to the related problem of counting, where the network
should output the number of spikes (by the input x) within a time window of t rounds.

Does Randomness Help in Time Estimation? Neural computation in general, and neural
spike responses in particular, are inherently stochastic [16]. One of our broader scope agenda
is to understand the power and limitations of randomness in neural networks. Does neural
computation become easier or harder due to the stochastic behavior of the neurons?

We define a randomized version of the neural timer problem that allows some slackness
both in the approximation of the time, as well as allowing a small error probability. For a
given error probability δ ∈ (0, 1), the output y should fire for at least t rounds, and must
stop firing after at most 2t rounds3 with probability at least 1− δ. It turns out that this
randomized variant leads to a considerably improved solution for δ = 2−O(t):

I Theorem 2 (Upper Bound for Randomized Timers). For every time parameter t ∈ N>0,
and error probability δ ∈ (0, 1), there exists a probabilistic neural timer network N with
O(min{log log 1/δ, log t}) deterministic threshold gates plus additional random spiking neuron.

Our starting point is a simple network with O(log 1/δ) neurons, each firing independently
with probability 1−1/t. The key observation for improving the size bound into O(log log 1/δ)
is to use the time axis: we will use a single neuron to generate random samples over time,
rather than having many random neurons generating these samples in a single round. The
deterministic neural counter network with time parameter of O(log 1/δ) is used as a building
block in order to gather the firing statistics of a single spiking neuron. In light of the Ω(log t)

3 Taking 2t is arbitrary here, and any other constant would work as well.
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lower bound for deterministic networks, we get the first separation between deterministic
and randomized solutions for error probability δ = ω(1/2t). This shows that randomness
can help, but up to a limit: Once the allowed error probability is exponentially small in
t, the deterministic solution is the best possible. Perhaps surprisingly, we show that this
behavior is tight:

I Theorem 3 (Lower Bound for Randomized Timers). Any SNN network for the neural
timer problem with time parameter t, and error δ ∈ (0, 1) must use Ω(min{log log 1/δ, log t})
neurons.

Neural Counters. Spiking neurons are believed to encode information via their firing rates.
This underlies the rate coding scheme [1, 30, 11] in which the spike-count of the neuron in a
given span of time is interpreted as a letter in a larger alphabet. In a network of memory-less
spiking neurons, it is not so clear how to implement this rate dependent behavior. How can
a neuron convey a complicated message over time if its neighboring neurons remember only
its recent spike? This challenge is formalized by the following neural counter problem: Given
an input neuron x, a time parameter t, and Θ(log t) output neurons represented by a vector
ȳ, it is required to design a neural network such that the output vector ȳ holds the binary
representation of the number of times that x fired in a sequence of t rounds. As we already
mentioned this problem is very much related to the neural timer problem and can be solved
using O(log t) neurons. Can we do better?

The problem of maintaining a counter using a small amount of space has received a lot
of attention in the dynamic streaming community. The well-known Morris algorithm [27, 10]
maintains an approximate counter for t counts using only log log t bits. The high-level idea
of this algorithm is to increase the counter with probability of 1/2C′ where C ′ is the current
read of the counter. The counter then holds the exponent of the number of counts. By
following ideas of [10], carefully adapted to the neural setting, we show:

I Theorem 4 (Approximate Counting). For every time parameter t, and δ ∈ (0, 1), there
exists a randomized construction of approximate counting network using O(log log t+log(1/δ))
deterministic threshold gates plus an additional single random spiking neuron, that computes
an O(1) (multiplicative) approximation for the number of input spikes in t rounds with
probability 1− δ.

We note that unlike the deterministic construction of timers that could be easily adopted to
the problem of neural counting, our optimized randomized timers with O(log log 1/δ) neurons
cannot be adopted into an approximate counter network. We therefore solve the latter by
adopting Morris algorithm to the neural setting.

Broader Scope: Lessons From Dynamic Streaming Algorithms. We believe that approx-
imate counting problem provides just one indication for the potential relation between
succinct neural networks and dynamic streaming algorithms. In both settings, the goal is
to gather statistics (e.g., over time) using a small amount of space. In the setting of neural
network there are additional difficulties that do not show up in the streaming setting. E.g., it
is also required to obtain fast update time, as illustrated in our solution to the approximate
counting problem.

1.2 Neural Synchronizers
The standard model of spiking neural networks assumes that all edges (synapses) in the
network have a uniform response latency. That is, the electrical signal is passed from the
presynaptic neuron to the postsynaptic neuron within a fixed time unit which we call a
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round. However, in real biological networks, the response latency of synapses can vary
considerably depending on the biological properties of the synapse, as well as on the distance
between the neighboring neurons. This results in an asynchronous setting in which different
edges have distinct response time. We formalize a simple model of spiking neurons in the
asynchronous setting, in which the given neural network also specifies a response latency
function ` : A → R≥1 that determines the number of rounds it takes for the signal to
propagate over the edge. Inspired by the synchronizers of Awerbuch and Peleg [4], and using
the above mentioned compressed timer and counter modules, we present a general simulation
methodology (a.k.a synchronizers) that takes a network Nsync that solves the problem in the
synchronized setting, and transform it into an “analogous” network Nasync that solves the
same problem in the asynchronous setting.

The basic building blocks of this transformation is the neural time component adapted
to the asynchronous setting. The cost of the transformation is measured by the overhead
in the number of neurons and in the computation time. Using our neural timers leads to a
small overhead in the number of neurons.

I Theorem 5 (Synchronizer, Informal). There exists a synchronizer that given a network
Nsync with n neurons and maximum response latency4 L, constructs a network Nasync that has
an “analogous” execution in the asynchronous setting with a total number of O(n+ L logL)
neurons and a time overhead of O(L3).

We note that although the construction is inspired by the work of Awerbuch and Peleg [4], due
to the large differences between these models, the precise formulation and implementation of
our synchronizers are quite different. The most notable difference between the distributed
and neural setting is the issue of memory: in the distributed setting, nodes can aggregate the
incoming messages and respond when all required messages have arrived. In strike contrast,
our neurons can only respond (by either firing or not firing) to signals arrived in the previous
round, and all signals from previous rounds cannot be locally stored. For this reason and
unlike [4], we must assume a bound on the largest edge latency. In particular, in the full
version we show that the size overhead of the transformed network Nasync must depend, at
least logarithmically, on the value of the largest latency L.

I Observation 1. The size overhead of any synchronization scheme is Ω(logL).

This provably illustrates the difference in the overhead of synchronization between general
distributed networks and neural networks. We leave the problem of tightening this lower
bound (or upper bound) as an interesting open problem.

Additional Related Work. To the best of our knowledge, there are two main previous
theoretical work on asynchronous neural networks. Maass [22] considered a quite elaborated
model for deterministic neural networks with arbitrary response functions for the edges,
along with latencies that can be chosen by the network designer. Within this generalized
framework, he presented a coarse description of a synchronization scheme that consists of
various time modules (e.g., initiation and delay modules). Our work complements the scheme
of [22] in the simplified SNN model by providing a rigorous implementation and analysis
for size and time overhead. Khun et al. [14] analyzed the synchronous and asynchronous
behavior under the stochastic neural network model of DeVille and Peskin [7]. Their model
and framework is quite different from ours, and does not aim at building synchronizers.

4 I.e., L correspond to the length of the longest round.
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Turning to the setting of logical circuits, there is a long line of work on the asynchronous
setting under various model assumptions [3, 12, 29, 5, 25] that do not quite fit the memory-less
setting of spiking neurons.

Comparison with Concurrent Work [31]. Independently to our work, Wang and Lynch
proposed a similar construction for the neural counter problem. Their work restricts attention
to deterministic threshold gates and do not consider the neural timer problem and synchron-
izers which constitute the main contribution of our paper. We note that our approximate
counter solution with O(log log t+ log(1/δ)) neurons resolves the open problem stated in [31].

1.3 Preliminaries
We start by defining our model along with useful notation.

A Neuron. A deterministic neuron u is modeled by a deterministic threshold gate. Letting
b(u) to be the threshold value of u. Then it outputs 1 if the weighted sum of its incoming
neighbors exceeds b(u). A spiking neuron is modeled by a probabilistic threshold gate that
fires with a sigmoidal probability p(x) = 1

1+e−x where x is the difference between the weighted
incoming sum of u and its threshold b(u).

Neural Network Definition. A Neural Network (NN) N = 〈X,Z, Y,w, b〉 consists of n input
neurons X = {x1, . . . , xn}, m output neurons Y = {y1, . . . , ym}, and ` auxiliary neurons
Z = {z1, ..., z`}. In a deterministic neural network (DNN) all neurons are deterministic
threshold gates. In spiking neural network (SNN), the neurons can be either deterministic
threshold gates or probabilistic threshold gates. The directed weighted synaptic connections
between V = X ∪ Z ∪ Y are described by the weight function w : V × V → R. A weight
w(u, v) = 0 indicates that a connection is not present between neurons u and v. Finally,
for any neuron v, b(v) ∈ R≥0 is the threshold value (activation bias). The weight function
defining the synapses is restricted in two ways. The in-degree of every input neuron xi is
zero, i.e., w(u, x) = 0 for all u ∈ V and x ∈ X. Additionally, each neuron is either inhibitory
or excitatory: if v is inhibitory, then w(v, u) ≤ 0 for every u, and if v is excitatory, then
w(v, u) ≥ 0 for every u.

Network Dynamics. The network evolves in discrete, synchronous rounds as a Markov
chain. The firing probability of every neuron in round τ depends on the firing status of its
neighbors in round τ − 1, via a standard sigmoid function, with details given below. For
each neuron u, and each round τ ≥ 0, let uτ = 1 if u fires (i.e., generates a spike) in round τ .
Let u0 denote the initial firing state of the neuron. The firing state of each input neuron xj
in each round is the input to the network. For each non-input neuron u and every round
τ ≥ 1, let pot(u, τ) denote the membrane potential at round τ and p(u, τ) denote the firing
probability (Pr[uτ = 1]), calculated as:

pot(u, τ) =
∑
v∈V

wv,u · vτ−1 − b(u) and p(u, τ) = 1
1 + e−

pot(u,τ)
λ

(1)

where λ > 0 is a temperature parameter which determines the steepness of the sigmoid.
Clearly, λ does not affect the computational power of the network (due to scaling of edge
weights and thresholds), thus we set λ = 1. In deterministic neural networks (DNN), each
neuron u is a deterministic threshold gate that fires in round τ iff pot(u, τ) ≥ 0.
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Figure 1 Illustration of timer networks with time parameter t. Left: The naïve timer with
Θ(t) neurons. Mid: deterministic timer with Θ(log t) neurons. Right: randomized timer with
O(log log 1/δ)) neurons, using the DetTimer modules with parameter t′ = log 1/δ.

Network States (Configurations). Given a network N (either a DNN or SNN) with N

neurons, the configuration (or state) of the network in time τ denoted as sτ can be described
as an N -length binary vector indicating which neuron fired in round τ .

The Memoryless Property. The neural networks have a memoryless property, in the sense
that each state depends only on the state of the previous round. In a DNN network,
the state sτ−1 fully determines sτ . In an SNN network, for every fixed state s∗ it holds
Pr[sτ = s∗ | s1, ...sτ−1] = Pr[sτ = s∗ | sτ−1]. Moreover for any τ, τ ′, r > 0, it holds that
Pr[sτ+r = s∗ | sτ ] = Pr[sτ ′+r = s∗ | sτ ′ ].

Hard-Wired Inputs. We consider neural networks that solve a given parametrized problem
(e.g., neural timer with time parameter t). The parameter to the problem can be either
hard-wired in the network or alternatively be given as part of the input layer to the network.
In most of our constructions, the time parameter is hard-wired. In some cases, we also show
constructions with soft-wiring.

2 Deterministic Constructions of Neural Timer Networks

As a warm-up, we start by considering deterministic neural timers.

I Definition 6 (Det. Neural Timer Network). Given time parameter t, a deterministic neural
timer network DT is a network of threshold gates, with an input neuron x, an output neuron
y, and additional auxiliary neurons. The network satisfies that in every round τ , yτ = 1 iff
there exists a round τ > τ ′ ≥ τ − t such that xτ ′ = 1.

Lower Bound (Pf. of Thm. 1(2)). For a given neural timer network N with N auxiliary
neurons, recall that the state of the network in round τ is described by an N -length vector
indicating the firing neurons in that round. Assume towards contradiction that there exists
a neural timer with N ≤ log t− 1 auxiliary neurons. Since there are at most 2N different
states, by the pigeonhole principle, there must be at least two rounds τ, τ ′ ≤ t− 1 in which
the state of the network is identical, i.e., where sτ = sτ ′ = s∗ for some s∗ ∈ {0, 1}N . By the
correctness of the network, the output neuron y fires in all rounds τ ′′ ∈ [τ + 1, τ ′ + 1]. By
the memoryless property, we get that sτ ′′ = s∗ for τ ′′ = τ + i · (τ ′ − τ) for every i ∈ N≥0.
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Thus y continues firing forever, in contradiction that it stops firing after t rounds. Note that
this lower bound holds even if y is allowed to stop firing in any finite time window.

A Matching Upper Bound (Pf. Thm. 1(1)). For ease of explanation, we will sketch
here the description of the network assuming that it is applied only once (i.e., the input
x fires once within a window of t rounds). Taking care of the general case requires slight
adaptations5, see the full version for complete details.

At the high-level, the network consists of k = Θ(log t) layers A1, . . . , Ak each containing
two excitatory neurons ai,1, ai,2 denoted as counting neurons, and one inhibitory neuron di.
Each layer Ai gets its input from layer Ai−1 for every i ≥ 2, and A1 gets its input from x.
The role of each layer Ai is to count two firing events of the neuron ai−1,2 ∈ Ai−1. Thus the
neuron alog t,2 counts 2log t rounds.

Because our network has an update time of log t rounds (i.e., number of rounds to update
the timer), for a given time parameter t, the construction is based on the parameter t̂ where
t̂ + log t̂ = t. We assume that t̂ is a power of 2, the general case can also be solved with
O(log t) neurons, the analysis is deferred to the full version.

The first layer A1 consists of two neurons a1,1, a1,2. The first neuron a1,1 has positive
incoming edges from x and a1,2 with weights w(x, a1,1) = 3 , w(a1,2, a1,1) = 1, and
threshold b(a1,1) = 1. The second neuron a1,2 has an incoming edge from a1,1 with weight
w(a1,1, a1,2) = 1 and threshold b(a1,2) = 1. Because we have a loop going from a1,1 to
a1,2 and back, once x fired a1,2 will fire every two rounds.
For every i = 2 . . . log t̂, the ith layer Ai contains 3 neurons, two counting neurons ai,1, ai,2
and a reset neuron di. The first neuron ai,1 has positive incoming edges from ai−1,2, and
a self loop with weight w(ai−1,2, ai,1) = w(ai,1, ai,1) = 1, a negative incoming edge from
di with weight w(di, ai,1) = −1, and threshold b(ai,1) = 1. The second counting neuron
ai,2 has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, ai,2) = w(ai,1, ai,2) = 1,
and threshold b(ai,2) = 2. The reset neuron di is an inhibitor copy of ai−1,2 and therefore
also has incoming edges from ai−1,2 and ai,1 with weight w(ai−1,2, di) = w(ai,1, di) = 1
and threshold b(di) = 2. As a result, ai,1 starts firing after ai−1,2 fires once, and ai,2fires
after ai−1,2 fires twice. Then the neuron di inhibits ai,1 and the layer is ready for a new
count.
The output neuron y has a positive incoming edge from x as well as a self-loop with
weights w(x, y) = 2, w(y, y) = 1. In addition, it has a negative incoming edge from the
last counting neuron alog t̂,2 with weight w(alog t̂,2, y) = −1 and threshold b(y) = 1. Hence,
after x fires the output y continues to fire as long as alog t̂,2 did not fire.
The last counting neuron alog t̂,2 also have negative outgoing edges to all counting neurons
(neurons of the form ai,j) with weight w(alog t̂,2, ai,j) = −2. As a result, after the timer
counts t rounds it is reset.

Timer with Time Parameter. In the full version we show a slight modified variant of neural
timer denoted by DetTimer∗ which also receives as input an additional set of log t neurons
that encode the desired duration of the timer. This modified variant is used in our improved
randomized constructions.

5 I.e., whenever x fires again in a window of t rounds, one should reset the timer and start counting t
rounds from that point on.
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Neural Counters. We also show a modification of the timer into a counter network
DetCounter that instead of counting the number of rounds, counts the number of input
spikes in a time interval of t rounds. For complete details we defer the reader to the
full version.

I Lemma 7. Given time parameter t, there exists a deterministic neural counter network
which has an input neuron x, a collection of log t output neurons represented by a vector ȳ,
and O(log t) additional auxiliary neurons. In a time window of t rounds, for every round τ ,
if x fired rτ times in the last τ rounds, the output ȳ encodes rτ by round τ + log rτ + 1.

This extra-additive factor of log rτ is due to the update time of the counter. In addition, in
the full version we revisit the neural counter problem and provide an approximate randomized
solution with O(log log t + log(1/δ)) many neurons where δ is the error parameter. This
construction is based on the well-known Morris algorithm (using the analysis of [10]) for
approximate counting in the streaming model.

3 Randomized Constructions of Neural Timer Networks

We now turn to consider randomized implementations. The input to the construction is a
time parameter t and an error probability δ ∈ (0, 1), that are hard-wired into the network.

I Definition 8 (Rand. Neural Timer Network). A randomized neural timer RT for parameters
t ∈ N>0 and δ ∈ (0, 1), satisfies the following for a time window of poly(t) rounds.

For every fixed firing event of x in round τ , with probability 1− δ, y fires in each of the
following t rounds.
yτ
′ = 0 for every round τ ′ such that τ ′ − Last(τ ′) ≥ 2t with probability 1 − δ, where

Last(τ ′) = max{i ≤ τ ′ | xi = 1} is the last round τ in which x fired up to round τ ′.

Note that in our definition, we have a success guarantee of 1− δ for any fixed firing event
of x, on the event that y fires for t many rounds after this firing. In contrast, with probability
of 1− δ over the entire span of poly(t) rounds, y does not fire in cases where the last firing of
x was 2t rounds apart. We start by showing a simple construction with O(log 1/δ) neurons.

3.1 Warm Up: Randomized Timer with O(log 1/δ) Neurons
The network BasicRandTimer(t, δ) contains a collection of ` = Θ(log 1/δ) spiking neurons
A = {a1, . . . , a`} that can be viewed as a time-estimator population. Each of these neurons
have a positive self loop, a positive incoming edge from the input neuron x, and a positive
outgoing edge to the output neuron y. See Figure 2 for an illustration. Whereas these ai
neurons are probabilistic spiking neurons6, the output y is simply a threshold gate. We
next explain the underlying intuition. Assume that the input x fired in round 0. It is then
required for the output neuron y to fire for at least t rounds 1, . . . , t, and stop firing after
at most 2t rounds with probability 1− δ. By having every neuron ai firing (independently)
w.p (1− 1/t) in each round given that it fired in the previous round7, we get that ai fires
for t consecutive rounds with probability (1− 1/t)t = 1/e. On the other hand, it fires for
2t consecutive rounds with probability (1− 1/t)2t = 1/e2. Since we have Θ(log 1/δ) many
neurons, by a simple application of Chernoff bound, the output neuron y (which simply
counts the number of firing neurons in A) can distinguish between round t and round 2t with
probability 1− δ, see the full version for the complete proof.

6 A neuron that fires with a probability specified in Eq. (1)
7 A neuron ai that stops firing in a given round, drops out and would not fire again with good probability.
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Figure 2 Illustration of the BasicRandTimer(t, δ) network. Each neuron ai fires with probability
1− 1/t in round τ given that it fired in the previous round τ − 1, and therefore fires for t consecutive
rounds with constant probability. The output y fires if at least 1/(2e) fraction of the ai neurons
fired in the previous round.

3.2 Improved Construction with O(log log 1/δ) Neurons
We next describe an optimal randomized timer RandImprovedTimer with an exponentially
improved number of auxiliary neurons. This construction also enjoys the fact that it requires a
single spiking neuron, while the remaining neurons can be deterministic threshold gates. Due
to the tightness of Chernoff bound, one cannot really hope to estimate time with probability
1− δ using o(log(1/δ)) samples. Our key idea here is to generate the same number of samples
by re-sampling one particular neuron over several rounds. Intuitively, we are going to show
that for our purposes having ` = log(1/δ) neurons a1, . . . , a` firing with probability 1− 1/t
in a given round is equivalent to having a single neuron a∗ firing with probability 1− 1/t
(independently) in a sequence of ` rounds.

Specifically, observe that the distinction between round t and 2t in the BasicRandTimer
network is based only on the number of spiking neurons in a given round. In addition,
the distribution on the number of times a∗ fires in a span of ` rounds is equivalent to the
distribution on the number of firing neurons a1, . . . , a` in a given round. For this reason,
every phase of RandImprovedTimer simulates a single round of BasicRandTimer. To count
the number of firing events in ` rounds, we use the deterministic neural counter module with
log ` = O(log log 1/δ) neurons.

We now further formalize this intuition. The network RandImprovedTimer simulates
each round of BasicRandTimer using a phase of `′ = Θ(log 1/δ) rounds 8, but with only
O(log log 1/δ) neurons. In the BasicRandTimer network each of the neurons ai fires (inde-
pendently) in each round w.p 1− 1/t. Once it stops firing in a given round, it basically drops
out and would not fire again with good probability. Formally, consider an execution of the
BasicRandTimer and let ni be the number of neurons in A that fired in round i. In round
i+ 1 of this execution, we have ni many neurons each firing w.p 1− 1/t (while the remaining
neurons in A fire with a very small probability). In the corresponding i + 1 phase of the
network RandImprovedTimer, the chief neuron a∗ fires w.p 1− 1/t′ where t′ = t

`′ for n
′
i ≤ `

consecutive rounds9 where n′i is the number of rounds in which a∗ fired in phase i.
The dynamics of the network RandImprovedTimer is based on discrete phases. Each phase

has a fixed number of `′ = O(`) rounds, but has a possibly different number of active rounds,
namely, rounds in which a∗ attempts firing. Specifically, a phase i has an active part of n′i
rounds where n′i is the number of rounds in which a∗ fired in phase i− 1. In the remaining
`′ − n′i rounds of that phase, a∗ is idle. To implement this behavior, the network should keep

8 Due to tactical reasons each phase consists of `′ = `+ log ` rounds instead of `.
9 Note that because each phase takes `′ = Θ(log 1/δ) rounds, we will need to count t′ = t

`′ many phases.
Thus a∗ fires with probability 1− 1/t′ rather then w.p 1− 1/t.
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track of the number of rounds in which a∗ fires in each phase, and supply it as an input
to the next phase (as it determines the length of the active part of that phase). For that
purpose we will use the deterministic modules of neural timers and counters. The module
DetCounter with time parameter Θ(log 1/δ) is responsible for counting the number of rounds
that a∗ fires in a given phase i. The output of this module at the end of the phase is the
input to a DetTimer∗ module10 in the beginning of phase i+ 1. In addition, we also need
a phase timer module DetTimer with time parameter Θ(log 1/δ) that “announces” the end
of a phase and the beginning of a new one. Similarly to the network BasicRandTimer, the
output neuron y fires as long as a∗ fires for at least (1/2e) fraction of the rounds in each
phase (in an analogous manner as in the BasicRandTimer construction). See Fig. 1 for an
illustration of the network. Note that since we only use deterministic modules with time
parameter Θ(log 1/δ), the total number of neurons (which are all threshold gates) will be
bounded by O(log log 1/δ). See the full version for the complete proof of Thm. 2.

Remark. We note that the fact that one can get a randomized upper bound of O(log log 1/δ)
neurons has to do with the fact that our spiking neurons can be set to fire with probability
1− 1/t. Therefore the value of t is hard-wired in the network. We also note that in a more
restrictive setting where neurons are simple fair coins that fire with probability half in each
round, the size complexity might be dependent in t.

3.3 A Matching Lower Bound
We now turn to provide a proof sketch for Thm. 2. The full proof can be found in the full
version. Assume towards contradiction that there exists a randomized neural timer N for
a given time parameter t with N = o(log log 1/δ) neurons that succeeds with probability
at least 1− δ. This implies that there exists some constant c ≥ 2 such that y stops firing
after (c− 1) · t rounds w.p 1− δ. Since we have N many neurons, the number of distinct
states (or configurations) is bounded by S = 2N = o(log 1/δ). In particular, we will adjust
the constant in the number of neurons N such that S ≤ log 1/δ

log log 1/δ . Since t > log(1/δ) 11, in
every execution of N for at least t rounds, there must be a state that occurs at least twice
during the execution. Moreover, the sequence of t rounds consists of at least 2S disjoint
intervals each of length t/3S. We therefore get that in every execution of the network, there
must be a state that occurs at least twice for some rounds t′, t′′ such that t′′ − t′ > t/3S.
In other words, we have the guarantee that there is always some state that reoccurs after a
sufficiently large number of rounds. Since there are at most S configurations, we conclude
that there must be one particular configuration s∗ for which the probability to reoccur (after
at least t/(3S) rounds) is at least 1/S = Ω(1/ log(1/δ)).

Let Π be the family of all (c · t)-length executions of N . We now restrict attention to all
those executions in which s∗ reoccurs within the first t rounds, with spacing of Ω(t/ log(1/δ))
rounds between its appearances12. We call the subset Π∗ ⊆ Π of those executions special. In
addition, an execution in Π is good if y fires in each of the first t rounds, otherwise it is bad.

We next claim that the probability of an execution to be both special and good is at least
p∗ = Ω(1/ log(1/δ)− δ). First, by the definition of Π∗, the probability of an execution to be
special is at least 1/S = Ω(1/ log(1/δ)). In addition, by the success guarantee of N , y fires in
the first t rounds w.p. at least 1− δ. Thus by the union bound, we get that the probability
of a special and good execution is 1/S− δ. This allows us to also conclude that given that s∗

10Here we use the variant of DetTimer in which the time is encoded in the input layer of the network.
11The lower bound is meaningful only when δ = 2−O(t).
12We do allow s∗ to appear several times within this interval.
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appears in some round t′ < t− t/3S, with probability of at least p∗ the following happens:
(1) s∗ reoccurs in some round t′′ such that t′′ − t ∈ [t/3S, t] and (2) y fires during the entire
interval [t′, t′′]. We now use this argument to conclude that w.p. at least δ, the output y fires
for at least c · t rounds, which will lead to a contradiction. To see this claim, note that w.p.
at least 1/S there is a round t′ < t− t/3S in which s∗ appears. With probability at least p∗
there is a round t′′ > t+ t/3S in which s∗ appears again and y fires in each of the rounds in
[t′, t′′]. A time window of c · t rounds contains at most 3c · S intervals of length t/3S. Thus
by the memory-less property, we get that the probability s∗ reoccurs every [t/3S, t] rounds
and that y fires after ct rounds is at least 1/S · (p∗)3c·S > δ, contradiction as y fires after c · t
rounds w.p at most δ.

4 Applications to Synchronizers

The Asynchronous Setting. In this setting, the neural network N = 〈X,Z, Y,w, b〉 also
specifies a response latency function ` : A → N>0. For ease of notation, we normalize all
latency values such that mine∈A `(e) = 1 and denote the maximum response latency by
L = maxe∈A `(e). Supported by biological evidence [13], we assume that self-loop edges
(a.k.a. autapses) have the minimal latency in the network, that `((u, u)) = 1 for self-edges
(u, u). This assumption is crucial in our design13. Indeed the exceptional short latency of
self-loop edges has been shown to play a critical role in biological network synchronization
[21, 8]. The dynamics proceeds in synchronous rounds and phases. The length of a round
corresponds to the minimum edge latency, this is why we normalize the latency values so
that mine∈A `(e) = 1. If neuron u fires in round τ , its endpoint v receives u’s signal in round
τ + `(e). Formally, a neuron u fires in round τ with probability p(u, τ):

pot(u, τ) =
∑

v∈X∪Z∪Y
wv,u · vτ−`(u,v) − b(u) and p(u, τ) = 1

1 + e−
pot(u,τ)

λ

(2)

Synchronizer. A synchronizer ν is an algorithm that gets as input a network Nsync and
outputs a network Nasync = ν(Nsync) such that V (Nsync) ⊆ V (Nasync) where V (N ) denotes the
neurons of a network N . The network Nasync works in the asynchronous setting and should
have similar execution to Nsync in the sense that for every neuron v ∈ V (Nsync), the firing
pattern of v in the asynchronous network should be similar to the one in the synchronous
network. The output network Nasync simulates each round of the network Nsync as a phase.

I Definition 9 (Pulse Generator and Phases). A pulse generator is a module that fires to
declare the end of each phase. Denote by t(v, p) the (global) round in which neuron v receives
the pth spike from the pulse generator. We say that v is in phase p during all rounds
τ ∈ [t(v, p− 1), t(v, p)].

IDefinition 10 (Similar Execution (Deterministic Networks)). The synchronous execution Πsync
of a deterministic network Nsync is specified by a list of states Πsync = {σ1, . . . , } where each
σi is a binary vector describing the firing status of the neurons in round i. The asynchronous
execution of network Nasync denoted by Πasync is defined analogously only when applying the
asynchronous dynamics (of Eq. (2)). The execution Πasync is divided into phases of fixed
length. The networks Nsync and Nasync have a similar execution if V (Nsync) ⊆ V (Nasync), and
in addition, a neuron v ∈ V (Nsync) fires in round p in the execution Πsync iff v fires during
phase p in Πasync.

13 In a follow-up work, we actually show that this assumption is necessary for the existence of syncrnoizers
even when L = 2.
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For simplicity of explanation, we assume that the network Nsync is deterministic. However,
our scheme can easily capture randomized networks as well (i.e., by fixing the random
bits in the synchronized simulation and feeding it to the async. one). See the full version
for more details.

The Challenge. Consider a network of a threshold gate z with two incoming inputs: an
excitatory neuron x, and an inhibitory neuron y. The weights are set such that z computes
X ∧ Ȳ thus it fires in round τ if x fired in round τ − 1 and y did not fire. Implementing an
X ∧ Ȳ gate in the asynchronous setting is quite tricky. In the case where both x and y fire
in round τ , in the synchronous network, z should not fire in round τ + 1. However, in the
asynchronous setting, if `(x, z) < `(y, z), then z will mistakenly fire in round τ + `(x, z). This
illustrates the need of enforcing a delay in the asynchronous simulation: the neurons should
attempt firing only after receiving all their inputs from the previous phase. We handle this
by introducing a pulse-generator module, that announces when it is safe to attempt firing.

To illustrate another source of challenge, consider the asynchronous implementation of
an AND-gate X ∧ Y . If both x and y fire in round τ , then z fires in round τ + 1 in the
synchronous setting. However, if the latencies of the edges `(x, z) and `(y, z) are distinct, z
receives the spike from x and y in different rounds, thus preventing the firing of z. Recall,
that z has no memory, and thus its firing decision is based only on the potential level in
the previous round. To overcome this hurdle, in the transformed network, each neuron in
the original synchronous network is augmented with 3 copy-neurons, some of which have
self-loops. Since self-loops have latency 1, once a neuron with a self-loop fires, it fires in the
next round as well. This will make sure that the firing states of x and y are kept on being
presented to z for sufficiently many rounds, which guarantees the existence of a round where
both spikes arrive.

While solving one problem, introducing self-loops into the system brings along other
troubles. Clearly, we would not want the neurons to fire forever, and at some point, those
neurons should get inhibition to allow the beginning of a new phase. This calls for a delicate
reset mechanism that cleans up the old firing states at the end of each phase, only after
their values have already being used. Our final solution consists of global synchronization
modules (e.g., pulse-generator, reset modules) that are inter-connected to a modified version
of the synchronous network. Before explaining those constructions, we start by providing a
modified neural timer DetTimerasync adapted to asynchronous setting. This timer will be the
basic building block in our global synchronization infrastructures.

Asynchronous Analog of DetTimer. A basic building block in our construction is a variant
of DetTimer to the asynchronous setting. Observe that the DetTimer implementation of
Sec. 2 might fail miserably in the asynchronous setting, e.g., when the edges (ai−1,2, ai,2)
have latency 2 for every i ≥ 2, and the remaining edges have latency 1, the timer will stop
counting after Θ(log t) rounds, rather than after t rounds. In the full version we show:

I Lemma 11. [Neural Timer in the Asynchronous Setting] For a given time parameter t,
there exists a deterministic network DetTimerasync with O(L · log t) neurons, satisfying that
in the asynchronous setting with maximum latency L, the output neuron fires at least Θ(t)
rounds, and at most Θ(L · t) rounds after each firing of the input neuron.
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Description of the Syncronizer. The construction has two parts: a global infrastructure,
that can be used to synchronize many networks14, and an adaptation of the given network
Nsync into a network Nasync. The global infrastructures consists of the following modules:

A pulse generator PG implemented by DetTimerasync with time parameter Θ(L3).
A reset module R1 implemented by a directed chain of Θ(L) neurons 15 with input from
the output neuron of the PG module.
A delay module D implemented by DetTimerasync with time parameter Θ(L2) and input
from the output of of the PG module.
Another reset module R2 implemented by a chain of Θ(L) neurons with input from D.

The heart of the construction is the pulse-generator that fires once within a fixed number
of ` ∈ [Θ(L3),Θ(L4)] rounds, and invokes a cascade of activities at the end of each phase.
When its output neuron g fires, it activates the reset and the delay modules, R1 and D. The
second reset module R2 will be activated by the delay module D. Both reset modules R1
and R2 are implemented by chains of length L, with the last neuron on these chains being an
inhibitor neuron. The role of the reset modules is to erase the firing states of some neurons
(in Nasync) from the previous phase, hence their output neuron is an inhibitor. The timing
of this clean-up is very delicate, and therefore the reset modules are separated by a delay
module that prevents a premature operation. The total number of neurons in these global
modules is O(L · logL). We next consider the specific modifications to the synchronous
network Nsync (see Fig. 3).

Modifications to the Network Nsync. The input layer and output layer in Nasync are exactly
as in Nsync. We will now focus on the set of auxiliary neurons V in Nsync. In the network
Nasync, each v ∈ V is augmented by three additional neurons vin, vdelay and vout. The incoming
(resp., outgoing) neighbors to vin (resp., vout) are the out-copies (resp., in-copies) of all
incoming (resp., outgoing) neighboring neurons of v. The neurons vin, v, vdelay and vout are
connected by a directed chain (in this order). Both vdelay and vout have self-loops.

In case where the original network Nsync contains spiking neurons, the neuron vin will
be given the exact same firing function as v in Πsync. That is, in phase p, vin will be given
the random coins16 used by v in round p in Πsync. The other neurons v, vdelay and vout are
deterministic threshold gates. The role of the out-copy vout is to keep on presenting the firing
status of v from the previous phase p− 1 throughout the rounds of phase p. This is achieved
through their self-loops. The role of the in-copy vin is to simulate the firing behavior of v in
phase p. We will make sure that vin fires in phase p only if v fires in round p in Πsync. For
this reason, we set the incoming edge weights of vin as well as its bias to be exactly the same
as that of v in Nsync. The neuron v is an AND gate of its in-copy vin and the PG output g.
Thus, we will make sure that v fires at the end of phase p only if vin fires in this phase as well.
The role of the delay copy vdelay is to delay the update of vout to the up-to-date firing state of
v (in phase p). Since both neurons vdelay and vout have self-loops, at the end of each phase, we
need to carefully reset their values (through inhibition). This is the role of the reset modules
R1 and R2. Specifically, the reset module R1 operated by the pulse-generator inhibits vout.
The second reset module R2 inhibits the delay neuron vdelay only after we can be certain
that its value has already being “copied” to vout. Finally, we describe the connections of
the neuron vout. The neuron vout has an incoming edge from the reset module R1 with a

14 It is indeed believed that the neural brain has centers of synchronization.
15Each neuron in the chain has an incoming edge from its preceding neuron with weight 1 and threshold 1.
16 I.e., the random coins that are used to simulate the firing decision of v.
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Figure 3 Illustration of the syncronizer modules. Left: global modules implemented by neural
timers. Right: a neuron v ∈ Nsync augmented by three additional neurons that interact with the
global modules.

super-large weight. This makes sure that when the reset module is activated, vout will be
inhibited shortly after. In addition, it has a self-loop also of large weight (yet smaller than
the inhibition edge) that makes sure that if vout fires in a given round, and the reset module
R1 is not active, vout also fires in the next round. Lastly, if vout did not fire in the previous
round, then it fires when receiving the spikes from both the delay module and from the delay
copy vdelay. This will make sure that the firing state of vdelay will be copied to vout only after
the output of the delay module D fires. The complete analysis is given in the full version.

5 Open Problems

In this paper we introduce the problems of neural timer and neural counter in order to shed
light into the way that neurons measure time in real biological neural networks. We believe
that these timer and counting modules should be useful for many other computational tasks.
The key application considered in this paper is for asynchronous computation. For that
purpose we introduce a simplified asynchronous model. It would be interesting to delve
into this setting and tighten the overhead in the number of neurons and computation time.
Finally, exploring the connections between succinct neural networks and dynamic streaming
algorithms is yet another promising research direction. The approximate counting problem
already provides a positive indication for a potential relation between these models.

References
1 Edgar D Adrian. The impulses produced by sensory nerve endings. The Journal of physiology,

61(1):49–72, 1926.
2 Melissa J Allman, Sundeep Teki, Timothy D Griffiths, and Warren H Meck. Properties of

the internal clock: first-and second-order principles of subjective time. Annual review of
psychology, 65:743–771, 2014.

3 Douglas B Armstrong, Arthur D Friedman, and Premachandran R Menon. Design of asynchron-
ous circuits assuming unbounded gate delays. IEEE Transactions on Computers, 100(12):1110–
1120, 1969.

4 Baruch Awerbuch and David Peleg. Network Synchronization with Polylogarithmic Overhead.
In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,
October 22-24, 1990, Volume II, pages 514–522, 1990.

5 Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of network-
on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

ESA 2019



57:16 Compressed Counting with Spiking Neurons

6 Chi-Ning Chou, Kai-Min Chung, and Chi-Jen Lu. On the Algorithmic Power of Spiking
Neural Networks. In 10th Innovations in Theoretical Computer Science Conference, ITCS
2019, January 10-12, 2019, San Diego, California, USA, pages 26:1–26:20, 2019.

7 RE Lee DeVille and Charles S Peskin. Synchrony and asynchrony in a fully stochastic neural
network. Bulletin of mathematical biology, 70(6):1608–1633, 2008.

8 Huawei Fan, Yafeng Wang, Hengtong Wang, Ying-Cheng Lai, and Xingang Wang. Autapses
promote synchronization in neuronal networks. Scientific reports, 8(1):580, 2018.

9 Gerald T Finnerty, Michael N Shadlen, Mehrdad Jazayeri, Anna C Nobre, and Dean V
Buonomano. Time in cortical circuits. Journal of Neuroscience, 35(41):13912–13916, 2015.

10 Philippe Flajolet. Approximate Counting: A Detailed Analysis. BIT, 25(1):113–134, 1985.
11 Wulfram Gerstner, Andreas K Kreiter, Henry Markram, and Andreas VM Herz. Neural codes:

firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24):12740–12741,
1997.

12 Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, 1995.

13 Kaori Ikeda and John M Bekkers. Autapses. Current Biology, 16(9):R308, 2006.
14 Fabian Kuhn, Joel Spencer, Konstantinos Panagiotou, and Angelika Steger. Synchrony

and asynchrony in neural networks. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete algorithms, pages 949–964. SIAM, 2010.

15 Robert A. Legenstein, Wolfgang Maass, Christos H. Papadimitriou, and Santosh Srinivas
Vempala. Long Term Memory and the Densest K-Subgraph Problem. In 9th Innovations in
Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA,
USA, pages 57:1–57:15, 2018.

16 Benjamin Lindner. Some unsolved problems relating to noise in biological systems. Journal of
Statistical Mechanics: Theory and Experiment, 2009(01):P01008, 2009.

17 Nancy Lynch and Cameron Musco. A Basic Compositional Model for Spiking Neural Networks.
arXiv preprint, 2018. arXiv:1808.03884.

18 Nancy Lynch, Cameron Musco, and Merav Parter. Computational Tradeoffs in Biological
Neural Networks: Self-Stabilizing Winner-Take-All Networks. In Proceedings of the 8th
Conference on Innovations in Theoretical Computer Science (ITCS), 2017.

19 Nancy Lynch, Cameron Musco, and Merav Parter. Spiking Neural Networks: An Algorithmic
Perspective. In 5th Workshop on Biological Distributed Algorithms (BDA 2017), July 2017.

20 Nancy A. Lynch, Cameron Musco, and Merav Parter. Neuro-RAM Unit with Applications
to Similarity Testing and Compression in Spiking Neural Networks. In 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
pages 33:1–33:16, 2017.

21 Jun Ma, Xinlin Song, Wuyin Jin, and Chuni Wang. Autapse-induced synchronization in a
coupled neuronal network. Chaos, Solitons & Fractals, 80:31–38, 2015.

22 Wolfgang Maass. Lower Bounds for the Computational Power of Networks of Spiking Neurons.
Electronic Colloquium on Computational Complexity (ECCC), 1(19), 1994. URL: http:
//eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html.

23 Wolfgang Maass. On the computational power of noisy spiking neurons. In Advances in Neural
Information Processing Systems 8 (NIPS), 1996.

24 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

25 Rajit Manohar and Yoram Moses. The eventual C-element theorem for delay-insensitive
asynchronous circuits. In 2017 23rd IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 102–109. IEEE, 2017.

26 Hugo Merchant, Deborah L Harrington, and Warren H Meck. Neural basis of the perception
and estimation of time. Annual review of neuroscience, 36:313–336, 2013.

27 Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

http://arxiv.org/abs/1808.03884
http://eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html
http://eccc.hpi-web.de/eccc-reports/1994/TR94-019/index.html


Y. Hitron and M. Parter 57:17

28 Christos H Papadimitriou and Santosh S Vempala. Random projection in the brain and
computation with assemblies of neurons. In 10th Innovations in Theoretical Computer Science
Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

29 Jens Sparsø. Asynchronous circuit design-a tutorial. In Chapters 1-8 in “Principles of
asynchronous circuit design-A systems Perspective”. Kluwer Academic Publishers, 2001.

30 Misha V Tsodyks and Henry Markram. The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability. Proceedings of the national academy
of sciences, 94(2):719–723, 1997.

31 Barbeeba Wang and Nancy Lynch. Integrating Temporal Information to Spatial Information
in a Neural Circuit. arXiv preprint, 2019. arXiv:1903.01217.

ESA 2019

http://arxiv.org/abs/1903.01217




Triconnected Planar Graphs of Maximum Degree
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Abstract
We show that every triconnected planar graph of maximum degree five is subhamiltonian planar. A
graph is subhamiltonian planar if it is a subgraph of a Hamiltonian planar graph or, equivalently,
if it admits a 2-page book embedding. In fact, our result is stronger because we only require
vertices of a separating triangle to have degree at most five, all other vertices may have arbitrary
degree. This degree bound is tight: We describe a family of triconnected planar graphs that are not
subhamiltonian planar and where every vertex of a separating triangle has degree at most six. Our
results improve earlier work by Heath and by Bauernöppel and, independently, Bekos, Gronemann,
and Raftopoulou, who showed that planar graphs of maximum degree three and four, respectively,
are subhamiltonian planar. The proof is constructive and yields a quadratic time algorithm to obtain
a subhamiltonian plane cycle for a given graph.

As one of our main tools, which might be of independent interest, we devise an algorithm that,
in a given 3-connected plane graph satisfying the above degree bounds, collapses each maximal
separating triangle into a single edge such that the resulting graph is biconnected, contains no
separating triangle, and no separation pair whose vertices are adjacent.
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1 Introduction

The structure of spanning a.k.a. Hamiltonian paths and cycles in graphs has been a fruitful
subject of intense research over many decades, both from a combinatorial and from an
algorithmic point of view. For general graphs, sufficient conditions for the existence of a
Hamiltonian cycle typically involve rather strong assumptions on the degree, such as in
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58:2 Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian

Dirac’s Theorem [9] (minimum degree ≥ n/2), Ore’s Theorem [16] (degree sum of every
nonadjacent vertex pair ≥ n), or Asratian and Khachatrian’s Theorem [1] (deg(u)+deg(w) =
|N(u)+N(v)+N(w)|, for every induced path uvw). Planar graphs provide a lot more structure
so that by a famous theorem of Tutte, 4-connectivity suffices to guarantee the existence of
a Hamiltonian cycle [19], which can be computed in linear time [7]. In contrast, deciding
Hamiltonicity is NP-complete for 3-connected cubic planar graphs [11]. Finally, maximal
planar graphs of degree at most six are Hamiltonian [10]. We observe that both vertex degree
and connectivity are crucial parameters concerning Hamiltonicity.

Hamiltonian cycles are also of interest in the context of graph embeddings. Specifically, in
a book embedding, all vertices are embedded on a line called spine, and every edge is embedded
in a halfplane, called page, bounded by the spine. No two edges (on the same page) cross. If k

pages are used, then the corresponding embedding is a k-page book embedding. Note that a
k-page book embedding with k ≤ 2 is plane. Bernhart and Kainen [4] characterized those
graphs that can be embedded on k pages, for k ≤ 2. For k = 2 these are the subhamiltonian
planar1 graphs, that is, subgraphs of Hamiltonian planar graphs, cf. Figure 1a. Hence not all
planar graphs can be embedded on two pages; in fact, it is NP-complete to decide whether a
given planar graph is subhamiltonian [20], even if all vertices have degree at most seven [2].
However, no planar graph is too far away from being subhamiltonian: Subdividing at most
n/2 of the up to 3n − 6 edges of a planar graph on n vertices yields a subhamiltonian
planar graph [6].

(a)

e2

e1

(b)

Figure 1 (a) A nonhamiltonian graph with a subhamiltonian cycle and a corresponding two-page
book embedding. (b) A subhamiltonian cycle using e1 and e2 in a wheel with at least four spokes.

Despite a plethora of results concerned with Hamiltonian cycles in planar graphs and book
embeddings, several fundamental questions are still open. Let us give just two prominent
examples to illustrate this point. For once, there is Barnette’s Conjecture: “Every 3-connected
cubic bipartite planar graph is Hamiltonian.” And then there is the question if every planar
graph can be embedded on three pages. Yannakakis showed, improving a series of earlier
results, that four pages are sufficient for every planar graph [22]. However, a corresponding
lower bound is still elusive, in spite of initial claims [21].

In this paper, we investigate what upper bound on the vertex degree guarantees that
a planar graph is subhamiltonian planar. Heath [14] showed that maximum degree three
suffices. Later, Bauernöppel [2] and, independently, Bekos et al. [3] showed that every planar
graph of degree at most four is subhamiltonian planar. On the negative side, Bauernöppel [2]
described planar graphs of vertex degree at most seven that are not subhamiltonian (these
graphs are biconnected but not 3-connected). In a preprint, Guan and Yang [12] show that
planar graphs of maximum degree five can be embedded on three pages. Our goal is to further
relax the degree bound so as to (ultimately) determine what is the largest k so that every

1 We prefer the term “subhamiltonian planar” over just “subhamiltonian” because the former is more
descriptive as a shortcut for “subgraph of a Hamiltonian planar graph”.
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planar graph of degree at most k is subhamiltonian planar. Specifically, we are interested in
the case where the given graph is 3-connected and hence the combinatorial embedding is
unique. Along these lines, we make a natural next step by considering the case of maximum
degree five. In fact, we prove a much stronger statement where the degree restriction applies
to vertices of separating 3-cycles only.

I Theorem 1. Let G be a 3-connected simple planar graph on n vertices where every vertex
of a separating 3-cycle has degree at most five. Then G is subhamiltonian planar. Moreover,
a subhamiltonian plane cycle for G can be computed in O(n2) time.

I Corollary 2. Every 3-connected simple planar graph with maximum vertex degree five can
be embedded on two pages, and such an embedding can be computed in quadratic time.

We also show that the degree bound in Theorem 1 is tight.

I Theorem 3. There exists a family of 3-connected simple planar graphs that are not
subhamiltonian planar and where every vertex of a separating 3-cycle has degree at most six.

Organization. We begin by introducing some terminology in Section 2. In Section 3, we
study three special cases for which Theorem 1 is easily proven. In Section 4, we proceed with
a high-level overview of the proof of Theorem 1, which is then developed in some more detail
in Sections 5–7. We conclude with an example to illustrate Theorem 3 in Section 8.

2 Notation

All graphs in this paper are undirected. We denote by V(G) the vertex set and by E(G)
the edge set of a graph G. For a set of edges E ⊆ E(G) we use V(E) to denote the set of
vertices that are incident to at least one edge in E. For a face f of G we denote by ∂f the
closed walk in G that traverses the vertices and edges on the boundary of f in anticlockwise
direction. If G is biconnected, then ∂f is a cycle, for every face f of G. A Hamiltonian cycle
for a graph is a simple cycle through all vertices and a graph is Hamiltonian if it contains
a Hamiltonian cycle. An augmentation of a graph G = (V, E) is a supergraph A = (V, E′)
with E′ ⊇ E. If G is a plane graph, then a plane augmentation H of G is an augmentation
that respects the embedding of G, that is, if Γ denotes the embedding of G and Γ′ denotes
the embedding of H, then Γ′|G = Γ. A subhamiltonian cycle for a graph G is a Hamiltonian
cycle in some augmentation of G.

We distinguish between separating 3-cycles as a notion for both abstract and embedded
graphs and separating triangles in embedded graphs. A separating 3-cycle is a 3-cycle whose
removal disconnects the graph. A separating triangle is a 3-cycle C of an embedded graph G

such that both the interior and the exterior region bounded by C contain some vertex of G.
For a cycle C in a plane graph G denote by G+

C the plane subgraph of G that contains
all vertices and edges on C and exterior to C. Similarly denote by G−C the plane subgraph of
G that contains all vertices and edges on C and interior to C. The inside of C refers to the
interior of the bounded region enclosed by C. So a vertex of G inside of C is a vertex of
G−C \ C. Analogously a vertex outside of C is a vertex of G+

C \ C. A separating triangle T is
called trivial if G−T ' K4 and nontrivial, otherwise.

Our algorithm uses a decomposition of the graph into its triconnected components,
which can be efficiently maintained via the SPQR-tree data structure [13, 15]. We use the
terminology by Gutwenger and Mutzel [13].
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58:4 Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian

3 Three simple cases

It suffices to prove Theorem 1 for an arbitrary plane embedding of the given graph, which
we assume to be represented as a doubly-connected edge list (DCEL) [8]. In fact, by 3-
connectivity, the combinatorial plane embedding is unique up to the choice of the outer face,
and there is no difference between separating 3-cycles and separating triangles. So let G be
an embedded 3-connected simple planar graph (with a fixed outer face) where every vertex
incident to a separating triangle has degree at most five. By combining known results, it is
easy to deal with the case that G has no separating triangle:

I Theorem 4. If an embedded simple planar graph G = (V, E) does not contain any separating
triangle, then for any two distinct edges e1, e2 ∈ E there is a plane augmentation H of G that
contains a Hamiltonian cycle C using e1 and e2. Moreover, the cycle C can be computed in
O(n2) time, where n is the number of vertices in G. If both e1 and e2 are on the outer face
of G, then C can be computed in linear time.

Proof Sketch. Augment G using an algorithm by Biedl, Kant, and Kaufmann [5] to obtain,
if possible, a 4-connected planar graph, which contains the desired Hamiltonian cycle due
to a theorem of Sanders [17, Corollary 2]. If such an augmentation is impossible, then the
graph can be augmented to a wheel, in which the desired cycle is easily found; see Figure 1b.

Algorithmically, the bottleneck is Sanders’ theorem. While the original formulation is
purely existential, a recently developed algorithmic version by Schmid and Schmidt [18]
allows to compute such a cycle in quadratic time. For the special case where both e1 and e2
are on the outer face, we can use the linear time algorithm by Chiba and Nishizeki [7]. J

In order to be able to argue inductively, we prove a stronger statement than necessary,
namely a version of Theorem 1 where, similar to the statement in Theorem 4, two edges of
the desired subhamiltonian cycle may be prescribed:

I Theorem 5. Let G = (V, E) be an embedded 3-connected simple planar graph on n vertices
with outer face T◦, where every vertex that is incident to a separating triangle has degree at
most five. Further, let F ⊂ E be a set of at most two edges so that
(P1) all edges in F are edges of T◦;
(P2) if T◦ is not a triangle, then F = ∅;
(P3) if F 6= ∅, then no vertex of T◦ is incident to a separating triangle of G; and
(P4) if F 6= ∅, then either at least one vertex of T◦ has degree three in G, or all vertices of

T◦ have degree four in G.
Then there is a plane augmentation of G that contains a Hamiltonian cycle C that uses all
edges from F . Moreover, the cycle C can be computed in O(n2) time.

The proof, sketched in Sections 5–7, is carried out by induction on the number of vertices.
In this context, one can easily show that:

I Lemma 6. Suppose that the statement of Theorem 5 holds for all graphs with at most n−1
vertices, where n ≥ 6. Then it also holds for every graph on n vertices that contains at least
one nontrivial separating triangle.

Proof Sketch. Let T be a nontrivial separating triangle in G. Replace the interior of T with
a single vertex d and inductively find a subhamiltonian cycle C in the resulting smaller graph.
Then, inductively obtain a subhamiltonian cycle C ′ for G−T . For this second inductive call,
we make use of the ability to prescribe edges, depending on how C visits d, in order to ensure
that the cycles C and C ′ may be glued together to obtain a subhamiltonian cycle for G. J
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The degree restriction basically enforces that the separating triangles of G are pairwise
vertex-disjoint. However, there are some exceptional configurations where two separating
triangles share an edge. Our next goal is to classify these configurations precisely.

A double kite is a subgraph U ' K4 of an embedded graph G so that exactly two of the
four triangles of U are separating in G. The two separating triangles are said to define the
double kite. Note that G may contain multiple double kites, see Figure 2a. We refer G itself
as a trivial double kite if it is 3-connected, contains a double kite, and has precisely 6 vertices.

I Lemma 7. Let G be an embedded 3-connected simple planar graph and let T1, T2 be two
distinct separating triangles of G such that every vertex incident to T1 has degree at most
five. Then if T1 and T2 share a vertex, the triangles T1 and T2 define a double kite.

I Observation 8. Let G be an embedded 3-connected simple planar graph and let T1, T2 be
two distinct trivial separating triangles of G such that all vertices incident to T1 or T2 have
degree at most five. Then if T1 and T2 share a vertex, the graph G is a trivial double kite.

For a trivial double kite G, the statement of Theorem 5 is easily verified. Hence, from now
on we may assume that the separating triangles of G are trivial and pairwise vertex-disjoint.

4 Proof overview

To prove Theorem 5 we proceed in three steps.
In the first step (Section 5), we destroy all separating triangles using edge collapses. An

edge e = ab of a separating triangle T = abc is collapsed by contracting (the three edges of)
the triangle that is spanned by the endpoints of e and the single vertex d inside T into a new
vertex x and merging the two edges ac and bc to a new edge cx; see Figure 2b. Observe that
an edge collapse can be performed in constant time in a DCEL.

(a)

→
ab

c

d

c

x
e

(b)

Figure 2 (a) A graph with three double kites. (b) Collapsing the edge e = ab.

A collapse operation may create multiple edges if a and b have a common neighbor
z /∈ {c, d}. However, we will assert that an edge ab is collapsed only if the triangle abz is not
separating, i.e., one of its sides is empty. In particular, if T is not part of a double kite, we
may collapse any of its edges by Lemma 7. Our assertion ensures that whenever an edge
collapse creates multiple edges, we may merge them into a singleton edge without losing
information about the embedding. Hence, we may assume that the graph resulting from an
edge collapse is always simple. Moreover, note that the collapse operation does not increase
the degree of any vertex. In particular, the degree of c decreases by two. The degree of the
new vertex x is at most five. Hence, collapsing an edge in G results in a graph that satisfies
the degree constraints, unless the collapse creates a new separating triangle.

We describe a procedure to find a set K ⊂ E of edges such that the graph G′ obtained
by simultaneously collapsing all edges of K does not contain any separating triangle.

ESA 2019



58:6 Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian

In the second step (Section 6), we augment G′ by stellating every face, that is, for each
nontriangular face f of G′ we insert a new vertex vf into f and we add an edge between vf

and each vertex on the boundary of f . By choosing the set K suitably, we ensure that the
graph G′′ resulting from these stellations does not contain any separating triangle. Thus,
using Theorem 4 we obtain a subhamiltonian cycle C ′′ for G′′.

Finally, in the third step (Section 7), we iteratively revert the edge collapses. Due to
the stellated faces, we have some control over the possible ways that C ′′ visits the vertex
pairs in G′′ that result from collapsing a triangle of G. We will show that a series of local
rerouting steps suffices to transform C ′′ into a subhamiltonian cycle for G.

5 Collapsing edges

Recall that G is an embedded 3-connected simple planar graph in which every separating
triangle is trivial and all vertices incident to a separating triangle have degree at most five.
Moreover, G is not a trivial double kite. Let S denote the set of separating triangles of G,
which are pairwise vertex-disjoint by Observation 8. We want to find a set K ⊂ E of edges
so that (1) every edge in K is incident to a triangle in S; (2) every triangle in S is incident
to exactly one edge from K; and (3) the graph obtained by simultaneously collapsing the
edges of K does not contain any separating triangle.

Obviously, there exists a set K̂ of edges that satisfies (1) and (2). Suppose that (3) does
not hold for K̂, that is, the graph Ĝ obtained from G by collapsing the edges in K̂ contains
a separating triangle T . By (2) we know that T is not a triangle in G, but T corresponds to
a separating k-cycle in G, for k ≥ 4. By (1), (2), and since the triangles in S are pairwise
vertex-disjoint, at most every other edge of a cycle in G is in K̂ and, therefore, we have
k ≤ 6. In other words, every separating triangle in Ĝ corresponds to a separating k-cycle in
G where k ∈ {4, 5, 6} and exactly k − 3 edges are in K̂. Moreover, for any such separating
k-cycle in G, both the interior and the exterior must contain at least one vertex that is not
the interior vertex of a triangle from S because by (2) every interior vertex of a triangle from
S disappears in some collapse.

Inspired by these observations, we call a cycle C of an embedded graph hyperseparating
if both the interior and the exterior contain at least one vertex that is not the interior vertex
of a trivial separating triangle. We define an inhibitor to be a hyperseparating k-cycle I,
where k ∈ {4, 5, 6}, for which at least k− 3 edges are incident to a trivial separating triangle,
for an illustration refer to Figure 3d. We refer to these at least k − 3 edges as constrained.
An edge e of an embedded graph is constrained if there exists an inhibitor I so that e is a
constrained edge of I and unconstrained, otherwise. An inhibitor of length k ∈ {4, 5, 6} is
also called a k-inhibitor.

Note that a set K̂ of edges that satisfies (1) and (2) also satisfies (3) if for every inhibitor
of length k in G, no more than k − 4 of its constrained edges are in K̂. Next we study the:

5.1 Structure of inhibitors
First, let us observe that 4-inhibitors of G are chordless.

I Observation 9. Let G be an embedded 3-connected simple planar graph and let T = abc be
a trivial separating triangle of G with inner vertex d such that all vertices incident to T have
degree at most five. Further, let abxy be a 4-inhibitor constraining ab. Then {x, y}∩{c, d} = ∅.

I Lemma 10. Let G be an embedded 3-connected simple planar graph and let T = abc be a
trivial separating triangle of G with inner vertex d such that all vertices incident to T have
degree at most five. Suppose that ab is constrained by a 4-inhibitor Iab = abxy. Then Iab is
chordless, unless ab is incident to two separating triangles that define a double kite.
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Proof. Assume without loss of generality that by is a chord of Iab. By Observation 9,
x, y /∈ {c, d} and, so, the degree of b is saturated; see Figure 3a. We claim that by is on the
side of Iab that contains c and d. To see this, assume the contrary. Since Iab is separating,
there is some vertex z on the side of Iab that does not contain c, d. The chord by splits
this side of Iab into two triangles, one of which contains z, see Figure 3b and 3c. However,
by 3-connectivity, this implies that b has a neighbor in this triangle, in contradiction to
the degree bound of b. So the claim holds, that is, by is indeed on the side of Iab that
contains c, d. Then aby is a triangle that separates x from c, d, see Figure 3d. By Lemma 7,
the triangles abc and aby define a double kite. J

a

d

b
c

x

y
Iab

(a)

a

d

b
c

x

y
Iab

(b)

a

d

b
c x

y
Iab

(c)

a

d

b
c x

y
Iab

(d)

Figure 3 A 4-inhibitor Iab = abxy that constrains the edge ab of the separating triangle abc.

A necessary requirement for the existence of a set K of edges to collapse is that our graph
does not contain a separating triangle for which every edge is constrained by a 4-inhibitor.
We show that this requirement is met, except for some specific special cases.

I Lemma 11. Let G be an embedded 3-connected simple planar graph and let I be a set of
4-inhibitors of G. Further, let T be a trivial separating triangle of G such that all vertices
incident to T have degree at most five. Finally, assume that G contains no separating triangle
that together with T defines a double kite.

Then either (1) T is incident to at least one edge that is not constrained by a 4-inhibitor
of I; or (2) G contains a subgraph G′ that is isomorphic to one of the graphs G1,G2 depicted
in Figure 4 such that each thick (colored) edge of G′ is incident to some 4-inhibitor of I.

d
c

x

y

s r′ b

z

a

(a) G1

a

d
bc

z

x

y

(b) G2

a

d

b

c

z

x

y

IabIbc

(c)

Figure 4 If all three edges of a separating triangle in the graph G are constrained by a 4-inhibitor,
there is a subgraph G′ isomorphic to G1 or G2. The gray parts in (a) represent arbitrary subgraphs.

Proof Sketch. Assume that each edge of T = abc is constrained by a 4-inhibitor of I, and
that G contains no subgraph G′ as in the claim. We denote the inhibitors of I constraining ab,
bc, and ac by Iab = abxy, Ibc = bcst, and Iac = acvw, respectively. By Lemma 10, we have
c, d /∈ Iab, a, d /∈ Ibc, and b, d /∈ Iac, where d denotes the inner vertex of T . By 3-connectivity
and since Iab is separating, we may assume w.l.o.g. that b has a neighbor z which is located
on the side of Iab that does not contain c; see Figure 4c. Due to the degree bound of b, we
have t ∈ {x, z}.

ESA 2019



58:8 Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian

First, assume that t = z. By planarity, s belongs to Iab; and by Lemma 10 applied to Ibc

we have s = y and, thus, Ibc = bcyz. We study the third inhibitor Iac = acvw. We have
v 6= y, as otherwise ay would be a chord of Iac, contradicting Lemma 10. The triangle acy is
nonseparating by Lemma 7 and the assumption that T does not define a double kite. Thus, v

is located on the side of Ibc that does not contain a and, hence, by planarity, v or w has
to belong to Ibc. Since c ∈ Iac ∩ Ibc, Lemma 10 implies that the only other vertex of Iac

in this intersection is z. As z and c are located on distinct sides of Iab, the vertex v must
belong to Iab and, thus, v = x and Iac = acxz. Altogether, this establishes that G contains a
subgraph G′ ' G2 as in the statement, which yields the desired contradiction.

It remains to consider the case that t = x. Using similar arguments as in the previ-
ous paragraph, we obtain a contradiction to the assumption that G does not contain a
subgraph G′′ ' G1 as in the statement. J

Similiar to the proof of Lemma 6, we can deal with the special case that there is a
separating triangle in S such that each of its edges is constrained using the inductive
framework of the proof of Theorem 5. So assume from now on that G does not contain a
subgraph isomorphic to G1 or G2 as in Lemma 11. Our plan is to use Lemma 11 to identify
an unconstrained edge, which is then collapsed. This procedure is then iterated until no
separating triangle is left. The edges collapsed during this process form the desired set K.

Due to the degree bound, it is easy to determine in quadratic time the set of ineligible
edges, that is, edges of separating triangles that are constrained by 4-inhibitors. Whenever
an edge collapses, we check all separating triangles in the constant size neighborhood in order
to update the set of ineligible edges in constant time. These edges are never considered for
inclusion into the set K of edges to collapse.

An edge collapse is 3-connectivity preserving if the graph resulting from the collapse is
3-connected. As long as there is an eligible edge whose collapse preserves 3-connectivity,
we collapse it. In order to test whether this is the case for an edge ab of a separating
triangle T = abc, it suffices to determine and check all pairs of distinct faces fa and fb

of G+
T incident to a and b, respectively, and a vertex v 6= c such that v ∈ ∂fa ∩ ∂fb. This

test can be performed in linear time, given that there is only a constant number of choices
for fa and fb. Observe that negative test results are robust under 3-connectivity preserving
collapses; whereas, in general, positive results are not. Hence, it suffices to consider every
eligible edge at most once, and so the time spent on these tests is quadratic overall.

However, in general an edge collapse may reduce the connectivity of the graph. In
this case, we plan to recurse on the triconnected components of the graph. To make such
a recursion work in the context of our overall proof strategy, we must take special care
concerning the vertices of separation pairs. Specifically, as we will discuss in the following
section, we should never create a separation pair whose vertices are adjacent.

5.2 Avoiding adjacent separation pairs

Recall that we plan to stellate each face of the graph G′ that is obtained by simultaneously
collapsing all edges in K, and that we need to ensure that the resulting graph G′′ does
not contain any separating triangle. Consider a face f of G′ and assume that its stellation
creates a separating triangle s = abvf where vf is the new vertex inserted into f . Note that
the vertices a and b are incident to f . Therefore, the edge ab ∈ E(G′) is a chord of ∂f and,
moreover, a, b is a separation pair of G′.
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In order to avoid this situation, it suffices to choose the set K subject to the following
additional constraint: (4) the graph obtained by simultaneously collapsing the edges of K

does not create an adjacent separation pair, i.e., a separation pair a, b where a and b are
adjacent. Inspired by this observation, we devise a strengthened version (Lemma 13) of
Lemma 11. For its proof, we require the following observation:

I Observation 12. Let G be an embedded 3-connected simple planar graph and let T = abc

be a trivial separating triangle of G with inner vertex d. Further, assume that collapsing ab

results in a graph G′ that is 2-connected but not 3-connected; and let p, q be a separation pair
of G′. Then we may assume that p is the new vertex that is created by the collapse of ab and
that q /∈ {c, d}.

I Lemma 13. Let G be an embedded 3-connected simple planar graph and let I be a set of
4-inhibitors of G. Further, let T = abc be a trivial separating triangle of G with inner vertex d

such that all vertices incident to T have degree at most five. Finally, assume that G contains
no separating triangle that together with T defines a double kite.

Then either (1) T is incident to at least one edge e such that (i) e is not constrained by a
4-inhibitor of I; and (ii) collapsing e does not create an adjacent separation pair; or (2) G
contains a subgraph G′ that isomorphic to one of the graphs G1,G2 depicted in Figure 4 such
that each thick (colored) edge of G′ is incident to some 4-inhibitor of I.

5.3 Choosing the set of edges to collapse
We are now prepared to discuss how the desired edge set K is obtained.

I Theorem 14. Let H be an embedded 3-connected simple planar graph on n vertices where
every vertex incident to a separating triangle has degree at most five and where every separating
triangle is trivial. Further, let S denote the set of separating triangles in H. Assume that H
is not a trivial double kite and that H contains no subgraph isomorphic to G1 or G2. Then
we can compute in O(n2) time a set K ⊂ E(H) of edges so that:
(I1) every edge in K is incident to a triangle in S;
(I2) every triangle in S is incident to exactly one edge from K;
(I3) H contains no k-inhibitor I such that K contains k − 3 or more edges of I; and
(I4) the graph H′′ obtained by simultaneously collapsing the edges of K is biconnected and

does not contain an adjacent separation pair.

Proof Sketch. The proof is by induction on the number |S| of separating triangles. Let e

be an edge of H that satisfies Property (1) of Lemma 13. Let H′ be the embedded simple
planar graph obtained by collapsing e in H. We show that H′ is not a trivial double kite
or contains a subgraph isomorphic to G2. We also show that e can always be chosen such
that H′ contains no G1. If H′ is 3-connected, we inductively obtain an edge set K′ that
satisfies the Properties (I1)–(I4) and, hence, K = K′ ∪ {e} satisfies these properties for H.

It remains to deal with the case that for every edge e that satisfies Property (1) of
Lemma 13, collapsing e results in a graph H′ that is biconnected, but not 3-connected. In
this case, we recurse on the triconnected components of H′. In particular, from the fact
that H′ contains no adjacent separation pair, we may derive that each separating triangle
of H′ appears, with all its real edges, in some rigid triconnected component R of H′, which
is a simple 3-connected planar graph. The graph R may contain separating triangles that do
not belong to S, namely the separating triangles that are incident to virtual edges. Keeping
in mind that virtual edges correspond to separation pairs of H′, and that H′ contains no
adjacent separation pairs, virtual edges of R may be thought of as paths (in H′) of length
at least two. As a consequence, we may ignore such virtual separating triangles. Similarly,

ESA 2019



58:10 Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian

regarding Property (I3), when picking the next edge to collapse in R, we do not need to
worry about 4-inhibitors that have virtual edges. Formally, this is realized by proving a
generalized version of the theorem, in which each edge of H is labeled as either real or virtual
and in which the Properties (I1)–(I4) are relaxed accordingly.

The relaxed versions of Property (I1) and (I2) are easy to achieve. Regarding Property (I4),
the main challenge is to ensure that the separation pairs already present in H′ do not become
adjacent when performing further edge collapses. Let p, q be a separation pair of H′. By
Observation 12, we may assume that p is the vertex created by collapsing e. Since the real
separating triangles of H′ are pairwise vertex-disjoint, we conclude that in order for p and q to
become adjacent, there must exist a path psq in H′, where sq is incident to a triangle T of S.
Let R be the rigid triconnected component of H′ that contains T . We compute an edge set KR

for R that satisfies Properties (I1)–(I4). We show that if sq is constrained by a 4-inhibitor
in H, we may simply obtain KR by induction as the Properties (I1)–(I4) of KR already suffice
to guarantee that p, q do not become adjacent. If sq is not constrained by a 4-inhibitor,
there are choices of KR for which p, q become adjacent even though Properties (I1)–(I4) hold
for KR. We show that this is only possible in a very constrained special case, where

either R has constant size (in this case we select KR explicitly, rather than inductively);
or we can apply a strategy % to replace e with a new edge %(e), so that % is acyclic, that
is, %i(e) 6= e, for all i ∈ N.

Finally, we show that Property (I4) implies Property (I3). To maintain the triconnected
components, we use a decremental data structure by Holm et al. [15, Theorem 11] that
allows to dynamically maintain an SPQR-tree under a sequence of edge contractions or
deletions in O(n log2 n) total time. Note that an edge collapse can be implemented using edge
contractions and deletions. The runtime of our algorithm is dominated by the replacement
strategy %. We show that a single replacement step can be performed in constant time. After
at most a linear number of replacements, we obtain an edge that can safely be collapsed.
Hence, as the number of collapses is linear, the overall complexity is quadratic. J

6 Stellation

Let K ⊂ E(G) be a set of edges to collapse as described in Theorem 14, and let G′ denote
the graph that results from simultaneously collapsing the edges from K in G. Then by
Property (I3) of Theorem 14 the graph G′ does not contain any separating triangle. Let G′′

denote the graph that results from stellating all faces in G′, that is, for every nontriangular
face f of G′ we insert a new vertex vf into f and we add an edge between vf and each
vertex on ∂f . As discussed in Section 5.2, the following lemma is an easy consequence
of Property (I4).

I Lemma 15. The graph G′′ does not contain any separating triangle.

Therefore, we can apply Theorem 4 to G′′ to obtain a Hamiltonian cycle C ′′ for G′′. It
remains to address the case that one or two edges of the outer face T◦ of G are prescribed.

I Observation 16. If any edge of T◦ is prescribed, then T◦ is also the outer face of G′′.

Proof. By Property (P3) we know that T◦ is also the outer face of G′. By Property (P2) we
know that T◦ a triangle and, therefore, it is not subdivided when going from G′ to G′′. J

By Observation 16 we can pass any possibly prescribed edge of T◦ to Theorem 4 so that
the obtained Hamiltonian cycle C ′′ for G′′ passes through the(se) prescribed edge(s).
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7 Reconstructing Collapses

As a final step to prove Theorem 1, it remains to undo the edge collapses, that is, to go
back from the modified graph G′′ to the original graph G. Our algorithm maintains a
subhamiltonian plane cycle in the current graph, starting with a subhamiltonian plane
cycle in G′′. Then the separating triangles of G are processed in a certain order, which is
incrementally computed as part of the algorithm. At every step of the algorithm we handle
one separating triangle and include its vertices into the current working cycle. For some
steps we may choose this separating triangle freely among the remaining ones, while in other
steps that choice might be dictated by the previous step.

During the whole reconstruction process, we modify the current cycle in specific ways only.
In particular, we only modify edges of the cycle that are incident to a separating triangle of
G (including vertices that result from the collapse of an edge in K). By Observation 16 and
(P3) this assertion suffices to ensure that prescribed edges on the outer face of G (if any) are
part of the cycle that is constructed. Our algorithm proceeds in up to three phases.

Phase 1. First, we reconstruct some collapsed triangles, while maintaining a subhamiltonian
plane cycle in the current graph. We consider only triangles that are visited by the current
working cycle in a specific way so that after reconstructing them the cycle can easily be
extended to visit all vertices of and in the interior of those triangles; see Figure 5 for examples,
where the solid orange segments depict edges of the current cycle.
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Figure 5 Examples of two easy reconstructions in Phase 1 (where uv was collapsed to u).

At the end of the first phase, we move on to the graph G, that is, we reconstruct all
remaining triangles at once. The previously Hamiltonian cycle then becomes a nonspanning
cycle in a plane augmentation of G that visits all vertices of G but a pair of vertices from
each of the remaining triangles (that have not been reconstructed during the first phase
already). We can classify these remaining triangles – up to symmetry – into five different
types according to how they interact with the current cycle. This classification is illustrated
in Figure 6(a)–(e), where the dotted orange segments depict three different options for an
edge of the current cycle, and the red crosses mark vertices that are not part of a remaining
separating triangle.

(a) (b) (c) (d) (e)

!

!

(f)

Figure 6 The six types of remaining triangles during Phase 2 of the reconstruction.
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Phase 2 and 3. During the second phase we then maintain this classification: although a
triangle may change its type, it always remains one of these five types. As in the first phase,
we process the triangles one by one. Processing a triangle amounts to extending the current
cycle to visit the two missing vertices. At the end of Phase 2 we either have a subhamiltonian
plane cycle for G (and are done), or we are in a situation where all remaining triangles to
be handled are of a very specific type with respect to the current cycle, which is illustrated
in Figure 6f; the vertices labeled with a red exclamation mark are also part of a remaining
separating triangle. Note that this type is a specialization of the more general type depicted
in Figure 6c. The remaining triangles – if any – are then processed during a third phase, at
the end of which we obtain the desired subhamiltonian plane cycle for G.

Remarks. The complexity of the reconstruction algorithm is linear overall. To illustrate the
challenges for this reconstruction process and why it is important to control the interaction
of the remaining triangles with the cycle under construction, consider the examples shown
in Figure 7. If the cycle was to visit a remaining triangle in one of the ways depicted, then
there is no way to locally modify the cycle to visit the missing vertices. Note that due to the
stellation, these two configurations are avoided in the beginning of Phase 1.

8 Conclusions

The graph G3 whose construction is depicted in Figure 8 is a member of the infinity family
described in Theorem 3, which shows that our degree restriction in Theorem 1 is necessary
in general. The most prominent open question is whether all planar graphs of degree ≤ 6
are subhamiltonian.

t

u
v

w

t

u
v

w

Figure 7 Two types of remaining triangles to avoid: There is no easy way to extend the cycle.

(a) C4�P3 (b) F3 (c) G3

Figure 8 The construction of G3, a 3-connected planar graph that is not subhamiltonian and
where every vertex of a separating triangle has degree at most six. We start from the Cartesian
product C4�P3, where we pick three pairwise nonadjacent faces (shaded in (a)). Then we plant a
rectangular prism on each picked face, obtaining the frame F3 (b). Finally, to obtain G3 we add a
new vertex in every face of F3 and connect it to three vertices on the boundary (c). The separating
triangles of G3 are shaded red; their vertices have degree six. The red vertices form an independent
set, and no edge between any two red vertices can be added while maintaining planarity. As there
are 25 red vertices and 24 black vertices, no plane augmentation of G3 is Hamiltonian.
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Abstract
Data structures for efficient sampling from a set of weighted items are an important building block
of many applications. However, few parallel solutions are known. We close many of these gaps
both for shared-memory and distributed-memory machines. We give efficient, fast, and practicable
algorithms for sampling single items, k items with/without replacement, permutations, subsets, and
reservoirs. We also give improved sequential algorithms for alias table construction and for sampling
with replacement. Experiments on shared-memory parallel machines with up to 158 threads show
near linear speedups both for construction and queries.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Theory of
computation → Parallel algorithms; Theory of computation → Data structures design and analysis

Keywords and phrases categorical distribution, multinoulli distribution, parallel algorithm, alias
method, PRAM, communication efficient algorithm, subset sampling, reservoir sampling
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Supplement Material The code and scripts used for our experiments are available under the GPLv3
at https://github.com/lorenzhs/wrs.

1 Introduction

Weighted random sampling asks for sampling items (elements) from a set such that the
probability of sampling item i is proportional to a given weight wi. Several variants of this
fundamental computational task appear in a wide range of applications in statistics and
computer science, e.g., for computer simulations, data analysis, database systems, and online
ad auctions (see, e.g., Motwani et al. [26], Olken et al. [28]). Continually growing data
volumes (“Big Data”) imply that the input sets and even the sample itself can become large.
Since actually processing the sample is often fast, sampling algorithms can easily become a
performance bottleneck. Due to the hardware developments of the last years, this means that
we need parallel algorithms for weighted sampling. This includes shared-memory algorithms
that exploit current multi-core processors, and distributed algorithms that split the work
across multiple machines without incurring too much overhead for communication.

However, there has been surprisingly little work on parallel weighted sampling. This
paper closes many of these gaps. Table 1 summarizes our results on the following widely
used variants of the weighted sampling problem. We process the input set A = 1..n on p
processing elements (PEs) where i..j is a shorthand for {i, . . . , j}. Item i has weight wi and
W :=

∑n
i=1 wi. Define u := logU where U := wmax/wmin := maxi wi/mini wi.
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WRS–1: Weighted sampling of one item from a categorical (or multinoulli) distribution
(equivalent to WRS–R and WRS–N for k = 1).

WRS–R: Sample k items from A with replacement, i.e., the samples are independent and
for each sample X, P[X = i] = wi/W . Let s = |S| ≤ k denote the number of different
items in the sample S. Note that we may have s� k for skewed input distributions.

WRS–N: Sample k pairwise unequal items s1 6= · · · 6= sk without replacement such that
P[sl = i] = wi/(W − ws1 − · · · − ws`−1).

WRP: Permute the elements with the same process as for WRS–N using k = n.
WRS–S: Sample a subset S ⊆ A where P[i ∈ S] = wi ≤ 1.
WRS–B: Batched reservoir sampling. Repeatedly solve WRS–N when batches of new items

arrive. Only the current sample and batch may be stored. Let b denote the batch size.
When applicable, our algorithms build a data structure once which is later used to support fast
sampling queries. Most of the algorithms have linear work and variants with logarithmic (or
even constant) latency. Neither competitive parallel algorithms nor more efficient sequential
algorithms are known. The distributed algorithms are refinements of the shared-memory
algorithms with the goal to reduce communication costs compared to a direct distributed
implementation of the shared-memory algorithms. As a consequence, each PE mostly works
on its local data (the owner-computes approach). Communication – if at all – is only
performed to coordinate the PEs and is sublinear in the local work except for extreme corner
cases. The owner-computes approach introduces the complication that differences in local
work introduce additional parameters into the analysis that characterize the local work in
different situations (e.g., the last line of Table 1). The summary in Table 1 therefore covers
the case when items are randomly assigned to PEs. This simplifies the exposition and is
actually an approach that one can sometimes take in practice.

Outline

First, in Section 2, we review the models of computation used in this paper as well as known
techniques we are building on. We discuss additional related work in Section 3. In Section 4,
we consider Problem WRS–1. We first give an improved sequential algorithm for constructing

Table 1 Result overview (expected and asymptotic). Distributed results assume random distribu-
tion of inputs. Input size n, output size s, sample size k, startup latency of point-to-point communi-
cation α, time for communicating one machine word β, log-weight ratio u = logU = logwmax/wmin,
mini-batches of b items per PE. The complexity of sorting n integers with keys from 0..x is isortx(n)
(isort∗ = parallel, isort1 = sequential).

Shared Memory Distributed
Preprocessing Query Preprocessing Query

Problem § Work Span Work Span § Time Time

WRS–1 4.2 n logn 1 1 4.3 n
p

+ α log p α

WRS–R 5 isort∗u(n) s+ logn logn 5.1 isort1
u( n

p
) + α log p s

p
+ log p

WRS–N 6 isort∗u(n) k + logn logn 6 isort1
u( n

p
) + α log p k

p
+ α log2 n

WRS–N 6 n
p

+ βu+ α log p k
p

+ α logn
WRP 7 — — isort∗n(u+log n)(n) 7 — isort∗n(u+log n)(n)
WRS–S 8 n logn s+ logn logn 8 n

p
+ log p s

p
+ log p

WRS–B — — — — — 9 — b log(b+ k) +α log2 kp
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alias tables – the most widely used data structure for Problem WRS–1 that allows sampling
in constant time. Then we parallelize that algorithm for shared and distributed memory. We
also present parallel construction for a more space efficient variant.

Sampling k items with replacement (Problem WRS–R) seems to be trivially parallelizable
with an alias table. However this does not lead to a communication-efficient distributed
algorithm and we can generally do better for skewed input distributions where the number of
distinct output elements s can be much smaller than k. Section 5 develops such an algorithm
which is interesting both as a parallel and a sequential algorithm.

Section 6 employs the algorithm for Problem WRS–R to solve Problem WRS–N. The
main difficulty here is to estimate the right number of samples with replacement to obtain a
sufficient number of distinct samples. Then an algorithm for WRS–N without preprocessing
is used to reduce the “weighted oversample” to the desired exact output size.

It is well known that the weighted permutation Problem WRP can be reduced to sorting
(see Section 2.3). We show in Section 7 that this is actually possible with linear work
by appropriately defining the (random) sorting keys so that we can use integer sorting
with a small number of different keys. Since previous linear-time algorithms are fairly
complicated [20], this may also be interesting for a sequential algorithm. Indeed, a similar
approach might also work for other problems where sorting can be a bottleneck, e.g., smoothed
analysis of approximate weighting matching [24].

For subset sampling (Problem WRS–S), we parallelize the approach of Bringmann et al. [6]
in Section 8. Once more, the preprocessing requires integer sorting. However, only O(logn)
different keys are needed so that linear work sorting works with logarithmic latency even
deterministically on a CREW PRAM.

In Section 9, we adapt the sequential streaming algorithm of Efraimidis et al. [12] to
a distributed setting where items are processed in small batches. This can be done in a
communication efficient way using our previous work on distributed priority queues [16].

Section 10 gives a detailed experimental evaluation of our algorithms for WRS–1 and
WRS–R. Section 11 summarizes the results and discusses possible future directions.

2 Preliminaries

2.1 Models of Computation
We strive to describe our parallel algorithms in a model-agnostic way, i.e., we largely describe
them in terms of standard operations such as prefix sums for which efficient parallel algorithms
are known on various models of computation. We analyze the algorithms for two simple
models of computation. In each case p denotes the number of processing elements (PEs).
Most of our algorithms achieve polylogarithmic running time for a sufficiently large number
of PEs. This is a classical goal in parallel algorithm theory and we believe that it is now
becoming practically important with the advent of massively parallel (“exascale”) computing
and fine-grained parallelism in GPGPU.

For shared-memory algorithms we use the CREW PRAMmodel (concurrent read exclusive
write parallel random access machine) [18]. We will use the concepts of total work and span
of a computation to analyze these algorithms. The span of a computation is the time needed
by a parallel algorithm with an unbounded number of PEs.

For distributed-memory computations we use point-to-point communication between PEs
where exchanging a message of length ` takes time α+ `β. We assume 1 ≤ β ≤ α. We will
use that prefix sums and (all-)reductions can be computed in time O(β`+ α log p) for vectors
of size `. The all-gather operation collects a value from each PE and delivers all values to
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all PEs. It can be implemented to run in time O(βp+ α log p) [19]. We will particularly
strive to obtain communication-efficient algorithms [35] where total communication cost is
sublinear in the local computations. Some of our algorithms are even communication free.

We need one basic toolbox operation where the concrete machine model has some impact
on the complexity. Sorting n items with integer keys from 1..K can be done with linear
work in many relevant cases. Sequentially, this is possible if K is polynomial in n (radix
sort). Radix sort can be parallelized even on a distributed-memory machine with linear
work and span nε for any constant ε > 0. Logarithmic span is possible for K = O(logc n)
for any constant c, even on an EREW PRAM [30, Lemma 3.1]. For a CRCW PRAM,
expected linear work and logarithmic span can be achieved when K = O(n logc n) [30] (the
paper gives the constraint K = O(n) but the generalization is obvious and important for
us in Section 7). Resorting to comparison based algorithms, we get work O(n logn) and
O(logn) span on an EREW PRAM [8].

2.2 Bucket-Based Sampling

The basic idea behind several solutions of Problem WRS–1 is to build a table of m = Θ(n)
buckets where each bucket represents a total weight ofW/m. Sampling then selects a random
bucket uniformly at random and uses the information stored in the bucket to determine the
actual item. If item weights differ only by a constant factor, we can simply store one item
per bucket and use rejection sampling to obtain constant expected query time (see, e.g.,
Devroye [9], Olken et al. [28]).

Deterministic sampling with only a single memory probe is possible using Walker’s alias
table method [38], and its improved construction due to Vose [37]. An alias table consists
of m := n buckets where bucket b[i] represents some part w′i of the weight of item i. The
remaining weight of the heavier items is distributed to the remaining capacity of the buckets
such that each bucket only represents one other item (the alias ai). Algorithm 1 gives
high-level pseudocode for the approach proposed by Vose. The items are first classified into
light and heavy items. Then the heavy items are distributed over light items until their
residual weight drops below W/n. They are then treated in the same way as light items.

To sample an item, pick a bucket index r uniformly at random, toss a biased coin that
comes up heads with probability w′rn/W , and return r for heads, or b[r].a for tails.

Algorithm 1 Classical construction of alias tables similar to Vose’s approach [37].

Procedure voseAliasTable(〈w1, . . . , wn〉, b : Array of w : R× a : N)
W :=

∑
i wi –– total weight

h := {i ∈ 1..n : wi > W/n} : Stack –– heavy items
` := {i ∈ 1..n : wi ≤W/n} : Stack –– light items
for i := 1 to n do b[i].w := wi –– init buckets with weights
while h 6= ∅ do –– consume heavy items

j := h.pop –– get a heavy item
while b[j].w > W/n do –– still heavy

i := `.pop –– get a light item
b[i].a := j –– Fill bucket b[i] with a ...
b[j].w := (b[j].w + b[i].w)−W/n –– ... piece of item j.

`.push(j) –– Bucket j is light now.
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2.3 Weighted Sampling using Exponential Variates
It is well known that an unweighted sample without replacement of size k out of n items 1..n
can be obtained by associating with each item a uniform variate vi := rand(), and selecting
the k with the smallest associated variates. This method can be generalized to generate
a weighted sample without replacement by raising uniform variates to the power 1/wi and
selecting the k items with the largest associated values [11, 12, 10]. Equivalently, one can
generate exponential random variates vi := − ln(rand())/wi and select the k items with the
smallest associated vi [2] (“exponential clocks method”), which is numerically more stable.

2.4 Divide-and-Conquer Sampling
Uniform sampling with and without replacement can be done using a divide-and-conquer
algorithm [34]. To sample k out of n items uniformly and with replacement, split the set into
two subsets with n′ (left) and n− n′ (right) items, respectively. Then the number of items
k′ to be sampled from the left has a binomial distribution (k trials with success probability
n′/n). We can generate k′ accordingly and then recursively sample k′ items from the left
and k− k′ items from the right. This can be used for a communication-free parallel sampling
algorithm. We have a tree with p leaves. Each leaf represents a subproblem of size about n/p
– one for each PE. Each PE descends this tree to the leaf assigned to it (time O(log p)) and
then generates the resulting number of samples (time O(k/p+ log p) with high probability).
Different PEs have to draw the same random variates for the same interior node of the tree.
This can be achieved by seeding a pseudo-random number generator with an ID of this node.

3 Related Work

3.1 Sampling one Item (Problem WRS–1)
Extensive work has been done on generating discrete random variates from a fixed distribution
[38, 37, 21, 9, 6]. All these approaches use preprocessing to construct a data structure
that subsequently supports very fast (constant time) sampling of a single item. Bringmann
et al. [5] explain how to achieve expected time r using only O(n/r) bits of space beyond the
input distribution itself. There are also dynamic versions that allow efficient weight updates.
Some (rather complicated ones) allow that even in constant expected time [15, 22].

3.2 Sampling Without Replacement (Problems WRS–N and WRP)
The exponential clocks method of Section 2.3 is an O(n) algorithm for sampling without
replacement. This approach also lends itself towards use in streaming settings (reservoir
sampling) and can be combined with a skip value distribution to reduce the number of
required random variates from O(n) to O

(
k log n

k

)
[12]. A related algorithm for WRS–N

with given inclusion probabilities instead of relative weights is described by Chao [7].
More efficient algorithms for WRS–N repeatedly sample an item and remove it from the

distribution using a dynamic data structure [40, 28, 15, 22]. With the most efficient such
algorithms [15, 22] we achieve time O(k), albeit at the price of an inherently sequential and
rather complicated algorithm that might have considerable hidden constant factors.

It is also possible to combine techniques for sampling with replacement with a rejection
method. However, the performance of these methods depends heavily on U , the ratio between
the largest and smallest weight in the input, as the rejection probability rises steeply once
the heaviest items are removed. Lang [20] gives an analysis and experimental evaluation of
such methods for the case of k = n (cf. “Permutation” below). A recent practical evaluation
of approaches that lend themselves towards efficient implementation is due to Müller [27].
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3.3 Parallel Sampling
There is surprisingly little work on parallel sampling. Even uniform unweighted sampling
had many loose ends until recently [34]. Parallel uniformly random permutations are covered
in [14, 33]. Efraimidis and Spirakis note that WRS–N can be solved in parallel with span
O(logn) and work O(n logn) [11]. They also note that solving the selection problem suffices
if the output need not be sorted. The optimal dynamic data structure for WRS–1 [22] admits
a parallel bulk update in the (somewhat exotic) combining-CRCW-PRAM model. However,
this does not help with Problem WRS–N since batch sizes are one.

4 Alias Table Construction (Problem WRS–1)

4.1 Improved Sequential Alias Tables
Before discussing parallel alias table construction, we discuss a simpler, faster and more space
efficient sequential algorithm that is a better basis for parallelization. Previous algorithms
need auxiliary arrays/queues of size Θ(n) in order to decide in which order the buckets are
filled. Vose [37] mentions that this can be avoided but does not give a concrete algorithm.
We now describe an algorithm with this property.

The idea of the algorithm is that two indices i and j sweep the input array with respect
to light and heavy items, respectively. The loop invariant is that the weight of items
corresponding to light (heavy) items preceding i (j) has already been distributed over some
buckets and that their corresponding buckets have already been constructed. Variable w
stores the weight of the part of item j that has not yet been assigned to buckets. Each
iteration of the main loop advances one of the indices and initializes one bucket. When
the residual weight w exceeds W/n, item j is used to fill bucket i, the residual weight w
is reduced by W/n − wi, and index i is advanced to the next light item. Otherwise, the
remaining weight of heavy item j fits into bucket j and the remaining capacity of bucket j
is filled with the next heavy item. Algorithm 2 gives pseudocode that emphasizes the high
degree of symmetry between these two cases.

Algorithm 2 A sweeping algorithm for building alias tables.

Procedure sweepingAliasTable(〈w1, . . . , wn〉, b : Array of w : R× a : N)
W :=

∑
i wi –– total weight

i := min {k > 0 : wk ≤W/n} –– first light item
j := min {k > 0 : wk > W/n} –– first heavy item
w := wj –– residual weight of current heavy item
while j ≤ n do

if w > W/n then –– Pack a light bucket.
b[i].w := wi –– Item i completely fits here.
b[i].a := j –– Item j fills the remainder of bucket i.
w := (w + wi)−W/n –– Update residual weight of item j.
i := min {k > i : wk ≤W/n} –– next light item, assume wn+2 = 0

else –– Pack a heavy bucket.
b[j].w := w –– Now item j completely fits here.
b[j].a := j′ := min {k > j : wk > W/n} –– next heavy item, assume wn+1 =∞
w := (w + wj′)−W/n –– Find residual weight of item j′.
j := j′
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4.2 Parallel Alias Tables

The basic idea behind our splitting based algorithm is to identify subsets L and H of light
(wi ≤W/n) and heavy (wi > W/n) items such that they can be allocated precisely within
their respective buckets, i.e., w(H ∪ L) :=

∑
i∈H∪L wi = (|H|+ |L|) ·W/n. By splitting the

items into such pairs of subsets, we can perform alias table construction for these subsets in
parallel. Since the above balance condition cannot always be achieved, we allow to “steal” a
piece of a further heavy item, i.e., this item can be used to fill buckets in several subproblems.
Such a split item will only be used as an alias except in the last subproblem where it is used.
Thus, the computed data structure is still an alias table.

We first explain how to split n items into two subsets of size n′ and n − n′. Similar
to Vose’s algorithm, we first compute arrays ` and h containing the indices of the light
and heavy items, respectively. We then determine indices i and j such that i + j = n′,
σ :=

∑
x≤i w`[x]+

∑
x≤j wh[x] ≤ n′W/n and σ+wh[j+1] > n′W/n; see Figure 1 for an example.

These values can be determined by binary search over the value of j. By precomputing
prefix sums of the weights of the items in ` and h, each iteration of the binary search takes
constant time. The resulting subproblem then consists of the light items L := {`[1], . . . , `[i]},
the heavy items H := {h[1], . . . , h[j]} and a fraction of size n′W/n− σ of item h[j + 1].

To split the input into p independent subproblems of near-equal size, we perform the
above two-way-split for the values n′k = dnk/pe for k ∈ 1..p− 1. PE k is then responsible for
filling a set of buckets corresponding to sets of light and heavy items, each represented by
a range of indices into ` and h. A piece of a further heavy item may be used to make the
calculation work out. Note that a subproblem might contain an empty set of light or heavy
items and that a single heavy item j may be assigned partially to multiple subproblems, but
only the last PE using a heavy item will fill its bucket.

Algorithm 3 gives detailed pseudocode. It uses function split to compute p− 1 different
splits in parallel. The result triple (i, j, s) of split specifies that buckets `[1] · · · `[i] as well as
h[1] · · ·h[j] shall be filled using the left subproblem. Moreover, total weight s of item h[j + 1]
is not used on the left side, i.e., spilled over to the right side.

This splitting information is then used to make p parallel calls to procedure pack – giving
each PE the task to fill up to dn/pe buckets. Pack has input parameters specifying ranges
of heavy and light items it should use. The parameter spill determines how much weight
of item h[j − 1] can be used for that. Pack works similar to the sweeping algorithm from
Algorithm 2. If the residual weight of item h[j − 1] drops below W/n, this item is actually
also packed in this call. The body of the main loop is dominated by one if-then-else case
distinction. When the residual weight of the current heavy item falls below W/n, its bucket
is filled using the next heavy item. Otherwise, its weight is used to fill the current light item.

I Theorem 1. We can construct an alias table with work Θ(n) and span Θ(logn) on a
CREW PRAM.

h

ℓ

W = 208, W
n

= 16

n′ = 7, n′
·

W
n

= 112

4 13

29 20 24 17 27 20 23

12 5 16 2 6 7

wi

j=3

i=4

σ = 108 ≤ 112

σ + wh[4] = 125 > 112

Figure 1 Parallel alias tables: splitting n = 13 items into two parts of size n′ = 7 and n−n′ = 6.
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Algorithm 3 Pseudocode for parallel splitting based alias table construction (PSA).

Procedure psaAliasTable(〈w1, . . . , wn〉, b : Array of w : R× a : N)
W :=

∑
i wi –– total weight

h := {i ∈ 1..n : wi > W/n} : Array –– parallel traversal finds heavy items and
` := {i ∈ 1..n : wi ≤W/n} : Array –– and light items
for k := 1 to p− 1 dopar (ik, jk, spillk) := split(dnk/pe) –– split into p pieces
(i0, j0, spill0) := (0, 0, 0); (ip, jp) := (n, n) –– cover corner cases
for k := 1 to p dopar pack(ik−1 + 1, ik, jk−1 + 1, jk, spillk−1)

Function split(n′) : N× N× R
a := 1; b := min(n′, |h|) –– a..b is search range for j
loop –– binary search

j := b(a+ b)/2c –– bisect search range
i := n′ − j –– Establish the invariant i+ j = n′.
σ :=

∑
x≤i w`[x] +

∑
x≤j wh[x] –– work to the left; use precomputed prefix sums

if σ ≤ n′W/n and σ + wh[j+1] > n′W/n then return (i, j, wh[j+1] + σ − n′W/n)
if σ ≤ n′W/n then b := j − 1 else a := j + 1 –– narrow search range

(* pack buckets b[`[i]], . . . , b[`[i]] and buckets b[h[j]], . . . , b[h[j]]. *)
(* Use up to weight spill from item h[j − 1]. *)
Procedure pack(i, i, j, j, spill)

i := i –– `[i] is the current light item.
j := j − 1 –– h[j] is the current heavy item.
w := spill –– part of current heavy item still to be placed
if spill = 0 then j++; w := wh[j]
loop

if w ≤W/n then –– pack a heavy bucket
if j > j then return
b[h[j]].w := w

b[h[j]].a := h[j + 1]
w := (w + wh[j+1])−W/n
j++

else –– pack a light bucket
if i > i then return
b[`[i]].w := w`[i]
b[`[i]].a := h[j]
w := (w + w`[i])−W/n
i++

Proof. The algorithm requires linear work and logarithmic span for identifying light and
heavy items and for computing prefix sums [4] over them. Splitting works in logarithmic
time. Then each PE needs time O(n/p) to fill the buckets assigned to its subproblem. J

4.3 Distributed Alias Table Construction
The parallel algorithm described in Section 4.2 can also be adapted to a distributed-memory
machine. However, this requires information about all items to be communicated. Hence,
more communication efficient algorithms are important for large n. To remedy this problem,
we will now view sampling as a 2-level process implementing the owner-computes approach
underlying many distributed algorithms.
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Let Ei denote the set of items allocated to PE i. For each PE i, we create a meta-item
of weight Wi :=

∑
j∈Ei

wj . Sampling now amounts to sampling a meta-item and then
delegating the task to sample an actual item from Ei to PE i. The local data structures
can be built independently on each PE.1 In addition, we need to build a data structure for
sampling a meta-item. There are several variants in this respect with different trade-offs:

I Theorem 2. Assuming that O(n/p) elements are allocated to each PE, we can sample a
single item in time O(α) after preprocessing a 2-level alias table, which can be done in time
O(n/p) plus the following communication overhead

βp+ α log p with replicated preprocessing (1)
α log2 p expected time using the algorithm from Section 4.2 (2)
α log p with only expected time bounds for the query (3)

Proof. Building the local alias tables takes time O(maxi |Ei|) = O(n/p) sequentially. For
Equation (1), we can perform an all-gather operation on the meta-items and compute the
data structure for the meta-items in a replicated way.

For Equation (2) and Equation (3), we can compute an alias table for the meta-items using
a parallel algorithm. Sampling then needs an additional indirection. First, a meta-bucket j is
computed. Then a request is sent to PE j which identifies the subset Ei from which the item
should be selected and delegates that task of sampling from Ei to PE i.2 Equation (2) then
follows by using the shared-memory algorithm from Section 4.2. It can be implemented to run
in expected time O

(
α log2 p

)
on a distributed-memory machine using PRAM emulation [31].

At the price of getting only expected query time, we can also achieve logarithmic latency
(Equation (3)) by using the rejection sampling algorithm from Section 4.4. The preprocessing
there requires only prefix sums that can directly be implemented on distributed memory: We
have to assign p meta-items to 2p meta-buckets (two on each PE). Suppose PE i computes
the prefix sum k =

∑
j<i dWj/W e. It then sends item i to PE j = bk/2c. PE j then

initiates a broadcast of item i to PEs j.. b(j + bWi/W c − 1)/2c. All of this is possible in
time O(α log p). J

4.3.1 Redistributing Items
As discussed so far, constructing distributed-memory 2-level alias tables is communication
efficient. However, when large items are predominantly allocated on few PEs, sampling
many items can lead to an overload on PEs with large Wi. We can remedy this problem by
moving large items to different PEs or even by splitting them between multiple PEs. This
redistribution can be done in the same way we construct alias tables. This implies a trade-off
between redistribution cost (part of preprocessing) and load balance during sampling.

We now look at the case where an adversary can choose an arbitrarily skewed distribution
of item sizes but where the items are randomly allocated to PEs (or that we actively randomize
the allocation implying O(n/p) additional communication volume).

1 Possibly using a shared-memory parallel algorithm locally.
2 If we ensure that meta-items have similar size (see Section 4.3.1) then we can arrange the meta-items in

such a way that i = j most of the time.
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I Theorem 3. If items are randomly distributed over the PEs initially, it suffices to redis-
tribute O(log p) items from each PE such that afterwards each PE has total weight O(W/p)
in expectation and O(n/p+ log p) (pieces of) items. This redistribution takes expected
time O

(
α log2 p

)
when supporting deterministic queries (Theorem 2-(2)) and expected time

O(α log p) using rejection sampling (Theorem 2-(3)).

Proof. Let us distinguish between heavy items that are larger than cW/(p log p) for an
appropriate constant c and the remaining light items. The expected maximum weight
allocated to a PE based on light items is O(W/p) [32].

There can be at most p log(p)/c heavy items. By standard balls into bins arguments, only
O(log p) heavy items can initially be allocated to any PE with high probability. We use the
algorithm from Theorem 2-(2) to distribute the heavy items to p meta-buckets of remaining
capacity max(0,W/p− Si) where Si is the total weight of the light items allocated to PE i.
Using the bound from Equation (2) would result in a time bound of O

(
log3 p

)
since we have

a factor O(log p) more items. However, the only place where we need a full-fledged PRAM
emulation is for doing the binary search which takes only O(log p) steps on the PRAM and
time O

(
α log2 p

)
when emulated on distributed memory.

For the faster variant with rejection sampling, we use prefix sums to distribute the
largest N := O(p log p) items such that each PE gets an even share of it. For this, we build
groups of N/p = O(log p) items that we distribute in an analogous fashion to the proof
in Theorem 2-(3) – a prefix sum, followed by forwarding a group followed by a segmented
broadcast. The asymptotic complexity does not change since even messages of size O(log p)
can be broadcast in time O(α log p), e.g., using pipelining. Finally, each PE unpacks the
group it received and extracts the parts that it has to represent in the meta-table. J

4.4 Compressed Data Structures for WRS–1

Bringmann and Larsen [5] give a construction similar to alias tables that allows expected query
time O(r) using 2n/r+o(n) bits of additional space. We describe the variant for r = 1 in some
more detail. We assign dwi/W e buckets to each item, i.e., ≤ 2n in total. Item i is assigned to
buckets

∑
j<i dwj/W e ..

∑
j≤i dwj/W e−1. A query samples a bucket j uniformly at random.

Suppose bucket j is assigned to item i. If j ∈
∑

j<i dwj/W e ..
∑

j≤i dwj/W e − 2, item i is
returned. If j =

∑
j≤i dwk/W e − 1, item i is returned with probability dwi/W e − bwi/W c.

Otherwise, bucket j is rejected and the query starts over. Since the overall success probability
is ≥ 1/2, the expected query time is constant.

The central observation for compression is that it suffices to store one bit for each bucket
that indicates whether a new item starts at bucket b[i]. When querying bucket j, the item
stored in it can be determined by counting the number of 1-bits up to position j. This
rank-operation can be supported in constant time using an additional data structure with
o(n) bits. Further reduction in space is possible by representing r items together as one
entry in b.

Both constructing the bit vector and constructing the rank data structure is easy to
parallelize using prefix sums (for adding scaled weights and counting bits, respectively) and
embarrassingly parallel computations. Shun [36] even gives a bit parallel algorithm needing
only O(n/ logn) work for computing the rank data structure. We get the following result:

I Theorem 4. Bringmann and Larsen’s n/r+ o(n) bit data structure can be built using O(n)
work and O(logn) span allowing queries in expected time O(r).
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5 Output Sensitive Sampling With Replacement (Problem WRS–R)

The algorithm of Section 4.2 easily generalizes to sampling k items with replacement by
simply executing k queries. Since the precomputed data structures are immutable, these
queries can be run in parallel. We obtain optimal span O(1) and work O(k).

I Corollary 5. After a suitable alias table data structure has been computed, we can sample
k items with replacement with work O(k) and span O(1).

Yet if the weights are skewed this may not be optimal since large items will be sampled
multiple times. Here, we describe an output sensitive algorithm that outputs only different
items in the sample together with how often they were sampled, i.e., a set S of pairs (i, ki)
indicating that item i was sampled ki times. The work will be proportional to the output
size s up to a small additive term.

Note that outputting multiplicities may be important for appropriately processing the
samples. For example, let X denote a random variable where item i is sampled with
probability wi/W and suppose we want a truthful estimator for the expectation of f(X) for
some function f . Then

∑
(i,ki)∈S kif(i)/k is such an estimator.

We will combine and adapt three previously used techniques for related problems: the
bucket tables from Section 2.2, the divide-and-conquer technique from Section 2.4 [34], and
the subset sampling algorithm of Bringmann et al. [6].

We approximately sort the items into u = dlogUe groups of items whose weights differ
by at most a factor of two – weight wi is mapped to group blog(wi/wmin)c.

To help determine the number of samples to be drawn from each group, we build a
complete binary tree with one nonempty group at each leaf. Interior nodes store the total
weight of items in groups assigned to their subtrees. This divide-and-conquer tree (DC-tree)
allows us to generalize the technique from Section 2.4 to weighted items. Suppose we want
to sample k elements from a subtree rooted at an interior node whose left subtree has total
weight L and whose right subtree has total weight R. Then the number of items k′ to be
sampled from the left has a binomial distribution (k trials with success probability L/(L+R)).
We can generate k′ accordingly and then recursively sample k′ items from the left subtree
and k − k′ items from the right subtree. A recursive algorithm can thus split the number
of items to be sampled at the root into numbers of items sampled at each group. When a
subtree receives no samples, the recursion can be stopped. Since the distribution of weights
to groups can be highly skewed, this stopping rule will be important in the analysis.

For each group G, we integrate bucket tables and DC-tree as follows. For the bucket
table we can use a very simple variant that stores nG items with weights from the interval
[a, 2a) in nG buckets of capacity 2a. Sampling one element then uses a rejection method that
repeats the sampling attempt when the random variate leads to an empty part of a bucket.3

We also build a DC-tree for each group. A simple linear mapping of items into the bucket
table allows us to associate a range of relevant buckets bT with each subtree T of the DC-tree.

For sampling m items from a group G, we use the DC-tree to decide which subtree has to
contribute how many samples. When this number decreases to 1 for a subtree T , we sample
this element directly and in constant expected time from the buckets in the range bT .

Figure 2 gives an example. We obtain the following complexities:

3 If desired, we can also avoid rejection sampling by mapping the items without gaps into up to 2nG

buckets of size a. This way there are at most two items in each bucket. Note that this is still different
from alias tables because we need to map ranges of consecutive items to ranges of buckets. This is not
possible for alias tables.
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Figure 2 Output-sensitive sampling: assignment of multiplicities with k = 36.

I Theorem 6. Preprocessing for Problem WRS–R can be done in the time and span needed
for integer sorting n elements with u = dlogUe = dlog(wmax/wmin)e different keys4 plus
linear work and logarithmic span (on a CREW PRAM) for building the actual data structure.
Using this data structure, sampling a multiset S with k items and s different items can be
done with span O(logn) and expected work O(s+ logn) on a CREW PRAM.

Proof. Besides sorting the items into groups, we have to build binary trees of total size O(n).
This can be done with logarithmic span and linear work using a simple bottom-up reduction.
The bucket-tables which have total size n can be constructed as in Section 4.2.

The span of a query is essentially the depth of the trees, log u+ logn ≤ 2 logn.
Bounding the work for a query is more complicated since, in the worst case, the algorithm

can traverse paths of logarithmic length in the DC-trees for just a constant number of samples
taken at its leaves. However, this is unlikely to happen and we show that in expectation
the overhead is a constant factor plus an additive logarithmic term. We are thus allowed
to charge a constant amount of work to each different item in the output and can afford a
leftover logarithmic term.

We first consider the top-most DC-tree T that divides samples between groups. Tree T is
naturally split into a heavy range of groups that contain some items which are sampled with
probability at least 1/2 and a remaining range of light groups in which all items are sampled
with probability at most 1/2. Assuming the heavy groups are to the left, consider the path
P in T leading to the first light group. Subtrees branching from P to the left are complete
subtrees that lead to heavy groups only. Since all leaves represent non-empty groups, we can
charge the cost for traversing the left trees to the elements in the groups at the leaves – in
expectation, at least half of these groups contain elements that are actually sampled.

Then follow at most 2 logn light groups that have a probability ≥ 1/n to yield at least
one sample. These middle groups fit into subtrees of T of logarithmic total size and hence
cause logarithmic work for traversing them.

The expected work for the remaining very light groups can be bounded by their number
(≤ u ≤ n) times the length of the path in T leading to them (≤ log u ≤ logn) times the
probability that they yield at least one sample (≤ 1/n). The product (≤ n log(n)/n = logn)
is another logarithmic term.

Finally, Lemma 7 shows that the work for traversing DC-trees within a group is linear in
the output size from each group. Summing this over all groups yields the desired bound. J

4 Section 2.1 discusses the cost of this operation on different models of computation.
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I Lemma 7. Consider a DC-tree plus bucket array for sampling with replacement of k out
of n items where weights are in the range [a, 2a). Then the expected work for sampling is
O(s) where s is the number of different sampled items.

Proof. If k ≥ n, Ω (n) items are sampled in expectation at a total cost of O(n). So assume
k < n from now on. The first log k+O(1) levels of T may be traversed completely, contributing
a total cost of O(k).

For the lower levels, we count the number Y of visited nodes from which at least 2 items
are sampled. This is proportional to the total number of visited nodes since nodes from
which only one item is sampled contribute only constant expected cost (for directly sampling
from the array) and since there are at most 2Y such nodes.

Let X denote the number of items sampled at a node at level ` of tree T . An interior
node at level ` represents 2L−` leaves with total weight W` ≤ 2a2L−` where L = dlogne. X
has a binomial distribution with k trials and success probability

ρ = W`

W
≤ 2a2L−`

a2L−1 = 4 · 2−` .

Hence,

P[X ≥ 2] = 1−P[X = 0]−P[X = 1] = 1− (1− p)k − kp(1− p)k−1 ≈ (kρ)2/2

where the “≈” holds for kρ� 1 and was obtained by series development in the variable kρ.
The expected cost at level ` > log k +O(1) is thus estimated as

2lP[X ≥ 2] ≈ 2l(kρ)2/2 ≤ 2`(k · 4 · 2−`)2/2 = 8k22−` .

At level ` = dlog ke+ 3 + i we thus get expected cost ≤ k2−i. Summing this over i yields
total cost Y = O(k). J

5.1 Distributed Case
The batched character of sampling with replacement makes this setting even more adequate
for a distributed implementation using the owner-computes approach. Each PE builds the
data structure described above for its local items. Furthermore, we build a top-level DC-tree
that distributes the samples between the PEs, i.e., with one leaf for each PE. We will see
below that this can be done using a bottom-up reduction over the total item weights on
each PE, i.e., no PRAM emulation or replication is needed. Each PE only needs to store
the partial sums appearing on the path in the reduction tree leading to its leaf. Sampling
itself can then proceed without communication – each PE simply descends its path in the
top-level DC-tree analogous to the uniform case [34]. Afterwards, each PE knows how many
samples to take from its local items. Note that we assume k to be known on all PEs and
that communication for computing results from the sample is not considered here.

I Theorem 8. Sampling k out of n items with replacement (Problem WRS–R) can be done
in a communication-free way with processing overhead O(log p) in addition to the time needed
for taking the local sample. Building and distributing the DC-tree for distributing the samples
is possible in time O(α log p).

Proof. It remains to explain how the reduction can be done in such a way that it can be
used as a DC-tree during a query and such that each PE knows the path in the reduction
tree leading to its leaf. First assume that p = 2d is a power of two. Then we can use
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the well known hypercube algorithm for all-reduce (e.g., [19]). In iteration i ∈ 1..d of this
algorithm, a PE knows the sum for its local i− 1 dimensional subcube and receives the sum
for the neighboring subcube along dimension i to compute the sum for its local i dimensional
subcube. For building the DC-tree, each PE simply records all these values.

For general values of p, we first build the DC tree for d = blog pc. Then, each PE i with
i < 2d and j = i+ 2d < p receives the aggregate local item weight from PE j and then sends
its path to PE j. J

Similar to Section 4.3, it depends on the assignment of the items to the PEs whether
this approach is load balanced for the local computations. Before, we needed a balanced
distribution of both number of items and item weights. Now the situation is better because
items may be sampled multiple times but require work only once. On the other hand, we do
not want to split heavy items between multiple PEs since this would increase the amount of
work needed to process the sample. It would also undermine the idea of communication-free
sampling if we had to collect samples of the same item assigned to different PEs. Below, we
once more analyze the situation for items with arbitrary weight that are allocated to the
PEs randomly.

I Theorem 9. Consider an arbitrary set of item sizes and let u = log(maxi wi/mini wi).
If items are randomly assigned to the PEs initially, then preprocessing takes expected time
O
(
isort1

u(n/p) + α log p
)
where isort1

u(x) denotes the time for sequential integer sorting of x
elements using keys from the range 0..u.5 Using this data structure, sampling a multiset S
with k items and s different items can be done in expected time O(s/p+ log p).

Proof. For preprocessing, standard Chernoff bound arguments tell us that O(n/p+ log p)
items will be assigned to a PE with high probability. Since sorting is now a local operation,
we only need an efficient sequential algorithm for approximately sorting integers. The term
α log p is for the global DC-tree as in Theorem 8.

A sampling operation will sample s items. Since their allocation is independent of the
choice of the sampled items, we can once more use Chernoff bounds to conclude that only
O(s/p+ log p) of them are allocated to any PE with high probability. J

6 Sampling k Items Without Replacement (Problem WRS–N)

We can construct an algorithm for sampling without replacement based on the output-
sensitive algorithm for sampling with replacement of Section 5. Presume we know an ` > k

so that a sample of size ` with replacement contains at least k and no more than O(k) unique
items. Then we can obtain a sample with k′ ≥ k different items using the algorithm of
Section 5, discard the multiplicities, and downsample to size k using the exponential clocks
method (see Section 2.3).

To find the right value for `, we derive an estimation of the number of unique samples as
a function of `. The basis of this estimation is to assume that sufficiently heavy items are
sampled once and lighter items are sampled with probability proportional to their weight.
We precompute the data needed for the estimation for each group and then perform a binary
search over the groups. More concretely, when the currently considered group stores elements
with weights in the range [a, 2a), we try the value ` = d1/(2a)e. We (over)estimate the
resulting number of unique samples as

|{i : wi ≥ a}|+ ` ·
∑
{wi : wi < a}

W
.

5 Note that this will be linear in all practically relevant situations.
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In the full paper we show that this is a good estimate and how to use it to drive the
binary search.

7 Permutation (Problem WRP)

As already explained in Section 2.3, weighted permutation can be reduced to sorting random
variates of the form − ln(r)/wi where r is a uniform random variate. The nice thing is that
a lot is known about parallel sorting. The downside is that sorting may need superlinear
work in the worst case. However, since we are sorting random numbers, we may still get
linear expected work. This is well known when sorting uniform random variates; e.g., [25,
Theorem 5.9]. The idea is to map the random variates in linear time to a small number of
buckets such that the occupancy of a bucket is bounded by a binomial distribution with
constant expectation. Then the buckets can be sorted using a comparison based algorithm
without getting more than linear work in total.

In the full paper, we explain how to achieve the same for the highly skewed distribution
needed for WRP by applying radix sort and the monotonous transformation function
f(r, wi) := n ln(− ln(r)nwmax/wi).

8 Subset Sampling (Problem WRS–S)

Subset sampling is a generalization of Bernoulli Sampling to the weighted case. The
unweighted case can be solved in expected time linear in the output size by computing the
geometrically distributed distances between elements in the sample [1]. The naïve algorithm
for the weighted problem, which consists of throwing a biased coin for each item, requires
O(n) time. Bringmann et al. [6] show that this is optimal if only a single subset is desired,
and present a sequential algorithm that is also optimal for multiple queries.

The difference between WRS–S on the one hand and WRS–1/WRS–R on the other hand
is that we do not have a fixed sample size but rather treat the item weights as independent
inclusion probabilities in the sample (this requires wi ≤ 1 for all i). Hence, different algorithms
are required. Observe that the expected sample size is W ≤ n. Then our goal is to devise a
parallel preprocessing algorithm with work O(n) which subsequently permits sampling with
work O(1 +W ).

In the full paper we parallelize the approach of Bringmann et al. [6]. Similar to our
algorithm for sorting with replacement, this algorithm is based on grouping items into sets
with similar weight. In each group, one can use ordinary Bernoulli sampling in connection
with rejection sampling. Load balanced division between PEs can be done with a prefix sum
calculation over the weights in each group.

9 Sampling with a Reservoir

In the full paper, we adapt the streaming algorithm of Efraimidis et al. [12] to a distributed
mini-batch streaming model, where PEs process variable-size batches of items one at a time.
The PEs’ memory is too small to store previous batches, only the current mini-batch is
available in memory. This is a generalization of the traditional data stream model and widely
used in practice, e.g., in Apache Spark Streaming [41], where it is called discretized streams.
The basic idea is to keep the reservoir in a distributed priority queue [16].
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10 Experiments

We now report experiments on alias tables (Problem WRS–1, Section 4) and the closely
related problem of sampling with replacement (Problem WRS–R, Section 5).

Experimental Setup. We use machines with Intel and AMD processors in our experiments.
The Intel machine has four Xeon Gold 6138 CPUs (4 × 20 cores, 160 hyper-threads, of
which we use up to 158 to minimize the influence of system tasks on our measurements) and
768GiB of DDR4-2666 main memory. The AMD machine is a single-socket system with a
32-core AMD EPYC 7551P CPU (64 hyper-threads, of which we use up to 62) and 256GiB
of DDR4-2666 RAM. While single-socket, this machine also has non-uniform memory access
(NUMA), as the CPU consists of four dies internally. Both machines run Ubuntu 18.04. All
implementations are in C++ and compiled with GNU g++ 8.2.0 (flags -O3 -flto).

Our measurements do not include time spent on memory allocation and mapping.

Implementation Details. We implemented alias table construction using our parallel split-
ting algorithm (PSA, Section 4.2) and output-sensitive sampling with replacement (OS,
Section 5), as well as a shared-memory version of the distributed algorithm (2lvl, Section 4.3,
Theorem 2-(1)). The 2lvl algorithm can either use Vose’s method (2lvl-classic, Algorithm 1)
or our sweeping algorithm of Section 4.1 (2lvl-sweep, Algorithm 2) as base case. For OS, we
use an additional optimization that aborts the tree descent and uses the base case bucket
table when fewer than 128 samples are to be drawn from at least half as many items. The
resulting elements are then deduplicated using a hash table to ensure that each element
occurs only once in the output. A variant without this deduplication is called OS-ND and
may be interesting if items may be returned multiple times. We also implemented sequential
versions of both alias table construction methods. Both of the machines used require some
degree of Non-Uniform Memory Access (NUMA) awareness in memory-bound applications
like ours. Thus, in our parallel implementations, all large arrays are distributed over the
available NUMA nodes, and threads are pinned to NUMA nodes to maintain data locality.
All pseudorandom numbers are generated with 64-bit Mersenne Twisters [23], using the Intel
Math Kernel Library (MKL) [17] on the Intel machine and dSFMT6 on the AMD machine.
All of our implementations are publicly available under the GNU General Public License
(version 3) at https://github.com/lorenzhs/wrs.

Compared to the descriptions in Sections 2.2 and 4.2, we performed a minor modification
to construction of the tables to improve query performance. In the alias table, we store
tuples (wi, A = [i, ai]) of a weight wi, item i and alias ai. This allows for an optimization
at query time, where we return A[rand() ·W/n ≥ wi], saving a conditional branch. When
indices are 32-bit integers and weights are 64-bit doubles, this does not use additional space
since the record size is padded to 128 bits anyway.

Sequential Performance. Surprisingly, many common existing implementations of alias
tables (e.g., gsl_ran_discrete_preproc in the GNU Scientific Library (GSL) [13] or sample
in the R project for statistical computing [29]) use a struct-of-arrays memory layout for
the alias table data structure. By using the array-of-structs paradigm instead, we can
greatly improve memory locality, incurring one instead of up to two cache misses per query.
Combined with branchless selection inside the buckets and a faster random number generator,

6 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/, version 2.2.3

https://github.com/lorenzhs/wrs
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
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our query is more than three times as fast as that of GSL version 2.5 (measured for n = 108).
At the same time, alias table construction using our implementation of Vose’s method is
30% faster than GSL. Other popular statistics packages, such as NumPy (version 1.5.1,
function np.choice) or Octave (Statistics package version 1.4.0, function randsample)
employ algorithms with superlinear query time. We therefore use our own implementation of
Vose’s algorithm as the baseline in our evaluation.

Among our sequential implementations, construction with Vose’s method is slightly faster
than our sweeping algorithm. On the Intel machine, it is 8% faster, while on the AMD
machine, the gap is 3%. However, since all of our measurements exclude the time for memory
allocations, this is not the full picture. If we include memory allocation, our method is
around 5% faster than Vose’s on both machines. This is because it requires no additional
space, compared to O(n) auxiliary space for Vose’s method.

The optimization described above to make queries branchless lowers query time sub-
stantially, namely by 22% on the Intel machine and 27% on the AMD machine, again for
n = 108. Storing the item indices at construction time comes at no measurable extra cost.

10.1 Construction
Speedups compared to an optimized sequential implementation of Vose’s alias table construc-
tion algorithm are shown in Figure 3 (strong scaling with n = 108 and weak scaling with
n/p = 107 uniform random variates). Speedups do not increase further once the machine’s
memory bandwidth is saturated, limiting the speedup that can be achieved with techniques
that require multiple passes over the data (PSA, 2lvl-classic). In contrast, 2lvl-sweep can be
constructed almost independently by the PEs and requires much fewer accesses to memory.
Sequentially, there is little difference between our sweeping algorithm and Vose’s method.
However, our algorithm scales much better to high thread counts because it reduces the
memory traffic and since hyper-threading (HT) helps to hide the overhead of branch mis-
predictions. This is especially visible on the AMD machine (Figure 3b), where 2lvl-sweep
achieves more than twice the speedup of 2lvl-classic, 34 compared to 16. The lack of scaling
for 2lvl-classic and 2lvl-sweep when going from 32 to 40 cores on the Intel machine (Figure 3a)
coincides with a large frequency reduction in the CPUs at this point [39]. Preprocessing for
OS introduces some overhead but is not much slower than 2lvl.

In the weak scaling experiments (Figures 3c and 3d), we again see clearly how 2lvl-classic
and PSA are limited by memory bandwidth. Using more than two threads per available
memory channel (4 × 6 for the Intel machine, 8 for the AMD machine) yields nearly no
additional benefit for these algorithms. Meanwhile, 2lvl-sweep and OS are not limited by the
available memory bandwidth, but rather latency of memory accesses. As a result, they scale
well even to the highest thread counts.

10.2 Queries
We performed strong and weak scaling experiments for queries (Figure 4) as well as throughput
measurements for different sample sizes (Figure 5). Besides uniform random variates, we use
random permutations of the weights {1−s, 2−s, · · · , n−s} for a parameter s to obtain more
skewed “power-law” distributions.

Scaling. First, consider the scaling experiments of Figure 4. These experiments were
conducted on the Intel machine, as its highly non-uniform memory access characteristics
highlight the differences between the algorithms. All speedups are given relative to sampling
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(b) Strong scaling, AMD machine (32 cores.)
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(c) Weak scaling, Intel machine (4× 20 cores).
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Figure 3 Strong (top) and weak (bottom) scaling evaluation of parallel alias table construction
techniques. Strong scaling with input size n = 108, weak scaling with n/p = 107. Speedups are
measured relative to our optimized implementation of Vose’s method (Algorithm 1, Section 2.2).

sequentially from an alias table. The strong scaling experiments (Figures 4a and 4b)
deliberately use a small sample size to show scaling to low per-thread sample counts (≈ 64 000
for 158 threads). We can see that all algorithms have good scaling behavior. Hyper-threading
(marked “HT” in the plots) yields additional speedups, as it helps to hide memory latency.
This already shows that sampling is bound by random access latency to memory. Sampling
from PSA and 2lvl is done completely independently by all threads, with no interaction apart
from reading from the same shared data structures. Because the Intel machine has four
NUMA zones, most queries have to access another NUMA node’s memory. This limits the
speedups achievable using PSA and 2lvl.

On the other hand, OS and OS-ND have a shared top-level sample assignment stage, after
which threads only access local memory. This benefits scaling, especially on NUMA machines.
As a result, OS-ND achieves the best speedups, despite this benchmark producing very few
samples with multiplicity greater than one (Figure 4a, sample size is 1% of input size). On
the other hand, deduplication in the base case of OS has significant overhead, making it
roughly 25% slower than sampling from an alias table for such inputs, even sequentially.



L. Hübschle-Schneider and P. Sanders 59:19

1 2 4 8 16 32 64 128
0

20

40
HT

Number of threads p

Sp
ee
du

p
2lvl
OS

OS-ND
PSA

(a) Strong scaling, uniform input.

1 2 4 8 16 32 64 128
0

20

40

60
HT

Number of threads p

2lvl
OS

OS-ND
PSA

(b) Strong scaling, power-law input with s = 1.
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(d) Weak scaling, power-law input with s = 1.

Figure 4 Query strong and weak scaling for n = 109 input elements. Sample size for strong
scaling s = 107, per-thread sample size for weak scaling s/p = 106. All speedups relative to sequential
alias tables. Intel machine.

The weak scaling experiments of Figures 4c and 4d show even better speedups because
many more samples are drawn here than in our strong scaling experiment, reducing overheads.
Sampling from a classical alias table (PSA) achieves a speedup of 40 here, again limited by
memory accesses rather than computation. Meanwhile, the output-sensitive methods (OS,
OS-ND) reap the benefits of accessing only local memory.

Throughput. Figure 5 shows the query throughput of the different approaches. We can see
that 2lvl suffers a significant slowdown compared to PSA on all inputs since an additional
query for a meta-item is needed (this is also clearly visible in Figure 4). This slowdown
is much more pronounced on the Intel machine (60 %) than on the AMD machine (30 %)
because inter-NUMA-node memory access latency on the quad-socket Intel machine is much
higher than on the single-socket AMD machine. Nonetheless, throughput is limited by the
latency of random accesses to memory for the (bottom) tables for both approaches and on
both machines.
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(a) Intel machine (158 threads). Note the logarithmic y axes for the bottom plots.
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(b) AMD machine (62 threads). Note the logarithmic y axes for the bottom plots.

Figure 5 Query throughput of the different methods for n = 109, using all available cores. Top
left: uniform inputs, top right: power law with s = 0.5, bottom left: power law s = 1, bottom right:
power law s = 2. Dashed lines on the right y axis belong to the same-colored solid lines on the left y
axis and show fraction of output size over sample size for output-sensitive algorithms.
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(a) Intel machine (158 threads). Note the logarithmic y axes for the bottom plots.
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(b) AMD machine (62 threads). Note the logarithmic y axes for the bottom plots.

Figure 6 Time per unique output item for the different methods for n = 109 using all available
cores on the Intel (top) and AMD (bottom) machines. Top left: uniform inputs, top right: power
law with s = 0.5, bottom left: power law s = 1, bottom right: power law s = 2. Dashed lines on the
right y axis belong to the same-colored solid lines on the left y axis and show fraction of output size
over sample size for output-sensitive algorithms.
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As long as the sample contains few duplicates (cf. the dashed lines with scale on the
right y axis, which belong to the solid lines of the same color and marker shape), the cost
of base case deduplication in OS cancels out the gains of increased memory locality. On
the AMD machine, where memory access locality is less important, this results in higher
throughput for 2lvl than for OS for small sample sizes when inputs are not too skewed. As
expected, when there are many duplicates, the output sensitive algorithms (OS and OS-ND)
scale very well. Omitting base case deduplication (OS-ND) doubles throughput for uniform
inputs and does no harm for skewed inputs, making OS-ND the consistently fastest algorithm.
In comparison, adding sequential deduplication to normal alias tables using a fast hash table
(Google’s dense_hash_map) takes 5.4 times longer for uniform inputs (n = 108, 107 samples)
compared to simply storing samples in an array without deduplication.

Lastly, we observe that 2lvl and PSA throughput levels off after 107.5 samples on the
AMD machine, whereas it keeps increasing slightly on the Intel machine.

Time per Item. Figure 6 shows the time per unique item in the sample. We can see that
the 2lvl and PSA approaches work well as long as few items have multiplicity larger than one.
In these cases, what OS gains from having higher locality of memory accesses is lost in base
case deduplication – especially on the AMD machine. Because it may emit items repeatedly,
OS-ND does not suffer from this and is the fastest algorithm. The same is true for the power
law inputs with s = 0.5 and s = 1 (observe that as in Figure 5, the y axes for the lower two
plots are logarithmic). For power law inputs with s = 2, the running time of OS and OS-ND
is nearly constant regardless of sample size . This is because the number of unique items is
very low for this input (measured in the low thousands), and thus what little time is spent
on sampling is dominated by thread synchronization and scheduling overhead. This overhead
is particularly problematic with the 158 threads on the Intel machine (Figure 6a), where it
amounts to several milliseconds, ten times as much as on the AMD machine (Figure 6b).
Further, observe that the leveling off of 2lvl and PSA throughput on the AMD machine
causes unfavorable time per item for large samples.

11 Conclusions and Future Work

We have presented parallel algorithms for a wide spectrum of weighted sampling problems
running on a variety of machine models. The algorithms are at the same time efficient in
theory and sufficiently simple to be practically useful.

Future work can address the trade-off between parallel alias tables and (distributed)
2-level alias tables (fast queries versus fast scalable construction). We can also consider
support of additional machine models such as GPUs as well as MapReduce or of other
big data tools like Thrill [3] or Spark [42]. For example, the solution to WRS–1 based on
Theorem 2-(3) could be implemented on top of Thrill using its prefix sum primitive. It might
also be possible to transfer some of the distributed data structures. For example, the variant
of Theorem 2-(1) could be supported by emulating the behavior of p =

√
n PEs. Storing the√

n second-level tables as elementary objects in the big data tool ensures load balancing and
fault tolerance; a replicated meta-table of size

√
n can be used to assign samples to groups.

References
1 Joachim H. Ahrens and Ulrich Dieter. Sequential Random Sampling. ACM Transactions on

Mathematical Software (TOMS), 11(2):157–169, June 1985.
2 Richard Arratia. On the amount of dependence in the prime factorization of a uniform random

integer. Contemporary combinatorics, 10:29–91, 2002. Page 36.



L. Hübschle-Schneider and P. Sanders 59:23

3 Timo Bingmann, Michael Axtmann, Emanual Jöbstl, Sebastian Lamm, Huyen Chau Nguyen,
Alexander Noe, Sebastian Schlag, Matthias Stumpp, Tobias Sturm, and Peter Sanders. Thrill:
High-Performance Algorithmic Distributed Batch Data Processing with C++. In 2016 IEEE
International Conference on Big Data, pages 172–183. IEEE, 2016.

4 Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,
38(11):1526–1538, November 1989.

5 Karl Bringmann and Kasper Green Larsen. Succinct Sampling from Discrete Distributions.
In 45th ACM Symposium on Theory of Computing (STOC), pages 775–782. ACM, 2013.

6 Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete
distributions. Algorithmica, 79(2):484–508, 2017.

7 M. T. Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):653–656,
1982.

8 Richard Cole. Parallel Merge Sort. SIAM Journal on Computing, 17(4):770–785, 1988.
9 Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

10 Pavlos S Efraimidis. Weighted random sampling over data streams. In Algorithms, Probability,
Networks, and Games: Scientific Papers and Essays Dedicated to Paul G. Spirakis on the
Occasion of His 60th Birthday, pages 183–195. Springer, 2015.

11 Pavlos S Efraimidis and Paul G Spirakis. Fast parallel weighted random sampling. Technical
Report TR99.04.02, CTI Patras, 1999.

12 Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir.
Information Processing Letters, 97(5):181–185, 2006.

13 Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungmann, Patrick Alken,
Michael Booth, Fabrice Rossi, and Rhys Ulerich. GNU scientific library: reference manual.
Network Theory, 3 edition, 2009.

14 Torben Hagerup. Fast Parallel Generation of Random Permutations. In 18th International
Colloquium on Automata, Languages and Programming (ICALP), pages 405–416. Springer,
1991.

15 Torben Hagerup, Kurt Mehlhorn, and J Ian Munro. Maintaining discrete probability distribu-
tions optimally. In 20th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 253–264. Springer, 1993.

16 Lorenz Hübschle-Schneider and Peter Sanders. Communication Efficient Algorithms for Top-k
Selection Problems. In 30th International Parallel and Distributed Processing Symposium
(IPDPS), pages 659–668. IEEE, 2016.

17 Intel. Intel Math Kernel Library 2019. Intel, 2019. URL: https://software.intel.com/
en-us/mkl-reference-manual-for-c.

18 Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.
19 Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel

Computing. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.
20 Kevin J Lang. Practical algorithms for generating a random ordering of the elements of a

weighted set. Theory of Computing Systems, 54(4):659–688, 2014.
21 George Marsaglia, Wai Wan Tsang, Jingbo Wang, et al. Fast generation of discrete random

variables. Journal of Statistical Software, 11(3):1–11, 2004.
22 Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation of discrete random

variates. Theory of Computing Systems, 36(4):329–358, 2003.
23 M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-Dimensionally Equidistributed

Uniform Pseudo-Random Number Generator. ACMTMCS: ACM Transactions on Modeling
and Computer Simulation, 8:3–30, 1998.

24 Jens Maue and Peter Sanders. Engineering Algorithms for Approximate Weighted Matching.
In 6th Workshop on Experimental Algorithms (WEA), pages 242–255. Springer, 2007.

25 Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures — The Basic Toolbox.
Springer, 2008.

ESA 2019

https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/mkl-reference-manual-for-c


59:24 Parallel Weighted Random Sampling

26 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

27 Kirill Müller. Accelerating weighted random sampling without replacement. Arbeitsberichte
Verkehrs-und Raumplanung, 1141, 2016.

28 Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics and
Computing, 5(1):25–42, 1995.

29 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2019. URL: https://www.R-project.org.

30 Sanguthevar Rajasekaran and John H Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM Journal on Computing, 18(3):594–607, 1989.

31 Abhiram G Ranade. How to emulate shared memory. Journal of Computer and System
Sciences, 42(3):307–326, 1991.

32 Peter Sanders. On the Competitive Analysis of Randomized Static Load Balancing. In
S. Rajasekaran, editor, First Workshop on Randomized Parallel Algorithms, Honolulu, Hawaii,
1996. http://algo2.iti.kit.edu/sanders/papers/rand96.pdf.

33 Peter Sanders. Random Permutations on Distributed, External and Hierarchical Memory.
Information Processing Letters, 67(6):305–310, 1998.

34 Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade, and Carsten
Dachsbacher. Efficient Random Sampling – Parallel, Vectorized, Cache-Efficient, and Online.
ACM Transaction on Mathematical Sofware, 44(3):29:1–29:14, 2018.

35 Peter Sanders, Sebastian Schlag, and Ingo Müller. Communication Efficient Algorithms for
Fundamental Big Data Problems. In 2013 IEEE International Conference on Big Data, pages
15–23. IEEE, 2013.

36 Julian Shun. Improved parallel construction of wavelet trees and rank/select structures. In
2017 Data Compression Conference (DCC), pages 92–101. IEEE, 2017.

37 Michael D. Vose. A linear algorithm for generating random numbers with a given distribution.
IEEE Transactions on Software Engineering (TSE), 17(9):972–975, 1991.

38 Alastair J Walker. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software (TOMS), 3(3):253–256, 1977.

39 Wikichip.org. Intel Xeon Gold 6138. https://en.wikichip.org/w/index.php?title=intel/
xeon_gold/6138&oldid=71062, 2019. Accessed April 26, 2019.

40 Chak-Kuen Wong and Malcolm C. Easton. An efficient method for weighted sampling without
replacement. SIAM Journal on Computing, 9(1):111–113, 1980.

41 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In 24th ACM Symposium
on Operating Systems Principles (SOSP), pages 423–438. ACM, 2013.

42 Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache
Spark: a unified engine for big data processing. Communications of the ACM, 59(11):56–65,
2016.

https://www.R-project.org
http://algo2.iti.kit.edu/sanders/papers/rand96.pdf
https://en.wikichip.org/w/index.php?title=intel/xeon_gold/6138&oldid=71062
https://en.wikichip.org/w/index.php?title=intel/xeon_gold/6138&oldid=71062


External Memory Priority Queues with
Decrease-Key and Applications to Graph
Algorithms
John Iacono
Department of Computer Science, Université Libre de Bruxelles, Belgium
http://johniacono.com/
ulb@johniacono.com

Riko Jacob
Computer Science Department, IT University of Copenhagen, Denmark
http://www.itu.dk/people/rikj/
rikj@itu.dk

Konstantinos Tsakalidis
Department of Computer Science, University of Liverpool, United Kingdom
https://cgi.csc.liv.ac.uk/~tsakalid/
K.Tsakalidis@liverpool.ac.uk

Abstract
We present priority queues in the external memory model with block size B and main memory
size M that support on N elements, operation Update (a combination of operations Insert and
DecreaseKey) in O

(
1
B

logM
B

N
B

)
amortized I/Os and operations ExtractMin and Delete in

O
(
dMε

B
logM

B

N
B
e logM

B

N
B

)
amortized I/Os, for any real ε ∈ (0, 1), using O

(
N
B

logM
B

N
B

)
blocks.

Previous I/O-efficient priority queues either support these operations in O
(

1
B

log2
N
B

)
amortized

I/Os [Kumar and Schwabe, SPDP ’96] or support only operations Insert, Delete and Ex-
tractMin in optimal O

(
1
B

logM
B

N
B

)
amortized I/Os, however without supporting DecreaseKey

[Fadel et al., TCS ’99].
We also present buffered repository trees that support on a multi-set of N elements, op-

eration Insert in O
(

1
B

logM
B

N
B

)
I/Os and operation Extract on K extracted elements in

O
(

Mε logM
B

N
B

+ K/B
)
amortized I/Os, using O

(
N
B

)
blocks. Previous results achieve O

(
1
B

log2
N
B

)
I/Os and O

(
log2

N
B

+ K
B

)
I/Os, respectively [Buchsbaum et al., SODA ’00].

Our results imply improved O
(

E
B

logM
B

E
B

)
I/Os for single-source shortest paths, depth-first

search and breadth-first search algorithms on massive directed dense graphs (V, E) with E =
Ω
(
V 1+ε

)
, ε > 0 and V = Ω (M), which is equal to the I/O-optimal bound for sorting E values in

external memory.
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1 Introduction

Priority queues are fundamental data structures with numerous applications across computer
science, most prominently in the design of efficient graph algorithms. They support the
following operations on a set of N stored elements of the type (key, priority), where “key”
serves as an identifier and “priority” is a value from a total order:

Insert(element e): Insert element e to the priority queue.

Delete(key k): Remove all elements with key k from the priority queue.

element e = ExtractMin(): Remove and return the element e in the priority queue
with the smallest priority.

DecreaseKey(element (k, p)): Given that an element with key k and priority p′ is
stored in the priority queue, if priority p < p′, replace the element’s priority p′ with p.

Operation Update(element (k, p)) is a combination of operations Insert and DecreaseKey,
such that if the priority queue does not contain any element with key k, Insert((k, p)) is
executed, otherwise DecreaseKey((k, p)) is executed.

We study the problem of designing priority queues that support all these operations in
external memory. In the external memory model (also known as the I/O model) [1] the
amount of input data is assumed to be much larger than the main memory size M . Thus,
the data is stored in an external memory device (i.e. disk) that is divided into consecutive
blocks of size B elements. Time complexity is measured in terms of I/O operations (or I/Os),
namely block transfers from external to main memory and vice versa, while computation
in main memory is considered to be free. Space complexity is measured in the number of
blocks occupied by the input data in external memory. Algorithms and data structures in
this model are considered cache-aware, since they are paremeterized in terms of M and B.
In contrast, cache-oblivious algorithms and data structures [11] are oblivious to both these
values, which allows them to be efficient along all levels of a memory hierarchy. I/O-optimally
scanning and sorting x consecutive elements in an array are commonly denoted to take
Scan (x) = O

(
x
B

)
I/Os and Sort (x) = O

(
x
B logM

B

x
B

)
I/Os, respectively [1, 11].

Priority queues are a basic component in several fundamental graph algorithms, including:

The single-source shortest paths (SSSP) algorithm on directed graphs with positively
weighted edges, which computes the minimum edge-weight paths from a given source
node to all other nodes in the graph.

The depth-first search (DFS) and breadth-first search (BFS) algorithms on directed
unweighted graphs, which number all nodes of the graph according to a depth-first or a
breadth-first exploration traversal starting from a given source node, respectively.

Another necessary component for these algorithms are I/O-efficient buffered repository trees
(BRTs) [6, 2, 7]. They are used by external memory graph algorithms in order to confirm
that a given node has already been visited by the algorithm. This avoids expensive random-
access I/Os incurred by internal memory methods. In particular, BRTs support the following
operations on a stored multi-set of N (key, value) elements, where “key” serves as an identifier
and “value” is from a total order:

Insert(element e): Insert element e to the BRT.

element ei = Extract(key k): Remove and return all K elements ei (for i ∈ [1,K]) in
the BRT with key k.
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Table 1 Asymptotic amortized I/O-bounds of cache-aware and cache-oblivious priority queue
operations (respectively, above and below the horizontal line) on N elements and real ε ∈ (0, 1).
∗Expected I/Os.

Insert Delete ExtractMin DecreaseKey
[10] 1

B
logM

B

N
B

1
B

logM
B

N
B

1
B

logM
B

N
B

−
[14] 1

B
log2

N
B

1
B

log2
N
B

1
B

log2
N
B

1
B

log2
N
B

[13]∗ 1
B

loglog N
N
B

1
B

loglog N
N
B

1
B

loglog N
N
B

1
B

loglog N
N
B

New 1
B

logM
B

N
B

dMε

B
logM

B

N
B
e logM

B

N
B

dMε

B
logM

B

N
B
e logM

B

N
B

1
B

logM
B

N
B

[2] 1
B

logM
B

N 1
B

logM
B

N 1
B

logM
B

N −
[5, 7] 1

B
log2 N 1

B
log2 N 1

B
log2 N 1

B
log2 N

1.1 Previous work
Designing efficient external memory priority queues able to support operation DecreaseKey
(or at least operation Update) has been a long-standing open problem [14, 10, 16, 9, 7, 13].
I/O-efficient adaptations of the standard heap data structure [10] or other sorting-based
approaches [16], despite achieving optimal base-(M/B) logarithmic amortized I/O-complexity,
fail to support operation DecreaseKey. (Nevertheless, we use these priority queues as
subroutines in our structure.) Adaptations of the tournament tree data structure support all
operations, albeit in not so efficient base-2 logarithmic amortized I/Os [14, 7]. Indeed, in the
recent work of Eenberg, Larsen and Yu [9] it is shown that for a sequence of N operations,
any external-memory priority queue supporting DecreaseKey must spend max{Insert,
Delete, ExtractMin, DecreaseKey} = Ω

( 1
B loglogN B

)
amortized I/Os. Randomized

priority queues with matching complexity were recently presented by Jiang and Larsen [13].
The BRTs introduced by Buchsbaum et al. [6, Lemma 2.1] and their cache-oblivious

counterparts [2] support Insert in O
( 1
B log2 N

)
amortized I/Os and Extract on K

extracted elements in O (log2 N +K/B) amortized I/Os on a multi-set of N stored elements.

1.2 Our contributions
We present I/O-efficient priority queues that support on N stored elements, operation
Update in optimal O

(
1
B logM

B

N
B

)
amortized I/Os and operations ExtractMin and

Delete in O
(
dM

ε

B logM
B

N
B e logM

B

N
B

)
, for any real ε ∈ (0, 1). Our priority queues are the

first to support operation Update (and thus DecreaseKey) in a cache-aware setting in
optimal I/Os, while also I/O-optimally supporting operation Insert. These bounds improve
upon previous priority queues supporting DecreaseKey [14], albeit at the expense of
suboptimal I/O-efficiency for ExtractMin and Delete (respecting the lower bound of
[9] for M = Ω (B log2 N)). See Table 1 for a comparison with previous cache-aware and
cache-oblivious I/O-efficient priority queues.

We also present I/O-efficient BRTs that support on a multi-set of N elements, operation
Insert in O

(
1
B logM

B

N
B

)
amortized I/Os and operation Extract onK extracted elements in

O
(
Mε logM

B

N
B +K/B

)
amortized I/Os. Previous cache-aware bounds were O

( 1
B log2

N
B

)
and O

(
log2

N
B + K

B

)
, respectively [6]. Combined with our priority queues, for external

memory SSSP, DFS and BFS algorithms on graphs with V nodes and E directed edges,
we achieve O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os. This compares to previous
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O
((
V + E

B

)
log2 E

)
I/Os for directed SSSP [14, 15, 7] and O

((
V + E

B

)
log2

V
B + E

B logM
B

E
B

)
I/Os for directed DFS and BFS [6, 2]. Our bounds are I/O-optimal for dense graphs with
E = Ω

(
V 1+ε) and V = Ω (M).

1.3 Our approach

The main component of our priority queues is the x-treap, a recursive structure inspired by
similar cache-oblivious x-box [4] and cache-aware hashing data structures [12] that solve
the dynamic dictionary problem in external memory (respectively, under predecessor and
membership queries on a dynamic set of keys). To solve the priority queue problem, we
adapt this recursive scheme to also handle priorities, inspired by the cache-oblivious priority
queues of Brodal et al. [5] that support Update, yet in suboptimal I/Os. Here we discuss
informally these ideas, the rationale for combining them, and a back-of-the-envelope intuitive,
but incomplete analysis. It is hoped that this will provide the intuition to more easily follow
the full details in the sequel.

The idea behind the cache-oblivious priority queues of Brodal et al. [5] is simple. The
structure has a logarithmic number of levels, where level i has two arrays, or buffers, of size
roughly 2i. These buffers are called the front and rear buffers. They contain key-priority
pairs or a key-delete message (described later). The idea is that the front buffers are sorted,
with everything in the i-th front buffer having smaller priorities than everything in the
(i+ 1)-th front buffer. The items in the rear buffers do not have this rigorous ordering, but
instead must be larger than the items in the rear buffer at the smaller levels. When an
Update operation occurs, the key-priority pair gets placed in the first rear buffer; when a
ExtractMin operation occurs, the key-priority pair with the smallest priority is removed
from the first front buffer. Every time a level-i buffer gets too full or empty relative to its
target size of 2i, this is fixed by moving things up or down as needed, and moving things
from the rear to front buffer if that respects the ordering of items in the front buffer. This
resolution of problems is done efficiently using a scan of the affected and neighbouring levels.
Thus, looking in a simplified manner at the lifetime of an Updated item, it will be inserted
in the smallest rear buffer, be pushed down to larger rear buffers as they overflow, be moved
from a rear buffer to a front buffer once it has gone down to a level where its priority is
compatible with those in the corresponding front buffer, then moves up from the front buffer
to smaller front buffers as they underflow, and is finally removed from the smallest front
buffer during an ExtractMin. Thus, during its lifetime, it could be moved from one level
to another a total of O

(
log2

N
B

)
times at an I/O-cost of O

( 1
B

)
per level, for a total cost of

O
( 1
B log2

N
B

)
I/Os. One detail is that when an item moves from a rear to a front buffer, we

want to make sure that no items in larger levels with the same key and larger priority are
ever removed. This is done through special delete messages, which stay in the rear buffers
and percolate down, removing any key-priority pairs with the given key that they encounter
in their buffer or the corresponding front buffer.

The problem with this approach is that the base-2 logarithm seems unavoidable, with
the simple idea of a geometrically increasing buffer size. So here instead we use the more
complicated recursion introduced with the cache-oblivious x-box [4] structure and also used
in the cache-aware hashing data structures [12]. In its simplest form, used for a dictionary,
an x-box has three buffers: top, middle and bottom (respectively of approximate size x, x1.5

and x2), as well as
√
x recursive upper-level

√
x-boxes (ordered logically between the top and

middle buffers) and x recursive lower-level
√
x-boxes (ordered logically between the middle

and bottom buffers). Data in each buffer is sorted, and all keys in a given recursive buffer are
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smaller than all keys in subsequent recursive buffers in the same level (upper or lower). There
is no enforced order among keys in different buffers or in a recursive upper- or lower-level√
x-box. The key feature of this construction is that the top/middle/bottom buffers have

the same size as the neighbouring recursive buffers: the top buffer has size x, the top buffers
of the upper-level recursive

√
x-boxes have total size x; the middle buffer, sum of the bottom

buffers of the upper-level, and sum of the top buffers of the lower-level recursive structures
all have size x1.5; the sum of the bottom buffers of the lower-level recursive structures and
the bottom buffer both have size x2. Therefore, when for example a top buffer overflows, it
can be fixed by moving excess items to the top buffers of the top recursive substructures.
In a simplified view with only insertions, as buffers overflow, an item over its lifetime will
percolate from the top buffer to the upper-level substructures, to the middle buffer, to the
lower-level substructures, and to the bottom buffer, with each overflow handled only using
scans. Assuming a base case of sizeM , there will be O (logM N) times that an item will move
from one buffer to another and an equal number of times that an item will pass through a
base case. One major advantage of this recursive approach, is that an item will pass through
a small base case not just once at the structure’s top, as before, but many times.

We combine these ideas to form the x-treap, described at a high level as follows: Every-
where an x-box has a buffer, we replace it with front and rear buffers storing key-priority
pairs. The order used by x-box is imposed on the keys, not the priorities. The order imposed
on priorities in the Brodal et al. structure are carried over and imposed on the priorities in
different levels of the x-treap; this is aided by the fact that the buffers in the x-treap form a
DAG, thus the buffers where items with a given key can appear, form a natural total order.
Hence, this forms a treap-like arrangement where we use the keys for order in one dimension
and priorities for order in the other. We use a separate trivial base case structure which is
invoked at a size smaller than the memory size; it stores items in no particular order and
thus supports fast insertion of items when a neighbouring buffer adds them (O

( 1
B

)
), but

slow (O (M ε) amortized) removal of items with small priorities to fix the underflow of a front
buffer above. Thus, again considering the typical hypothetical lifetime of an item, it will be
inserted at the top in the rear buffer, percolate down O

(
logM

B

N
B

)
levels and base cases at a

cost of O
( 1
B

)
amortized each, move over to a front buffer, then percolate up O

(
logM

B

N
B

)
levels at a cost of O

(
Mε

B

)
amortized each. Thus, the total amortized cost for an item that is

eventually removed by an ExtractMin is O
(
Mε

B logM
B

N
B

)
.

However, we want the amortized cost for an item that is inserted via Update to be much
faster than this, i.e. O

(
1
B logM

B

N
B

)
. This requires additional observations and tricks. The

first is that, unlike Brodal et al., we do not use delete-type messages that percolate down to
eliminate items with larger than minimum priority in order to prevent their removal from
ExtractMin. Instead, we adopt a much simpler approach, and use a hash table to keep
track of all keys that have been removed by an ExtractMin, and when an ExtractMin
returns a key that has been seen before, it is discarded and ExtractMin is repeated.
The second trick is to simply ensure that each buffer has as most one item with each key
(and removes key-priority pairs other than the one with the minimum priority among those
with the same key in the buffer). This has the effect that if there are a total of u updates
performed on a key before it is removed by an ExtractMin, the total cost will involve up to
O
(
u logM

B

N
B

)
percolations down at a cost of O

( 1
B

)
, but only O

(
log2

M
B

N
B

)
percolations up

at a cost of O
(
Mε

B

)
amortized each. After the ExtractMin, some items may still remain in

the structure and will be discarded when removed by ExtractMin however, due to the no-
duplicates-per-level property there will only be O

(
logM

B
N
)
such items (called ghosts) which
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will incur a cost of at most O
(
dM

ε

B logM
B

N
B e
)
amortized each, where the ceiling accounts

for accessing the hash table. Thus the total amortized cost for the lifetime of the u Updates
and one ExtractMin involving a single key is O

(
u
B logM

B

N
B + dM

ε

B logM
B

N
B e logM

B

N
B

)
.

This cost can be apportioned in the amortized sense by having the ExtractMin cost
O
(
dM

ε

B logM
B

N
B e logM

B

N
B

)
amortized and the updates cost O

(
1
B logM

B

N
B

)
amortized each,

assuming that the treap finishes in an empty state and no item can be Updated after it has
been ExtractMin’d.

The details that implement these rough ideas consume the rest of the paper. One
complication that eludes the above discussion is that items don’t just percolate down and
then up; they could move up and down repeatedly and this can be handled through an
appropriate potential function. The various layers of complexity needed for the x-treap
recursion combined with the front/rear buffer idea, various types of over/underflows of buffers,
a special base case, having the middle and bottom buffers be of size x1+α

2 and x1+α for a
suitable parameter α rather than x1.5 and x2 as described above, and a duplicate-catching
hash table, result in a complex structure with an involved potential analysis, but that follows
naturally from the above high-level description.

2 x-Treap

Given real parameter α ∈ (0, 1] and key range [kmin, kmax) ⊆ R, an x-treap D stores a set
of at most 2 (D.x)1+α elements (∗, k, p) associated with a key k ∈ [D.kmin, D.kmax) and a
priority p from a totally ordered set. D represents a set D.rep of pairs (key, priority), such
that a particular key k contained in D is represented to have the smallest priority p of any
element with key k stored in D, unless an element with key k and a smaller priority has been
removed from the structure. In particular, we call the key and priority represented, when
the pair (key, priority) ∈ D.rep. A representative element contains a represented key and its
represented priority. More formally, we define:

D.rep :=
⋃

{k|(k,p)∈D}

{(
k,min

p
(k, p) ∈ D

)}
The proposed representation scheme works under the assumption that a key that is not
represented by the structure anymore, cannot become represented again. In other words, a
key returned by operation ExtractMin cannot be Inserted to the structure again.

The following interface operations are supported (See full version for their correctness):
Batched-Insert(D, e1, e2, . . . , eb): For constant c ∈

(
0, 1

3
]
, insert b ≤ c ·D.x elements

e1, e2, . . . , eb to D, given they are key-sorted with keys ei.k ∈ [D.kmin, D.kmax) , i ∈ [1, b].
Batched-Insert adds the pairs (ei.k, ei.p) to D.rep with key ei.k that is not contained
in D already. Batched-Insert decreases the priority of a represented key ei.k to ei.p, if
its represented priority is larger than ei.p before the operation. More formally, let Xnew

contain the inserted pairs (ei.k, ei.p) with ei.k /∈ D.rep. Let Xold contain the pairs in
D.rep with an inserted key, but with larger priority than the inserted one, and let Xdec

contain these inserted pairs. After Batched-Insert, a new x-treap D′ is created where
D′.rep = D.rep ∪Xnew ∪Xdec\Xold.
Batched-ExtractMin(D): For constant c ∈

(
0, 1

4
]
, remove and return the at most

c ·D.x elements (k, p) with the smallest priorities in D.
Batched-ExtractMin removes the pairs Xmin from D.rep with the at most c ·D.x
smallest priorities. Let Xkey contain the pairs in D with keys in Xmin. After Batched-
ExtractMin, a new x-treap D′ is created where D′.rep = D.rep\Xmin\Xkey.
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Figure 1 Overview of an x-treap D on “key” × “partial order” space. Black/white dots represent
elements in the front/rear buffers, respectively. All buffers are resolved. Buffer sizes and maximum
number of subtreaps in a level are shown on the right-hand side.

I Theorem 1. An x-treap D supports Batched-ExtractMin in O
(
M

α
1+α 1+α

B logM D.x
)

amortized I/Os per element and Batched-Insert in O
( 1+α
B logM D.x

)
amortized I/Os per

element, using O
(

(D.x)1+α

B logM D.x
)
blocks, for any real α ∈ (0, 1].

The structure is recursive. The base case is described separately in Subsection 2.3. The
base case structure is used when D.x ≤ c′M

1
1+α (for an appropriately chosen constant c′ > 0).

Thus assuming D.x > c′M
1

1+α , we define an x-treap to contain three buffers (which are arrays
that store elements) and many

√
x-treaps (called subtreaps). Specifically, the top, middle and

bottom buffers have sizes D.x, (D.x)1+α
2 and (D.x)1+α, respectively. Each buffer is divided

in the middle into a front and a rear buffer. The subtreaps are divided into the upper and
the lower level that contain at most 1

4 (D.x)
1
2 and 1

4 (D.x)
1+α

2 subtreaps, respectively. Let
|b| denote the size of a buffer b. We define the capacity of an x-treap D to be the maximum
number of elements it can contain, which is D.x+ 5

4 (D.x)1+α
2 + 5

4 (D.x)1+α
< 2 (D.x)1+α.

We define a partial order (�) using the terminology “above/below” among the buffers of
an x-treap and all of the buffers in recursive subtreaps or base case structures. In this order
we have top buffer � upper level recursive subtreaps � middle buffer � lower level recursive
subtreaps � bottom buffer.

Along with all buffers of D, we also store several additional pieces of bookkeeping
information: a counter with the total number of elements stored in D and an index indicating
which subtreap is stored in which space in memory.

2.1 Invariants
An x-treap D maintains the following invariants with respect to every one of its top/middle/
bottom buffers b. The invariants hold after the execution of each interface operation, but
may be violated during the execution. They allow changes to D that do not change D.rep.

1. The front and rear buffers of b store elements sorted by key and left-justified.
2. The front buffer’s elements’ priorities are smaller than the rear buffer’s elements’ priorities.
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3. The front buffer’s elements’ priorities are smaller than all elements’ priorities in buffers
below b in D.

4. For a top or middle buffer b with key range [b.kmin, b.kmax), the r upper or lower subtreaps
Di, i ∈ {1, r}, respectively, have distinct key ranges [Di.kmin, Di.kmax), such that b.kmin =
D1.kmin < D1.kmax = D2.kmin < . . . < Dr.kmax = b.kmax.

5. If the middle or bottom buffer b is not empty, then at least one upper or lower subtreap
is not empty, respectively.

2.2 Auxiliary operations
The operations Batched-Insert and Batched-ExtractMin make use of the following
auxiliary operations (See full version for their implementation and correctness):

Operation Resolve(D, b). We say that a buffer b is resolved, when the front and rear
buffers contain elements with pairs (key,priority) (k, p), such that k is a represented key,
and when the front buffer contains those elements with smallest priorities in the buffer.
To resolve b, operation Resolve assigns to the elements with represented keys, the key’s
minimum priority stored in b. Also, it removes any elements with non-represented keys
from b. Resolve restores Invariant 2 in b, when it is temporarily violated by other
(interface or auxiliary) operations that call it.
Operation Initialize(D, e1, e2, . . . , eb) distributes to a new x-treap D, 1

4 (D.x) ≤ b ≤
1
2 (D.x)1+α elements ei, i ∈ [1, b] from a temporary array (divided in the middle into a
front and a rear array, respecting Invariants 1 and 2).
Operation Flush-Up(D) ensures that the front top buffer of D contains at least 1

4D.x

elements (unless all buffers of D contains less elements altogether, in which case Flush-
Up moves them all to the top front buffer of D). By Invariants 2 and 3, these are the
elements in D with smallest priority.
Operation Flush-Down(D) is called by Batched-Insert on an x-treapD whose bottom
buffer contains between 1

2 (D.x)1+α and (D.x)1+α elements. It moves to a new temporary
array, at least 1

6 (D.x)1+α and at most 2
3 (D.x)1+α elements from the bottom buffer of D.

It ensures that the largest priority elements are removed from D.
Operation Split(D) is called by Batched-Insert on an x-treap D that contains between
1
2 (D.x)1+α and (D.x)1+α elements. It moves to a new temporary (front and rear) array,
the at most 1

3 (D.x)1+α elements with largest keys in D.

2.3 Base case
The x-treap is a recursive structure. When the x-treap stores few enough elements so that it
can be stored in internal memory, we use simple arrays to support the interface operations
and operation Flush-Up.

I Lemma 2. An O
(
M

1
1+α

)
-treap fits in internal memory and supports operation Batched-

Insert in O (1/B) amortized I/Os per element and operations Batched-ExtractMin and
Flush-Up in Scan

(
M

α
1+α

)
amortized I/Os per element.

Proof. For a universal positive constant c0 and a constant parameter c′ < c
1
α+1
0 , we allocate

an array of size
(
c′
(
M

1
1+α

)) α
1+α ≤ c0M and divide it in the middle into a front and

a rear buffer that store elements and maintain only Invariants 1 and 2. To implement
Batched-Insert on at most c′

2 M
1

1+α elements, we simply add them to the rear buffer and
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update the counter. This costs O
(
M

1
1+α

B / 1
2M

1
1+α

)
= O

( 1
B

)
I/Os amortized per added

element, since we only scan the part of the rear buffer where the elements are being added
to. To implement Batched-ExtractMin on at most c′

2 M
1

1+α extracted elements, we
Resolve the array (as implemented for Theorem 1), remove and return all elements in the
front buffer, and update the counter. By Lemma 5 (proven later in Subsection 2.5) this
costs O

(
M
B /

1
2M

1
1+α

)
= O

(
M

α
1+α

B

)
I/Os amortized per extracted element. Flush-Up is

implemented like Batched-ExtractMin with the difference that the returned elements
are not removed from the array. J

2.4 Interface operations
(See full version for the correctness of the interface operations.)

2.4.1 Inserting elements to an x-treap
Interface operation Batched-Insert on an x-treap D is implemented by means of the
recursive subroutine Batched-Insert

(
D, e1, . . . , ec·|b|, b

)
that also takes as argument a top

or middle buffer b of D and inserts c · |b| elements e1, . . . , ec·|b| (contained in a temporary
array) inside and below b in D, for constant c ∈

(
0, 1

3
]
. For a bottom buffer b, a non-recursive

subroutine Batched-Insert(D, b) simply executes Step 1 below and discards the temporary
array. Batched-Insert

(
D, e1, . . . , ec·|b|, b

)
is implemented as following:

1. If D.x > c′M
1

1+α + c|b|:
1.1. 2-way merge into the temporary array, the elements in the temporary array and

in the rear buffer of b (by simultaneous scans in increasing key-order). Resolve b

considering the temporary array as the rear buffer of b.
1.2. Implicitly partition the front buffer of b and the temporary array by the key ranges

of the subtreaps immediately below b. Consider the subtreaps in increasing key-order
by reading the index of D. For every key range (associated with subtreap D′) that
contains at least 1

3 (D.x)
1
2 elements in either the front buffer of b or the temporary

array: While the key range in the front buffer of b and in the temporary array
contains at most 2

3 (D.x)
1
2 elements, do:

1.2.1. Find the
(

2
3 (D.x)

1
2
)
-th smallest priority within the key range in the front

buffer of b and in the temporary array (by an external memory order-statistics
algorithm [3]) and move the elements in the key range with larger priority to
a new auxiliary array (by simultaneous scans in increasing key-order).

1.2.2. If the counter of D′ plus the auxiliary array’s size does not exceed the capacity
of D′: Batched-Insert the elements in the auxiliary array to the top buffer
of D′. Discard the auxiliary array.

1.2.3. Else, if there are fewer than the maximum allowed number of subtreaps in the
level immediately below b: Split D′. Let k be the smallest key in the array
returned by Split (determined by a constant number of random accesses to
the leftmost elements in the returned front/rear array). Move the elements
in the auxiliary array with key smaller than k to a new temporary array (by
a scan), Batched-Insert these elements to D′ and discard this temporary
array. 2-way merge the remaining elements in the auxiliary array into the
returned rear array and discard the auxiliary array. Initialize a new subtreap
with the elements in the returned array. Discard the returned array.
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1.2.4. Else, Flush-Down all subtreaps immediately below b, which writes them to
many returned arrays. 2-way merge into a new temporary array, all elements
in b and in all returned arrays (by simultaneous scans in increasing key-
order). (When the scan on a subtreap’s temporary array is over, determine
the subtreap with the key-next elements in the level by reading the index
of D.) Batched-Insert the elements in the new temporary array to the
buffer b′ immediately below b. Discard the new temporary array and all
returned arrays.

1.3. Discard the temporary array and update the counter of D.
1.4. Else if D.x ≤ c′M

1
1+α + c|b|: Batched-Insert the elements to the base case

structure.

2.4.2 Extracting minimum-priority elements from an x-treap
Interface operation Batched-ExtractMin on an x-treap D is implemented as following:
1. If D.x > c′M

1
1+α :

1.1 If the front top buffer contains less than 1
4D.x elements: Flush-Up the top buffer.

1.2 Remove and return all the elements (ei.k, ei.p) from the front top buffer.
1.3 Update the counter of D.

2. Else if D.x ≤ c′M
1

1+α : Batched-ExtractMin the base case structure.

2.5 Analysis
(See full version for the proofs of Lemmata 3, 4, 5, 6 and 7, respectively.)

I Lemma 3. An x-treap D has O
(

logM
B
D.x

)
levels and occupies O

(
(D.x)1+α logM

B
D.x

)
blocks of space.

I Lemma 4. By the tall-cache assumption, scanning the buffers of an x-treap D and randomly
accessing O

(
(D.x)

1+α
2
)
subtreaps takes Scan

(
(D.x)1+α

)
I/Os, for any real α ∈ (0, 1].

A buffer bi at level i ≤ h = O
(

logM
B
D.x

)
with current number of elements in the front

and rear buffers bf , br, respectively, has potential Φ(bi) = Φf (bi) + Φr(bi), such that (for
constants ε := α

1+α and c0 ≥ 1):

Φf (bi) =


0, if 1

4 |bi| ≤ bf ≤
1
3 |bi|,

c0
BM

ε ·
(
|bi|
4 − bf

)
· (h− i) , if bf < 1

4 |bi|,
c0
B ·
(
bf − |bi|3

)
· (h− i) , if bf > 1

3 |bi|,

Φr(bi) =
{

2 c0
B ·
(
br − |bi|2

)
· (h− i) , if br > 0.

In general, a particular element will be added to a rear buffer and will be moved down the
levels of the structure over rear buffers by operation Flush-Down. A Resolve operation
will move the element from the rear to the front buffer, if it is a representative element.
From this point, it will be moved up the levels over front buffers by operation Flush-Up. If
it is not representative, it will either get discarded by Resolve(when there is an element
with the same key and with smaller priority in the same buffer) or it will keep going down
the structure. Since Resolve leaves only one element per key at the level it operates,
O
(

logM
B
D.x

)
elements with the same key (i.e. at most one per level) will remain in the

structure after the extraction of the representative element for this key.
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TheMε-factor accounts for the extra cost of Flush-Up and Batched-ExtractMin, the
(h− i)-factor allows for moving elements up or down a level by Flush-Up and Flush-Down
and the 2-factor accounts for moving elements from the rear to the front buffer.

I Lemma 5. Resolve on a buffer bi takes Scan (|bi|) +O (1) amortized I/Os.

I Lemma 6. Batched-Insert on an x-treap D takes O
(

1+α
B logM

B
D.x

)
amortized I/Os

per element, for any real α ∈ (0, 1].

I Lemma 7. Batched-ExtractMin on an x-treap D takes O
(
M

α
1+α 1+α

B logM
B
D.x

)
amortized I/Os per element, for any real α ∈ (0, 1].

3 Priority queues

Priority queues support operations Update and ExtractMin that are defined similarly to
Batched-Insert and Batched-ExtractMin, respectively, but on a single element.

To support these operations, we compose a priority queue out of its batched counterpart
in Theorem 1. The data structure on N elements consists of 1 + log1+α log2 N x-treaps of
doubly increasing size with parameter α being set the same in all of them. Specifically, for
i ∈ {0, log1+α log2 N}, the i-th x-treap Di has Di.x = 2(1+α)i . We store all keys returned by
ExtractMin in a hash table X [12, 8].

For i ∈ {0, log1+α log2 N − 1}, we define the top buffer of Di to be “below” the bottom
buffer of Di−1 and the bottom buffer of Di to be “above” the top buffer of Di+1. We define
the set of represented pairs (key, priority) rep =

⋃log1+α log2 N

i=0 Di.rep\{(k, p)|k ∈ X} and
call represented the keys and priorities in rep. We maintain the invariant that the maximum
represented priority in Di.rep is smaller than the smallest represented priority below it.

To implement Update on a pair (key,priority) ∈ rep, we Batched-Insert the corres-
ponding element to D0. D0 handles single-element batches, since for i = 0 ⇒ x = Θ (1).
When Di reaches capacity (i.e. contains (Di.x)1+α elements), we call Flush-Down on it,
Batched-Insert the elements in the returned temporary array to Di+1 and discard the
array. This process terminates at the first x-treap that can accomodate these elements
without reaching capacity.

To implement ExtractMin, we call Batched-ExtractMin to the first x-treap Di with
a positive counter, add the extracted elements to the (empty) bottom front buffer of Di−1
and repeat this process on Di−1, until D0 returns at least one element. If the returned key
does not belong to X, we insert it. Else, we discard the element and repeat ExtractMin.

To implement Delete of a key, we add the key to X.
(See full version for the proof of Theorem 8.)

I Theorem 8. There exist priority queues on N elements that support operation Update
in O

(
1
B logM

B

N
B

)
amortized I/Os per element, operations ExtractMin and Delete in

amortized O
(
dM

α
1+α

B logM
B

N
B e logM

B

N
B

)
I/Os per element, using O

(
N
B logM

B

N
B

)
blocks, for

any real α ∈ (0, 1].

4 Buffered repository trees

A buffered repository tree (BRT) [6, 2, 7] stores a multi-set of at most N elements, each
associated with a key in the range [1 . . . kmax]. It supports the operations Insert and
Extract that, respectively, insert a new element to the structure and remove and report all
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elements in the structure with a given key. To implement a BRT, we make use of the x-box
[4]. Given positive real α ≤ 1 and key range [kmin, kmax) ⊆ <, an x-box D stores a set of at
most 1

2 (D.x)1+α elements associated with a key k ∈ [D.kmin, D.kmax). An x-box supports
the following operations:

Batched-Insert(D, e1, e2, . . . , eb): For constant c ∈
(
0, 1

2
]
, insert b ≤ c ·D.x elements

e1, e2, . . . , eb to D, given they are key-sorted with keys ei.k ∈ [D.kmin, D.kmax) , i ∈ [1, b].
Search(D,κ): Return pointers to all elements in D with key κ, given they exist in D
and κ ∈ [D.kmin, D.kmax).

To implement operation Extract(D,κ) that extracts all elements with key κ from an
x-box D, we Search(D,κ) and remove from D all returned pointed elements.

The BRT on N elements consists of 1 + log1+α log2 N x-boxes of doubly increasing size
with parameter α being set the same in all of them. We obtain the stated bounds by
modifying the proof of the x-box [4, Theorem 5.1] to account for Lemmata 9 and 10.

I Lemma 9. For D.x = Ω
(
M

1
1+α

)
, an x-box supports operation Batched-Insert in

amortized O
(

1+α
B logM

B

D.x
B

)
I/Os and operation Extract on K extracted elements in

amortized O
(

(1 + α) logM
B

D.x
B + K

B

)
I/Os, using O

(
(D.x)1+α

B

)
blocks of space.

Proof. Regarding Batched-Insert on a cache-aware x-box, we obtain O
(

1+α
B logM

B

D.x
B

)
amortized I/Os by modifying the proof of Batched-Insert [4, Theorem 4.1] according the
proof of Lemma 6. Specifically, every element is charged O (1/B) amortized I/Os, instead of
O
(

1/B
1

1+α

)
, and the recursion stops when D.x = O

(
M

1
1+α

)
, instead of D.x = O

(
B

1
1+α

)
.

Regarding Searching for the first occurrence of a key in a cache-aware x-box, we obtain
O
(

logM
B

D.x
B

)
amortized I/Os by modifying the proof of Search [4, Lemma 4.1], such that

the recursion stops when D.x = O
(
M

1
1+α

)
, instead of D.x = O

(
B

1
1+α

)
. To Extract all

K occurrences of the searched key, we access them by scanning the x-box and by following
fractional cascading pointers, which incurs an extra O (K/B) I/Os. J

I Lemma 10. An O
(
M

1
1+α

)
-box fits in internal memory and supports operations Batched-

Insert in O (1/B) amortized I/Os per element and operation Extract on K extracted
elements in Scan

(
M

α
1+α

)
amortized I/Os per element.

Proof. We allocate an array of size O (M) and implement Batched-Insert by simply
appending the inserted element to the array and Extract by scanning the array and
removing and returning all occurrences of the searched key. J

I Theorem 11. There exist buffered priority trees on a multi-set of N elements and of K
extracted elements that support operations Insert and Extract in amortized O

(
1
B logM

B

N
B

)
and O

(
M

α
1+α

B logM
B

N
B + K

B

)
I/Os per element, using O

(
N
B

)
blocks, for any real α ∈ (0, 1].

5 Graph algorithms

I Theorem 12. Single source shortest paths on a directed graph with V nodes and E edges can
be computed in O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os, for any real α ∈ (0, 1].
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Proof. The algorithm of Vitter [15] (described in detail in [7, Lemma 4.1] for the cache-
oblivious model) makes use of a priority queue that supports the Update operation and
of a BRT on O (E) elements. Specifically, it makes V calls to ExtractMin and E calls to
Update on the priority queue and V calls to Extract and E calls to Insert on the BRT.
Hence, we obtain the stated bounds, by using Theorems 8 and 11. J

I Theorem 13. Depth-first search and breadth-first search numbers can be assigned to a
directed graph with V nodes and E edges in O

(
V M

α
1+α

B log2
M
B

E
B + V logM

B

E
B + E

B logM
B

E
B

)
I/Os, for any real α ∈ (0, 1].

Proof. The algorithm of Buchsbaum et al. [6] makes use of a priority queue and of a BRT
on O (E) elements. Specifically, it makes 2V calls to ExtractMin and E calls to Insert on
the priority queue and 2V calls to Extract and E calls to Insert on the BRT [6, Theorem
3.1]. Hence, we obtain the stated bounds, by using Theorems 8 and 11. J

References
1 Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and Related

Problems. Commun. ACM, 31(9):1116–1127, September 1988. doi:10.1145/48529.48535.
2 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.

An Optimal Cache-Oblivious Priority Queue and Its Application to Graph Algorithms. SIAM
Journal on Computing, 36(6):1672–1695, 2007. doi:10.1137/S0097539703428324.

3 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time Bounds for Selection. J. Comput. Syst. Sci., 7(4):448–461, August 1973. doi:10.1016/
S0022-0000(73)80033-9.

4 Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono, Stefan Langerman,
and J. Ian Munro. Cache-oblivious Dynamic Dictionaries with Update/Query Tradeoffs.
In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’10, pages 1448–1456, Philadelphia, PA, USA, 2010. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1873601.1873718.

5 Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh. Cache-Oblivious
Data Structures and Algorithms for Undirected Breadth-First Search and Shortest Paths.
In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, pages
480–492, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

6 Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jeffery R.
Westbrook. On External Memory Graph Traversal. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pages 859–860, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=338219.338650.

7 Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-Oblivious Buffer Heap and Cache-
Efficient Computation of Shortest Paths in Graphs. ACM Trans. Algorithms, 14(1):1:1–1:33,
January 2018. doi:10.1145/3147172.

8 Alex Conway, Martín Farach-Colton, and Philip Shilane. Optimal Hashing in External
Memory. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 39:1–
39:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2018.39.

9 Kasper Eenberg, Kasper Green Larsen, and Huacheng Yu. DecreaseKeys Are Expensive
for External Memory Priority Queues. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 1081–1093, New York, NY, USA,
2017. ACM. doi:10.1145/3055399.3055437.

ESA 2019

https://doi.org/10.1145/48529.48535
https://doi.org/10.1137/S0097539703428324
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
http://dl.acm.org/citation.cfm?id=1873601.1873718
http://dl.acm.org/citation.cfm?id=338219.338650
http://dl.acm.org/citation.cfm?id=338219.338650
https://doi.org/10.1145/3147172
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.1145/3055399.3055437


60:14 I/O-Efficient Decrease-Key and Graph Algorithms Applications

10 R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and Heapsort on Secondary
Storage. Theor. Comput. Sci., 220(2):345–362, June 1999. doi:10.1016/S0304-3975(99)
00006-7.

11 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
Oblivious Algorithms. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS ’99, pages 285–, Washington, DC, USA, 1999. IEEE Computer
Society. URL: http://dl.acm.org/citation.cfm?id=795665.796479.

12 John Iacono and Mihai Pătraşcu. Using Hashing to Solve the Dictionary Problem. In
Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, pages 570–582, Philadelphia, PA, USA, 2012. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=2095116.2095164.

13 Shunhua Jiang and Kasper Green Larsen. A Faster External Memory Priority Queue with
DecreaseKeys. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 1331–1343. SIAM, 2019. doi:10.1137/1.9781611975482.81.

14 Vijay Kumar and Eric J. Schwabe. Improved Algorithms and Data Structures for Solving
Graph Problems in External Memory. In Proceedings of the 8th IEEE Symposium on Parallel
and Distributed Processing (SPDP ’96), SPDP ’96, pages 169–, Washington, DC, USA, 1996.
IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=829517.830723.

15 Jeffrey Scott Vitter. External Memory Algorithms and Data Structures: Dealing with Massive
Data. ACM Comput. Surv., 33(2):209–271, June 2001. doi:10.1145/384192.384193.

16 Zhewei Wei and Ke Yi. Equivalence between Priority Queues and Sorting in External Memory.
In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014, pages 830–841,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

https://doi.org/10.1016/S0304-3975(99)00006-7
https://doi.org/10.1016/S0304-3975(99)00006-7
http://dl.acm.org/citation.cfm?id=795665.796479
http://dl.acm.org/citation.cfm?id=2095116.2095164
https://doi.org/10.1137/1.9781611975482.81
http://dl.acm.org/citation.cfm?id=829517.830723
https://doi.org/10.1145/384192.384193


Shortest Reconfiguration of Perfect Matchings via
Alternating Cycles
Takehiro Ito
Tohoku University, Sendai, Japan
takehiro@ecei.tohoku.ac.jp

Naonori Kakimura
Keio University, Yokohama, Japan
kakimura@math.keio.ac.jp

Naoyuki Kamiyama
Kyushu University, Fukuoka, Japan
JST, PRESTO, Kawaguchi, Japan
kamiyama@imi.kyushu-u.ac.jp

Yusuke Kobayashi
Kyoto University, Kyoto, Japan
yusuke@kurims.kyoto-u.ac.jp

Yoshio Okamoto
University of Electro-Communications, Chofu, Japan
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
okamotoy@uec.ac.jp

Abstract

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem
of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect
matchings which transforms one given perfect matching to another given perfect matching such that
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61:2 Shortest Reconfiguration of Perfect Matchings via Alternating Cycles

M

M1

M1 M2 M3

M2

N

’ ’ ’

Figure 1 Two sequences of perfect matchings between M and N under the alternating cycle
model. The sequence 〈M, M1, M2, N〉 following the yellow alternating cycles is shortest even though
it touches the edge in M ∩ N twice. On the other hand, 〈M, M ′

1, M ′
2, M ′

3, N〉 following the pink
alternating cycles is not shortest although it touches only the edges in M 4N .

1 Introduction

Combinatorial reconfiguration is a fundamental research subject that sheds light on solution
spaces of combinatorial (search) problems, and connects various concepts such as optimization,
counting, enumeration, and sampling. In its general form, combinatorial reconfiguration is
concerned with properties of the configuration space of a combinatorial problem. The config-
uration space of a combinatorial problem is often represented as a graph, but its size is usually
exponential in the instance size. Thus, algorithmic problems on combinatorial reconfiguration
are not trivial, and require novel tools for resolution. For recent surveys, see [11, 7].

Two basic questions have been encountered in the study of combinatorial reconfiguration.
The first question asks the existence of a path between two given solutions in the configuration
space, namely the reachability of the two solutions. The second question asks the shortest
length of a path between two given solutions, if it exists. The second question is usually
referred to as a shortest reconfiguration problem.

In this paper, we focus on reconfiguration problems of matchings, namely sets of inde-
pendent edges. There are several ways of defining the configuration space for matchings, and
some of them have already been studied in the literature [8, 9, 6, 3, 2]. We will explain them
in Section 1.1.

We study yet another configuration space for matchings, which we call the alternating
path/cycle model. The model is motivated by adjacency in matching polytopes, which we
will see soon. In the model, we are given an undirected and unweighted graph G, and also
an integer k ≥ 0. The vertex set of the configuration space consists of the matchings in G of
size at least k. Two matchings M and N in G are adjacent in the configuration space if and
only if their symmetric difference M 4N := (M ∪N) \ (M ∩N) is a single path or cycle. In
particular, we are interested in the case where k = |V (G)|/2, namely the reconfiguration of
perfect matchings. In that case, the model is simplified to the alternating cycle model since
M 4N cannot have a path. See Figure 1 as an example.

The reachability of two perfect matchings is trivial under the alternating cycle model:
the answer is always yes. This is because the symmetric difference of two perfect matchings
always consists of vertex-disjoint cycles. Therefore, we focus on the shortest perfect matching
reconfiguration under the alternating cycle model.
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1.1 Related Work1

Other Configuration Spaces for Matchings

As mentioned, reconfiguration problems of matchings have already been studied under
different models [8, 9, 6, 3, 2]. These models chose more elementary changes as the adjacency
on the configuration space. Then, the situation changes drastically under such models: even
the reachability of two matchings is not guaranteed.

Matching reconfiguration was initiated by the work of Ito et al. [8]. They proposed the
token addition/removal model of reconfiguration, in which we are also given an integer k ≥ 0,
and the vertex set of the configuration space consists of the matchings of size at least k.2
Two matchings M and N are adjacent if and only if they differ in only one edge. Ito et al. [8]
proved that the reachability of two given matchings can be checked in polynomial time.

Another model of reconfiguration is token jumping, introduced by Kamiński et al. [9].
In the token jumping model, we are also given an integer k ≥ 0, and the vertex set of the
configuration space consists of the matchings of size exactly k. Two matchings M and N are
adjacent if and only if they differ in only two edges. Kamiński et al. [9, Theorem 1] proved
that the token jumping model is equivalent to the token addition/removal model when two
given matchings have the same size. Thus, using the result by Ito et al. [8], the reachability
can be checked in polynomial time also under the token jumping model [9, Corollary 2].

On the other hand, the shortest matching reconfiguration is known to be hard. Gupta et
al. [6] and Bousquet et al. [3] independently proved that the problem is NP-hard under the
token jumping model. Then, the problem is also NP-hard under the token addition/removal
model, because the shortest lengths are preserved under the two models [9, Theorem 1].

Recently, Bonamy et al. [2] studied the reachability of two perfect matchings under a
model close to ours, namely the alternating cycle model restricted to length four. In the
model, two perfect matchings M and N are adjacent if and only if their symmetric difference
M 4 N is a cycle of length four. Then, the answer to the reachability is not always yes,
and Bonamy et al. [2] proved that the reachability problem is PSPACE-complete under this
restricted model.

Relation to Matching Polytopes

Our alternating cycle model (without any restriction of cycle length) for the perfect matching
reconfiguration is natural when we see the connection with the simplex methods for linear
optimization, or combinatorial shortest paths of the graphs of convex polytopes.

In the combinatorial shortest path problem of a convex polytope, we are given a convex
polytope P , explicitly or implicitly, and two vertices v, w of P . Then, we want to find a
shortest sequence u0, u1, . . . , ut of vertices of P such that u0 = v, ut = w and uiui+1 forms
an edge of P for every i = 0, 1, . . . , t − 1. Often, we are only interested in the length of
such a shortest sequence, and we are also interested in the maximum shortest path length
among all pairs of vertices, which is known as the combinatorial diameter of the polytope P .
The combinatorial diameter of a polytope has attracted much attention in the optimization
community from the motivation of better understanding of simplex methods. Simplex
methods for linear optimization start at a vertex of the feasible region, follow edges, and
arrive at an optimal vertex. Therefore, the combinatorial diameter dictates the best-case

1 Further related work can be found in the full version.
2 Precisely, their model is defined in a slightly different way, but it is essentially the same as this definition.
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behavior of such methods. The famous Hirsch conjecture states that every d-dimensional
convex polytope with n facets has the combinatorial diameter at most n − d. This has
been disproved by Santos [14], and the current best upper bound of (n − d)log2 O(d/ log d)

for the combinatorial diameter was given by Sukegawa [15]. On the other hand, for the
0/1-polytopes (i.e., polytopes in which the coordinates of all vertices belong to {0, 1}), the
Hirsch conjecture holds [10].

The shortest perfect matching reconfiguration under the alternating cycle model can be
seen as the combinatorial shortest path problem of a perfect matching polytope. The perfect
matching polytope of a graph G is defined as follows. The polytope lives in RE(G), namely
each coordinate corresponds to an edge of G. Each vertex v of the polytope corresponds
to a perfect matching M of G as ve = 1 if e ∈ M and ve = 0 if e 6∈ M . The polytope is
defined as the convex hull of those vertices. It is known that two vertices u, v of the perfect
matching polytope form an edge if and only if the corresponding perfect matchings M, N

have the property that M 4N contains only one cycle [4]. This means that the graph of the
perfect matching polytope is exactly the configuration space for perfect matchings under the
alternating cycle model.

1.2 Our Contribution
To the best of the authors’ knowledge, known results under different models do not have direct
relations to our alternating cycle model, because their configuration spaces are different. In
this paper, we thus investigate the polynomial-time solvability of the shortest perfect matching
reconfiguration under the alternating cycle model. The results of our paper are two-fold.
1. The shortest perfect matching reconfiguration under the alternating cycle model can be

solved in polynomial time if the input graph is outerplanar.
2. The shortest perfect matching reconfiguration under the alternating cycle model is

NP-hard even when the input graph is planar or bipartite.
Since outerplanar graphs form a natural and fundamental subclass of planar graphs, our
results exhibit a tractability border among planar graphs.

The hardness result for bipartite graphs implies that the computation of a combinatorial
shortest path in a convex polytope is NP-hard even when an inequality description is
explicitly given. This is because a polynomial-size inequality description of the perfect
matching polytope can be explicitly written down from a given bipartite graph.

We point out that the hardness results have been independently obtained by Aichholzer
et al. [1]. Indeed, they proved the hardness for planar bipartite graphs (i.e., an input graph
is planar and bipartite).

Technical Key Points

Compared to recent algorithmic developments on reachability problems, only a few polynomial-
time solvable cases are known for shortest reconfiguration problems. We now explain two
technical key points, especially for algorithmic results on shortest reconfiguration problems.

The first point is the symmetric difference of two given solutions. Under several known
models (not only for matchings) that employ elementary changes as the adjacency on the
configuration space, the symmetric difference gives a (good) lower bound on the shortest
reconfiguration. This is because any reconfiguration sequence (i.e., a path in the configuration
space) between two given solutions must touch all elements in their symmetric difference
at least once. For example, in Figure 1, the symmetric difference of two perfect matchings
M and N consists of 16 edges and hence it gives the lower bound of 16/4 = 4 under



T. Ito, N. Kakimura, N. Kamiyama, Y. Kobayashi, and Y. Okamoto 61:5

the alternating cycle model restricted to length 4 [2]. In such a case, if we can find a
reconfiguration sequence touching only the elements in the symmetric difference (e.g., the
sequence 〈M, M ′

1, M ′
2, M ′

3, N〉 in Figure 1), then it is automatically the shortest under that
model. However, this useful property does not hold under our alternating cycle model,
because the length of an alternating cycle for reconfiguration is not fixed.

The second point is the characterization of unhappy moves that touch elements contained
commonly in two given solutions. For example, the shortest reconfiguration sequence
〈M, M1, M2, N〉 in Figure 1 has an unhappy move, since it touches the edge in M ∩N twice.
In general, analyzing a shortest reconfiguration becomes much more difficult if such unhappy
moves are required. A well-known example is the (generalized) 15-puzzle [13] in which the
reachability can be determined in polynomial time, while the shortest reconfiguration is
NP-hard. As illustrated in Figure 1, the shortest perfect matching reconfiguration requires
unhappy moves even for outerplanar graphs, and hence we need to characterize the unhappy
moves to develop a polynomial-time algorithm.

2 Problem Definition

In this paper, a graph always refers to an undirected graph that might have parallel edges
and does not have loops. For a graph G, we denote by V (G) and E(G) the vertex set and
edge set of G, respectively. An edge subset M ⊆ E is called a matching in G if no two edges
in M share the end vertices. A matching M is perfect if |M | = |V (G)|/2.

A graph is planar if it can be drawn on the plane without edge crossing. Such a drawing
is called a plane drawing of the planar graph. A face of a plane drawing is a maximal region
of the plane that contains no point used in the drawing. There is a unique unbounded face,
which is called the outer face. A planar graph is outerplanar if it has an outerplane drawing,
i.e., a plane drawing in which all vertices are incident to the outer face.

For a matching M in a graph G, a cycle C in G is called M -alternating if edges in M and
E(G) \M alternate in C. We identify a cycle with its edge set to simplify the notation. We
say that two perfect matchings M and N are reachable (under the alternating cycle model)
if there exists a sequence 〈M0, M1, . . . , Mt〉 of perfect matchings in G such that
(i) M0 = M and Mt = N ; and
(ii) Mi = Mi−1 4 Ci for some Mi−1-alternating cycle Ci for each i = 1, . . . , t.
Such a sequence is called a reconfiguration sequence between M and N , and its length is
defined as t.

For two perfect matchings M and N , the subgraph M 4 N consists of disjoint M -
alternating cycles C1, . . . , Ct. Thus it is clear that M and N are always reachable for any
two perfect matchings M and N by setting Mi = Mi−1 4 Ci for i = 1, . . . , t. In this paper,
we are interested in finding a shortest reconfiguration sequence of perfect matchings. That is,
the problem is defined as follows:

Shortest Perfect Matching Reconfiguration
Input: A graph G and two perfect matchings M and N in G

Find: A shortest reconfiguration sequence between M and N .

We denote by a tuple I = (G, M, N) an instance of Shortest Perfect Matching
Reconfiguration. Also, we denote by OPT(I) the length of a shortest reconfiguration
sequence of an instance I. We note that it may happen that OPT(I) is much shorter than
the number of disjoint M -alternating cycles in M 4N (see Figure 1).
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3 Polynomial-Time Algorithm for Outerplanar Graphs

In this section, we prove that there exists a polynomial-time algorithm for Shortest
Perfect Matching Reconfiguration on an outerplanar graph, as follows.

I Theorem 1. Shortest Perfect Matching Reconfiguration on outerplanar graphs
G can be solved in O(|V (G)|5) time.

We give such an algorithm in this section. Let I = (G, M, N) be an instance of the
problem such that G = (V, E) is an outerplanar graph. We first observe that it suffices to
consider the case when G is 2-connected.

I Lemma 2 (∗3). Let I = (G, M, N) be an instance of Shortest Perfect Matching
Reconfiguration, and G1, . . . , Gp be the 2-connected components of G. Furthermore,
for every i = 1, . . . , p, let Ii = (Gi, M ∩ E(Gi), N ∩ E(Gi)) be an instance of Shortest
Perfect Matching Reconfiguration. Then, OPT(I) =

∑p
i=1 OPT(Ii).

Since the 2-connected components of a graph can be found in linear time, the reduction
to 2-connected outerplanar graphs can be done in linear time, too.

We fix an outerplane drawing of a given 2-connected outerplanar graph G, and identify
G with the drawing for the sake of convenience. We denote by Cout the outer face boundary.
Then Cout is a simple cycle since G is 2-connected. We denote the set of the inner edges of
G by Ein = E \ Cout. In other words, Ein is the set of chords of Cout.

3.1 Technical Highlight
As mentioned in Introduction, there are two technical key points to develop a polynomial-time
algorithm for Shortest Perfect Matching Reconfiguration: a lower bound on the
length of a shortest reconfiguration sequence, and the characterization of unhappy moves.
We here explain our ideas roughly, and will give detailed descriptions in the next subsections.

Since G is planar, we can define its “dual-like” graph G∗. Then, G∗ forms a tree since G

is outerplanar and 2-connected. (The definition of G∗ will be given in Section 3.2, and an
example is given in Figure 2.) We make a correspondence between an edge in G∗ and a set of
edges in G. Then, we will define the length `(e∗) of each edge e∗ in G∗ so that it represents
the “gap” between M and N when we are restricted to the edges in the corresponding set of
e∗. It is important to notice that any cycle C in G corresponds to a subtree of G∗, and vice
versa. Indeed, we focus on a cut C∗ of G∗ clipping the subtree from G∗, that is, the set of
edges in G∗ leaving the subtree. If we apply an M -alternating cycle C to a perfect matching
M of G, then it changes lengths `(e∗) of the edges e∗ in the corresponding cut C∗.

For our algorithm, we need a (good) lower bound for the length of a shortest reconfiguration
sequence between two given perfect matchings M and N . Recall that |M 4 N | does not
give a good lower bound under the alternating cycle model. This is because we can take a
cycle of an arbitrary (non-fixed) length, and hence |M 4N | can decrease drastically by only
a single alternating cycle. Furthermore, no matter how we define the length `(e∗) of each
edge e∗ in G∗, the total length of all edges in G∗ does not give a good lower bound. This is
because a cycle C of non-fixed length in G may correspond to a cut C∗ having many edges
in G∗, and hence it can change the total length drastically. Our key idea is to focus on the
total length of each path in G∗, that is, we take the diameter of G∗ (with respect to length `)

3 The symbol (∗) means that the proof is postponed to the full version.
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as a lower bound. Then, because G∗ is a tree, any path in G∗ can contain at most two edges
from the corresponding cut C∗. Therefore, regardless of the cycle length, the diameter of G∗

can be changed by only these two edges. By carefully setting the length `(e∗) as in (1), we
will prove that the diameter of G∗ is not only a lower bound, but indeed gives the shortest
length under the assumption that Ein ∩M ∩N is empty. Therefore, the real difficulty arises
when Ein ∩M ∩N is not empty.

In the latter case, we will characterize the unhappy moves. Assume that we know the
set F ⊆ Ein ∩M ∩N of chords that are not touched in a shortest reconfiguration sequence
between M and N ; in other words, all chords in (Ein ∩M ∩ N) \ F must be touched for
unhappy moves in that sequence. Then, we subdivide a given outerplanar graph G into
subgraphs G1, . . . , G|F |+1 along the chords in F . Notice that each edge in F appears on the
outer face boundaries in two of these subgraphs. Furthermore, each chord e in these subgraphs
satisfies e ∈ (Ein ∩M ∩ N) \ F if e ∈ M ∩ N . Therefore, all chords in these subgraphs
are touched for unhappy moves as long as they are in M ∩N . Under this assumption, we
will prove that the diameter of G∗i gives the shortest length of a reconfiguration sequence
between M ∩ E(Gi) and N ∩ E(Gi). Thus, we can solve the problem in polynomial time
if we know F which yields a shortest reconfiguration sequence between M and N . Finally,
to find such a set F of chords, we construct a polynomial-time algorithm which employs a
dynamic programming method along the tree G∗.

3.2 Preliminaries: Constructing a Dual Graph
Let I = (G, M, N) be an instance of Shortest Perfect Matching Reconfiguration
such that G is a 2-connected outerplanar graph. Since G is planar, we can define the dual of G.
In fact, we here construct a graph G∗ obtained from the dual by applying a slight modification
as follows. The construction is illustrated in Figure 2. Let V ∗ be the set of faces (without
the outer face) of G. For a face v∗ ∈ V ∗, let Ev∗ ⊆ E(G) be the set of edges around v∗. We
denote the set of faces touching the outer face by U∗, i.e., U∗ = {v∗ ∈ V ∗ | Ev∗ ∩ Cout 6= ∅}.
We make a copy of U∗, denoted by Ũ∗. We set the vertex set of G∗ to be V ∗ ∪ Ũ∗. For
v∗, w∗ in V ∗, an edge v∗w∗ in G∗ exists if and only if the faces v∗ and w∗ share an edge in
Ein, i.e., |Ev∗ ∩Ew∗ | = 1. Also G∗ has an edge between u∗ and ũ∗ for every u∗ ∈ U∗, where
ũ∗ ∈ Ũ∗ is the copy of u∗. Thus the edge set of G∗ is given by

E(G∗) = {v∗w∗ | v∗, w∗ ∈ V ∗, |Ev∗ ∩ Ew∗ | = 1} ∪ {u∗ũ∗ | u∗ ∈ U∗}.

The first part is denoted by E∗in, and the second part is denoted by Ẽ∗. We observe that
G∗ is a tree, since G is 2-connected and outerplanar. A face of G that touches only one
face (other than the outer face) is called a leaf in G∗− Ũ∗. We note that there is a one-to-one
correspondence between edges in Ein of G and E∗in of G∗. For an edge subset F ⊆ Ein, F ∗

denotes the corresponding edge subset in G∗, that is, F ∗ = {e∗ ∈ E∗in | e ∈ F}. Conversely,
for an edge subset F ∗ ⊆ E(G∗), F denotes the corresponding edge subset in Ein, that is,
F = {e ∈ Ein | e∗ ∈ F ∗ ∩ E∗in}. We extend this correspondence to Ẽ∗, that is, u∗ũ∗ ∈ Ẽ∗

corresponds to the edge set Eu∗ ∩ Cout for u∗ ∈ U∗, and vice versa.
It follows from the duality that there is a relationship between a cut in G∗ and a cycle in

G. Suppose that we are given a cycle C ( 6= Cout) in G. Then, since G is outerplanar, the
cycle C surrounds a set X∗ of faces such that X∗ does not have the outer face. The set X∗

induces a connected graph (subtree) in G∗, and the set of edges leaving from X∗ yields a cut
C∗ = {e∗ = v∗w∗ | v∗ ∈ X∗, w∗ ∈ V (G∗) \X∗}. Conversely, let X∗ ⊆ V ∗ be a vertex subset
of G∗ such that the subgraph induced by X∗ is connected. Then the set of edges leaving
from X∗ yields a cut C∗ in G∗, which corresponds to a cycle in G.

ESA 2019
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(a) G and M. (b) G and N. (c) G*.

Figure 2 The construction of G∗ and the length function `. In (c), the edge lengths are depicted
by different styles: thick solid lines represent edges of length two, thin solid lines represent edges of
length one, and dotted lines represent edges of length zero.

We classify faces in U∗ into two groups. For a face u∗ in U∗, the edge set Eu∗ ∩ Cout
forms a family Pu∗ of disjoint paths. Since M and N are perfect matchings, each path P in
Pu∗ is both M -alternating and N -alternating. In addition, P satisfies either
(i) E(P ) ⊆M 4N , or
(ii) (M 4N) ∩ E(P ) = ∅.

Furthermore, we observe that either (i) holds for every path P in Pu∗ , or (ii) holds for every
path P in Pu∗ . Indeed, since M 4 N consists of disjoint cycles, if some path P in Pu∗

satisfies (i), then P is included in a cycle C in M 4 N that separates u∗ from the outer
face. Since the other paths in Pu∗ touch the outer face, they are on C. Thus every path
satisfies (i), which shows the observation. We divide U∗ into two groups U∗1 and U∗2 where
each face in U∗1 satisfies (i) for every path, while each face in U∗2 satisfies (ii) for every path.

For an edge e∗ in E(G∗), we define the length `(e∗) to be

`(e∗) =


|M ∩ {e}|+ |N ∩ {e}| if e∗ ∈ E∗in;
1 if e∗ = u∗ũ∗ ∈ Ẽ∗ such that u∗ ∈ U∗1 ;
0 if e∗ = u∗ũ∗ ∈ Ẽ∗ such that u∗ ∈ U∗2 .

(1)

See Figure 2 for an example. Let `(u∗, v∗) be the length of the (unique) path from u∗ to
v∗ in G∗. We define the gap between M and N in the graph G as the diameter of G∗, that
is, we define gap(I) = max{`(u∗, v∗) | u∗, v∗ ∈ V (G∗)}. This value is simply denoted by
gap(M, N) if G is clear from the context.

3.3 Characterization for the Disjoint Case
Let I = (G, M, N) be an instance of Shortest Perfect Matching Reconfiguration
such that G is a 2-connected outerplanar graph. In this subsection, we show that if
Ein ∩M ∩N is empty, we can characterize the optimal value with gap(I), which leads to a
simple polynomial-time algorithm for this case. We note that if Ein ∩M ∩N is empty, then
no edge in Ein belongs to both M and N , and hence `(e∗) can only take 0 or 1.

I Lemma 3 (∗). It holds that gap(M, N) is even.

A main theorem of this subsection is to give a characterization of the optimal value with
gap(M, N).

I Theorem 4. Let I = (G, M, N) be an instance of Shortest Perfect Matching
Reconfiguration such that G is a 2-connected outerplanar graph. If Ein∩M ∩N is empty,
then it holds that OPT(I) = gap(M, N)/2.
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(a) G and E′
in = {e1, e2}. (b) G1, G2, G3 when F = E′

in.

e1 e2

(c) G1, G2 when F = {e2}.

Figure 3 Decomposition of the outerplanar graph in Figure 2. The edges in E′in are shown with
bold lines.

Proof. To show the theorem, we first prove the following claim.

B Claim 5 (∗). For any M -alternating cycle C, it holds that gap(M, N) ≤ gap(M4C, N)+2.

Consider a shortest reconfiguration sequence 〈M0, M1, . . . , Mt〉 from M0 = M to Mt = N .
Then, t = OPT(I). For each i = 1, . . . , t, it then holds that gap(Mi−1, N) ≤ gap(Mi, N) + 2.
By repeatedly applying the above inequalities, we obtain

gap(M, N) = gap(M0, N) ≤ gap(Mt, N) + 2t = 2t = 2OPT(I)

since gap(Mt, N) = 0. Hence it holds that OPT(I) ≥ gap(M, N)/2.
It remains to show that OPT(I) ≤ gap(M, N)/2. We prove the following claim.

B Claim 6 (∗). There exists an M -alternating cycle C such that gap(M, N) = gap(M 4
C, N) + 2.

For a perfect matching Mi−1 in G, it follows from Claim 6 that there exists an Mi−1-
alternating cycle Ci such that gap(Mi−1, N) = gap(Mi−14Ci, N)+2. Define Mi = Mi−14Ci,
and repeat finding an alternating cycle satisfying the above equation. The repetition
ends when gap(Mi, N) = 0, which means that Mi = N . The number of repetitions is
equal to gap(M, N)/2, and therefore, we have OPT(I) ≤ gap(M, N)/2. Thus the proof
is complete. J

3.4 General Case
Let I = (G, M, N) be an instance of Shortest Perfect Matching Reconfiguration
such that G is a 2-connected outerplanar graph. Define E′in = Ein∩M ∩N . In this subsection,
we deal with the general case, that is, E′in is not necessarily empty. Then, there is a case
when changing an edge in E′in reduces the number of reconfiguration steps as in Figure 1.
We call such a move an unhappy move. The key idea of our algorithm is to detect a set of
edges necessary for unhappy moves.

Since G is outerplanar and 2-connected, any F ⊆ E′in divides the inner region of Cout
into |F | + 1 parts R1, . . . , R|F |+1. For each i = 1, . . . , |F | + 1, let Gi be the subgraph of
G consisting of all the vertices and the edges in Ri and its boundary. Thus, each edge
e ∈ F appears on the outer face boundaries in two of these subgraphs. See Figure 3. Let
GF = {G1, . . . , G|F |+1}. Note that each graph in GF is outerplanar and 2-connected. For
each H ∈ GF , let IH = (H, M ∩ E(H), N ∩ E(H)). We now show the following theorem.

I Theorem 7. OPT(I) = 1
2 min

F⊆E′in

∑
H∈GF

gap(IH).
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Proof. Let 〈M0, M1, . . . , Mt〉 be a shortest reconfiguration sequence from M0 = M to
Mt = N . We denote by Ci the Mi−1-alternating cycle with Mi = Mi−1 4 Ci. Define
Fopt = {e ∈ E′in | e 6∈ Ci,∀i}, which is the set of edges in E′in that are not touched in the
shortest reconfiguration sequence. Then Ci is contained in some H ∈ GFopt , and can be used
to obtain a reconfiguration sequence from M ∩E(H) to N ∩E(H) in H. Therefore, we have

OPT(I) =
∑

H∈GFopt

OPT(IH). (2)

We can also see that

OPT(I) ≤
∑

H∈GF

OPT(IH) (3)

for any F ⊆ E′in.
To evaluate OPT(IH) for H ∈ GF , we slightly modify the instance IH by replacing every

inner edge of H contained in M ∩N by two parallel edges each in M and N , respectively.
The obtained graph is denoted by H ′, and the corresponding instance is denoted by IH′ .
Since a reconfiguration sequence for IH′ can be converted to one for IH , it holds that
OPT(IH) ≤ OPT(IH′), and hence

OPT(I) ≤
∑

H∈GF

OPT(IH) ≤
∑

H∈GF

OPT(IH′) (4)

holds for any F ⊆ E′in by (3). Moreover, by the definition of Fopt, there exists an index i

such that e ∈ Ci for any e ∈ E′in \Fopt. Therefore, for H ∈ GFopt , the shortest reconfiguration
sequence for IH can be converted to a reconfiguration sequence for IH′ . Thus, OPT(IH) ≥
OPT(IH′) holds for H ∈ GFopt , and hence

OPT(I) =
∑

H∈GFopt

OPT(IH) ≥
∑

H∈GFopt

OPT(IH′) (5)

by (2). By (4) and (5), we obtain

OPT(I) = min
F⊆E′in

∑
H∈GF

OPT(IH′), (6)

and Fopt is a minimizer of the right-hand side.
By (6) and Theorem 4, we obtain

OPT(I) = 1
2 min

F⊆E′in

∑
H∈GF

gap(IH′), (7)

because each IH′ satisfies the condition in Theorem 4. Since (H ′)∗ is obtained from H∗ by
subdividing some edges of length two into two edges of length one, the diameter of (H ′)∗ is
equal to that of H∗, that is, gap(IH′) = gap(IH). Therefore, we obtain the theorem by (7). J

As an example, we apply this theorem to the instance in Figure 2. See Figure 3(c). If
F consists of only the right thick edge in Figure 2(c), then GF consists two graphs G1 and
G2 such that gap(IG1) = 6 and gap(IG2) = 2. Since we can check that such F attains the
minimum in the right-hand side of Theorem 7, we obtain OPT(I) = 4 by Theorem 7.

In order to compute the value in Theorem 7 efficiently, we reduce the problem to Min-Sum
Diameter Decomposition, whose definition will be given later.
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For F ⊆ E′in, let F ∗ be the edge subset of E∗in corresponding to F , and let GF =
{G1, . . . , G|F |+1}. Then, G∗−F ∗ consists of |F |+ 1 components T1, T2, . . . , T|F |+1 such that
Ti coincides with G∗i (except for the difference of edges of length zero) for i = 1, . . . , |F |+ 1.
In particular, for each i, we have gap(IGi) = max{`(u∗, v∗) | u∗, v∗ ∈ V (Ti)}, where ` is the
length function on E(G∗) defined by the instance I = (G, M, N). We call max{`(u∗, v∗) |
u∗, v∗ ∈ V (Ti)} the diameter of Ti, which is denoted by diam`(Ti). Then, Theorem 7
shows that

OPT(I) = 1
2 min

F⊆E′in

|F |+1∑
i=1

diam`(Ti). (8)

Therefore, we can compute OPT(I) by solving the following problem in which T = G∗ and
E0 = (E′in)∗.

Min-Sum Diameter Decomposition
Input: A tree T , an edge subset E0 ⊆ E(T ), and a length function ` : E(T )→ Z≥0

Find: An edge set F ⊆ E0 that minimizes
∑

T ′ diam`(T ′), where the sum is taken
over all the components T ′ of T − F .

In the subsequent subsection, we show that Min-Sum Diameter Decomposition can
be solved in time polynomial in |V (T )| and L :=

∑
e∈E(T ) `(e).

I Theorem 8. Min-Sum Diameter Decomposition can be solved in O(|V (T )|L4) time,
where L :=

∑
e∈E(T ) `(e).

Since (8) shows that Shortest Perfect Matching Reconfiguration on outerplanar
graphs is reduced to Min-Sum Diameter Decomposition in which L = O(|V (T )|), we
obtain Theorem 1.

3.5 Algorithm for Min-Sum Diameter Decomposition
The remaining task is to show Theorem 8, that is, to give an algorithm for Min-Sum
Diameter Decomposition that runs in O(|V (T )|L4) time. For this purpose, we adopt a
dynamic programming approach.

We choose an arbitrary vertex r of a given tree T , and regard T as a rooted tree with the
root r. For each vertex v of T , we denote by Tv the subtree of T which is rooted at v and is
induced by all descendants of v in T . (See Figure 4(a).) Thus, T = Tr for the root r. Let
w1, w2, . . . , wq be the children of v, ordered arbitrarily. For each j ∈ {1, 2, . . . , q}, we denote
by T j

v the subtree of T induced by {v} ∪ V (Tw1) ∪ V (Tw2) ∪ · · · ∪ V (Twj
). For example,

in Figure 4(b), the subtree T j
v is surrounded by a thick dotted rectangle. For notational

convenience, we denote by T 0
v the tree consisting of a single vertex v. Then, Tv = T 0

v for
each leaf v of T . Our algorithm computes and extends partial solutions for subtrees T j

v from
the leaves to the root r of T by keeping the information required for computing (the sum of)
diameters of a partial solution.

We now define partial solutions for subtrees. For a subtree T j
v and an edge subset

F ′ ⊆ E0 ∩ E(T j
v ), the frontier for F ′ is the component (subtree) in T j

v − F ′ that contains
the root v of T j

v . We sometimes call it the v-frontier for F ′ to emphasize the root v. For
three integers x, y, z ∈ {0, 1, . . . , L}, the edge subset F ′ is called an (x, y, z)-separator of T j

v

if the following three conditions hold. (See also Figure 4(c).)
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x : length of a longest path from v
y : diameter of the frontier

z : total diameter of 
    non-frontier components

(c) Tv
j

Figure 4 (a) Subtree Tv in the whole tree T , (b) subtree T j
v in Tv, and (c) an (x, y, z)-separator

of T j
v .

x = max{`(v, u) | u ∈ V (TF ′)}, where TF ′ is the v-frontier for F ′. That is, the longest
path from v to a vertex in TF ′ is of length x.
y = diam`(TF ′), that is, y denotes the diameter of the v-frontier TF ′ for F ′.
z =

∑
T ′ diam`(T ′), where the sum is taken over all the components T ′ of (T − F ′) \ TF ′ .

Note that x ≤ y always holds for an (x, y, z)-separator of T j
v . We then define the following

function: for a subtree T j
v and two integers x, y ∈ {0, 1, . . . , L}, we let

f(T j
v ; x, y) = min

{
z | T j

v has an (x, y, z)-separator
}

.

Note that f(T j
v ; x, y) is defined as +∞ if T j

v does not have an (x, y, z)-separator for any
z ∈ {0, 1, . . . , L}. Then, the optimal objective value to Min-Sum Diameter Decomposition
can be computed as min{y + f(T ; x, y) | x, y ∈ {0, 1, . . . , L}}.

For a given tree T , our algorithm computes f(T j
v ; x, y) for all possible triplets (T j

v , x, y)
from the leaves to the root r of T . The algorithm runs in O(|V (T )|L4) time in total. (The
details are explained in the full version.) Note that we can easily modify the algorithm so
that we obtain not only the optimal value but also an optimal solution. This completes the
proof of Theorem 8.

We note here that the algorithm can be modified so that the running time is bounded by
a polynomial in |V (T )| by replacing the domain {0, 1, . . . , L} of x and y with D := {`(u, v) |
u, v ∈ V (T )}. This modification is valid, because f(T j

v ; x, y) = +∞ unless x, y ∈ D. Since
|D| = O(|V (T )|2), the modified algorithm runs in O(|V (T )||D|4) = O(|V (T )|9) time. Note
that, although this bound is polynomial only in |V (T )|, it is worse than O(|V (T )|L4) when
L = O(|V (T )|).

4 NP-Hardness for Planar Graphs and Bipartite Graphs

In this section, we prove that Shortest Perfect Matching Reconfiguration is NP-hard
even when the input graph is planar or bipartite.

I Theorem 9. Shortest Perfect Matching Reconfiguration is NP-hard even for
planar graphs of maximum degree three.
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We reduce the Hamiltonian Cycle problem, which is known to be NP-complete even
when a given graph is 3-regular and planar [5].

Hamiltonian Cycle
Input: A 3-regular planar graph H = (V, E)
Question: Decide whether H has a Hamiltonian cycle, i.e., a cycle that goes through

all the vertices exactly once.

Proof. Let H be a 3-regular planar graph, which is an instance of Hamiltonian Cycle.
For each vertex v ∈ V (H), we define a 8-vertex graph Dv (see also the top right in Figure 5):

V (Dv) = {v1, v2, v3, v4, v5, v6, v7, v8},
E(Dv) = {v1v2, v2v3, v3v4, v4v1, v4v5, v5v7, v3v6, v6v8}.

We construct an instance I = (G, M, N) of our problem as follows. (See Figure 5
as an example.) We subdivide each edge e = uv in H twice, and the obtained vertices
are denoted by ue and ve, where ue is closer to u. Then, for each vertex v ∈ V (H), we
replace v with the graph Dv, and connect v7 to v

e
(1)
v

and v
e

(2)
v
, v8 to v

e
(2)
v

and v
e

(3)
v
, where

e
(1)
v , e

(2)
v , e

(3)
v are edges incident to v and the order follows the plane drawing of H. Let

Ev = {v7v
e

(1)
v

, v7v
e

(2)
v

, v8v
e

(2)
v

, v8v
e

(3)
v
}. The resulting graph is denoted by G, i.e., G is defined

as follows:

V (G) =
⋃

v∈V (H)

V (Dv) ∪
⋃

e=uv∈E(H)

{ue, ve},

E(G) =

 ⋃
v∈V (H)

E(Dv) ∪ Ev

 ∪ {ueve | e ∈ E(H)}.

It follows that G is a planar graph of maximum degree three. Furthermore, we define initial
and target perfect matchings M and N in G, respectively, to be

M = {v1v2, v3v4, v5v7, v6v8 | v ∈ V (H)} ∪ {ueve | e ∈ E(H)},
N = {v1v4, v2v3, v5v7, v6v8 | v ∈ V (H)} ∪ {ueve | e ∈ E(H)}.

This completes the construction of our corresponding instance I = (G, M, N). The construc-
tion can be done in polynomial time.

We then give the following claim.

B Claim 10 (∗). H has a Hamiltonian cycle if and only if OPT(I) = 2.

This completes the proof of Theorem 9. J

The hardness for bipartite graphs of maximum degree three can be obtained with a
similar proof; the reduction uses the Directed Hamiltonian Cycle problem which is
NP-complete even when input directed graphs have the maximum in-degree two and the
maximum out-degree two [12]. The details are deferred to the full version.

I Theorem 11 (∗). Shortest Perfect Matching Reconfiguration is NP-hard even
for bipartite graphs of maximum degree three.

The proofs actually show that Shortest Perfect Matching Reconfiguration is
NP-hard to approximate within a factor of less than 3/2.
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e(1)

e(2)

e(3)

v1

v4
v5

v7

v2

v3
v6

v8

ve(1) ve(3)
ve(2)

v Dv

Figure 5 Reduction for planar graphs of maximum degree three. Top left: a yes instance H of
Hamiltonian Cycle with a green Hamiltonian cycle. Top right: the constructed fragment Dv.
Bottom left: The initial perfect matching M (red). Bottom middle: The target perfect matching
N (blue). Bottom right: The perfect matching obtained as M 4 C, where C corresponds to the
Hamiltonian cycle of H.

5 Conclusion

In this paper, we studied the shortest reconfiguration problem of perfect matchings under
the alternating cycle model, which is equivalent to the combinatorial shortest path problem
on perfect matching polytopes. We prove that the problem can be solved in polynomial
time for outerplanar graphs, but it is NP-hard, and even APX-hard for planar graphs and
bipartite graphs.

Several questions remain unsolved. For polynomial-time solvability, our algorithm runs
only for outerplanar graphs, and it looks difficult to extend the algorithm to other graph
classes. A next step would be to try k-outerplanar graphs for fixed k ≥ 2.

One way to tackle NP-hard cases is approximation. We only know the NP-hardness of
approximating within a factor of less than 3/2. We believe the existence of a polynomial-time
constant-factor approximation. Note that we do not obtain a constant-factor approximation
by flipping alternating cycles in the symmetric difference of two given perfect matchings
one by one.

This paper was mainly concerned with reconfiguration of perfect matchings. Alternatively,
we may consider reconfiguration of maximum matchings, or maximum-weight matchings.
In those cases, we need to adopt the alternating path/cycle model. Then, the question is
related to the combinatorial shortest path problem on faces of matching polytopes. Note
that the perfect matching polytope is also a face of the matching polytope. Therefore, the
study on maximum-weight matchings will be a generalization of this paper.

To the best of the authors’ knowledge, the combinatorial shortest path problem of 0/1-
polytopes has not been well investigated while the adjacency in 0/1-polytopes has been
extensively studied in the literature. This paper opens up a new perspective for the study of
combinatorial and computational aspects of polytopes, and connects them with the study of
combinatorial reconfiguration.
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Abstract
Two-dimensional packing problems are a fundamental class of optimization problems and Strip
Packing is one of the most natural and famous among them. Indeed it can be defined in just one
sentence: Given a set of rectangular axis parallel items and a strip with bounded width and infinite
height, the objective is to find a packing of the items into the strip minimizing the packing height.
We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial
running time with respect to the width of the strip. It is known that there is no pseudo-polynomial
time algorithm for Strip Packing with a ratio better than 5/4 unless P = NP. The best algorithm
so far has a ratio of 4/3 + ε. In this paper, we close the gap between inapproximability result and
currently known algorithms by presenting an algorithm with approximation ratio 5/4 + ε. The
algorithm relies on a new structural result which is the main accomplishment of this paper. It states
that each optimal solution can be transformed with bounded loss in the objective such that it has one
of a polynomial number of different forms thus making the problem tractable by standard techniques,
i.e., dynamic programming. To show the conceptual strength of the approach, we extend our result
to other problems as well, e.g., Strip Packing with 90 degree rotations and Contiguous Moldable
Task Scheduling, and present algorithms with approximation ratio 5/4 + ε for these problems as well.
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1 Introduction

Two-dimensional packing problems typically have quite natural formulations and arise in a
wide variety of contexts (see e.g. [8]). A characteristic challenge in this kind of problem is
the space efficient placement of rectangles in a given area. Despite their simple description,
they are usually quite hard and require sophisticated algorithmic techniques in order to
reliably and efficiently find good solutions. Indeed, the study of algorithms for fundamental
two-dimensional packing problems, like, e.g., Strip Packing, 2D-Knapsack, 2D-Bin Packing,
or Unsplittable Flow on a Path, can be traced back to 1980 when Baker et al. [4] and Coffman
et al [9] studied the first algorithms for two-dimensional packing problems. Furthermore,
new results for these problems are regularly presented on top level conferences like FOCS,
STOC and SODA up to today (see, e.g., [2, 5, 10, 13, 14, 18, 33, 27]). As all of these packing
problems are NP-hard, they are typically studied in the context of approximation algorithms.
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[17], 5/4 + ε

5/4, Theorem 1 [11, 21]

4/3 + ε

[27]

7/5 + ε

[23]

3/2 + ε

Figure 1 The upper and lower bounds for pseudo-polynomial approximations achieved so far.

We say an approximation algorithm A has an (absolute) approximation ratio α (or call it
α-approximation) if for each instance I of the problem it holds that A(I) ≤ αOPT(I), where
OPT(I) is the optimal value of the corresponding objective function.

Although there is a huge range of work related to improving the absolute approximation
ratio of algorithms for Strip Packing [3, 4, 6, 9, 12, 16, 22, 24, 28, 29, 30, 31] and there
have been breakthroughs for 2D-Knapsack [10] and Unsplittable Flow on a Path [14], these
problems are still not understood well. In the context of Strip Packing, for instance, there is a
huge gap between the best known lower and upper bound of 3/2 and 5/3+ε [15], respectively.
Similar, for 2D-Knapsack and Unsplittable Flow on a Path, (1 + ε)-approximation schemes
might be possible while the best algorithms known so far have absolute approximation ratios
of 17/9 + ε [10] and 5/3 + ε [14] respectively. Closing these gaps between lower and upper
bounds poses a fascinating challenge.

To close these gaps, it is essential that the corresponding problem and the structure
of optimal or at least good solutions, in particular, are understood well. Hence, it can be
helpful to look at the problem from different angles and consider other goals regarding the
approximation or the running time. One example, where this approach has already been
particularly effective, is the consideration of asymptotic approximation ratios, where we allow
an extra additive term, i.e., an algorithm A has an asymptotic approximation ratio of α if
there exists a constant c such that A(I) ≤ αOPT+c for each instance I. While there has been
extensive work on algorithms with asymptotic approximation ratios [3, 9, 12, 24, 31, 6, 22]
the algorithm by Kenyon and Rémila [24] is particularly prominent. It has an asymptotic
approximation ratio of (1 + ε)OPT +O(hmax/ε

2) for each ε > 0 where hmax is the largest
occurring item height. Due to its small running time (which is a polynomial in the number
of jobs as well as 1/ε) and its relatively small additive term, the techniques used in this
algorithm have become the standard to handle items which have a small height compared
to the value of the objective function in most of the later developed algorithms for Strip
Packing and other 2-dimensional packing problems. On the other hand, for the 2-dimensional
geometric Knapsack problem, the consideration of other running times (as e.g. in [2] where
the considered algorithm has a pseudo- and quasi-polynomial running time, which allows the
size of the Knapsack and terms of the form 2log(n)O(1) to appear as factors in the running
time) have brought new insights, which ultimately led to an algorithm for this problem
(presented in [10]) that has the currently best approximation ratio of 17

9 + ε.

In this spirit, algorithms with pseudo-polynomial running time, which allow the widths
of the strip or the size of the smallest or largest item to appear in the running time with a
polynomial dependence, have been considered for the Strip Packing problem to provide a
better understanding of its hardness, see Figure 1 for an overview. The so far best pseudo-
polynomial time algorithm has an approximation ratio of 4/3+ε [11, 21] while there is a lower
bound of 5/4 (see [17]) on the approximation ratio for this kind of algorithms unless P = NP.
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Results

Before we summarize the results presented in this paper, we define the Strip Packing problem
formally. We have to pack a set I of n rectangular items into a given strip with width
W ∈ N and infinite height. Each item i ∈ I has a width w(i) ∈ N≤W and a height h(i) ∈ N.
The area of an item i ∈ I is defined as a(i) := h(i) · w(i) and the area of a set of items
I ′ ⊆ I is defined as a(I ′) :=

∑
i∈I′ a(i). A packing of the items is given by a mapping

ρ : I → N≤W × N, i 7→ (xi, yi) which assigns the lower left corner of an item i ∈ I to a
position ρ(i) = (xi, yi) in the strip. An inner point of i ∈ I (with respect to a packing ρ)
is a point from the set inn(i) := {(x, y) ∈ R × R |xi < x < xi + w(i), yi < y < yi + h(i)}.
We say two items i, j ∈ I overlap if they share an inner point (i.e., inn(i) ∩ inn(j) 6= ∅).
A packing is feasible if no two items overlap and if xi + w(i) ≤ W for all i ∈ I. The
objective of the Strip Packing problem is to find a feasible packing ρ with minimal height
h(ρ) := max{yi + h(i) | i ∈ I, ρ(i) = (xi, yi)}. Given an instance I of the Strip Packing
problem, we denote this minimal packing height with OPT(I) and dismiss the I if the
instance is clear from the context.

Analyzing the structure of solutions is a valuable tool in the development of algorithms,
and this holds for approximation as well as exact algorithms. By analyzing the structure
of optimal solutions and finding properties that all optimal solutions share, we aim to
dramatically reduce the search space of solutions in size and gain other structural insights
enabling the application of well-understood algorithmic techniques like dynamic or integer
programming. This general approach is widely used in the context of two-dimensional packing
problems, and there are many success stories in other areas of combinatorial optimization as
well. One such example is the problem of Scheduling on Identical Machines where it lead
to an approximation scheme [19] whose running time (nearly) matches the lower bound [7].
In this paper, we present an analysis of the structure of optimal solutions that consist of
rectangular objects placed inside a rectangular packing area, that is restricted on one side.
The structural result developed from this consideration (see Lemma 3) is particularly valuable
in the design of algorithms for the Strip Packing problem as we can find a pseudo-polynomial
time algorithm that matches the lower bound of 5/4 except for a negligibly small ε.

I Theorem 1. There is a pseudo-polynomial algorithm for Strip Packing which finds a
(5/4 + ε)-approximation in O(n log(n)) ·WOε(1) operations, where Oε dismisses all factors
solely dependent on 1/ε.

Moreover, since we consider optimal solutions with the above described properties, this
result also comes in handy for the development of algorithms for the problem Contiguous
Moldable Task Scheduling, which is a generalization of Strip Packing where each rectangular
item can take on a bounded number of different shapes. However, when adapting the
algorithm to this problem, we get a running time where Oε(1) also does appear in the
exponent of the number of items n, see Theorem 2. More formally in this problem, we
are given a set J of n jobs and m identical machines. Each job j ∈ J can be scheduled
on different numbers of machines given by Mj ⊆ {1, . . . ,m}. Depending on the number of
machines i ∈Mj , each job j ∈ J has a specific processing time pj(i) ∈ N. A schedule S is
given by three functions: σ : J → N which maps each job j ∈ J to a starting time σ(j);
ρ : J → {1, . . . ,m} which maps each job j ∈ J to the number of processors ρ(j) ∈Mj it is
processed on; and ϕ : J → {1, . . . ,m} which maps each job j ∈ J to the first machine it is
processed on. The job j ∈ J will use the machines ϕ(j) to ϕ(j) + ρ(j)− 1 contiguously. A
schedule S = (σ, ρ, ϕ) is feasible if each machine processes at most one job at a time and its
makespan is defined by maxj∈J σ(j) + pj(ρ(j)). The objective is to find a feasible schedule,
which minimizes the makespan. This problem and prominent variants where the jobs do not
need to occupy contiguous machines have been widely studied, see e.g. [32, 25, 26, 23, 20].
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This problem is a generalization of Strip Packing as it contains this problem (and Strip
Packing with rotations) as a special case: We define the number of machines m as the
width of the strip W and for each item i ∈ I we introduce one job i with Mi := {w(i)}
and processing time pi(w(i)) = h(i) (or introduce one job i with Mi := {w(i), h(i)} and
processing times pi(w(i)) = h(i) and pi(h(i)) = w(i) respectively). Therefore, we cannot
hope for a pseudo-polynomial algorithm with a ratio better than 5/4 unless P = NP. We
adapt the structure and algorithmic result to find an algorithm with an approximation ratio,
which almost matches this bound.

I Theorem 2. There is a pseudo-polynomial algorithm for the Contiguous Moldable Parallel
Tasks Scheduling problem which finds a (5/4 + ε)-approximation in (nm)Oε(1) operations.

Remark that for the case where for at least one job j ∈ J we have that |Mj | ∈ Ω(m) the
running time of this algorithm is polynomial in the input size. Furthermore, we can hope
that in realistic instances the number of machines is bounded by a function in the number of
jobs n. If this is the case, the mentioned algorithm is a polynomial time algorithm as well,
which further motivates the consideration of pseudo-polynomial time algorithms. As the
Contiguous Moldable Parallel Tasks Scheduling contains the Strip Packing with Rotations as
a special case, this theorem implies a (5/4 + ε)-approximation with running time (nW )Oε(1)

for this problem as well.

Methodology

We follow the general approach mentioned above. More precisely, we analyze optimal solutions
and how they can be transformed carefully into well-structured solutions without too much
loss in the objective. Knowing that such a transformation is always attainable, the algorithm
will iterate the potential structures of the transformed optimal packings and fill the items
inside this structure using dynamic and linear programming. The same basic scheme has
been used for this and other packing problems before, e.g. [2, 27, 11, 21]. However, finding
a suitable transformation to a well structured solution provides a challenge that depends
on the problem itself (i.e. a structural result from other packing problems might not be
applicable for Strip Packing) and our approach significantly differs from previous ones.

In the approaches seen before, i.e., in [27], [11] and [21], there arises a natural set of critical
items, e.g., all items with height larger than 1/3 OPT in [11] and [21]. The characteristic of
this set is that the aspired approximation ratio is exceeded if we place one of these items
on top of the optimal packing area. The transformation strategy used in these previous
approaches is heavily dependent on the fact that there can be at most two critical items
on top of each other. This allows placing all critical items in the optimal packing area
while discarding some noncritical items, which are placed on top of the optimal packing
later (see Figure 2a). If three critical items can be put on top of each other (which will be
the case as soon as a critical item can have a height smaller than OPT/3) the described
transformation will not work. To find an algorithm with ratio 4/3− ε, we need to overcome
this major obstacle.

To construct a (5/4 + ε)-approximation, we introduce a new technique, in the following
called shifting and reordering. In contrast to the previous results, our structural result
does not guarantee that all critical items are packed inside the optimal packing area. Instead,
we shift and reorder the items of an optimal packing such that the critical items with
height larger than 1/4OPT are aligned into three shelves using the area W × (5/4 + ε)OPT
(see Figure 2b).
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optimal reordered

(a) Previous reordering technique.

optimal reordered gap for disc. items

(b) The new shifting and reordering technique.

Figure 2 A comparison of old and new strategies in the simplified case. Dark gray rectangles
represent the critical items, while the light gray area represents the other items, which can be sliced
vertically during the reordering. The hatched area represents an area where we can place the items
that are sliced by the reordering.

A challenge which arises using this new strategy is the fact that by the newly introduced
shifting and reordering technique a constant number of the other (non-critical) items will be
sliced vertically and thus have to be discarded temporally from the packing. Although this
set of discarded items also appears in previous approaches, their handling differs significantly.
Since the shifting strategy extends the occupied packing area by the factor (5/4 + ε) with
respect to its height, these discarded items cannot be placed on top of the packing as
done in previous approaches, see Figure 2. Instead, the discarded items have to be placed
carefully into gaps generated by the shifting and reordering step. By a careful analysis of
the rearrangement, we prove that each possible structure of a rearranged optimal packing
provides suitable gaps to place these items.

In Section 3, we present the central idea to find the improved structural result – the
shifting and reordering technique. However, to highlight the basic steps, a simplified problem
is considered. In this simplified case just the critical items have to be placed integrally
while all other items are allowed be partitioned into vertical slices, which do not have to be
placed contiguously.

In general (when the non critical items cannot be placed as non contiguous vertical slices)
the slicing of some items will cause problems when trying to place them inside gaps generated
by the new strategy, because these gaps might be thin. Hence, we cannot slice items that
are too wide in some sense. Nevertheless, we may slice certain narrow items further called
sliceable. To overcome this obstacle, we use a lemma from [21], which states the possibility
to partition each slightly stretched packing into Oε(1) rectangular areas (without removing
any item). This partition provides the property that each critical item is contained in (or
intersected by) area(s) exclusively containing critical and sliceable items. Up to three critical
items can overlap each of the vertical borders of these areas and these overlapping items may
not be shifted horizontally or vertically by our new technique. In the full version, we extend
the strategy presented in Section 3 to these areas although it becomes much more involved.

Combining our new techniques to place critical items on three shelves, find suitable gaps
for discarded non-critical items and handle the exclusive slicing of narrow items together
enables us to prove the structural result from Lemma 3 and in Section 2, we provide a
more detailed road-map of its proof. As mentioned above, the algorithm iterates all possible
structures defined by the structure result and tries to place all items into this structure using
linear and dynamic programming until a suitable structure is found.
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The structural result applies to all optimal solutions with the property that they consist
of rectangular objects placed into a rectangle that is extendable on one side. Optimal
solutions of the three considered problems, i.e., Strip Packing, Strip Packing with rotations
and Contiguous Moldable Task Scheduling, all have this property. Thanks to this fact, we
were able to obtain algorithms which find 5/4 + ε approximations for each of the three
problems by carefully adapting the underlying dynamic program.

2 Structural Result

In this section, we introduce the Structural Lemma, which presents the fundamental insight
to achieve the approximation ratio (5/4 + ε). Roughly speaking, the lemma states that
each optimal solution can be transformed such that it has a simple structure, see Lemma 3.
Due to space limitations, we cannot present the proof here and we refer to the full version.
Nevertheless, we provide a high-level overview on the steps of the proof, which consists of
the following two basic steps. First the given instance and a corresponding optimal solution
is simplified by rounding the sizes of the items (widths and heights) as well as partitioning
the set of items into parts, that can be handled almost independently. Afterward, the items
in the optimal packing are reordered such that they provide the properties demanded by the
lemma.

Given an optimal packing with height OPT for an instance I, we first perform some
simplification steps. First, we partition the set of items by defining
L := {i ∈ I |h(i) > δOPT, w(i) ≥ δW} as the set of large items,
T := {i ∈ I |h(i) ≥ (1/4 + ε)OPT, w(i) < δW} as the set of tall items,
V := {i ∈ I | δOPT ≤ h(i) < (1/4 + ε)OPT, w(i) ≤ µW} as the set of vertical items,
MV := {i ∈ I | εOPT ≤ h(i) < (1/4 + ε)OPT, µW < w(i) ≤ δW} as the set of vertical
medium items,
H := {i ∈ I |h(i) ≤ µOPT, δW ≤ w(i)} as the set of horizontal items,
S := {i ∈ I |h(i) ≤ µOPT, w(i) ≤ µW} as the set of small items and
M := {i ∈ I |h(i) < εOPT, µW < w(i) ≤ δW} ∪ {i ∈ I |µOPT < h(i) ≤ δOPT} =
I \ (L ∪ T ∪ V ∪MV ∪H ∪ S) as the set of medium sized items,

where we chose δ and µ such that the total area of the itemsMV ∪M is small, resulting in
|MV | to be in O(1/(εδ2)). Afterward the heights of the items with height larger than δOPT
are rounded such that there are at most O(1/(εδ)) sizes and such that their y-coordinates
are positioned on multiples of εδOPT.

In the next step, we discard the items S ∪M from the packing since they can be placed
later on, using the NFDH algorithm from [9]. By an adaption of a lemma in [21], we were
able to show that the residual packing can be partitioned into Oε(1) rectangular subareas,
called boxes, that contain exactly one item from the set L ∪MV , only items from the set
H, or only items from the set T ∪ V. Furthermore, horizontal items are allowed to overlap
horizontal box borders, while vertical and tall items are allowed to overlap vertical box
borders. Note that in this partitioning step no item is removed from the packing or changes
its position.

Remark that in [21] the items inMV were handled the same as the medium sized items
M, i.e., they were simply placed on the top of the packing. However, this is not possible in
our case since these items can have a height of up to (1/4 + ε)OPT and we need the extra
height of (1/4 + ε)OPT to apply the shifting and reordering. Consequently, we have to think
of a new strategy to handle them. Since their number is bounded by Oε(1), it is possible to
handle them as if they were large. This different handling of vertical medium itemsMV is,
regarding previous algorithms, one of the novelties of this result.
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Next, we consider the mentioned partition of the optimal solution into rectangular axis-
parallel boxes. The items in L ∪MV and the boxes containing horizontal items need no
more attention since for each item in L∪MV we can guess its position in pseudo-polynomial
time and by extending the packing by a factor of O(ε) the horizontal items can be placed
inside the boxes using a configuration LP building upon the techniques presented in [24].

We innovate the reordering of the items inside the boxes for vertical and tall items T ∪ V
using the new shifting and reordering technique (see Section 3). Using this technique, we
extend all the boxes with height larger than OPT/2 by only OPT/4, shift and reorder the
items inside, and partition their area such that each subarea contains either only tall items
of the same height, only vertical items, or no item. Note that the boxes can be overlapped
by up to three tall items on each side (left or right). When reordering the items inside the
boxes, we cannot move these overlapping items. We refer to the full version for the proof of
this alteration with overlapping items.

During this reordering step, we slice vertical items vertically. This slicing needs to be
fixed since in the aspired Structural Lemma 3 all the items are positioned integral. We prove
that by using a configuration LP to place the vertical items, we end up with only Oε(1)
items, that have to be placed fractionally. We place these items inside Oε(1) containers of
width µW and height OPT/4. An arising challenge is the placement of these containers
inside the already extended packing. Other than in the previous attempts (see [27], [11], or
[21]), it is not possible to place these extra boxes on top of the packing. By a careful analysis
of the area added due to the shifting step, we manage to find a placement of these items
inside the rearranged packing. All these considerations together are enough to prove the
following structural result:

I Lemma 3 (Structural Lemma). By extending the packing height to (5/4 + 5ε)OPT each
rounded optimal packing can be rearranged and partitioned into O(1/(δ3ε5)) boxes with the
following properties:

There are |L|+ |MV | = O(1/(δ2ε)) boxes BL each containing exactly one item from the
set L ∪MV and all items from this set are contained in these boxes.
There are at most O(1/(δ2ε)) boxes BH containing all horizontal items H with BH∩BL = ∅.
The horizontal items can overlap horizontal box borders, but never vertical box borders.
There are at most O(1/(δ2ε5)) boxes BT containing tall items, such that each tall item t

is contained in a box with rounded height h(t).
There are at most O(1/(δ3ε5)) boxes BV containing vertical items, such that each vertical
item v is contained in a box with rounded height h(v).
There are at most O(1/(δ2ε5)) boxes BS for small items, such that the total area of these
boxes combined with the total free area inside the horizontal boxes is at least as large as
the total area of the small items.
The lower and top border of each box is positioned at a multiple of εδOPT.

3 Introducing the Shifting and Reordering Technique

To demonstrate the central new idea which leads to the improved structural result – the
shifting and reordering technique – we consider the following simplified case. We have to
pack items with a tall height integrally, while we are allowed to slice all other items vertically.
We can assume that the packing, which we consider here, is the packing inside a box for T
and V for the case that no tall item overlaps the box borders. Remember, in the general
case, there can be such items and hence the reordering gets a little bit more complicated as
in this simplified case. We will demonstrate that, in this simplified scenario, it is possible to
rearrange the items such that there are a constant number of rectangular subareas, which
contain only tall items with the same height.
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(a) An optimal packing. (b) The packing after the
first shift
(Step 1 and 2).
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(c) The packing after the
second shift
(Step 3 and 4).
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(d) The final reordered
packing after Step 5.

Figure 3 States of the item rearrangement. Dark rectangles represent tall items while light gray
areas might contain non-tall sliced items.

Let a packing with height H be given. We define tall items as the items which have
a height larger than 1/4H. Further, assume that there is an arithmetic grid with N + 1
horizontal grid lines with distance H/N such that each tall item starts and ends at the grid
lines. For now, we can think of this grid as the integral grid with H + 1 grid lines. Later,
we can reduce the grid lines by rounding the heights of the items. We are interested in a
fractional packing of the non-tall items. Therefore, we replace each non-tall item i by exactly
w(i) items with height h(i) and width 1. This step is called slicing. We define a box as a
rectangular subarea of the packing area.

I Lemma 4. By adding at most 1/4H to the packing height and slicing non-tall items, we
can rearrange the items such that we generate at most 3/2N containers which contain tall
items with the same height only, and at most 9/4N + 1 container for sliced items.

Proof. In this proof, we will present a rearrangement strategy which provides the desired
properties. This strategy consists of two shifting steps and one reordering step. In the shifting
steps, we shift items in the vertical direction, while in the reordering step we change the
item positions horizontally. In the first shifting step, we ensure that tall items intersecting
the horizontal lines 1/4H or 3/4H will touch the bottom or the top of the packing area,
respectively. In the second shift, we ensure that tall items not intersecting these lines have a
common upper border as well. Last, we reorder the items such that tall items with the same
height are positioned next to each other if they have a common upper or lower border.

Step 1: First Shift. Note that there is no tall item completely below 1/4H or completely
above 3/4H since each tall item has a height larger than 1/4H. We shift each tall item t

intersecting the horizontal line 1/4H down, such that its bottom border touches the bottom
of the strip. The sliced items below t are shifted up exactly h(t), such that they are now
positioned above t. In the same way, we shift each tall item intersecting the horizontal line
at 3/4H but not the horizontal line at 1/4H such that its upper border is positioned at H
and shift the sliced items down accordingly, see Figure 3b.

Step 2: Introducing Pseudo Items. At this point, we introduce a set of containers for the
sliced items, which we call pseudo items, see Figure 3b. We draw vertical lines at each left or
right border of a tall item and erase these lines on any tall item. Each area between two
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consecutive lines which is bounded on top and bottom by a tall item or the packing area and
contains sliced items represents a new item called pseudo item. Note that no sliced item is
intersecting any box border since they are positioned on integral widths only. Furthermore,
when we shift a pseudo item, we shift all sliced items included in this container as well.

When constructing the pseudo items, we consider one special case. Consider a tall item t

with height larger than 3/4H. There can be no tall item positioned above or below t, and t
was shifted down. For these items, we introduce one pseudo item of height H and width w(t)
containing t and all sliced items above. Note that each pseudo item has a height, which is a
multiple of H/N . Furthermore, note that each tall or pseudo item touching the top or the
bottom border of the packing area has a height larger than 1/4H.

Step 3: Second Shift. Next, we do a second shifting step consisting of three sub-steps.
First, we shift each tall or pseudo item intersected by the horizontal line at 3/4H but not the
horizontal line at 1/4H exactly 1/4H upwards. Second, we shift each pseudo item positioned
between the horizontal lines at 1/2H and 3/4H, such that their lower border is positioned
at the horizontal line 3/4H. Last, we shift each tall or pseudo item intersected by the
horizontal line at 1/2H but not the horizontal line at 1/4H or 3/4H such that its upper border
is positioned at the horizontal line 3/4H. After this shifting, no item overlaps another item
since we have shifted the items intersecting the line at 3/4H exactly 1/4H, while each item
below is shifted at most 1/4H.

Step 4: Fusing Pseudo Items. After the second shift, we will fuse and shift some pseudo
items. We want to establish the property that each tall and pseudo item has one border
(upper or lower), which touches one of the horizontal lines at 0, 3/4H, or 5/4H. At the moment
there can be some pseudo items between the horizontal lines 1/4H and 1/2H, which do not
touch one of the three lines. In the following, we study the three cases where those pseudo
items can occur. These items do only exist if there is a tall item touching the bottom of the
packing and another tall item above this item with a lower border at or below 1/2H before
the second shifting step. Consider two consecutive vertical lines we had drawn to generate
the pseudo items. If a tall item overlaps the vertical strip between these lines, its right and
left borders either lie on the strips borders or outside of the strip.

Case 1: In the first considered case there are three tall items, t1, t2, and t3 from bottom
to top, which overlap the strip. In this scenario t1 must have its lower border at 0, t2
its upper border at 3/4H, and t3 its upper border at 5/4H. As a consequence, there are
at most two pseudo items: One is positioned between t1 and t2, and the other between
t2 and t3. We will stack them, such that the lower border of the stack is positioned at
3/4H and prove that this is possible without overlapping t3. The total height of both
pseudo items is H − h(t1) − h(t2) − h(t3). The total area not occupied by tall items is
H − h(t1) − h(t2) − h(t3) + 1/4H since we have added 1/4H to the packing height. The
distance between t1 and t2 is at most 1/4H since t1’s lower border is at 0 and t2’s upper
border is at 3/4H and both have a height larger than 1/4H. Therefore, the distance between
t2 and t3 is at least H − h(t1)− h(t2)− h(t3), see Figure 3c at the items marked with 1.

Case 2: Now consider the case where there is one tall item t1 touching the bottom, and one
tall item t2 with height at least 1/2H touching 5/4H. Obviously, t2 has a height of at most
3/4H. Furthermore, there is at most one pseudo item, and it has to be positioned between
1/4H and 1/2H. We shift this pseudo item up until its bottom touches 1/2H, see Figure 3c
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at the item marked with 2. This is possible without constructing any overlap, because the
distance between t1 and the horizontal line 1/2H is less than 1/4H and, therefore, the distance
between the line 1/2H and the lower border of the tall item is larger than the height of the
pseudo item.

After this step, we consider each tall item t with height larger than 1/2H touching 5/4H.
We generate a new pseudo item with width w(t) and height 3/4H, with upper border at
5/4H and lower border at 1/2H, containing all pseudo items below t touching 1/2H with their
lower border.

Case 3: In the last case we consider, there are two tall items t1 and t2 and two pseudo
items; one of the items t1 and t2 touches the top of the packing or the bottom, while the
other ends at 3/4H. Hence, the distance between the tall items has to be smaller than 1/4H.
Furthermore, one of the pseudo items has to touch the top or the bottom of the packing
while the other is positioned between t1 and t2. Since the distance between t1 and t2 is less
than 1/4H, one of the distances between the packing border and the lower border of t1 or the
upper border of t2 is at least H − h(t1)− h(t2). Therefore, we can fuse both pseudo items
by shifting the one between t1 and t2 such that it is positioned above or below the other one,
see Figure 3c at the items marked with 3.

I Observation 1. After the shifting and fusing, each tall or pseudo item touches one of the
horizontal lines at 0, 3/4H or 5/4H.

Step 5: Reordering the Items. In the last part of the rearrangement, we reorder the items
horizontally to place pseudo and tall items with the same height next to each other. In
this reordering step, we create five areas each reserved for certain items. To do so, we take
vertical slices of the packing and move them to the left or the right in the strip. A vertical
slice is an area of the packing with width one and height of the considered packing area, i.e.
5/4H in this case. While rearranging these slices, it will never happen that two items overlap.
However, it can happen, that some of the tall items are placed fractionally afterward. This
will be fixed in later steps.

Area 1: First, we will extract all vertical slices containing (pseudo) items with height H.
Then, shifting all the remaining vertical slices to the left as much as possible, we create one
box for pseudo items of height H at the right, see Figure 3d at Area 1. In this area, we sort
the pseudo items such that the pseudo items containing tall items with the same height are
placed next to each other. In this step, we did not place any tall item fractionally.

Area 2: Afterward, we take each vertical slice containing a (pseudo) item with height at
least 1/2H touching the horizontal line at 5/4H. Remember, there might be pseudo items
containing a tall item t with a height between 1/2H and 3/4H. We shift these slices to the left
of the packing and sort them in descending order of the tall items height h(t), see Figure 3d at
Area 2. Afterward, we sort the pseudo items below these tall items, which are touching 1/2H

with their bottom in ascending order of their heights, which is possible without generating
any overlapping. In this step, it can happen that we slice tall items which touch the bottom
of the strip. We will fix this slicing in one of the following steps, when we consider Area 5.

Area 3: Next, we look at vertical slices containing (pseudo) items t with height at least
1/2H touching the bottom of the strip. We shift them to the right until they touch the
Area 1 and sort these slices in ascending order of the heights h(t), see Figure 3d at Area 3.
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Note that there are no pseudo or tall items that have their upper border positioned at 3/4H

in these slices. In this step, it can happen that we slice tall items touching the top of the
packing. This will be fixed in the next step.

Area 4: Look at the area above 3/4H and left of Area 2 but right of Area 1, see Figure 3d
at Area 4. In this area no item overlaps the horizontal line 3/4H. Therefore, we have
a rectangular area where each item either touches its bottom or its top and no item is
intersected by the area’s borders. In [27] it was shown that, in this case, we can sort the
items touching the line 3/4H in ascending order of their height and the items touching 5/4H

in descending order of heights and no item will overlap another item. Now all items with the
same height are placed next to each other, and thus we fixed the slicing of tall items.

Area 5: In the last step, we will reorder the remaining items. Namely the items touching
the bottom of the strip left of Area 3 and the items touching the horizontal line at 3/4H

with their top between Area 2 and Area 3. The items touching the bottom are sorted in
descending order of their height and the items touching the horizontal line at 3/4H are sorted
in ascending order regarding their heights.

B Claim. After the reordering of Area 5 no item overlaps another.

Proof. First, note that the items touching 5/4H have a height of at most 3/4H. Therefore,
no item touching the bottom having height at most 1/2H can overlap with these items.
Furthermore, note that before the reordering no item was overlapping another. Let us assume
there are two items b and t, which overlap at a point (x, y) after this reordering. Then
all items left of x touching 3/4H have their lower border below y, while all items touching
the bottom left of x have their upper border above y. Therefore, at every point left and
right of (x, y) in the Area 5 there is an item overlapping it. Hence, the total width of items
overlapping the horizontal line y is larger than the width of the Area 5. Therefore in the
original ordering, there would have been items overlapping each other already since we did
not add any items – a contradiction. As a consequence in this new ordering, no two items
overlap, which concludes the proof of the claim. C

Analyzing the Number of Constructed Boxes. In the last part of this proof, we analyze
how many boxes we have created for tall and sliced items.

B Claim. After the described reordering there are at most 3
2N boxes for tall items all

containing items of only one height.

Proof. Each tall item with height at least 3/4H touches the bottom and we create at most
one box in Area 1 for each height. Therefore, we create at most N/4 boxes for these items.
Each tall item that has a height between 1/2H and 3/4H touches either the bottom or the
horizontal line 5/4H. On each of these lines, we create at most one box for items with the
same height. Therefore, we create at most 2N/4 boxes for these items. Last, each tall item
with height larger than 1/4H but smaller than 1/2H either touches the bottom of the packing,
the horizontal line 3/4H or the horizontal line 5/4H. At each of these lines, we create at most
one box for each height. Therefore, we create at most 3N/4 of these boxes. In total, we
create at most 3

2N boxes for tall items. C

B Claim 5. After the described reordering there are at most 9
4N + 1 boxes containing sliced

items.
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Proof. Let us consider the number of boxes for sliced items. Each pseudo item’s height is a
multiple of H/N . Therefore, we have at most N different sizes for pseudo items. There are at
most 4 boxes for each height less than 1/4H. One is touching H with its top border in Area 1,
one is touching 3/4H with its bottom border in Area 4, one is touching 3/4H with its top
border in Area 5, and one is touching 1/2H with its bottom border in Area 2. Furthermore,
there are at most 3 boxes for each size between 1/4H and 1/2H. One is touching 5/4H with
its top border in Area 4, one is touching 3/4H with its top border in Area 5, and one is
touching 0 with its bottom border in Area 5. Additionally, there are at most 2 boxes for
each pseudo item size larger than 1/2H. One is touching 5/4H with its top border in Area 2,
the other is touching 0 with its bottom border in Area 3. Last there is only one pseudo item
with height larger than 3/4H in Area 1. It has height H. Since the grid is arithmetically
defined, we have at most N/4 sizes with height at most 1/4H, N/4 sizes between 1/4H

and 1/2H and at most 1/4N sizes between 1/2H and 3/4H. Therefore, we create at most
4 · 1/4N + 3 · 1/4N + 2 · 1/4N + 1 = 9

4N + 1 boxes for sliced items. C

Since the number of boxes for tall and sliced items is as small as claimed, this concludes the
proof of the Lemma 4. J

In this section, we have proven that in this simplified case it is possible to reorder the items
such that they have a nice structure. Nevertheless, when considering the mentioned partition
into rectangular subareas (called boxes) from [21] we encounter some obstacles. In each box
B containing tall and vertical items there can be up to three tall items overlapping its left
and right border. Especially critical to apply the above described shifting and reordering
technique are the items overlapping the box at the height h(B)−H/4, because these items
cannot be moved. The reason why we cannot move these objects is the impossibility of
judging their intertwining with other objects within the respective other box(es) in which
they are contained. Therefore, since the reordering technique requires them to be shifted
up, a first step is to discard these items from the respective boxes by partitioning them into
smaller boxes at the left and right borders of these items. However, we cannot get rid of the
items overlapping the box below this horizontal line of h(B)−H/4, and handling these items
without moving them becomes quite technical. A detailed analysis how to reorder the items
inside a box if tall items overlap the borders can be found in the full version of this paper.
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Abstract
Solving the NP-hard Maximum Cut or Binary Quadratic Optimization Problem to optimality is
important in many applications including Physics, Chemistry, Neuroscience, and Circuit Layout.
The leading approaches based on linear/semidefinite programming require the separation of so-called
odd-cycle inequalities for solving relaxations within their associated branch-and-cut frameworks. In
their groundbreaking work, F. Barahona and A.R. Mahjoub have given an informal description of
a polynomial-time separation procedure for the odd-cycle inequalities. Since then, the odd-cycle
separation problem has broadly been considered solved. However, as we reveal, a straightforward
implementation is likely to generate inequalities that are not facet-defining and have further undesired
properties. Here, we present a more detailed analysis, along with enhancements to overcome the
associated issues efficiently. In a corresponding experimental study, it turns out that these are
worthwhile, and may speed up the solution process significantly.
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1 Introduction

There are various applications that require solving the Maximum Cut (henceforth MaxCut)
problem to optimality, and this has been achieved in the literature by specialized branch-
and-cut algorithms that are based on certain relaxations of MaxCut. A prominent example
is the determination of ground states in Ising Spin Glasses [1, 3, 4]. Other applications occur
in, e.g., Chemistry, Neuroscience, and Circuit Layout. Also, the generic Binary Quadratic
Optimization problem (BQP) has a direct transformation to MaxCut, see, e.g. [1], such that
enhanced branch-and-cut algorithms for MaxCut directly lead to enhanced branch-and-cut
algorithms for the BQP.

A key element to be carried out repeatedly in the course of such branch-and-cut algorithms
is the separation of odd-cycle inequalities associated with the cut polytope as defined in
Section 2. In their groundbreaking work, F. Barahona and A.R. Mahjoub [2] have shown
that, under certain conditions, the odd-cycle inequalities induce maximal faces (facets)
of the cut polytope – which is desirable for their application within a branch-and-cut
algorithm. Moreover, they have given an informal description of a polynomial-time separation
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procedure for these inequalities. Since then, this “algorithmic frame” has been used in many
computational studies, but we are not aware of any accounts on the details of the respective
implementations or experimental evaluations.

As we show in this paper, however, the odd-cycle inequalities derived using a “straightfor-
ward” implementation of this frame are frequently not facet-inducing – for two reasons that
are both inherent to the algorithm. At the same time, it is, to the best of our knowledge, the
only polynomial-time one proposed so far. Along with a more detailed analysis of odd-cycle
separation, we thus provide extensions to overcome these shortcomings efficiently by extend-
ing the original algorithm. Finally, we present an experimental study showing the practical
impact of these enhancements using established benchmark instances for MaxCut and the
BQP. It turns out that the additional effort invested is typically more than compensated,
i.e., has a positive effect on the solution process.

The outline of this paper is as follows: In Section 2, we define the separation problem
for odd-cycle inequalities in the context of solving MaxCut by branch-and-cut, present
the outline of the polynomial time separation algorithm given in [2], and point out the
shortcomings of a naïve implementation. In Section 3, we analyze the problem formally and
present various strategies to enhance the separation procedure. These are experimentally
evaluated in Section 4.

2 The Maximum Cut Problem and Odd-Cycle Inequalities

Let G = (V,E) be a simple undirected graph, i.e., there are no loops and no parallel edges.
For k > 1, a walk in G is a set of edges W = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ⊆ E. If, in
addition, the vertices v0, v1, . . . , vk ∈ V are pairwise different, W is called a path. Provided
that W is a walk and {v0, vk} ∈ E, we call W ∪ {v0, vk} a closed walk. If P is a path, and
{v0, vk} ∈ E, then C = P ∪ {v0, vk} is called a (simple) cycle. We will also refer to a closed
walk that is not a simple cycle as a non-simple cycle.

For W ⊆ V , let δ(W ) := {e = {u, v} ∈ E | u ∈ W, v ∈ V \W}. The edge subsets δ(W )
for any W ⊆ V are the cuts of G. They correspond to bipartitions of the vertex set V into
W and V \W . Given weights we for e ∈ E, the maximum cut problem, formulated as an
integer linear programming problem, reads:

max
∑
e∈E

wexe (1)∑
e∈Q

xe −
∑

e∈C\Q

xe ≤ |Q| − 1 for all Q ⊆ C ⊆ E, C cycle and |Q| odd (2)

0 ≤ xe ≤ 1 for all e ∈ E (3)
xe ∈ Z for all e ∈ E (4)

Any solution x̂ of (2)–(4) corresponds to a cut F̂ = {e ∈ E | x̂e = 1} and vice versa. The
necessary and sufficient condition for this to hold is that F̂ intersects with every cycle in
G in an even number of edges which is enforced by the odd-cycle inequalities (2) while the
trivial constraints (3) give lower and upper bounds. Consequently, any optimum solution x∗
of (2)–(4) gives rise to an optimum cut F ∗ = {e ∈ E | x∗e = 1} with maximum total weight.
We refer to x̂ and x∗ as the characteristic vectors of F̂ and F ∗, respectively. Also, we will
call a cycle associated with an odd-cycle inequality “odd cycle” although |C| may be even,
and refer to it as a pair (C,Q) if its unique determination matters.

The cut polytope is the convex hull of the feasible solutions to the maximum cut problem
associated with G = (V,E):

PCUT(G) = conv{x ∈ RE | x satisfies (2)–(4)}
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At the core of any linear programming based branch-and-cut algorithm, a sequence
of linear programming relaxations of (1)–(3) is solved by a cutting plane algorithm: The
first relaxation just consists of (1) and (3). Then it is the task of an odd-cycle separation
algorithm to decide if the optimum solution x̂ of the current relaxation satisfies all odd-cycle
constraints (2). If so, the linear programming relaxation (1)–(3) is solved to optimality and
its objective function value is used as an upper bound in a branch-and-bound scheme. If not,
the separation algorithm must provide at least one odd-cycle inequality that is violated by x̂.
The produced inequalities are then added to strengthen the current relaxation, this new
relaxation is solved to optimality, and the process is iterated until the separation algorithm
decides that the solution of the current linear program satisfies all odd-cycle constraints.

In branch-and-cut, it is preferred that the separated inequalities define facets of the
polytope associated with the problem, so here, we would prefer odd-cycle inequalities that
define facets of the cut polytope PCUT(G). Barahona and Mahjoub [2] have given a proof
that an odd-cycle inequality defines a facet of PCUT(G) if and only if its associated cycle C
is chordless, i.e., if there is no edge in E \ C that connects two vertices of C.

2.1 Polynomial-Time Separation of Odd-Cycle Inequalities
We describe the polynomial time algorithm of Barahona and Mahjoub [2]. For this purpose,
we rewrite the odd-cycle inequalities (2) associated with a graph G = (V,E) as follows:∑

e∈Q

(1− xe) +
∑

e∈C\Q

xe ≥ 1 for all Q ⊆ C ⊆ E, C cycle and |Q| odd (5)

Our task is to solve the separation problem for x̂ ∈ [0, 1]E . Let G1 = (V1, E1) and
G2 = (V2, E2) be two copies of G, and denote with u1 ∈ V1 the representative of u ∈ V
in G1 and with u2 ∈ V2 the one in G2. Based on these copies, define a new weighted
graph GS = (VS , ES) with VS = V1 ∪ V2, ES = E1 ∪ E2 ∪ E3. The additional edge
set E3 ⊆ V1 × V2 consists of the edges {u1, v2} and {v1, u2} for each {u, v} ∈ E. The
edges {u1, v1} ∈ E1 receive weights ω({u1, v1}) = x̂{u,v}, the edges {u2, v2} ∈ E2 also
receive weights ω({u2, v2}) = x̂{u,v}, and the edges {u1, v2}, {v1, u2} ∈ E3 receive “inverted”
weights ω({u1, v2}) = ω({v1, u2}) = 1 − x̂{u,v}. To ease notation, we will frequently write
ω(F ) :=

∑
e∈F ω(e) for any edge set F ⊆ ES or F ⊆ E. Moreover, we will also write VS(F ) or

V (F ) to denote the vertex set {v ∈ VS | ∃ {v, w} ∈ F} or {v ∈ V | ∃ {v, w} ∈ F}, respectively.
The fundamental property of the construction described is that, for any u ∈ V , any

path Pu ⊆ ES from u1 to u2 in GS corresponds to a closed walk C in the original graph G
containing u. Moreover, it inevitably involves an odd number of edges from the set E3 that,
as the associated ω-weights indicate, define the subset Q ⊆ C.

Thus, each such path Pu corresponds to an odd closed walk (C,Q) in G that may however
have vertex as well as edge repetitions, i.e., C is not necessarily a simple cycle. Fig. 1 shows a
small example where two different paths of equal length (w.r.t. ω as well as the total number
of edges) in GS lead to either a simple or non-simple cycle in G.

Now, the central idea of the algorithm is to compute, for each u ∈ V , an ω-shortest path
Pu from u1 to u2 in GS .

If then ω(Pu) ≥ 1 for every u ∈ V , then there is no odd closed walk (C,Q) that violates∑
e∈Q

(1− xe) +
∑

e∈C\Q

xe ≥ 1 for all Q ⊆ C ⊆ E, C closed walk and |Q| odd (6)

and, therefore, no simple cycle C that violates (5).
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Otherwise, if ω(Pu) < 1 for some u ∈ V , then Pu corresponds to an odd closed walk
(C,Q) that violates (6). However, only if (C,Q) is “accidentally” simple, we have found a
violated inequality of type (5).

This does not affect the correctness of the approach: Even when using (C,Q) “as is” in
the cutting plane algorithm, i.e., when possibly adding an inequality of type (6) rather than
one of type (5) to the linear program, the final result satisfies all the latter and thus solves
the relaxation (1)–(3) of MaxCut. However, while inequalities (6) are valid for PCUT(G),
they are not facet-inducing. And even if a cycle (C,Q) derived from an ω-shortest path
in GS is simple, it is very likely to have chords as we show in Sect. 3.3. So in summary,
when using the described approach, the likelihood to generate cutting planes that do not
correspond to facets of PCUT(G) is high. Fortunately, we can efficiently construct from Pu a
simple odd cycle (C,Q) that violates (5), and even one that is chordless, as we shall see in
Sect. 3.2 and 3.3, respectively.

0 0

00 0

1

0 0 0

0 0

G GS

u u1 u2

v1 v2

w1 w2

v

w

(C1, Q1)

u

v

w

(C2, Q2)

u

v

w

Figure 1 Left: An example graph G whose edges are annotated with an (integral) linear program
solution. Middle: The corresponding separation graph GS (only zero-weight edges are shown). The
dashed edges correspond to a shortest u1-u2-path that induces a non-simple odd closed walk in G

(edge {v, w} is used twice, see the left of the two cycles depicted on the right). If the subpath within
the right copy of G is replaced by the dotted one, the induced cycle is simple (but not chordless).

3 Non-Simple and Non-Chordless Simple Odd Cycles

To the best of our knowledge, the possible non-simplicity of odd closed walks derived with
the common procedure, as well as the possible presence of chords, has attracted almost no
further consideration in the literature before. However, as we will see, it matters not only in
theory but also in practice.

Besides the preserved correctness of the separation algorithm already discussed, another
possible reason why non-simplicity has been ignored may be the existence of an easy proof
that any odd closed walk (C,Q) contains at least one simple cycle (C ′, Q′) with C ′ ⊆ C,
Q′ ⊆ Q, and with |Q′| odd:

If (C,Q) is non-simple, then either there is at least one edge e = {u, v} ∈ E that occurs
k > 1 times on C. Or, each edge e ∈ E occurs at most once on C, but there is a vertex
v ∈ V whose degree w.r.t. the edges of C is dC(v) := |{w ∈ V : {v, w} ∈ C}| > 2 (cf. Fig. 2).
Since we assumed before that no edge is contained twice in C, dC(v) must then be even1.

1 The present case of odd closed walks induced by simple paths P in GS with weight ω(P ) < 1 implies
k ≤ 2 since any combination of an E3-instance with an E1- or E2-instance of the same edge e ∈ E leads
to an ω-weight of at least one. Moreover, the simplicity of Pu implies dC(v) ≤ 4 for all v ∈ V .
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v

u

e
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1 C

e
2 Ce

k

Ce
1 C

e
2 Ce

k

v

Cv
1 C

v
2 Cv

d(v)/2

Cv
1 C

v
2 Cv

d(v)/2

Figure 2 Multiple cycles comprising an edge {u, v} ∈ E or a single vertex v ∈ V .

In the first case, let Ce
1 , . . . , C

e
k be the corresponding closed walks that result from starting

a path in v – each time using a different edge that is not e – and continuing the path until v
is reached again first using e. In the second case, let Cv

1 , . . . , C
v
dC (v)

2
be the respective closed

walks that result from starting a path in v using each time a different edge, and ending when
v is first reached again.

We refer to the associated subsets of Q as Qe
i := Ce

i ∩Q, i ∈ {1, . . . , k}, and Qv
i := Cv

i ∩Q,
i ∈ {1, . . . , dC(v)

2 }, respectively. Since Q is odd, there is at least one i∗ ∈ {1, . . . , k}
(i∗ ∈ {1, . . . , dC(v)

2 }) such that |Qe
i∗ | ≤ |Q| (|Qv

i∗ | ≤ |Q|) is odd as well. Now either (Ce
i∗ , Qe

i∗)
((Cv

i∗ , Qv
i∗)) is simple in which case we are done. Or, we find an edge f ∈ Ce

i∗ , f 6= e, that
occurs more than once on Ce

i∗ (a vertex w 6= v in Cv
i∗ such that dCv

i∗ (w) > 2) and have thus
reduced the extraction of a simple cycle to a strictly smaller non-simple one. Thus, since any
simple cycle has length at least three, the according recursion must terminate after finitely
many steps with a cycle that is simple.

It however remains open how to extract a (chordless) simple odd closed walk from a
non-simple one efficiently. This will be addressed in Sect. 3.2 and Sect. 3.3 after clarifying in
Sect. 3.1 which kinds of non-simplicity can occur from the method described in Sect. 2.1.

3.1 Cases of Non-Simplicity
The landscape of different cases and their implications concerning the facet-defining property
of the associated odd-cycle inequalities is depicted in Fig. 3.

odd closed walk

non-simple

non-chordless chordless

facet-definingnon-facet-defining

subsequent nested crossing

simple

Figure 3 Categorization of odd closed walks.

Let Pu be an ω-shortest path from u1 to u2 in GS , and let (C,Q) be its induced odd
closed walk in G. We may assume w.l.o.g. (and enforce in an implementation) that Pu does
not enter u1 and that it does not leave u2 which implies that dC(u) = 2.

Now if (C,Q) is non-simple, there must be at least one vertex v with dC(v) > 2, i.e.,
v 6= u. The simplicity of Pu then implies that it must traverse v1 as well as v2. Denote the
corresponding subpath, that itself defines an odd closed walk, with Pv. It is fully nested
within Pu, i.e., Pv ( Pu. Moreover, since the number of E3-edges in Pu as well as in Pv is
odd, the number of E3-edges in Pu \ Pv must be even. Hence, while its induced edge set in
G is still a closed walk, it is not an odd one.
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Of course, an odd closed walk (C,Q) induced by an ω-shortest path Pu in GS may have
not only one but several vertices v ∈ V with dC(v) > 2. If all the associated subpaths of Pu

are fully nested, the previous arguments imply that only the innermost one of them induces
a simple odd cycle. Otherwise, any two strict subpaths of Pu, say Pv and Pw, may either
occur subsequently, i.e., Pv ∩ Pw = ∅, or crossing, i.e., either w1 or w2 occurs in Pv but not
both. Fig. 4 displays the respective vertex sequences using the notation vs and ve (for “start”
and “end”) since, for any v ∈ V , v 6= u, v2 may be visited by Pu before v1 is visited and
vice versa.

u1 u2vs ws we ve

u1 u2vs ve ws we

u1 u2vs vews we

u

v w

u

v w

u

v w

Figure 4 Left: Schematic depiction of (from top to bottom) two fully nested, subsequent, and
crossing subpaths Pv and Pw of Pu. Right: The corresponding interpretations in the original graph
(from left to right).

In the subsequent case, both Pv and Pw correspond to odd closed walks since they both
comprise an odd-cardinality subset of E3-edges (but neither Pu \ Pv nor Pu \ Pw does). In
the crossing case, Pv and Pw both correspond to odd closed walks as well. However, if the
subpaths from vs to ws and from ve to we refer to the same edge set in G, then both odd
closed walks associated to Pv and Pw are equivalent (and thus lead to the same inequality).

3.2 Handling Non-Simple and Chorded Simple Odd Cycles
There are basically three ways to deal with non-simplicity.

3.2.1 The “Take-As-Is” Strategy
Since the potential non-simplicity of a closed odd walk (C,Q) does not affect the validity of
the associated inequality, one may consider to simply use it as a cutting plane as is.

3.2.2 The “Throw-Away” Strategy
Another strategy is to discard non-simple closed odd walks, i.e., to generate an inequality
only if a closed odd walk computed is “accidentally” simple.

However, to still preserve an exact separation algorithm, it must then be sure that at
least one simple cycle is still identified if a violated odd-cycle inequality exists. Moreover,
as already discussed in Sect. 2.1, any vertex u ∈ V may have several ω-shortest paths Pu

some of which may induce non-simple cycles, and that may even all have the same number of
edges. So “throwing away” any such Pu containing a subpath Pv by “trusting” that a simple
cycle will be identified when computing an ω-shortest v1-v2-path may fail in general.

Fortunately, the desired guarantee can nevertheless be established if we strive for (ω, `)-
shortest paths instead, where `(v) ∈ Z denotes the number of edges used in a (currently)
shortest path to each vertex v ∈ VS . In this context, a u1-v-path P in GS involving edge
{v, w} ∈ ES is (ω, `)-shorter than the best previous one, if either “classically” dist(u) +
ω(u, v) < dist(v), or if dist(u) +ω(u, v) = dist(v) and `(u) + 1 < `(v). With these extensions,
the original separation algorithm will identify at least one violated odd-cycle inequality if
any exists, as we will now show.
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I Theorem 1. Let Pu ⊆ ES be an ω-shortest path from u1 to u2 in GS with weight ω(Pu) < 1
and of edge length `(Pu). Then there exists a vertex w ∈ V such that each (ω, `)-shortest
path Pw in GS satisfies ω(Pw) ≤ ω(Pu), |Pw| ≤ |Pu|, and whose induced odd closed walk
(C,Q) in G is simple.

Proof. If the odd closed walk induced by Pu is itself simple, the statement follows by choosing
Pw = Pu. So suppose this is not the case. Then there exists a strict subpath Pv of Pu. Now
either Pv is simple, in which case we may choose Pw = Pv. Otherwise, we recurse on the path
Pv that clearly satisfies |Pv| ≤ |Pu| − 2. Since the number of edges of the paths considered
thus decreases strictly monotonically, and since any shortest path in GS has a positive length,
this process will eventually terminate at some simple path Pw, w ∈ VS , as otherwise, there
would exist a path of the same ω-weight which is shorter w.r.t. ` – a contradiction. J

3.2.3 The “Extraction” Strategy
A final strategy to deal with non-simple odd closed walks is to extract the simple odd cycles
contained in it. This is motivated by several advantages, e.g.:

If a shortest inner subpath Pv ⊆ Pu corresponding to a simple cycle in G is found, the
shortest path computation w.r.t. v may be omitted (accepting a possible loss of a different
inequality corresponding to another shortest v1-v2-path).
A single pass of Pu might allow to extract several simple cycles from one non-simple one.
Information found during the extraction might be used to avoid the addition of duplicate
inequalities (cf. the case of crossing subpaths at the end of Sect. 3.1).

Moreover, as expressed in the following observation, it is possible to implement simple
cycle extractions requiring only a number of operations that is proportional to the length of
the closed walk (which can be no more than 2|V |). So since a single pass of the closed walk
is inevitably required to even generate an inequality from it or find out whether it is simple,
the respective enhancement does not increase the asymptotic running time, and does not
even require the (ω, `)-extension from Sect. 3.2.2 (which is nevertheless worthwhile) in order
to provide a safe exact separation procedure.

I Observation 2. Let Pu be an ω-shortest path from u1 to u2 in GS with weight ω(Pu) < 1,
and whose induced odd closed walk (C,Q) in G is not simple. Traverse Pu starting from u1
(or, walking backwards, from u2) and let v ∈W be the first vertex such that v1 and v2 were
both visited on this traversal. Then the cycle in G corresponding to the path Pv is simple.

An inequality derived based on Observation 2 (i.e., on a first fully nested subpath Pv of
Pu that does not contain any further fully nested subpaths itself) neither needs to be the
only one that can be extracted from Pu (cf. Sect. 3.1), nor needs to be maximally violated
among these.

Fortunately, subsequent and crossing simple cycles may as well be easily recognized
algorithmically by only maintaining the positions of the start and end vertices of the last
subpath identified as to correspond to a simple cycle. Suppose that Pv was the last such
subpath on a traversal of Pu, i.e., the positions of vs and ve are known. Assume further that
the traversal then arrives at some vertex, say we, whose other copy, ws, has already been
visited. If ws ≺ vs, then Pv is fully nested within Pw, and thus Pw need not be considered.
Otherwise, either ws ≺ ve in which case Pv and Pw cross, or ve ≺ ws in which case Pw is
subsequent to Pv (cf. Fig. 4). In any case, we can safely update the two maintained positions
to those of ws and we. We will then classify later paths correctly since a later path crossing
Pv must inevitably either also cross Pw or contain Pw fully nested.
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Additionally, a constant-time check to eliminate some unwanted duplicate inequalities in
the case of crossing paths Pv and Pw is right at hand from the final statement in Sect. 3.1. If
ve is the immediate predecessor of we on Pu, then the same is likely true (sure if computing
(ω, `)-shortest paths) for vs and ws. This means that {v, w} is a chord (being part of the odd
closed walk w.r.t. Pu), and the odd-cycle inequalities according to Pv and Pw are equivalent.

3.2.4 Further Engineering of the Extraction Strategy
A further opportunity to improve the practical performance of the separation procedure
is to exploit the symmetry of the graph GS : Suppose that, while computing a shortest
u1-u2-path in GS , we process a vertex v2 (v1) such that the distances dist(v1) and dist(v2)
are both known. If dist(v1) + dist(v2) ≥ 1, then v2 (v1) cannot lie on any u1-u2-path that
induces a violated odd-cycle inequality and thus need not be considered for the update of
other distances.

3.3 Chorded Simple Odd Cycles
Finally, as we now know how to extract simple odd cycles, it is natural to strive for chordless
ones, i.e. facet-defining inequalities. However, we will show in this subsection, why we will
not always find these when searching for maximally violated inequalities (as we do when
computing ω- or (ω, `)-shortest paths).

For this purpose, let (C,Q) be a simple cycle, and suppose that, for some x̂ ∈ [0, 1]E , the
associated odd-cycle inequality is violated, i.e.

∑
e∈Q(1− x̂e) +

∑
e∈C\Q x̂e < 1.

Suppose further that C has a chord c, i.e., there exist vertices u, v ∈ V such that
c = {u, v} ∈ E \ C. Partitioning C into the corresponding two {u, v}-paths P1 and P2
partitions Q into Q1 and Q2, and inevitably renders either |Q1| odd and |Q2| even or vice
versa (cf. Fig. 5).

v

C
P2

P1

v

u

v

u

Q Q1

Q2

C1 = P1 ∪ {c}

C2 = P2 ∪ {c}

u

c c

Figure 5 Left: A cycle C with an odd-cardinality edge subset Q (thicker), assumed to have a
chord c = {u, v}. Right: Splitting C into two chordless odd cycles C1 and C2, declaring c once as
“odd” and once as “even”.

Assume w.l.o.g. that |Q1| is even. The cycles C1 = P1 ∪ {c}, with c “marked as odd”,
and C2 = P2 ∪ {c}, with c “marked as even”, correspond to the two odd-cycle inequalities∑

e∈Q1

(1− xe) +(1− xc) +
∑

e∈P1\Q1

xe ≥ 1 (7)

∑
e∈Q2

(1− xe) +xc +
∑

e∈P2\Q2

xe ≥ 1 (8)

whose sum gives the original one above assumed to be violated. This implies that at least
one of (7) and (8) needs to be violated as well.
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Let γ1 := 1−
∑

e∈Q1
(1− x̂e)− (1− x̂c)−

∑
e∈P1\Q1

x̂e and γ2 := 1−
∑

e∈Q2
(1− x̂e)−

x̂c −
∑

e∈P2\Q2
x̂e denote the violations of (7) and (8), respectively. Then γ := γ1 + γ2 is the

violation of the original inequality. Therefore, one of (7) or (8) can only be found if the other
is not violated at all.

It remains to clarify whether we can efficiently extract chordless cycles from a simple
but not chordless one. This turns out to be the case when restricting to one chordless cycle
whose associated inequality is violated. In this case, we may use any chord to (conceptually)
split the initial cycle (C,Q) into two cycles, and proceed with these in the same fashion if
necessary. This can be implemented in a way such that no chord is used for a split more than
once, and the adjacency list of each vertex v ∈ V (C) is traversed at most once (by continuing
at the list position of a possible previous visit of the vertex, cf. Fig. 6). Assuming the
presence of the respective data structures, and the use of bucket sort to order the adjacency
lists appropriately, an asymptotic running time of O(|E|) can be achieved.

2

1

8

7

6

5

4

3

2

1

8

7

6

2

6

5

3

5

4

3

Figure 6 Decomposition of a simple cycle with chords to retrieve one chordless cycle. After
numbering the vertices consecutively and sorting adjacency lists descendingly w.r.t. this numbering,
the decomposition can be carried out in a greedy fashion. If, e.g., the inequality associated to the first
chordless cycle depicted on the right turns out not to be violated, it can be neglected by backtracking
to vertex 2 and continuing with the next edge of its adjacency list. Even if further subdecompositions
take place, the process will never consider any edge more than twice. In particular, no enumerative
consideration of chords used as split edges is required – e.g., the chordless cycles related to the chord
{5, 8} crossing the cycles considered before can be neglected.

4 Experiments

Our experimental study shall particularly address the following two questions:
Does the “quality” of odd-cycle cutting planes matter, i.e., to what extent is the process
of solving the linear programming relaxations of maximum cut and binary quadratic
optimization problems affected by the exclusive separation of odd-cycle inequalities that
correspond to simple or even chordless simple cycles?
Is it worthwhile to invest time for the extraction of (chordless) simple cycles (and to
save some shortest path computations) rather than to simply employ or discard non-
simple cycles?

To this end, we implemented an odd-cycle separation algorithm supporting the “take-
as-is”-strategy, the “throw-away”-strategy, the extraction of simple cycles, an improved
extraction exploiting the symmetry of the separation graph as described in Sect. 3.2.4, and
finally the extraction of one chordless cycle from each simple one. In each of these variants,
(ω, `)-shortest paths are computed for each v ∈ V in general. The three mentioned extraction
variants however omit the shortest path computation w.r.t. a vertex v ∈ V if a simple cycle
based on a shortest subpath Pv has been identified before.
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Based on this implementation, we solved the linear programming relaxations of several
instances from the “binary quadratic and max cut library” [5] by iteratively calling the
linear program solver Gurobi2 in version 8, and our separation algorithm. In case of the
MaxCut instances, the initial linear program defined only lower and upper bounds of the
variables. In case of BQP instances, we started with all inequalities that correspond to the
respective standard linearization. Moreover, after solving a linear program, previously added
inequalities not being satisfied at equality, were removed.

For presentation, we selected those instances where at least one cut was required to
solve the relaxation and the total time needed for this was at most one hour and at least
half a second.

4.1 Odd Cycle Separation Quality
The first two experiments relate to the first question mentioned in the beginning of this
section. As a first quality indicator, we consider the total number of inequalities added while
solving the relaxation and when using the different strategies. Since however, a smaller
number of cuts might result in an increase of the required number of linear programs to
solve, and there is a natural decrease in the number of generated cuts per iteration of the
extraction and “take-as-is”-strategies compared to the “throw-away”-strategy, we complement
this evaluation with another one that considers the total relaxation solution time.

In both experiments, the “take-as-is”-strategy serves as the basis (100% level in the
figures), and the symmetry-aware version of the extraction strategy is omitted from the
presentation, as it generates the same inequalities as the one without symmetry-awareness.
Moreover, to reduce side-effects, duplicate inequalities found during any of the variants are
not counted and eliminated before passing the cuts to the linear program.

take-as-is (100 %)
throw-away
extract-simple
extract-chordless-simple
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Figure 7 Relative total number of inequalities added (MaxCut instances).
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Figure 8 Relative total number of inequalities added (BQP instances).
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Figure 9 Relative total relaxation solution time (MaxCut instances).

Figs. 7 and 8 show a clear trend of decrease of the total number of inequalities added
when restricting to simple or even only chordless simple cycles. Indeed the quality of a cut
appears to have a significant impact, as the extraction of the facet-defining chordless simple
cycles clearly performs best on average across the instances considered. Moreover, in Figs. 9
and 10, one can see that, in most of the cases, the additional effort to extract simple or one
chordless simple cycle does not lead to an increase but a noticeable decrease of the total
relaxation solution time. This means in particular that the advantage of requiring fewer cuts
is a true one, i.e., not negatively compensated by a significant increase of the number of
linear programs required to solve the relaxation.

4.2 Odd Cycle Separation Time

The total relaxation solution time considered in the last experiment is affected by several
aspects. In particular, the different runs per instance did not correspond to the same series
of linear programs, as different cuts lead to different solutions. To address the second

ESA 2019
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Figure 10 Relative total relaxation solution time (BQP instances).
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Figure 11 Relative accumulated separation times (MaxCut instances).
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question mentioned at the beginning of this section, i.e., in order to show that simple and
even chordless simple cycle extraction truly come at negligible cost – we now create equal
preconditions for all separation strategies as follows: After solving a linear program, the
separator is called four times, once with each of the different strategies. After that, one
cutting plane set (the inequalities generated in the “extract-simple”-run) is added to the
linear program and the procedure is iterated.

In this experiment, we thus consider the accumulated time spent in the separation procedure
over all linear programs solved in order to solve the respective relaxation, with the presentation
restricted to those instances where this was at least half a second. As another difference to
the previous experiment, here, duplicate inequalities are not avoided in general. In case of
the extraction strategies, they are however avoided in the way described in Sect. 3.2.3.

The results are shown in Figs. 11 and 12, as well as the percentage of time spent in
separation w.r.t. the total time to solve the relaxation in the fastest of the four cases (denoted
“% LP-relaxation”). As before, the “take-as-is”-strategy (100% level) serves as the basis for
comparisons. Across almost all the instances considered, the extraction of simple cycles
results in a quicker separation compared to the “take-as-is”- and the “throw-away”-strategy.
Not surprisingly, the latter two perform very similarly, as both require a single pass of each
identified odd closed walk. Exploiting symmetries usually gives another measurable speedup.
This may of course as well be applied to the chordless extraction variant which has anyway
not been implemented as efficiently as indicated in Sect. 3.3.
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Abstract
Let S ⊂ R2 be a set of n sites, where each s ∈ S has an associated radius rs > 0. The disk graph
D(S) is the undirected graph with vertex set S and an undirected edge between two sites s, t ∈ S
if and only if |st| ≤ rs + rt, i.e., if the disks with centers s and t and respective radii rs and rt

intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph T (S)
is the directed graph with vertex set S and a directed edge from a site s to a site t if and only if
|st| ≤ rs, i.e., if t lies in the disk with center s and radius rs.

We provide algorithms for detecting (directed) triangles and, more generally, computing the
length of a shortest cycle (the girth) in D(S) and in T (S). These problems are notoriously hard
in general, but better solutions exist for special graph classes such as planar graphs. We obtain
similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that
a shortest (Euclidean) triangle in D(S) and in T (S) can be found in O(n logn) expected time, and
that the (weighted) girth of D(S) can be found in O(n logn) expected time. For this, we develop
new tools for batched range searching that may be of independent interest.
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1 Introduction

Given a graph G with n vertices and m edges, does G contain a triangle (a cycle with
three vertices)? This is one of the most basic algorithmic questions in graph theory, and
many other problems reduce to it [12, 21]. The best known algorithms use fast matrix
multiplication and run in either O(nω) time or in O

(
m2ω/(ω+1)) time, where ω < 2.37287 is

the matrix multiplication exponent [1, 10, 12]. Despite decades of research, the best available
“combinatorial” algorithm1 needs O

(
n3 polyloglog(n)/ log4 n

)
time [22], only slightly better

than checking all vertex triples. This lack of progress can be explained by a connection to
Boolean matrix multiplication (BMM): if there is a truly subcubic combinatorial algorithm
for finding triangles, there is also a truly subcubic combinatorial algorithm for BMM [21].
Itai and Rodeh [12] reduced computing the girth (the length of a shortest cycle) of an
unweighted undirected graph to triangle detection. For integer edge weights, Roditty and
V. Williams [19] gave an equivalence between finding a minimum weight cycle (the weighted
girth) and finding a minimum weight triangle.

For the special case of planar graphs, significantly better algorithms are known. Itai and
Rodeh [12] and, independently, Papadimitriou and Yannakakis [17] showed that a triangle
can be found in O(n) time, if it exists. Chang and Lu [7] presented an O(n) time algorithm
for computing the girth. The weighted girth can be found in O(n log logn) time both in an
undirected and in a directed planar graph [15,16].

In computational geometry, there are two noteworthy graph classes that generalize planar
graphs: disk graphs and transmission graphs. We are given a set S of n planar point sites.
Each s ∈ S has an associated radius rs > 0 and an associated disk Ds with center s and
radius rs. The disk graph D(S) is the undirected graph on S where two sites s, t ∈ S are
adjacent if and only if Ds and Dt intersect, i.e., |st| ≤ rs + rt, where | · | is the Euclidean
distance. In a weighted disk graph, the edges are weighted according to the Euclidean distance
between their endpoints. The transmission graph T (S) is the directed graph on S where
there is an edge from s to t if and only if t lies in Ds, i.e., |st| ≤ rs. Again, there is a weighted
variant. Both graph classes have received a lot of attention, as they give simple and natural
theoretical models for geometric sensor networks (see, e.g., [13, 14]).

Motivated by the vastly better algorithms for planar graphs, we investigate triangle
detection and girth computation in disk graphs and transmission graphs. We will see that in
a disk graph, a triangle can be found in O(n logn) time, using a simple geometric observation
to relate disk graphs and planar graphs. By a reduction from ε-closeness [18], this is
optimal in the algebraic decision tree model, a contrast to planar graphs, where O(n) time is
possible. Our method generalizes to finding a shortest triangle in a weighted disk graph in
O(n logn) expected time. Moreover, we can compute the unweighted and weighted girth in
a disk graph in O(n logn) time, with a deterministic algorithm for the unweighted case and
a randomized algorithm for the weighted case. The latter result requires a method to find
a shortest cycle that contains a given vertex. Finally, we provide an algorithm to detect a
directed triangle in a transmission graph in O(n logn) expected time. For this, we study the
geometric properties of such triangles in more detail, and we develop several new techniques
for batched range searching that might be of independent interest, using linearized quadtrees
and three-dimensional polytopes to test for containment in the union of planar disks. As
before, this algorithm extends to the weighted version. We will assume general position,
meaning that all edge lengths (and more generally shortest path distances) are pairwise

1 An algorithm is “combinatorial” if it does not need algebraic manipulations to achieve its goal.
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distinct, that no site lies on a disk boundary, and that all radii are pairwise distinct. Due to
space reasons, some proofs in this extended abstract are only sketched. The complete proofs
can be found in the full version of this paper.

2 Finding a (Shortest) Triangle in a Disk Graph

We would like to decide if a given disk graph contains a triangle. If so, we would also like to
find a triangle of minimum Euclidean perimeter.

2.1 The Unweighted Case
The following property of disk graphs, due to Evans et al. [9], is the key to our algorithm.
For a proof refer to the full version.

I Lemma 2.1. Let D(S) be a disk graph that is not plane, i.e., the embedding that represents
each edge by a line segment between its endpoints has two segments that cross in their relative
interiors. Then, there are three sites whose associated disks intersect in a common point.

IfD(S) is not plane, it contains a triangle by Lemma 2.1. IfD(S) is plane, we can construct
it explicitly and then search for a triangle in O(n) time [12,17]. To check whether D(S) is
plane, we begin an explicit construction of D(S) and abort if we discover too many edges.

I Theorem 2.2. Let D(S) be a disk graph on n sites. We can find a triangle in D(S) in
O(n logn) worst-case time, if it exists.

Proof (Sketch). We compute the edges of D(S), using a sweepline approach. If at some
point we find more than 3n− 6 edges, we stop and proceed with the partial graph (which is
not plane). If there are at most 3n− 6 edges, we check for edge crossings, again by a plane
sweep. If there is a crossing, we report the resulting triangle in O(1) time. If not, D(S) is
plane and we determine if it contains a triangle in O(n) time [12,17]. J

2.2 The Weighted Case
Suppose the edges in D(S) are weighted by their Euclidean lengths. We would like to find a
triangle of minimum perimeter, i.e., of minimum total edge length. For this, we solve the
decision problem: given W > 0, does D(S) contain a triangle with perimeter at most W?
Once a decision algorithm is available, the optimization problem can be solved with Chan’s
randomized geometric optimization framework [5].

To decide if D(S) contains a triangle with perimeter at most W , we use a grid with
diameterW/3. We look for triangles whose vertices lie in a single grid cell, using the algorithm
from Section 2.1. If no cell contains such a triangle, then D(S) will be sparse and we will
need to check only O(n) further triples. Details follow.

Set ` = W/(3
√

2). Let G1 be the grid whose cells are pairwise disjoint, axis-parallel
squares with side length `, aligned so that the origin (0, 0) is a vertex of G1. The cells of G1
have diameter

√
2 · ` = W/3, so any triangle whose vertices lie in a single cell has perimeter

at most W . We make three additional copies G2, G3, G4 of G1, and we shift them by `/2 in
the x-direction, in the y-direction, and in both the x- and y-directions, respectively. In other
words, G2 has (`/2, 0) as a vertex, G3 has (0, `/2) as a vertex, and G4 has (`/2, `/2) as a
vertex, see Figure 1. This ensures that if all edges in a triangle are “short”, the triangle lies
in a single grid cell.

ESA 2019
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(0, 0) ( `2 , 0)

(0, `2 ) ( `2 ,
`
2 )

`/2

Figure 1 The four shifted grids, with a cell from each grid shown in red, orange, green, and blue,
respectively. Every square with side length at most `/2 is wholly contained in a single grid cell.

I Lemma 2.3. Let ∆ be a triangle formed by three vertices a, b, c ∈ R2 such that each edge
of ∆ has length at most `/2. There is a cell σ ∈

⋃4
i=1 Gi with a, b, c ∈ σ.

Proof. We can enclose ∆ with a square of side length `/2. This square must be completely
contained in a cell of one of the four grids, see Figure 1. J

We go through all nonempty grid cells σ ∈
⋃4
i=1 Gi, and we search for a triangle in the

disk graph D(S ∩ σ) induced by the sites in σ, with Theorem 2.2. Since each site lies in O(1)
grid cells, and since we can compute the grid cells for a given site in O(1) time (using the
floor function), the total running time is O(n logn). If a triangle is found, we return YES,
since the cells have diameter W/3 and thus such a triangle has perimeter at most W . If no
triangle is found, Lemma 2.3 implies that any triangle in D(S) has one side of length more
than `/2 and hence at least one vertex with associated radius at least `/4. We call a site
s ∈ S large if rs > `/4. A simple volume argument bounds the number of large sites in a
grid cell.

I Lemma 2.4. Let σ ∈
⋃4
i=1 Gi be a nonempty grid cell, and suppose that D(S ∩ σ) does

not contain a triangle. Then σ contains at most 18 large sites.

Proof. Suppose σ contains at least 19 large sites. We cover σ with 3× 3 congruent squares
of side length `/3. Then, at least one square τ contains at least d19/9e = 3 large sites. The
associated radius of a large site is more than `/4 and each square has diameter (

√
2/3)` < `/2,

so the large sites in τ form a triangle in D(S ∩ σ), a contradiction. J

Let σ ∈ Gi, i ∈ {1, . . . , 4}, be a grid cell. The neighborhood N(σ) of σ is the 5× 5 block
of cells in Gi centered at σ. Since the diameter of a grid cell is W/3, any two sites u, v ∈ S
that form a triangle of perimeter at most W with a site s ∈ S ∩ σ must be in N(σ). Let
S` ⊆ S denote the large sites. At this stage, we know that any triangle in D(S) has at least
one vertex in S`. By Lemma 2.4, for any σ ∈

⋃4
i=1 Gi, we have | ∪τ∈N(σ) τ ∩ S`| = O(1).

Thus, to detect a triangle of perimeter at most W with at least two large vertices, we proceed
as follows: for each non-empty cell σ ∈ Gi, iterate over all large sites s in σ, over all large
sites t in N(σ), and over all (not necessary large) sites u in N(σ). Check whether stu is
a triangle of perimeter at most W . If so, return YES. Since the sites in each grid cell are
examined O(1) times for O(1) pairs of large sites, the total time is O(n).

It remains to detect triangles of perimeter at most W with exactly one large vertex. We
iterate over all grid cells σ ∈

⋃4
i=1 Gi, and we compute D(S ∩ σ). Since D(S ∩ σ) contains

no triangle, Lemma 2.1 shows that D(S ∩ σ) is plane, has O(|S ∩ σ|) edges and can be
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constructed in time O(|S ∩ σ| log |S ∩ σ|). For every edge st ∈ D(S ∩ σ) with both endpoints
in S \S`, we iterate over all large sites u in N(σ) and we test whether stu makes a triangle in
D(S) with perimeter at most W . If so, we return YES. By Lemma 2.4, this takes O(|S ∩ σ|)
time, so the total running time is O(n logn). If there is a triangle of perimeter at most W
with exactly one vertex in S`, the edge with both endpoints in S \ S` has length at most `/2
and thus must lie in a single grid cell σ ∈

⋃4
i=1 Gi. To summarize:

I Lemma 2.5. Let D(S) be a disk graph on n sites, and let W > 0. We can decide in
O(n logn) worst-case time whether D(S) contains a triangle of perimeter at most W .

Now, Chan’s framework [5] gives a randomized optimization algorithm with no additional
overhead. The details can be found in the full version.

I Theorem 2.6. Let D(S) be a weighted disk graph on n sites. We can compute a shortest
triangle in D(S) in O(n logn) expected time, if one exists.

3 Computing the Girth of a Disk Graph

We extend the results from Section 2 to the girth. The unweighted case is easy: if D(S) is
not plane, the girth is 3, by Lemma 2.1. If D(S) is plane, we use the algorithm for planar
graphs [7]. The weighted case is harder. If D(S) is plane, we use the algorithm for planar
graphs [15]. If not, Theorem 2.6 gives a shortest triangle ∆ in D(S). However, there could
be cycles with at least four edges that are shorter than ∆. To address this, we use ∆ to split
D(S) into sparse pieces where a shortest cycle can be found efficiently.

3.1 The Unweighted Case
Chang and Lu [7, Theorem 1.1] showed how to find the girth of an unweighted planar graph
with n vertices in O(n) time. Hence, we obtain a simple extension of Theorem 2.2.

I Theorem 3.1. Let D(S) be a disk graph for a set S of n sites. We can compute the
unweighted girth of D(S) in O(n logn) worst-case time.

Proof. We proceed as in Theorem 2.2. If D(S) is not plane, the girth is 3. If D(S) is plane,
we apply the algorithm of Chang and Lu [7, Theorem 1.1] to an explicit representation
of D(S). J

3.2 The Weighted Case
We describe how to find the shortest cycle through a given vertex in a weighted graph with
certain properties. This is then used to compute the weighted girth of a disk graph.

Let G be a graph with nonnegative edge weights so that all shortest paths and cycles in
G have pairwise distinct lengths and so that for all edges uv, the shortest path from u to v
is the edge uv. We present a deterministic algorithm that, given G and a vertex s, computes
the shortest cycle in G containing s, if it exists. A simple randomzied algorithm can also be
found in Yuster [23, Section 2]. The next lemma states a structural property of the shortest
cycle through s. It resembles Lemma 1 of Roditty and V. Williams [19] that deals with an
overall shortest cycle in G.2 For details on the proof see the full version.

2 Even though this seems to be a simple fact, we could not locate a previous reference for this.
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I Lemma 3.2. The shortest cycle in G that contains s consists of two paths in the shortest
path tree of s, and one additional edge.

I Theorem 3.3. Let G = (V,E) be a weighted graph with n vertices and m edges that has
the properties given at the beginning of this section. Let s ∈ V . We can compute the shortest
cycle in G that contains s in O(n logn+m) time, if it exists.

Proof (Sketch). We find the shortest path tree T for s, and we identify the edges that close
a cycle in T containing s. We check all candidate cycles to find the shortest. Correctness
follows from Lemma 3.2. The running time for finding the shortest path tree dominates the
rest of the algorithm. J

Let D(S) be a weighted disk graph on n sites. A careful combination of the tools
developed so far gives an algorithm for the weighted girth of D(S).

I Theorem 3.4. Given a weighted disk graph D(S) on n sites, we can compute the weighted
girth of D(S) in O(n logn) expected time.

Proof (Sketch). We find the shortest triangle in D(S) in O(n logn) expected time, if it
exists (Theorem 2.6). If D(S) has no triangle, it is plane by Lemma 2.1, and we construct
D(S) in O(n logn) time. We find the girth of D(S) using the algorithm of Ła̧cki and
Sankowski [15, Section 5], in O(n log logn) time. If D(S) has a triangle, let W be the
perimeter of the shortest triangle in D(S). Then, W is an upper bound for the girth of D(S).
We set ` = W/(3

√
2), and we call a site s ∈ S large, if rs ≥ `/4, and we write S` ⊆ S for the

set of large sites. Let G be the grid with side length ` and the origin (0, 0) as a vertex.
We must check whether D(S) contains a cycle with more than three vertices and length

less than W . By our choice of `, the graph D(S \ S`) induced by S \ S` is plane. Thus, we
can find a cycle in D(S \ S`) with the algorithm of Ła̧cki and Sankowski [15, Section 5],
in O(n log logn) time. It remains to test cycles with at least one large site. The choice
of ` implies that each cycle of length at most W is contained in a grid neighborhood of
constant size. Since there are O(1) large sites in each neighborhood, the induced graph in
each neighborhood has linear size. We check the remaining cycles by applying Theorem 3.3
to all large sites in each neighborhood. J

4 Finding a Triangle in a Transmission Graph

Given a transmission graph T (S) on n sites, we want to decide if T (S) contains a directed
triangle. We first describe an inefficient algorithm for this problem, and then we will explain
how to implement it in O(n logn) expected time.

The algorithm iterates over each directed edge e = st with rt ≥ rs, and it performs two
tests: first, for each directed edge tu with ru ≥ rt/2, it checks if us is an edge in T (S), i.e., if
s ∈ Du. If so, the algorithm reports the triangle stu. Second, the algorithm tests if there is
a site u such that ru ∈ [rs, rt/2) and such that us is an edge in T (S), i.e., such that s ∈ Du.
If such a u exists, it reports the triangle stu. If both tests fail for each edge e, the algorithm
reports that T (S) contains no triangle. The next lemma shows that the algorithm is correct.

I Lemma 4.1. A triple stu reported by the algorithm is a triangle in T (S). Furthermore, if
T (S) contains a triangle, the algorithm will find one.
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t us

(a) We do not need to check u ∈ Dt.

r
4

r
6

(b) Three disks with radius at least r/4 in the same
grid cell form a clique.

Proof (Sketch). It is easy to see that the algorithm finds a triangle if one exists. The
algorithm is also sound: a triple reported by the first test is a triangle by construction, and
for the second test, Figure 2a shows that u ∈ Dt, so tu is an edge of T (S). J

There are several challenges for making the algorithm efficient. First of all, there might
be many edges st with rt ≥ rs. However, the following lemma shows that if there are ω(n)
such edges, the transmission graph T (S) must contain a triangle.

I Lemma 4.2. There is an absolute constant α so that for any r > 0, if there is an r × r
square σ that contains more than α sites s ∈ S with rs ≥ r/4, then T (S) has a directed
triangle.

Proof. We cover σ with a 6× 6 grid of side length r/6; see Figure 2b. There are 36 grid cells.
For every s ∈ S ∩ σ with rs ≥ r/4, the disk Ds completely covers the grid cell containing s.
If σ contains more than α = 72 sites s with rs ≥ r/4, then one grid cell contains at least
three such sites. These sites form a directed triangle in T (S). J

Thus, to implement the algorithm, we must solve two range searching problems.
(R1) EITHER determine that for every site s ∈ S, there are at most α outgoing edges st

with rt ≥ rs/2 and report all these edges; OR find a square σ of side length r > 0 that
contains more than α sites s ∈ S with rs ≥ r/4.

(R2) Given O(n) query triples (s, r1, r2) with s ∈ S and 0 < r1 < r2, find a site u ∈ S such
that there is a query triple (s, r1, r2) with u 6= s, ru ∈ [r1, r2), and s ∈ Du; or report that
no such site exists.

The query (R1) indeed always has a valid outcome: suppose there is a site s ∈ S with more
than α outgoing edges st with rt ≥ rs/2. Then, all the endpoints t lie in Ds, so the square σ
centered at s with side length r = 2rs contains more than α sites with associated radius at
least r/4. The next theorem shows that we can detect a triangle in T (S) with linear overhead
in addition to the time needed for answering (R1) and (R2). The proof is in the full version.

I Theorem 4.3. If (R1) and (R2) can be solved in time R(n) for input size n, we can find
a directed triangle in a transmission graph T (S) on n sites in time R(n) +O(n), if it exists.

In the next section, we will implement (R1) and (R2) in O(n logn) expected time.

I Theorem 4.4. Let T (S) be a transmission graph on n sites. We can find a directed triangle
in T (S) in expected time O(n logn), if it exists.
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Canonical path of s7

Canonical nodes of s7 Vertex containing s7 in Iv

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Figure 3 Example is for a query of type (R1), assuming that rs3 < rs7/2 ≤ rs4 .

5 Batched Range Searching

The range queries must handle subsets of sites whose associated radii lie in certain intervals:
a query s in (R1) concerns sites t ∈ S such that rt ≥ rs/2; and a query (s, r1, r2) in (R2)
concerns sites t such that rt ∈ [r1, r2). Using a standard approach [2, 20], we subdivide each
such query interval into O(logn) pieces from a set of canonical intervals. For this, we build
a balanced binary tree B whose leaves are the sites of S, sorted by increasing associated
radius. For each vertex v ∈ B, let the canonical interval Iv be the sorted list of sites in the
subtree rooted at v. There are O(n) canonical intervals.

Next, we define canonical paths and canonical nodes. For a radius r > 0, the (proper)
predecessor of r is the site s ∈ S with the largest radius rs ≤ r (rs < r). The (proper)
successor of r is defined analogously. For a query s in (R1), we consider the path π in B
from the root to the leaf with the proper predecessor t of rs/2. If t does not exist (i.e.,
if rt ≥ rs/2, for all t ∈ S), we let π be the left spine of B. We call π the canonical path
for s. The canonical nodes for s are the right children of the nodes in π that are not in π
themselves, plus possibly the last node of π, if rt ≥ rs/2, for all t ∈ S, see Figure 3.

For a query (s, r1, r2) in (R2), we consider the path π1 in B from the root to the leaf
with the proper predecessor t1 of r1 and the path π2 in B from the root to the leaf for the
successor t2 of r2. Again, if t1 does not exist, we take π1 as the left spine of B, and if t2
does not exist, we take π2 as the right spine of B. Then, π1 and π2 are the canonical paths
for (s, r1, r2). The canonical nodes for (s, r1, r2) are defined as follows: for each vertex v in
π1 \ π2, we take the right child of v if it is not in π1, and for each v in π2 \ π1, we take the
left child of v if it is not in π1. Furthermore, we take the last node of π1 if t1 does not exist,
and the last node of π2 if t2 does not exist. A standard argument bounds the number and
total size of the canonical intervals, see the full version for the proof.

I Lemma 5.1. The total size of the canonical intervals is O(n logn). The tree B and the
canonical intervals can be built in O(n logn) time. For any query q in (R1) or (R2), there are
O(logn) canonical nodes, and they can be found in O(logn) time. The canonical intervals
for the canonical nodes of q constitute a partition of the query interval for q.

5.1 Queries of Type (R1)
We build a compressed quadtree on S, and we perform the range searches the compressed
quadtree. It is possible to compute a compressed quadtree for each canonical interval without
logarithmic overhead. Since Lemma 4.2 gives us plenty of freedom in choosing the squares
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ρ

τ

σ σ̃

Figure 4 Z-Order. On the very right we have σ ≤Z τ ≤Z σ̃.

for our range queries, we take squares from the grid that underlies the quadtree. This allows
us to reduce the range searching problem to predecessor search in a linear list, a task that
can be accomplished by one top-down traversal of B. Details follow.

Hierarchical grids, Z-order, compressed quadtrees. We translate and scale S (and the
associated radii), so that S lies in the interior of the unit square U = [0, 1]2 and so that all
radii are at most

√
2. We define a sequence of hierarchical grids that subdivide U . The grid

G0 consists of the single cell U . The grid Gi, i ≥ 1, consists of the 22i square cells with side
length 2−i and pairwise disjoint interiors that cover U . The hierarchical grids induce an
infinite four-regular tree T : the vertices are the cells of G =

⋃∞
i=0 Gi. The unit square U is

the root, and for i = 1, . . . , a cell σ in Gi is the child of the cell in Gi−1 that contains it. We
make no explicit distinction between a vertex of T and its corresponding cell.

The Z-order ≤Z is a total order on the cells of G; see [4] for more details. Let σ, τ ∈ G.
If σ ⊆ τ , then σ ≤Z τ : and if τ ⊆ σ, then τ ≤Z σ, If σ and τ are unrelated in T , let ρ be
the lowest common ancestor of σ and τ in T , and let σ′ and τ ′ be the children of ρ with
σ ⊆ σ′ and τ ⊆ τ ′. We set σ ≤Z τ if σ′ is before τ ′ in the order shown in Figure 4; and
τ ≤Z σ, otherwise. The next lemma shows that given σ, τ ∈ G, we can decide if σ ≤Z τ in
constant time.

I Lemma 5.2 (Chapter 2 in Har-Peled [11]). Suppose the floor function and the first differing
bit in the binary representations of two given real numbers can be computed in O(1) time.
Then, we can decide in O(1) time for two given cells σ, τ ∈ G whether σ ≤Z τ or τ ≤Z σ.

For a site s ∈ S, let σs be the largest cell in G that contains only s. The quadtree for S is
the smallest connected subtree of T that contains the root U and all cells σs, for s ∈ S. The
compressed quadtree C for S is obtained from the quadtree by contracting any maximal path
of vertices with only one child into a single edge. Vertices that were at the top of such a
path are now called compressed vertices. The compressed quadtree for S has O(n) vertices,
and it can be constructed in O(n logn) time (see, e.g., [3, Appendix A] and [11]).

The linearized compressed quadtree L for S is the sorted sequence of cells obtained by
listing the nodes of C according to a postorder traversal, were the children of a node σ ∈ C
are visited according to the Z-order from Figure 4. The cells in L appear in increasing
Z-order, and range searching for a given cell σ ∈ G reduces to a simple predecessor search in
L, as is made explicit in the following lemma.

I Lemma 5.3. Let σ be a cell of G, and let L be the linearized compressed quadtree on S.
Let τ = maxZ{ρ ∈ L | ρ ≤Z σ} be the Z-predecessor of σ in L (τ = ∅, if the predecessor
does not exist). Then, if σ ∩ τ = ∅, then also σ ∩S = ∅, and if σ ∩ τ 6= ∅, then σ ∩S = τ ∩S.

Proof. Let C be the compressed quadtree on S, and let Cσ = {τ ∈ C | τ ⊆ σ} be the cells in
C that are contained in σ. If Cσ is non-empty, then Cσ is a connected subtree of C. Let τ be
the root of this subtree. Then, τ = maxZ{ρ ∈ Cσ}, and τ ≤Z σ. Furthermore, all other cells
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5

5

Figure 5 The neighborhood of a site has constant size.

in C \ Cσ are either smaller than all cells in Cσ or larger than σ. Thus, τ is the Z-predecessor
of σ in L, and σ ∩ S = τ ∩ S 6= ∅. Otherwise, if Cσ = ∅, the Z-predecessor of σ in L either
does not exist or is disjoint from σ. Thus, in this case, we have ∅ = σ ∩ τ = σ ∩ S. J

The search algorithm. For a site s ∈ S, we define the neighborhood N(s) of s as all cells in
G with side length 2blog2 rsc that intersect Ds. The neighborhood will be used to approximate
Ds for the range search in the quadtrees.

I Lemma 5.4. There is a constant β such that |N(s)| ≤ β for all s ∈ S.

Proof. We have rs/2 < 2blog2 rsc, and a 5× 5 grid with cells of side length rs/2 covers Ds,
no matter where s lies; see Figure 5. Thus, the lemma holds with β = 25. J

We now show that a linearized compressed quadtree for each canonical interval can be
found without logarithmic overhead.

I Lemma 5.5. We can compute for each v ∈ B the linearized quadtree Lv for the sites in
Iv in O(n logn) time.

Proof (Sketch). We traverse B and build the compressed quadtree Cv for Iv, for each v ∈ B.
For the root, this takes O(n logn) time. The compressed quadtree Cw for a child w of a node
v can be found by traversing Cv in O(|Cv|) time. Then, we compute the linearized trees Lv
by a postorder traversal of each Cv. J

Using the linearized compressed quadtrees, the range searching problem can be solved by
a batched predecessor search, using a single traversal of B.

I Lemma 5.6. The range searching problem (R1) can be solved in O(n logn) time.

Proof (Sketch). We apply Lemma 5.5 to find the linearized quadtrees for B. Let Q′ =⋃
s∈S

{
(σ, s) | σ ∈ N(s)

}
. We call Q′ the set of split queries. They approximate the disks Ds

by cells from the hierarchical grid. By Lemma 5.4, |Q′| = O(n). We now want to perform
range queries for all the cells in the split queries. For this, we first sort the elements of Q′ in
the Z-order of their first components, in O(n logn) time. Now we store all split queries (σ, s)
with all nodes v ∈ B such that v is a canonical node of s. This can be done by one traversal
over B. We call the resulting lists Q′′v , for v ∈ B.
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We iterate over all v ∈ B, and we merge the lists Q′′v with the lists Lv, in Z-order. This
takes O

(∑
v∈B |Lv|+ |Q′′v |

)
= O(n logn) time. By Lemma 5.3, we obtain for each (σ, s) ∈ Q′′v

a cell τσ,sv . If σ ∩ τσ,sv 6= ∅, we know that σ ∩ Iv = τσ,sv ∩ Iv. Since these sites are all from Iv
they all have radius at least rs/2. We can find all these sites in O(k) time, where k is the
output size. If k > α, we stop and report σ as a square with many sites of large radius.3

Otherwise, we use the sites in σ to accumulate the sites for the query disk Ds. This
we can do by considering all canonical nodes of s and for each cell σ iterate over the sites
contained in σ. In each such cell there are at most α sites. For each site t ∈ σ we can check
if t ∈ Ds. If we find a query disk Ds with more than α sites of large radius, we stop and
report its enclosing square with many sites of large radius.4 Otherwise, for each s ∈ S, we
have found the at most α sites of radius at least rs/2 in Ds. The whole algorithm takes
O(n logn) time. J

5.2 Queries of Type (R2)
We use the tree structure of the canonical intervals (i) to construct quickly the search
structures for each canonical interval; and (ii) to solve all queries for a canonical interval in
one batch. We exploit the connection between planar disks and three-dimensional polytopes.
Let U =

{
(x, y, z) | x2 + y2 = z

}
be the three-dimensional unit paraboloid. For a site s ∈ S,

the lifted site ŝ is the vertical projection of s onto U . Each disk Ds is transformed into an
upper halfspace D̂s, so that the projection of D̂s ∩ U onto the xy-plane is the set R2 \Ds;5
see Figure 6. The union of a set of disks in R2 corresponds to the intersection of the lifted
upper halfspaces in R3.

I Lemma 5.7. The range searching problem (R2) can be solved in O(n logn) expected time.

Proof (Sketch). For each v ∈ B, we construct the intersection Ev of the D̂s, s ∈ Iv. We
can find all the polyhedra Ev, for v ∈ B, in overall O(n logn) time, by a single traversal of
B. This traversal goes bottom up and uses that we can find the intersection of two convex
polyhedra in O(n) time [6]. For batched query processing, we need for each v ∈ B the convex
hull of the lifted query sites that have v as a canonical node. These convex hulls can be
computed top-down by splitting the current convex hulls in each node in O(n logn) overall
time, using linear time per node [8]. We call these hulls Q̂v.

To answer all queries, we use the polyhedra Q̂v and Ev. For each node v ∈ B, we compute
the lifted sites in Q̂v that are not inside of Ev. These sites correspond to the vertices of Q̂v
that are not vertices of Q̂v ∩ Ev. These intersections can be found in overall O(n logn) time,
again by using the fact that we can intersect two polyhedra in O(n) time. If for any such
intersection Q̂v∩Ev, there is a lifted site ŝ ∈ Q̂v that is not a vertex of Q̂v∩Ev, we report s as
the result of the range search. Otherwise, we report our range search to be unsuccessful. J

6 Finding the Shortest Triangle in a Transmission Graph

We extend Theorem 4.4 to find the shortest triangle in T (S). As in Section 2.2, we solve
the decision problem: given W > 0, does T (S) have a directed triangle of perimeter at most
W? We set ` = W/

√
27, and call a site s ∈ S large if rs > `. We let S` ⊆ S be the set of

all large sites.

3 Note that here the radii are ≥ rs/2 inside of the cells σ. This might be larger than the value 2dlog2 rse/4
needed by (R1). But still, if there are more than α sites in σ, we still have a triangle in a square.
Otherwise we will later determine that each disk contains few sites of radius at least rs/2.

4 r = 2rs is the side length of the enclosing square, the radii are at least r/4 as desired.
5 This halfspace is bounded by the plane z = 2xsx− x2

s + 2ysy − y2
s + r2

s , where s = (xs, ys).
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Ds

p

D̂s

p̂

Figure 6 Lifting disks and points. For D̂ only the bounding plane is shown.

I Lemma 6.1. We can find a triangle in T (S \ S`) of perimeter at most W in O(n logn)
time, if it exists.

Proof. Any triangle in T (S \ S`) has perimeter at most W : consider a directed triangle
stu in T (S \ S`) with rs ≥ max{rt, ru}. Then we have t, u ∈ Ds, so the triangle stu lies
in Ds. Elementary calculus shows that a triangle of maximum perimeter in Ds must be
equilateral with its vertices on ∂Ds, so any triangle contained in Ds has perimeter at most
3 ·
√

3 · rs ≤
√

27 · ` = W . We can find a triangle in T ′ in O(n logn) time by Theorem 4.4. J

It remains to check for triangles of perimeter at most W with at least one large vertex.
Some such triangles have to be considered individually, while the others can be handled
efficiently in batch mode. The following lemma shows that we may assume that there are
few edges from S \ S` to S`.

I Lemma 6.2. If T (S) does not have a triangle of perimeter at most W , every site in S`
has at most six incoming edges from S \ S`. Furthermore, in O(n logn) time, we can either
find a triangle of perimeter at most W in T (S) or determine for each site in S` all incoming
edges from S \ S`.

Proof (Sketch). By a suitable variant of (R1), we either find a triangle of perimeter at most
W , or we restrict the overall number of edges from S \ S` to S` to O(n) in O(n logn) time.
To bound the indegree of the large sites, we observe that if a large site has 7 incoming edges
from S \ S`, then there is a triangle in T (S) of perimeter at most W . J

Next, we want to limit the number of relevant edges between large sites. For this, we
subdivide the plane with a grid G of side length `/

√
2. Then, we have the following:

I Lemma 6.3. A triangle contained in a cell σ ∈ G has perimeter at most W . If there is no
triangle in σ, then σ contains O(1) large sites. We can check for such triangles in O(n logn)
overall expected time.
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Proof. The maximum perimeter of a triangle contained in σ is (1 +
√

2)` < W . Furthermore,
if there are at least three large sites in σ, these large sites form a triangle, since the disk of a
large site covers σ. By applying Theorem 4.4 to the induced subgraph in each cell of G, we
can find such a triangle in O(n logn) total expected time. J

We define the neighborhood N(σ) of a cell σ ∈ G as the 5× 5 block of cells centered at
σ. Let t be a site and σ the cell containing t, then the neighborhood N(t) of t are all sites
contained in N(σ). Since the side length of a grid cell is W/3

√
6, each triangle of perimeter

at most W is completely contained in the neighborhood of some cell.

I Lemma 6.4. We can check the remaining triangles in O(n) overall time.

Proof. Consider a remaining triangle sut with rt ≥ max{ru, ts}. Then, t ∈ S`, and s, t, u all
lie in N(t). By Lemma 6.3, there are O(1) large candidates for u in N(t), and by Lemma 6.2,
there are O(1) small candidates for u. Having fixed a t and a possible candidate u, we iterate
over all s ∈ N(t) and check if s, u, and t form a triangle with weight at most W . Every site
s is contained in O(1) grid neighborhoods, and since there are O(1) candidate pairs in each
grid neighborhood, s participates in O(1) explicit checks. The result follows. J

The following theorem summarizes the considerations in this section.

I Theorem 6.5. It takes O(n logn) expected time to find the shortest triangle in a transmis-
sion graph.

Proof. We already saw that there is an O(n logn) time decision algorithm for the problem.
As in Theorem 2.6, the result follows from an application of Chan’s randomized optimization
technique [5]. J

7 Conclusion

Once again, disk graphs and transmission graphs prove to be a simple yet powerful graph
model where difficult algorithmic problems admit faster solutions. It would be interesting to
find a deterministic O(n logn) time algorithm for finding a shortest triangle in a disk graph.
Currently, we are working on extending our results to the girth problem in transmission
graphs; can we find an equally simple and efficient algorithm as for disk graphs?
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Abstract
We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted
directed graphs. Most importantly, we give a new deterministic incremental algorithm for the
problem that handles updates in Õ(mn4/3 logW/ε) total time (where the edge weights are from
[1,W ]) and explicitly maintains a (1 + ε)-approximate distance matrix. For a fixed ε > 0, this is the
first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose
update time is o(n2) regardless of the number of edges. Furthermore, we also show how to improve
the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et
al. STOC’02, Bernstein STOC’13] from Monte Carlo randomized to Las Vegas randomized without
increasing the running time bounds (with respect to the Õ(·) notation).

Our results are obtained by giving new algorithms for the problem of dynamically maintaining
hubs, that is a set of Õ(n/d) vertices which hit a shortest path between each pair of vertices, provided
it has hop-length Ω(d). We give new subquadratic deterministic and Las Vegas algorithms for
maintenance of hubs under either edge insertions or deletions.
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1 Introduction

The sampling scheme of Ullman and Yannakakis [27] is a fundamental tool in designing
dynamic algorithms for maintaining shortest path distances. Roughly speaking, the main
idea is that if each vertex of the graph is sampled independently with probability Ω(d lnn

n ),
then with high probability1 the set of the sampled vertices has the following property. If
the shortest path between some vertices u and v contains more than d edges, then this
shortest path contains a sampled vertex2. We call each set having this property a set of
hubs3 of that graph.

1 We say that a probabilistic statement holds with high (low) probability. abbreviated w.h.p., if it holds
with probability at least 1−n−β (at most n−β , resp.), where β is a constant that can be fixed arbitrarily.

2 For simplicity, in the introduction we assume that the shortest paths are unique.
3 Zwick [29] uses the name bridging set for an analogous concept. Some works also use the term hitting

set, but hitting set is a more general notion, which in our paper is used in multiple different contexts.
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The fact that one can easily obtain a set of hubs by random sampling is particularly
useful for dynamic graph algorithms, since, by tuning constants in the sampling probability,
one can assure that the set of hubs remains valid at each step (with high probability), while
the graph is undergoing edge insertions and deletions, assuming the total number of updates
is polynomial. This property has been successfully exploited to give a number of dynamic
graph algorithms, e.g. [2, 4, 5, 9, 12, 11, 13, 20, 21, 22]. At the same time, the sampling
approach also suffers from two drawbacks. First, it yields Monte Carlo algorithms, which
with some nonzero probability can return incorrect answers. Second, it relies on the oblivious
adversary assumption, that is, it requires that the updates to the graph are independent of
the randomness used for sampling hubs. This becomes a substantial issue for problems where
the answer to a query is not unique, e.g., for maintaining (1 + ε)-approximate distances or
maintaining the shortest paths themselves (i.e. not just their lengths). In a typical case,
the choice of the specific answer to a query depends on the randomness used for vertex
sampling, which in turn means that in each answer to a query the data structure is revealing
its randomness. Hence, if the following updates to the data structure depend on the specific
values returned by the previous queries, the oblivious adversary assumption is not met.

In this paper we attempt to address both these issues. We study the dynamic maintenance
of reliable hubs, that is we show how to maintain hubs using an algorithm that does not err,
even with small probability. In addition, in the incremental setting we give an algorithm
that maintains hubs deterministically. While the algorithms are relatively straightforward
for unweighted graphs, making them also work in the weighted setting is a major challenge,
which we manage to overcome. We then show how to take advantage of our results on reliable
hubs to obtain improved algorithms for the problem of maintaining all-pairs shortest paths in
directed graphs. In particular, we give a faster deterministic incremental algorithm and show
how to improve the state-of-the-art decremental algorithms from Monte Carlo to Las Vegas.

1.1 Our Contribution

We study the problem of maintaining reliable hub sets in the partially dynamic setting.
For the description, let us first assume the case when the graph is unweighted. Our first
observation is that one can deterministically maintain the set of hubs Hd under edge insertions
in Õ(nmd) total time. To that end, we observe that after an edge uw is inserted, we may
ensure the set of hubs Hd is valid by extending it with both u and w. This increases the size of
Hd, and hence we have to periodically discard all the hubs and recompute them from scratch.

The deterministic computation of hubs has been studied before. For unweighted digraphs,
King [19] showed how to compute a hub set Hd of size Õ

(
n
d

)
in Õ(n2) time. The algorithm,

given shortest path trees up to depth d from all vertices v ∈ V , computes a blocker-set [19]
of these trees. (A blocker-set S of a rooted tree is a set such that, for each path from the
root to a leaf of length d, that path contains a vertex of S distinct from the root.) Hence, if
we work on unweighted graphs, in order to keep the set Hd valid and relatively small, we
can maintain shortest path trees up to depth d from all vertices using the Even-Shiloach
algorithm [10] in O(nmd) total time, and recompute Hd using King’s algorithm every Õ(nd )
insertions. The total time needed for maintaining the hubs is therefore Õ(nmd).

Furthermore, we also show how to maintain reliable hubs in a decremental setting.
Suppose our goal is to compute a set of hubs that is guaranteed to be valid, which clearly
is not the case for the sampled hubs of [27]. We show that if shortest path trees up to
depth d are maintained using dynamic tree data structures [24, 25], one can recompute a
certainly-valid set Hd in Õ

(
n2

d

)
time using a Las Vegas algorithm. To this end observe
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that one can deterministically verify if a set B ⊆ V is a blocker-set of n shortest path trees
up to depth d in Õ(n · |B|) time. Therefore, a hub set Hd can be found by combining the
approaches of [27] and [19]: we may sample candidate hub sets of size Õ(nd ) until a blocker-set
of the trees is found. The number of trials is clearly constant with high probability.

We further extend this idea and show that the information whether B is a blocker-set of
a collection of n shortest path trees up to depth d can be maintained subject to the changes
to these trees with only polylogarithmic overhead. Consequently, we can detect when the
sampled hub set Hd (for any d) ceases to be a valid hub set in Õ(nmd) total time. The
algorithm may make one-sided error (i.e., say that Hd is no longer a valid hub set when it
is actually still good), but the probability of an error is low if we assume that the update
sequence does not depend on our random bits. Subsequently we show how to extend this idea
to improve the total update time to Õ(nm). Assume we are given a valid d-hub set Hd. We
prove that in order to verify whether H6d is a valid 6d-hub set, it suffices to check whether it
hits sufficiently long paths between the elements of Hd. We use this observation to maintain
a family of reliable hub sets H1, H6, . . . ,H6i , . . . ,H6k (where 6k ≤ n) under edge deletions
(or under edge insertions) in Õ(nm) total time. Using that, we immediately improve the
state-of-the-art decremental APSP algorithms of Baswana et al. [4] (for the exact unweighted
case) and Bernstein [5] (for the (1 + ε)-approximate case) from Monte Carlo to Las Vegas
(but still assuming an oblivious adversary) by only adding a polylogarithmic factor to the
total update time bound.

Generalization to weighted digraphs. Adapting the reliable hub sets maintenance (for
both described approaches: the incremental one and sample/verify) to weighted digraphs
turns out to be far from trivial. This is much different from the sampling approach of Ullman
and Yannakakis [27], which works regardless of whether the input graph is weighted or not.
The primary difficulty is maintaining all shortest paths consisting of up to d edges. While in
the unweighted case the length of a path is equal to the number of edges on this path, this is
no longer true in the weighted case.

To bypass this problem we first relax our definition of hubs. For each u, v ∈ V we require
that some (1+ ε)-approximate shortest u→ v path contains a hub on each subpath consisting
of at least d+ 1 edges. Next, we show that running King’s blocker-set algorithm on a set of
(1 + ε)-approximate shortest path trees up to depth4 d from all vertices of the graph yields a
hub set that hits paths approximating the true shortest paths within a factor of (1+ ε)Θ(logn).
Note that a collection of such trees can be maintained in Õ(nmd logW/ε) total time subject
to edge insertions, using Bernstein’s h-SSSP algorithm [5] with h = d.

The Θ(logn) exponent in the approximation ratio comes from the following difference
between the weighted and unweighted case. In a (1 + ε)-approximate shortest path tree up to
depth d, the length of a u→ v path is no more than (1 + ε)-times the length of the shortest
u → v path in G that uses at most d edges. However, the u → v path in the tree might
consist of any number of edges, in particular very few. Pessimistically, all these trees have
depth o(d) and their blocker-set is empty, as there is no path of hop-length Ω(d) that we need
to hit. Note that this is an inherent problem, as the fact that we can find a small blocker-set
in the unweighted case relies on the property that we want it to hit paths of Ω(d) edges.

4 In such a tree (see Definition 23), which is a subgraph of G, for all v ∈ V , the path from the source s to
v has length not exceeding (1 + ε) times the length of a shortest out of s→ v paths in G that use no
more than d edges; however the tree path itself can have arbitrary number of edges.
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Luckily, a deeper analysis shows that our algorithm can still approximate the length of a
s→ v path. Roughly speaking, we split the s→ v path P into two subpaths of d/2 edges. If
each of these two subpaths are approximated in the h-SSSP data structures by paths of less
than d/4 edges, we replace the P by the concatenation of the two approximate paths from
the h-SSSP data structures. This way, we get a path that can be longer by a factor of (1 + ε),
but whose hop-length is twice smaller. By repeating this process O(logn) times we obtain a
path of constant hop-length whose length is at most (1+ ε)Θ(logn) larger than the length of P .
The overall approximation ratio is reduced to (1 + ε) by scaling ε by a factor of Θ(logn).

Deterministic incremental all-pairs shortest paths. We now show how to apply our results
on reliable hubs to obtain an improved algorithm for incremental all-pairs shortest paths
problem in weighted digraphs. We give a deterministic incremental algorithm maintaining
all-pairs (1 + ε)-approximate distance estimates in Õ(mn4/3 logW/ε) total time.

Let us now give a brief overview of our algorithm in the unweighted case. First, we
maintain the set of hubs Hd under edge insertions as described above in Õ(nmd) total time.
Second, since the set Hd changes and each vertex of the graph may eventually end up in Hd,
we cannot afford maintaining shortest path trees from all the hubs (which is done in most
algorithms that use hubs). Instead, we use the folklore Õ(n3/ε) total time incremental (1+ ε)-
approximate APSP algorithm [5, 19] to compute distances between the hubs. Specifically, we
run it on a graph whose vertex set is Hd and whose edges represent shortest paths between
hubs of hop-lengths at most d. These shortest paths are taken from the shortest path trees
up to depth d from all v ∈ V that are required for the hub set maintenance. We reinitialize
the algorithm each time the set Hd is recomputed. This allows us to maintain approximate
pairwise distances between the hubs at all times in Õ

(
m(n/d)2

/ε
)
total time.

Finally, we show how to run a dynamic algorithm on top of a changing set of hubs by
adapting the shortcut edges technique of Bernstein [5]. Roughly speaking, the final estimates
are maintained using (1 + ε)-approximate shortest path trees [5] up to depth O(d) from all
vertices v on graph G augmented with shortcuts from v to Hd and from Hd to v. This poses
some technical difficulties as the set of shortcuts is undergoing both insertions (when a hub
is added) and deletions (when the entire set of hubs is recomputed from scratch). However,
one can note that in the incremental setting the shortcuts that no longer approximate the
distances between their endpoints do not break the approximation guarantee of our algorithm.
Eventually, we use shortcuts between all pairs of vertices of G but only some of them are
guaranteed (and sufficient) to be up to date at any time. The total time cost of maintaining
this component is Õ(nmd/ε). Setting d = Õ(n1/3) gives the best update time.

It is natural to wonder if this approach could be made to work in the decremental setting.
There are two major obstacles. First, it is unclear whether one can deterministically maintain
a valid set of hubs under deletions so that only O(1) vertices (in amortized sense) are added
to the hub set after each edge deletion. Note that in extreme cases, after a single edge
deletion the set of hubs may have to be extended with polynomially many new vertices.
Second, all algorithms using the above approach of introducing shortcuts from and to hubs
also maintain a decremental shortest path data structure on a graph consisting of the edges
of the original graph and shortcut edges representing distances between the hubs. If hubs
were to be added, the graph maintained by the data structure would undergo both insertions
(of shortcuts) and deletions (of edges of the original graph) which would make this a much
harder, fully dynamic problem. Some earlier works dealt with a similar issue by ignoring
some “inconvenient” edge insertions [14] or showing that the insertions are well-behaved [6].
However, these approaches crucially depended on the graph being undirected.
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1.2 Related Work
The dynamic graph problems on digraphs are considerably harder than their counterparts
on undirected graphs. An extreme example is the dynamic reachability problem, that is,
transitive closure on directed graphs, and connectivity on undirected graphs. While there
exist algorithms for undirected graphs with polylogarithmic query and update times [17, 28,
26, 16, 18], in the case of directed graphs the best known algorithm with polylogarithmic query
time has an update time of O(n2) [23, 7, 20]. In addition, a combinatorial algorithm with an
update time of O(n2−ε) is ruled out under Boolean matrix multiplication conjecture [1].

In 2003, in a breakthrough result Demetrescu and Italiano gave a fully dynamic, exact
and deterministic algorithm for APSP in weighted directed graphs [8]. The algorithm handles
updates in Õ(n2) amortized time and maintains the distance matrix explicitly. The bound
of O(n2) is a natural barrier as a single edge insertion or deletion may change up to Ω(n2)
entries in the distance matrix. For dynamic APSP in digraphs there exists faster algorithms
with polylogarithmic query time, all of which work in incremental or decremental setting:

Ausiello et al. [3] gave a deterministic incremental algorithm for exact distances in
unweighted digraphs that handles updates in Õ(n3) total time.
Baswana et al. [4] solved the same problem in the decremental setting with a Monte
Carlo algorithm with Õ(n3) total update time.
Bernstein [5] gave a Monte Carlo algorithm for (1 + ε)-approximate distances in weighted
graphs (with weights in [1,W ]) with Õ(nm logW/ε) total update time. The algorithm
works both in the incremental and decremental setting.
Finally, deterministic partially-dynamic (both incremental and decremental) algorithms
for APSP in directed graphs with Õ(n3 logW/ε) total update time can be obtained by
combining the results of [19] and [5].

The algorithms of Baswana et al. [4] and Bernstein [5] both use sampled hubs and thus
require the oblivious adversary assumption. We highlight that in the class of deterministic
algorithms, the best known results have total update time Õ(n3) [3, 5], even if we only
consider sparse unweighted graphs in incremental or decremental setting and allow (1 + ε)
approximation. In the incremental setting, for not very dense graphs, when m = O(n5/3−ε),
our algorithm improves this bound to Õ(mn4/3).

Organization of the paper. In Section 2 we fix notation, review some of the existing tools
that we use and give a formal definition of hubs. Section 3 describes the hub set maintenance
for incremental unweighted digraphs and our (1 + ε)-approximate incremental algorithm for
sparse graphs. In Section 4 we show a faster Las Vegas algorithm for computing reliable
hubs and further extend it to maintain reliable hub sets in the partially dynamic setting.
There we also sketch how to use it in order to to improve the state-of-the-art decremental
APSP algorithms from Monte Carlo to Las Vegas randomized. Finally, in Section 5 we sketch
how to adapt the hub set maintenance algorithms of Sections 3 and 4, so that they work on
weighted graphs. Due to limited space, many proofs and details can only be found in the full
version of this paper.

2 Preliminaries

In this paper we deal with directed graphs. We write uv ∈ E(G) when referring to edges of G
and use wG(uv) to denote the weight of uv. If G is unweighted, then wG(e) = 1 for each e ∈ E.
For weighted graphs, wG(e) can be any real number from the interval [1,W ]. For simplicity, in
this paper we assume that W is an input parameter given beforehand. If uv /∈ E, we assume
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wG(uv) =∞. We define the union G∪H to be the graph (V (G)∪V (H), E(G)∪E(H)) with
weights wG∪H(uv) = min(wG(uv), wH(uv)) for each uv ∈ E(G ∪H). For an edge e = uv,
we write G+ e to denote (V (G) ∪ {u, v}, E(G) ∪ {e}). The reverse graph GR is defined as
(V (G), {xy : yx ∈ E(G)}) and wGR(xy) = wG(yx).

A sequence of edges P = e1 . . . ek, where k ≥ 1 and ei = uivi ∈ E(G), is called a u→ v

path in G if u = u1, vk = v and vi−1 = ui for each i = 2, . . . , k. We sometimes view a path
P in G as a subgraph of G with vertices {u1, . . . , uk, v} and edges {e1, . . . , ek} and write
P ⊆ G. The hop-length |P | is defined as |P | = k. The length of the path `(P ) is defined as
`(P ) =

∑k
i=1 wG(ei). If G is unweighted, then we clearly have |P | = `(P ). For convenience,

we sometimes consider a single edge uv a path of hop-length 1. It is also useful to define a
length-0 u→ u path to be the graph ({u}, ∅). If P1 is a u→ v path and P2 is a v → w path,
we denote by P1 · P2 (or simply P1P2) a path P1 ∪ P2 obtained by concatenating P1 with P2.

A digraph T is called an out-tree over V rooted in r if v ∈ V (T ) ⊆ V , |E(T )| = |V (T )|−1
and for all v ∈ V (T ) there is a unique path T [v] from r to v. The depth depT (v) of a vertex
v ∈ V (T ) is defined as |T [v]|. The depth of T is defined as maxv∈V (T ){depT (v)}. Each
non-root vertex of an out-tree has exactly one incoming edge. For v ∈ V (T ) \ {r} we call the
other endpoint of the incoming edge of v the parent v and write parT (v) when referring to it.

The distance δG(u, v) between the vertices u, v ∈ V (G) is the length of the shortest u→ v

path in G, or ∞, if no u→ v path exists in G. We define δkG(u, v) to be the length of the
shortest path from u to v among paths of at most k edges. Formally, δkG(u, v) = min{`(P ) :
u→ v = P ⊆ G and |P | ≤ k}. We sometimes omit the subscript G and write w(uv), δ(u, v),
δk(u, v) etc. instead of wG(u, v), δG(u, v), δkG(u, v), etc., respectively.

We say that a graph G is incremental, if it only undergoes edge insertions and edge
weight decreases. Similarly, we say that G is decremental if it undergoes only edge deletions
and edge weight increases. We say that G is partially dynamic if it is either incremental or
decremental. For a dynamic graph G we denote by n the maximum value of |V | and by m
the maximum value of |E| throughout the whole sequence of updates.

We denote by ∆ the total number of updates a dynamic graph G is subject to. If G is
unweighted, then clearly ∆ ≤ m and in fact we assume ∆ = m, which allows us to simplify
the analyses. For weighted digraphs, on the other hand, since the total number of weight
increases/decreases that an edge is subject to is unlimited, ∆ may be much larger than m.
As a result, it has to be taken into account when analyzing the efficiency of our algorithms.

We call a partially-dynamic (1 + ε)-approximate APSP problem on weighted graphs
restricted if the edge weights of G are of the form (1 + ε)i for i ∈ [0, dlog1+εW e] ∩ N at all
times and additionally each update is required to actually change the edge set or change the
weight of some existing edge. Consequently, observe that in the restricted problem we have
∆ ≤ m · (dlog1+εW e+ 2). In the following we concentrate on the restricted problem. This is
without much loss of generality – we provide a reduction in the full version of the paper.

Partially-dynamic single-source shortest path trees.

I Definition 1. Let G = (V,E) be an unweighted digraph and let s ∈ V . Let d > 0 be an
integer. We call an out-tree T ⊆ G rooted in s a shortest path tree from s up to depth d if:
(a) for any v ∈ V , v ∈ V (T ) iff δG(s, v) ≤ d, and (b) for any v ∈ V (T ), δT (s, v) = δG(s, v).

I Theorem 2 (Even-Shiloach tree [10, 15]). Let G = (V,E) be an unweighted graph subject
to partially dynamic edge updates. Let s ∈ V and let d ≥ 1 be an integer. Then, a shortest
path tree from s up to depth d can be explicitly maintained5 in O(md) total time.

5 By this we mean that the algorithm outputs all changes to the edge set of the maintained tree.
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I Theorem 3 (h-SSSP [5]). Let G = (V,E) be a weighted digraph. Let s ∈ V and let
h ≥ 1 be an integer. There exists a partially dynamic algorithm explicitly maintaining
(1 + ε)-approximate distance estimates δ′(s, v) satisfying δG(s, v) ≤ δ′(s, v) ≤ (1 + ε)δhG(s, v)
for all v ∈ V . The total update time of the algorithm O(mh logn log(nW )/ε+ ∆).

Hubs and how to compute them.

I Definition 4. Let G = (V,E) be a directed graph. Let B ⊆ V and let d > 0 be an integer.
We say that a path P in G is (B, d)-covered if it can be expressed as P = P1 . . . Pk, where
Pi = ui → vi, |Pi| ≤ d for each i = 1, . . . , k, and ui ∈ B for each i = 2, . . . , k.

We now define a blocker set, slightly modifying a definition by King [19].

I Definition 5. Let V be a vertex set and let d be a positive integer. Let B ⊆ V and let T
be a rooted tree over V of depth no more than d. We call B a (T, d)-blocker set if for each
v ∈ V (T ) such that depT (v) = d, either v or one of its ancestors in T belongs to B.

Let T be a collection of rooted trees over V of depth no more than d. We call B a
(T , d)-blocker set if B is a (T, d)-blocker set for each T ∈ T .

I Lemma 6. Let V be a vertex set of size n. Let d be a positive integer. Let T be a collection
of rooted trees over V of depth at most d. Then, a (T , d)-blocker set of size O

(
n
d logn

)
can

be computed deterministically in O(n · (|T |+ n) logn) time.

I Definition 7. Let G = (V,E) be a directed graph and let d > 0 be an integer. A set
Hd ⊆ V is called a d-hub set of G if for every u, v ∈ V such that δG(u, v) <∞, there exists
some shortest u→ v path that is (Hd, d)-covered.

I Lemma 8. Let G = (V,E) be a directed unweighted graph and let d > 0 be an integer.
Suppose we are given a collection T = {Tv : v ∈ V } of shortest path trees up to depth d from
all vertices of G. Let B be a (T , d)-blocker set. Then B is a 2d-hub set of G.

Deterministic incremental algorithm for dense graphs.

I Theorem 9 ([19]+[5]). There exist an incremental algorithm maintaining all-pairs (1 + ε)-
approximate distance estimates of a digraph in Õ(n3 log(W )/ε) +O(∆) total time.

As mentioned before, the above theorem basically follows by combining the partially dynamic
transitive closure algorithm of King [19] with Bernstein’s h-SSSP algorithm (Theorem 3)
for h = 2.

3 Deterministic Incremental Algorithm for Sparse Graphs

In this section we present our deterministic incremental algorithm with Õ(mn4/3/ε) total
update time. We first observe that whenever an edge xy is added, the set of hubs may be
“fixed” by extending it with both x and y.

I Lemma 10. Let G = (V,E) be a directed unweighted graph. Let Hd be a d-hub set of G.
Let x, y ∈ V be such that xy /∈ E. Then H ′d = Hd ∪ {x, y} is a d-hub set of G′ = G+ xy.

Let d > 1 be an even integer and let ε1, 0 < ε1 < ε be a real number, both to be set later.
Our data structure consists of several components. Each subsequent component builds upon
the previously defined components only.
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Exact shortest paths between nearby vertices. The data structure maintains two collec-
tions T from = {T from

v : v ∈ V } and T to = {T to
v : v ∈ V } of shortest path trees up to depth d

2
in G and GR, resp. By Theorem 2, each tree of T from ∪ T to can be maintained under edge
insertions in O(md) total time. The total time spent in this component is hence O(nmd).

The hubs. A d-hub set Hd of both G and GR such that |Hd| = O
(
n
d logn

)
is maintained

at all times, as follows. Initially, Hd is computed in O(n2 logn) time using Lemma 6 and the
trees of T from ∪T to (see Lemma 8). Next, the data structure operates in phases. Each phase
spans f = Θ(nd logn) consecutive edge insertions. When an edge xy is inserted, its endpoints
are inserted into Hd. By Lemma 10, this guarantees that Hd remains a d-hub set of both G
and GR after the edge insertion. Once f edges are inserted in the current phase, the phase
ends and the hub set Hd is recomputed from scratch, again using Lemma 6. Observe that
the size of |Hd| may at most triple within each phase.

The total time spent on maintaining the set Hd is clearly O
(
m
f · n

2 logn
)

= O(nmd).

Approximate shortest paths between the hubs. In each phase, we maintain a weighted
graph A = (Hd, EA), where EA = {uv : u, v ∈ Hd, δGR(u, v) ≤ d} and wA(uv) = δT to

u
(u, v) =

δGR(u, v) ≤ d. Observe that during each phase, the graph A is in fact incremental. We
can thus maintain (1 + ε1)-approximate distance estimates δ′A(u, v) for all u, v ∈ Hd in
Õ(|Hd|3/ε1) = Õ

((
n
d

)3
/ε1

)
total time per phase, using a data structure DA of Theorem 9.6

Summing over all phases, the total time spent on maintaining the (1 + ε′)-approximate
distances estimates of the graph A is Õ

(
m
(
n
d

)2
/ε1

)
.

I Lemma 11. For any u, v ∈ Hd, δGR(u, v) = δA(u, v).

By the above lemma, for each u, v ∈ Hd we actually have δ′A(u, v) ≤ (1 + ε1)δGR(u, v).

Shortcuts to hubs. For each u ∈ V , let Su be a graph on V with exactly n edges
{uv : v ∈ V } satisfying wSu

(u, v) ≥ δGR(u, v) for all v ∈ V , and additionally wSu
(u, v) ≤

(1 + ε1)δGR(u, v) if u, v both currently belong to Hd. The edges between vertices of Hd are
the only ones that our algorithm needs to compute approximate distances. For other edges
we only need to make sure they will not cause the algorithm to underestimate the distances.

Observe that the graphs Su can be maintained using the previously defined components
as follows. First, they are initialized so that their edges are all infinite-weight. Whenever the
data structure DA changes (or initializes) some of its estimates δ′A(u, v) ≤ (1 + ε1)δGR(u, v),
we perform wSu(u, v) := min(wSu(u, v), δ′A(u, v)). This guarantees that the invariants posed
on Su are always satisfied and Su is incremental. The total number of updates to all graphs
Su is equal to the number of estimate updates made by DA and thus can be neglected.

For u ∈ V , we set up a h-SSSP data structure Du of Theorem 3 for the graph GR ∪ Su
with source vertex u and h = d+1. Hence, Du maintains distance estimates δ′(u, v) such that
δ′(u, v) ≤ (1 + ε′)δd+1

GR∪Su
(u, v). As the graph GR ∪ Su is incremental and has O(m) edges,

the total time that Du needs to operate is Õ(md/ε1) +O(∆u), where ∆u is the total number
of updates to GR ∪ Su. Summing the update times for all data structures Du, we obtain

6 Technically speaking, the total update time of the data structure of Theorem 9 is Õ(n3/ε′) + O(∆).
However, all updates to DA arise when some previous component updates its explicitly maintained
estimates, so the ∆ term is asymptotically no more than the total update time of the previously defined
components and can be charged to those. In the following, we omit ∆ terms like this without warnings.
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Õ(nmd/ε1) +O(
∑
v∈V ∆u) total time. Note that

∑
u∈V ∆u equals nm plus the number of

updates to the graphs Su, which can be charged to the operating cost of data structure DA,
as argued before. We conclude that the total update time of all Du is Õ(nmd/ε1).

Observe that a shortest u→ v path in GR, where u ∈ Hd and v ∈ V is approximated by
a path in GR ∪Su consisting of at most d+ 1 edges. The first edge belongs to Su and “jumps”
to some hub. The latter (at most d) edges belong to GR. This is formalized as follows.

I Lemma 12. Let u ∈ Hd and v ∈ V . Then δd+1
GR∪Su

(u, v) ≤ (1 + ε1)δGR(u, v).

By the above lemma, we conclude that for u ∈ Hd, v ∈ V , the estimate δ′(u, v) produced by
the data structure Dv satisfies δ′(u, v) ≤ (1 + ε1)δd+1

GR∪Su
(u, v) ≤ (1 + ε1)2δGR(u, v).

All-pairs approximate shortest paths. We maintain another set of shortcut graphs Ru, for
u ∈ V . Again Ru has exactly n edges {uv : v ∈ V } whose weights satisfy wRu

(uv) ≥ δG(u, v)
for all v and wRu

(uv) ≤ (1 + ε1)2δG(u, v) if v ∈ Hd. Each graph Ru is maintained using the
previously defined data structures Dv. Initially all weights of Ru are infinite. Whenever
some Dv changes the estimate δ′(v, u), we set wRu

(uv) := min(wRu
(uv), δ′(v, u)). Since for

v ∈ Hd we have δ′(v, u) ≤ (1 + ε1)2δGR(v, u), equivalently, δ′(v, u) ≤ (1 + ε1)2δG(u, v) and
we obtain wRu

(uv) ≤ (1 + ε1)2δG(u, v). Therefore, the graphs Ru are all incremental and the
total number of changes they are subject to is no more than the total number of estimate
changes made by the data structures Dv, v ∈ V . Thus, we may neglect the cost of actually
performing these changes.

Finally, for each u ∈ V we set up a h-SSSP data structure D′u of Theorem 3 on graph
G∪Ru with source u and h = d+ 1, maintaining (1 + ε1)-approximate estimates of the values
δd+1
G∪Ru

(u, ·). Similarly as was the case for the data structures Du of the previous component,
as the graphs G ∪ Ru are incremental, the total operating time of the h-SSSP instances
running on the graphs G ∪Ru is Õ(nmd/ε1).

I Lemma 13. Let u, v ∈ V . Then δd+1
G∪Ru

(u, v) ≤ (1 + ε1)2δG(u, v).

By the above lemma, the the distance estimates δ′′(u, v) maintained by the data structure
D′u, approximate the corresponding distances δG(u, v) within a factor of (1 + ε1)3.

I Theorem 14. Let G be a directed unweighted graph. There exists a deterministic incre-
mental algorithm maintaining (1 + ε)-approximate distance estimates between all pairs of
vertices of G in Õ(mn4/3/ε) total time.

4 Partially-Dynamic Verification of a Sampled Hub Set

In this section we show how to maintain the information whether a sampled set remains a
hub set of an unweighted digraph G subject to partially dynamic updates. For simplicity,
assume that G is decremental (the incremental case, being somewhat easier, can be handled
similarly). We start by showing how a reliable hub set can be found if we are given shortest
path trees up to depth d from all vertices of G, stored in dynamic tree data structures.

I Lemma 15 ([27, 29]). Let V be a vertex set of size n and let d > 0 be an integer. Let T
be a collection of rooted trees of depth no more than d, whose vertex sets are subsets of V .

Let c > 1 be some constant. Let B be a random subset of V of size min
(
dcnd lnne, n

)
.

Then, B is a (T , d)-blocker set with probability at least max(0, 1− |T |/nc−1).

The following data structure is an easy application of the data structure of Tarjan [25].
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I Lemma 16. Let V be some set of n vertices. Let F be a forest of (initially single-vertex)
rooted out-trees over V such that the vertex sets of the individual trees of F form a partition
of V . For v ∈ V , let Tv ∈ F denote the unique tree of F containing v.

There exists a data structure for dynamically maintaining F (initially consisting of n
1-vertex trees) and supporting the following operations in O(logn) time each:
1. parent(v): if v is not the root of Tv, return its parent. Otherwise return nil.
2. link(u, v): assuming Tu 6= Tv and that u is the root of Tu, make u a child of v in Tv.
3. cut(v): assuming v is not the root of Tv, split Tv into two trees by removing the edge

between v and its parent.
4. depth(v): return the depth of the tree Tv.

I Lemma 17. Let V be a vertex set, n = |V |, and let d > 0 be integral. Let T be a collection
of rooted trees over V of depth no more than d, where |T | = O(polyn). Suppose each T ∈ T
is given as a separate data structure of Lemma 16 and for each T ∈ T , root(T ) is known.

Then, there exists a Las Vegas randomized algorithm computing a (T , d)-blocker set B of
size O

(
n
d logn

)
in O(|T | · nd · log2 n) time with high probability.

Proof. Let |T | = O(nα) for some α > 0. The algorithm is to simply repeatedly pick random
subsets B of V of size min(d(α+ 2)nd lnne, n) until B succeeds in being a (T , d)-blocker set.
By Lemma 15, for a random B, the probability that this is not the case is at most 1

n . Hence,
the probability that we fail finding a (T , d)-blocker set after k = O(1) trials is at most 1/nk.

We thus only need to show how to verify whether a set B is actually a (T , d)-blocker set
in O(|T | · |B| logn) time. Recall that for a single T ∈ T , if the depth of T is no more than d,
then B is a (T, d)-blocker set if the tree T ′ obtained from T by removing all subtrees rooted
in vertices of B, has depth less than d. Consequently, to verify whether B is a (T, d)-blocker
set, we take advantage of the fact that T is stored in a data structure of Lemma 16.

We first check whether r = root(T ) ∈ B. If this is the case, B is a (T, d)-blocker set
in a trivial way. Otherwise, for each b ∈ B, we store pb = parent(b) and perform cut(b).
Afterwards, one can see that B is a (T, d)-blocker set if and only if depth(r) < d. Finally,
we revert all the performed cut operations by running link(b, pb) for all b ∈ B.

Clearly, the time needed to verify whether B is a (T, d)-blocker set for any T ∈ T , is
O(|B| logn). Hence, one can check whether B is a (T , d)-blocker set in O(|T | · |B| logn)
time. J

Now we move on to the problem of detecting when a sampled set ceases to be a valid
hub set of G. In fact, our algorithm will solve a bit more general problem (which is anyway
needed for applications, as we will see later), as follows.

Let |V | = n = a0 > a1 > . . . > aq = 1 be some sequence of integers such that
ai | ai−1. For each i = 0, . . . , q, let Ai be a random ai-subset (a subset of size ai) of V . By
Lemmas 8 and 15, each Ai is in fact an Θ((n/ai) lnn)-hub set of G with high probability.

We would like to detect when some Ai ceases to be an Θ((n/ai) lnn)-hub set of G
while G undergoes edge deletions. Using this terminology, both state-of-the-art Monte-
Carlo randomized algorithms for decremental exact shortest paths [4] and partially-dynamic
(1 + ε)-approximate shortest paths [5] (for unweighted digraphs) use randomness only for
constructing hub sets A0, . . . , Aq (they use ai = 2q−i, but in fact any ai = cq−i, where c is
a positive integer, would be sufficient for these algorithms to work), valid simultaneously
for all versions of the input graph with high probability (the sets Ai satisfy this, as we
will later show).

Without loss of generality, we can assume that given the sets A0, . . . , Aq, the algorithms of
[4, 5] proceed deterministically. Suppose we develop an efficient partially dynamic algorithm
A verifying whether each Ai remains a Θ((n/ai) lnn)-hub set of G (i.e., A is supposed to
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detect that some Ai ceases to be a Θ((n/ai) lnn)-hub set immediately after this happens)
and producing false negatives with low probability (the algorithm is guaranteed to be correct
if it says that all Ai have the desired property but might be wrong saying that some Ai is no
longer a hub set). Then, we could use A to convert the algorithms of [4, 5] into Las Vegas
algorithms by drawing new sets A0, . . . , Aq and restarting the respective algorithms whenever
A detects (possibly incorrectly) that any of these sets ceases to be a hub set. As this does not
happen w.h.p., with high probability the overall asymptotic running time remains unchanged.
The remainder of this section is devoted to describing such an algorithm A.

I Lemma 18. Let d > 0 be an integer. Let F be a forest of out-trees of depth no more than
d over V . Denote by Tv the unique tree of F containing v ∈ V . Let B ⊆ V be fixed.

There exists a data structure with update time O(logn), maintaining the information
whether B is a (F, d)-blocker set, subject to updates to F of the following types:

cut the subtree rooted in v out of Tv where v ∈ V and v is not the root of Tv,
make the tree Tr a child of v ∈ Tv where r ∈ V is the root of Tr and v /∈ Tr,

The following lemma says that in order to test whether a given set of vertices is a 6d-hub set
it suffices to test the hub set property for paths starting in vertices of a d-hub set.

I Lemma 19. Let G = (V,E) be a directed unweighted graph. Let Hd be a d-hub set of G.
Suppose we are given two collections T from = {T from

v : v ∈ Hd}, T to = {T to
v : v ∈ Hd} of

shortest path trees up to depth d from all vertices of Hd in G and GR, respectively.
Let B be a (T from ∪ T to, d)-blocker set. Then B is a 6d-hub set of G.

Observe that by Lemma 15, there exists an integral constant z > 0, such that for any
fixed collection of trees T of depth no more than z · nai

dlnne, where |T | = O(n3), Ai is a(
T , z · nai

dlnne
)
-blocker set with high probability. For i = 0, . . . , q, set di = z · n

ai+1
dlnne

where aq+1 = 1. Suppose G undergoes partially dynamic updates. For each i = 1, . . . , q,
and v ∈ V let T from

i,v (T to
i,v) denote the shortest path tree that the algorithm of Theorem 2

would maintain for d = di−1 and source v in G (in GR, respectively). Note that how the
trees T from

i,v and T to
i,v evolve depends only on the sequence of updates to G (which, by the

oblivious adversary assumption, does not depend on sets A0, . . . , Aq in any way) and the
details of the deterministic algorithm of Theorem 2. Since only O(mn) = O(n3) different
trees appear in {T from

i,v : v ∈ V } ∪ {T to
i,v : v ∈ V } throughout all updates, Ai remains a

({T from
i,v : v ∈ V }∪{T to

i,v : v ∈ V }, di−1)-blocker set throughout the whole sequence of updates
with high probability, by Lemma 15.

Let T from
i = {T from

i,v : v ∈ Ai−1} and T to
i = {T to

i,v : v ∈ Ai−1}, i.e., T from
i (T to

i ) contains
only trees with roots from a subset Ai−1 ⊆ V . However Ai being a blocker set of such a
collection of trees will turn out sufficient for our needs. Clearly, since we have T from

i ∪ T to
i ⊆

{T from
i,v : v ∈ V }∪{T to

i,v : v ∈ V }, by the above claim, Ai in fact remains a (T from
i ∪T to

i , di−1)-
blocker set throughout the whole sequence of updates with high probability.

Now, let q = dlog6 ne and for i = 1, . . . , q set ai = 6q−i. To verify whether each Ai
remains a di-hub set subject to partially dynamic updates to G, we proceed as follows. We
deterministically maintain the trees

⋃q
i=1(T from

i ∪ T to
i ) subject to partially dynamic updates

to G using Theorem 2. The total number of changes these trees are subject to throughout
the whole sequence of updates is O(

∑q
i=1 ai−1 ·m · di−1) = O

(∑q
i=1 ai−1 ·m · nai

lnn
)

=

O
(
nm logn ·

∑q
i=1

ai−1
ai

)
= Õ(nm).

We additionally store each tree T from
i,v (and T to

i,v), for v ∈ Ai−1, in a data structure of
Lemma 18 with B = Ai. Whenever the data structure of Theorem 2 updates some tree, the
update is repeated in the corresponding data structure of Lemma 18. Consequently, the total
time needed to maintain these additional data structures is Õ

(
nm ·

∑q
i=1

ai−1
ai

)
= Õ(nm).

ESA 2019



65:12 Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

After each update we can detect whether each Ai is still a (T from
i ∪ T to

i , di−1)-blocker set
in O(

∑q
i |Ai−1| logn) = Õ(n) time by querying the relevant data structures of Lemma 187

storing T from
i ∪ T to

i . By Lemma 19, a simple inductive argument shows that if this is the
case, each Ai is a di-hub set of both G and GR. Hence, verifying all A1, . . . , Aq while G
evolves takes Õ(mn) total time. The algorithm terminates when it turns out that some Ai
is no longer a (T from

i ∪ T to
i , di−1)-blocker set. However, recall that this happens only with

low probability, regardless of whether Ai actually ceases to be a di hub set or not. We have
proved the following.

I Theorem 20. Let G be an unweighted digraph. Let q = dlog6 ne. For i = 0, . . . , q, let
Ai be a random 6q−i-subset of V . One can maintain the information whether each Ai is a
Θ(6i lnn)-hub set of G, subject edge deletions issued to G, in Õ(nm) total time.

The algorithm might produce false negatives with low probability.

By plugging in the hubs of Theorem 20 into the algorithms of [4, 5], we obtain the following.

I Corollary 21. Let G be an unweighted digraph. There exists a Las Vegas randomized
decremental algorithm maintaining exact distance between all pairs of vertices of G with
Õ(n3) total update time w.h.p. It assumes an adversary oblivious to the random bits used.

I Corollary 22. Let G be an unweighted digraph. There exists a Las Vegas randomized
decremental algorithm maintaining (1 + ε)-approximate distance estimates between all pairs
of vertices of G in Õ(nm/ε) total time w.h.p. The algorithm assumes an oblivious adversary.

5 Approximate Shortest Paths for Weighted Graphs

In this section we give key definitions used to generalize the reliable hub maintenance
algorithms to weighted graphs, at the cost of (1 + ε)-approximation. Then, we state the main
theorem (Theorem 26) relating blocker sets in (1 + ε)-approximate shortest path trees to the
approximate hub sets. Finally, we explain briefly how to incorporate these tools into our
improved dynamic APSP algorithms in order to generalize then to weighted graphs.

I Definition 23. Let G = (V,E) be a weighted digraph and let s ∈ V be a source vertex. Let
d be a positive integer. An out-tree T ⊆ G is called a (1 + ε)-approximate shortest path tree
from s up to depth d, if T is rooted at s and for any v ∈ V such that δdG(s, v) <∞, we have
v ∈ V (T ) and δT (s, v) ≤ (1 + ε)δdG(s, v).

I Definition 24. Let G = (V,E) be directed and let d > 0 be an integer. A set Hε
d ⊆ V is

called an (1 + ε)-approximate d-hub set of G if for every u, v ∈ V such that δG(u, v) <∞,
there exists a path P = u→ v in G such that `(P ) ≤ (1 + ε)δG(u, v) and P is (Hε

d, d)-covered.

We also extend the definition of a (T, d)-blocker set to trees of depth more than d.

I Definition 25. Let V be a vertex set and let d > 0 be an integer. Let T be a rooted tree
over V . Define T d to be the set of all maximal subtrees of T of depth no more than d, rooted
in non-leaf vertices x ∈ V (T ) satisfying d | depT (x).

7 The Even-Shiloach algorithm (Theorem 2), apart from maintaining distance labels for all v ∈ V , moves
around entire subtrees of the maintained tree T . Hence, in order to ensure that some set B remains a
blocker-set of T , it is not sufficient to simply check whether B ∩ V (T [v]) whenever the Even-Shiloach
algorithm changes the distance label of v to d (and, consequently, use a data structure much simpler
than that given in Lemma 18).
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Then, B is a (T, d)-blocker set if and only if it is a (T d, d)-blocker set (in terms of
Definition 5). Let T be a collection of rooted trees over V . We call B a (T , d)-blocker set if
and only if B is a (T, d)-blocker for each T ∈ T .

I Theorem 26. Let G = (V,E) be a directed graph and let d < n be an even integer. Let
T from = {T from

v : v ∈ V } (T to = {T to
v : v ∈ V }) be a collection of (1 + ε)-approximate

shortest path trees up to depth-3d from all vertices in G (in GR, resp.).
Let B ⊆ V be a (T from ∪ T to, d2 )-blocker set. Then B is a (1 + ε)p-approximate 2dp-hub

set of G, where p = dlog2 ne+ 1.

Recall that our reliable hubs maintenance algorithms for unweighted graphs essentially
maintained some shortest path trees up to depth d and either computed their blocker sets
using King’s algorithm, or dynamically verified whether the sampled hub sets remain blocker
sets of the shortest path trees.

We first replace all shortest path trees up to depth d with (1 + ε)-approximate shortest
path trees up to depth d. We use the following extension of Bernstein’s h-SSSP algorithm.

I Lemma 27. The h-SSSP algorithm of Theorem 3 can be extended so that it maintains a
(1 + ε)-approximate shortest path tree up to depth h from s within the same time bound.

By Theorem 26, by finding blocker sets of approximate shortest path trees (as in Definition 25),
we can compute/verify (1 + ε′)Θ(logn)-approximate Θ(d logn)-hub sets as before.

Given appropriate hub sets, all that both our deterministic incremental (1+ε)-approximate
APSP algorithm, and Bernstein’s randomized (1 + ε)-approximate partially dynamic APSP
algorithm do, is essentially set up and maintain a “circuit” (i.e., a collection of data structures
whose outputs constitute the inputs of other structures) of h-SSSP data structures from the
hubs with different parameters h and appropriately set ε′. In order to make these algorithms
work with our reliable approximate hub sets, we basically need to play with the parameters:
increase all h’s by a polylogarithmic factor, and decrease ε′ by a polylogarithmic factor.
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Abstract
In this paper we give an Õ((nm)2/3 log C) time algorithm for computing min-cost flow (or min-
cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C.
For planar multigraphs, this improves upon the best known algorithms for general graphs: the
Õ(m10/7 log C) time algorithm of Cohen et al. [SODA 2017], the O(m3/2 log(nC)) time algorithm
of Gabow and Tarjan [SIAM J. Comput. 1989] and the Õ(

√
nm log C) time algorithm of Lee

and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial
algorithm that breaks the Ω(m3/2) time barrier for min-cost flow problem in planar graphs.

To obtain our result we first give a very simple successive shortest paths based scaling algorithm
for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This
algorithm also runs in Õ(m3/2 log C) time for general graphs, and, to the best of our knowledge,
it has not been described before. We subsequently show how to implement this algorithm faster
on planar graphs using well-established tools: r-divisions and efficient algorithms for computing
(shortest) paths in so-called dense distance graphs.
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1 Introduction

The min-cost flow is the core combinatorial optimization problem that now has been studied
for over 60 years, starting with the work of Ford and Fulkerson [14]. Classical combinatorial
algorithms for this problem have been developed in the 80s. Goldberg and Tarjan [18]
showed an Õ(nm logC) time weakly-polynomial algorithm for the case when edge costs
are integral, and where C is the maximum edge cost. Orlin [31] showed the best-known
strongly polynomial time algorithm running in Õ(m2) time. Faster weakly-polynomial
algorithms have been developed in this century using interior-point methods: Daitch and
Spielman [8] gave an Õ(m3/2 log (U + C)) algorithm, and later Lee and Sidford [28] obtained
an Õ(

√
nm log (U + C)) algorithm, where U is the maximum (integral) edge capacity.

Much attention has been devoted to the unit-capacity case of the min-cost flow problem.
Gabow and Tarjan [15] gave a O(m3/2 log (nC)) time algorithm. Lee and Sidford [28] matched
this bound up to polylogarithmic factors for m = Õ(n), and improved upon it for larger
densities, even though their algorithm solves the case of arbitrary integral capacities. Gabow
and Tarjan’s result remained the best known bound for more than 28 years – the problem
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witnessed an important progress only very recently. In 2017 an algorithm that breaks the
Ω(m3/2) time barrier for min-cost flow problem was given by Cohen et al. [7]. This algorithm
runs in Õ(m10/7 logC) time and is also based on interior-point methods.

It is worth noting that currently the algorithms of [7, 28] constitute the most efficient
solutions for the entire range of possible densities (up to polylogarithmic factors) and are
also the best-known algorithms for important special cases, e.g., planar graphs or minor-free
graphs. Both of these solutions are based on interior point methods and do not shed light on
the combinatorial structure of the problem.

In this paper we study the unit-capacity min-cost flow in planar multigraphs. We improve
upon [7, 28] by giving the first known Õ((mn)2/3 logC) = Õ(m4/3 logC) time algorithm for
computing min-cost s, t-flow and min-cost circulation in planar multigraphs.1 Our algorithm
is fully combinatorial and uses the scaling approach of Goldberg and Tarjan [18]. At each
scale it implements the classical shortest augmenting path approach similar to the one known
from the well-known Hopcroft-Karp algorithm for maximum bipartite matching [19].

Related work. Due to immense number of works on flows and min-cost flows we will not
review all of them. Instead we concentrate only on the ones that are relevant to the sparse
and planar graph case, as that is the regime where our results are of importance. As already
noted above the fastest algorithms for min-cost flows in planar multigraphs are implied by
the algorithms for general case. This, however, is not the case for maximum flow problem.
Here, the fastest algorithms are based on planar graph duality and reduce the problem to
shortest path computations. The undirected s, t-flow problem can be solved in O(n log logn)
time [22], whereas the directed s, t-flow problem can be solved in O(n logn) time [3, 11].
Even for the case with multiple source and sinks, a nearly-linear time algorithm is known [4].

These results naturally raise as an open question whether similar nearly-linear bounds
could be possible for min-cost flow. Until very recently there has been no progress towards
answering this open question. Partial progress was made by devising Õ(n4/3 logC) time [1]
and Õ(n6/5 logC) time [27] algorithms for min-cost perfect matchings in bipartite planar
graphs. Lahn and Raghvendra also give an Õ(n7/5 logC) time minimum cost perfect matching
algorithm for minor-free graphs. These algorithms can be seen as specialized versions of the
Gabow-Tarjan’s algorithm for the assignment problem [15].

Gabow and Tarjan [15] reduced min-cost flow problem to so-called min-cost perfect degree-
constrained subgraph problem on a bipartite multigraph, which they solved by extending
their algorithm for minimum cost perfect matching. Hence it seems plausible that the recent
algorithm of Lahn and Raghvendra [27] can be extended to solve min-cost flow, since their
algorithm builds upon the Gabow-Tarjan algorithm. The reduction presented by Gabow and
Tarjan is not planarity preserving, though. Nevertheless, min-cost perfect matching problem
can be reduced to min-cost flow problem in an efficient and planarity preserving way [29].
The opposite reduction can be done in planarity preserving way as recently shown [33].
However, this reduction is not efficient and produces a graph of quadratic size. Hence, we
cannot really take advantage of it.

Overview and comparison to [1, 27]. We concentrate on the min-cost circulation problem,
which is basically the min-cost flow problem with all vertex demands equal to 0. It is well-
known [17] that the min-cost s, t-flow problem can be solved by first computing some s, t-flow

1 It is known that simple planar graphs have O(n) edges. However, multiple parallel edges (with possibly
different costs) are useful in the unit-capacity min-cost flow problem, as they allow us to encode larger
edge capacities. Therefore, in this paper we work with planar multigraphs.
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f of requested value (e.g., the maximum value), and then finding a min-cost circulation on
the residual network Gf . This reduction is clearly planarity-preserving. Since an s, t-flow
of any given value (in particular, the maximum value) can be found in a planar graph in
nearly-linear time (see [11]), this reduction works in nearly-linear time as well.

Our min-cost circulation algorithm resembles the recent works on minimum cost planar
perfect matching [1, 27], in the sense that we simulate some already-good scaling algorithm
for general graphs, but implement it more efficiently using the known and well-established
tools from the area of planar graph algorithms. However, instead of simulating an existing
unit-capacity min-cost flow algorithm, e.g., [15, 17], we use a very simple successive-shortest
paths based algorithm that, to the best our knowledge, has not been described before.

Our algorithm builds upon the cost-scaling framework of Goldberg and Tarjan [18],
similarly as the recent simple unit-capacity min-cost flow algorithms of Goldberg et al. [17].
In this framework, a notion of ε-optimality of a flow is used. A flow f is ε-optimal with
respect to a price function p if for any edge uv = e ∈ E(Gf ) we have c(e)− p(u) + p(v) ≥ −ε.

Roughly speaking, the parameter ε measures the quality of a circulation: any circulation
is trivially C-optimal wrt. p, whereas any 1

n -feasible (wrt. p) circulation is guaranteed to
be optimal. The general scheme is to start with a C-optimal circulation, run O(log(nC))
scales that improve the quality of a circulation by a factor of 2, and this way obtain the
optimal solution.

We show that a single scale can be solved by repeatedly sending flow along a cheapest
s→ t path in a certain graph G′′f with a single source s and a single sink t, that approximates
the residual graph Gf . Moreover, if we send flow simultaneously along a maximal set of
cheapest s→ t paths at once, like in [12, 19], we finish after O(

√
m) augmentations. However,

as opposed to [12, 19], our graph G′′f is weighted and might have negative edges. We overcome
this difficulty as in the classical successive shortest path approach for min-cost flow, by
using distances from the previous flow augmentation as a feasible price function that can
speed-up next shortest path computation. Our algorithm also retains a nice property2 of
the Even-Tarjan algorithm that the total length (in terms of the number of edges) of all the
used augmenting paths is O(m logm).

The crucial difference between our per-scale procedure and those of [15, 17] is that we
do not “adjust” dual variables p(v) at all while the procedure runs: we only use them to
compute G′′f , and recompute them from scratch in nearly-linear time when the procedure
finishes. In particular, the recent results of [1, 27] are quite complicated since, in order to
simulate the Gabow-Tarjan algorithm [15], they impose and maintain additional invariants
about the duals.

The only bottlenecks of our per-scale procedure are (1) shortest paths computation, (2)
picking a maximal set of edge-disjoint s→ t paths in an unweighted graph3.

We implement these on a planar network using standard methods. Let r ∈ [1, n] be some
parameter. We construct a dense distance graph H ′′f (e.g., [13, 16]) built upon an r-division
(e.g., [26]) of G′′f . The graph H ′′f is a compressed representation of the distances in G′′f with
O(n/

√
r) vertices and O(m) edges. Moreover, it can be updated in Õ(r) time per edge used

by the flow. Hence, the total time spent on updating H ′′f is Õ(mr). As we show, running our
per-scale procedure on H ′′f is sufficient to simulate it on G′′f . Computing distances in a dense
distance graph requires Õ(n/

√
r) time [13, 16]. To complete the construction, we show how

2 Gabow-Tarjan algorithm for min-cost bipartite matching has a similar property, which was instrumental
for obtaining the recent results on minimum-cost planar bipartite matching [1, 27].

3 This is sometimes called the blocking flow problem and can be solved for unit capacities in linear time.
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to find a maximal set of edge-disjoint paths in Õ(n/
√
r) amortized time. To this end, we also

exploit the properties of reachability in a dense distance graph, used previously in dynamic
reachability algorithms for planar digraphs [21, 24]. This way, we obtain Õ(

√
mn/
√
r +mr)

running time per scale. This is minimized roughly when r = n2/3/m1/3.
Recall that Lahn and Raghvendra [27] obtained a polynomially better (than ours) bound of

Õ(n6/5 logC), but only for planar min-cost perfect matching problem. To achieve that, they
use an additional idea due to Asathulla et al. [1]. Namely, they observe that by introducing
vertex weights, one can make augmenting paths avoid edges incident to boundary vertices,
thus making the total number of pieces “affected” by augmenting paths truly-sublinear in
n. It is not clear how to apply this idea to the min-cost flow problem without making
additional assumptions about the structure of the instance, like bounded-degree (then, there
are only O(n/

√
r) edges incident to boundary vertices of an r-division), or bounded vertex

capacities (so that only O(1) units of flow can go through each vertex; this is satisfied in the
perfect matching case). This phenomenon seems not very surprising once we recall that such
assumptions lead to better bounds even for general graphs: the best known combinatorial
algorithms for min-cost perfect matching run in O(n1/2m log (nC)) time, whereas for min-cost
flow in O(m3/2 log (nC)) time [15, 17].

Organization of the paper. In Section 2 we introduce the notation and describe the scaling
framework of [18]. Next, in Section 3, we describe the per-scale procedure of unit-capacity
min-cost flow for general graphs. Finally, in Section 4 we give our algorithm for planar
graphs. Due to limited space, some of the missing proofs can only be found in the full version
of the paper.

2 Preliminaries

Let G0 = (V,E0) be the input directed multigraph. Let n = |V | and m = |E0|. Define
G = (V,E) to be a multigraph such that E = E0 ∪ER

0 , E0 ∩ER
0 = ∅, where ER

0 is the set of
reverse edges. For any uv = e ∈ E, there is an edge eR ∈ E such that eR = vu and (eR)R = e.
We have e ∈ E0 iff eR ∈ ER

0 .
Let u : E0 → R+ be a capacity function. A flow is a function f : E → R such that for

any e ∈ E f(e) = −f(eR) and for each e ∈ E0, 0 ≤ f(e) ≤ u(e). These conditions imply
that for e ∈ E0, −u(e) ≤ f(eR) ≤ 0. We extend the function u to E by setting u(eR) = 0
for all e ∈ E0. Then, for all edges e ∈ E we have −u(eR) ≤ f(e) ≤ u(e). The unit capacity
function satisfies u(e) = 1 for all e ∈ E0.

The excess excf (v) of a vertex v ∈ V is defined as
∑
uv=e∈E f(e). Due to anti-symmetry

of f , excf (v) is equal to the amount of flow going into v by the edges of E0 minus the amount
of flow going out of v by the edges of E0. The vertex v ∈ V is called an excess vertex if
excf (v) > 0 and deficit if excf (v) < 0. Let X be the set of excess vertices of G and let D be
the set of deficit vertices. Define the total excess Ψf as the sum of excesses of the excess
vertices, i.e., Ψf =

∑
v∈X excf (v) =

∑
v∈D −excf (v).

A flow f is called a circulation if there are no excess vertices, or equivalently, Ψf = 0.
Let c : E0 → Z be the input cost function. We extend c to E by setting c(eR) = −c(e)

for all e ∈ E0. The cost c(f) of a flow f is defined as 1
2
∑
e∈E f(e)c(e) =

∑
e∈E0

f(e)c(e).
To send a unit of flow through e ∈ E means to increase f(e) by 1 and simultaneously

decrease f(eR) by 1. By sending a unit of flow through e we increase the cost of flow by c(e).
To send a unit of flow through a path P means to send a unit of flow through each edge of P .
In this case we also say that we augment flow f along path P .

The residual network Gf of f is defined as (V,Ef ), where Ef = {e ∈ E : f(e) < u(e)}.
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Price functions and distances. We call any function p : V → R a price function on G. The
reduced cost of an edge uv = e ∈ E wrt. p is defined as cp(e) := c(e)− p(u) + p(v). We call p
a feasible price function of G if each edge e ∈ E has nonnegative reduced cost wrt. p.

It is known that G has no negative-cost cycles (negative cycles, in short) if and only if
some feasible price function p for G exists. If G has no negative cycles, distances in G (where
we interpret c as a length function) are well-defined. For u, v ∈ V , we denote by δG(u, v) the
distance between u and v, or, in other words, the length of a shortest u→ v path in G.

I Fact 1. Suppose G has no negative cycles. Let t ∈ V be reachable in G from all vertices
v ∈ V . Then the distance to function δG,t(v) := δG(v, t) is a feasible price function of G.

For A,B ⊆ V (G) we sometimes write δG(A,B) to denote min{δG(u, v) : u ∈ A, v ∈ B}.

Planar graph toolbox. An r-division of a simple undirected plane graph G is a collection
of O(n/r) edge-induced subgraphs of G, called pieces, whose union is G and such that each
piece P has O(r) vertices and O(

√
r) boundary vertices. The boundary vertices ∂P of a piece

P are the vertices of P shared with some other piece.
An r-division with few holes has an additional property that for each piece P , (1) P is

connected, (2) there exist O(1) faces of P whose union of vertex sets contains ∂P .
Let G1, . . . , Gλ be some collection of plane graphs, where each Gi has a distinguished

boundary set ∂Gi lying on O(1) faces of Gi. A distance clique DC(Gi) of Gi is defined as a
complete digraph on ∂Gi such that the cost of the edge uv in DC(Gi) is equal to δGi

(u, v).

I Theorem 2 (MSSP [6, 25]). Suppose a feasible price function on Gi is given. Then the
distance clique DC(Gi) can be computed in O((|V (Gi)|+ |E(Gi)|+ |∂Gi|2) log |V (Gi)|)) time.

The graph DDG = DC(G1) ∪ . . . ∪DC(Gλ) is called a dense distance graph4.

I Theorem 3 (FR-Dijkstra [13, 16]). Given a feasible price function of DDG, single-
source shortest paths in DDG can be computed in O

(∑λ
i=1 |∂Gi|

log2 n
log2 logn

)
time, where

n = |V (DDG)|.

Scaling framework for minimum-cost circulation. The following fact characterizes mini-
mum circulations.

I Fact 4 ([32]). Let f be a circulation. Then c(f) is minimum iff Gf has no negative cycles.

It follows that a circulation f is minimum if there exists a feasible price function of Gf .

IDefinition 5 ([2, 18, 34]). A flow f is ε-optimal wrt. price function p if for any uv = e ∈ Ef ,
c(e)− p(u) + p(v) ≥ −ε.

The above notion of ε-optimality allows us, in a sense, to measure the optimality of a
circulation: the smaller ε, the closer to the optimum a circulation f is. Moreover, if we deal
with integral costs, 1

n+1 -optimality is equivalent to optimality.

I Lemma 6 ([2, 18]). Suppose the cost function has integral values. Let circulation f be
1

n+1 -optimal wrt. some price function p. Then f is a minimum cost circulation.

4 Dense distance graphs have been defined differently multiple times in the literature. We use the definition
of [16, 30] that captures all the known use cases (see [16] for discussion).
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Proof. Suppose f is not minimum-cost. By Fact 4, f is not minimum-cost iff Gf contains
a simple negative cycle C. Note that the cost of C is the same with respect to the cost
functions c and cp, as the prices cancel out. Therefore

∑
e∈C cp(e) ≥ −

n
n+1 > −1. But the

cost of this cycle is integral and hence is at least 0, a contradiction. J

Let C = maxe∈E0{|c(e)|}. Suppose we have a procedure Refine(G, f0, p0, ε) that, given
a circulation f0 in G that is 2ε-optimal wrt. p0, computes a pair (f ′, p′) such that f ′ is a
circulation in G, and it is ε-optimal wrt. p′. We use the general scaling framework, due to
Goldberg and Tarjan [18], as given in Algorithm 1. By Lemma 6, it computes a min-cost
circulation in G in O(log(nC)) iterations. Therefore, if we implement Refine to run in
T (n,m) time, we can compute a minimum cost circulation in G in O(T (n,m) log (nC)) time.

Algorithm 1 Scaling framework for min-cost circulation.
1: procedure MinimumCostCirculation(G)
2: f(e) := 0 for all e ∈ G
3: p(v) := 0 for all v ∈ V
4: ε := C/2
5: while ε > 1

n+1 do . f is 2ε-optimal wrt. p
6: (f, p) := Refine(G, f, p, ε)
7: ε := ε/2
8: return f . f is circulation 1

n+1 -optimal wrt. p, i.e., a minimum-cost circulation

3 Refinement via Successive Approximate Shortest Paths

In this section we introduce our implementation of Refine(G, f0, p0, ε). For simplicity, we
start by setting c(e) := c(e)− p0(u) + p0(v). After we are done, i.e., we have a circulation
f ′ that is ε-optimal wrt. p′, (assuming costs reduced with p0), we will return (f ′, p′ + p0)
instead. Therefore, we now have c(e) ≥ −2ε for all e ∈ Ef0 .

Let f1 be the flow initially obtained from f0 by sending a unit of flow through each edge
e ∈ Ef0 such that c(e) < 0. Note that f1 is ε-optimal, but it need not be a circulation.

We denote by f the current flow which we will gradually change into a circulation. Recall
that X is the set of excess vertices of G and D is the set of deficit vertices (with respect
to the current flow f). Recall a well-known method of finding the min-cost circulation
exactly [5, 20, 23]: repeatedly send flow through shortest X → D paths in Gf . The sets X
and D would only shrink in time. However, doing this on Gf exactly would be too costly.
Instead, we will gradually convert f into a circulation, by sending flow from vertices of X to
vertices of D but only using approximately (in a sense) shortest paths.

Let round(y, z) denote the smallest integer multiple of z that is greater than y.
For any e ∈ E, set c′(e) = round(c(e) + ε/2, ε/2). We define G′f to be the “approximate”

graph Gf with the costs given by c′ instead of c.
For convenience, let us also define an extended version G′′f of G′f to be G′f with two

additional vertices s (a super-excess-vertex) and t (a super-deficit-vertex) added. Let
M =

∑
e∈E |c′(e)|+ ε. We also add to G′′f the following auxiliary edges:

1. an edge vt for all v ∈ V , we set c′(vt) = 0 if v ∈ D and c′(vt) = M otherwise,
2. an edge sx with c′(sx) = 0 for all x ∈ X.
Clearly, δG′′

f
(s, t) = δG′

f
(X,D) and every vertex in G′′f can reach t.



A. Karczmarz and P. Sankowski 66:7

Our algorithm can be summarized very briefly, as follows. Start with f = f1. While
X 6= ∅, send a unit of flow along any shortest path P from X to D in G′f (equivalently: from
s to t in G′′f ). Once finished, return f and δG′′

f
,t as the price function. The correctness of

this approach follows from the following two facts that we discuss later on:
1. G′f is negative-cycle free at all times,
2. after the algorithm finishes, f is a circulation in G that is ε-optimal wrt. δG′′

f
,t.

If implemented naively, the algorithm would need O(m) negative-weight shortest paths
computations to finish. If we used Bellman-Ford method for computing shortest paths, the
algorithm would run in O(nm2) time. To speed it up, we apply two optimizations.

First, as in the successive shortest paths algorithm for general graphs [10, 35], we observe
that the distances δG′′

f
,t computed before sending flow through a found shortest s→ t path

constitute a feasible price function of G′′f after augmenting the flow. This allows us to replace
Bellman-Ford algorithm with Dijkstra’s algorithm and reduce the time to O(m2 + nm logn).
Next, instead of augmenting the flow along a single shortest X → D path, we send flow
through a maximal set of edge-disjoint shortest X → D paths, as in Hopcroft-Karp algorithm
for maximum bipartite matching [19]. Such a set can be easily found in O(m) time when the
distances to t in G′′f are known. This way, we finish after only O(

√
m) phases of shortest

path computation and flow augmentation. The pseudocode is given in Algorithm 2.

Algorithm 2 Refinement via successive shortest paths.
Require: f0 is a circulation in G 2ε-feasible wrt. p0
Require: DistancesTo(H, t, p) computes the vector of distances (i.e., δG,t) from all v ∈

V (H) to t ∈ V (H), where p is a feasible price function of H.
Require: SendFlow(f,E∗) returns a flow f ′ such that f ′(e) equals f(e) + 1 if e ∈ E∗,

f(e)− 1 if eR ∈ E∗, and f(e) otherwise.
Output: (f, p), where f is a circulation in G ε-feasible wrt. p
1: procedure Refine(G, f0, p0, ε)
2: c(e) := c(e)− p0(u) + p0(v) for all e = uv ∈ E.
3: f := SendFlow(f0, {e ∈ Ef0 : c(e) < 0})
4: p(v) := 0 for all v ∈ V
5: while X 6= 0 do . p is a feasible price function of G′′f
6: Construct G′′f out of G′f .
7: p := DistancesTo(G′′f , t, p)
8: Q0, . . . , Qk := a maximal set of edge-disjoint s→ t paths in G′′f consisting solely

of edges satisfying c′p(e) = 0.
9: f := SendFlow(f,E((Q0 ∪ . . . ∪Qk) ∩G′f ))

10: return (f,DistancesTo(G′′f , t, p) + p0) . f is ε-feasible wrt. δG′′
f
,t + p0

3.1 Analysis
Below we state some key properties of our refinement method. The proofs are can be found
in the full version of the paper.

I Lemma 7. Suppose G′′f has no negative cycles. Then f is ε-optimal wrt. δG′′
f
,t.

Proof. Recall that Gf and G′f have the same sets of edges, only different costs. Let
uv = e ∈ Gf . Set p := δG′′

f
,t. By Fact 1, c′(e)− p(u) + p(v) ≥ 0. Note that c(e) ≥ c′(e)− ε.

Hence, c(e)− p(u) + p(v) ≥ c′(e)− p(u) + p(v)− ε ≥ −ε. J
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I Lemma 8. If X 6= ∅, then there exists a path from X to D in Gf .

Before we proceed further, we need to introduce more notation. Let ∆ denote the length
of the shortest X → D path in G′f (∆ changes in time along with f).

Let q = Ψf1 . Clearly, q ≤ m. For i = 1, . . . , q, denote by fi+1 the flow (with total excess
q − i) obtained from fi by sending a unit of flow through an arbitrarily chosen shortest
X → D path Pi of G′fi

.
For i = 1, . . . , q, let ∆i be the value ∆ when f = fi. We set ∆q+1 =∞.

I Lemma 9. Let p∗i : V ∪ {s, t} → {k · ε/2 : k ∈ Z} be defined as p∗i = δG′′
fi
,t. Then:

1. G′fi
has no cycles of non-positive cost,

2. for any e ∈ Pi, the reduced cost of eR wrt. p∗i is positive,
3. p∗i is a feasible price function of both G′′fi

and G′′fi+1
,

4. 0 < ∆i ≤ ∆i+1.

By Lemmas 8 and 9, our general algorithm computes a circulation fq+1 such that p∗q is
a feasible price function of G′fq+1

. Since fq+1 has no negative cycles, by Lemma 7, fq+1 is
ε-optimal wrt. δG′′

f
,t. We conclude that the algorithm is correct.

The following lemma is the key to the running time analysis.

I Lemma 10. If X 6= ∅ (equivalently, if ∆ <∞), then Ψf ·∆ ≤ 6εm.

3.2 Efficient Implementation
As mentioned before, we could use Lemma 9 directly: start with flow f1 and p∗0 ≡ 0. Then,
repeatedly compute a shortest X → D path Pi along with the values p∗i using Dijkstra’s
algorithm on G′′f (with the help of price function p∗i−1 to make the edge costs non-negative),
and send flow through Pi to obtain fi+1. However, we can also proceed as in Hopcroft-Karp
algorithm and augment along many shortest X → D paths of cost ∆ at once. We use the
following lemma.

I Lemma 11. Let p be a feasible price function of G′′f . Suppose there is no s→ t path in
G′′f consisting of edges with reduced (wrt. p) cost 0. Then ∆ = δG′

f
(X,D) > p(s)− p(t).

Suppose we run the simple-minded algorithm. Assume that at some point f = fi, and we
have p∗i computed. Any s→ t path in G′′fi

with reduced (wrt. p∗i ) cost 0 corresponds to some
shortest X → D path (of length ∆i) in G′f . Additionally, we have p∗i (s) = 0 and p∗i (t) = ∆i.

Let Q0, . . . , Qk be some maximal set of edge-disjoint s → t paths in G′′fi
with reduced

cost 0. By Lemma 9, we could in principle choose Pi = Q0, Pi+1 = Q1, . . . , Pi+k = Qk and
this would not violate the rule that we repeatedly choose shortest X → D paths.

Moreover, p∗i is a feasible price function of G′′fi+1
for any choice of Pi = Qj , j = 0, . . . , k.

Hence, the reduced cost wrt. p∗i of any eR ∈ Qj , is non-negative. Therefore, in fact p∗i is
a feasible price function of all G′′fi+1

, G′′fi+2
, . . . , G′′fi+k+1

. On the other hand, since for all
e ∈ Pi ∪ . . . ∪ Pi+k, the reduced cost (wrt. p∗i ) of eR is positive, and the set Q0, . . . , Qk was
maximal, we conclude that there is no s→ t path in G′′fi+k+1

consisting only of edges with
reduced cost (wrt. p∗i ) 0. But p∗i (s)− p∗(t) = ∆i, so by Lemma 11 we have ∆i+k+1 > ∆i.

Since we can choose a maximal set Q0, . . . , Qk using a DFS-style procedure in O(m) time
(for details, see Section 4.3, where we take a closer look at it to implement it faster in the
planar case), we can actually move from fi to fi+k+1 and simultaneously increase ∆ in O(m)
time. Since p∗i is a feasible price function of G′′fi+k+1

, the new price function p∗i+k+1 can be
computed, again, using Dijkstra’s algorithm. The total running time of this algorithm is
O(m+ n logn) times the number of times ∆ increases.
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I Lemma 12. The value ∆ changes O(
√
m) times.

Proof. By Lemma 9, ∆ can only increase, and if it does, it increases by at least ε/2. After it
increases 2

√
m times, ∆ ≥ ε

√
m. But then, by Lemma 10, Ψf is no more than 6

√
m. As each

change of ∆ is accompanied with some decrease of Ψf , ∆ can change O(
√
m) times more. J

I Theorem 13. Refine as implemented in Algorithm 2 runs in O((m+ n logn)
√
m).

We can in fact improve the running time to O(m
√
m) by taking advantage of so-called

Dial’s implementation of Dijkstra’s algorithm [9]. The details are deferred to the full version.

3.3 Bounding the Total Length of Augmenting Paths
I Fact 14. For every e ∈ E we have c′(e) + c′(eR) > ε.

Proof. We have c′(e) > c(e) + ε/2. Hence, c′(e) + c′(eR) > c(e) + ε/2 + c(eR) + ε/2 = ε. J

There is a subtle reason why we set c′(e) to be round(c(e) + ε/2, ε/2) instead of
round(c(e), ε). Namely, this allows us to obtain the following bound.

I Lemma 15. For any i = 1, . . . , q we have c′(fi+1)− c′(fi) < ∆i − 1
2 |Pi| · ε.

Proof. We have

c′(fi+1)− c′(fi) = 1
2
∑
e∈E

(fi+1(e)− fi(e))c′(e) = 1
2
∑
e∈Pi

(c′(e)− c′(eR)).

By Fact 14, −c′(eR) < c′(e)− ε for all e ∈ E. Hence

c′(fi+1)− c′(fi) <
∑
e∈Pi

c′(e)− 1
2 |Pi| · ε = ∆i −

1
2 |Pi| · ε. J

I Lemma 16. Let f∗ be any flow. Then c(f0)− c(f∗) ≤ 2εm.

Proof. We have

c(f0)− c(f∗) = 1
2
∑
e∈E

(f0(e)− f∗(e))c(e).

If f0(e) > f∗(e), then eR ∈ Ef0 and hence c(eR) ≥ −2ε, and thus c(e) ≤ 2ε. Otherwise, if
f0(e) < f∗(e) then e ∈ Ef0 and c(e) ≥ −2ε.

In both cases (f0(e)−f∗(e))c(e) ≤ 2ε. Therefore, since |E| = 2m, c(f0)−c(f∗) ≤ 2εm. J

I Lemma 17. Let f∗ be any flow. Then |c′(f∗)− c(f∗)| ≤ εm.

Proof. Recall that we had 0 < c′(e)− c(e) ≤ ε. Hence |f∗(e)(c′(e)− c(e))| ≤ ε and:

|c′(f∗)−c(f∗)| = 1
2

∣∣∣∣∣∑
e∈E

f∗(e)(c′(e)− c(e))

∣∣∣∣∣ ≤ 1
2
∑
e∈E
|f∗(e)(c′(e)−c(e))| ≤ 1

2
∑
e∈E

ε = εm.J

The inequalities from Lemmas 15, 16 and 17 combined give us the following important
property of the set of paths we augment along.

I Lemma 18. The total number of edges on all the paths we send flow through is O(m logm).
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Proof. By Lemma 16 and the fact that c(f1) ≤ c(f0), we have:

c(f1)− c(fq+1) ≤ c(f0)− c(fq+1) ≤ 2εm.

On the other hand, by Lemma 17 and Lemma 15, we obtain:

c(f1)− c(fq+1) ≥ (c′(f1)− εm) + (−c′(fq+1)− εm) = c′(f1)− c′(fq+1)− 2εm

=
q∑
i=1

(c′(fi)− c′(fi+1))− 2εm ≥
q∑
i=1

(1
2 |Pi| · ε−∆i)− 2εm.

By combining the two inequalities and applying Lemma 10, we get:
q∑
i=1

1
2 |Pi| ≤ 4m+

q∑
i=1

∆i

ε
≤ 4m+

q∑
i=1

6m
Ψfi

= 4m+
q∑
i=1

6m
q − i+ 1 = O(m logm). J

4 Unit-Capacity Min-Cost Circulation in Planar Graphs

In this section we show that the refinement algorithm per scale from Section 3 can be
simulated on a planar digraph more efficiently. Specifically, we prove the following theorem.

I Theorem 19. Refine can be implemented on a planar graph in Õ((nm)2/3) time.

Let r ∈ [1, n] be a parameter. Suppose we are given an r-division with few holes P1, . . . ,Pλ
of G such that for any i we have λ = O(n/r), |V (Pi)| = O(r), |∂Pi| = O(

√
r), ∂Pi lies

on O(1) faces of Pi, and the pieces are edge-disjoint. We set ∂G =
⋃λ
i=1 ∂Pi. Clearly,

|∂G| = O(n/
√
r).

In the full version we show that we can reduce our instance to the case when the above
assumptions are satisfied in nearly-linear time.

Since m might be ω(n), we cannot really guarantee that |E(Pi)| = O(r), This will not be
a problem though, since, as we will see, for all the computations involving the edges of Pi
(e.g., computing shortest paths in Pi, or sending a unit of flow through a path of Pi) of all
edges uv = e ∈ E(Pi) we will only care about an edge e ∈ E(Pi) ∩ Gf with minimal cost
c′(e). Therefore, since Pi is planar, at any time only O(r) edges of Pi will be needed.

Recall that the per-scale algorithm for general graphs (Algorithm 2) performed O(
√
m)

phases, each consisting of two steps: a shortest path computation (to compute the price
function p∗ from Lemma 9), followed by the computation of a maximal set of edge-disjoint
augmenting paths of reduced (wrt. p∗) cost 0. We will show how to implement both steps
in Õ(n/

√
r) amortized time, at the additional total data structure maintenance cost (over

all phases) of Õ(mr). Since there are O(
√
m) steps, this will yield Õ(nm)2/3) time by

appropriately setting r.
We can maintain the flow f explicitly, since it undergoes only O(m logn) edge updates (by

Lemma 18). However, we will not compute the entire price function p∗ at all times explicitly,
as this is too costly. Instead, we will only compute p∗ limited to the subset ∂G ∪ {s, t}.

For each Pi, define P ′f,i = G′f ∩ Pi. We also define P ′′f,i to be P ′f,i with vertices {s, t}
added, and those edges sv, vt of G′′f that satisfy v ∈ V (Pi) \ ∂Pi. This way, P ′′f,i ⊆ G′′f and
E(P ′′f,i) ∩E(P ′′f,j) = ∅ for i 6= j. The costs of edges e ∈ E(P ′′f,i) are the same as in G′′f , i.e.,
c′(e). Besides, for each i we will store a “local” price function pi that is feasible only for P ′′f,i,

After the algorithm finishes, we will know how the circulation looks like precisely. However,
the general scaling algorithm requires us to also output price function p such that f is an
ε-optimal circulation wrt. p. f is ε-optimal wrt. p∗ in the end, but we will only have it
computed for the vertices ∂G ∪ {s, t}. Therefore, we extend it to all remaining vertices of G.
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I Lemma 20. Suppose we are given the values of p∗ on ∂Pi and a price function pi feasible
for P ′′f,i. Then we can compute the values p∗(u) for all v ∈ V (P ′′f,i) in O(r log r) time.

Hence, in order to extend p∗ to all vertices of G once the final circulation is found, we apply
Lemma 20 to all pieces. This takes O

(
n
r · r log r

)
= O(n logn) time.

4.1 Dijkstra Step
Let us start with an implementation of the Dijkstra step computing the new price function p∗.
First, for each piece Pi we define the compressed version H ′′f,i of P ′′f,i as follows. Let
V (H ′′f,i) = ∂Pi ∪ {s, t}. The set of edges of H ′′f,i is formed by:

a distance clique DC(P ′′f,i) between vertices ∂Pi in P ′′f,i,
for each v ∈ ∂Pi, an edge sv of cost δP′′

f,i
(s, v) if this distance is finite,

for each v ∈ ∂Pi, an edge vt of cost δP′′
f,i

(v, t) if this distance is finite,
an edge st of cost δP′′

f,i
(s, t) if this distance is finite.

Recall that we store a price function pi of P ′′f,i. Therefore, by Theorem 2, DC(P ′′f,i) can be
computed in O(r log r) time. All needed distances δP′′

f,i
(s, v) and δP′′

f,i
(v, t) can be computed

in O(r log r) time using Dijkstra’s algorithm (again, with the help of price function pi).
Now define H ′′f to be

⋃λ
i=1 H

′′
f,i with edges sv and vt of G′′f that satisfy v ∈ ∂G added.

I Fact 21. For any u, v ∈ V (H ′′f ), δH′′
f

(u, v) = δG′′
f
(u, v).

Observe thatH ′′f is a dense distance graph in terms of the definition of Section 2: it consists
of O(n/r) distance cliques DC(P ′′f,i) with O(

√
r) vertices each, and O(n/

√
r) additional edges

which also can be interpreted as 2-vertex distance cliques.
Hence, given a feasible price function on H ′′f , we can compute distances to t in H ′′f on it

using Theorem 3 in O
(
n/
√
r log2 n

log2 logn

)
time. Since V (H ′′f ) = ∂G ∪ {s, t}, the price function

p∗ we have is indeed sufficient. The computed distances to t form the new price function p∗
on ∂G ∪ {s, t} as in the algorithm for general graphs (see Algorithm 2).

4.2 Sending Flow Through a Path
In the general case updating the flow after an augmenting path has been found was trivial.
However, as we operate on a compressed graph, the update procedure has to be more involved.

Generally speaking, we will repeatedly find some shortest s→ t path Q = e1 . . . ek in H ′′f ,
translate it to a shortest s→ t path P in G′′f and send flow through it. It is easy to see by
the definition of H ′′f that Q can be translated to a shortest s→ t path in G′′f and vice versa.
Each edge ej can be translated to either some subpath inside a single graph P ′′f,i, or an edge
of G′′f of the form sv or vt, where v ∈ ∂G. This can be done in O(r logn) time by running
Dijkstra’s algorithm on P ′′f,i with price function pi. We will guarantee that path P obtained
by concatenating the translations of individual edges ej contains no repeated edges of G′′f .

We now show how to update each H ′′f,i after sending flow through the found path P .
Note that we only need to update H ′′f,i if E(P ) ∩ E(P ′′f,i) 6= ∅. In such case we call Pi an
affected piece. Observe that some piece can be affected at most O(m logm) times since the
total number of edges on all shortest augmenting paths P in the entire algorithm, regardless
of their choice, is O(m logm) (see Lemma 18).

To rebuild H ′′f,i to take into account the flow augmentation we will need a feasible price
function on P ′′f,i after the augmentation. However, we cannot be sure that what we have,
i.e., pi, will remain a good price function of P ′′f,i after the augmentation. By Lemma 9,
luckily, we know that p∗ is a feasible price function after the augmentation for the whole
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graph G′′f . In particular, p∗ (before the augmentation) limited to V (P ′′f,i) is a feasible
price function of P ′′f,i after the augmentation. Hence, we can compute new pi equal to
p∗ using Lemma 20 in O(r log r) time. Given a feasible price function pi on P ′′f,i after f
is augmented, we can recompute H ′′f,i in O(r log r) time as discussed in Section 4.1. We
conclude that the total time needed to update the graph H ′′f subject to flow augmentations
is O(mr log r logm) = O(mr logn logm).

4.3 A Path Removal Algorithm
In this section we consider an abstract “path removal” problem, that generalizes the problem
of finding a maximal set of edge-disjoint s→ t paths. We will use it to reduce the problem of
finding such a set of paths on a subgraph of G′′f consisting of edges with reduced cost 0 wrt.
p∗ to the problem of finding such a set of paths on the zero-reduced cost subgraph of H ′′f .

Suppose we have some directed acyclic graph H with a fixed source s and sink t, that
additionally undergoes some limited adversarial changes. We are asked to efficiently support
a number of rounds, until t ceases to be reachable from s. Each round goes as follows.
1. We first find either any s→ t path P , or detect that no s→ t path exists.
2. Let E+ ⊆ V ×V , and P ⊆ E− ⊆ E(H) be some adversarial sets of edges. LetH ′ = (V,E′),

where E′ = E(H) \ E− ∪ E+. Assume that for any v ∈ V (H), if v cannot reach t in H,
then v cannot reach t in H ′ either. Then the adversarial change is to remove E− from E

and add E+ to E, i.e., set E(H) = E′.

Let n̄ = |V (H)| and let m̄ be the number of edges ever seen by the algorithm, i.e., the
sum of |E(H)| and all |E+|. We will show an algorithm that finds all the paths P in O(n̄+m̄)
total time. Let us also denote by ¯̀ the sum of lengths of all returned paths P . Clearly,
¯̀≤ m̄.

A procedure handling the phase 1 of each round, i.e., finding a s→ t path or detecting
that there is none, is given in Algorithm 3. The second phase of each round simply modifies
the representation of the graph H accordingly. Throughout all rounds, we store a set W
of vertices w of H for which we have detected that there is no more w → t path in H.
Initially, W = ∅. Each edge e ∈ E(H) can be scanned or unscanned. Once e is scanned, it
remains scanned forever. The adversarial edges E+ that are inserted to E(H) are initially
unscanned. The following lemmas establishing the correctness and efficiency of the crucial
parts of Algorithm 3 are all proved in the full version.

Algorithm 3 Path-finding procedure. Returns a s → t path in H or detects there is none.
1: procedure FindPath(H)
2: Q := an empty path with a single endpoint s . Q is an s → s path
3: while s /∈ W and the other endpoint y of Q is not equal to t do . Q is an s → y path
4: if there exists an unscanned edge yv = e ∈ E(H) such that v /∈ W then
5: mark e scanned
6: Q := Qe

7: else
8: W := W ∪ {y}
9: remove the last edge of Q unless Q is empty
10: if Q = ∅ then
11: report t not reachable from s and stop
12: else
13: return Q and Q := 0.
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I Lemma 22. Algorithm 3 correctly finds an s→ t path in H or detects there is none.

I Lemma 23. The total number of times line 9 is executed, through all rounds, is O(n̄).

I Lemma 24. Line 6 of Algorithm 3 is executed O(n̄+ ¯̀) times through all rounds.

I Lemma 25. The total time used by Algorithm 3, through all rounds, is O(n̄+ m̄).

4.4 Finding a Maximal Set of Shortest Augmenting Paths
Recall that for a general graph, after computing the price function p∗ we found a maximal
set of edge-disjoint s → t paths in the graph Z ′′f , defined as a subgraph of G′′f consisting
of edges with reduced cost 0 (wrt. p∗). To accomplish that, we could in fact use the path
removal algorithm from Section 4.3 run on Z ′′f : until there was an s → t path in Z ′′f , we
would find such a path P , remove edges of P (i.e., set E− = P and E+ = ∅), and repeat.
Since in this case we never add edges, the assumption that t cannot become reachable from
any v due to updating Z ′′f is met.

Let Y ′′f be the subgraph of the graph H ′′f from Section 4.1 consisting of edges with reduced
(wrt. p∗) cost 0. Since all edges of H ′′f correspond to shortest paths in G′′f , all edges of
Y ′′f correspond to paths in G′′f with reduced cost 0. Because Z ′′f is acyclic by Lemma 9,
Y ′′f is acyclic as well. Moreover, for any two edges e1, e2 ∈ E(Y ′′f ), if there is a path going
through both e1 and e2 in Y ′′f , then the paths represented by e1 and e2 are edge-disjoint
in Z ′′f (as otherwise Z ′′f would have a cycle). Therefore, any path Q in Y ′′f translates to a
simple path in Z ′′f ⊆ G′′f .

We will now explain why running Algorithm 3 on Y ′′f can be used to find a maximal set
of edge-disjoint s → t paths. Indeed, by Fact 21, Y ′′f contains an s → t path iff Z ′′f does.
Since Y ′′f is just a compressed version of Z ′′f , and Z ′′f undergoes edge deletions only (since we
only remove the found paths), the updates to Y ′′f cannot make some t reachable from some
new vertex v ∈ V (Y ′′f ). Technically speaking, we should think of Y ′′f as undergoing both edge
insertions and deletions: whenever some path Q ⊆ Y ′′f is found, we include Q in E− and send
the flow through a path corresponding to Q in G′′f , as described in Section 4.2. But then for
all affected pieces Pi, H ′′f,i is recomputed and thus some of the edges of Q might be reinserted
to Y ′′f again. These edges should be seen as forming the set E+, whereas the old edges of
the recomputed graphs H ′′f,i belong to E−. In terms of the notation of Section 4.3, when
running Algorithm 3 on Y ′′f , we have n̄ = O(n/

√
r). The sum of values ¯̀ from Section 4.3

over all phases of the algorithm is, by Lemma 18, O(m logm). Similarly, again by Lemma 18,
the sum of the values m̄ from Section 4.3 over all phases, is O(m3/2 +mr2 logm) (since each
time E+ might be as large as r2 times the number of affected pieces).

Recall that there are O(
√
m) phases, and the total time needed to maintain the graph H ′′f

subject to flow augmentations is O(mr log r logm) (see Section 4.2). For each phase, running
a Dijkstra step to compute p∗ using FR-Dijkstra, followed by running Algorithm 3 directly
until there are no s→ t paths in Y ′′f would lead to O

(√
m
(
n√
r

log2 n
log2 logn

)
+m3/2 +mr2 logm

)
total time, i.e., would not yield any improvement over the general algorithm. However, we
can do better by implementing Algorithm 3 on Y ′′f more efficiently.

I Lemma 26 ([21, 24]). Let Z be the subgraph of P ′f,i consisting of edges with reduced cost
0 with respect to some feasible price function p. There exists O(

√
r) pairs of subsets (Ai,1,

Bi,1), (Ai,2, Bi,2), . . . of ∂Pi such that for each v ∈ ∂Pi:
The number of sets Ai,j (Bi,j) such that v ∈ Ai,j (v ∈ Bi,j, resp.) is O(log r).
Each Bi,j is totally ordered according to some order ≺i,j.
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For any j such that v ∈ Ai,j , there exist li,v,j , ri,v,j ∈ Bi,j such that the subset Ri,v of ∂Pi
reachable from v in Z can be expressed as

⋃
j:v∈Ai,j

{w ∈ Bi,j : li,v,j �i,j w �i,j ri,v,j}.
The sets Ai,j, Bi,j and the vertices li,v,j , ri,v,j for all v, j can be computed in O(

√
r log r)

time based on the distance clique between ∂Pi in P ′f,i and the values of p∗ on ∂Pi.

Recall that in Section 4.3, to bound the total running time, it was enough to bound the
total time spent on executing lines 4, 6 and 9. We will show that using Lemma 26, in terms
of the notation from Section 4.3, we can make the total time spent on executing line 4 only
Õ(n̄+ ¯̀) instead of O(m̄), at the cost of increasing the total time of executing line 9 to Õ(n̄).

Specifically, at the beginning of each phase we compute the data from Lemma 26 for
all pieces Pi. Since for all i we have the distance cliques DC(P ′′f,i) computed, this takes
O
(
n
r ·
√
r log r

)
= O(n/

√
r logn) time. We will also recompute the information of Lemma 26

for an affected piece Pi after H ′′f,i is recomputed. As the total number of times some piece is
affected is O(m logm), this takes O(m

√
r log r logm) time through all phases.

Whenever the data of Lemma 26 is computed for some piece Pi, for each pair (Ai,j , Bi,j)
we store Bi,j ∩W in a dynamic predecessor/successor data structure Di,j , sorted by ≺i,j .
For each v ∈ ∂Pi and j such that v ∈ Ai,j we store a vertex nexti,v,j initially equal to
li,v,j . It is easy to see that these auxiliary data structures can be constructed in time
linear in their size, i.e., O(

√
r log r) time. Hence, the total cost of computing them is

O(
√
mn/
√
r logn+m

√
r log r logm) = O

(√
m
(
n√
r

log2 n
log2 logn

)
+mr logn logm

)
.

Now, to implement line 9, when y is inserted into W we go through all pieces Pi such
that y ∈ ∂Pi and all Bi,j such that y ∈ Bi,j . For each such (i, j), we remove y from Di,j

in O(log logn) time. Recall that the sum of numbers of such pairs (i, j) over all v ∈ ∂G is
O(
∑λ
i=1 |∂Pi| log r) = O(n/

√
r logn). Hence, by Lemma 23 the total time spent on executing

line 9 in a single phase is O(n/
√
r logn log logn).

Finally, we implement line 4 as follows. The unscanned edges of Y ′′f that are not between
boundary vertices are handled in a simple-minded way as in Lemma 25. There are only
O(n/

√
r) of those, so we can neglect them. In order to be able to efficiently find some

unscanned edge yv such that y, v ∈ ∂G and v /∈ W , we keep for any v ∈ ∂G a set Uv of
pieces Pi such that v ∈ ∂Pi and there may still be some unscanned edges from v to w ∈ ∂Pi
in H ′′f,i. Similarly, for each Pi ∈ Uv we maintain a set Uv,i of data structures Di,j such that
nexti,v,j 6= nil. Whenever the data of Lemma 26 is computed for Pi, Pi is inserted back to
Uv for all v ∈ ∂Pi, and the sets Uv,i are recomputed with no additional asymptotic overhead.
To find an unscanned edge yv, for each Pi ∈ Uy we proceed as follows. We attempt to find
an unscanned edge yv in Pi. If we succeed or Uy is empty, we stop. Otherwise we remove Pi
from Uy and repeat, i.e., try another Pj ∈ Uy, unless Uy is empty. To find an unscanned
edge yv from a piece Pi, we similarly try to find an unscanned edge yv in subsequent data
structures Di,j ∈ Uv,i, and remove the data structures for which we fail from Uv,i. For a
single data structure Di,j , we maintain an invariant that an edge yw, w ∈ Di,j has been
scanned iff w ≺i,j nexti,v,j . Hence, to find the next unscanned edge, we first find x ∈ Di,j

such that nexti,v,j �i,j x and x is smallest possible. This can be done in O(log logn) time
since Di,j is a dynamic successor data structure. If x does not exist or ri,v,j ≺ x, then, by
Lemma 26, there are no more unscanned edges yw such that w ∈ Di,j , and thus we remove
Di,j from Uv,i. Otherwise, we return an edge yx and set nexti,v,j to be the successor of x in
Di,j (or possibly nexti,v,j := nil if none exists), again in O(log logn) time.

Observe that all “failed” attempts to find an edge yv, where v ∈ ∂G can be charged
to an insertion of some Pi to Uy or to an insertion of some Di,j to Uy,i. The total
number of such insertions is again O

(√
m n√

r
logn+m

√
r log r logm

)
. A successful at-
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tempt, on the other hand, costs O(log logn) worst-case time. Since line 4 is executed
O(
√
mn/
√
r +m logn) times through all phases, the total time spent on executing line 4 is

again O
(√

m
(
n√
r

log2 n
log2 logn

)
+mr logn logm

)
. By setting r = n2/3

m1/3 ·
(

logn
logm·log2 logn

)2/3
we

obtain the main result of this paper.

I Theorem 27. The min-cost circulation in a planar multigraph can be found in
O
(

(nm)2/3 · log5/3 n log1/3 m
log4/3 logn · log (nC)

)
time.
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Abstract
Due to its many applications, curve simplification is a long-studied problem in computational
geometry and adjacent disciplines, such as graphics, geographical information science, etc. Given a
polygonal curve P with n vertices, the goal is to find another polygonal curve P ′ with a smaller
number of vertices such that P ′ is sufficiently similar to P . Quality guarantees of a simplification
are usually given in a local sense, bounding the distance between a shortcut and its corresponding
section of the curve. In this work we aim to provide a systematic overview of curve simplification
problems under global distance measures that bound the distance between P and P ′. We consider
six different curve distance measures: three variants of the Hausdorff distance and three variants of
the Fréchet distance. And we study different restrictions on the choice of vertices for P ′. We provide
polynomial-time algorithms for some variants of the global curve simplification problem, and show
NP-hardness for other variants. Through this systematic study we observe, for the first time, some
surprising patterns, and suggest directions for future research in this important area.
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1 Introduction

Due to its many applications, curve simplification (also known as line simplification) is a
long-studied problem in computational geometry and adjacent disciplines, such as graphics,
geographical information science, etc. Given a polygonal curve P with n vertices, the goal
is to find another polygonal curve P ′ with a smaller number of vertices such that P ′ is
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67:2 Global Curve Simplification

δInput curve

Figure 1 For a target distance δ, the red curve (middle) is a global simplification of the input
curve (left), but it is not a local simplification, since the first shortcut does not closely represent its
corresponding curve section (right). The example works for both Hausdorff and Fréchet distance.

sufficiently similar to P . Classical algorithms for this problem famously include a simple
recursive scheme by Douglas and Peucker [16], and a more involved dynamic programming
approach by Imai and Iri [21]; both are frequently implemented and cited. Since then,
numerous further results on curve simplification, often in specific settings or under additional
constraints, have been obtained [1, 2, 6, 11, 12, 14, 8, 18, 20].

Despite its popularity, the Douglas-Peucker algorithm comes with no provable quality
guarantees. The method by Imai and Iri, though slower, was introduced as an alternative
which does supply guarantees: it finds an optimal shortest path in a graph in which potential
shortcuts are marked as either valid or invalid, based on their distance to the corresponding
sections of the input curve. However, Agarwal et al. [2] note that the Imai-Iri algorithm
does not actually globally optimize any distance measure between the original curve P and
the simplification P ′. This work initiated a more formal study of curve simplification; van
Kreveld et al. [24] systematically show that both Douglas-Peucker and Imai-Iri may indeed
produce far-from-optimal results.

This raises a question of what it means for a simplification to be optimal. We may view
it as a dual-optimization problem: we wish to minimize the number of vertices of P ′ given
a constraint on its similarity to P . This depends on the distance measure used; popular
curve distance measures include the Hausdorff and Fréchet distances (variants and formal
definitions are discussed in Section 2.1). However, the difference in interpretation between
Agarwal et al. and Imai and Iri lies not so much in the choice of distance measure, but rather
what exactly it is applied to. In fact, the Imai-Iri algorithm is optimal in a local sense: it
outputs a subsequence of the vertices of P such that the Hausdorff distance between each
shortcut and its corresponding section of the input is bounded: each shortcut approximates
the section of P between the vertices of the shortcut.

In this work, we underline this difference by using the term global simplification when
a bound on a distance measure must be satisfied between P and P ′ (formal definition in
Section 2.3), and local simplification when a bound on a distance measure must be satisfied
between each edge of P ′ and its corresponding section of P . Clearly, a local simplification
is also a global simplification, but the reverse is not necessarily true, see Figure 1. Both
local and global simplifications have their merits: one can imagine situations where it is
important that each segment of a simplified curve is a good representation of the curve
section it replaces, but in other applications (e.g., visualization) it is really the similarity of
the overall result to the original that matters. Most existing work on curve simplification
falls in the local category. In this work, we focus on global curve simplification.

1.1 Existing Work on Global Curve Simplification

Surprisingly, only a few results on simplification under global distance measures are known [2,
7, 10, 24]; consequently, what makes the problem difficult is not well understood.
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Agarwal et al. [2] first consider the idea of global simplification. They introduce what
they call a weak simplification: a model in which the vertices of the simplification are not
restricted to be a subset of the input vertices, but can lie anywhere in the ambient space.1
Interestingly, they compare this to a local simplification where vertices are restricted to be
a subset of the input. We may interpret a combination of two of their results (Theorem
1.2 and Theorem 4.1) as an approximation algorithm for global curve simplification with
unrestricted vertices under the Fréchet distance: for a given curve P and threshold δ one can
compute, in O(n logn) time, a simplification P ′ which has at most the number of vertices of
an optimal simplification with threshold δ/8.

Bereg et al. [7] first explicitly consider global simplification in the setting where vertices
are restricted to be a subsequence of input vertices, but using the discrete Fréchet distance:
a variant of the Fréchet distance which only measures distances between vertices (refer
to Section 2.1). They show how to compute an optimal simplification where vertices are
restricted to be a subsequence in O(n2) time, and they give an O(n logn) time algorithm for
the setting where vertices may be placed freely.

Van Kreveld et al. [24] consider the same (global distance, but vertices should be a
subsequence) setting, but for the continuous Fréchet and Hausdorff distances. They give
polynomial-time algorithms for the Fréchet distance and directed Hausdorff distance (from
simplification curve to input curve), but they show the problem is NP-hard for the directed
Hausdorff distance in the opposite direction and for the undirected Hausdorff distance.
Recently, Bringmann and Chaudhury [10] improved their result for the Fréchet distance to
O(n3), and also give a conditional cubic lower bound.

Finally, we mention there is earlier work which does not explicitly study simplification
under global distance measures, but contains results that may be reinterpreted as such.
Guibas et al. [19] provide algorithms for computing minimum-link paths that stab a sequence
of regions in order. One of the variants, presented in Theorems 10 and 14 of [19], computes
what may be seen as an optimal simplification under the Fréchet distance with no vertex
restrictions, i.e., the same setting that was studied by Agarwal et al., in O(n2 log2 n) time.

2 Classification

We aim to provide a systematic overview of curve simplification problems under global
distance measures. To this end, we have collected known results and arranged them in a table
(Table 1), and provide several new results to complement these (refer to Section 2.4). This
allows us for the first time to observe some surprising patterns, and it suggests directions for
future research in this important area. We first discuss the dimensions of the table.

2.1 Distance Measures
For our study, we consider six different curve distance measures: three variants of the
Hausdorff distance and three variants of the Fréchet distance. These are among the most
popular curve distance measures in the algorithms literature. The Hausdorff distance captures
the maximum distance from a point on one curve to a point on the other curve. The variants
of the Hausdorff distance we consider are the directed Hausdorff distance from the input to
the output, the directed Hausdorff distance from the output to the input, and the undirected

1 We choose not to adopt the terms weak and strong in this context because we will also distinguish an
intermediate model, and to avoid confusion with the weak Fréchet distance; refer to Section 2.2.

ESA 2019



67:4 Global Curve Simplification

p3 = p5
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Figure 2 Globally simplified curves under Fréchet distance (left) and Hausdorff distance (right).
The vertex-restricted case (in red) requires 5 vertices for Fréchet distance and 8 vertices for the
Hausdorff distance. The curve-restricted case (in blue) requires 4 vertices for Fréchet distance and 6
vertices for the Hausdorff distance. The non-restricted case (in green) requires only 3 vertices for
Fréchet distance and only 5 vertices for the Hausdorff distance. The δ-neighborhoods for the original
curves are shown in yellow.

(or bidirectional) Hausdorff distance. The Fréchet distance captures the maximum distance
between a pair of points traveling along the two curves simultaneously. We now formally
define all six distance measures.

Let P = 〈p1, p2, · · · , pn〉 be the input polygonal curve. We treat P as a continuous map
P : [1, n]→ Rd, where P (i) = pi for integer i, and the i-th edge is linearly parametrized as
P (i+ λ) = (1− λ)pi + λpi+1. We write P [s, t] for the subcurve between P (s) and P (t) and
denote the shortcut, i.e., the straight line connecting them, by 〈P (s)P (t)〉.

The Fréchet distance between two polygonal curves P and Q, with n and m vertices,
respectively, is F(P,Q) = inf(σ,θ) maxt ‖P (σ(t)) − Q(θ(t))‖, where σ and θ are continuous
non-decreasing functions from [0, 1] to [1, n] and [1,m], respectively. If σ and θ are continuous
but not necessarily monotone, the resulting infimum is called the weak Fréchet distance.
Finally, the discrete Fréchet distance is a variant where σ and θ are discrete functions from
{1, . . . , k} to {1, . . . , n} and {1, . . . ,m} with the property that |σ(i)− σ(i+ 1)| ≤ 1.

The directed Hausdorff distance between two polygonal curves (or more generally, compact
sets) P and Q is defined as

−→
H (P,Q) = max

p∈P
min
q∈Q
‖p− q‖. The undirected Hausdorff distance

is then simply the maximum over the two directions: H(P,Q) = max{
−→
H (P,Q),

−→
H (Q,P )}.

2.2 Vertex Restrictions
Once we have fixed the distance measure and agreed that we wish to apply it globally,
one important design decision still remains to be made. Traditional curve simplification
algorithms consider the (polygonal) input curve P to be a sequence of points, and produce
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Table 1 Known and new results (in blue) for the GCS problem under global distance measures.

Distance Vertex-restricted (V) Curve-restricted (C) Non-restricted (N )

←−
H (P, δ) strongly NP-hard [24] weakly NP-hard (Thm 5) ?

−→
H (P, δ) O(n4) [24]

O(n3 log n) (Thm 3)
weakly NP-hard (Thm 5) poly(n) [23]

H(P, δ) strongly NP-hard [24] strongly NP-hard (Cor 14) strongly NP-hard (Thm 13)

F(P, δ)
O(mn5) [24]
O(n3) [22]
O(n3) [10]

O(n) in R1 (Thm 7)
weakly NP-hard in R2 (Thm 5)

O(n2 log2 n) in R2 [19]
O(n logn) (1, 8)-approx [2]

O∗(n2 logn log logn)
(2, 1 + ε)-approx (Thm 11)

dF(P, δ) O(n2) [7] O(n3) (Thm 6) O(n logn) [7]

wF(P, δ) O(n3) (Thm 2) weakly NP-hard (Thm 5) (2, 1 + ε)-approx (Cor 12)

as output P ′ a subsequence of this sequence. However, if we measure the distance globally,
there may be no strong reason to restrict the family of acceptable output curves so much:
the distance measure already ensures the similarity between input and output curves, so
perhaps we may allow a more free choice of vertex placement. Indeed, several results under
this more relaxed viewpoint exist, as discussed in Section 1.1. Here, we choose to investigate
three increasing levels of freedom: (1) vertex-restricted (V), where vertices of P ′ have to be a
subsequence of vertices of P ; (2) curve-restricted (C), where vertices of P ′ can lie anywhere
on P but have to respect the order along P ; and (3) non-restricted (N ), where vertices of P ′
can be anywhere in the ambient space. Figure 2 illustrates the difference between the three
models. The third category does not make sense for local curve simplification, but is very
natural for global curve simplification. Observe that when the vertices of a simplified curve
have more freedom, the optimal simplified curve never has more, but may have fewer, vertices.

2.3 Global Curve Simplification Overview
We are now ready to formally define a class of global curve simplification problems. When
D(·, ·) denotes a distance measure between curves (e.g., the Hausdorff or Fréchet distance),
the global curve simplification (GCS) problem asks what is the smallest number k such
that there exists a curve P ′ with at most k vertices, chosen either as a subsequence of the
vertices of P (variant V), as a sequence of points on the edges of P in the correct order
along P (variant C), or chosen anywhere in Rd (variant N ) and such that D(P, P ′) ≤ δ, for
a given threshold δ. In all cases, we require that P and P ′ start at the same point and end
at the same point.

Table 1 summarizes results for the different variants of the GCS problem obtained by
instantiating D with the Hausdorff or Fréchet distance measures and by applying a vertex
restriction R. Here R ∈ {V, C,N}, and D is either the undirected Hausdorff distance H, the
directed Hausdorff distance

←−
H (P, δ) from P to P ′, the directed Hausdorff distance

−→
H (P, δ)

from P ′ to P , the Fréchet distance F, the discrete Fréchet distance dF, or the weak Fréchet
distance wF. Throughout the paper we use DR(P, δ) to denote a curve P ′ that is the optimal
R-restricted simplification of P with D(P, P ′) ≤ δ.
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Since GCS is a dual-optimization problem, we call an algorithm an (α, β)-approximation
if it computes a solution with distance at most βδ and uses at most α times more shortcuts
than the optimal solution for distance δ.

2.4 New Results
In order to provide a thorough understanding of the different variants of the GCS problem
we provide several new results. In some cases these are straightforward adaptations of known
results, in other cases they require deeper ideas. Additional lemmas, theorems, and proofs
are available in the full version of this paper [22]. We give polynomial time algorithms for
finding wFV(P, δ), the vertex-restricted GCS under the weak Fréchet distance (Section 3,
Theorem 2), and wFV(P, δ), the vertex-restricted GCS under the strong Fréchet distance (see
[22]). In Section 4 we consider the vertex-restricted problem under the directed Hausdorff
distance from P ′ to P (that is, to find

−→
HV(P, δ)), originally considered by van Kreveld et

al. [24], and we provide an algorithm with an improved runtime of O(n3 logn) (Theorem 3).
In Section 5 we prove that solving the curve-restricted GCS is NP-hard for almost all distance
measures considered in this paper except for the discrete Fréchet distance (Theorem 6) and
strong Fréchet distance in R1 (Theorem 7) for which we present polynomial time algorithms.
To the best of our knowledge, these are the first results in the curve-restricted setting
under global distance measures. Finally, in Section 8, we give a (2, 1 + ε)-approximation
algorithm for FN (P, δ), the non-restricted GCS under the Fréchet distance, which runs in
O∗(n2 logn log logn) time, where O∗ hides factors polynomial in 1/ε (Theorem 11). The same
result also holds for wFN (P, δ) (Corollary 12). In Section 9 we show that the non-restricted
GCS problem becomes NP-hard when we consider the Hausdorff distance (Theorem 13).

2.5 Discussion
With both the existing work and our new results in place, we now have a good overview of
the complexity of the different variants of the GCS problem, see Table 1.

Observe that the curve-restricted variants seem to generally be harder than both the vertex-
restricted and the non-restricted variants. That means that, on the one hand, broadening
the search space from the vertex-restricted to the curve-restricted case makes the problem
harder. But on the other hand it does not give unrestricted freedom of choice, which in turn
enables the development of efficient algorithms for the unrestricted case.

Another interesting pattern can be observed for the Hausdorff distance measures. The
direction of the Hausdorff distance makes a significant difference in whether the corresponding
GCS problem is NP-hard or polynomially solvable. The GCS problem for the undirected
Hausdorff distance is at least as hard as for the directed Hausdorff distance from the input
curve to the simplification.

Drawing upon the above observations we make the following conjecture:

I Conjecture 1. The curve-restricted and non-restricted GCS problems for
←−
H (P, δ) are

strongly NP-hard.

3 Freespace-Based Algorithms for Fréchet Simplification

We use the free space diagram between P and its shortcut graph G to solve the vertex-
restricted GCS problem under the weak and strong Fréchet distances in O(n3) time and
space. This is related to map-matching [4, 9], however in our case we need to compute
shortest paths in the free space that correspond to simple paths in G. While map-matching
for closed simple paths is NP-complete [25], we exploit the DAG property of G to develop
efficient algorithms. The proof for the strong Fréchet distance can be found in [22].
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Figure 3 A free space diagram FSDδ(P,G) with strips and spines.

3.1 Shortcut DAG and Free Space Diagram

Let G = (V,E) be the shortcut DAG of P , where V = {1, . . . , n} and E = {(u, v) | 1 ≤
u < v ≤ n}. Each v ∈ V is embedded at pv and each edge e = (u, v) ∈ E as a straight line
shortcut is linearly parameterized as e(t) = (1 − t)pu + tpv for t ∈ [0, 1]. We consider the
parameter space of G to be E × [0, 1].

Now, let δ > 0, and consider the joint parameter space [1, n] × E × [0, 1] of P and G.
Any (s, e, t) ∈ [1, n]× E × [0, 1] is called free if ‖P (s)− e(t)‖ ≤ δ, and the union of all free
points is referred to as the free space. For brevity, we write (s, e(t)) instead of (s, e, t), and
if e(t) = v ∈ V we write (s, v). The free space diagram FSDδ(P,G) consists of all points in
[1, n] × E × [0, 1] together with an annotation for each point whether it is free or not. In
the special case that the graph is a polygonal curve Q with m vertices, then FSDδ(P,Q)
consists of (n − 1) × (m − 1) cells in the domain [1, n] × [1,m]. A monotone path from
(1, 1) to (n,m) that lies entirely within the free space corresponds to a pair of monotone
reparameterizations (σ, θ) that witness F(P,Q) ≤ δ. Such a reachable path can be computed
using dynamic programming in O(mn) time [5]. If one drops the monotonicity requirement
for the path, one obtains a witness for wF(P,Q) ≤ δ.

The free space diagram FSDδ(P,G) consists of one cell for each edge in P and each
edge in G. The free space in such a cell is convex. The boundary of a cell comprises four
line segments that each contain at most one free space interval. FSDδ(P,G) is composed
of spines and strips. For any v ∈ V and e ∈ E we call SP(v) = [1, n] × v a spine and
ST(e) = [1, n] × e × [0, 1] a strip. We denote the free space within spines and strips as
SPδ(v) = {(s, v) | 1 ≤ s ≤ n, ||P (s)− pv|| ≤ δ} and STδ(e) = {(s, e(t)) | 1 ≤ s ≤ n, 0 ≤ t ≤
1, ||P (s)− e(t)|| ≤ δ}. For (u, v) ∈ E, both spines centered at the vertices of the edge are
subsets of the strip: SP(u),SP(v) ⊆ ST(u, v), and SP(u) is a subset of all strips with respect
to edges incident on u. See Figure 3 for an illustration.

3.2 Weak Fréchet Distance wFV(P, δ) in Polynomial Time

Let P ′ = wFV (P, δ) and let n′ = #P ′ be the number of vertices in P ′. Then P ′ is a path
in G, and P ′ visits an increasing subsequence of vertices in P (or V ). From the fact that
wF(P, P ′) ≤ δ we know that there is a path P = (σ, θ) from (1, 1) to (n, n′) in FSDδ(P, P ′)
that lies entirely within free space. And since FSDδ(P, P ′) is a subset of FSDδ(P,G), the
path P = (σ, θ) is also a path in FSDδ(P,G). Here, σ is a reparameterization of P , and θ is
a reparameterization of P ′, and P ′ is simple. We call (s, d) in FSDδ(P,G) weakly reachable if
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there exists a path P = (σ, θ) from (1, 1) to (s, d) in FSDδ(P,G) that lies in free space such
that θ is a reparameterization of a simple path from p1 to some point on an edge in G. We
denote the number of vertices on this simple path by #P, and we call P weakly reachable.
We define the cost function φ : [1, n]× V → N as φ(z, v) = minP #P, where the minimum
ranges over all weakly reachable paths to (z, v) in the free space diagram. If no such path
exists then φ(z, v) =∞. Note that all points in a free space interval (on the boundary of a
free space cell) have the same φ-value.

I Observation 1. There is a weakly reachable path P in FSDδ(P,G) from (1, 1) to (n, n)
with #P = #wFV(P, δ) if and only if φ(n, n) = #wFV(P, δ).

Since φ is the length of a shortest path, it seems as if one could compute it by simply
using a breadth-first propagation. However, one has to be careful because a weakly reachable
path P is only allowed to backtrack along the path in G that it has already traversed. We
therefore carefully combine two breadth-first propagations to compute the φ values for all
I ∈ I, where I is the set of all (non-empty) free space intervals on all spines SP(v) for all
v ∈ V . For the primary breadth-first propagation, we initialize a queue Q by enqueuing the
interval I ⊆ SPδ(1) that contains (1, 1). Once an interval has been enqueued it is considered
visited, and it can never become unvisited again. Then we repeatedly extract the next interval
I from Q. Assume I ⊆ SPδ(u). For each v from u + 1 to n we consider ST(u, v) and we
compute all unvisited intervals J ⊆ SPδ(u)∪ SPδ(v) that are reachable from I with a path in
STδ(u, v). These J can be reached using one more vertex, therefore we set φ(J) = φ(I) + 1,
we insert J into Q, and we store the predecessor π(J) = I. For each J ∈ SPδ(u) we then
launch a secondary breadth-first traversal to propagate φ(J) to all unvisited intervals J ′ ∈ I
that are reachable from J within the free space of FSDδ(P,G(π(J))). Here, G(π(J)) denotes
the projection of the predecessor DAG rooted at π(J) onto G, i.e., each interval I in the
predecessor DAG is projected to u if I ⊆ SPδ(u). This allows P to backtrack along the path in
G that it has already traversed, without increasing φ. This secondary breadth-first traversal
uses a separate queue Q′, and sets φ(J ′) = φ(J) and π(J ′) = J . When this secondary
traversal is finished, Q′ is prepended to Q, and then the primary breadth-first propagation
continues. Once Q is empty, i.e., all intervals have been visited, φ(I) = #wFV(P, δ), where
I ⊆ SPδ(n) is the interval that contains (n, n). Backtracking a path P from n to 1 in the
predecessor DAG rooted at π(I), and projecting P onto G, yields the simplified curve P ′.
This algorithm visits each interval in I once using nested breadth-first traversals. Since there
are O(n3) free space intervals this takes O(n3) time and space.

I Theorem 2. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to
the vertex-restricted GCS problem under the weak Fréchet distance can be computed in O(n3)
time and space.

4 Vertex-Restricted GCS under Directed Hausdorff from P ′ to P

In this section we revisit the GCS problem for
−→
HV(P, δ) considered by Kreveld et al. [24].

We improve on the running time of their O(n4) time algorithm. First we thicken the input
curve P by width δ. This induces a polygon P with h = O(n2) holes. Now all we need is
to decide whether each shortcut 〈pipj〉 for all 1 ≤ i < j ≤ n lies entirely within P or not.
To this end, we preprocess P into a data structure such that for any straight line query
ray ρ originating from a point inside P one can efficiently compute the first point on the
boundary of P hit by ρ. We use the data structure proposed by [13] of size O(N) which
can be constructed in time O(N

√
h + h3/2 log h + N logN) and which answers queries in
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Figure 5 Pinhole gadgets π for FC(P, δ)
(left) and

←−
H C(P, δ) (right). The pinhole is

shown in red.

O(
√
h logN) time. We have Θ(n2) shortcuts 〈pipj〉 to process and need to examine whether

each shortcut lies inside P or not. If a shortcut lies inside P then we include it in the edge
set of the shortcut graph proposed by Imai and Iri [20]. Otherwise we eliminate the shortcut.
We originate a ray at pi and compute the first point x on the boundary of P hit by the ray
in O(

√
h logN) time. If ‖pi − x‖ ≥ ‖pi − pj‖ then the shortcut lies inside P, otherwise it

does not. Once the edge set of the shortcut graph is constructed, we compute the shortest
path in it. As a result we have the following theorem:

I Theorem 3. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to
the curve-restricted GCS problem for

−→
HV(P, δ) can be computed in O(n3 logn) time using

O(n2) space.

5 NP-Hardness of Several Curve-Restricted Variants

In this section we construct a template that we use to prove NP-hardness of the curve-
restricted GCS problems for most of the distance measures discussed in this paper. The
template takes inspiration from the NP-hardness proofs of minimum-link path problems [23].
We believe that this template can be adapted to show hardness of other similar problems.

The template reduces from the Subset Sum problem. Given a set of m integers
A = {a1, a2, . . . , am} and an integer M , we will construct an instance of the curve-restricted
GCS problem such that there exists a subset B ⊂ A with the total sum of its integers equal
to M if and only if there exists a simplified polygonal curve with at most 2m+ 1 vertices.

The input curve P we construct has a zig-zag pattern. It has m split gadgets at every
other bend of the pattern, m+ 1 enumeration gadgets at the other bends, and 2m pinhole
gadgets halfway through each zig-zag segment (refer to Figure 4).

The construction forces any optimal simplification P ′ to follow a zig-zag pattern with a
vertex on each split and enumeration gadget and no other vertices. The pinhole gadget is
named as such because any segment of P ′ that goes through it is forced to pass through a
specific point, called the pinhole. This limits the placements of P ′’s vertices. The choice of
where to place the vertex on each split gadget then corresponds to the choice of including
or excluding a given integer in the subset B and the x-coordinate of the vertex on each
enumeration gadget encodes the sum of integers in B up to that point. We ensure that the
endpoint of P is reachable with at most 2m+ 1 vertices only if B sums to exactly M .

The split and enumeration gadgets always have the same shape, but the shape of the
pinhole gadget depends on the distance measure. Pinhole gadgets must be chosen so that
the following properties hold:
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1. Any segment of P ′ starting before a pinhole gadget and ending after the pinhole gadget
must pass through the pinhole gadget’s pinhole.

2. It must be impossible to have a segment of P ′ traverse multiple pinhole gadgets at once.
3. Any segment of P ′ where the starting vertex u is on a split or enumeration gadget, the

segment goes through a pinhole, and the ending vertex v is on the next enumeration or
split gadget, must have distance ≤ δ to P [u, v].

4. P must be polynomial in size. Specifically, only a polynomial number of polyline segments
can be used and all vertices must have rational coordinates.

In Figure 5 we show pinhole gadgets for Fréchet distance and directed Hausdorff distance
directed from P ′ to P . The gadget for Fréchet distance also works for weak Fréchet distance,
undirected Hausdorff distance and directed Hausdorff distance in the other direction. For
these latter three distance measures, we note that the pinhole gadget here does not force P ′
to go through the pinhole but to pass close enough by it instead. This results in there being
reachable intervals on the split and enumeration gadgets rather than reachable points. This
leads to an expanded version of the first property:
1. The endpoint of any segment of P ′ starting before a pinhole gadget and ending after the

pinhole gadget must have distance less than 0.5
2m to the endpoint of the segment with

the same starting point that passes exactly through the pinhole and ends on the same
segment of P .

If this property holds (as it does for the gadget in Figure 5 (left) under weak Fréchet and
Hausdorff distance) the reachable intervals on the gadgets are so small they never overlap, so
the reduction still holds. This leads to the following theorems:

I Theorem 4. Given a curve distance measure, if there exists a pinhole gadget that can be
inserted in the described template such that the listed properties hold, the curve-restricted
GCS problem for that distance measure is NP-hard.

I Theorem 5. The GCS problem for
←−
H C(P, δ),

−→
H C(P, δ),HC(P, δ),FC(P, δ),wFC(P, δ) is

NP-hard.

Theorem 4 implies this template may be used to prove curve-restricted simplification under
other distance measures NP-hard as well in the future. Since the template reduces from
Subset Sum it proves the above problems weakly to be NP-hard. For undirected Hausdorff
distance, we also prove strong NP-hardness in Corollary 14.

6 Curve-Restricted GCS under Discrete Fréchet Distance

Next we present an O(n3)-time algorithm for the GCS problem for dFC(P, δ). Observe that,
given an input curve P , there is only a discrete set of candidate points we need to consider
for vertices of the output curve. Let A be the arrangement of n disks of radius δ centered on
the vertices of P , and let C = 〈c1, . . . , cm〉, with m ∈ O(n2), be the sequence of intersections
between P and A, in order along P . Observe that under the discrete Fréchet distance, if there
exists a curve-restricted simplification P ′ = 〈q1, . . . , qk〉 of P , then there exists a subsequence
of C of length k which is a simplification of P .

Although the approach of Bereg et al. [7] to compute the minimal vertex-restricted
simplification of A does not apply in our case, we can design a dynamic programming
algorithm in a similar fashion. Define K(i, j) to be the minimum value k such that there
exists a subsequence 〈c1, . . . , cj〉 of length k that has discrete Fréchet distance at most δ
to the sequence 〈p1, . . . , pi〉. We will design a dynamic program to calculate all nm values
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m1

m2
m3

m4

m5

m6

m7

d1
d2

d3

d4

d5
d6

d7

δ

Figure 6 The time-stamped traversals made by the man m and the dog d. The red lines indicate
the dog’s jumps.

K(i, j). Specifically, if pi−1 and cj are within distance δ, then

K(i, j) = min
(
K(i− 1, j), min

1≤j′<j
(K(i− 1, j′) + 1)

)
,

and K(i, j) = ∞ otherwise. This definition immediately gives an O(n4) algorithm to
compute K(n,m). We can improve on this by maintaining a second table with prefix minima
M(i, j) = min

1≤j′≤j
K(i, j), which can be calculated in constant time per table entry and overall

saves a linear factor. The full proof of the following theorem can be found in [22].

I Theorem 6. Given a polygonal curve P with n vertices and δ > 0, an optimal solution to
the dFC(P, δ) can be computed in O(n3) time and O(n2) space.

7 GCS Fréchet Distance in One Dimension

In this section we provide a greedy algorithm for the curve-restricted GCS problem in R1

under the Fréchet distance. We describe our algorithm using the man-dog terminology that is
often used in the literature on Fréchet distance: Initially a man and his dog start at p1. The
man walks along P until his distance to the dog exceeds δ. Now if there is a turn between
the man and the dog, the dog marks its current position and jumps over the turn and stays
at distance exactly δ away from the man. If there is no turn in between, the dog just follows
the man at distance exactly δ and stops when the man arrives at the next turn or the end.
Once they both end the walk at pn we report the positions marked by the dog as P ′. See
Figure 6. More details are given in [22].

I Theorem 7. Given a polygonal curve P in R1 with n vertices and δ > 0, an optimal
solution to the curve-restricted GCS problem under the Fréchet distance can be computed in
linear time.

8 Approximation of Non-Restricted GCS under Fréchet Distance

In this section we present an approximation algorithm for the non-restricted GCS problem
that discretizes the feasible space for the vertices of the simplified curve. The idea is to
compute a polynomial number of shortcuts in the discretized space, and (approximately)
validate for each shortcut whether it is within Fréchet distance δ to a subcurve of P . For every
subcurve of P we incrementally add the valid shortcuts to the edge set of a graph G until all
the shortcuts have been processed. Once G is built, we compute the shortest path in G and
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67:12 Global Curve Simplification

Algorithm 1 Non-restricted GCS problem for the Fréchet distance.

1 forall i ∈ {1, · · · , n} do Compute Ci(δ,
(
εδ/(4

√
d)
)
and Gi ;

2 E ← ∅, V ← ∅, C1 ← p1 ∪ C1, Cn ← pn ∪ Cn;
3 forall Ci and Cj, with 1 ≤ i ≤ j ≤ n do
4 forall c1 ∈ Ci and c2 ∈ Cj do
5 if Validate(〈c1c2〉, P [i, j]) = true then E ← E ∪ 〈c1c2〉, V ← V ∪ {c1, c2};

6 return the shortest path between p1 and pn in G = (V,E).

return P ′. To speed up the validation for each shortcut, we use a data structure to decide
whether the Fréchet distance between a shortcut and a subcurve of P is at most δ. For a better
understanding of our algorithm, we introduce some notation. Consider a ball B(o, r) of radius
r > 0 centered at o ∈ Rd. Let Prt(Rd, l) be a partitioning of Rd into a set of disjoint cells
(hypercubes) of side length l that is induced by axis parallel hyperplanes placed consecutively
at distance l. For any 1 ≤ i ≤ n we call Ci = Ci(r, l) = {c ∈ Prt(Rd, l) | c ∩ B(pi, r) 6= ∅} a
discretization of B(pi, r). Let Gi be the set of corners of all cells in Ci.

As we can see, Algorithm 1 is a straightforward computation of valid shortcuts and shortest
path in the graph G. The Validate procedure takes a shortcut 〈c1c2〉 and a subcurve P [i, j]
as arguments and decides (approximately) if F(〈c1c2〉, P [i, j]) ≤ δ. In particular, it returns
true if F(〈c1c2〉, P [i, j]) ≤ (1 + ε/2)δ and false if F(〈c1c2〉, P [i, j]) > (1 + ε)δ. We implement
the Validate procedure (line 5) using the data structure in [17]. Let #P ′ denote the number
of vertices of the polygonal curve P ′. The following lemmas imply Theorem 11. More details
and proofs are provided in [22].

I Lemma 8. The shortest path P ′alg returned by Algorithm 1 exists and F(P, P ′alg) ≤ (1 + ε)δ.

I Lemma 9. Let P ′ = FN (P, δ) and let P ′alg be the curve returned by Algorithm 1. Then
#P ′alg ≤ 2(#P ′ − 1).

I Lemma 10. Algorithm 1 runs in O
(
ε−dn logn

(
log2(1/ε) logn+ ε−(d+2)n log logn

))
time

and uses O
(
(ε−d log2(1/ε))n

)
space.

I Theorem 11. Let P be a polygonal curve with n vertices in Rd, δ > 0, and P ′ = FN (P, δ).
For any 0 < ε ≤ 1, one can compute in O∗(n2 logn log logn) time and O∗(n) space a non-
restricted simplification P ∗ of P such that #P ∗ ≤ 2(#P ′− 1) and F(P, P ∗) ≤ (1 + ε)δ. Here,
O∗ hides factors polynomial in 1/ε.

I Corollary 12. Theorem 11 also holds for the non-restricted GCS under the weak Fréchet
distance.

9 Strong NP-Hardness for Non-Restricted GCS under Undirected
Hausdorff Distance

Van Kreveld et al. [24] showed that the vertex-restricted GCS problem is NP-hard for
undirected Hausdorff distance by a reduction from Hamiltonian cycle in segment intersection
graphs. Their proof can be extended to the curve-restricted and non-restricted case; however,
because of the increased freedom in vertex placement we must take care when exact embedding
the segment graph: e.g., segments that intersect at arbitrarily small angles could potentially
cause coordinates with unbounded bit complexity. For this reason, we here reduce from a
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more restricted class of graphs: orthogonal segment intersections graphs. Czyzowicz et al. [15]
show that Hamiltonian cycle remains NP-complete in 2-connected cubic bipartite planar
graphs, and Akiyama et al. [3] prove that every bipartite planar graph has a representation
as an intersection graph of orthogonal line segments. Hence, Hamiltonian cycle in orthogonal
segment intersection graphs is NP-complete.

We sketch the adapted proof; the full proof can be found in [22]. Let S be a set of n
horizontal or vertical line segments in the plane with integer-coordinate endpoints such that⋃
S forms one connected component. Furthermore, assume that all intersections of segments

in S are proper, that is no endpoints of segments in S coincide. Let the input polygonal
curve P consist of the subsegments of S, and let P cover all the segments of S (possibly
multiple times). That is, the vertices of P are chosen from the set of endpoints and the
intersection points of segments in S, and the union of all the links of P equals to the union of
the segments in S. Set δ = 1

8 , and let D ⊂ R2 be the Minkowski sum of S and a closed ball
of radius δ. A simplification P ′ with Hausdorff distance at most δ to P must visit the δ-disks
around all endpoints of S, while staying inside D. A Hamiltonian path in the intersection
graph of S corresponds to a simplification P ′ with 3n − 1 vertices. Indeed, since no two
δ-disks around the endpoints of the segments in S are visible to each other within D (unless
they are endpoints of the same segment), an optimal solution visits the two endpoints of each
segment consecutively and has one extra bend to switch to the next segment. This results in
three links of P ′ per segment, except for the first and the last segment to be covered, for
which only two links each are needed.

I Theorem 13. The non-restricted GCS problem under undirected Hausdorff distance is
strongly NP-hard.

Since a solution to the reduction never benefits from placing vertices not on P , we also
immediately obtain an improvement over Theorem 5 for the case of HC(P, δ).

I Corollary 14. The curve-restricted GCS problem under undirected Hausdorff distance is
strongly NP-hard.
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Abstract

In the beautifully simple-to-state problem of trace reconstruction, the goal is to reconstruct an
unknown binary string x given random “traces” of x where each trace is generated by deleting each
coordinate of x independently with probability p < 1. The problem is well studied both when the
unknown string is arbitrary and when it is chosen uniformly at random. For both settings, there is
still an exponential gap between upper and lower sample complexity bounds and our understanding
of the problem is still surprisingly limited. In this paper, we consider natural parameterizations and
generalizations of this problem in an effort to attain a deeper and more comprehensive understanding.
Perhaps our most surprising results are:

1. We prove that exp(O(n1/4√log n)) traces suffice for reconstructing arbitrary matrices. In the
matrix version of the problem, each row and column of an unknown

√
n×
√

n matrix is deleted
independently with probability p. Our results contrasts with the best known results for sequence
reconstruction where the best known upper bound is exp(O(n1/3)).

2. An optimal result for random matrix reconstruction: we show that Θ(log n) traces are necessary
and sufficient. This is in contrast to the problem for random sequences where there is a super-
logarithmic lower bound and the best known upper bound is exp(O(log1/3 n)).

3. We show that exp(O(k1/3 log2/3 n)) traces suffice to reconstruct k-sparse strings, providing an
improvement over the best known sequence reconstruction results when k = o(n/ log2 n).

4. We show that poly(n) traces suffice if x is k-sparse and we additionally have a “separation”
promise, specifically that the indices of 1’s in x all differ by Ω(k log n).
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68:2 Trace Reconstruction: Generalized and Parameterized

1 Introduction

In the trace reconstruction problem, first proposed by Batu et al. [4], the goal is to reconstruct
an unknown string x ∈ {0, 1}n given a set of random subsequences of x. Each subsequence,
or “trace”, is generated by passing x through the deletion channel in which each entry of x
is deleted independently with probability p. The locations of the deletions are not known;
if they were, the channel would be an erasure channel. The central question is to find how
many traces are required to exactly reconstruct x with high probability.

This intriguing problem has attracted significant attention from a large number of
researchers [4, 8, 10, 11, 15, 17, 18, 21, 24, 26–28]. In a recent breakthrough, De et al. [11]
and Nazarov and Peres [26] independently showed that exp(O((n/q)1/3)) traces suffice
where q = 1 − p. This bound is achieved by a mean-based algorithm, which means that
the only information used is the fraction of traces that have a 1 in each position. While
exp(O((n/q)1/3)) is known to be optimal amongst mean-based algorithms, the best algorithm-
independent lower bound is the much weaker Ω(n5/4/ logn) [16].

Many variants of the problem have also been considered including: (1) larger alphabets
and (2) an average case analysis where x is drawn uniformly from {0, 1}n. Larger alphabets
are only easier than the binary case, since we can encode the alphabet in binary, e.g., by
mapping a single character to 1 and the rest to 0 and repeating for all characters. In the
average case analysis, the state-of-the-art result is that exp(O(log1/3(n))) traces suffice1,
whereas Ω(log9/4 n/

√
log logn) traces are necessary [15–17]. Very recently, and concurrent

with our work, other variants have been studied including a) where the bits of x are associated
with nodes of a tree whose topology determines the distribution of traces generated [10] and
b) where x is a codeword from a code with o(n) redundancy [8].

In order to develop a deeper understanding of this intriguing problem, we consider fine-
grained parameterization and structured generalizations of trace reconstruction. We prove
several new results for these variations that shed new light on the problem. Moreover, in
studying these settings, we refine existing tools and introduce new techniques that we believe
may be helpful in closing the gaps in the fully general problem.

1.1 Our Results

Parametrizations. We begin by considering parameterizations of the trace reconstruction
problem. Given the important role that sparsity plays in other reconstruction problems (see,
e.g., Gilbert and Indyk [13]), we first study the recovery of sparse strings. Here we prove the
following result.

I Theorem 1. If x has at most k non-zeros, exp(O((k/q)1/3 log2/3 n)) traces suffice to recover
x exactly, with high probability, where q = 1−p = Ω(k−1/2 log1/2 n) is the retention probability.

As some points of comparison, note that there is a trivial exp(O(k/q + logn)) upper
bound, which our result improves on with a polynomially better dependence on k/q in the
exponent. The best known results for the general case is exp(O((n/q)1/3)) [11,26] and our
result is a strict improvement when k = o(n/ log2 n). Note that since we have no restrictions
on k in the statement, improving upon exp(O((k/q)1/3)) would imply an improved bound in
the general setting.

1 p is assumed to be constant in that work.
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Somewhat surprisingly, our actual result is considerably stronger (See Corollary 7 for
a precise statement). We also obtain exp(O((k/q)1/3 log2/3 n)) sample complexity in an
asymmetric deletion channel, where each 0 is deleted with probability exponentially close
to 1, but each 1 is deleted with probability p = 1 − q. With such a channel, all but a
vanishingly small fraction of the traces contain only 1s, yet we are still able to exactly identify
the location of every 0. Since we can accommodate k = Θ(n) this result also applies to the
general case with an asymmetric channel, yielding improvements over De et al. [11] and
Nazarov and Peres [26].

We elaborate more on our techniques in the next section, but the result is obtained
by establishing a connection between trace reconstruction and learning binomial mixtures.
There is a large body of work devoted to learning mixtures [1,2,5,7,9,12,14,19,20,25] where
it is common to assume that the mixture components are well-separated. In our context,
separation corresponds to a promise that each pair of 1s in the original string is separated
by a 0-run of a certain length. Our second result concerns strings with a separation promise.

I Theorem 2. If x has at most k 1s and each 1 is separated by 0-run of length Ω(k logn),
then, with p = 1/2, poly(n) traces suffice to recover x with high probability.

Note that reconstruction with poly(n) traces is straightforward if every 1 is separated by
a 0-run of length Ω(

√
n logn); the basic idea is that we can identify which 1s in a collection

of traces correspond to the same 1 in the original sequence and then we can use the indices of
these 1s in their respective traces to infer the index of the 1 in the original string. However,
reducing to Ω(k logn) separation is rather involved and is perhaps the most technically
challenging result in this paper.

Here as well, we actually obtain a slightly stronger result. Instead of parameterizing
by the sparsity and the separation, we instead parameterize by the number of runs, and
the run lengths, where a run is a contiguous sequence of the same character. We require
that each 0-run has length Ω(r logn), where r is the total number of runs. Note that this
parameterization yields a stronger result since r is at most 2k + 1 if the string is k sparse,
but it can be much smaller, for example if the 1-runs are very long. On the other hand,
the best lower bound, which is Ω(n5/4/ logn) [16], considers strings with Ω(n) runs and
run length O(1).

As our last parametrization, we consider a sparse testing problem. We specifically consider
testing whether the true string is x or y, with the promise that the Hamming distance between
x and y, ∆(x, y), is at most 2k. This question is naturally related to sparse reconstruction,
since the difference sequence x − y ∈ {−1, 0, 1}n is 2k sparse, although of course neither
string may be sparse on its own. Here we obtain the following result.

I Theorem 3. For any pair x, y ∈ {0, 1}n with ∆(x, y) ≤ 2k, exp(O(k logn)) traces suffice
to distinguish between x and y with high probability.

Generalizations. Turning to generalizations, we consider a natural multivariate version of
the trace reconstruction problem, which we call matrix reconstruction. Here we receive matrix
traces of an unknown binary matrix X ∈ {0, 1}

√
n×
√
n, where each matrix trace is obtained

by deleting each row and each column with probability p, independently. Here the deletion
channel is much more structured, as there are only 2

√
n random bits, rather than n in the

sequence case. Our results show that we can exploit this structure to obtain improved sample
complexity guarantees.

In the worst case, we prove the following theorem.
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I Theorem 4. For the matrix deletion channel with deletion probability p,

exp(O(n1/4
√
p logn/q))

traces suffice to recover an arbitrary matrix X ∈ {0, 1}
√
n×
√
n.

While no existing results are directly comparable, it is possible to obtain exp(O(n1/3 logn))
sample complexity via a combinatorial result due to Kós et al. [22]. This agrees with the
results from the sequence case, but is obtained using very different techniques. Additionally,
our proof is constructive, and the algorithm is actually mean-based, so the only information
it requires are estimates of the probabilities that each received entry is 1. As we mentioned,
for the sequence case, both Nazarov and Peres [26] and De et al. [11] prove a exp(Ω(n1/3))
lower bound for mean-based algorithms. Thus, our result provides a strict separation between
matrix and sequence reconstruction, at least from the perspective of mean-based approaches.

Lastly, we consider the random matrix case, where every entry of X is drawn iid from
Ber(1/2). Here we show that O(logn) traces are sufficient.

I Theorem 5. For any constant deletion probability p < 1, O(logn) traces suffice to re-
construct a random X ∈ {0, 1}

√
n×
√
n with high probability over the randomness in X and

the channel.

This result is optimal, since with o(logn) traces, there is reasonable probability that a row/-
column will be deleted from all traces, at which point recovering this row/column is impossible.
The result should be contrasted with the analogous results in the sequence case. For sequences,
the best results for random strings is exp(O(log1/3 n)) [17] and Ω(log9/4 n/

√
log logn) [16].

In light of the lower bound for sequences, it is suprising that matrix reconstruction admits
O(logn) sample complexity.

1.2 Our Techniques
To prove our results, we introduce several new techniques in addition to refining and extending
many existing ideas in prior trace reconstruction results.

Theorem 1 is proved via a reduction from trace reconstruction to learning the parameters
of a mixture of binomial distributions. Surprisingly, this natural connection does not seem to
have been observed in the earlier literature. We then use a generalization of a complex-analytic
approach introduced by De et al. [11] and Nazarov and Peres [26] to prove a bound on the
sample complexity of learning a binomial mixture. This generalization is to move beyond
the analysis of Littlewood polynomials, i.e., polynomials with {−1, 0, 1} coefficients, to the
case where coefficients have bounded precision. The generalization is not difficult. This is
our simplest result to prove but we consider the final result to be revealing as it shows that
sparsity plays a more important role than length in the complexity of trace reconstruction.

Our most technically involved result is Theorem 2. This is proved via an algorithm that
constructs a hierarchical clustering of the individual 1s in all received traces according to
their corresponding position in the original string. This clustering step requires a careful
recursion, where in each step we ensure no false negatives (two 1s from the same origin are
always clustered together) but we have many false positives, which we successively reduce.
At the bottom of the recursion, we can identify a large fraction 1s from each 1 in the original
string. However, as the recursion eliminates many of the 1s, simply averaging the positions of
the surviving fraction leads to a biased estimate. To resolve this, we introduce a de-biasing
step which eliminates even more 1s, but ensures the survivors are unbiased, so that we can
accurately estimate the location of each 1 in the original string. The initial recursion has
L = log logn levels, which is critical since the debiasing step involves conditioning on the
presence of 2L 1s in a trace, which only happens with probability 2−2L = 1/n.
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Theorem 3 leverages combinatorial arguments about k-decks (the multiset of subsequences
of a string) due to Krasikov and Roditty [23]. The result demonstrates the utility of these
combinatorial tools in trace reconstruction. As further evidence for the utility of combinatorial
tools, the connection to k-decks was also used by Ban et al. [3] in independent concurrent
work on the deletion channel.

For Theorem 4, we return to the complex-analytic approach and extend the Littlewood
polynomial argument to multivariate polynomials. Since the unknown matrices are

√
n×
√
n,

we can use a natural bivariate polynomial of degree O(
√
n), which yields the improvement.

However, the result of Borwein and Erdélyi [6] used in previous work on trace reconstruc-
tion applies only to univariate polynomials. Our key technical result is a generalization
of their result to accommodate bivariate Littlewood polynomials, which we then use to
demonstrate separation.

For Theorem 5, using an averaging argument and exploiting randomness in the original
matrix, we construct a statistical test to determine if two rows (or columns) from two different
traces correspond to the same row (column) in the original string. We show that this test
succeeds with overwhelming probability, which lets us align the rows and columns in all
traces. Once aligned, we know which rows/columns were deleted from each trace, so we can
simply read off the original matrix X.

Notation. Throughout, n is the length of the binary string being reconstructed, n0 is the
number of 0s, k is the number of 1s, i.e., the sparsity or weight. For matrices n is the total
number of entries, and we focus on square

√
n×
√
n matrices. For most of our results, we

assume that n, n0, k are known since, if not, they can easily be estimated using a polynomial
number of traces. Let p denote the deletion probability when the 1s and 0s are deleted
with the same probability. We also study a channel where the 1s and 0s are deleted with
different probabilities; in this case, p0 is the deletion probability of a 0 and p1 is the deletion
probability of a 1. We refer to the corresponding channel as the (p0, p1)-Deletion Channel or
the asymmetric deletion channel. It will also be convenient to define q = 1− p, q0 = 1− p0
and q1 = 1 − p1 as the corresponding retention probabilities. Throughout, m denotes the
number of traces.

2 Sparsity and Learning Binomial Mixtures

We begin with the sparse trace reconstruction problem, where we assume that the unknown
string x has at most k 1s. Our analysis for this setting is based on a simple reduction
from trace reconstruction to learning a mixture of binomial distributions, followed by a
new sample complexity guarantee for the latter problem. This approach yields two new
results: first, we obtain an exp(O((k/q1)1/3 log2/3 n)) sample complexity bound for sparse
trace reconstruction, and second, we show that this guarantee applies even if the deletion
probability for 0s is exponentially close to 1.

To establish our results, we introduce a slightly more challenging channel which we refer
to as the Austere Deletion Channel. The bulk of the proof analyzes this channel, and we
obtain results for the (p0, p1) channel via a simple reduction.

I Theorem 6 (Austere Deletion Channel Reconstruction). In the Austere Deletion Channel,
all but exactly one 0 are deleted (the choice of which 0 to retain is made uniformly at random)
and each 1 is deleted with probability p1. For such a channel,

m = exp(O((k/q1)1/3 log2/3 n))

traces suffice for sparse trace reconstruction where q1 = 1− p1, provided q1 = Ω(
√
k−1 logn).
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We will prove this result shortly, but we first derive our main result for this section as a
simple corollary.

I Corollary 7 (Deletion Channel Reconstruction). For the (p0, p1)-deletion channel,

m = q−1
0 exp(O((k/q1)1/3 log2/3 n))

traces suffice for sparse trace reconstruction where q0 = 1 − p0 and q1 = 1 − p1 =
Ω(
√
k−1 logn).

Proof. This follows from Theorem 6. By focusing on just a single 0, it is clear that the
probability that a trace from the (p0, p1)-deletion channel contains at least one 0 is at least
q0. If among the retained 0s we keep one at random and remove the rest, we generate a
sample from the austere deletion channel. Thus, with m samples from the (p0, p1) deletion
channel, we obtain at least mq0 samples from the austere channel and the result follows.
Note that Theorem 1 is a special case where p0 = p1 = p. J

Remarks. First, note that the case where q1 is constant (a typical setting for the problem)
and k = o(logn) is not covered by the corollary. However, in this case a simpler approach
applies to argue that poly(n) traces suffice: with probability qk1 ≥ 1/ poly(n) no 1s are deleted
in the generation of the trace and given poly(n) such traces, we can infer the original position
of each 1 based on the average position of each 1 in each trace. Second, note that the weak
dependence on q0 ensures that as long as q0 = 1/ exp(O((k/q1)1/3 log2/3 n)), we still have the
exp(O((k/q1)1/3 log2/3 n)) bound. Thus, our result shows that sparse trace reconstruction is
possible even when zeros are retained with exponentially small probability.

Reduction to Learning Binomial Mixtures. We prove Theorem 6 via a reduction to learning
binomial mixtures. Given a string x of length n, let ri be the number of ones before the ith zero
in x. For example, if x = 1001100 then r1 = 1, r2 = 1, r3 = 3, r4 = 3. Note that the multi-set
{r1, r2, . . . , } uniquely determines x, that each ri ≤ k, and that the multi-set has size n0.
The reduction from trace reconstruction to learning binomial mixtures is appealingly simple:

1. Given traces t1, . . . , tm from the austere channel, let si be the number of leading ones in
ti.

2. Observe that each si is generated by a uniform2 mixture of Bin(r1, q1), . . . ,Bin(rn0 , q1)
where q1 = 1− p1. Hence, learning r1, r2, . . . , rn0 from s1, s2, . . . , sm allows us to recon-
struct x.

To obtain Theorem 6, we establish the following new guarantee for learning binomial
mixtures.

I Theorem 8 (Learning Binomial Mixtures). LetM be a mixture of d = poly(n) binomials:

Draw sample from Bin(ai, q) with probability αi

where 0 ≤ a1, . . . , ad ≤ a are distinct integers, the values αi have poly(n) precision, and
q = Ω(

√
a−1 logn). Then exp(O((a/q)1/3 log2/3 n)) samples suffice to learn the parameters

exactly with high probability.

2 Note that since the ri are not necessarily distinct some of the binomial distributions are the same.
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Proof. Let M′ be a mixture where the samples are drawn from
∑d
i=1 βiBin(bi, q), where

0 ≤ b1, . . . , bd ≤ a are distinct and the probabilities βi ∈ {0, γ, 2γ, . . . , 1} where 1/γ = poly(n).
Consider the variational distance

∑
i |Ai −Bi| betweenM andM′ where

Ai = Pr [sample fromM is i] =
d∑
j=1

αj

(
aj
i

)
qi(1− q)aj−i

Bi = Pr [sample fromM′ is i] =
d∑
j=1

βj

(
bj
i

)
qi(1− q)bj−i .

We will show that the variational distance betweenM andM′ is at least

ε = exp(−O((a/q)1/3(log 1/γ)2/3)) .

Since there are at most ((a + 1) · (1/γ + 1))d possible choices for the parameters of M′,
standard union bound arguments show that

O(log(((a+ 1) · (1/γ + 1))d)/ε2) = exp(O((a/q)1/3(log 1/γ)2/3))

samples are sufficient to distinguishM from all other mixtures.
To prove the total variation bound, observe that by applying the binomial formula, for

any complex number w, we have

∑
i≥0

(Ai −Bi)wi =
∑
i≥0

wi

∑
j≥0

αj

(
aj
i

)
qi(1− q)aj−i − βj

(
bj
i

)
qi(1− q)bj−i


=

∑
j≥0

(αjzaj − βjzbj )

where z = qw + (1− q). Let G(z) =
∑
j≥0(αjzaj − βjzbj ) and apply the triangle inequality

to obtain:∑
i≥0
|Ai −Bi||wi| ≥ |G(z)| .

Note that G(z) is a non-zero degree d polynomial with coefficients in the set

{−1, . . . ,−2γ,−γ, 0, γ, 2γ, . . . , 1}.

We would like to find a z such that G(z) has large modulus but |wi| is small, since this will
yield a total variation lower bound. We proceed along similar lines to Nazarov and Peres [26]
and De et al. [11]. It follows from Corollary 3.2 in Borwein and Erdélyi [6] that there exists
z ∈ {eiθ : −π/L ≤ θ ≤ π/L} such that

|G(z)| ≥ γ exp(−c1L log(1/γ))

for some constant c1 > 0. For such a value of z, Nazarov and Peres [26] show that

|w| ≤ exp(c2/(qL)2)

for some constant c2 > 0. Therefore,∑
i≥0
|Ai −Bi| exp(ic2/(qL)2) ≥

∑
i≥0
|Ai −Bi||wi| ≥ |G(z)| ≥ γ exp(−c1L log(1/γ))
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For i > τ = 6qa, by an application of the Chernoff bound, Ai, Bi ≤ 2−i, so we obtain

∑
i>τ

2−i exp(ic2/(qL)2)︸ ︷︷ ︸
=Tτ

+
τ∑
i=0
|Ai −Bi| exp(τc2/(qL)2) ≥ γ exp(−c1L log(1/γ)) .

τ∑
i=0
|Ai−Bi| ≥

exp(−c1L log(1/γ))
exp(τc2/(qL)2) − Tτ

exp(τc2/(qL)2) ≥
γ exp(−c1L log(1/γ))

exp(τc2/(qL)2) −O(2−τ ) (1)

where the second equality follows from the assumption that c2/(qL2) ≤ (ln 2)/2 (which we
will ensure when we set L) since,

Tτ
exp(τc2/(qL)2) = O(1) · 2−τ exp(τc2/(qL)2)

exp(τc2/(qL)2) = O(2−τ ) .

Set

L = c 3
√
τ/(q2 log(1/γ)) = c 3

√
6a/(q log(1/γ))

for some sufficiently large constant c. This ensures that the first term of Eqn. 1 is

exp(−O((a/q)1/3 log2/3(1/γ))).

Note that

c2
qL2 <

c2
qc2(a/(q log(1/γ)))2/3 ≤

c2
c2
·
(

log(1/γ)
aq1/2

)2/3
≤ c2
c2
·
(

log(1/γ)
aq2

)2/3

and so by the assumption that q = Ω(
√

log(1/γ)/a) we may set the constant c large enough
such that c2/(qL2) ≤ (ln 2)/2 as required. The second term of Eqn. 1 is a lower order term
given the assumption from the assumption on q and thus we obtain the required lower bound
on the total variation distance. J

Theorem 6 now follows from Theorem 8, since in the reduction, we have d = O(n)
binomials, one per 0 in x, αi is a multiple of 1/n0 and importantly, we have a = k. The key
is that we have a polynomial with degree a = k rather than a degree n polynomial as in the
previous analysis.

Remark. If all αi are equal, Theorem 8 can be improved to poly(n) · exp(O((a/p)1/3)) by
using a more refined bound from Borwein and Erdélyi [6] in our proof. This follows by
observing that if αi = βi = 1/d, then

∑
j≥0(αjzaj − βjzsj ) is a multiple of a Littlewood

polynomial and we may use the stronger bound |G(z)| ≥ exp(−c1L)/d, see Borwein and
Erdélyi [6].We can also show that the exponential dependence on a1/3 in Theorem 8 is
necessary.

I Theorem 9 (Binomial Mixtures Lower Bound). There exists subsets

{a1, . . . , ak} 6= {b1, . . . , bk} ⊂ {0, . . . , a}

such that ifM =
∑k
i=1 Bin(ai, 1/2)/k andM′ =

∑k
i=1 Bin(bi, 1/2)/k, then ‖M−M′‖TV =

exp(−Ω(a1/3)). Thus, exp(Ω(a1/3)) samples are required to distinguishM fromM′.
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Proof. Previous work [11, 26] shows the existence of two strings x, y ∈ {0, 1}n such that∑
i |txi − t

y
i | = exp(−Ω(n1/3)) where tzi is the expected value of the ith element (indexed

at 0) of a string formed applying the (1/2, 1/2)-deletion channel to the string z. We may
assume

∑
i∈[n] xi =

∑
i∈[n] yi ≡ k since otherwise

∑
i

|txi − t
y
i | ≥

∣∣∣∣∣∑
i

txi −
∑
i

tyi

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈[n]

xi/2−
∑
i∈[n]

yi/2

∣∣∣∣∣∣ ≥ 1/2

which would contradict the assumption
∑
i |txi − t

y
i | 6= exp(−Ω(n1/3)).

ConsiderM =
∑k
i=1 Bin(ai, 1/2)/k andM′ =

∑k
i=1 Bin(bi, 1/2)/k, where ai (bi) is the

number of coordinates preceding the ith 1 in x (y). Note that

txi =
k∑
r=1

(
ar
i

)
/2ar+1 and tyi =

k∑
r=1

(
br
i

)
/2br+1 ,

and so

‖M−M′‖TV =
∑
i

|Pr [M = i]− Pr [M′ = i] |

=
∑
i

1
k

∣∣∣∣∣
k∑
r=1

(
ar
i

)
/2ar −

k∑
r=1

(
br
i

)
/2br

∣∣∣∣∣
= 2

k

∑
i

|txi − t
y
i | = exp(−Ω(n1/3)) ,

which proves the result. J

3 Well-Separated Sequences

We now prove Theorem 2, showing that poly(n) traces suffice for reconstruction of a k-sparse
string when there are Ω(k logn) 0s between each consecutive 1. We call such sequences of 0s
the 0-runs of the string. We also refer to the length of the shortest 0-run as the gap g of
the string x.

I Theorem (Restatement of Theorem 2). Let x be a k-sparse string of length n and gap at
least ck log(n) for a large enough c. Then poly(n) traces from the (1/2, 1/2)-Deletion Channel
suffice to recover x with high probability.

In Section 3.1, we present the basic ideas and technical challenges in proving the theorem.
We also describe the algorithm in detail and explain how to set the parameters. Full details
are presented in Section 3.3. In Section 3.2, we strengthen Theorem 2 to show that poly(n)
traces suffice under the weaker assumption that each 0-run has length Ω̃(r) where r is the
total number of runs (0-runs + 1-runs). Observe that this is a weaker assumption, since
r ≤ 2k + 1 always, but r can be much less than k.

3.1 A Recursive Hierarchical Clustering Algorithm and Its Analysis:
Overview

Let {pu}ku=1 denote the positions (index of the coordinate from the left) of the k 1s in
the original string x. Let N denote the multi-set of all positions of all received 1s and call
N = |N |. We will construct a graph G on N vertices where every vertex is associated with a
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received 1. We decorate each vertex v with a number zv ∈ N , which is the position of the
associated received 1. Each vertex v also has an unknown label yv ∈ {1, . . . , k} denoting the
corresponding 1 in the original string.

At a high level, our approach uses the observed values {zv}v∈V to recover the unknown
labels {yv}v∈V . Once this “alignment” has been performed, the original string can be recovered
easily, since the average of {zv1{yv = u}}v∈V is an unbiased estimator for pu/2.

A starting observation. Our first observation is a simple fact about binomial concentration,
which we will use to define the edge set in G: by the Chernoff bound, with high probability,
for every vertex v, if yv = u then we must have |zv − pu/2| ≤ c

√
n logn for some constant

c. Defining the edges in G to be {(v, w) : |zv − zw| ≤ 2c
√
n logn} then guarantees that all

vertices with yv = u are connected. This immediately yields an algorithm for the much
stronger gap condition g ≥ 4c

√
n logn, since with such separation, no two vertices v, w with

yv 6= yw will have an edge. Therefore, the connected components reveal the labeling so that
poly(n) traces suffice with g = Ω(

√
n logn).

Intuitively, we have constructed a clustering of the received 1s that corresponds to the
underlying labeling. To tolerate a weaker gap condition, we proceed recursively, in effect con-
structing a hierarchical clustering. However there are many subtleties that must be resolved.

The first recursion. To proceed, let us consider the weaker gap condition of g ≥ Ω̃(k1/2n1/4).
In this regime, G still maintains a consistency property that for each u all vertices with
yv = u are in the same connected component, but now a connected component may have
vertices with different labels, so that each connected component C identifies a continguous
set U ⊂ {1, . . . , k} of the original 1s. Moreover, due to the sparsity assumption, C must
have length, defined as maxv∈C zv −minv∈C zv, at most O(k

√
n logn). Therefore if we can

correctly identify every trace that contains the left-most and right-most 1 in U , we can
recurse and are left to solve a subproblem of length O(k

√
n logn). Appealing to our starting

observation, this can be done with a gap of g ≥ Ω̃(k1/2n1/4).
The challenge for this step is in identifying every trace that contains the left-most and

right-most 1 in U , which we call uL and uR respectively. This is important for ensuring a
“clean” recursion, meaning that the traces used in the subproblem are generated by passing
exactly the same substring through the deletion channel. To solve this problem we use a
device that we call a Length Filter. For every trace, consider the subtrace that starts with the
first received 1 in U and ends with the last received 1 in U (this subtrace can be identified
using G). If the trace contains uL, uR then the length of this subtrace is 2 + Bin(L− 2, 1/2)
where L is the distance between uL, uR in the original string. On the other hand, if the
subtrace does not contain both end points, then the length is 2 + Bin(L′ − 2, 1/2) where
L′ ≤ L − g. Since we know that L ≤ Õ(k

√
n) and we are operating with gap condition

g = Ω̃(k1/2n1/4) = Ω̃(
√
L), binomial concentration implies that with high probability we can

exactly identify the subtraces containing uL and uR.

Further recursion. The difficulty in applying a second recursive step is that when g =
o(k1/2n1/4) the length filter cannot isolate the subtraces that contain the leftmost and
rightmost 1s for a block U , so we cannot guarantee a clean recursion. However, substrings
that pass through the filter are only missing a short prefix/suffix which upper bounds any error
in the indices of the received 1s. We ensure consistency at subsequent levels by incorporating
this error into a more cautious definition of the edge set (in fact the additional error is the
same order as the binomial deviation at the next level, so it has negligible effect). In this
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way, we can continue the recursion until we have isolated each 1 from the original string.
The Ω(k logn) lower bound on run length arises since the gap at level t of the recursion,
gt, is related to the gap at level t− 1 via gt =

√
k logn · gt−1 with g1 =

√
n logn, and this

recursion asymptotes at Ω(k logn).
The last technical challenge is that, while we can isolate each original 1, the error in our

length filter introduces some bias into the recursion, so simply averaging the zv values of the
clustered vertices does not accurately estimate the original position. However, since we have
isolated each 1 into pure clusters, for any connected component corresponding to a block of
1s, we can identify all traces that contain the first and last 1 in the block. Applying this idea
recursively from the bottom up allows us to debias the recursion and accurately estimate all
positions.

The algorithm in detail: recursive hierarchical clustering. We now describe the recursive
process in more detail. Let us define the thresholds:

τ1 = Õ(n1/2), τ2 = Õ(k1/2n1/4), τ3 = Õ(k3/4n1/8), . . . , τD = Õ(k1−1/2Dn1/2D ),

which will be used in the length filter and in the definitions of the edge set. Observe that
with D = log logn, we have τD = Õ(k). Let x̃1, . . . , x̃m denote the m = poly(n) traces. We
will construct a sequence of graphs G1, G2, . . . , GD on the vertex sets V1 ⊃ V2, . . . ,⊃ VD,
where each vertex v corresponds to a received 1 in some trace tv ∈ [m] and is decorated
with its position zv and the unknown label yv. The dth round of the algorithm is specified as
follows with z(1)

v = zv and V1 as the set of all received 1s.
1. Define Gd with edge set Ed = {(v, w) : v, w ∈ Vd and |z(d)

v − z(d)
w | ≤ τd}.

2. Extract kd ≤ k connected components C(d)
1 , . . . , C

(d)
kd

from Gd.
3. For each connected component C(d)

i , extract subtraces {x̃(d,i)
j }mj=1 where x̃(d,i)

j is the
substring of x̃j starting with the first 1 in Ci and ending with the last 1 in Ci. Formally,
with ` = min{zv : v ∈ Ci, tv = j} and r = max{zv : v ∈ Ci, tv = j}, we define
x̃

(d,i)
j = x̃j [`, . . . , r].

4. Length Filter: Define L(d,i) = maxj len(x̃(d,i)
j ). If

len(x̃(d,i)
j ) ≤ L(d,i) − Ω(

√
L(d,i) log(L(d,i))),

delete all vertices v ∈ Ci with tv = j. Let Vd+1 be all surviving vertices.
5. For v ∈ Vd+1, define z(d+1)

v = zv −minv′∈Ci,tv=tv′ zv′ .

We analyze the procedure via sequence of lemmas. The first one establishes a basic consist-
ency property: that two 1s originating from the same source 1 are always clustered together.

I Lemma 10 (Consistency). At level d let Vd,u = {v ∈ Vd, yv = u} for each u ∈ [k]. Then
with high probability, for each d and u there exists some component C(d)

i at level d such that
Vd,u ⊂ C(d)

i .

The next lemma provides a length upper bound on any component, which is important
for the recursion. At a high level since we are using a threshold τd at level d and the string is
k-sparse, no connected component can span more than kτd positions.

I Lemma 11 (Length Bound). For every component C(d)
i at level d, we have L(d,i) ≤

2kτd. Moreover if U is a contiguous subsequence of {1, . . . , k} with
⋃
u∈U Vd,u ⊂ C

(d)
i , then

minu∈U pu −maxu∈U pu ≤ 2kτd.
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Finally we characterize the length filter.

I Lemma 12 (Length Filter). For a component C(d)
i at level d, let U be the maximal

contiguous subsequence of {1, . . . , k} such that
⋃
u∈U Vd,u ⊂ C

(d)
i . Define uL = arg minu∈U pu

and uR = arg maxu∈U pu. Then for any v ∈ C
(d)
i , if uL and uR are present in tv, then

v survives to round d + 1, that is v ∈ Vd+1. Moreover, for any v ∈ Vd+1, let pmin(v, U)
denote the original position of the first 1 from U that is also in the trace tv. Then we have
pmin(v, u)− puL ≤ Õ(

√
kτd).

The lemmas are all interconnected and proved formally in Section 3.3. It is important that
the error incurred by the length filter is

√
kτd = τd+1 which is exactly the binomial deviation

at level d+ 1. Thus the threshold used to construct Gd+1 accounts for both the length filter
error and the binomial deviation. This property, established in Lemma 12, is critical in the
proof of Lemma 10.

For the hierarchical clustering, observe that after D = log logn iterations, we have
τD = Õ(k). With gap condition g = Ω̃(k) and applying Lemma 10, this means that the
connected components at level D each correspond to exactly one 1 in the original string.
Moreover since the length filter preserves every trace containing the left-most and right-most
1 in the component, the probability that a subtrace passes through the length filter is at least
1/4. Hence, after log logn levels, the expected number of surviving traces in each cluster is
m/4log logn = m/(log2 n). Thus for each original 1 u ∈ {1, . . . , k}, our recursion identifies at
least m/(log2 n) vertices v ∈ V1 such that tv = u.

Removing Bias. The last step in the algorithm is to overcome bias introduced by the length
filter. The de-biasing process works upward from the bottom of the recursion. Since we have
isolated the vertices corresponding to each 1 in the original string, for a component C(D−1)

i

at level D − 1, we can identify all subtraces that survived to this level that contain the first
and last 1 of the corresponding block U (D−1)

i ⊂ [k]. Thus, we can eliminate all subtraces
that erroneously passed this length filter.

Working upwards, consider a component C(d)
i that corresponds to a block U (d)

i ⊂ [k]
of 1s in the original string. Since we have performed further clustering, we have effectively
partitioned U (d)

i into sub-blocks U (d+1)
1 , . . . , U

(d+1)
s . We would like to identify exactly the

subtraces that survived to level d that contain the first and last 1 of U (d)
i , but unfortunately

this is not possible due to a weak gap condition. However, by induction, we can exactly
identify all subtraces that survive to level d that contain the first and last 1 of the first and
last sub-block of U (d)

i , namely U (d+1)
1 and U (d+1)

s . Thus we can de-bias the length filter at
level d by filtering based on a more stringent event, namely the presence of 2D−d nodes. In
total to de-bias all length filters above a particular component, we require the presence of∑D
d=1 2D−d = O(2D) = O(logn) nodes, which happens with probability Ω(1/n). Thus we can

debias with only a polynomial overhead in sample complexity. See Figure 1 for an illustration.

3.2 Strengthening to a Parameterization by Runs

We next parameterized the problem by the number of runs, r = 1 + |{i ∈ [n−1] : xi 6= xi+1}|,
in the string x being reconstructed. We will argue that if every 0-run has length Ω̃(r) then
poly(n) traces suffice. The proof is via a reduction to the k-sparse case in the previous sections.

Let x′ ∈ {0, 1}<n be the string formed by replacing every run of 1s in x by a single
1. We first argue that we can reconstruct x′ with high probability using poly(n) traces
generated by applying the (1/2, 1/2)-Deletion Channel to x. We will prove this result for
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the case r = Ω(logn) since otherwise poly(n) traces is sufficient even with no gap promise.3
Observe that with m = poly(n) traces, if every 0-run in x has length at least c logn for some
sufficiently large constant c > 0, then a bit in every 0-run of x appears in every trace with
high probability. Conditioned on this event, no two 1’s that originally appeared in different
runs of x are adjacent in any trace. Next replace each run of 1s in each trace with a single
1. The end result is that we generate traces that are generated as if we had deleted each
0 in x′ with probability 1/2 and each 1 in x′ with probability 1 − 1/2t ≥ 1/2 where t is
the length of the run that the 1 belonged to in x. This channel is not equivalent to the
(1/2, 1/2)-Deletion channel, but our analysis for the sparse case continues to hold even if the
deletion probability of each 1 is different. Thus we can apply Theorem 2 to recover x′, and
the sparsity of x′ is at most r. Since the algorithm identifies corresponding 1s in x′ in the
different traces, we can then estimate the length of the 1-runs in x that were collapsed to
each single 1 of x′ by looking at the lengths of the corresponding 1-runs in the traces of x
before they were collapsed.

I Theorem 13. For the (1/2, 1/2)-Deletion Channel, poly(n) traces suffice if the lengths of
the 0-runs are Ω̃(r) where r is the number of runs in x.

3.3 Sparsity with Gap: Technical Details
This section contains missing details from Section 3. Recall that we have a string x ∈ {0, 1}n
that is k-sparse. We further assume that each 1 in x is separated by a run of g 0s, and we
refer to g as the gap. Recall that we define {pu}ku=1 as the position of the k 1s in original
string, where p1 < p2 < . . . , pk. As further notation we refer to the collection of m = poly(n)
traces as T = {x̃j}mj=1.

The first level

As a warm up, we show an algorithm called FindPositions, that uses poly(n) traces to
reconstruct x exactly with high probability when the gap g = Ω(

√
n logn). The algorithm

returns the values {pu}ku=1 and crucially uses a binomial mean estimator. Given s samples
X1, X2, . . . , Xs from a binomial distribution Bin(n, 1

2 ) this estimator returns an estimate of
n, n̂ = round

(
2
s

∑s
i=1Xi

)
, where the round function simply rounds the argument to the

nearest integer. From the Hoeffding bound, it is clear that

Pr(n̂ 6= n) = Pr(|n̂− n| ≥ 0.5) = Pr
(∣∣∣1
s

s∑
i=1

Xi −
n

2

∣∣∣ ≥ 1
4

)
≤ 2 exp

(
− s

8n2

)
≤ 2 exp(−nε),

as long as s = 8n2+ε for any ε > 0.
The algorithm FindPositions is displayed in Algorithm 1. Our first result of this section

guarantees that with g = Ω(
√
n logn) Algorithm 1 recovers x exactly with poly(n) traces.

I Theorem 14. Algorithm 1 (FindPositions) successfully returns the string x from m

traces with probability at least 1 − 3n−2 as long as m ≥ Ω(n2 logn) and the gap g ≥
4
√

2n log(nm3) = Θ(
√
n logn).

3 Specifically, if r = O(log n), with probability at least 1/2r = 1/ poly(n) a trace also has r runs. Given
poly(n) traces with r runs we can estimate each run length because we know the ith run in each such
trace corresponds to the ith run in the original string.
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Algorithm 1 FindPositions.

Initialize: length of x: n, m traces T , gap g > 4
√

2n log(mn3).
For each received 1, create a vertex v decorated with tuple (zv, tv) where zv ∈ [n] is the
position of the received 1 and tv ∈ [m] is the index of the trace.
Create graph G = (V,E) using vertex set above, and with edges:

E =
{

(v, w) : |zv − zw| ≤
√

2n log(mn3)
}

Find connected components C1, . . . , Ck′ in G (If k′ 6= k report failure).
For each connected component Ci, use the binomial mean estimator on {zv}v∈Ci to estimate
p̂i.
Return {p̂i}k

′

i=1.

Proof. First, let us associate with each vertex v an unknown label yv ∈ [k] describing the
correspondence between this received 1 and a 1 in the original string. The first observation
is that if yv = u then zv ∼ Bin(pu, 1

2 ) and we always have pu ≤ n. Thus, by Hoeffding’s
inequality and a union bound, we have

Pr[∃v ∈ V : |zv − pu/2| > τ ] ≤ |V | exp(−2τ2/n) ≤ exp(log(mk)− 2τ2/n)

And so with τ =
√
n log(mkn2)/2, with probability 1 − n−2 all zv values concentrate

appropriately.
This event immediately implies that G is consistent in the sense that if yv = yv′ then

(v, v′) ∈ E. Further the gap condition implies the converse property, which we call purity: if
yv 6= yv′ then (v, v′) /∈ E. Formally, if yv 6= yv′ then

g/2 ≤ |pyv/2− pyv′/2|
≤ |zv − pyv/2|+ |zv − zv′ |+ |pyv′/2− zv′ |

≤
√

2n log(mkn2) + |zv − zv′ |

which implies that |zv − zv′ | ≥ g/2−
√

2n log(mkn2) >
√

2n log(mn3). Hence (v, v′) /∈ E.
The above two properties reveal that each connected component can be identified with

a single 1 u ∈ [k] and the component contains exactly the received 1s corresponding to
that original one (formally Cu = {v : yv = u}). From here we simply use the binomial
estimator on each component. First observe that, by a Chernoff bound, with probability
1− k exp(−m/36), each 1 from the original string appears in at least a 1/3-fraction of the
traces, so that |Cu| ≥ m/3. Then apply the guarantee for the binomial mean estimator along
with another union bound over the k positions. Overall the failure probability is

n−2 + k exp(−m/36) + 2k exp
( −m

24n2

)
which is at most 3n−2 with m ≥ 24n2 log(2kn2). With this choice, we can tolerate g =
O(
√
n logn). J

The recursion

We now use the algorithm FindPositions in a recursive manner to estimate the parameters
p1, . . . , pk even when the gap g is much less than

√
n logn. Define a series of threshold

parameters, to be used in the dth level of recursion:
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Algorithm 2 Algorithm RecurGap.

Initialize: Traces T = {x̃j}mj=1, gap lower bound g ≥ ck log2(n).
For each received 1, create vertex v decorated with (zv, tv) where zv ∈ [n] is the position
of the received 1 and tv ∈ [m] is the index of the trace.
Set z(1)

v = zv, V1 = V

for d = 1, . . . , D: do
Create graph Gd with vertices Vd and with edges

E1 =
{

(v, w) ∈ Vd : |z(d)
v − z(d)

w | ≤ τd/4
}

Extract connected components C(d)
1 , . . . , C

(d)
kd

of Gd.
For each connected component C(d)

i , extract subtraces {x̃(d,i)
j }mj=1 where x̃(d,i)

j = x̃j [`, r]
and ` = min{zv : v ∈ C(d)

i , tv = j} and r = max{zv : v ∈ C(d)
i , tv = j}.

Define L(d,i) = maxj len(x̃(d,i)
j ). If

len(x̃(d,i)
j ) ≤ L(d,i) −

√
2L(d,i) log(kmn),

delete all vertices v ∈ C(d)
i with tv = j. Let Vd+1 be all surviving vertices.

For v ∈ C(d)
i ∩ Vd+1, define z(d+1)

v = zv −min{zv′ : v′ ∈ C(d)
i , tv′ = tv}.

end for

τ1 = 4
√

2n log(mnk);

τd = 80
√
kτi−1 log(mnk), d = 2, . . . , D

where the total number of levels is D. Note that, τd ≤ 802 ·4
√

2 ·k1− 1
2d−1 n

1
2d log1−1/2d(nmk).

In particular, if D = O(log logn) then we have τD = O(k log(n)).
Recall that V is the vertex set for the graph used above, where each vertex corresponds

to a received 1 and is associated with an unknown original one yv. Our main theorem of this
section is the following.

I Theorem 15. Assume g ≥ 2τD for some D ≤ log log(n). Then except with probability
1− 1/n, Algorithm 2 (RecurGap) with D levels of recursion returns sets S1, . . . , Sk ⊂ V such
that
1. For all u ∈ [k], Su ⊂ {v ∈ V : yv = u}.
2. |Su| ≥ m/ log5(n).

The theorem follows from the three lemmas stated earlier. Here we re-state the lemmas
in detail and provide the proofs.

I Lemma 16 (Consistency). At level d let Vd,u = {v ∈ Vd, yv = u} for each u ∈ [k]. Then
with probability 1− 1/n2, for each d and u there exists some component C(d)

i at level d such
that Vd,u ⊂ C(d)

i .

I Lemma 17 (Length Bound). At level d, the following holds with probability at least 1−1/n2:
For every component C(d)

i at level d, we have L(d,i) ≤ 2kτd. Moreover if U is a contiguous
subsequence of {1, . . . , k} with

⋃
u∈U Vd,u ⊂ C

(d)
i , then minu∈U pu −maxu∈U pu ≤ 4kτd.
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I Lemma 18 (Length Filter). Assume m ≥ n. At level d, the following holds with probability at
least 1−1/n2: For a component C(d)

i at level d, let U be the maximal contiguous subsequence of
{1, . . . , k} such that

⋃
u∈U Vd,u ⊂ C

(d)
i . Define uL = arg minu∈U pu and uR = arg maxu∈U pu.

Then for any v ∈ C(d)
i , if uL and uR are present in tv, then v survives to round d+ 1, that is

v ∈ Vd+1. Moreover, for any v ∈ Vd+1, let pmin(v, U) denote the original position of the first
1 from U that is also in the trace tv. Then we have pmin(v, u)− puL ≤ 8

√
kτd log(nmk).

The proofs of the lemmas are all-intertwined. In the induction step we will assume that
all lemmas hold at the previous level of the recursion. Throughout we repeatedly take union
bound over all m traces and all up-to-k components, and set the failure probability for each
event to be 1/n2. In applications of Hoeffding’s inequality, this produces a 2 log(nmk) term
inside the square root.

Proof of Lemma 17. We proceed by induction. For the base case, by Hoeffding’s inequality,
we know that for all v ∈ V1 we have

|zv − pyv/2| ≤
√
n log(mkn) = τ1/8

except with probability n−2. This means that the position corresponding to a single original
1 u can span at most τ1/4 positions. If two such regions are merged into a single connected
component, then the distance between the regions is at most τ1, by construction. Since there
are most k such regions, the total length is at most (k − 1)τ1 + kτ1/4 ≤ 2kτ1. The second
claim follows from the concentration statement.

For the induction step, assume that the connected components at level d−1 have length at
most 2kτd−1. Fix a connected component C(d−1)

i and let u(d−1)
i,1 denote the left-most original

1 present in C(d−1)
i (u(d−1)

i,1 = min{yv : v ∈ C(d−1)
i }). By another application of Hoeffding’s

inequality and using the error guarantee in Lemma 18, we have that

|z(d−1)
v − (pyv − pu(d−1)

i,1
)/2|

≤ |z(d−1)
v − (pyv − pmin(v, U (d−1)

i ))/2|+ |pmin(v, U (d−1)
i )− p

u
(d−1)
i,1
|/2

≤
√

2kτd−1 log(mkn) + 8
√
kτd−1 log(mkn) ≤ τd/8

except with probability n−2. From here, the same argument as in the base case yields
the claim. J

Proof of Lemma 18. We have two conditions to verify. Fix a component C(d)
i at level d

with maximal contiguous subsequence U ⊂ [k] and recall the definitions uL = arg minu∈U pu
and uR = arg maxu∈U pu. By another concentration bound, we know that

∀j : len(x̃(d,i)
j ) ≤ (puR − puL)/2 +

√
(puR − puL) log(mnk)

with probability 1− n2. This reveals that:

L(d,i) ≤ (puR − puL)/2 +
√

(puR − puL) log(mnk)

Moreover, for any trace j that contains uR, uL the tail bound is two-sided:

∀j s.t. uL, uR ∈ x̃(d,i)
j :

∣∣∣len(x̃(d,i)
j )− (puR − puL)/2

∣∣∣ ≤√(puR − puL) log(mnk).
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Note that we also have L(d,i) ≥ (puR − puL)/2 with overwhelming probability as:

Pr[∀j : len(x̃(d,i)
j ) ≤ (puR − puL)/2]

≤
m∏
j=1

Pr[len(x̃(d,i)
j ) ≤ (puR − puL)/2 | uR, uL] · Pr[uR, uL]

≤
(

1
2 ·

1
4

)m
= 2−3m

Here we are using the symmetry of the binomial distribution. Thus, with m ≥ n, the failure
probability here is exp(−Ω(n))), which is negligible.

Using the upper bound on L(d,i) reveals that x̃(d,i)
j survives, since

len(x̃(d,i)
j ) ≥ (puR − puL)/2−

√
(puR − puL) log(mnk)

≥ L(d,i) − 2
√

(puR − puL) log(mnk) ≥ L(d,i) − 2
√

2L(d,i) log(mnk).

For the second condition, assume that some trace j survives but does not contain uL. Let
umin = arg min{yv : v ∈ C(d)

i , tv = j} denote the first original 1 in this trace that belongs to
C

(d)
i s block (By definition pumin = pmin(v, U) for each v : tv = j). Then we know that

len(x̃(d,i)
j ) ≤ (puR − pumin)/2 +

√
(puR − pumin) log(nmk)

≤ (puR − pumin)/2 +
√

2L(d,i) log(nmk)

but since x̃(d,i)
j passed through the length filter, we also have a lower bound on its length,

and so we get that

pumin − puL ≤ 4
√

2L(d,i) log(nmk) ≤ 8
√
kτd log(nmk)

where the last inequality follows from Lemma 17. J

Proof of Lemma 16. The proof here follows the discussion in the previous subsection. Fix a
component C(d−1)

i with corresponding block U (d−1)
i ⊂ [k] at level d− 1 and assume that all

three lemmas apply for all previous levels. For a subtrace x(d−1,i)
j in this component observe

and recall the definition u
(d−1)
i,1 = min{yv : v ∈ C(d−1)

i } and pmin(v, U (d−1)
i ), which is the

position of the first 1 in U (d−1)
i that appears in trace tv = j. Since the length of the subtrace

is at most 2kτd−1 by Lemma 17 we get that

|z(d−1)
v − (ptv − pu(d−1)

i,1
)/2|

≤ |z(d−1)
v − (ptv − pmin(v, U (d−1)

i ))/2|+ |pmin(v, U (d−1)
i )− p

u
(d−1)
i,1
|/2

≤
√

2kτd−1 log(mnk) + 8
√
kτd−1 log(mkn) = τd/8. (2)

Here the last inequality uses Hoeffding’s bound along with Lemma 18 at level d− 1. This
implies that the clustering at level d is consistent. J

Proof of Theorem 15. First take a union bound over D ≤ log logn applications of the
three lemmas, so that the total failure probability is cD/n2 ≤ 1/n. From now, assume that
the events in the three lemmas all hold for all levels. In particular, this implies that the
components C(D)

i are consistent. We must verify that the clusters are pure and then track
how many vertices remain.
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C
(1)
1

C
(2)
1 C

(2)
2 C

(2)
3

Figure 1 De-biasing of traces. The figure displays the regions of the original string x that
correspond to each connected component found in the algorithm. The end-points of each component
correspond to 1s in the original string. To de-bias the length filter for component C

(1)
1 at level 1, we

identify and retain only the traces that contain all of the 1s colored red above. Then, to de-bias the
length filter at C

(2)
2 at level 2, we identify and retain only the traces that contain all of the green 1s.

For the first claim, let us revisit the proof of Lemma 16. If two vertices, say v, v′, in a
component at level D − 1 corresponded to different 1s, say u, u′ then by the gap condition,
we know that |pu − pu′ | ≥ g. On the other hand, we know that (2) holds, and we will use
this to prove that no edge appears between these vertices. We have that

|zv − zv′ | ≥ τD/8 + τD/8 + |ptv − pt′v |/2 ≥ τD/4 + g/2,

and so, if g/2 ≥ τD, then the two vertices will not share an edge. The argument applies
for all pairs and hence the clusters at level D are pure, which establishes the first claim in
the Theorem 15.

For the second claim, note that by Lemma 18, for every component at every level, if a
trace contains the two endpoints of that component, then it will survive the filter. Hence,
in every filtering step we expect to retain 1/4 of the subtraces passing through, and, by
a Chernoff bound, we will retain 1/5 of the subtraces except with exp(−Ω(n)), provided
m ≥ n. Since we perform D = log logn levels, we retain m/5log logn = m/ log5(n) traces in
each cluster with high probability. J

Removing Bias: The reverse recursion

Now that we have isolated the vertices into pure clusters, we need to work our way up
through the recursion to remove biases introduced by the hierarchical clustering. For any
component C(D−1)

i corresponding to block U (D−1)
i ⊂ [k] at level D− 1, since the components

at level D are pure, we can identify exactly the subtraces that contain the first and last 1 in
the block. We throw away all other traces, which de-biases the length filter at level D − 1.

Unfortunately for a component C(d−1)
i corresponding to a block U (d−1)

i at level d − 1,
we cannot identify exactly the subtraces that contain the exactly the first and last 1 in the
block. However, we know that C(d−1)

i is further refined into sub-components {C(d)
i′ } at level

d, and by induction we can identify all the traces that contain the left-most and right-most 1
in the left-most and right-most sub-components. We identify all such traces and eliminate
the rest to debias the length filter at level d− 1. See Figure 1 for an illustration.

To debias this length filter, we filter based on the presence of two 1s at level d − 1
(just the end points), and two futher 1s at level d (the inner endpoints of the first and last
sub-components), four further 1s at d + 1, and so on. So, just to debias the length filter
at level d− 1 we require 2D−(d−1) 1s to be present. Since we must debias all length filters
above a particular component, we require the presence of

∑D−1
d=1 2D−d ≤ 2D ≤ log2(n) 1s.

The probability of all log2(n) of these 1s appearing is 1/n and by Chernoff bound, with high
probability at least m/2n of our traces will contain all of these 1s.
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For any 1, u, in the original string, let S denote the subset of log2(n) 1s, whose presence we
require to debias the length filters above the pure component containing u. After the debiasing
step, the remaining vertices in the component containing u have zv values distributed as

zv ∼ Bin(pu − 1− |SL|, 1/2) + (|SL|+ 1)

where |SL| is the number of 1s in |S| that appear before u in the sequence, and the final 1 is
due to the presence of u. Using the binomial mean estimator, we can therefore estimate pu
with probability 1− 1/n, provided m/n ≥ n2 log(n). Thus, poly(n) traces suffice to recover
all pu values, provided that g > τD and D = log2 log2 n. This proves Theorem 2.

4 Reconstructing Arbitrary Matrices

Recall that in the matrix reconstruction problem, we are given samples of a matrix X ∈
{0, 1}

√
n×
√
n passed through a matrix deletion channel, which deletes each row and each

column independently with probability p = 1− q. In this section we prove Theorem 4.

I Theorem (Restatement of Theorem 4). For matrix reconstruction, exp(O(n1/4√p logn/q))
traces suffice to recover an arbitrary matrix X ∈ {0, 1}

√
n×
√
n, where p is the deletion

probability and q = 1− p.

The bulk of the proof involves designing a procedure to test between two matrices X and
Y . This test is based on identifying a particular received entry where the traces must differ
significantly, and to show this, we analyze a certain bivariate Littlewood polynomial, which
is the bulk of the proof. Equipped with this test, we can apply a union bound and simply
search over all pairs of matrices to recover the string.

For a matrix X ∈ {0, 1}
√
n×
√
n, let X̃ denote a matrix trace. Let us denote the (i, j)th

entry of the matrix as Xi,j , i, j = 0, 1, . . . ,
√
n − 1, an indexing protocol we adhere to for

every matrix. For two complex numbers w1, w2 ∈ C, observe that

E

√n−1∑
i,j=0

X̃i,jw
i
1w

j
2

 = q2
∑
i,j

wi1w
j
2

∑
ki≥i,kj≥j

Xki,kj

(
ki
i

)(
kj
j

)
pki−iqipkj−jqj

= q2

√
n−1∑

k1,k2=0
Xk1,k2(qw1 + p)k1(qw2 + p)k2

Thus, for two matrices X,Y , we have

1
q2E

√n−1∑
i,j=0

(X̃i,j − Ỹi,j)wi1w
j
2

 =

√
n−1∑

k1,k2=0
(Xk1,k2 − Yk1,k2)(qw1 + p)k1(qw2 + p)k2

, A(z1, z2)

where we are rebinding z1 = qw1 + p and z2 = qw2 + p. Observe that A(z1, z2) is a bivariate
Littlewood polynomial; all coefficients are in {−1, 0, 1}, and the degree is

√
n. For such

polynomials, we have the following estimate, which extends a result due of Borwein and
Erdélyi [6] for univariate polynomials.

I Lemma 19. Let f(z1, z2) be non-zero degree n Littlewood polynomial. Then,

|f(z?1 , z?2)| ≥ exp(−C1L
2 logn)

for some z?1 = exp(iθ1), z?2 = exp(iθ2) where |θ1|, |θ2| ≤ π/L, and C1 is a universal constant.
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Proof. Fix L > 0 and define the polynomial

F (z1, z2) =
∏

1≤a≤L,1≤b≤L
f(z1e

πia/L, z2e
πib/L).

We first show that there exists z?1 , z?2 on the unit disk such that F (z?1 , z?2) ≥ 1. This
follows from an iterated application of the maximum modulus principle. First factorize
F (z1, z2) = zk2G(z1, z2) where k is chosen such that G(z1, z2) has no common factors of
z2. Since F has non-zero coefficients, this implies that G(z1, 0) is a non-zero univariate
polynomial. Further factorize G(z1, 0) = z`1H(z1) so that terms in H have no common factors
of z1. H is also a Littlewood polynomial and moreover it has non-zero leading term, so that
|H(0)| ≥ 1. Thus by the maximum modulus principle:

|F (z?1 , z?2)| = |G(z?1 , z?2)| ≥ |G(z?1 , 0)| ≥ |H(z?1)| ≥ |H(0)| ≥ 1.

Now, for any a, b ∈ {1, . . . , L} we have

1 ≤ |F (z?1 , z?2)| ≤ |f((z?1)πia/L, (z?2)πib/L)| · n(L2−1),

where we are using the fact that |f(z1, z2)| ≤ n. This proves the lemma, since we may choose
a such that (z?1)πia/L = exp(iθ) for |θ| ≤ π/L. J

Let γL = {eiθ : |θ| ≤ π/L} denote the arc specified in Lemma 19. For any z1 ∈ γL,
Nazarov and Peres [26] provide the following estimate for the modulus of w1 = (z1 − p)/q:

∀z ∈ γL : |(z − p)/q| ≤ exp(C2p/(Lq)2).

Using these two estimates, we may sandwich |A(z1, z2)| by

exp(−C1L
2 logn) ≤ max

z1,z2∈γL
|A(z1, z2)| ≤ exp(C ′p

√
n/(Lq)2)

q2

∑
ij

∣∣E[X̃ij − Ỹij ]
∣∣ .

This implies that there exists some coordinate (i, j) such that∣∣E[X̃ij − Ỹij ]
∣∣ ≥ q2

n
exp

(
−C1L

2 logn− C ′p
√
n

L2q2

)
≥ q2

n
exp

(
−Cn

1/4√p logn
q

)
,

where the second inequality follows by optimizing for L.
The remainder of the proof follows the argument of [26]: Since we have witnessed significant

separation between the traces received from X and those received from Y , we can test between
these cases with exp(O(n1/4√logn)) samples (via a simple Chernoff bound). Since we do
not know which of the 2n traces is the truth, we actually test between all pairs, where the
test has no guarantee if neither matrix is the truth. However, via a union bound, the true
matrix will beat every other in these tests and this only introduces a poly(n) factor in the
sample complexity.

5 Reconstructing Random Matrices

In this section, we prove Theorem 5: O(logn) traces suffice to reconstruct a random
√
n×
√
n

matrix with high probability for any constant deletion probability p < 1. This is optimal
since Ω(logn) traces are necessary to just ensure that every bit appears in a least one trace.

Our result is proved in two steps. We first design an oracle that allows us to identify
when two rows (or two columns) in different matrix traces correspond to the same row
(resp. column) of the original matrix. We then use this oracle to identify which rows and
columns of the original matrix have been deleted to generate each trace. This allows us to
identify the original position of each bit in each trace. Hence, as long as each bit is preserved
in at least one trace (and O(logn) traces is sufficient to ensure this with high probability),
we can reconstruct the entire original matrix.
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Oracle for Identifying Corresponding Rows/Columns. We will first design an oracle that
given two strings t and t′ distinguishes, for any constant q > 0, with high probability between
the cases:

Case 1: t and t′ are traces generated by the deletion channel with preservation probability q
from the same random string x ∈R {0, 1}

√
n

Case 2: t and t′ are traces generated by the deletion channel with preservation probability q
from independent random strings x, y ∈R {0, 1}

√
n

It t and t′ are two rows (or two columns) from two different matrix traces, then this test
determines whether t and t′ correspond to the same or different row (resp. column) of the
original matrix. In Section 5.1, we show how to perform this test with failure probability at
most 1/n10. In fact, the failure probability can be made exponentially small but a polynomially
small failure probability will be sufficient for our purposes.

Using the Oracle for Reconstruction. Given m = Θ(logn) traces we can ensure that
every bit of X appears in at least one of the matrix traces with high probability. We then
use this oracle to associate each row in each trace with the rows in other traces that are
subsequences of the same original row. This requires at most

(
m
√
n

2
)
≤ (m

√
n)2 applications

of the oracle and so, by the union bound, this can performed with failure probability at most
(m
√
n)2/n10 ≤ 1/n8 where the inequality applies for sufficiently large n.
After using the oracle to identify corresponding rows amongst the different traces we

group all the rows of the traces into
√
n groups G1, . . . , G√n where the expected size of each

group is mq. We next infer which group corresponds to the ith row of X for each i ∈ [
√
n].

Let f be the bijection between groups and [
√
n] that we are trying to learn, i.e., f(j) = i if

the jth group corresponds to the ith row of X. If suffices to determine whether f(j) < f(j′)
or f(j) > f(j′) for each pair j 6= j′. If there exists a matrix trace X̃ that includes a row
in Gj and a row in Gj′ then we can infer the relative ordering of f(j) and f(j′) based on
whether the row from Gj appears higher or lower in X̃ than the row in Gj′ . The probability
there exists such a trace is 1− (1− q2)m ≥ 1− 1/ poly(n) and we can learn the bijection f
with high probability.

We also perform an analogous process with columns. After both rows and columns have
been processed, we know exactly which rows and columns were deleted to form each trace,
which reveals the original position of each received bit in each trace. Given that every bit of
X appeared in at least some trace, this suffices to reconstruct X, proving Theorem 5.

I Theorem (Restatement of Theorem 5). For any constant deletion probability p < 1, O(logn)
traces are sufficient to reconstruct a random X ∈ {0, 1}

√
n×
√
n.

5.1 Oracle: Testing whether two traces come from same random string
Define Si = {2wi+ j : j = 0, . . . , w − 1} to be a contiguous subsets of size

w = 100n1/4
√

1/q · logn .

Note that there are size w gaps between each Si and Si+1, i.e., w elements that are both
larger than Si and smaller than Si+1. This will later help us argue that the bits in positions Si
and Si+1 in different traces are independent. Given a traces t, t′, define the three quantities:
Xi =

∑
j∈Si tj , Yi =

∑
j∈Si t

′
j and Zi = (Xi − Yi)2. We will show that by considering

Z0, Z1, Z2, . . . we can determine whether t and t′ are traces of the same original string or
traces of two different random strings.
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The basic idea is that if t and t′ are generated by the same string, many of the bits
summed to construct Xi and the bits summed to construct Yi will correspond to the same
bits of the original string; hence Zi will be smaller than it would be if t and t′ were generated
from two independent random strings. To make this precise, we need to introduce some
additional notation.

I Definition 20. For A ⊂ {0, 1, 2, . . .}, let Rt(A) be the indices of the bits in the transmitted
string that landed in positions A in trace t. Similarly define Rt′(A). For example, if bits in
position 0 and 2 were deleted during the transmission of t then Rt({0, 1, 2}) = {1, 3, 4}.

The next lemma quantifies the overlap between Rt(Si) and Rt′(Si).

I Lemma 21 (Deletion Patterns). With high probability over the randomness of the deletion
channel,

∀i , |Rt(Si) ∩Rt′(Si)| ≥ qw/2 and ∀i 6= j , |Rt(Si) ∩Rt′(Sj)| = 0 .

Note that conditioned on the second property, each Zi is independent.

Proof. First note that by the Chernoff bound, for each j ∈ [
√
n], the jth bit of the original

sequence appears in position qj±r where r = 5n1/4√q logn with high probability. The second
part of the lemma follows since r = wq/20 < w/20 and therefore, with high probability, any
bit in the original string will not appear in Sα in one trace and Sβ in another for α 6= β

because there was a size w gap between Sα and Sβ .
For the first part of the lemma, for each Si, define

S′i = {2wi/q + r/q, 2wi/q + r + 1, . . . , (2wi+ w − 1)/q − r/q} .

By the Chernoff Bound, with high probability the w/q−2r/q > 0.9w/q bits in S′i positions in
the original string arrive in positions Si in the trace. Also with high probability, 0.9q2|S′i| of
the bits in S′i are transmitted in the generation of both t and t′. Hence, |Rt(Si) ∩Rt′(Si)| ≥
0.9w/q · 0.9q2 > qw/2 as required. J

We are now ready to argue that the values Z0, Z1, . . . are sufficient to determine whether
or not t and t′ are generated from the same random string.

I Theorem 22. Let zj =
∑g−1
i=0 Zjg+i for g = 96/q2 and D = median(z0, z1, z2, . . . , zΘ(logn)).

Case 1: If t and t′ are generated from the same string, then Pr[D < (1 − q/4)gw/2] ≥
1− 1/n10.

Case 2: If t and t′ are generated from different strings, then Pr[D ≥ (1 − q/4)gw/2] ≥
1− 1/n10.

Proof. Throughout the proof we condition on the equations in Lemma 21 being satisfied.
Note that this event is a function of the randomness of the deletion channel rather than the
randomness of the strings being transmitted over the deletion channel.

First, suppose t and t′ are generated from different strings. Then Zi has the same
distribution as the variable C in Lemma 23 when r is set to w. Hence, E[zj ] = gw/2 and
var(zj) ≤ gw2/2. Therefore,

Pr[zj < (1− q/4)gw/2] ≤ Pr[|zj −E[zj ]| ≥ (q/4)gw/2] ≤ var(zj)
E[zj ]2 · q2/16 ≤

2
gq2/16 = 1/3.

Therefore, by the Chernoff bound, D ≥ (1− q/4)gw/2 with probability at least 1− 1/n10.
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Now, suppose t and t′ are generated from the same string. Then, Zi has the same
distribution as C in Lemma 23 for some r ≤ w − qw/2. Hence, E[zj ] = gr/2 and var(zj) ≤
gr2/2. Therefore,

Pr[zj ≥ (1− q/4)gw/2] ≤ Pr[|zj −E[zj ]| ≥ (q/4)gw/2] ≤ var(zj)
E[zj ]2 · q2/16 ≤

2
gq2/16 = 1/3.

Therefore, by the Chernoff bound, D < (1−q/4)gw/2 with probability at least 1−1/n10. J

I Lemma 23. Let A ∼ Bin(h, 1/2) and B ∼ Bin(h, 1/2) be independent and C = (A−B)2.
Then,

E[C] = h/2 and var[C] ≤ m2/2 .

Proof. The result follows by direct calculation:

E[(A−B)2] = E[A2] + E[B2]− 2E[A]E[B] = m(m+ 1)/2−m2/2 = m/2

and

var((A−B)2) = E[(A−B)4]− (m/2)2 = m/2 + 6
(
m

2

)
/4−m2/4 = (2m− 1)m/4 .

J

6 Bounded Hamming Distance

In this section, we turn to the sparse testing problem. We show that is possible to distinguish
between two strings x and y with Hamming distance ∆(x, y) < 2k, given exp(O(k logn))
traces. This question is naturally related to sparse reconstruction, since the difference string
x− y ∈ {−1, 0, 1}n is at most 2k sparse, but distinguishing two strings from traces is also at
the core of our analysis in Section 2, as well as the analysis of Nazarov and Peres [26] and
De et al. [11]. In particular given a testing routine, reconstruction simply requires applying
the union bound.

In the binary symmetric channel (where each bit is flipped independently with some
probability), distinguishing between two strings is easier if the Hamming distance is larger,
since the two strings are farther apart. However, it is unclear if this intuition carries over
to the deletion channel. In particular, the number of traces required for testing is unlikely
to even be monotonic in the Hamming distance; if the Hamming distance is odd, then x
and y have different Hamming weight, and we can estimate the Hamming weight using just
O(n) traces.

Our analysis uses a combinatorial result about k-decks due to Krasikov and Roditty [23],
along with an approach first used in McGregor et al. [24].

I Theorem 24 (Krasikov and Roditty [23]). The k-deck of a string is the multi-set of length
k subsequences. No two strings x, y of length n have the same k-deck if ∆(x, y) < 2k.

I Theorem 25. The k-deck of a binary string can be determined exactly with exp(O(k logn))
traces from the symmetric deletion channel assuming p ≤ 1− k/n.

Proof. We argue that sampling exp(O(k logn)) length k-subsequence of a string is sufficient
to reconstruct the k-deck with high probability. The result then follows because if p ≤ 1−k/n,
then with constant probability a trace generated by the deletion channel has length at least
k and hence we can take a random k subsequence of such a trace as a random k subsequence
from x.
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Let fu be the number of times that u ∈ {0, 1}k appears as a subsequence of x. Then, let
Xu be the number of times u is generated if we sample r = 3nk lognk subsequences of length
k uniformly at random. E [Xi] = rfu/

(
n
k

)
and by an application of the Chernoff bound.

Pr
[
|Xu

(
n

k

)
/r − fu| ≥ 1

]
= Pr

[
|Xu − E [X] | ≥ r/

(
n

k

)]
≤ exp

(
−f

2
u · rfu
3
(
n
k

) )
≤ 1/nk

where the last line follows given fu ≥ 1 (if fu = 0 the bound is trivially true) and r =
3nk lognk. Hence, by taking the union bound over all 2k sequences u, it follows that we can
determine the frequency of all length k subsequences with high probability. J

Theorem 3 follows directly from Theorem 24 and Theorem 25.

I Theorem (Restatement of Theorem 3). For all x, y ∈ {0, 1}n such that ∆(x, y) < 2k,

m = exp(O(k logn))

traces are sufficient to be distinguished between x and y.

As noted earlier, if ∆(x, y) is odd then poly(n) traces suffice. Also, regardless of the
Hamming distance, if the location of the first and second positions (say i and j) where x and
y differs by at least Ω(

√
n logn) then it is easy to show that expected weight of the length

i/2 prefix of the traces differs by Ω(1/poly(n)) and hence we can distinguish x and y with
poly(n) traces.
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Abstract

We study a variant of the generalized assignment problem (GAP) with group constraints. An instance
of Group GAP is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized)
bins. Each item i ∈ I has a size si > 0, and a profit pi,j ≥ 0 if packed in bin j. A group of items
is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the
items in the bins such that the total profit from satisfied groups is maximized. We point to central
applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching
and base station cooperation in 5G networks.

Our main result is a 1
6 -approximation algorithm for Group GAP instances where the total size

of each group is at most m
2 . At the heart of our algorithm lies an interesting derivation of a

submodular function from the classic LP formulation of GAP, which facilitates the construction of a
high profit solution utilizing at most half the total bin capacity, while the other half is reserved for
later use. In particular, we give an algorithm for submodular maximization subject to a knapsack
constraint, which finds a solution of profit at least 1

3 of the optimum, using at most half the knapsack
capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization
subject to a knapsack with reserved capacity constraint may find applications in solving other group
assignment problems.
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69:2 Generalized Assignment via Submodular Optimization

1 Introduction

With the rapid adoption of cloud computing, wireless networks, and other modern platforms,
resource allocation problems of various flavors have regained importance. One classic example
is the generalized assignment problem (GAP). We are given a set of n items and m bins,
[m] = {1, 2, . . . ,m}. Each item i ∈ [n] has a size si,j > 0 and a profit pi,j ≥ 0 when
packed into bin j ∈ [m]. The goal is to feasibly pack in the bins a subset of the items
of maximum total profit. GAP has been widely studied, with applications ranging from
grouping and loading in manufacturing systems to land use optimization in regional planning
(see, e.g., [2, 10]). In discrete optimization, GAP has received considerable attention also
as a special case of the separable assignment problem and submodular maximization (see,
e.g., [23, 14, 4, 5]). We consider a variant of GAP with group constraints. An instance of
Group GAP consists of a set I = {1, 2, . . . , n} of n items and m uniform (unit-sized) bins
M = {1, . . . ,m}. Each item i ∈ I has a size si > 0 and a profit pi,j ≥ 0 when assigned to
bin j ∈ [m]. The items in I are partitioned into L ≥ 1 groups, G = {G1, . . . , GL}. Given an
assignment of items to bins, we say that a group is satisfied if all of its items are assigned. The
goal is to find a feasible assignment of a subset of the items to bins such that the total profit
from satisfied groups is maximized. Formally, a feasible assignment is a tuple (U1, . . . , Um),
such that Uj ∩ Uk = ∅ for all 1 ≤ j < k ≤ m, Uj ⊆ I and

∑
i∈Uj

si ≤ 1, for all 1 ≤ j ≤ m.
Let I(U) = ∪jUj . Then, G` ∈ G is satisfied if G` ⊆ I(U). Let Gs = {G`1 , . . . G`t} be the
set of satisfied groups and I(Gs) = ∪G`∈Gs

G`. Then we seek an assignment (U1, . . . , Um) for
which

∑m
j=1

∑
i∈Uj∩I(Gs) pi,j is maximized.

The following scenario suggests a natural application for Group GAP. Consider a Video-
on-Demand (VoD) service where each video is given as a collection of segments. The system
has a set of m servers of uniform capacity distributed over multiple locations. To obtain
revenue from a video the system must store all of its segments (possibly on different servers).
The revenue from a specific video also depends on the servers which store the segments.
This is due to the content delivery costs resulting from the distance between the servers
and the predicted location of the video audience. The objective of the VoD service provider
is to select a subset of segments and an allocation of these segments to servers so as to
maximize the total revenue. In [16] we describe central applications of Group GAP in mobile
Device-to-Device network caching and in base station cooperation in 5G networks.

1.1 Prior Work

We note that a Group GAP instance in which each group consists of a single item yields
an instance of classic GAP where each item takes a single size across the bins, and all the
bins have identical capacities. GAP is known to be APX-hard already in this case, even if
there are only two possible item sizes, and each item can take one of two possible profits [8].
Thus, most of the previous research focused on obtaining efficient approximate solutions.1
Fleischer et al. [14] obtained a (1 − e−1)-approximation for GAP, as a special case of the
separable assignment problem. Feige and Vondrák [12] obtained the current best known ratio
of 1− e−1 + ε, for some absolute constant ε > 0.

1 Given an algorithm A, let A(I), OPT (I) denote the profit of the solution output by A and by an optimal
solution for a problem instance I, respectively. For ρ ∈ (0, 1], we say that A is a ρ-approximation
algorithm if, for any instance I, A(I)

OP T (I) ≥ ρ.



A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai 69:3

Chen and Zhang [9] studied the problem of group packing of items into multiple knapsacks
(GMKP), a special case of Group GAP where the profit of each item is the same across
the bins. Let GMKP(δ) be the restriction of GMPK to instances in which the total size of
items in each group is at most δm (that is, a factor δ of the total capacity of all bins). For
δ > 2

3 , the paper [9] rules out the existence of a constant factor approximation for GMKP(δ),
unless P= NP. For 1

3 < δ ≤ 2
3 , the authors show that there is no

( 1
2 + ε

)
-approximation for

GMKP(δ), unless P= NP, and derive a nearly matching
( 1

2 − ε
)
-approximation, for any ε > 0.

The paper presents also approximation algorithms and hardness results for other special
cases of GMPK.

There has been earlier work also on variants of Group GAP with the added constraint
that in any feasible assignment there is at most one item from G` in bin j, for any 1 ≤ ` ≤ L,
j ∈ [m]. Adany et al. [1] considered this problem, called all-or-nothing GAP (AGAP).
They presented a ( 1

19 − ε)-approximation algorithm for general instances, and a ( 1
3 − ε)-

approximation for the special case where the profit of an item is identical across the bins,
called the group packing (GP) problem. Sarpatwar et al. [20] consider a more general setting
for AGAP, where each group of items is associated with a time window in which it can
be packed. The paper shows that this variant of the problem, called χ-AGAP, admits an
Ω(1)-approximation, assuming the time windows are large enough relative to group sizes.
Specifically, for a group G` having a time window of m slots (= m bins), it is assumed
that s(G`) ≤ m

20 .

1.1.1 Submodular Maximization
Given a finite set Ω, a function f : 2Ω → IR is submodular if for every S, T ⊆ Ω we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

An equivalent definition of submodularity refers to its diminishing returns: for any
T ⊆ S ⊆ Ω, and u ∈ Ω \ S,

f(S ∪ {u})− f(S) ≤ f(T ∪ {u})− f(T ).

A set function f is monotone if for every S ⊆ T ⊆ Ω it holds that f(S) ≤ f(T ). Submodular
functions arise naturally in a wide variety of optimization problems, ranging from coverage
problems and graph cut problems to welfare problems (see [6] for a survey on submodular
functions). Submodular optimization under various constraints has been widely studied in
the past four decades (see, e.g., [22, 7, 13] and [6] and the references therein).

The problem of maximizing a monotone submodular function subject to a knapsack
constraint is defined as follows. We are given an oracle to a monotone, non-negative
submodular function f : 2Ω → IR≥0. Each element i ∈ Ω is associated with a size si ≥ 0.
We are also given a capacity B > 0. The objective is to find a subset S ⊆ Ω such that∑

i∈S si ≤ B and f(S) is maximized. The best known result is a (1− e−1)-approximation
algorithm due to Sviridenko [22]. The ratio of (1− e−1) cannot be improved even when f is
a coverage function and element sizes are uniform, unless P= NP [11]. A matching lower
bound of (1− e−1) is known also for the oracle model with no complexity assumption [19].

1.2 Contribution and Techniques
Our main result is a 1

6 -approximation algorithm for Group GAP instances where the total size
of each group is at most m

2 . We note that when group sizes can be arbitrary in (0,m], Group
GAP cannot be approximated within any bounded ratio, even if item profits are identical
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across the bins, and m = 2, unless P= NP. Indeed, in this case, deciding whether a single
group of items of total size 2 and total profit 1 can be packed in the bins yields an instance
of Partition, which is NP-complete [15]. Furthermore, even if group sizes are restricted
to be no greater than δm, for some δ > 2

3 , then Group GAP still cannot be approximated
within a constant factor, as it generalizes GMKP(δ), for which the paper [9] shows hardness
of approximation. Similarly, as we consider in this paper a generalization of GMKP

( 1
2
)
, it

follows from [9] that our problem cannot be approximated within ratio better than 1
2 .

In solving Group GAP we combine the framework of Adany et al. [1] with the rounding
technique of Shmoys and Tardos [21]. The framework of [1] uses submodular maximization
to select a collection of groups for the solution. It then finds a feasible assignment for the
selected groups.

At the heart of our algorithm lies an interesting derivation of a submodular function
from the classic LP formulation of GAP, which facilitates the construction of a high profit
solution utilizing at most half the total bin capacity. In particular, we give an algorithm for
submodular maximization subject to a knapsack constraint, which finds a solution occupying
at most half the knapsack capacity, while the other half is reserved for later use.2 We show
that this algorithm achieves an approximation ratio of 1

3 relative to an optimal solution that
may use the whole knapsack capacity. We note that this ratio is tight. Indeed, it is easy
to construct an instance for which the best solution with half the knapsack capacity has
only 1

3 the profit of the optimal solution with full knapsack capacity. We also note that a
naive application of the algorithm of Sviridenko [22] with half the knapsack capacity will
only guarantee a 1−e−1

3 ≈ 1
4.7 -approximation.

To obtain an integral solution, given a fractional assignment of the selected groups, we
apply the rounding technique of Shmoys and Tardos [21], followed by a filling phase. We
show that if the total size of the items in the selected groups is at most m

2 , the rounding
procedure yields a feasible assignment of the selected groups, whose profit is at least half the
value of the submodular function. Our novel approach of submodular optimization subject
to a knapsack with reserved capacity constraint may find applications in solving other group
assignment problems.

2 Approximation Algorithm

In this section we present an approximation algorithm for Group GAP. We first introduce
several definitions and tools that will be used as building blocks of our algorithm.

2.1 Basic Definitions and Tools

2.1.1 The Submodular Relaxation

For simplicity, we assume that all the numbers are rational. For a subset of elements I ′ ⊆ I,
let s(I ′) =

∑
i∈I′ si be the total size of the elements in I ′. We assume throughout the

discussion that every G` ∈ G satisfies s(G`) ≤ m
2 . We define below a function φ : 2I → IR≥0.

Let xi,j ∈ {0, 1} be an indicator for the assignment of item i to bin j, for 1 ≤ i ≤ n,
1 ≤ j ≤ m. The following is a linear program associated with a subset S ⊆ I, in which
xi,j ≥ 0 for all i, j.

2 We assume throughout the discussion that the size of each element is at most half the knapsack capacity.
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LP (S): maximize
∑

i∈I,j∈M

xi,j · pi,j

subject to:
∑
j∈M

xi,j ≤ 1 ∀i ∈ I (1)

∑
i∈I

xi,j · si ≤ 1 ∀j ∈M (2)

xi,j = 0 ∀i ∈ I \ S, j ∈M
xi,j ≥ 0 ∀i ∈ I, j ∈M

Note that, by the above constraints, all solutions for the LP have the same dimension,
regardless of the size of S. We define φ(S) as the optimal value of LP(S).

We denote the profit of a solution x for the linear program by p · x =
∑

i∈I,j∈M xi,j · pi,j .
In Section 3 we prove the next result.

I Theorem 1. The function φ is submodular.

We note that φ is also monotone and non-negative. We use φ to define the group function
ψ : 2G → IR≥0. For any G∗ ⊆ G let I(G∗) =

⋃
G`∈G∗ G` and ψ(G∗) = φ(I(G∗)). As φ is

submodular, monotone and non-negative, it is easy to see that ψ is submodular, monotone
and non-negative as well. We optimize ψ subject to a knapsack (budget) constraint, using
the next general result.

I Theorem 2 (Submodular optimization with reserved capacity). Let Ω = {1, . . . , n} be a
ground set, and m ≥ 0 a knapsack capacity. Each i ∈ Ω is associated with non-negative
size si ≤ m

2 . Let f : 2Ω → IR≥0 be a non-negative monotone submodular function, and
OPT = max{f(S)|S ⊆ Ω,

∑
i∈S si ≤ m}. Then Algorithm 2 (in Section 4) finds in polynomial

time3 a subset S ⊆ Ω satisfying f(S) ≥ OPT
3 and

∑
i∈S si ≤ m

2 .

The proof of Theorem 2 is given in Section 4.

2.1.2 Solution Types
Our algorithm uses a few types of intermediate solutions for Group GAP, as defined below.
Given G∗ ⊆ G, we say that a solution x for LP (I(G∗)) is a fractional solution. Let
U = (U1, . . . , Um) be an assignment of elements to bins, where Uj is the set of elements
assigned to bin j. Then I(U) =

⋃m
j=1 Uj is the subset of elements packed in the bins. We

say that U is feasible if for each bin 1 ≤ j ≤ m we have s(Uj) ≤ 1. We say that U is almost
feasible if for each bin 1 ≤ j ≤ m there is an element u∗j such that s(Uj \ {u∗j}) ≤ 1. We also
define the profit of an assignment as p(U) =

∑
1≤j≤m

∑
i∈Uj

pi,j .
Our algorithm first obtains a fractional solution, which is then converted to an almost

feasible solution. Finally, the algorithm converts this solution to a feasible one. We now
state the results used in these conversion steps.

3 The explicit representation of a submodular function might be exponential in the size of its ground
set. Thus, it is standard practice to assume that the function is accessed via a value oracle. Then the
number of operations and oracle calls is polynomial in the size of Ω and the maximum length of the
representation of f(S).
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I Theorem 3. Given G∗ ⊆ G, such that s(I(G∗)) ≤ m, and a fractional solution x for
LP (I(G∗)), it is possible to construct in polynomial time an almost feasible assignment U
such that p(U) ≥ p · x, and I(U) = I(G∗).

The theorem easily follows by applying a rounding technique of [21] to a fractional solution
in which every element in I(G∗) is fully assigned (fractionally, in multiple bins). We note
that such a solution always exists, since s(I(G∗)) ≤ m. We give the proof in the full version
of the paper [16]. To convert an almost feasible solution to a feasible one we use the following
result (we give the proof in Section 5).

I Theorem 4. Let U = (U1, . . . , Um) be an almost feasible assignment such that s(I(U)) ≤ m
2 ,

then U can be converted in polynomial time to a feasible assignment U ′, with I(U ′) = I(U)
and p(U ′) ≥ 1

2p(U).

2.2 The Algorithm
Our approximation algorithm for Group GAP follows easily from the tools presented in
Section 2.1. Initially, we solve the problem of maximizing a submodular function subject
to a knapsack with reserved capacity constraint for the set function ψ. Then we solve the
linear program and convert the solution to a feasible assignment. We give the pseudocode in
Algorithm 1.

Algorithm 1 Group GAP Algorithm.

1: Solve the submodular optimization problem: max{S⊆G,
∑

G`∈S
s(G`)≤m/2} ψ(S) using

Algorithm 2. Let S∗ be the solution found.
2: Find a (fractional) solution x for LP (I(S∗)) that realizes ψ(S∗).
3: Use Theorem 3 to convert x to an almost feasible assignment U with I(U) = I(S∗).
4: Use Theorem 4 to convert U into a feasible solution; return this solution.

I Theorem 5. Algorithm 1 is a polynomial time 1
6 -approximation algorithm for Group GAP

when the total size of a single group is bounded by m
2 ; that is, ∀G` ∈ G :

∑
i∈G`

si ≤ m
2 .

Proof. It is easy to see that the algorithm runs in polynomial time. By Theorem 2, we have
that ψ(S∗) ≥ OPT/3, where OPT is the value of the optimal solution for the original instance.

By Theorems 3 and 4, we are guaranteed to find in Steps 3−4 a feasible assignment U of
all elements in I(S∗), such that p(U) ≥ 1

2ψ(S∗) ≥ 1
6OPT. J

3 Submodularity

In this section we show that the function φ is submodular. Our proof builds on the useful
relation of our problem to maximum weight bipartite matching. Let G = (A ∪B,E) be a
bipartite (edge) weighted graph, where |B| ≥ |A|. Assume that the graph is complete (by
adding zero weight edges if needed). For e ∈ E, let W (e) be the weight of edge e, and for
F ⊆ E, let W (F ) =

∑
e∈F W (e) be the total weight of edges in F . For S ⊆ A, define h(S)

to be the value of the maximum weight matching in G[S ∪B], the graph induced by S ∪B.
We call h the partial maximum weight matching function. The next result was shown by
Bar-Noy and Rabanca [3].

I Theorem 6. If the edge weights are non-negative then the function h is (monotone)
submodular.
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We give a simpler proof in the full version of the paper [16]. We are now ready to prove our
main result.

Proof of Theorem 1. We first note that since all numbers are rational, for some N ∈ Z+,
we can write si = ŝi

N , where ŝi ∈ Z+ for all i ∈ I.4

Now, set the capacity of each bin 1 ≤ j ≤ m to be bj = N , and let 0 ≤ yi,j ≤ ŝi indicate
the size of item i assigned to bin j. For a subset of items S ⊆ I, we now write the following
linear program.

M(S): maximize
∑
i∈I

1
ŝi

∑
j∈M

yi,j · pi,j

subject to:
∑
j∈M

yi,j ≤ ŝi ∀i ∈ I (3)

∑
i∈I

yi,j ≤ N ∀j ∈M (4)

yi,j = 0 ∀i ∈ I \ S, j ∈M
yi,j ≥ 0 ∀i ∈ I, j ∈M

Indeed, Constraint (3) ensures that the total size assigned for item i over the bins is upper
bounded by ŝi, and Constraint (4) guarantees that the capacity constraint is satisfied for
all the bins j ∈M . Given a subset of elements S ⊆ I, let η(S) be the value of an optimal
solution for M(S).

Now, observe that any feasible solution for LP (S) induces a feasible solution for M(S) of
the same value, by setting yi,j = xi,j · ŝi for all i ∈ I and j ∈M . Similarly, a feasible solution
for M(S) induces a feasible solution for LP (S) of the same value. Hence, φ(S) = η(S) for
all S ⊆ I.

By the above discussion, to prove the theorem it suffices to show that η is submodular.
Given our Group GAP instance, we construct the following bipartite graph G. For each item
i ∈ I, we define ŝi vertices, Vi = {vi,1, . . . , vi,ŝi}. For each bin j ∈M , we define N vertices
Uj = {uj,1, . . . , uj,N}. For any i ∈ [n] and j ∈ [m], there are edges (vi,s, uj,r) of weight
pi,j/ŝi, for all 1 ≤ s ≤ ŝi, 1 ≤ r ≤ N . Let VI = ∪i∈IVi, UM = ∪j∈MUj , and let E be the
set of edges. Consider the bipartite graph G = (VI ∪ UM , E). W.l.o.g we may assume that
|UM | ≥ |VI |; otherwise, we can add new bins j = m+ 1,m+ 2, . . . with corresponding sets
of vertices Uj = {uj,1, . . . , uj,N} and zero weight edges (vi,s, uj,r) for all i ∈ [n], 1 ≤ s ≤ ŝi,
1 ≤ r ≤ N .

We note that, given a subset of items S ⊆ I, M(S) is the linear programming relaxation
of the problem of finding a maximum weight matching in the subgraph G[VS ∪ UM ], where
VS ⊆ VI is the subset of vertices in G that corresponds to S. Using standard techniques (see,
e.g., [17]), it can be shown that M(S) has an optimal integral solution. Hence, η(S) = h(VS),
where h : 2VI → IR≥0 is a partial maximum weight matching function in G. By Theorem 6,
h is (monotone) submodular. Hence, η is also (monotone) submodular. J

4 Note that N , which may be arbitrarily large, is used just for the proof. Our algorithm does not rely on
obtaining a solution (or an explicit formulation) for M(S).
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4 Submodular Optimization with Reserved Capacity

In this section we prove Theorem 2. We start with some definitions and notation. Assume
we are given a ground set Ω = {1, . . . , n} and capacity m > 0, where each element i ∈ Ω
is associated with a non-negative size si ≤ m

2 . For S ⊆ Ω, let s(S) =
∑

i∈S si. Also, for
S, T ⊆ Ω let fS(T ) = f(S ∪ T )− f(S). We use throughout this section basic properties of
monotone submodular functions (see, e.g., [6]).

Algorithm 2 SubmodularOpt.

Input: A monotone submodular function f : 2Ω → IR≥0, sizes si ≥ 0 for all i ∈ Ω, and
capacity m > 0.
Output: A subset of elements R ⊆ Ω such that s(R) ≤ m

2 .
1: procedure Greedy(g, m′)
2: Set S = ∅, E = Ω.
3: while E \ S 6= ∅ do
4: Find i = arg maxi∈E\S

gS({i})
si

5: if s(S) + si ≤ m′ then set S = S ∪ {i}.
6: end if
7: Set E = E \ {i}.
8: end while
9: Return S
10: end procedure
11: Set R = ∅
12: for every set Se ⊆ Ω, |Se| ≤ 6 do
13: for every set B ⊆ Se, s(B) ≤ m/2 do
14: T = Greedy(fSe

,m/2− s(B))
15: if f(B ∪ T ) ≥ f(R) then Set R = B ∪ T .
16: end if
17: end for
18: end for
19: Return R

In the following we give an outline of an algorithm for maximizing a monotone sub-
modular function f subject to a knapsack with reserved capacity constraint. Specifically,
assuming that the knapsack capacity is m for some m > 0, the algorithm solves the problem
max{S⊆Ω:s(S)≤m

2 } f(S). The algorithm, SubmodularOpt, initially guesses the set of at
most six items of highest profits in some optimal solution (for the problem with knapsack
capacity m), and a subset of these profitable items, whose total size is at most m/2. Then
the algorithm calls a procedure which applies the Greedy approach as in [22] to find the
remaining items in the solution. We give a pseudocode of SubmodularOpt in Algorithm 2.
It is important to note that while the algorithm produces a solution of size at most m/2, the
analysis compares this solution against an optimal solution of size at most m.

The next lemma, which plays a key role in our analysis, follows from the technique
presented in [22].

I Lemma 7. Given the knapsack capacity m > 0, let 0 < m′ ≤ m∗ ≤ m. Let S∗ ⊆ Ω be a
non-empty subset of elements, such that s(S∗) ≤ m∗. Also, let g : 2Ω → IR be a monotone
submodular function satisfying g(∅) = 0, and let S = Greedy(g,m′). Then, there is an
element i∗ ∈ S∗ such that g(S) + g({i∗}) ≥ (1− e−m′/m∗)g(S∗).
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In the full version of the paper [16] we prove a more general result (see Lemma 12 therein).
Lemma 7 is obtained by setting T = ∅ in Lemma 12 in [16].

Lemma 7 was applied in [22] in the special case where m′ = m∗. It was applied in
conjunction with a guessing phase, used to ensure that the three most profitable elements in
an optimal solution are selected by the algorithm, thus bounding the value of g({i∗}).

Several difficulties arise while attempting to apply a similar approach to the problem
with reserved capacity. The first one is that the most profitable elements in any optimal
solution may already exceed the reduced capacity, and therefore cannot be added to the
solution. Another difficulty is that even if these elements do fit in the smaller knapsack, one
can easily come up with a scenario in which it is better not to include them in the solution.

To overcome these difficulties we use the following main observation. Given Pk, the set
of k = 6 most profitable elements in an optimal solution5, and a partition of this set into
two subsets B1, B2, each of size at most m/2 (if such a partition exists), adding elements to
either B1 or B2 using the greedy procedure leads to a solution of value at least one third
of the value of an optimal solution. This observation comes into play in Case 2.2 in the
proof of Theorem 2. The next technical lemma is used to prove this observation (we give the
proof below).

I Lemma 8. For k = 6, pA, pB , SA, SB ≥ 0 such that pA + pB ≤ 1 and SA + SB ≤ 1, define

h(pA, pB , SA, SB) = pA + (1− pA − pB)
(

1− e−
1
2−SA

1−SA−SB

)
− pA + pB

k
.

Then for p1, p2, S1, S2 such that 0 ≤ p1, p2 ≤ 1
3 and 0 ≤ S1, S2 ≤ 1

2 it holds that

max (h(p1, p2, S1, S2), h(p2, p1, S2, S1)) ≥ 1
3 .

Another main tool used in the proof of Theorem 2 is a simple partitioning procedure. It
shows that Pk can either be partitioned into two sets as required in the above observation,
or we reach a simple corner case (Case 2.1 in the proof) in which at least one third of the
optimal value can be easily attained. For the latter case, we use the following result, due
to [18].

I Lemma 9. Let g : 2Ω → IR be a non-negative and monotone submodular function.
Let OPT = max{g(S)|S ⊆ Ω,

∑
i∈S si ≤ m}, and S∗ = Greedy(g,m). Then either

g(S∗) ≥ (1− e−1/2)OPT, or there is an element i ∈ Ω such that g({i}) ≥ (1− e−1/2)OPT
and si ≤ m.

Proof of Theorem 2. (Submodular optimization with reserved capacity). It is easy to see
that the running time of the algorithm is polynomial. Let S ⊆ Ω, s(S) ≤ m, f(S) = OPT,
and k = 6.

Case 1: We first handle the case where |S| < k. We prove that in this case the algorithm
finds a set R such that f(R) ≥ OPT/3. Start with A1 = ∅, iterate over the elements
of S and add them to A1, as long as s(A1) ≤ m/2. If S 6= A1, let j ∈ S \ A1, and set
A2 = {j} and A3 = S \ (A1 ∪ A2). Clearly, s(A2) ≤ m/2, and since s(A1 ∪ A2) > m/2
and s(S) ≤ m, we have that s(A3) ≤ m/2. If S = A1 set A2 = A3 = ∅.

5 The value k = 6 is derived from Lemma 8. It may be possible to obtain the same approximation ratio
using smaller values of k, leading to a more efficient algorithm.
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By the submodularity of f , we have f(S) ≤ f(A1) + f(A2) + f(A3). Hence, for some
r ∈ {1, 2, 3}, f(Ar) ≥ f(S)/3 = OPT/3. We also have that |Ar| ≤ 5; therefore, at some
iteration of the algorithm Se = B = Ar, and following this iteration f(R) ≥ OPT/3.

Case 2: Assume now that |S| ≥ k. Let S = {i1, i2, . . . , i`} such that the elements are ordered
by their marginal profits: ij = arg maxj≤r≤` f{i1,...ij−1}({ir}). Set Pk = {i1, i2, . . . , ik}.
Consider the following process. Start with B1 = ∅ and B2 = ∅. Iterate over the elements
i ∈ Pk in decreasing order by size. For each element i, let t = arg minj=1,2 s(Bj). If
s(Bt) + si ≤ m/2 then Bt = Bt ∪ {i}; otherwise, Stop. We now distinguish between two
sub-cases for the termination of the process.

Case 2.1: Suppose that the process terminates due to an element i which cannot be added
to any of the sets. Let B1 and B2 be the sets in this iteration. Also, set B3 = {i},
U = B1 ∪B2 ∪B3, and L = S \ U . W.l.o.g assume that s(B1) ≥ s(B2). As the process
terminated, we have that s(B3) + s(B2) = si + s(B2) > m/2. The sets B1, B2, B3 and
L form a partition of S, and s(S) ≤ m. We conclude that s(B1) + s(L) ≤ m/2. Hence,
s(B2)+s(L) ≤ m/2, and s(B3)+s(L) ≤ m/2 as well (it is easy to see that s(B3) ≤ s(B1)).
By the submodularity of f , f(U) ≤ f(B1) + f(B2) + f(B3); thus, there is j ∈ {1, 2, 3}
such that f(Bj) ≥ f(U)/3. As none of the sets B1, B2, B3 is empty, we have that
|Bj | ≤ |Pk| − 2 = 4.
Let T = Greedy(fU ,m/2− s(Bj)). By Lemma 9, either

fU (T ) ≥ (1− e−1/2)fU (L) ≥ fU (L)/3,

or there is i ∈ L such that

fU ({i}) ≥ (1− e−1/2)fU (L) ≥ fU (L)/3.

In the former case, we can consider the iteration in which Se = U,B = Bj . In this
iteration, we have

f(B ∪ T ) ≥ f(Bj) + fU (T ) ≥ 1
3(f(U) + fU (L)) = 1

3OPT.

In the latter case, we can consider the iteration where Se = B = Bj ∪ {i}, and in which

f(B ∪ T ) ≥ f(B) ≥ f(Bj) + fBj
({i}) ≥ f(Bj) + fU ({i}) ≥ 1

3OPT.

Case 2.2: The process terminated with B1, B2 satisfying B1 ∪B2 = Pk, and s(B1), s(B2) ≤
m/2.
Let p1 = f(B1)/OPT, p2 = (f(Pk) − f(B1))/OPT, S1 = s(B1), S2 = s(B2) and
L = S \ Pk. If p1 ≥ 1

3 (or p2 ≥ 1
3 ) we have that in the iteration where Se = Pk and

B = B1 (or B = B2) the algorithm finds a solution of value at least OPT/3, and the
theorem holds. Thus, we may assume that p1, p2 ≤ 1

3 .
For j = 1, 2, let Tj = Greedy(fPk

,m/2 − Sj). Using Lemma 7 with S∗ = L, we have
that there is ij ∈ L for which

fPk
(Tj) + fPk

({ij}) ≥ (1− e−
1
2−Sj

1−S1−S2 )fPk
(L).

By the selection of elements in Pk, we have fPk
({ij}) ≤ 1

kf(Pk). Thus,

fBj (Tj) ≥ fPk
(Tj) ≥ (1− e−

1
2−Sj

1−S1−S2 )fPk
(L)− 1

k
f(Pk).
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Hence, in the iteration where Se = Pk, B = Bj , we obtain a solution satisfying

f(Se ∪ T ) = f(Bj ∪ Tj) ≥ f(Bj) + (1− e−
1
2−Sj

1−S1−S2 )fPk
(L)− 1

k
f(Pk)

≥ OPT
(
pj + (1− p1 + p2)(1− e−

1
2−Sj

1−S1−S2 )− p1 + p2

k

)
.

By Lemma 8, in one of these iterations we obtain a solution of value at least OPT/3,
implying the statement of the theorem. J

Proof of Lemma 8. Let p1, p2, S1, S2 be values that satisfy the conditions in the lemma.

Denote p = p1 +p2, d = p1−p2 and r = e−
1
2−S1

1−S1−S2 . It is easy to see that e−
1
2−S2

1−S1−S2 = e−1r−1.
Define V1 = h(p1, p2, S1, S2) and V2 = h(p2, p1, S2, S1). By the definition of h and above
definitions we get

V1 = p+ d

2 + (1− p)(1− r)− p

k

and

V2 = p− d
2 + (1− p)

(
1− e−1r−1)− p

k

Let g1(x) = p+d
2 + (1− p)(1− x)− p

k and g2(x) = p−d
2 + (1− p)

(
1− e−1x−1)− p

k . Clearly,
V1 = g1(r) and V2 = g2(r). It is also easy to see that g1 is decreasing and g2 is increasing
(for x > 0).

B Claim 10. It holds that g1(x∗) = g2(x∗) where x∗ = d+
√

d2+4e−1(1−p)2

2(1−p) .

Proof. By rearranging terms we have g1(x) = g2(x) if and only if d = (1− p)(x− e−1x−1),
which holds for x > 0 if and only if 0 = (1− p)x2− dx− e−1(1− p). The latter is a quadratic
equation and x∗ > 0 is a root. C

If r ≥ x∗, since g2 is increasing, we have V2 = g2(r) ≥ g2(x∗) = g1(x∗), and if r ≤ x∗,
as g1 is decreasing, we have V1 = g1(r) ≥ g1(x∗). Therefore max(V1, V2) ≥ g1(x∗). By
rearranging terms and substituting k = 6 we have

g1(x∗) = 1− p

2 −
√
d2 + 4e−1(1− p)2

2 − p

6 = 1− 2p
3 −

√
d2 + 4e−1(1− p)2

2

Our goal is to show that for 0 ≤ p ≤ 2
3 , we have 1 − 2p

3 −
1
2 ·
√
d2 + 4e−1(1− p)2 ≥ 1

3 , or
2
3 (1− p)− 1

2 ·
√
d2 + 4e−1(1− p)2 ≥ 0. By rearranging terms this is equivalent to showing

2
3 ≥

√
d2

4(1− p)2 + e−1.

Consider two cases:
Case 1: 0 ≤ p ≤ 1

3 . Since |d| ≤ p we have√
d2

4(1− p)2 + e−1 ≤

√
p2

4(1− p)2 + e−1 ≤
√

1
16 + e−1 ≤ 2

3 .

The last inequality follows since the function x
1−x is increasing in the interval [0, 1

3 ].
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Case 2: 1
3 ≤ p ≤

2
3 , as

p+d
2 , p−d

2 ≤ 1
3 , we have that |d| ≤ 2

3 − p. Therefore,√
d2

4(1− p)2 + e−1 ≤

√
(2/3− p)2

4(1− p)2 + e−1 ≤
√

1
16 + e−1 ≤ 2

3 .

The last inequality follows since the function 2/3−x
1−x is decreasing in the interval [ 1

3 ,
2
3 ].

In both cases we get g1(x∗) ≥ 1
3 , and as max(V1, V2) ≥ g1(x∗), the lemma follows. J

5 Filling Phase

In this section we prove Theorem 4. Define the size of bin j in assignment U as sU
j =

∑
i∈Uj

si.
We first divide the bins and items into types. We say that a bin j is full if sU

j > 1, semi-full
if 1

2 ≤ s
U
j ≤ 1, and semi-vacant if sU

j < 1
2 . An item i ∈ I(U) is big if si >

1
2 ; otherwise, i is

small. Clearly, there are no big items in semi-vacant bins.
Informally, we use in the proof several types of resolution steps. Each step takes as input

a full bin and possibly one or two semi-vacant bins, and reassigns some of the items into the
bins while evicting others. These resolution steps ensure that the new assignment has at
least half the profit of the original assignment, the assignment to any bin remains feasible,
and only small items are evicted.

We apply the resolution steps repeatedly, but once a bin participated in a resolution step
it may not participate in another one. We then prove that as long as there are full bins,
one of the steps can be applied. Hence, by applying the resolution steps, we have a new
assignment in which all bins are feasible, and the total profit is at least half the profit of the
original assignment. To handle the evicted items, we note that as s(I(U)) ≤ m/2 and all the
evicted items are small, it is possible to assign the evicted items to bins without violating
the capacity constraints.

Proof of Theorem 4. For any bin 1 ≤ j ≤ m and A ⊆ I, let pj(A) =
∑

i∈A pi,j be the total
profit gained from packing A into j. The first step is to resolve the violation of the capacity
constraint in each full bin. We do that using four types of resolution steps. Each step takes
a full bin and possibly one or two semi-vacant bins, modifies their contents and adds some
small elements to a set V of evicted elements, that will be handled later. Throughout the
discussion, we consider for a full bin j a partition of the elements in Uj into two feasible
subsets, given by {Aj , Bj}. We use the following resolution steps.

1. Consider a full bin j such that Uj has no big elements. If pj(Aj) > pj(Bj) then set
U ′j = Aj and evict Bj (V := V ∪Bj); otherwise, set U ′j = Bj and evict Aj , (V := V ∪Aj).
In both cases U ′j is feasible and pj(U ′j) ≥ 1

2 · pj(Uj).
2. Now, suppose we have a full bin j such that Uj has a single big element, and a semi-vacant

bin `. Let {A∗, B∗} = {Aj , Bj}, such that the big element is in A∗.
If pj(A∗) + p`(U`) > pj(B∗), set U ′j = A∗, U ′` = U` and evict the elements in B∗

(V := V ∪B∗). We note that in this case pj(U ′j) + p`(U ′`) = pj(A∗) + p`(U`).
Otherwise, set U ′j = B∗ and U ′` = A∗, and evict all the elements in U`, (V := V ∪U`). In
this case we have pj(U ′j) + p`(U ′`) ≥ pj(B∗).
Therefore, in both cases have pj(U ′j) + p`(U ′`) ≥ 1

2 · (pj(Uj) + p`(U`)) .
3. Consider a full bin j such that Uj has two big elements, and a semi-vacant bin `, such

that one of the big elements has space in bin `; that is, there is a big element i∗ ∈ Uj

such that si∗ + sU
` ≤ 1.
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Let {A∗, B∗} = {Aj , Bj} such that i∗ ∈ A∗. We note that there cannot be any other big
element in A∗ other that i∗.
If pj(B∗) + p`(U`) > pj(A∗) set U ′j = B∗ and U ′` = U` ∪ {i∗} (note that sU ′

` ≤ 1). Also,
evict all elements in A∗ \ {i∗}. In this case we have pj(U ′j) + p`(U ′`) ≥ pj(B∗) + p`(U`).
Otherwise, we set U ′j = A∗ and U ′` = B∗, and evict U` (V := V ∪ U`). In this case we
have pj(U ′j) + p`(U ′`) ≥ pj(A∗).
Thus, in both cases pj(U ′j) + p`(U ′`) ≥ 1

2 · (pj(Uj) + p`(U`)) .
4. Finally, consider a full bin j, such that Uj has two big elements, and two semi-vacant

bins `1 and `2. Recall Aj , Bj is a partition of the elements in Uj into two feasible subsets.
If pj(Aj) + p`1(U`1) > pj(Bj) + p`2(U`2), set U ′j = Aj , U ′`1

= U`1 and U ′`2
= Bj , and

evict U`2 . Thus, we have

pj(U ′j) + p`1(U ′`1
) + p`2(U ′`2

) ≥ pj(Aj) + p`1(U`1).

Otherwise, set U ′j = Bj , U ′`1
= Aj and U ′`2

= U`2 and evict U`1 . Here

pj(U ′j) + p`1(U ′`1
) + p`2(U ′`2

) ≥ pj(Bj) + p`2(U`2).

And finally, we always have

pj(U ′j) + p`1(U ′`1
) + p`2(U ′`2

) ≥ 1
2 · (pj(Uj) + p`1(U`1) + p`2(U`2)) .

Each time we execute a step we mark the bins used in this step as resolved, and we do
not consider them in the next steps. We first use Steps 1, 2, and 3, until none of them can
be applied.

Consider the average size of the unresolved bins. When we start, there are m bins of
average size no greater than half. Each of Steps 1, 2, and 3 reduces the size of the unresolved
bins by at least one (as a full bin is removed) and reduces the number of bins by at most two.
Therefore, the average size of the unresolved bins remains no more than half. Also, marking
all the semi-full bins as resolved will preserve the property.

Let a be the number of unresolved full bins and c be the number of unresolved semi-vacant
bins. Due to the average size of bins, we have a ≤ a+c

2 , therefore a ≤ c. Hence, if we have a
full bin, there must be a semi-vacant bin as well. As we used Steps 1, 2, and 3 to exhaustion,
every full bin must have two big elements (no bin in U contains more than two big elements),
and none of these big elements can fit into one of the semi-vacant bins.

Denote the minimal size of a semi-vacant unresolved bin by r. Then each of the full bins
has two big elements of size greater than 1 − r. Hence, we have c · r + 2a · (1 − r) < a+c

2 ,
which leads to 2a(1− r)− a

2 < c
( 1

2 − r
)
, and

c > a ·
2− 2r − 1

2
1
2 − r

= a · 3− 4r
1− 2r = a ·

(
2− 4r
1− 2r + 1

1− 2r

)
= a ·

(
2 + 1

1− 2r

)
> 2a,

implying that we can now run Step 4, until there are no more unresolved full bins.
We use the resolution steps to eliminate all the full bins. Every time we run such a step

over a set of bins we lose at most half the profit of the bins participating in the step. As
the total size of items in the assignment is bounded by m/2, we are guaranteed that it is
possible to assign all the evicted elements to some bins. Thus, we are able to resolve the
capacity overflow while losing at most half of the profit. J
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6 Discussion and Future Work

In this paper we presented a 1
6 -approximation algorithm for Group GAP, using a mild

assumption on the size of each group. A key component in our result is an algorithm for
submodular maximization subject to a knapsack constraint, which finds a solution occupying
at most half the knapsack capacity, while the other half is reserved for later use. Our results
leave several avenues for future work.

As mentioned above, Group GAP with no assumption on group sizes cannot be approxim-
ated within any constant factor. Yet, the maximum group size that still allows to obtain a
constant ratio can be anywhere in [ m

2 ,
2
3m]. Thus, a natural question is: “Can our results be

applied to instances with larger group sizes?” We note that the ratio stated in Theorem 5
may not hold already for instances in which group sizes can be at most m

2 (1 + ε), for some
ε > 0. Indeed, for such instances, it may be the case that no set of groups of total size at
most m/2 is “good” relative to the optimum. The existence of an algorithm that yields a
constant ratio for such instances remains open.

While our result for submodular optimization with reserved capacity (Theorem 2) gives
an optimal approximation ratio for the studied subclass of instances, we believe the result
can be extended to other subclasses. In particular, we conjecture that for instances where
each item has size at most δ > 0, the approximation ratio approaches 1 − e− 1

2 as δ → 0.
Such result would immediately imply an improved approximation ratio for instances of Group
GAP in which the total size of each group is bounded by δm. We defer this line of work to
the full version of the paper.

Lastly, we introduced in the paper the novel approach of submodular optimization subject
to a knapsack with reserved capacity constraint. We applied the approach along with
a framework similar to the one developed in [1]. It would be interesting to investigate
whether the approach can be used to improve the approximation ratio obtained in [1] for
all-or-nothing GAP.
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Abstract
We study the problem of designing a dictionary data structure that is resilient to memory corruptions.
Our error model is a variation of the faulty RAM model in which, except for constant amount of
definitely reliable memory, each memory word is randomly unreliable with a probability p < 1

2 , and
the locations of the unreliable words are unknown to the algorithm. An adversary observes the
whole memory and can, at any time, arbitrarily corrupt (i.e., modify) the contents of one or more
unreliable words.

Our dictionary has capacity n, stores N < n keys in the optimal O(N) amount of space, supports
insertions and deletions in O(logn) amortized time, and allows to search for a key in O(logn)
worst-case time. With a global probability of at least 1 − 1

n
, all possible search operations are

guaranteed to return the correct answer w.r.t. the set of uncorrupted keys.
The closest related results are the ones of Finocchi et al. [13] and Brodal et al. [6] on the faulty

RAM model, in which all but O(1) memory is unreliable. There, if an upper bound δ on the number
of corruptions is known in advance, all dictionary operations can be implemented in Θ(logn+ δ)
amortized time, thus trading resiliency for speed as soon as δ = ω(logn).

Our construction does not need to know the value of δ in advance and remains fast and effective
even when up to a constant fraction of the available memory is corrupted. Our techniques can
be immediately extended to implement other data types (e.g., associative containers and priority
queues), which can then be used as a building block in the design of other resilient algorithms. For
example, we are able to solve the resilient sorting problem in our model using O(n logn) time.
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1 Introduction

Computing platforms sometimes exhibit temporary or permanent memory failures and they
can be expected to become more frequent due to the challenge of providing high amounts
of energy on an ever smaller scale, while simultaneously increasing the operation frequency.
Most algorithms completely malfunction even if a single memory error occurs. For example,
one may consider the Mergesort algorithm, where a constant fraction of elements can be
placed out of order following a single corruption. Classical approaches to deal with these
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faults involve data replication or the use of error-correcting code (ECC) memory, and typically
require more computational resources (i.e., space and/or time) or dedicated hardware. This
gave rise to a line of research focusing on the design of fast and compact algorithms and data
structures that are resilient to memory faults, i.e., that provide provable guarantees on their
output even when some memory words become corrupted.

A widely used model to capture this kind of corruption is the faulty RAM model [14],
in which an algorithm has access to only a constant amount of reliable memory, while all
the other words are unreliable. An adversary is then allowed to corrupt (i.e., change the
value of) up to δ unreliable words,1 and the algorithms’ performances are evaluated as a
function of δ. We consider a variation of the above model in which, in addition to the
O(1) reliable memory, each of the remaining words is unreliable with a certain probability
p < 1

2 but the algorithm is unaware of which of these locations are reliable. While both
settings are theoretical abstractions of the more complex error patterns that can happen
in the real-world, it is not hard to come up with examples that closely resemble our error
model. For example, when a DRAM module is faulty, its contents are no longer reliable and
read and write operations might produce corrupted values. To complicate things further,
even though the faulty locations might be contiguous, processors map physical addresses
to hardware locations using complex (and often undocumented) mapping functions.2 This
increases memory access parallelism but has the side effect of distributing the unreliable
locations over the whole address space.

We focus on the problem of designing a resilient data structure implementing the dictionary
abstract data type, that is, we want to maintain a set of up to n keys under insertion and
deletions so that we can answer membership queries. While it is easy to adapt any classical
(non-resilient) data structure to our model with a multiplicative blow up of Θ(logn) in the
time and space complexities, one might wonder whether provably good guarantees w.r.t. the
number of corruptions can be achieved using the asymptotically optimal O(n) amount of
space. In the rest of this paper we show that the answer is indeed affirmative.

Our model

Our model of computation is a random access machine [1] in which each word of memory is
either reliable or unreliable. The memory itself is split into two regions:

A safe region of O(1) words (representing, e.g., processor registers) that are always
reliable.
A region containing all of the remaining words (representing, e.g., the main memory).
Each of these words is independently reliable with probability 1− p and unreliable with
probability p, for some constant p < 1

2 .

Unreliable words can be affected by corruption phenomena, i.e., their contents can
unexpectedly change. Except for the O(1) words in the safe memory region, an algorithm
is unaware of which memory locations are unreliable and is unable to detect whether the
value stored in an unreliable location has been corrupted. Following [14], we adopt a worst
case approach to corruptions: a computationally-unbounded adversary knows the algorithm
that is being executed, can observe the contents of the whole memory, and can distinguish
reliable from unreliable words. The adversary can, at any point during the execution of the
algorithm, simultaneously corrupt the values stored in one or more unreliable words.

1 This implicitly adopts a worst-case approach, so that all positive results also hold in the easier case of
random, non-malicious corruptions.

2 Finding techniques to reliably discover the mapping functions is an area of active research. Proposed
methods use thermal and timing data to correlate physical addresses to memory locations [19, 18, 24].
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Our results and techniques

We design a resilient dictionary that stores up to n keys using the optimal amount of
space, supports insertions, deletions, and membership queries (in the following insert,
delete, and search) in O(logn) amortized time and guarantees with high probability (w.h.p.)
that, regardless of the number δ of corruptions, all search operations work reliably on all
uncorrupted keys. More precisely, the search operation behaves as follows: if the searched
key k belongs to the dictionary and is uncorrupted, then the search operation correctly
returns yes. If k does not belong to the dictionary and no corrupted key equals k, the
returned answer is guaranteed to be no. In the remaining cases the answer might be either
yes or no.

As a comparison, the closest related results are the ones of Brodal et al. [6] and Finocchi
et al. [13] on the faulty RAM model. There the authors show how, given δ, it is possible to
build a dictionary that is resilient to up to δ word corruptions, uses O(n) space, and whose
insert, delete, and search operations require O(logn+ δ) amortized time, which is tight.3

Crucially, the task of selecting a good upper bound δ on the number of corruptions at
design time can turn out to be problematic: if δ is too small then the resulting dictionary
can abruptly fail when the (δ + 1)-th corruption occurs while, if δ = ω(logn), one is forced
to trade-off resiliency for speed as the additive term of δ now becomes dominant in the
time complexity.

Notice that, in our setting, the expected number of unreliable locations is pn = Θ(n),
implying that the actual number of unreliable locations is Θ(n), except for an exponentially
vanishing probability. Since δ can be as large Θ(n) (think, e.g., of our faulty DRAM-example),
a direct instantiation of the results of [6] and [13] yields the same bounds of the trivial
dictionary that uses O(n) space and time per operation (just store all the keys in an unsorted
array). Nevertheless, one might wish for a dictionary that remains resilient w.r.t. a constant
fraction of key corruptions and whose operations do not bear the exorbitant cost of O(n) time
per operation. Our results shows that this is indeed possible: when the unreliable locations
are random fraction of the available memory, it is possible handle any (unknown) number δ
of corruptions with the same asymptotic guarantees obtained by the existing fault-tolerant
dictionaries in the faulty RAM model when δ = O(logn).

From a high-level point of view, [13] buffers the dictionary keys into groups of size Θ(δ),
and organizes the resulting groups into a pointer-based AVL tree. A core subroutine then
consists of locating the group responsible for a given key in O(logn+ δ) time. Since the
corruption of any auxiliary information associated with a group might lead the search astray,
the corresponding variables are replicated Θ(δ) times. A first difficulty to overcome in our
model is that of removing the dependency from δ. We do so by using a different locate
procedure that is based on a suitable walk over the tree vertices. The behavior of the walk is
guided by the observed memory contents, yet we prove that there is an absolute probability
of at least 1− 1

n that no possible walk can be misled by the adversary, even when all the
unreliable memory locations are corrupted. Another difficulty is intrinsic in pointer-based
structures: if the address stored in a pointer cannot be reliably recovered, the whole pointed
object becomes inaccessible. The natural way to deal with this problem involves reading
multiple copies of the pointer. However, since reading only o(logn) copies would still allow
the adversary to corrupt the pointer with a probability larger than 1

n , this would lead to a

3 The dictionary of [13] is randomized and the above bounds hold in expectation, while the one of [6] is
deterministic. The dictionary of [13] can be made deterministic by slightly worsening the δ additive
term in the amortized complexity to δ1+ε, for a constant ε > 0 of choice.
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slowdown of Ω(logn). We avoid this problem altogether by using a dynamic binary search
tree (BST) that is nearly balanced, i.e., whose height is at most an additive constant larger
than the optimal one [7]. This tree is then embedded into a static and pointer-free complete
BST. We are now left with one final technical obstacle: since rebalancing such a dynamic
tree following an update operation is more expensive w.r.t. its AVL counterpart, we need to
employ a more elaborate 2-level buffering scheme. Namely, we group keys into O( n

logn ) pages
of capacity O(logn) which are in turn arranged into sorted folders consisting of O(logn)
pages (i.e., O(log2 n) keys) each.

We remark that the high probability bound on the correctness of our dictionary does not
depend on the number of operations performed. In other words, there is a global probability
of at least 1− 1

n that the operations in any (arbitrarily long) sequence of inserts, deletes,
and searches, are all jointly correct. The following Theorem summarizes our result:

I Theorem 1. A resilient dictionary with capacity n can be constructed in O(1) worst-case
time. Search, and update operations (i.e., insert and delete) require O(logn) worst-case
and O(logn) amortized time, respectively. The space required is O(N), where N is the number
of elements currently stored in the dictionary. All operations performed during the lifetime
of the dictionary are (jointly) correct with probability at least 1− 1

n .

Although our focus is on the dictionary abstract data type, our techniques immediately
extended to other data types (e.g., associative containers and priority queues), as we discuss
in Section 6.

Other related results

Apart from the already mentioned results of [13] and [6], several other algorithms and models
to deal with faulty computations have been proposed, with considerable attention paid to the
problems of sorting and searching. In the faulty RAM model, the resilient sorting problem
asks to output a permutation of an input set of n elements such that the set of uncorrupted
elements forms a sorted subsequence, while the resilient searching problem asks to locate
an uncorrupted key k in such a sorted sequence, if it exists. Roughly speaking, when δ

corruptions happen, one can resiliently sort and search at the cost of an additional additive
term in the time complexity that depends only on δ. More specifically, one can search in
Θ(logn+ δ) time [6, 14] and sort in O(n logn+ δ2) time which can be improved to O(n+ δ2)
when elements are polynomially-bounded integers [12]. Moreover, for δ = ω(

√
n logn), all

resilient sorting algorithms must require ω(n logn) time in the general case [14].
Another popular model dealing with faults considers the elements as opaque objects

possessing an unknown linear order that needs to be discovered or approximated through
pairwise noisy comparisons, i.e., comparisons that can sometimes be incorrect. If comparison
errors happen randomly and resampling is allowed (i.e., a comparison can be repeated
multiple times and the results are independent) then one can sort and search, w.h.p., in the
optimal O(n logn) and O(logn) time, respectively [11]. If resampling is not allowed then one
cannot reliably reconstruct the correct linear order. Nevertheless, it is possible to compute
a permutation in which each element is misplaced by at most O(logn) positions, which is
asymptotically optimal. Several solutions have been designed for this problem [5, 25, 20,
15, 16, 17] culminating in an optimal O(n logn) time algorithm. If errors are adversarial
then Ω(n logn+ δn) comparisons are needed, and this is tight [3, 21, 22]. Adversarial errors
in searching are studied in the context of Rényi-Ulam Games, in which a questioner needs
to guess an element from a domain by asking comparison questions to a lying responder.
An extensive collection of results exists, depending on the considered domain and on the
constraints on the responder’s lies. We refer the interested reader to [23] and [9] for a survey
and a monograph.
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In [2] the authors define the fault-tolerance of a data structure as the maximum ratio
between the amount of data lost as a consequence of a number δ of corruptions and δ. They
provide implementations of linked lists, stacks, and binary search trees with a fault-tolerance
of O(log δ) or O(1), depending on the specific construction used, while losing only constant
multiplicative factors in the time and space requirements. We remark that in [2], unlike both
our dictionary and the ones in [13, 6], uncorrupted keys can also be lost until the whole data
structure is reconstructed. If Θ(δ) words of safe memory are available then, instead of the
multiplicative overhead of [2], one can pay only an additive overhead of Õ(δ) in the time and
space complexities, and the data structure can be reconstructed in linear time [8]. Similarily
to [13] and [6], and differently from our dictionary, both [2] and [8] require the value of δ to
be known in advance.

2 Preliminaries

For simplicity we assume that the capacity n of our dictionary is a sufficiently large power
of 2, so that logn is a sufficiently large integer and we do not have to deal with rounding.
We also assume, w.l.o.g., that p ≤ 1

1024 .
4 A concept of resilient variable similar to the

one used in [13] will also be useful in the sequel. For our purposes, a resilient variable x
consists of 20 logn+ 1 consecutive copies x1, x2, . . . of a classical variable. A resilient variable
can be written (i.e., assigned to) in O(logn) time and constant space by simply writing
the intended value to each xi. We can then read the value stored in x either resiliently or
non-resiliently: a non-resilient read amounts to returning the (possibly corrupted) value of
a single xi; a resilient read returns the majority value among those stored in all the copies
x1, . . . , x20 logn+1, or fails if no majority value exists. Notice that, if at least 10 logn + 1
copies are uncorrupted, the majority value coincides with the one previously stored in x and
can be computed in O(logn) time using a constant number of words in safe memory (see,
e.g., the Boyer-Moore majority vote algorithm [4]). An easy Chernoff-bound argument shows
that this is indeed the case for all possible read operations that can be performed, w.h.p, as
the following Lemma states (a formal proof will appear in the full version of the paper).

I Lemma 2. Suppose that the number of words used to store replicated variables is O(n).
With probability at least 1−n−2, all resilient read operations return the previously stored value.

In the following we assume that all resilient read operations succeed as we will eventually
union bound the success probability of the other operations in our dictionary with that of
Lemma 2. Finally, we use −∞ (resp. +∞) to denote a key smaller than (resp. the largest
among) all valid keys that can be inserted in our dictionary, and ⊥ as a placeholder for some
invalid key value.

The paper is organized in a bottom-up fashion: Section 3 describes pages, which are
groups of O(logn) keys; In Section 4 we further group pages into sorted folders and show
how to quickly locate pages, while Section 5 uses pages and folders to build our dictionary.
In Section 6 we summarize our results and provide some concluding remarks.

4 For any constant ε > 0 and p ∈ ( 1
1024 ,

1
2 − ε], we can simulate the required error probability by storing

d30ε−2e copies of each word, with a strategy similar to the one described in the rest of this section.
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3 Pages

Each page v is associated with a contiguous interval I(v) = (Lv, Rv] of keys and will be
responsible for storing a set K(v) of O(logn) keys, where all uncorrupted keys in K(v) will
belong to I(v). A page π is implemented as contiguous array A(π) of capacity 6 logn and
three replicated variables storing: the endpoints Lv and Rv of I(π), and the size |K(π)| of π.
The keys in K(π) are be stored in the first |K(v)| positions of A(π) in an arbitrary order. If
|K(π)| = 0 (resp. |K(π)| = 6 logn) we say that π is empty (resp. full).

Pages will support five basic operations, namely search, insert, delete, split, and
merge, as detailed in the following.

Search. Given k ∈ I(v), the search operation determines whether k ∈ K(π). We simply
resiliently read the variable |K(v)| and compare k with the first |K(v)| elements of A(π).
If any (resp. no) element compares equal to k we report that k belongs to (resp. does not
belong to) π. Clearly, this requires O(logn) worst-case time.

Insert. The insert operation adds a key k ∈ I(π) to K(π) and is only legal if π is not full.
We first search for k and, if k ∈ K(π), we are immediately done. Otherwise we write k in
the |K(π)|-th position of the array storing the set K(v), where |K(π)| is read resiliently. The
time required is O(logn) in the worst-case.

Delete. The delete operation removes a key k from K(π). If k 6∈ K(π), then π is unaltered.
The operation requires O(logn) time: after a resilient read of |K(v)|, we perform linear
search on A(π) and, if k is found in some position i, we swap the i-th and the |K(v)|-th
element of A(π) and decrement |K(v)| by 1 (which requires a replicated write operation).
Due to corruptions, A(π) might contain multiple occurrences of k, in which case exactly one
of them is removed.

Split. The split operation destroys π and returns (the addresses of) two newly created
pages π1, π2 such that: (i) I(π1) ∩ I(π2) is the empty interval; (ii) I(π1) ∪ I(π2) = I(π); (iii)
|K(π1)| = b|K(π)|/2c and |K(π2)| = d|K(π)|/2e; (iv) K(π1) ∪K(π2) = K(π).

The difficulty of the split operation lies in computing a key x ∈ [Lπ, Rπ] that allows
to split I(v) into two sub-intervals I(π1) = (Lπ, x] and I(π2) = (x,Rπ] while preserving
the bounds on the sizes of π1 and π2. We create a new page π1 and we populate A(π1) by
repeating the following iterative procedure b|K(π)|/2c times: in iteration i we search for the
smallest key ki ∈ K(v), we remove ki from K(π) (in a way similar to our implementation of
the delete operation), and we add it into the i-th position of A(π1). Finally, we rename
π as π2, we choose x = min{Rπ,max{Lπ, k1, k2, . . . , }}, and we and set I(π1) and I(π2)
accordingly. It is easy to see that the split operation requires O(log2 n) time in the worst
case. The following lemma, whose proof is deferred to the full version of the paper, shows
the uncorrupted keys are correctly partitioned among π1 and π2.

I Lemma 3. Let k be an uncorrupted key belonging to π before the split operation. If
k ≤ x (resp. k > x) then k belongs to K(π1) (resp. K(π2)) after the split operation.

Merge. The merge operation can be thought of as the opposite of the split operation. It
requires two pages π1 and π2 as inputs such that (i) I(π1) ∩ I(π2) is the empty interval, (ii)
I(π1) ∪ I(π2) is a contiguous interval, and (iii) |K(π1)| + |K(π2)| ≤ 6 logn; and produces
the following effects: it adds all keys in K(π2) to K(π1), updates I(π1) to I(π1) ∪ I(π2),
and destroys π2. Notice that the order of π1 and π2 determines which of the two pages
is destroyed.
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Pages π1 and π2 are merged as follows: first we resiliently read |K(π1)| and |K(π2)|,
and append the |K(π2)| keys in π2 in positions |K(π1)|+ 1, . . . , |K(π1)|+ |K(π2)| of A(π1).
We then update |K(π1)| to |K(π1)|+ |K(π2)| and I(π1) to (min{Lπ1 , Lπ2},max{Rπ1 , Rπ2}]
where Lπ1 , Lπ2 , Rπ1 , Rπ2 are also read resiliently. One can easily check that the overall time
complexity of a merge operation is O(logn) in the worst case.

4 Folders

Folders are sorted arrays of capacity 6 logn in which elements are pages having pairwise
disjoint intervals. Each folder F additionally stores two replicated variables holding the
number |F | of pages currently in the array, and the overall number |K(F )| of keys stored
in (the pages of) F . With a slight abuse of notation we say that π ∈ F if π is one of the
pages of F . We denote by K(F ) the union of all sets K(π) for π ∈ F . A folder F will always
contain at least one page and, similarly to pages, it is (implicitly) associated with an interval
I(F ) = (LF , RF ]. When F is first created it consists of a single innate empty page π with
I(π) = I(F ). In general, each π ∈ F is responsible for a certain sub-interval of I(F ) (formally,
the intervals I(π) are pairwise disjoint and satisfy ∪π∈F I(π) = I(F )). Moreover, all pages
except the first one will always contain at least logn+ 1 keys, and hence we immediately
have that |K(F )| ≥ (|F | − 1) · (logn+ 1) and that a folder can always accommodate at least
(6 logn− 1)(logn+ 1) > 6 log2 n keys. In fact, we guarantee that F will always contain at
most 6 log2 n keys. Quite naturally, we say that a folder F is empty if it contains no keys,
and full if it contains exactly 6 log2 n keys. If F is not empty, then its first page will also
be non-empty.

The pages in the array of F are sorted w.r.t. the order relation ≺ implicitly defined by
the order of their intervals, i.e., we say that two pages π1, π2 are such that π1 ≺ π2 iff I(π1)
precedes I(π2) (π1 � π2, π1 � π2, and π1 � π2 are defined accordingly). As a consequence,
there is no need to explicitly store I(F ) since its left and right endpoints coincide with those
of the first and last page in F , respectively.

We now discuss the operations supported by folders, most of which are similar to the
ones for pages, on which they rely.

Locate and Search. Given a key k ∈ I(F ), the locate operation returns the unique page
π ∈ F such that k ∈ I(π). Once the locate operation is available, one can easily search for
a key k ∈ I(F ) by first locating the page π such that k ∈ I(π) and then searching for k
in π.

Notice that the locate operation can be easily implemented in O(log2 n) worst case
time, w.h.p., by binary searching for the page π while reading all the replicated variables
resiliently. We now show that it is possible to reduce the time complexity to O(logn) by
using a technique similar to the one of [11], where an element in a sorted array A is located
through a random walk over the contiguous sub-intervals induced by the elements in A. Such
a random walk will observe inconsistent results independently at random and is allowed to
backtrack when this happens. Moreover, to guarantee a high probability of success, Ω(log |A|)
consistent observations are required before an element is returned. However, the analysis
of [11] is not immediately suitable for our case due to two main obstacles, namely: (i) we
want the high probability bound on the success probability to hold jointly for all locate
operations performed during the lifetime of our dictionary, and (ii) since the adversary has
complete control over the unreliable memory locations and a complete knowledge of the
memory state, he can cause the inconsistent results to become correlated (e.g., by steering
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Figure 1 (a) An example tree T used by our random walk to implement the locate operation.
(b) An example graph G having maximum out-degree ∆ = 4. Preferential edges are drawn with
solid lines. A traversable path of type 2 and length 9 is highlighted in bold.

the walk towards corrupted memory locations). We overcome these obstacles by relating all
the problematic realizations of all possible random walks to a collection of paths in a suitable
graph. We then show that, with high probability, no possible set of memory corruptions can
cause any such path to become viable.

The locate algorithm. We start by considering an almost-complete binary tree5 T in which
the i-th leaf πi corresponds to the i-th page of F , and an internal node v represents the
(contiguous) interval I(v) = (Lv, Rv] obtained by the union of all intervals I(π) where π is a
leaf of the subtree Tv of T rooted at v. Then, we augment such a tree by appending, to each πi,
a path Pπi

consisting of 20 logn− d(πi) copies of πi itself, where d(πi) ∈ {blog 6nc, dlog 6ne}
is the depth of vertex πi in T . See Figure 1 (a) for an example.

It is important to remark that T does not need to be explicitly constructed since each
vertex v ∈ V (T ) can be represented by a triple of integers (i, j, h), where i (resp. j) is the
index, in the array of pages, of the smallest (resp. largest) leaf (i.e., page) in Tv, and h is the
depth of v in T .

We now perform a discrete-time walk on T as follows: initially the current vertex v of
the walk coincides with the root r of T and, at the generic i-th step, we walk from v to one
of its neighbors. More precisely, if I(v) is obtained by the union of all the intervals I(π) for
π− � π � π+ we read the i-th copy ` (resp. r) of the replicated variable Lπ− (resp. Rπ+),
we check whether ` < k ≤ r and, if that is not the case, we walk from v to the parent of
v in T (in the special case v = r we “walk” from v to itself). Otherwise, if v has only one
child u in T , we walk from v to u. Finally, if v has two children u1 and u2 in T where I(u1)
precedes I(u2) and is obtained by the union of all the intervals I(π) for π−1 � π � π

+
1 , we

compare k with the i-th copy x of Rπ+
1
. If k ≤ x we walk to u1, otherwise we walk to u2.

We continue the walk for 20 logn steps so that we are guaranteed that all v, except
possibly for the one reached after the last step, have at least one child. If the vertex v reached
at the end of the walk belongs to a path Pπ, we return π. We say that the locate operation
fails if either the v does not belong to any path Pπ, or if k 6∈ I(π).

5 A binary tree of height h is almost-complete if it is complete up to the (h− 1)-th level. Moreover, we
also assume that all the leaves on the h-th level are left-justified.



S. Leucci, C.-H. Liu, and S. Meierhans 70:9

Analysis. Let us consider the following related problem. We are given a directed acyclic
graph G having maximum out-degree at most ∆ ≥ 2, a vertex s ∈ V (G), and a probability
ρ ≤ 1

32(∆−1) . Moreover, each non-sink vertex v ∈ V (G) has exactly one preferential outgoing
edge (v, v∗) ∈ E(G) and we define E∗ as the set of all preferential edges. The vertices of G
are independently colored either red or blue with probability at most ρ and at least 1− ρ,
respectively. Finally, we say that a path P = 〈v0, v1, . . . vk〉 in G is traversable if, for every
vi ∈ P with i = 0, . . . , k − 1, we have that vi is red, or (vi, vi+1) is preferential, or both. See
Figure 1 (b) for an example. We are now ready to state the following:

I Lemma 4. Let ` be a multiple of 4. The probability that G contains a traversable path P
of length ` from s such that |E(P ) ∩ E∗| ≥ `

4 is at most 2− `
4 +1.

Proof. We will count the number of possible paths of length ` from s by grouping them
according to the number of non-preferential edges they use. More precisely, we say that the
type of a path P = 〈s = v0, v1, . . . v`〉 in G is κ if |{v∗i 6= vi+1 : i ∈ {0, ..., `− 1}| = κ, where
(vi, v∗i ) is the unique preferential edge outgoing from vi. Notice that each path of type κ
can be described by a set of κ pairs: {(τ1, a1), ..., (τκ, aκ)} where (τi, ai) signifies that when
the path reaches vτi , it continues towards the ai-th non-preferential outgoing edge from vτi

(according to some fixed arbitrary order of the edges). This immediately implies that there
are at most

(
`
κ

)
(∆ − 1)κ paths of type κ. Moreover, for any such path to be traversable,

it must happen that all the vertices vi with i ∈ {τ1, . . . , τκ} are red (while the remaining
vertices can be either blue or red). This happens with probability at most ρκ, and hence the
probability that there exists at least one traversable path of type κ is at most

(
`
κ

)
(∆− 1)κρκ.

By summing over all κ ∈ [`/4, `] we obtain:

∑̀
κ=`/4

(
`

k

)
(∆−1)κρκ ≤

( ∑̀
κ=`/4

(
`

κ

))
·

( ∞∑
κ=`/4

(∆−1)κρκ
)
≤ 2`(∆− 1) `

4 ρ
`
4

1− (∆− 1)ρ < 2− `
4 +1. J

I Lemma 5. With probability at least 1− n−3 no locate operation on folders fails.

Proof. We relate our random walk on T to the traversable paths in a suitable graph G. Let
t be the unique leaf of T such that the key k to locate belongs to the corresponding page π
and direct each edge of T towards t. We define G as the graph whose vertex set consists
of ` + 1 copies u(1), u(2), . . . of each vertex u ∈ V (T ) and whose edge set contains, for all
i = 1, . . . , `, the edge (r(i), r(i+1)) and all the edges (u(i), v(i+1)) where (u, v) is a directed
edge in T . We color a vertex u(i) of G red if the i-th copy of at least one of the (at most
3) replicated variables accessed when a step of the random walk is performed from vertex
u(i) is in an unreliable memory location (notice that these replicated variables correspond to
the page associated with u and, possibly, with a child of u in T ). For each non-sink vertex
u(i) of G we let (u, v) be the unique (directed) edge outgoing from u in T and we choose the
edge from u(i) to v(i+1) as the preferential edge from u(i) in G.

The graph G has maximum out-degree 3 and hence, once we choose ∆ = 3, s = r,
ρ = 1

128 > 3p, and ` = 20 logn, we can invoke Lemma 4 to conclude that all the traversable
paths from s in G of length 20 logn use less than 5 logn non-preferential edges with probability
at least 1− 2n−5. Since any sequence of vertices 〈r = v1, v2, . . . , v`+1〉 corresponding to a
realization of our random walk induces a traversable path P = 〈s = v

(1)
1 , v

(2)
2 , . . . , v

(`+1)
`+1 〉

in G we know that, with the aforementioned probability, all possible random walks on T
will use at least 15 logn edges directed towards t. Each such edge decreases the distance
in T from the current vertex of the walk to t by at least 1, while any other edge increases
such a distance by at most 1. Since the distance dT (r, t) from r to t in T is 20 logn by
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construction, we conclude that the final vertex v of the walk must satisfy dT (v, t) ≤ 10 logn
or, in other words, v lies on Pπ and the locate operation is successful. The claim follows
by noticing that, once the locations of the unreliable words are fixed, at most O(n log2 n)
distinct (colored) graphs G can exist, namely those corresponding to the O(logn) possible
different sizes of T , to the O(logn) different positions of the sought leaf t in T , and to the
O(n) memory locations at which a folder can be stored. J

Insert. The insert operation adds a key k ∈ I(F ) into K(F ), and it is only legal when F
is not full. We first locate the page π responsible for k and we say that the insert operation
targets π. Then, if π is not full, we simply insert k into π, we update |K(F )|, and we are
done. Otherwise, we say that the insert operation is expensive. Let i be the position of π in
the array of pages. We move all pages in positions i+ 1, . . . , |F | one position to the right
(so that the page originally in position j is now in position j + 1), and increment |F | by 1.6
Every read and write operation on the replicated variables of the moved pages is performed
resiliently, i.e., a replicated variable is moved by first resiliently reading its value x from
the old memory location and then resiliently writing x to the new memory location. We
now split π into two pages π1 and π2 containing 3 logn keys each, and we store them in
positions i and i+ 1, respectively. Finally, we insert k into the unique page π′ ∈ {π1, π2}
such that k ∈ I(π′), and we update |K(F )|.

Overall, an insert operation requires O(logn) worst-case time if it is not expensive and
O(log2 n) worst-case time otherwise.

Delete. The delete operation removes a key k from K(T ) if k ∈ K(T ). If k 6∈ K(T ) the
operation does nothing. We first locate the page π responsible for k and we say that the
delete operation targets π. We now try to delete k from π and, if k was not found in K(π)
we are already done. If k is found, then we decrement |K(F )| by 1 and proceed differently
depending on the size and on the position of π in the pages array of F . Whenever, after
the deletion, any of the following conditions is true, no further work is necessary: (D1)
|K(π)| > logn; or (D2) π is the only page of F ; or (D3) π is the first page of F and is
non-empty. Otherwise, we say that the delete operation is expensive and we distinguish two
cases. If (i) π is the first page of F , (ii) F has at least 2 pages, and (iii) π is empty, we let π′
be the second page in F and we delete π from F as follows: We set the left endpoint of I(π′)
to the left endpoint of I(π) (effectively updating I(π′) to I(π) ∪ I(π′)), and we shift every
page of F other than π one position to its left, thus overwriting and destroying π. Finally,
we decrement the value of |F | by 1.

The complementary case is the one in which |K(π)| ≤ logn and π is not the first page of
F , which implies that |K(π)| = logn. We let π′ be the page preceding π in F and we further
distinguish two sub-cases depending on the value of |K(π′)|:

If K(π′) ≤ 4 logn, we merge π′ and π. Since this operation destroys π, we shift all pages
π′′ ∈ F such that π′′ � π by one position to their left, and we decrement |F | by 1. Notice
that π′ now contains at most 4 logn+ logn = 5 logn keys.
If K(π′) > 4 logn we first split π′ (destroying it) into π1 and π2. We then merge π2
and π (destroying π). We store π1 in place of π′ and π2 in place of π. Notice that
π1 now contains at least 2 logn and at most 3 logn keys, while π2 contains at least
2 logn+ logn = 3 logn and at most 3 logn+ logn = 4 logn keys.

6 Notice that, before the insert operation, we necessarily had |F | < 6 logn as otherwise |K(F )| is at
least (6 logn− 1)(logn+ 1), which violates our invariant on the number of keys stored in F .
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Similarly to the insert operation, when pages are moved in the array of F , all their
resilient variables are read and written resiliently. Overall, the required worst-case time is
O(logn) if the operation is not expensive, and O(log2 n) otherwise.

Split. If |K(F )| ≥ 12 logn, the split operation destroys F and returns two new folders F1
and F2 that together contain the same set of keys of F and such that: I(F ) = I(F1) ∪ I(F2),
I(F1) ∩ I(F2) = ∅, and |K(F )|/2 ≤ |K(F1)| < |K(F )|/2 + 6 logn (implying |K(F )|/2 −
6 logn < |K(F2)| ≤ |K(F )|/2), and all the uncorrupted keys k ∈ K(π) belong to the unique
folder F ′ ∈ {F1, F2} such that k ∈ I(F ′).

To implement the operation, we look for the first page π such that
∑
π′�π |K(π′)| ≥

|K(F )|/2. We then construct the folders F1 and F2, where T1 contains all the pages π′ � π,
and T2 contains all the pages π′ � π. Notice that the condition |K(F )| ≥ 12 logn ensures
that F2 will always contain at least one page from F . All involved variables are read and
written resiliently.

Overall, the split operation can be performed in O(log2 n) time in the worst-case.

Merge. The merge operation takes two non-empty folders F1 and F2 such that |F1|+ |F2| ≤
6 log2 n, I(F1) precedes I(F2), and I(F1) ∪ I(F2) is a contiguous interval, and returns a new
folder F containing the keys in K(F1) ∪K(F2) and such that I(F ) = I(F1) ∪ I(F2). The
operation destroys F1 and F2.

We first handle some corner cases that only happen if F1 contains a single page π. If this
is the case and |K(π)| ≤ 2 logn also holds, then we let π′ be the first page of F2 and proceed
as follows:

If |K(π)|+ |K(π′)| ≤ 5 logn, merge π′ and π (destroying π), and return F2 (where I(F2)
and |K(F2)| are suitably updated);
Otherwise, if |K(π′)| ≥ 4 logn, we split π′ into π1 and π2, we merge π1 and π (so that
π is destroyed), and we return a new folder consisting of π1, π2 and all pages other than
π′ in F2. Both π1 and π2 contain between 2 logn and 5 logn keys.
In the remaining case, we have that 5 logn < |K(π)|+ |K(π′)| < 6 logn. We, first merge
π and π′, then we split π into π1 and π2, each containing more than 2 logn and at most
3 logn keys. We return the folder consisting of π1, π2 and all pages other than π′ in F2.

We now suppose that we are not in any of the above cases, and preprocess F1 and F2 to
ensure that the leftmost page π′ of F2 will always contain at least 2 logn keys. If that is not
already the case, we let π be the last page of F1 and modify F1 and F2 as follows:

If |K(π)|+ |K(π′)| ≤ 5 logn we merge π′ and π. We decrement |F1| to account for the
destroyed page π (this might cause F1 to temporarily become empty).
If |K(π)| ≥ 4 logn we first split π into π1 and π2 and then merge π2 and π′. We store π1
and π2 in place of the, now destroyed, pages π and π′ in F1 and F2, respectively.
Otherwise we must have 5 logn < |K(π)| + |K(π′)| < 6 logn. We first merge π and
π′, then we split π into π1 and π2. We store π1 and π2 in place of π and π′ in F1
and F2, respectively.

The rest of the operation is now straightforward: we simply create a new folder F
by concatenating all pages in F1 with those in F2 and set |F | = |F1| + |F2|, |K(F )| =
|K(F1)|+ |K(F2)|, and I(F ) = I(F1)∪ I(F2). We remark that the involved pages are simply
moved from their previous folder to the new folder F , rather than being destroyed and
recreated anew. Overall, the merge operation requires O(log2 n) time in the worst-case.

ESA 2019



70:12 Resilient Dictionaries for Randomly Unreliable Memory

Amortized analysis

The following lemma, whose proof is omitted, summarizes the time complexities of the
folder’s operations and shows that the O(log2 n) time needed by the expensive insertions
and deletions can be amortized over Ω(logn) non-expensive operations.

I Lemma 6. An empty folder can be constructed in O(logn) worst-case time. Each search
operation can be performed in O(logn) worst-case time. Merge and split operations
requires O(log2 n) worst-case time. Each insert or delete operation requires O(logn)
amortized time.

5 Our dictionary

We store the dictionary keys into η = O( n
log2 n

) folders, such that (i) each folder contains at
most 6 log2 n keys and (ii) all but at most one folder contain at least log2 n+ 1 keys. These
folders are logically organized into a dynamic nearly-balanced binary search tree T , in which
each vertex vF is associated with a folder F and consists of three resilient variables, namely:
and a pointer containing the address of folder F , and two variables LvF

and RvF
defining

an interval I(vF ) = (LvF
, RvF

] where LvF
(resp. RvF

) is the leftmost (resp. rightmost)
endpoint among of all the intervals of the folders associated with the descendants of vF in
T (including vF itself). The intervals of the stored folders will be pairwise disjoint and will
cover the whole range (−∞,+∞]. An empty dictionary consists of a single empty folder F
with I(F ) = (−∞,+∞].

As shown in [7], an embedding of a dynamic binary search tree with N ≥ 1 vertices into
a static complete binary tree of height H(N) = dlog(2N + 1)e − 1 can be maintained under
insertion and deletion of vertices in O(log2N) amortized time per operation, assuming that
vertices can be accessed and copied in constant time.7 For the sake of completeness we briefly
sketch the construction of [7]. Let ρ(u) be the ratio between the number of vertices of the
subtrees rooted at u in the dynamic and in the static trees, respectively. The root r will
always satisfy 1

8 ≤ ρ(r) ≤ 1
2 . This is initially true when the dynamic tree consists of single

vertex since H(1) = 1 and ρ(r) = 1
2H(1)+1−1 = 1

3 . Whenever an insertion or deletion needs to
be performed, we first check whether it will causes the value of H(N) to change and, if this
is the case, the operation is handled by rebuilding the updated dynamic tree in a perfectly
balanced fashion. The remaining updates are as follows: insertions are performed as in an
ordinary binary search tree except when they cause the height of the newly inserted vertex
u to exceed H(N). In this case the subtree rooted at the lowest ancestor v of u such that
1
8 −

d(v)
16·H(N) ≤ ρ(v) ≤ 1

2 + d(v)
2·H(N) is rebuilt to be perfectly-balanced (recall that d(v) is the

depth of vertex v). When a vertex u needs to be deleted, it is first pushed down the dynamic
tree by iteratively swapping it with either its predecessor or its successor until it becomes
a leaf. Then, u is deleted and the subtree rooted on the lowest vertex v that was ancestor
of u and that satisfies 1

8 −
d(v)

16·H(N) ≤ ρ(v) ≤ 1
2 + d(v)

2·H(N) is rebuilt. The current number of
vertices of the dynamic tree is explicitly stored (which allows to compute ρ(r) in constant
time) while no additional information needs to be maintained for the values ρ(v) for v 6= r

as the complexity needed to compute them (e.g., with a DFS visit of the subtree rooted in v)
is subsumed by that of the rebalancing step.

7 We restated the result of [7] using the standard definitions of depth and height employed in this paper.
We also fixed the parameters τ1, γ1, and γH of [7] to 1

2 ,
1
8 , and

1
16 respectively.
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Figure 2 On the left: an example of static tree T of height H(η) = 3 onto which is embedded
the dynamic tree T consisting of the η = 6 white vertices. The label of each vertex v ∈ V (T ) is the
interval I(v). On the right: the folder F pointed by the root of T . In this example F contains 3
pages π1, π2, π3. Three possible intervals for the pages in F are: I(π1) = (20, 33], I(π2) = (33, 41],
and I(p3) = (41, 50]. Key 83 in π2 is corrupted and is highlighted in red.

Since, in our case, the number of nodes η in T can be at most 1 +
⌊

n
log2 n+1

⌋
, we have

that H(η) ≤ log(2η + 1) ≤ 2 + log n
log2 n

. We therefore embed T into a static tree T which,
in turn, is implicitly stored in a positional array of 2H(η)+1 − 1 ≤ 8 n

log2 n
elements. In

this way, given the address of any node of T , we can compute the addresses of its left
child, right child, and parent in constant time. Overall, the space required to store T is
at most 8 n

log2 n
·O(logn) = O( n

logn ). Since the resilient variables of a vertex v ∈ V (T ) can
be read and written in O(logn) time, we are able to insert and delete vertices from T in
O(log2 η) ·O(logn) = O(log3 n) amortized time.8 We distinguish the vertices v that belong
in our static tree T but not in our logical tree T by setting their intervals I(v) to the bogus
range (⊥,⊥] and their pointers to some arbitrary address (see Figure 2 for an example).
Notice that, when a subtree is rebalanced, the intervals of the affected nodes also need to be
recomputed. The same applies to the ancestors of a deleted or newly inserted vertex. In
both cases the required time complexity is O(logn) per vertex and, since the tree is nearly
balanced, it is subsumed by the amortized cost of the operation. We store η, the number
of keys currently in the dictionary, and the address of the array representing T as global
variables in safe memory.

Implementing the dictionary operations

Using a technique similar to the one described in Section 4 to locate a page in a folder, we
are able to locate the folder F responsible for a given key k in our tree T (along with the
corresponding node vF ).

I Lemma 7. With probability at least 1− n−3 no locate operation on the dictionary fails.

Once the locate operation is available, the search operation can be easily implemented
by first locating the (unique) folder F in T such that k ∈ I(F ) and searching for k in F .
Moreover, we also use the locate operation to implement the insert and delete operations
of our dictionary, together with a suitable strategy for splitting and merging the folders of

8 Here the amortization is performed over all insertion and deletion of vertices in T . In the sequel we will
derive an amortized bound w.r.t. insertions and deletions of keys in our dictionary.
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T when they become full or contain less than 1 + log2 n keys. Due to space limitations, a
formal description of these operation and the proof of the above lemma are deferred to the
full version of this paper.

Space complexity

Our dictionary as described so for achieves all the bounds of Theorem 1 except for the one
regarding its space complexity, which would be O(log2 n+N) instead of the promised O(N),
where N is the number of keys in the dictionary. The missing range N = o(log2 n) can be
handled by lazily building the first page and and the first folder of our dictionary, and by
employing a suitable halving/doubling strategy [10] to ensure that their size is always linear
in the number of keys stored therein. A complete proof of Theorem 1 will appear in the full
version of the paper.

6 Conclusions

We presented a resilient dictionary that is able to operate correctly on all uncorrupted
keys, uses the optimal amount of space, and whose operations require O(logn) amortized
time. All operations are deterministic, i.e., their execution is completely determined by their
input and by the observed memory contents. The same construction can also be used if
satellite data is attached to the keys, in which case the search operation returns either the
data associated with a given uncorrupted key k or that of a key that equals k following a
corruption. Moreover, one can easily implement other commonly used operation on BSTs,
e.g., we can report all the N stored keys in O(N) worst-case time, find the predecessors or
successors in O(logn) worst-case time, support range queries in O(logn+ t) time where t is
the size of the output, and find (resp. extract) the minimum/maximum element in O(logn)
worst-case (resp. amortized) time.

Our data structure can aid in the design of other resilient algorithms and, sometimes, can
even be used as a drop-in replacement of corresponding non fault-tolerant implementations.
For example, when our dictionary is augmented with the find-min operation described
above, it can substitute the heap in the classical heapsort algorithm, which then immediately
solves the resilient sorting problem in our error model using O(n logn) worst-case time.

Finally, we observe that our approach can be combined with a constant replication scheme
to ensure that, for any constant c ≥ 1 of choice, at most δ/c keys are lost when δ words are
corrupted. In addition, if we slightly worsen the construction time to O(logn), the time
required to report the N stored keys to O(N + logn), and the the space requirements to
O(N + logn), then our results also hold even when no definitely reliable memory words exist,
except for O(1) temporary registers that can only be used to hold intermediate computation
results (i.e., whose contents are invalidated at the beginning/end of each dictionary operation).
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Abstract
We study spectral approaches for the MAX-2-LIN(k) problem, in which we are given a system of
m linear equations of the form xi − xj ≡ cij mod k, and required to find an assignment to the n
variables {xi} that maximises the total number of satisfied equations.

We consider Hermitian Laplacians related to this problem, and prove a Cheeger inequality
that relates the smallest eigenvalue of a Hermitian Laplacian to the maximum number of satisfied
equations of a MAX-2-LIN(k) instance I. We develop an Õ(kn2) time algorithm that, for any
(1− ε)-satisfiable instance, produces an assignment satisfying a

(
1−O(k)

√
ε
)
-fraction of equations.

We also present a subquadratic-time algorithm that, when the graph associated with I is an expander,
produces an assignment satisfying a

(
1−O(k2)ε

)
-fraction of the equations. Our Cheeger inequality

and first algorithm can be seen as generalisations of the Cheeger inequality and algorithm for
MAX-CUT developed by Trevisan.
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1 Introduction

In the MAX-2-LIN(k) problem, we are given a system of m linear equations of the form
ui−vi ≡ ci mod k, where ui, vi ∈ {x1, . . . , xn} and each equation has weight bi. The objective
is to find an assignment to the variables xi that maximises the total weight of satisfied
equations. As an important case of Unique Games [8, 15], the MAX-2-LIN(k) problem has
been extensively studied in theoretical computer science. This problem is known to be
NP-hard to approximate within a ratio of 11/12 + δ for any constant δ > 0 [9, 13], and
it is conjectured to be hard to distinguish between MAX-2-LIN(k) instances for which a
(1− ε)-fraction of equations can be satisfied versus instances for which only an ε-fraction can

© Huan Li, He Sun, and Luca Zanetti;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 71; pp. 71:1–71:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huanli16@fudan.edu.cn
mailto:h.sun@ed.ac.uk
mailto:luca.zanetti@cl.cam.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2019.71
https://arxiv.org/abs/1811.10909
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


71:2 Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem

be satisfied [16]. On the algorithmic side, there has been a number of LP and SDP-based
algorithms proposed for the MAX-2-LIN(k) problem (e.g., [6, 12, 15, 26]), and the case of
k = 2, which corresponds to the classical MAX-CUT problem for undirected graphs [10, 14],
has been widely studied over the past fifty years.

In this paper we investigate efficient spectral algorithms for MAX-2-LIN(k). For any
MAX-2-LIN(k) instance I with n variables, we express I by a Hermitian Laplacian matrix
LI ∈ Cn×n, and analyse the spectral properties of LI . In comparison to the well-known
Laplacian matrix for undirected graphs [7], complex-valued entries in LI are able to express
directed edges in the graph associated with I, and at the same time ensure that all the
eigenvalues of LI are real-valued. We demonstrate the power of our Hermitian Laplacian
matrices by relating the maximum number of satisfied equations of I to the spectral properties
of LI . In particular, we develop a Cheeger inequality that relates partial assignments of I
to λ1(LI), the smallest eigenvalue of LI . Based on a recursive application of the algorithm
behind our Cheeger inequality, as well as a spectral sparsification procedure for MAX-2-
LIN(k) instances, we present an approximation algorithm for MAX-2-LIN(k) that runs in
Õ(k · n2) time1 . To the best of our knowledge, this is the first purely spectral polynomial-
time algorithm for the MAX-2-LIN(k) problem with approximation guarantees that matches
SDP-based ones for constant values of k. The formal statement of our result is as follows:

I Theorem 1. There is an Õ(k · n2)-time algorithm such that, for any given MAX-2-LIN(k)
instance I with optimum 1− ε, the algorithm returns an assignment φ satisfying at least a
(1−O(k)

√
ε)-fraction of the equations2.

Our result can be viewed as a generalisation of the MAX-CUT algorithm by Trevisan [27],
who derived a Cheeger inequality that relates the value of the maximum cut to the smallest
eigenvalue of an undirected graph’s adjacency matrix. The proof of Trevisan’s Cheeger
inequality, however, is based on constructing sweep sets in R, while in our setting constructing
sweep sets in C is needed, as the underlying graph defined by LI is directed and eigenvectors
of LI are in Cn. The other difference between our result and the one in [27] is that the goal
of the MAX-CUT problem is to find a bipartition of the vertex set, while for the MAX-2-LIN(k)
problem we need to use an eigenvector to find k vertex-disjoint subsets, which corresponds
to subsets of variables assigned to the same value.

Our approach also shares some similarities with the one by Goemans and Williamson [11],
who presented a 0.793733-approximation algorithm for MAX-2-LIN(3) based on Complex
Semidefinite Programming. The objective function of their SDP relaxation is, in fact, exactly
the quadratic form of our Hermitian Laplacian matrix LI , although this matrix was not
explicitly defined in their paper. In addition, their rounding scheme divides the complex
unit ball into k regions according to the angle with a random vector, which is part of our
rounding scheme as well. Therefore, if one views Trevisan’s work [27] as a spectral analogue
to the celebrated SDP-based algorithm for MAX-CUT by Goemans and Williamson [10], our
result can be seen as a spectral analogue to the Goemans and Williamson’s algorithm for
MAX-2-LIN(k).

We further prove that, when the undirected graph associated with a MAX-2-LIN(k)
instance is an expander, the approximation ratio from Theorem 1 can be improved. Our
result is formally stated as follows:

1 The notation Õ(·) suppresses poly-logarithmic factors in n, m, and k.
2 An instance I has optimum 1− ε, if the maximum fraction of the total weights of satisfied equations is

1− ε.
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I Theorem 2. Let I be an instance of MAX-2-LIN(k) on a d-regular graph with n vertices
and suppose its optimum is 1− ε. There is an Õ

(
nd+ n1.5

k
√
ε

)
-time algorithm that returns an

assignment φ : V → [k] satisfying at least a

1−O(k2) · ε

λ3
2(LU ) (1)

fraction of equations in I, where λ2(LU ) is the second smallest eigenvalue of the normalised
Laplacian matrix of the underlying undirected graph U .

Our technique is similar to the one by Kolla [18], which was used to show that solving
the MAX-2-LIN(k) problem on expander graphs is easier. In [18], a MAX-2-LIN(k) instance
is represented by the label-extended graph, and the algorithm is based on an exhaustive
search in a subspace spanned by eigenvectors associated with eigenvalues close to 0. When
the underlying graph of the MAX-2-LIN(k) instance has good expansion, this subspace is
of dimension k. Therefore, the exhaustive search runs in time O

(
2k + poly(n · k)

)
, which

is polynomial-time when k = O(logn). Comparing with the work in [18], we show that,
when the underlying graph has good expansion, the eigenvector associated with the smallest
eigenvalue λ1(LI) of the Hermitian Laplacians suffices to give a good approximation. We
notice that Arora et al. [4] already showed that, for expander graphs, it is possible to satisfy
a 1−O(ε log(1/ε)) fraction of equations in polynomial time without any dependency on k.
Their algorithm is based on an SDP relaxation.

1.1 Other related work

There are many research results for the MAX-2-LIN(k) problem (e.g., [6, 12, 15, 26]), and we
briefly discuss the ones most closely related to our work. For the MAX-2-LIN(k) problem and
Unique Games, spectral techniques are often employed to analyse the Laplacian matrix of the
Label-Extended graph (see, e.g., the aforementioned [18]), which has a strong connection with
our Hermitian Laplacian: the latter can be seen as one of the blocks that arise in a particular
block-diagonalisation of the former. Arora et al. [3], instead, use spectral techniques to
obtain a particular decomposition of the constraint graph of a Unique Games instance, and
exploit this decomposition to design an exp

(
(kn)O(ε))poly(n)-time algorithm for Unique

Games. Regarding polynomial-time algorithms, Charikar et al. [6] propose an SDP-based
algorithm for Unique Games that satisfies a 1−O(

√
ε log k) fraction of constraints, which is

nearly optimal assuming the Unique Games Conjecture [16]. We remark that canonical SDP
programs for Unique Games can be solved in nearly-linear time [25].

Our result also relates to the research on spectral methods for synchronisation problems.
For example, the adjacency matrix corresponding to our Hermitian Laplacian is considered
by Singer [23] in relation to an angular synchronisation problem. The relation between the
eigenvectors of such matrix and the MAX-2-LIN(k) problem is also mentioned but without
offering formal approximation guarantees. Bandeira et al. [5] prove a Cheeger-type inequality
that relates the spectra of an operator, the graph connection Laplacian, to “how well” an
instance of the O(d)-synchronisation problem can be solved. Their results, however, are not
directly comparable to ours: even though our Hermitian Laplacian can also be seen as a
graph connection Laplacian for an SO(2)-synchronisation problem, our goal is to assign the
n vertices to at most k elements of SO(2), while the goal of Bandeira et al. is to assign each
vertex to a possibly different element of O(d).
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2 Hermitian Matrices for MAX-2-LIN(k)

We can write an instance of MAX-2-LIN(k) by I = (G, k), where G = (V,E, b, c) denotes
a directed graph with an edge weight function b : E → R+ and an edge color function
c : E → [k], where [k] def= {0, 1, . . . , k − 1}. More precisely, every equation ui − vi ≡ ci mod k

with weight bi corresponds to a directed edge (ui, vi) with weight b(ui, vi) = buivi = bi
and color c(ui, vi) = cuivi = ci. In the rest of this paper, we will assume that G is weakly
connected, and write u v if there is a directed edge from u to v. The conjugate transpose
of any vector x ∈ Cn is denoted by x∗.

We define the Hermitian adjacency matrix AI ∈ Cn×n for instance I by

(AI)uv
def=


buvω

cuv
k u v,

bvuωk
cvu v  u,

0 otherwise,

where ωk = exp
( 2πi
k

)
is the complex k-th root of unity, and ωk = exp

(
− 2πi

k

)
is its

conjugate. We define the degree-diagonal matrix DI by (DI)uu = du where du is the
weighted degree given by du

def=
∑
u v buv +

∑
v u bvu. The Hermitian Laplacian matrix

is then defined by LI = DI −AI , and the corresponding normalised Laplacian matrix by
LI = D

−1/2
I LID

−1/2
I = I −D−1/2

I AID
−1/2
I . The eigenvalues of any matrix A are expressed

by λ1(A) ≤ . . . ≤ λn(A). The quadratic forms of LI can be related to the corresponding
instance of MAX-2-LIN(k) by the following lemma.

I Lemma 3. For any vector x ∈ Cn, we have x∗LIx =
∑
u v buv ‖xu − ω

cuv
k xv‖2 and

x∗LIx = 2
∑
u∈V

du ‖xu‖2 −
∑
u v

buv ‖xu + ωcuvk xv‖2
.

The lemma below presents a qualitative relationship between the eigenvector associated
with λ1(LI) and an assignment of I.

I Lemma 4. All eigenvalues of LI are in the range [0, 2]. Moreover, λ1(LI) = 0 if and only
if there exists an assignment satisfying all equations in I.

3 A Cheeger inequality for λ1(LI) and MAX-2-LIN(k)

The discrete Cheeger inequality [1] shows that, for any undirected graph G, the conductance
hG of G = (V,E) can be approximated by the second smallest eigenvalue of G’s normalised
Laplacian matrix LG, i.e.,

λ2(LG)
2 ≤ hG ≤

√
2 · λ2(LG). (2)

Moreover, the proof of the second inequality above is constructive, and indicates that a
subset S ⊂ V with conductance at most

√
2 · λ2(LG) can be found by using the second

bottom eigenvector of LG to embed vertices on the real line. As one of the most fundamental
results in spectral graph theory, the Cheeger inequality has found applications in the study
of a wide range of optimisation problems, e.g., graph partitioning [20], max-cut [27], and
many practical problems like image segmentation [22] and web search [17].

In this section, we develop connections between λ1(LI) and MAX-2-LIN(k) by proving a
Cheeger-type inequality. Let φ : {x1, . . . , xn} → [k]∪ {⊥} be an arbitrary partial assignment
of an instance I, where φ(xi) = ⊥ means that the assignment of xi has not been decided.
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These variables’ assignments will be determined through some recursive construction, which
will be elaborated in Section 5. We remark that this framework of recursively computing a
partial assignment was first introduced by Trevisan [27], and our theorem can be viewed as a
generalisation of the one in [27], which corresponds to the k = 2 case of ours.

To relate quadratic forms of LG with the objective function of the MAX-2-LIN(k) problem,
we introduce a penalty function as follows:

I Definition 5. Given a partial assignment φ : {x1, . . . , xn} → [k]∪ {⊥} and a directed edge
(u, v), the penalty of (u, v) with respect to φ is defined by

pφuv(I) def=


0 φ(u) 6= ⊥, φ(v) 6= ⊥, φ(u)− φ(v) ≡ cuv mod k

1 φ(u) 6= ⊥, φ(v) 6= ⊥, φ(u)− φ(v) 6≡ cuv mod k

0 φ(u) = φ(v) = ⊥
1− 1

k exactly one of φ(u), φ(v) is ⊥.

(3)

For simplicity, we write pφuv when the underlying instance I is clear from the context.

The values of pφuv from Definition 5 are chosen according to the following facts: (1) If both u
and v’s values are assigned, then their penalty is 1 if the equation φ(u)− φ(v) 6≡ cuv mod k

associated with (u, v) is unsatisfied, and 0 otherwise; (2) If both u and v’s values are ⊥,
then their penalty is temporally set to 0. Their penalty will be computed when u and v’s
assignment are determined during a later recursive stage. (3) If exactly one of u, v is assigned,
pφuv is set to 1− 1/k, since a random assignment to the other variable makes the edge (u, v)
satisfied with probability 1/k, hence pφuv is set to 1− 1/k.

Without loss of generality, we only consider φ for which φ(u) 6= ⊥ for at least one vertex
u, and define the penalty of assignment φ by

pφ
def=

2
∑
u v buvp

φ
uv

Vol(φ) , (4)

where Vol(φ) def=
∑
φ(u)6=⊥ du. Notice that the pφuv’s value is multiplied by buv in accordance

with the objective of MAX-2-LIN(k) that maximises the total weight of satisfied assignments.
Also, we multiply pφuv by 2 in the numerator since edges with at least one assigned endpoint
are counted at most twice in Vol(φ). Notice that, as long as G is weakly connected, pφ = 0 if
and only if all edges are satisfied by φ and, in general, the smaller the value of pφ, the more
edges are satisfied by φ. With this in mind, we define the imperfectness p(I) of I to quantify
how close I is to an instance where all equations can be satisfied by a single assignment.

I Definition 6. Given any MAX-2-LIN(k) instance I = (G, k), the imperfectness of I is
defined by p(I) def= minφ∈([k]∪{⊥})V \{⊥}V pφ.

The main result of this section is a Cheeger-type inequality that relates p(I) and λ1(LI),
which is summarised in Theorem 7. Note that, since sin(x) ≥ (2/π) · x for x ∈ [0, π/2], the
factor before

√
2λ1 in the theorem statement is at most (2 + k/4) for k ≥ 2.

I Theorem 7. Let λ1 be the smallest eigenvalue of LI . It holds that
λ1

2 ≤ p(I) ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1. (5)

Moreover, given the eigenvector associated with λ1, there is an O(m+n logn)-time algorithm
that returns a partial assignment φ such that

λ1

2 ≤ p
φ ≤

(
2− 2

k
+ 1

2 sin(π/k)

)√
2λ1. (6)
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Set S(1)
t,η

Set S(2)
t,η

Set S(3)
t,η

Random rotation
by η ∈ [0, 2π/k)

t

Figure 1 Illustration of the proof for Theorem 7 for the case of k = 3. The gray circle is
obtained by sweeping t ∈ [0, 1], and the red arrow represents a random angle η ∈ [0, 2π/k). A partial
assignment is determined by the values of η and t.

Proof Sketch of Theorem 7. We present an overview of the proof here, and a complete
proof of the theorem can be found in the full version of the paper. The easy direction of (5),
i.e., λ1/2 ≤ p(I), follows from the Courant-Fischer characterisation of eigenvalues and that
the eigenvector problem is a relaxation of MAX-2-LIN(k). Hence, we will mainly sketch the
techniques used to prove the other direction of (5). We assume that z ∈ Cn is the vector
such that

z∗LIz

z∗DIz
= λ1,

and prove the existence of an assignment φ based on z satisfying

pφ ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1 =

(
2− 2

k
+ 1

2 sin(π/k)

)√
2 · z

∗LIz

z∗DIz
.

We first scale each coordinate of z such that maxu∈V ‖zu‖2 = 1. In this way z can be
seen as an embedding of the vertices to the complex unit ball. For any real numbers t ≥ 0
and η ∈ [0, 2π

k ), we define k sets of vertices indexed by j ∈ [k] as follows:

S
(j)
t,η =

{
u

∣∣∣∣ ‖zu‖ ≥ t and θ(zu, eiη) ∈
[
j · 2π

k
, (j + 1) · 2π

k

)}
.

Here, we use θ(a, b) ∈ [−π, π) to represent the angle from b ∈ C to a ∈ C, i.e., a
‖a‖ =

b
‖b‖ exp (iθ(a, b)). We then define an assignment φt,η where φt,η(u) = j if there is j ∈ [k]
such that u ∈ S(j)

t,η , and φt,η(u) = ⊥ otherwise. By definition, the k vertex sets correspond
to the vectors in the k regions of the unit ball after each vector is rotated by η radians
counterclockwise. The role of t is to only consider the coordinates zu with ‖zu‖ ≥ t. This is
illustrated in Figure 1.
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Now we assume t ∈ [0, 1] is chosen such that t2 follows from a uniform distribution over
[0, 1], and η is chosen uniformly at random from [0, 2π/k). Further calculations show that

Et,η [Vol(φt,η)] =
∑
u∈V

du · P [‖zu‖ ≥ t] =
∑
u∈V

du ‖zu‖2 = z∗DIz,

and

Et,η

[
2
∑
u v

buv p
φ
uv

]
≤
(

2− 2
k

+ 1
2 sin(π/k)

)
·
√
z∗LIz ·

√
2z∗DIz.

Hence, it holds that

Et,η
[
2
∑
u v buvp

φ
uv

]
Et,η [Vol(φt,η)] ≤

(
2− 2

k
+ 1

2 sin(π/k)

)
·
√

2 · z
∗LIz

z∗DIz
.

This implies by linearity of expectation that

Et,η

[
2
∑
u v

buvp
φ
uv −

(
2− 2

k
+ 1

2 sin(π/k)

)
· Vol(φt,η) ·

√
2 · z

∗LIz

z∗DIz

]
≤ 0,

and existence of an assignment φ satisfying (6).
Now we turn to the runtime needed to find such a vertex set. Notice that we need to

find t and η such that φt,η satisfies (6). Therefore, we construct two sequences of sweep
sets: the first is based on t, and the second is based on η. For constructing the sweep sets
based on t, the algorithm increases t from 0 to 1, and updates the corresponding conditional
expectation looking only at the edges incident with u whenever t exceeds ‖zu‖. Notice that
each edge (u, v) will be updated at most twice, i.e., the step when t reaches ‖zu‖ and the step
when t reaches ‖zv‖, and the total runtime needed to update Vol(φt,η) is O(m). Hence, the
total runtime for constructing the sweep sets based on t is O(m). The runtime analysis for
constructing the sweep sets based on η is similar: the algorithm increases η from 0 to 2π/k,
and updates the penalties pφuv of the edges (u, v) only if the assignment of u or v changes.
Since every edge will be updated at most twice, the runtime for constructing the sweep sets
based on η is O(m) as well. Hence, the total runtime of the algorithm is O(m+ n logn). J

I Remark 8. We remark that the factors λ1/2 and
√
λ1 in Theorem 7 are both tight within

constant factors. The tightness can be derived directly from Section 5 of [27], since when
k = 2, our inequality is the same as the one in [27] up to constant factors.

We also remark that the factor of k in Theorem 7 is necessary, which is shown by the
following instance: the linear system has nk variables where every variable belongs to one
of k sets S0, . . . , Sk−1 with |Si| = n for any 0 ≤ i ≤ k − 1. Now, for any i, we add n

equations of the form xu − xv = 1 mod k with xu ∈ Si, xv ∈ Sj , and j = i + 1 mod k,
and n equations of the form xu − xv = 1 mod k with xu ∈ Si, xv ∈ Sj , and j = i + 2
mod k. This instance is constructed such that the underlying graph is regular, and every
assignment could only satisfy at most half of the equations, implying that the imperfectness
is p(I) = Ω(1). However, mapping each variable in Si to the root of unity ωik, it’s easy to
see that λi(LI) = O(1/k). Hence Theorem 7 is tight with respect to k.

Finally, we compare the proof techniques of Theorem 7 with other Cheeger-type inequal-
ities in the literature: first of all, most of the Cheeger-type inequalities (e.g., [1, 19, 20, 27])
consider the case where every eigenvector is in Rn and are only applicable for undirected
graphs, while for our problem the graph G associated with I is directed and eigenvectors of
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AI are in Cn. Therefore, constructing sweep sets in C is needed, which is more involved than
proving similar Cheeger-type inequalities (e.g., [1, 27]). Secondly, by dividing the complex
unit ball into k regions, we are able to show that a partial assignment corresponding to k
disjoint subsets can be found using a single eigenvector. This is quite different from the
techniques used for finding k vertex-disjoint subsets of low conductance in an undirected
graph, where k eigenvectors are usually needed (e.g. [19, 20, 21]).

We also remark that, while sweeping through values of t is needed to obtain any guarantee
on the penalty of the partial assignment computed, we could in principle just choose a
random angle η: in this way, however, the partial assignment returned would satisfy (6)
only in expectation.

4 Sparsification for MAX-2-LIN(k)

We have seen in Section 3 that, given any vector in Cn whose quadratic form with LI is close
to λ1(LI), we can compute a partial assignment of I with bounded approximation guarantee.
In Section 5 we will show that a total assignment can be found by recursively applying this
procedure on variables for which an assignment has not yet been fixed. In particular, we
will show that every iteration takes a time nearly-linear in the number of equations of our
instance, which can be quadratic in the number of variables. To speed-up each iteration
and obtain a time per iteration that is nearly-linear in the number of variables, we need to
sparsify our input instance I.

In this section we show that the construction of spectral sparsifiers by effective resistance
sampling introduced in [24] can be generalised to sparsify MAX-2-LIN(k) instances. In
particular, given an instance I of MAX-2-LIN(k) with n variables and m equations, we can
find in nearly-linear time a sparsified instance J with about nk log(nk) equations such that
for any partial assignment φ : V → [k], the number of unsatisfied equations in J is preserved
within a constant factor. This means that we can apply our algorithm for MAX-2-LIN(k) to a
sparsified instance J , and any dependency onm in our runtime can be replaced by nk log(nk).
We remark that we could simply apply uniform sampling to obtain a sparsified instance.
However, this would in the end result in an additive error in the fraction of unsatisfied
equations, much like in the case of the original Trevisan’s result for MAX-CUT [27]. With
our construction, instead, we only lose a small multiplicative error.

To construct a sparsified instance J , we introduce label-extended graphs and their
Laplacian matrices to characterise the original MAX-2-LIN(k) instance. Let P ∈ Rk×k be the
permutation matrix where Pij = 1 if i ≡ j + 1 mod k, and Pij = 0 otherwise. We define the
adjacency matrix ÃI ∈

(
Rk×k

)n×n for the label-extended graph of instance I, where each
entry of ÃI is a matrix in Rk×k given by

(ÃI)uv
def=


buvP

cuv u v,

bvu (P ᵀ)cvu v  u,

0 otherwise.
(7)

We then define the degree-diagonal matrix D̃I ∈
(
Rk×k

)n×n by (D̃I)uu = du · Ik×k, where
Ik×k is the k× k identity matrix, and define the Laplacian matrix by L̃I = D̃I − ÃI . Notice
that the Hermitian Laplacian LI is a compression of L̃I , i.e., there exists an orthogonal
projection U such that U∗L̃IU = LI .
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For any assignment φ : V → [k], we construct an indicator vector x̃I ∈
(
Rk
)n by

(x̃I)u = eφ(u), where ej ∈ Rk is the j-th standard basis vector. Then, it is easy to show that
the total weight of unsatisfied equations for φ is (1/2) · x̃ᵀIL̃I x̃I .3

We show that, for every unsatisfiable instance I, there is a sparsified MAX-2-LIN(k)
instance J such that the quadratic forms between L̃I and L̃J are approximately preserved.
This implies that, when looking at the same assignment, the total weights of unsatisfied
equations in I and J are approximately preserved. Notice that we can decide whether there
is an assignment satisfying all the equations in I by fixing the assignment of an arbitrary
vertex and determining assignments for other vertices accordingly, and therefore we only
need to consider the case when I is unsatisfiable. The main result of the section is as follows:

I Theorem 9. There is an algorithm that, given an unsatisfiable instance I of MAX-2-LIN(k)
with n variables and m equations and parameter 0 < δ < 1, returns in Õ(mk) time an instance
J with the same set of variables and O

(
(1/δ2) · nk log(nk)

)
equations. Furthermore, with

high probability it holds for any vector x ∈
(
Rk
)n that (1−δ)xᵀL̃Ix ≤ xᵀL̃J x ≤ (1+δ)xᵀL̃Ix.

5 Algorithm for MAX-2-LIN(k)

Theorem 9 tells us that, given an instance I∗, we can find a sparse instance I so that the
quadratic forms of the corresponding Laplacians LI∗ and LI are approximately the same.
Therefore throughout this section we assume that the input instance I for MAX-2-LIN(k)
with n variables has m = Õ

(
(1/δ2) · nk

)
equations for some parameter δ > 0. Recall that

Theorem 7 shows that, for any MAX-2-LIN(k) instance I, given an eigenvector for the smallest
eigenvalue λ1(LI), we can obtain a partial assignment φ satisfying

pφ ≤
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1. (8)

Now we show that, by a repeated application of Theorem 7 on the subset of the equations
of I for which both variables are unassigned, we can obtain a full assignment of I. Our
algorithm closely follows the one by Trevisan [27] and is described in Algorithm 1.

To achieve the guarantees of (8), however, we would need to compute the eigenvector
corresponding to λ1(LI) exactly. To obtain a nearly-linear time algorithm, instead, we
relax this requirement and compute a vector z that well-approximates this eigenvector. In
particular, the following lemma shows that, for any δ, we can compute a vector z ∈ Cn
satisfying (9) in nearly-linear time.

I Lemma 10. For any given error parameter δ, there is an Õ
((

1/δ3) · kn) time algorithm
that returns z ∈ Cn satisfying (9).

To analyse Algorithm 1, we introduce some notation. Let t be the number of recursive
executions of Algorithm 1. For any 1 ≤ j ≤ t+ 1, let Ij be the instance of MAX-2-LIN(k) in
the j-th execution. We indicate with ρjm the number of equations in Ij , where 0 ≤ ρj ≤ 1.
Notice that I1 = I and It+1 = ∅. We assume that the maximum number of equations in Ij
that can be satisfied by an assignment is (1− εj)ρjm, with ε = ε1. Also notice that it holds
for any 1 ≤ j ≤ t that εjρjm ≤ εm, which implies εj ≤ ε/ρj . The next theorem presents the
performance of our algorithm, whose informal version is Theorem 1.

3 We remark that, if we use the Hermitian Laplacian matrices LI directly instead, this relation only holds
up to an O(k) factor. That is why we sparsify the matrix L̃I instead.
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Algorithm 1 RecursiveConstruct(I, δ).

1: Compute vector z ∈ Cn satisfying

z∗LIz

z∗DIz
≤ (1 + 2δ)λ1(LI); (9)

2: Apply the algorithm from Theorem 7 to compute φ : V → [k] ∪ {⊥} such that

pφ ≤ (1 + δ)
(

2− 2
k

+ 1
2 sin(π/k)

)√
2λ1; (10)

3: if 2pφ ≥ (1− 1/k) Vol(φ) then
4: return random full assignment φ′ : V → [k];
5: . the case where the current assignment is worse than a random assignment
6: else if φ is a full assignment (i.e. φ(V ) ⊆ [k]) then
7: return φ;
8: . The recursion terminates if every variable’s assignment is determined
9: else

10: I ′ ← set of equations from I in which both variables’ assignments are not determined;
11: if I ′ = ∅ then
12: set φ(u) to be an arbitrary assignment if φ(u) = ⊥ for any u;
13: return φ;
14: else
15: φ1 ← RecursiveConstruct(I ′, δ);
16: return φ ∪ φ1;

I Theorem 11. Given an instance I of MAX-2-LIN(k) whose optimum is 1 − ε and a
parameter δ > 0, the algorithm RecursiveConstruct(I, δ) returns in Õ

((
1/δ3) · kn2)

time an assignment φ satisfying at least 1− 8ν
√
ε fraction of the equations, where

ν
def= (1 + δ)

(
2− 2

k
+ 1

2 sin(π/k)

)
= O(k).

The following corollary which states how much our algorithm beats a random assignment
follows from Theorem 1.

I Corollary 12. Given a MAX-2-LIN(k) instance I whose optimum is ξ and a constant δ > 0,
Algorithm 1 returns in Õ

(
(1/δ3) · n2k

)
time an assignment φ satisfying at least (1/k + τ) ξ

fraction of the equations, where τ = Ω
( 1
k3

)
.

6 Algorithm for MAX-2-LIN(k) on expanders

In this section we further develop techniques for analysing Hermitian Laplacian matrices
by presenting a subquadratic-time approximation algorithm for the MAX-2-LIN(k) problem
on expander graphs. Our proof technique is inspired by Kolla’s algorithm [18]. However, in
contrast to the algorithm in [18], we use the Hermitian Laplacian to represent a MAX-2-LIN(k)
instance and show that, when the underlying graph has good expansion, a good approximate
solution is encoded in the eigenvector associated with λ1(LI). We assume that G is a
d-regular graph, and hence I = (G, k) is a MAX-2-LIN(k) instance with n variables and nd/2
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equations whose optimum is 1− ε. One can view I as an instance generated by modifying
ε fraction of the constraints (i.e., edges) from a completely satisfiable instance Î = (Ĝ, k).
Hence, a satisfiable assignment ψ : V → [k] for Î will satisfy at least a (1 − ε)-fraction of
equations in I.

Now we discuss the techniques used to prove Theorem 2. Let yψ ∈ Cn be the normalised
“indicator vector” of ψ, i.e., (yψ)u = 1√

n
ω
ψ(u)
k . Then it holds that

(yψ)∗ LÎyψ = 1
d

∑
u v

buv ‖(yψ)u − ωcuvk (yψ)v‖2 = 0.

Hence yψ is an eigenvector associated with λ1

(
LÎ
)

= 0. We denote by U the underlying
undirected graph of G, and denote by LU the normalised Laplacian of U . Note that since U
is undirected, LU only contains real-valued entries. We first show that the eigenvalues of LÎ ,
the normalised Laplacian of the completely satisfiable instance, and of LU , the normalised
Laplacian of the underlining undirected graph U , coincide. Since LU is the Laplacian matrix
of an expander graph, this implies that there is a gap between λ1

(
LÎ
)
and λ2

(
LÎ
)
.

I Lemma 13. It holds for all 1 ≤ i ≤ n that λi
(
LÎ
)

= λi (LU ).

Next we bound the perturbation of the bottom eigenspace of LÎ when the latter is turned
into LI . In particular, Lemma 14 below proves that this perturbation does not affect too
much to the vectors that have norm spreads out uniformly over all their coordinates.

I Lemma 14. Let f ∈ Cn be a vector such that ‖fu‖ = 1√
n
for all u ∈ V . It holds that∥∥∥(LI − LÎ) f∥∥∥ ≤ 2

√
ε. (11)

Based on Lemma 14, we prove that the change from LÎ to LI doesn’t have too much
influence on the eigenvector associated with λ1(LI). For simplicity, let λ2 = λ2(LÎ) = λ2(LU ).

I Lemma 15. Let f1 ∈ Cn be a unit eigenvector associated with λ1(LI). Then we have∥∥∥(LI − LÎ) f1

∥∥∥ ≤ 20
√
ε/λ2.

We then prove the following lemma which shows that the eigenvector f1 corresponding
to λ1(LI) is close to yψ, the indicator vector of the optimal assignment ψ.

I Lemma 16. Let f1 ∈ Cn be a unit eigenvector associated with λ1(LI). Then, there
exist α, β ∈ C and a unit vector y⊥ ∈ Cn orthogonal to yψ (i.e. (y⊥)∗ yψ = 0) such that
f1 = αyψ + βy⊥ and ‖β‖ ≤ 30

√
ε/λ3

2.

Based on Lemma 16, f1 is close to the indicator vector of an optimal assignment rotated
by some angle. In particular, we have that∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥ =
√

(1− ‖α‖)2 + ‖β‖2 ≤
√

1− ‖α‖2 + ‖β‖2 =
√

2 ‖β‖ ≤ 30

√
2ε
λ3

2
, (12)

where α
‖α‖yψ is the vector that encodes the information of an assignment that satisfies all

the equations in Î and at least 1 − ε fraction of equations in I. Therefore, our goal is to
recover α

‖α‖yψ from f1.
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Proof of Theorem 2. Let ψ be the optimal assignment of I satisfying 1 − ε fraction of
equations, which is also a completely satisfying assignment of Î. Let f1 be a unit eigenvector
associated with λ1(LI). By Lemma 16, there exists α, β ∈ C such that f1 = αyψ + βy⊥
where ‖β‖ ≤ 30

√
ε/λ3

2. Our goal is to find a vector zφ ∈ Cn, which equals the indicator
vector of φ ratoted by some angle and satisfies

‖f1 − zφ‖ ≤
∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥ ≤ 30

√
2ε
λ3

2
, (13)

where the last inequality follows by (12). The assignment φ corresponding to such a zφ will
give us that the fraction of unsatisfied equations by φ is

pφ(I) ≤ 10k2z∗φLIzφ
= 10k2(zφ − f1 + f1)∗LI(zφ − f1 + f1)
≤ k2 ((zφ − f1)∗LI(zφ − f1) + f∗1LIf1 + 2 ‖(zφ − f1)∗LIf1‖)

≤ 10k2
(

2 ‖zφ − f1‖2 + λ1(LI) + 2 ‖zφ − f1‖
√
λ1(LI)

)
≤ 10k2

(
2 · 900 · 2ε

λ3
2

+ 2ε+ 2 · 30 ·

√
2ε
λ3

2
·
√

2ε
)

≤ 100000k2 · ε
λ3

2
,

where the factor 10k2 above follows from the fact that
∥∥∥1− ωjk

∥∥∥2
is at least 1/(10k2) for

j = 1, . . . , k − 1.
To find such vector zφ satisfying (13), we define φη(u) = arg minj∈[k]

∥∥∥(f1)u − eηiωjk
∥∥∥.

Notice that, since α
‖α‖ is equal to eηi for some η ∈ [0, 2π), by defining (zφη )u = eηiωφη(u)

k the
solution to the following optimisation problem minη∈[0,2π)

∥∥zφη − f1
∥∥ gives us a vector that

satisfies (13). To solve this optimisation problem, we notice that it suffices to consider η in
the range [0, 2π/k). Therefore, we simply enumerate all η’s over the following discrete set:{

t
√
ε√
n

∣∣∣∣ t = 0, 1, . . . ,
⌈

2π
√
n

k
√
ε

⌉}
.

By enumerating this set, we can find an assignment φ and an η such that

∥∥f1 − zφη
∥∥ ≤ ∥∥∥∥f1 −

α

‖α‖
yψ

∥∥∥∥+O(
√
ε),

which is enough to get our desired approximation. Since the size of this set is O
( √

n
k
√
ε

)
, the

total running time is O
(
n1.5

k
√
ε

)
plus the running time needed to compute f1. J

7 Concluding remarks

Our work leaves several open questions for further research: while the factor of k in our
Cheeger inequality (Theorem 7) is needed, it would be interesting to see if it’s possible to
construct a different Laplacian for which a similar Cheeger inequality holds with a smaller
dependency on k. For example, instead of embedding vertices in C and mapping assignments
to roots of unity, one could consider embedding vertices in higher dimensions using the
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bottom k eigenvectors of the Laplacian of the label extended graph, and see if a relation
between the imperfectness ratio of Definition 6 and the k-th smallest eigenvalue of this
Laplacian still holds.

Finally, we observe that several cut problems in directed graphs can be formulated as
special cases of MAX-2-LIN(k) (see, e.g., [2, 11]). Because of this, we believe the Hermitian
Laplacians studied in our paper will have further applications in the development of fast
algorithms for combinatorial problems on directed graphs, and might have further connections
to Unique Games.
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The celebrated Erdős-Pósa theorem states that every undirected graph that does not admit a family
of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the
graph) of size O(k log k). After being known for long as Younger’s conjecture, a similar statement
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1 Introduction

The theory of graph minors, developed over the span of over 20 years by Robertson and
Seymour, had a tremendous impact on the area of graph algorithms. Arguably, one of
the cornerstone contributions is the notion of treewidth [19] and the deep understanding of
obstacles to small treewidth, primarily in the form of the excluded grid theorem [5, 20, 21].

Very tight relations of treewidth and the size of the largest grid as a minor in sparse
graph classes, such as planar graphs or graphs excluding a fixed graph as a minor, led to the
rich and fruitful theory of bidimensionality [10]. In general graphs, fine understanding of the
existence of well-behaved highly-connected structures (not necessarily grids) in graphs of
high treewidth has been crucial to the development of efficient approximation algorithms for
the Disjoint Paths problem [9].

In undirected graphs, one of the first theorems that gave some well-behaved structure in
a graph that is in some sense highly connected is the famous Erdős-Pósa theorem [11] linking
the feedback vertex set number of a graph (the minimum number of vertices one needs to
delete to obtain an acyclic graph) and the cycle packing number (the maximum possible size
of a family of vertex-disjoint cycles in a graph). The Erdős-Pósa theorem states that a graph
that does not contain a family of k vertex-disjoint cycles has feedback vertex set number
bounded by O(k log k).

A similar statement for directed graphs, asserting that a directed graph without a family
of k vertex-disjoint cycles has feedback vertex set number at most f(k), has been long known
as the Younger’s conjecture until finally proven by Reed, Robertson, Seymour, and Thomas
in 1996 [17]. However, the function f obtained in [17] is not elementary; in particular, the
proof relies on the Ramsey theorem for Θ(k)-regular hypergraphs. This is in contrast with
the (tight) Θ(k log k) bound in undirected graphs.

Our main result is that if one compares the feedback vertex set number of a directed graph
to the quarter-integral cycle packing number (i.e., the maximum size of a family of cycles in
G such that every vertex lies on at most four cycles), one obtains a polynomial bound.

I Theorem 1. If a directed graph G does not contain a family of k cycles such that every
vertex in G is contained in at most four cycles, then there exists a feedback vertex set in G
of size O(k4).

We remark that if one relaxes the condition even further to a fractional cycle packing,1
Seymour [22] proved that a graph without a fractional cycle packing of size at least k admits
a feedback vertex set of size O(k log k log log k).

Directed treewidth is a directed analog of the successful notion of treewidth, introduced
in [13, 16]. An analog of the excluded grid theorem for directed graphs has been conjectured by
Johnson, Robertson, Seymour, and Thomas [13] in 2001 and finally proven by Kawarabayashi
and Kreutzer in 2015 [15]. Similarly as in the case of the directed Erdős-Pósa property, the
relation between the directed treewidth of a graph and a largest directed grid as a minor
in [15] is not elementary.

For a directed graph G, let fvs(G), dtw(G), and cp(G) denote the feedback vertex
set number, directed treewidth, and the cycle packing number of G, respectively. The
following lemma is a restatement of the result of Amiri, Kawarabayashi, Kreutzer, and
Wollan [1, Lemma 4.2]:

1 A fractional cycle packing assigns to every cycle C in G a non-negative real weight w(C) such that for
every v ∈ V (G) the total weight of all cycles containing v is at most 1. The size of a fractional cycle
packing w is the total weight of all cycles in the packing.
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I Lemma 2 ([1, Lemma 4.2]). Let G be a directed graph with dtw(G) ≤ w. For each strongly
connected directed graph H, the graph G has either k disjoint copies of H as a topological
minor, or contains a set T of at most k · (w + 1) vertices such that H is not a topological
minor of G− T .

Note that the authors of [1] prove Lemma 2 for topological and butterfly minors, but the
previous restatement is sufficient for our purposes. By taking H as the directed 2-cycle it is
easy to derive the following bound:

I Lemma 3. For a directed graph G it holds that fvs(G) ≤ (dtw(G) + 1) cp(G).

In the light of Lemma 3 and since a directed grid minor of size k contains k vertex-disjoint
cycles, the directed grid theorem of Kawarabayashi and Kreutzer [15] is a generalization of
the directed Erdős-Pósa property due to Reed, Robertson, Seymour, and Thomas [17].

Theorem 1 is a direct corollary of Lemma 3 and the following statement that we prove.

I Theorem 4. If a directed graph G does not contain a family of k cycles such that every
vertex in G is contained in at most four cycles, then dtw(G) = O(k3).

Furthermore, if one asks not for a cycle packing, but a packing of subgraphs of large directed
treewidth, we prove the following packing result.

I Theorem 5. There exists an absolute constant c with the following property. For every
pair of positive integers a and b, and every directed graph G of directed treewidth at least
c · a6 · b8 · log2(ab), there are directed graphs G1, G2, . . . , Ga with the following properties:
1. each Gi is a subgraph of G,
2. each vertex of G belongs to at most four graphs Gi, and
3. each graph Gi has directed treewidth at least b.
Note that by setting b = 2 in Theorem 5, one obtains Theorem 4 with a slightly weaker
bound of O(k6 log2 k) and, consequently, Theorem 1 with a weaker bound of O(k7 log2 k).

Theorem 5 should be compared to its undirected analog of Chekuri and Chuzhoy [4]
that asserts that in an undirected graph G of treewidth at least cmin(ab2, a3b) one can
find a vertex-disjoint subgraphs of treewidth at least b. While we still obtain a polynomial
bound, we can only prove the existence of a quarter-integral (as opposed to integral, i.e.,
vertex-disjoint) packing of subgraphs of high directed treewidth.

In the Disjoint Paths problem, given a graph G and a set of terminal pairs (si, ti)ki=1,
we ask to find an as large as possible collection of vertex-disjoint paths such that every path
in the collection connects some si with ti. Let OPT be the number of paths in the optimum
solution; we say that a family P is a congestion-c polylogarithmic approximation if every path
in P connects a distinct pair (si, ti), each vertex of V (G) is contained in at most c paths of P ,
and |P| ≥ OPT/polylog(OPT). The successful line of research of approximation algorithms
for the Disjoint Paths problem in undirected graphs leading in particular to a congestion-2
polylogarithmic approximation algorithm of Chuzhoy and Li [9] for the edge-disjoint version,
would not be possible without a fine understanding of well-behaved well-connected structures
in a graph of high treewidth. Of central importance to such routing algorithms is the notion
of a crossbar : a crossbar of order k and congestion c is a subgraph C of G with an interface
I ⊆ V (C) of size k such that for every matching M on I, one can connect the endpoints of
the matching edges with paths in C such that every vertex is in at most c paths. Most of
the known approximation algorithms for Disjoint Paths find a crossbar (C, I) with a large
set of disjoint paths between I and the set of terminals si and ti. While one usually does not
control how the paths connect the terminals si and ti to interface vertices of I, the ability of
the crossbar to connect any given matching on the interface leads to a solution.
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To obtain a polylogarithmic approximation algorithm, one needs the order of the crossbar
to be comparable to the number of terminal pairs, which – by well-known tools such as
well-linked decompositions [8] – is of the order of treewidth of the graph. At the same time,
we usually allow constant congestion (every vertex can appear in a constant number of paths
of the solution, instead of just one). Thus, the milestone graph-theoretic result used in
approximation algorithms for Disjoint Paths is the existence of a congestion-2 crossbar of
order k in a graph of treewidth Ω(kpolylog(k)).

While the existence of similar results for the general Disjoint Paths problem in directed
graphs is implausible [2], Chekuri, and Ene proposed to study the case of symmetric demands
where one asks for a path from si to ti and a path from ti to si for a terminal pair (si, ti).
First, they provided an analog of the well-linked decomposition for this case [6], and then with
Pilipczuk [7] showed an existence of an analog of a crossbar and a resulting approximation
algorithm for Disjoint Paths with symmetric demands in planar directed graphs. Later,
this result has been lifted to arbitrary proper minor-closed graph classes [3]. However, the
general case remains widely open.

As discussed above, for applications in approximation algorithms for Disjoint Paths,
it is absolutely essential to squeeze as much as possible from the bound linking directed
treewidth of a graph with the order of the crossbar, while the final congestion is of secondary
importance (but we would like it to be a small constant). We think of Theorem 5 as a step in
this direction: sacrificing integral packings for quarter-integral ones, we obtain much stronger
bounds than the non-elementary bounds of [17]. Furthermore, such a step seems necessary,
as it is hard to imagine a crossbar of order k that would not contain a constant-congestion
(i.e., every vertex used in a constant number of cycles) packing of Ω(k) directed cycles.

On the technical side, the proof of Theorem 5 borrows a number of technical tools from
the recent work of Hatzel, Kawarabayashi, and Kreutzer that proved polynomial bounds for
the directed grid minor theorem in planar graphs [12]. We follow their general approach to
obtain a directed treewidth sparsifier [12, Section 5] and modify it in a number of places
for our goal. The main novelty comes in different handling of the case when two linkages
intersect a lot. Here we introduce a new partitioning tool (see Section 3) which we use in the
crucial moment where we separate subgraphs Gi from each other.

Organization. After brief preliminaries in Section 2, we prove Theorem 5 in Sections 3–5:
Section 3 introduces the new partitioning tool, Section 4 handles the most complicated
“dense case” in the analysis, while Section 5 wraps up the argument. Discussions on the the
adaptation of the arguments of Section 5 to obtain the improved bound of Theorem 4 and
some argumentation from Section 4 that directly follows the arguments of [12] can be found
in the full version of the paper.

2 Preliminaries

Let G = (V (G), E(G)) be a directed graph and let A,B be subsets of V (G) with |A| = |B|.
A linkage from A to B in G is a set L of |A| pairwise vertex-disjoint paths in G, each with a
starting vertex in A and ending vertex in B. The order of L is |L| = |A|. For X,Y ⊆ V (G)
and a linkage L from X to Y , we denote A(L) := X and B(L) := Y . For a path or a walk
P , by start(P ) and end(P ) we denote the starting and ending vertex of P , respectively.

Let L and K be linkages. The intersection graph of L and K, denoted by I(L,K), is the
bipartite graph with the vertex set L ∪ K and an edge between a vertex in L and a vertex
in K if the corresponding paths share at least one vertex.
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A vertex set W ⊆ V (G) is well-linked if for all subsets A,B ⊆W with |A| = |B| there is
a linkage L of order |A| from A to B in G \ (W \ (A ∪B)).

Let P be a family of walks in G and let c be a positive integer. We say that P is of
congestion c if for every v ∈ V (G), the total number of times the walks in P visit v is at
most c; here, if a walk W ∈ P visits v multiple times, we count each visit separately. A
family of paths P is a half-integral (quarter-integral) if it is of congestion 2 (resp. 4).

We call two linkages L and Lback dual to each other if A(L) = B(Lback) and A(Lback) =
B(L). For two dual linkages L and Lback in a graph G, we define an auxiliary directed graph
Aux(L,Lback) as follows. We take V (Aux(L,Lback)) = L and for every path P ∈ Lback that
starts in a vertex start(P ) = end(L) for some L ∈ L and ends in a vertex end(P ) = start(L′)
for some L′ ∈ L, we put an arc (L,L′) to Aux(L,Lback). Note that it may happen that
L = L′. When the backlinkage Lback is clear from the context, we abbreviate Aux(L,Lback)
to Aux(L). Observe that in Aux(L,Lback) every node is of in- and out-degree exactly one and
thus this graph is a disjoint union of directed cycles.

With every arc (L,L′) of Aux(L,Lback) we can associate the walk from start(L) to start(L′)
that first goes along L and then follows the path P ∈ Lback that gives raise to the arc (L,L′).
Consequently, with every collection of pairwise disjoint paths and cycles in Aux(L,Lback)
there is an associated collection of walks (closed walks for cycles) in G that is of congestion 2
as it originated from two linkages. Note that the same construction works if L and Lback are
half-integral linkages, and then the walks in G corresponding to a family of paths and cycles
in Aux(L,Lback) would be of congestion 4.

Furthermore, with a pair of dual linkages L and Lback we can associate a backlinkage-
induced order L = {L1, L2, . . . , L|L|} as follows. If C1, C2, . . . , Cr are the cycles of the graph
Aux(L,Lback) in an arbitrary order, then L1, L2, . . . , L|C1| are the vertices of C1 in the order
of their appearance on C1, and L|C1|+1, . . . , L|C1|+|C2| are the vertices of C2 in the order of
their appearance on C2, etc. That is, we order the elements of L first according to the cycle
of Aux(L) they lie on, and then, within one cycle, according to the order around this cycle.

We will also need the following operation on a pair of dual linkages L and Lback. Let
P ⊆ L be a sublinkage. For every P ∈ P, construct a walk Q(P ) as follows. Start from the
path Q0 ∈ Lback with start(Q0) = end(P ) and set Q(P ) = Q0. Given Qi ∈ Lback for i ≥ 0,
proceed as follows. Let Pi+1 ∈ L be the path with end(Qi) = start(Pi+1). If Pi+1 ∈ P, then
stop. Otherwise, define Qi+1 ∈ Lback to be the path with end(Pi+1) = start(Qi+1). Append
Pi+1 and Qi+1 at the end of Q(P ) and repeat. Finally, we shortcut Q(P ) to a path Q′(P )
with the same endpoints. In this manner, Q := {Q′(P ) | P ∈ P} is a half-integral linkage
with A(P) = B(Q) and A(Q) = B(P). We call Q the backlinkage induced by P on (L,Lback).
Furthermore, we can perform the same construction if L and Lback are half-integral linkages,
obtaining a quarter-integral linkage Q.

We say that G is d-degenerate if and only if every subgraph of G contains a vertex of
degree at most d.

In this paper we do not need the exact definition of directed treewidth. Instead, we rely
on the following two results.

I Lemma 6 ([16]). Every directed graph G of directed treewidth k contains a well-linked set
of size Ω(k).

I Lemma 7 ([14, 15]). There is an absolute constant c′ with the following property. Let
α, β ≥ 1 be integers and let G be a digraph of dtw(G) ≥ c′ · α2β2. Then there exists a set of
α vertex-disjoint paths P1, . . . , Pα and sets Ai, Bi ⊆ V (Pi), where Ai appears before Bi on
Pi, both |Ai|, |Bi| = β, and

⋃α
i=1 Ai ∪Bi is well-linked.
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We also need the following two auxiliary results. Note that a coloring in Lemma 8 can be
arbitrary and is not necessarily proper.

I Lemma 8 ([18, Lemma 4.3]). Let r ≥ 2, d be a real, and H be an r-colored graph with
color classes V1, . . . , Vr, such that for every i it holds that |Vi| ≥ 4e(r − 1)d and for every
i 6= j the graph H[Vi ∪ Vj ] is d-degenerate. Then there exists an independent set {x1, . . . , xr}
such that xi ∈ Vi for every i ∈ [r].

I Lemma 9 ([12, Lemma 5.5]). Let G be a digraph and P1, . . . , Pk be disjoint paths such
that each Pi consists of two subpaths Ai and Bi, where Ai precedes Bi. Furthermore, let
{Li,j : i, j ∈ [k], i 6= j} be a set of pairwise disjoint paths, such that Li,j starts in Bi and ends
in Aj. Then

dtw
(⋃
i

Pi ∪
⋃
i6=j

Li,j

)
≥ k

8 .

3 Partitioning Lemma

In this section, we develop a main technical tool that we use in the proof of Theorem 5.
Intuitively, in a subcase of the proof, we will have a bipartite graph of large minimum degree
which we partition into subgraphs induced by pairs of vertex sets (Ui,Wi). These subgraphs
will define the Gi from the statement of Theorem 5. To obtain a lower bound on the directed
treewidth of Gi, we need that the parts (Ui,Wi) each induce a subgraph of large average
degree. This will be achieved using the following lemma.

I Lemma 10. Let h ≥ 0 and n be integers, d be a positive real such that d·4h+1−1 > 2, and let
G be a bipartite graph with bipartition classes X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb},
such that a+ b ≤ n and |E(G)| ≥ (d · 4h+1 − 1) · n. Then in [a] we can find k := 2h pairwise
disjoint sets I1, I2, . . . , Ik, and in [b] we can find k pairwise disjoint sets J1, J2, . . . , Jk, such
that:
1. for every i ∈ [k] the set Ii is a segment of [a] and the set Ji is a segment of [b],
2. for every i ∈ [k], the number of edges between {xi : i ∈ Ii} and {yi : i ∈ Ji} is at least

d · n.

Proof. For I ⊆ [a] and J ⊆ [b], let e(I, J) we denote the number of edges xiyj of G, such
that i ∈ I and j ∈ J . Observe that |E(G)| > 2n.

We prove the lemma by induction on h. Note that for h = 0 the claim is trivially satisfied
by taking I1 = X and J1 = Y , as d · 4h+1 − 1 > 2 and h ≥ 0 implies d · 4h+1 − 1 ≥ d.
So now assume that h ≥ 1 and the claim holds for h − 1. Let s ∈ [a] be the minimum
integer, for which

∑s
i=1 deg xi ≥ |E(G)|/2, and let t ∈ [b] be the minimum integer, for which∑t

i=1 deg yi ≥ |E(G)|/2. We observe that d · 4h+1 − 1 > 2 implies that 1 < s < a and
1 < t < b. Define X1 := {1, 2, . . . , s−1} and X2 := {s+1, . . . , a}, and Y 1 := {1, 2, . . . , t−1}
and Y 2 := {t+ 1, . . . , b}.

We aim to show that the number of edges joining X1 and Y 1 is roughly the same as
the number of edges joining X2 and Y 2, and the number of edges joining X1 and Y 2 is
roughly the same as the number of edges joining X2 and Y 1. Since deg xs ≤ b < n and
deg yt ≤ a < n, by the choice of s and t we obtain the following set of inequalities.
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e(X,Y )/2− deg xs ≤ e(X1, Y ) ≤ e(X,Y )/2
e(X,Y )/2− deg xs ≤ e(X2, Y ) ≤ e(X,Y )/2
e(X,Y )/2− deg yt ≤ e(X,Y 1) ≤ e(X,Y )/2
e(X,Y )/2− deg yt ≤ e(X,Y 2) ≤ e(X,Y )/2. (1)

Observe that

e(X1, Y 1) + e(X1, Y 2) ≤ e(X1, Y ) = e(X1, Y 1) + e(X1, Y 2) + e(X1, {t})
≤ e(X1, Y 1) + e(X1, Y 2) + deg yt

(and analogously for each of the remaining inequalities in (1)). Thus we obtain:

e(X,Y )/2− n ≤ e(X1, Y 1) + e(X1, Y 2) ≤ e(X,Y )/2
e(X,Y )/2− n ≤ e(X2, Y 1) + e(X2, Y 2) ≤ e(X,Y )/2
e(X,Y )/2− n ≤ e(X1, Y 2) + e(X2, Y 1) ≤ e(X,Y )/2
e(X,Y )/2− n ≤ e(X1, Y 2) + e(X2, Y 2) ≤ e(X,Y )/2. (2)

By subtracting appropriate pairs of inequalities in (2), we obtain the following bounds.

−n ≤ e(X1, Y 1)− e(X2, Y 2) ≤ n
−n ≤ e(X1, Y 2)− e(X2, Y 1) ≤ n (3)

Recall that

e(X,Y ) = e(X1, Y 1) + e(X1, Y 2) + e(X2, Y 1) + e(X2, Y 2) + deg xs + deg yt
≤ e(X1, Y 1) + e(X1, Y 2) + e(X2, Y 1) + e(X2, Y 2) + n.

Thus, by the pigeonhole principle, at least one of the following holds:

e(X1, Y 1) + e(X2, Y 2) ≥ e(X,Y )/2− n/2
e(X1, Y 2) + e(X2, Y 1) ≥ e(X,Y )/2− n/2. (4)

Suppose that the first case holds. Define G1 = G[X1 ∪ Y 1] and G2 = G[X2 ∪ Y 2].
Combining (3) and (4), we obtain that

|E(G1)| = e(X1, Y 1) ≥ e(X,Y )/4− 3n/4 ≥ (d · 4h+1 − 1)n/4− 3n/4 = (d · 4h − 1)n
|E(G2)| = e(X2, Y 2) ≥ e(X,Y )/4− 3n/4 ≥ (d · 4h − 1)n. (5)

We observe that graphs G1, G2 satisfy the inductive assumption (for h− 1), so in the vertex
set of G1 we can find two families of k/2 pairwise corresponding segments I1

1 , I
1
2 , . . . , I

1
k/2 and

J1
1 , J

1
2 , . . . , J

1
k/2, and in the vertex set of G2 we can find two families of k/2 pairwise corres-

ponding segments I2
1 , I

2
2 , . . . , I

2
k/2 and J2

1 , J
2
2 , . . . , I

2
k/2. We obtain the desired subsegments

of X and Y by setting:

Ii =
{
I1
i if i ≤ k/2,
I2
i−k/2 if i > k/2,

Ji =
{
J1
i if i ≤ k/2,
J2
i−k/2 if i > k/2.

If the second case in (4) holds, we take G1 = G[X1, Y 2] and G2 = G[X2, Y 1], and the rest
of the proof is analogous. J

ESA 2019



72:8 Packing Directed Circuits Quarter-Integrally

The following statement brings the technical statement of Lemma 10 into a more easily
applicable form.

I Lemma 11. Let k, r ≥ 1 be two integers and let G be a bipartite graph with bipartition
classes X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb} and minimum degree at least 1200 ·r ·k.
Then there are k sets U1, U2, . . . , Uk, and k sets W1,W2, . . . ,Wk, such that:
1. for each i ∈ [k] the set Ui is a segment of [a] and the set Wi is a segment of [b],
2. for each distinct i, j ∈ [k] we have Ui ∩ Uj = ∅ and Wi ∩Wj = ∅,
3. for every i ∈ [k], the average degree of the graph G[Ui ∪Wi] is at least r.

Proof. Let h be the minimum integer, such that k′ := 2h ≥ 3k; note that k′ < 6k. Also,
define d = 2r/k and n = a+ b. We have

d · 4h+1 − 1 = 4d(k′)2 − 1 ≥ 8r
k
· (3k)2 − 1 = 72 · r · k − 1 > 2.

Observe that the number of edges in G is at least

n · r · 600k > (16r/k · (6k)2)n > (4d(k′)2)n > (d · 4h+1 − 1)n.

Thus G satisfies the assumptions of Lemma 10 for h, n, and d. Let I1, I2, . . . , Ik′ be the
disjoint segments in X, and J1, J2, . . . , Jk′ be the disjoint segments in Y , whose existence is
guaranteed by Lemma 10.

A segment Ii (Ji, resp.) is called large if |Ii| ≥ 3n/k′ (|Ji| ≥ 3n/k′, resp.). A pair (Ii, Ji)
is large if at least one of Ii, Ji is large, otherwise the pair is small. Note that there are at
most n/(3n/k′) = k′/3 large segments Ii and at most k′/3 large segments Ji, so the number
of large pairs is at most 2k′/3. Thus the number of small pairs is at least k′/3 ≥ k. We
obtain the segments (Ui,Wi) by taking the first k small pairs (Ii, Ji). Clearly these segments
satisfy conditions 1. and 2. of the lemma.

Now take any i ∈ [k] and let us compute the average degree of the graph Gi := G[Ui,Wi].
By Lemma 10, |E(Gi)| ≥ d · n. On the other hand, since (Ui,Wi) is a small pair, we have
that |V (Gi)| = |Ui ∪Wi| < 6n/k′. Thus we obtain that the average degree of Gi is

|E(Gi)|
|V (Gi)|

>
d · n

6n/k′ = dk′

6 ≥ d 3k
6 = 2r

k
· k2 = r.

This completes the proof. J

4 The Dense Case

In this section, we prove Theorem 5 roughly in the case when there are two linkages L and K
such that their set A(L) ∪A(K) ∪B(L) ∪B(K) of endpoints is well linked and such that the
paths in L and K intersect a lot. The formal statement proved in this section is as follows.

I Lemma 12. Let a, b ∈ N+. Let D be a directed graph and L and K be two linkages in D
such that A(L) ∪ B(L) ∪ A(K) ∪ B(K) is well-linked in D. Suppose that the intersection
graph I(L,K) has degeneracy more than 384 000 · a · b · log2(|L|/b). Then there are directed
graphs D1, D2, . . . , Da with the following properties:
(i) each Di is a subgraph of D,
(ii) each vertex of D belongs to at most four graphs Di, and
(iii) each graph Di has directed treewidth at least b.
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Proof Outline. The basic idea of the proof of Lemma 12 is as follows. We first fix a pair of
linkages Lback and Kback which are dual to L and K, respectively. (This is possible because
of well-linkedness of the endpoints.) The subgraphs Di that we construct will subpartition
the vertex set of each of the four linkages L,Lback,K,Kback and hence each vertex of G is
in at most four subgraphs Di. To construct the desired subgraphs Di, we consider the
backlinkage-induced order ΠL on L and ΠK on K. Using these orderings of the paths of L
and K, we can apply the partitioning lemma (Lemma 11) to the intersection graph of L
and K, obtaining a subpartition I1, . . . , Ik of L and a subpartition J1, . . . , Jk of K. These
subpartitions have the nice property that each intersection graph I(Ii, Ji) induced by a pair
Ii, Ji contains many edges (representing intersections between the corresponding paths) and
that only a constant number of cycles of Aux(L) and Aux(K) cross Ii or Ji. By closing each of
these crossing cycles by introducing an artificial new path, we obtain a pair of dual linkages
Ii, I

′
i, and a pair of dual of linkages Ji, J ′i . Using then Lemma 13 below, we will obtain

a lower bound on the directed treewidth of the graph induced by Ii ∪ Ji ∪ I ′i ∪ J ′i , which
constitute our desired subgraph Di.

Treewidth Lower Bound. For technical reasons, we will have to work with half-integral
linkages. The intersection graph for a pair of half-integral linkages is defined in the same
way as for ordinary linkages.

I Lemma 13. Let k, d ∈ N+ and P,Pback,Q,Qback be four half-integral linkages in a directed
graph such that P and Pback are dual to each other and Q and Qback are dual to each other. Let
the intersection graph I(P,Q) have minimum degree at least d where d ≥ 8k log 4

3
( |P|24k )+24k+4.

Then the graph
⋃

(P ∪ Pback ∪Q ∪Qback) has directed treewidth at least k.

The proof of Lemma 13 is inspired by the proof of Lemma 5.4 in [12]. We could use
Lemma 5.4 here as well, but its proof, unfortunately, contains errors. Nevertheless, we derive
an incomparable bound which is much better for our use since the lower bound claimed in
Lemma 5.4 [12] is k2. Also, we adapt the constants in the lemma for half-integral linkages.
We postpone the proof of Lemma 13 to the full version of the paper.

Main Proof of the Dense Case. We are now ready to prove the main lemma of this section.

Proof of Lemma 12. Let d = 384 000 · a · b · log2(|L|/b). Since I(L,K) is not d-degenerate,
it contains an induced subgraph I ′ of minimum degree larger than d. Redefine L and K
to be the sublinkages of L and K contained in this subgraph I ′, that is, L := L ∩ V (I ′)
and K := K ∩ V (I ′). Note that |L| > d, |K| > d, the size of L only decreases, and that
A(L) ∪B(L) ∪A(K) ∪B(K) remains well-linked.

Let Lback be a linkage in D from B(L) to A(L) and let Kback be a linkage in D from B(K)
to A(K). Note that Lback and Kback exist because A(L) ∪B(L) ∪A(K) ∪B(K) is well linked.

We focus on Aux(L) and Aux(K). Take backlinkage-induced orderings (L1, . . . , L|L|)
of L and (K1, . . . ,K|K|) of K. Apply Lemma 11 with k = a, r = 320b log2(|L|/b), G =
I(L,K), X = {L1, . . . , L|L|}, and Y = {K1, . . . ,K|K|}, obtaining a sets U1, . . . , Ua and a sets
W1, . . . ,Wa with the corresponding properties. To see that Lemma 11 is applicable, observe
that I(L,K) has minimum degree at least 384 000·a·b log2(|L|/b) = 1200·320b log2(|L|/b)·a =
1200 · r · k. Observe for later on that, for each i ∈ [a], the intersection graph I(Ui,Wi) of
the two linkages Ui and Wi has average degree at least 320b log2(|L|/b) by property 3
of Lemma 11.
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Now define, for each i ∈ [a], a graph Di as follows. Initially, take the union of all paths in
Ui and Wi. Then, for each edge (L,L′) of Aux(L) such that L,L′ ∈ Ui, add to Di the unique
path P ∈ Lback that connects L and L′, that is, end(L) = start(P ) and end(P ) = start(L′).
Similarly, for each edge (K,K ′) of Aux(K) such that K,K ′ ∈Wi, add to Di the unique path
Q ∈ Kback with end(K) = start(Q) and end(Q) = start(K ′). In formulas:

U ′i := {P ∈ Lback | ∃(L,L′) ∈ E(Aux(L)) :
L,L′ ∈ Ui ∧ end(L) = start(P ) ∧ end(P ) = start(L′)}

and

W ′i := {Q ∈ Kback | ∃(K,K ′) ∈ E(Aux(K)) :
K,K ′ ∈ Wi ∧ end(K) = start(Q) ∧ end(Q) = start(K ′)}.

We set

Di :=
⋃

(Ui ∪Wi ∪ U ′i ∪W ′i ).

We claim that Di satisfies the required properties. Clearly, Di is a subgraph of D, giving
property (i). To see property (ii), consider a linkage P ∈ {L,Lback,K,Kback}. We claim
that no two subgraphs Di, Dj contain the same path of P. This claim follows indeed from
property 2. of Lemma 11, stating that Ui ∩ Uj = ∅ and Wi ∩Wj = ∅ and inspecting the
definition of Di and Dj . Thus, {V (Di) | i ∈ [a]} is a partition of a subset of the vertex
set V (P) of the paths in P . Thus, each vertex v ∈ V (D) occurs in at most four subgraphs Di,
showing property (ii).

It remains to show property (iii), the lower bound on the directed treewidth of Di. We
aim to modify Di, increasing the directed treewidth by at most a constant, to obtain a
graph D(2)

i which is the union of two pairs of dual half-integral linkages such that two linkages
contained in distinct pairs intersect a lot. Then we can apply Lemma 13, giving a lower
bound on the directed treewidth of D(2)

i which then implies a lower bound on the directed
treewidth of Di.

We first modify Di to obtain a graph D(1)
i which is the union of two pairs of dual linkages.

Recall the orderings ~L := (L1, . . . , L|L|) and ~K := (K1, . . . ,K|K|) on L and K, respectively,
which we have defined above. By property 1. of Lemma 11, Ui is a segment of ~L and Wi

is a segment of ~K. Hence, by the way we have defined ~L, there are at most two cycles C
in Aux(L) which are not contained in Ui or disjoint with Ui, that is V (C) \ Ui 6= ∅ and
V (C)∩Ui 6= ∅. Call such a cycle broken. Similarly, there are at most two cycles C in Aux(K)
such that V (C) \Wi 6= ∅ and V (C) ∩Wi 6= ∅. Call such a cycle broken as well. For each
broken cycle C, do the following operation on Di to obtain D(1)

i . If C is in Aux(L), let LCout
be the vertex of outdegree zero in the subgraph Aux(L)[V (C) ∩ Ui] and let LCin be the vertex
of indegree zero. Add the directed edge (end(LCout), start(LCin)) to Di. Proceed analogously if
C is in Aux(K): Let KC

out be the vertex of outdegree zero in the subgraph Aux(K)[V (C)∩Wi]
and let KC

in be the vertex of indegree zero, and add the directed edge (end(KC
out), start(KC

in ))
to Di. In this way, we add at most four edges to Di, obtaining D(1)

i . Note that adding an
edge increases the directed treewidth by at most one2, and hence dtw(D(1)

i ) ≤ dtw(Di) + 4.

2 In the corresponding robber-cop game (see [13]), we can always guard the new edge with an additional cop.
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We claim that D(1)
i is the union of two pairs of dual linkages. To see this, note first that

Ui and Wi are linkages in D(1)
i . Now consider

U bi := U ′i ∪ {(end(LCout), start(LCin)) | C a broken cycle in Aux(L)}

and

W b
i := W ′i ∪ {(end(KC

out), start(KC
in )) | C a broken cycle in Aux(K)},

wherein LCin , LCout,K
C
in , and KC

out are defined as above. Clearly, D(1)
i =

⋃
(Ui ∪Wi ∪U bi ∪W b

i ).
Moreover, both U bi and W b

i are linkages because U ′i and W ′i are linkages and because
LCin , L

C
out,K

C
in , and KC

out have indegree or outdegree zero in Aux(L)[V (C)] or Aux(K)[V (C)],
respectively. Finally, by definition, Ui and U bi are dual to each other and Wi and W b

i are
dual to each other. Thus, D(1)

i is the union of two pairs of dual linkages, as claimed.
In order to apply Lemma 13, we need a pair of linkages whose intersection graph has a

large minimum degree. So far, the linkages which define D(1)
i guarantee only large average

degree (via property 3. of Lemma 11). We now derive a subgraph D(2)
i of D(1)

i such that
D

(2)
i is the union of two pairs of dual half-integral linkages (P,Pback), (Q,Qback) and I(P,Q)

has large minimum degree. To achieve this, recall that the intersection graph I(Ui,Wi) of
the two linkages Ui, Wi in D(1)

i has average degree at least 320b log2(|L|/b). Hence, there is
a subgraph I ′ of I(Ui,Wi) with minimum degree at least 320b log2(|L|/b). Let P ⊆ Ui be
the sublinkage of Ui contained in I ′, that is P = Ui ∩ V (I ′). Similarly, let Q = Wi ∩ V (I ′).

We define Pback to be the backlinkage induced by P on (Ui, U bi ) and Qback to be the
backlinkage induced by Q on (Wi,W

b
i ). Note that Pback and Qback are half-integral and dual

to P and Q, respectively.
Take now the subgraph D

(2)
i to be the union

⋃
(P ∪ Pback ∪ Q ∪ Qback). Then apply

Lemma 13 to P,Pback,Q,Qback with k = b + 4 and d = 320b log2(|L|/b). To see that the
preconditions of Lemma 13 are satisfied, first recall that the intersection graph I(P,Q) has
minimum degree at least 320b log2(|L|/b). Furthermore,

d = 320b log2
|L|
b
≥ 200b log2

|L|
b

+ 120b+ 4 ≥ 5 · 40b
2 log2

|L|
b

+ 120b+ 4 ≥

8 · 5b
log2(4/3) log2

|L|
b

+ 24(5b) + 4 ≥ 8 · (b+ 4) log4/3
|L|

24(b+ 4) + 24(b+ 4) + 4 =

8k log4/3
|L|
24k + 24k + 4,

and thus indeed the preconditions of Lemma 13 are satisfied. Thus, the directed treewidth
of D(2)

i is at least b+ 4. Since D(2)
i is a subgraph of D(1)

i and dtw(Di) ≥ dtw(D(1)
i )− 4, we

have dtw(Di) ≥ b, as required. J

5 Wrapping up the Proof of Theorem 5

Proof of Theorem 5. Let G be a directed graph of dtw(G) ≥ c · a6b8 log2(ab), where c is a
large constant, whose value will follow from the reasoning below. First, we invoke Lemma 7
with β = 237a2b3 log(ab) and α = 8ab (here we assume that c is sufficiently large so that
the assumption is satisfied). We obtain a set of vertex-disjoint paths P1, . . . , P8ab and sets
Ai, Bi ⊆ V (Pi), where Ai appears before Bi on Pi, and |Ai| = |Bi| = 237a2b3 log(ab), and
the set

⋃8ab
i=1 Ai ∪Bi is well-linked. Denote by Li,j a linkage from Bi to Aj .
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We split the 8ab paths Pi into a segments, each consisting of 8b paths. Formally, for
every ι ∈ [a] we define Iι = {j | 8(ι− 1)b < j ≤ 8ιb}.

Now we set r = 64ab2 and create an auxiliary r-colored graph H, whose vertices will be
paths of appropriately chosen linkages Li,j . More specifically, for every ι ∈ [a], and every
i, j ∈ Iι, we introduce a vertex for every path in Li,j and color it (i, j). Two vertices of
H are adjacent if and only if their corresponding paths share a vertex in G. Note that for
two linkages Li,j and Li′,j′ , the graph H[Li,j ∪ Li′,j′ ] is precisely the intersection graph
I(Li,j ,Li′,j′).

We set d := 227ab log(ab) and consider two cases:
(i) for all i, j, i′, j′ the graph I(Li,j ,Li′,j′) is d-degenerate.
(ii) there exist i, j, i′, j′, for which the graph I(Li,j ,Li′,j′) is not d-degenerate.

An intuition behind case (i) is that for each subgraph of H there is always a path (in G)
such that it shares a vertex with at most d paths from all used linkages back.

Case (i) We use Lemma 8 on H. Graph H has 64ab2 color classes such that for each (i, j) 6=
(i′, j′) the graph H[Li,j ∪ Li′,j′ ] is d-degenerate. Note that |Li,j | = 237a2b3 log(ab) ≥
4e(r−1)d is sufficiently large to satisfy the last assumption of the lemma. We are given an
independent set x1, . . . , x64ab2 that represents pairwise disjoint paths Li,j from Bi to Aj
for all i, j ∈ Iι. We also recall that Ai and Bi lie on Pi and all Pi’s are pairwise disjoint.

Let Gι consist of all paths Pi for i ∈ Iι and Li,j for i, j ∈ Iι. By Lemma 9 for k = 8b we
obtain dtw(Gι) ≥ b while each vertex is in at most 2 such subgraphs. Indeed, each vertex
can appear only once on some Pi and once on some Li,j .

Case (ii) The claim follows from Lemma 12. Since |L| = 237a2b3 log(ab) then d =
227ab log(ab) > 219ab log(237a2b2 log(ab)). J

6 Conclusions

We have shown that if one relaxes the disjointness constraint to quarter-integral packing
(i.e., every vertex used at most four times), then the Erdős-Pósa property in directed graphs
admits a polynomial bound between the cycle packing number and the feedback vertex set
number. A natural question would be to decrease the dependency further, even at the cost
of higher congestion (but still a constant). More precisely, we pose the following question:
Does there exist a constant c and a polynomial p such that for every integer k if a directed
graph G does not contain a family of k cycles such that every vertex of G is in at most c of
the cycles, then the directed treewidth of G is at most kp(log k)?

One of the sources of polynomial blow-up in the proof of Theorem 5 is the quadratic
blow-up in Lemma 7. Lemma 7 is a direct corollary of another result of [14] that asserts
that a directed graph G of directed treewidth Ω(k2) contains a path P and a set A ⊆ V (P )
that is well-linked and of size k. Is this quadratic blow-up necessary? Can we improve it,
even at the cost of some constant congestion in the path P (i.e., allow P to visit every
vertex a constant number of times)? We remark that the essence of the improvement from
O(k6 log2 k) (obtained by setting b = 2 in Theorem 5) to O(k3) asserted by Theorem 4 is to
avoid the usage of Lemma 7 and to replace it with a simple well-linkedness trick. However,
this trick fails in the general setting of Theorem 5.
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In the Equal-Subset-Sum problem, we are given a set S of n integers and the problem is to decide
if there exist two disjoint nonempty subsets A, B ⊆ S, whose elements sum up to the same value.
The problem is NP-complete. The state-of-the-art algorithm runs in O∗(3n/2) ≤ O∗(1.7321n) time
and is based on the meet-in-the-middle technique. In this paper, we improve upon this algorithm
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Additionally, we analyse the polynomial space algorithm for Equal-Subset-Sum. A naive
polynomial space algorithm for Equal-Subset-Sum runs in O∗(3n) time. With read-only access to
the exponentially many random bits, we show a randomized algorithm running in O∗(2.6817n) time
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1 Introduction

In the Subset-Sum problem, we are given as input a set S of n integers a1, . . . , an and a
target t. The task is to decide if there exists a subset of S, such that a total sum of the
numbers in this subset is equal to t. This can be formulated in the following form:

n∑
i=1

xiai = t

and the task is to find xi ∈ {0, 1}. Subset-Sum is one of the fundamental NP-complete
problems. Study on the exact complexity of Subset-Sum led to the discovery of one of the most
fundamental algorithmic tool: meet-in-the-middle. [24] used this technique to give a O∗(2n/2)
algorithm for Subset-Sum in the following way: First, rewrite the Subset-Sum equation:

bn/2c∑
i=1

xiai = t−
n∑

bn/2c+1

xiai.

Then enumerate all O(2n/2) possible values of the left side L(x1, . . . , xbn/2c) and O(2n/2)
possible values of the right side R(xbn/2c+1, . . . , xn). After that, it remains to look for the
value that occurs in both L and R, i.e., meeting the tables L and R. One can do that
efficiently by sorting (see [24] for details). To summarize, meet-in-the-middle technique is
based on rewriting the formula as an equation between two functions and efficiently seeking
any value that occurs in both of their images.

Later, [39] observed that space usage of meet-in-the-middle can be improved toO∗(2n/4) by
using space-efficient algorithm for 4-SUM. However, the time complexity remains unchallenged
and one of the most prominent open problem in the area of exact algorithms is to improve
upon meet-in-the-middle for Subset-Sum:

I Open Question 1. Can Subset-Sum be solved in O∗(2(0.5−δ)n) time for some constant
δ > 0?

In this paper, we consider the Equal-Subset-Sum problem. We are given a set S of n
integers and the task is to decide if there exist two disjoint nonempty subsets A,B ⊆ S,
whose elements sum up to the same value. Similarly to Subset-Sum, this problem is NP-
complete [45]. In the inspirational survey, [44] noticed Equal-Subset-Sum can be solved by
using meet-in-the-middle and asked if it can be improved: 1

I Open Question 2 (cf., [43],[44]). Can we improve upon the meet-in-the-middle algorithm
for Equal-Subset-Sum?

The folklore meet-in-the-middle algorithm for Equal-Subset-Sum (that we will present in
the next paragraph) works in O∗(3n/2) time.

Folklore algorithm for Equal-Subset-Sum

First, we arbitrarily partition S into S1 = {a1, . . . , abn/2c} and S2 = {abn/2c+1, . . . , an}.
Recall that in Equal-Subset-Sum we seek two subsets A,B ⊆ S, such that A ∩B = ∅ and
Σ(A) = Σ(B). We can write the solution as 4 subsets: A1 = A∩S1, A2 = A∩S2, B1 = B∩S1

1 [43, 44] noticed that 4-SUM gives O∗(2n) algorithm, but it actually gives a O∗(3n/2) algorithm, see [35,
Appendix C].
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and B2 = B ∩ S2, such that: Σ(A1) + Σ(A2) = Σ(B1) + Σ(B2). In particular, it means
that: Σ(A1) − Σ(B1) = Σ(B2) − Σ(A2). So, the problem reduces to finding two vectors
x ∈ {−1, 0, 1}bn/2c and y ∈ {−1, 0, 1}dn/2e, such that:

bn/2c∑
i=1

xiai =
dn/2e∑
i=1

yiai+bn/2c.

We can do this in O∗(3n/2) time as follows. First, enumerate and store all 3bn/2c possible
values of the left side of the equation and all 3dn/2e possible values of the right side of the
equation. Then look for a value that occurs in both tables (collision) in time O∗(3n/2) by
sorting the values. The total running time is therefore O∗(3n/2). Analogously to Subset-Sum,
one can improve the space usage of the above algorithm to O∗(3n/4) (see [35, Appendix C]).

A common pattern seems unavoidable in algorithms for Subset-Sum and Equal-Subset-
Sum: we have to go through all possible values of the left and the right side of the equation.
This enumeration dominates the time used to solve the problem. So, it was conceivable that
perhaps no improvement for Equal-Subset-Sum could be obtained unless we improve an
algorithm for Subset-Sum first [43, 44].

1.1 Our Contribution
While the meet-in-the-middle algorithm remains unchallenged for Subset-Sum, we show that,
surprisingly, we can improve the algorithm for Equal-Subset-Sum. The main result of this
paper is the following theorem.

I Theorem 1.1. Equal-Subset-Sum can be solved in O∗(1.7088n) time with high probability.

This positively answers Open Question 2. To prove this result we observe that the
worst case for the meet-in-the-middle algorithm is that of a balanced solution, i.e., when
|A| = |B| = |S \ (A∪B)| ≈ n/3. We propose a substantially different algorithm, that runs in
O∗(22/3n) time for that case. The crucial insight of the new approach is the fact that when
|A| ≈ |B| ≈ n/3, then there is an abundance of pairs X,Y ⊆ S, X 6= Y with Σ(X) = Σ(Y ).
We use the representation technique to exploit this. Interestingly, that technique was initially
developed to solve the average case Subset-Sum [9, 25].

Our second result is an improved algorithm for Equal-Subset-Sum running in polynomial
space. The naive algorithm in polynomial space works in O∗(3n) time by enumerating all
possible disjoint pairs of subsets of S. This algorithm is analogous to the O∗(2n) polynomial
space algorithm for Subset-Sum. Recently, [6] proposed a O∗(20.86n) algorithm for Subset-
Sum on the machine that has access to the exponential number of random bits. We show
that a similar idea can be used for Equal-Subset-Sum.

I Theorem 1.2. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum in
polynomial space and time O∗(2.6817n). The algorithm assumes random read-only access to
exponentially many random bits.

This result is interesting for two reasons. First, [6] require nontrivial results in information
theory. Our algorithm is relatively simple and does not need such techniques. Second, the
approach of [6] developed for Subset-Sum has a barrier, i.e., significantly new ideas must be
introduced to get an algorithm running faster than O∗(20.75n). In our case, this corresponds to
the algorithm running in O∗(21.5n) ≤ O∗(2.8285n) time and polynomial space (for elaboration
see Section 4). We show that relatively simple observations about Equal-Subset-Sum enable
us to give a slightly faster algorithm in polynomial space.

ESA 2019
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1.2 Related Work
The Equal-Subset-Sum was introduced by [45] who showed that the problem is NP-complete.
This reduction automatically excludes 2o(n) algorithms for Equal-Subset-Sum assuming ETH
(see [35, Appendix B]), hence for this problem we aspire to optimize the constant in the
exponent. The best known constant comes from the meet-in-the-middle algorithm. [44] asked
if this algorithm for Equal-Subset-Sum can be improved.

Exact algorithms for Subset-Sum

[36] proved that in the exact setting Knapsack and Subset-Sum problems are equivalent.
[39] showed that the meet-in-the-middle algorithm admits a time-space tradeoff, i.e.,

T S2 ≤ O∗(2n), where T is the running time of the algorithm and S ≤ O∗(2n/2) is the space
of an algorithm. This tradeoff was improved by [2] for almost all tradeoff parameters.

[3] considered Subset-Sum parametrized by the maximum bin size β and obtained
algorithm running in time O∗(20.3399nβ4). Subsequently, [4] showed that one can get a faster
algorithm for Subset-Sum than meet-in-the-middle if β ≤ 2(0.5−ε)n or β ≥ 20.661n. In this
paper, we use the hash function that is based on their ideas. Moreover, the ideas in [3, 4]
were used in the recent breakthrough polynomial space algorithm [6] running in O∗(20.86n)
time.

From the pseudopolynomial algorithms perspective Knapsack and Subset-Sum admit
O(nt) algorithm, where t is a value of a target. Recently, for Subset-Sum the pseudopolynomial
algorithm was improved to run in deterministic Õ(

√
nt) time by [29] and randomized Õ(n+ t)

time by [11] (and simplified, see [27, 30]). However, these algorithms have a drawback of
running in pseudopolynomial space O∗(t). Surprisingly, [32] presented an algorithm running
in time Õ(n3t) and space Õ(n2) which was later improved to Õ(nt) time and Õ(n log t) space
assuming the Extended Riemann Hypothesis [11].

From a lower bounds perspective, no algorithm working in Õ(poly(n)t0.99) exists for
Subset-Sum assuming SETH or SetCover conjecture [18, 1].

Approximation

[45] presented the approximation algorithm for Equal-Subset-Sum with the worst case ratio
of 1.324. [7] considered a different formulation of approximation for Equal-Subset-Sum and
showed an FPTAS for it.

Cryptography and the average case complexity

In 1978 Knapsack problems were introduced into cryptography by [34]. They introduced a
Knapsack based public key cryptosystem. Subsequently, their scheme was broken by using
lattice reduction [40]. After that, many knapsack cryptosystems were broken with low-density
attacks [31, 17].

More recently, [26] introduced a cryptographic scheme that is provably as secure as
Subset-Sum. They proposed a function f(−→a , S) = −→a ,

∑
i∈S ai (mod 2l(n)), i.e., the function

which concatenates −→a with the sum of the ai’s for i ∈ S. Function f is a mapping of an
n bit string S to an l(n) bit string and −→a are a fixed parameter. Our algorithms can be
thought of as an attempt to find a collision of such a function in the worst case.

However, in the average case more efficient algorithms are known. [42] showed that when
solving problems involving sums of elements from lists, one can obtain faster algorithms
when there are many possible solutions. In the breakthrough paper, [25] gave O∗(20.337n)
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algorithm for an average case Subset-Sum. It was subsequently improved by [9] who gave an
algorithm running in O∗(20.291n). These papers introduced a representation technique that
is a crucial ingredient in our proofs.

Total search problems

The Number Balancing problem is: given n real numbers a1, . . . , an ∈ [0, 1], find two disjoint
subsets I, J ⊆ [n], such that the difference |

∑
i∈I ai−

∑
j∈J aj | is minimized. The pigeonhole

principle and the Chebyshev’s inequality guarantee that there exists a solution with difference
at most O(

√
n

2n ). [28] showed that in polynomial time one can produce a solution with
difference at most n−Θ(logn), but since then no further improvement is known.

[37] considered the problem Equal Sums: given n positive integers such that their total
sum is less than 2n − 1, find two subsets with the same sum. By the pigeonhole principle the
solution always exists, hence the decision version of this problem is obviously in P. However
the hard part is to actually find a solution. Equal Sums is in class PPP but it remains
open to show that it is PPP-complete. Recently, this question gained some momentum. [23]
showed that Number Balancing is as hard as Minkowski. [5] showed the reduction from
Equal Sums to Minkowski and conjectured that Minkowski is complete for the class PPP.
Very recently, [41] identified the first natural problem complete for PPP.

In [35, Appendix E] we show that our techniques can also be used to solve Number
Balancing for integers in O∗(1.7088n) time.

Combinatorial Number Theory

If Σ(S) < 2n − 1, then by the pigeonhole principle the answer to the decision version of
Equal-Subset-Sum on S is always YES. In 1931 Paul Erdős was interested in the smallest
maximum value of S, such that the answer to Equal-Subset-Sum on S is NO, i.e., he
considered the function:

f(n) = min{max{S} | all subsets of S are distinct, |S| = n, S ⊆ N}

and showed f(n) > 2n/(10
√
n) [19]. The first nontrivial upper bound on f was f(n) ≤

2n−2 (for sufficiently large n) [16]. Subsequently, [33] proved that f(n) ≤ 0.2246 · 2n and [10]
showed f(n) ≤ 0.22002 · 2n. [20] offered 500 dollars for proof or disproof of conjecture that
f(n) ≥ c2n for some constant c.

Other Variants

Equal-Subset-Sum has some connections to the study of the structure of DNA molecules [15,
14, 12]. [13] considered k-Equal-Subset-Sum, in which we need to find k disjoint subsets of
a given set with the same sum. They obtained several algorithms that depend on certain
restrictions of the sets (e.g., small cardinality of a solution). In the following work, [14]
considered other variants of Equal-Subset-Sum and proved their NP-hardness.

2 Preliminaries

Throughout the paper we use the O∗ notation to hide factors polynomial in the input
size and the Õ notation to hide factors logarithmic in the input size. We also use [n]
to denote the set {1, . . . , n}. If S = {a1, . . . , an} is a set of integers and X ⊆ {1, . . . , n},
then ΣS(X) :=

∑
i∈X ai. Also, we use Σ(S) =

∑
s∈S s to denote the sum of the elements

of the set. We use the binomial coefficient notation for sets, i.e., for a set S the symbol(
S
k

)
= {X ⊆ S | |S| = k} is the set of all subsets of the set S of size exactly k.

ESA 2019
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We may assume that the input to Equal-Subset-Sum has the following properties:
the input set S = {a1, . . . , an} consists of positive integers,∑n
i=1 ai < 2τn for a constant τ < 10,

integer n is a multiple of 12.

These are standard assumptions for Subset-Sum (e.g., [3, 22]). For completeness, in
[35, Appendix A] we prove how to apply reductions to Equal-Subset-Sum to ensure these
properties.

We need the following theorem concerning the density of prime numbers [21, p. 371,
Eq. (22.19.3)].

I Lemma 2.1. For a large enough integer b, there exist at least 2b/b prime numbers in the
interval [2b, 2b+1].

The binary entropy function is h(α) = −α log2 α− (1− α) log2 (1− α) for α ∈ (0, 1) and
h(0) = h(1) = 0. For all integers n ≥ 1 and α ∈ [0, 1] such that σn is an integer, we have
the following upper bound on the binomial coefficient [38]:

(
n
αn

)
≤ 2h(α)n. We also need a

standard bound on binary entropy function h(x) ≤ 2
√
x(1− x).

Throughout this paper all logarithms are base 2.

3 Faster Exponential Space Algorithm

In this section, we improve upon the meet-in-the-middle algorithm for Equal-Subset-Sum.

I Theorem 3.1. Equal-Subset-Sum can be solved in O∗(1.7088n) time with high probability.

Theorem 3.1 is proved by using two different algorithms for Equal-Subset-Sum. To bound
the trade-off between these algorithms we introduce the concept of a minimum solution.

I Definition 3.2 (Minimum Solution). For a set S of positive integers we say that a solution
A,B ⊆ S is a minimum solution if its size |A|+ |B| is smallest possible.

We now assume that the size of the minimum solution has even size for simplicity of
presentation. The algorithm and analysis for the case of odd-sized minimum solution is
similar, but somewhat more messy due to all the floors and ceilings one needs to take care of.

In Section 3.1 we prove that the meet-in-the-middle approach for Equal-Subset-Sum
already gives algorithm running in time O∗((3 − ε)n/2) if the minimum solution A,B is
unbalanced, i.e., ||A ∪ B| − 2n

3 | > ε′n for some ε′ > 0 depending on ε. Subsequently, in
Section 3.2 we propose an algorithm for balanced instances, i.e., when the size of a minimum
solution is close to 2/3. In particular, we show how to detect sets A,B with Σ(A) = Σ(B)
and |A| ≈ |B| ≈ n

3 , with an O∗(2 2
3n) time algorithm. By bounding trade-off between the

algorithms from Section 3.1 and Section 3.2 we prove Theorem 3.1 and bound the running
time numerically.

3.1 Equal-Subset-Sum for unbalanced solutions via meet-in-the-middle

I Theorem 3.3. If S is a set of n integers with a minimum solution of size `, then
Equal−Subset−Sum with input S can be solved in O∗(

(
n/2
`/2
)
2`/2) time with high probability.
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Algorithm 1 UnbalancedEqualSubsetSum(S, `).

1: Randomly split S into two disjoint S1, S2 ⊆ S, such that |S1| = |S2| = n/2
2: Enumerate C1 = {Σ(A1)− Σ(B1) | A1, B1 ⊆ S1, A1 ∩B1 = ∅, |A1|+ |B1| = `/2}
3: Enumerate C2 = {Σ(A2)− Σ(B2) | A2, B2 ⊆ S2, A2 ∩B2 = ∅, |A2|+ |B2| = `/2}
4: if ∃x1 ∈ C1, x2 ∈ C2 such that x1 + x2 = 0 then
5: Let A1, B1 ⊆ S1 be such that x1 = Σ(A1)− Σ(B1)
6: Let A2, B2 ⊆ S2 be such that x2 = Σ(A2)− Σ(B2)
7: return (A1 ∪A2, B1 ∪B2)
8: end if
9: return NO

Proof of Theorem 3.3. Algorithm 1 uses the meet-in-the-middle approach restricted to
solutions of size `. We will show that this algorithm solves Equal − Subset− Sum in the
claimed running time.

The algorithm starts by randomly partitioning the set S into two equally sized sets S1, S2.
Let A,B be a fixed minimum solution of size |A ∪ B| = `. We will later show that with
Ω(1/poly(n)) probability |(A ∪B) ∩ S1| = |(A ∪B) ∩ S2| = `/2. We assume this is indeed
the case and proceed with meet-in-the-middle. For S1 we will list all A1, B1 that could
possibly be equal to S1 ∩ A and S1 ∩ B, i.e. disjoint and with total size `/2. We compute
x = Σ(A1)− Σ(B1) and store all these in C1. We proceed analogously for S2.

We then look for x1 ∈ C1 and x2 ∈ C2 such that x1 + x2 = 0. If we find it then we
identify the sets A1 and B1 that correspond to x1 and sets A2 and B2 that correspond to x2
(the easiest way to do that is to store with each element of C1 and C2 the corresponding pair
of sets when generating them). Finally we return (A1 ∪A2, B1 ∪B2).

Probability of a good split. We now lower-bound the probability of S1 and S2 splitting
A ∪B in half. There are

(
n
n/2
)
possible equally sized partitions. Among these there are(

`
`/2
)(

n−`
(n−`)/2

)
partitions that split A∪B in half. The probability that a random partition

splits A and B in half is:(
`
`/2
)(

n−`
(n−`)/2

)(
n
n/2
) ≥ 2`2n−`

(n+ 1)22n = 1
(n+ 1)2

because 2n

n+1 ≤
(
n
n/2
)
≤ 2n.

Running time. To enumerate C1 and C2 we need O∗(
(
n/2
`/2
)
2`/2) time, because first we

guess set S1 ∩ (A ∪ B) of size `/2 and then split between A and B in at most 2`/2
ways. We then check the existence of x1 ∈ C1 and x2 ∈ C2 such that x1 + x2 = 0 in
O∗((|C1|+ |C2|) log (|C1|+ |C2|)) time by sorting.
We can amplify the probability of a good split to O(1) by repeating the whole algorithm
polynomially many times.

Correctness. With probability Ω(1/poly(n)) we divide the A ∪B equally between S1 and
S2. If that happens the set C1 contains x1 such that x1 = Σ(A ∩ S1) − Σ(B ∩ S1)
and the set C2 contains x2 that x2 = Σ(A ∩ S2) − Σ(B ∩ S2). Note that x1 + x2 =
Σ(A∩ S1) + Σ(A∩ S2)−Σ(B ∩ S1)−Σ(B ∩ S2) = Σ(A)−Σ(B) which is 0, since A,B is
a solution. Therefore Algorithm 1 finds a solution of size ` (but of course, it could be
different from A,B). J

ESA 2019



73:8 Equal-Subset-Sum Faster Than the Meet-in-the-Middle

3.2 Equal-Subset-Sum for balanced solutions
I Theorem 3.4. Given a set S of n integers with a minimum solution size ` ∈ ( 1

2n, (1− ε)n]
for some constant ε > 0, Equal-Subset-Sum can be solved in time O∗(2`) w.h.p.

We use Algorithm 2 to prove Theorem 3.4. In this algorithm, we first pick a random
prime p in the range [2n−`, 2n−`+1], as well as an integer t chosen uniformly at random from
[1, 2n−`]. We then compute the set C = {X ⊆ S | Σ(X) ≡p t}. In the analysis, we argue that
with Ω(1/poly(n)) probability C contains two different subsets X,Y of S with Σ(X) = Σ(Y ).
To identify such pair it is enough to sort the set |C| in time O(|C| log |C|), and then scan it.
We return X \ Y and Y \X to guarantee that the returned sets are disjoint.

Algorithm 2 BalancedEqualSubsetSum(a1, . . . , an, `).

1: Pick a random prime p in [2n−`, 2n−`+1]
2: Pick a random number t in [1, 2n−`]
3: Let C = {X ⊆ S | Σ(X) ≡p t} be the set of candidates . C contains two sets with equal

sum with probability Ω(1/poly(n)).
4: Enumerate and store all elements of C . In time O∗(|C|+ 2n/2)
5: Find X,Y ∈ C, such that Σ(X) = Σ(Y ) . In time O∗(|C|)
6: return (X \ Y, Y \X)

We now analyse the correctness of Algorithm 2. Later, we will give a bound on the
running time and conclude the proof Theorem 3.4. First, observe the following:

I Lemma 3.5. Let S be a set of n positive integers with minimum solution size of `. Let

Ψ = {Σ(X) | X ⊆ S and ∃Y ⊆ S such that X 6= Y and Σ(X) = Σ(Y )} . (1)

If ` > n
2 , then |Ψ| ≥ 2n−` (note that all elements in Ψ are different).

A BX

S

Figure 1 Scheme presents the set S of positive integers and two disjoint subsets A, B ⊆ S. The
point is that if Σ(A) = Σ(B) then for any subset X ⊆ S \ (A ∪ B) we have a guarantee that
Σ(A ∪X) = Σ(B ∪X).

Proof. Let A,B ⊆ S be a fixed minimum solution to S. We know that ` = |A ∪ B|,
Σ(A) = Σ(B) and A∩B = ∅. With this in hand we construct set Ψ of 2n−` pairs of different
X,Y ⊆ S with Σ(X) = Σ(Y ).

Consider set Z = S \ (A ∪ B). By the bound on the size of A and B we know that
|Z| = n− `. Now we construct our candidate pairs as follows: take any subset Z ′ ⊆ Z and
note that X ∪Z ′ and Y ∪Z ′ satisfy Σ(X ∪Z ′) = Σ(Y ∪Z ′). There are 2|Z| possible subsets
of set Z and the claim follows.
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Now we will prove that if ` > n
2 then all subsets of Z have a different sum. Assume

for a contradiction that there exist Z1, Z2 ⊆ Z, such that Σ(Z1) = Σ(Z2) and Z1 6= Z2.
Then Z1 \ Z2 and Z2 \ Z1 would give a solution smaller than A,B, because |Z| < `. This
contradicts the assumption about the minimality of A,B. It follows that if ` > 1

2n then all
constructed pairs have a different sum. J

Now, we consider the hashing function ht,p(x) = x+ t (mod p). We prove that if the set
Ψ (see Equation 1) is sufficiently large, then for a random choice of t, at least one element of
set Ψ is in the congruence class t.

I Lemma 3.6. Let S be the set of n positive integers bounded by 2O(n) with minimum solution
of size ` and ` > n

2 . For a random prime p ∈ [2n−`, 2n−`+1] and a random t ∈ [1, 2n−`] let
Ct,p = {X ⊆ S | Σ(X) ≡p t }. Then,

Pt,p
[
∃X,Y ∈ Ct,p

∣∣∣ Σ(X) = Σ(Y ), X 6= Y
]
≥ Ω(1/n2).

Proof. Let Ψ be the set defined in (1). So Ψ ⊆ {1, . . . , 2O(n)}, and |Ψ| ≥ 2n−`. It is sufficient
to bound the probability, that there exists an element a ∈ Ψ such a ≡p t. Let a1, a2 ∈ Ψ be
two distinct elements.

Pp [a1 ≡p a2] = Pp [p divides |a1 − a2|] ≤ O(n(n− `)/2n−`).

This is because |a1 − a2| can only have O(n) prime divisors, and we are sampling p from the
set of at least 2n−`/(n− `) primes by Lemma 2.1. Let k be the number of pairs a1, a2 ∈ Ψ
such that a1 ≡p a2. We have E [k] ≤ O(|Ψ|+ (|Ψ|n)2/2n−`). We know that |Ψ| ≥ 2n−`, so
|Ψ|2
2n−` ≥ |Ψ| which means that E [k] ≤ O((|Ψ|n)2/2n−`). Hence, by Markov’s inequality k is
at most O((|Ψ|n)2/2n−`) with at least constant probability. If this does indeed happen, then

|{a (mod p) | a ∈ Ψ}| ≥ |Ψ|
2

k
≥ Ω

(
|Ψ|2

(|Ψ|n)2/2n−`

)
≥ Ω(2n−`/n2),

and the probability that t chosen uniformly at random from [1, 2n−`] will be among one of
the elements of set {a (mod p) | a ∈ Ψ} is |{a (mod p) | a ∈ Ψ}|/2n−` ≥ Ω(1/n2). J

Proof of correctness of Algorithm 2. By Lemma 3.6, after choosing a random prime p and
random number t ∈ [1, 2n−`] the set C = {X ⊆ S | Σ(X) ≡p t} contains at least two subsets
X,Y ⊆ S, such that Σ(X) = Σ(Y ) with probability Ω(1/poly(n)). Algorithm 2 computes
the set C and finds X ′, Y ′ ⊆ S, such that Σ(X ′) = Σ(Y ′). Then it returns the solution
X ′ \ Y ′, Y ′ \X ′. J

Now we focus on bounding the running time of Algorithm 2. We start by bounding the
size of the candidate set C.

B Claim 3.7. Let S be the set of n non-negative integers bounded by 2O(n) with a
minimum solution of size ` such that ` ≤ (1 − ε)n for some constant ε > 0 (think of
ε = 1/100). For a random prime p ∈ [2n−`, 2n−`+1] and a random number t ∈ [1, 2n−`] let
Ct,p = {X ⊆ S | Σ(X) ≡p t }. Then

E [|Ct,p|] ≤ O∗(2`)

Proof. By the linearity of expectations:

E [|Ct,p|] =
∑
X⊆S

Pt,p [p divides Σ(X)− t]

ESA 2019
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For the remaining part of the proof we focus on showing Pt,p [p divides Σ(X)− t] ≤
O∗(2`−n) for a fixed X ⊆ S. It automatically finishes the proof, because there are 2n possible
subsets X.

We split the terms into two cases. If Σ(X) = t, then p divides Σ(X)− t with probability 1.
However, for a fixed X ⊆ S, the probability that Σ(X) = t is O( 1

2n−` ) because t is a random
number from [1, 2n−`] and p ≥ 2n−`.

On the other hand, if Σ(X) 6= t, then by the assumption, the set S consists of non-negative
integers bounded by 2τn for some constant τ > 0. In particular, |Σ(X) − t| ≤ 2τn. This
means that |Σ(X) − t| has at most τn

n−` ≤
τ
ε = O(1) prime factors of size at least 2n−`.

Any prime number p that divides Σ(X) − t must therefore be one of these numbers. By
Lemma 2.1 there are at least 2n−`/(n− `) prime numbers in range [2n−`, 2n−`+1]. Hence,
for a fixed X ⊆ S the probability that p divides Σ(X)− t is bounded by O(n2`−n). J

I Lemma 3.8. The set Ct,p can be enumerated in time O∗
(
max

{
|Ct,p|, 2n/2

})
.

The proof of the above lemma is based on [39] algorithm for Subset-Sum. For a full proof
of Lemma 3.8 see, e.g., Section 3.2 of [9]. Observe, that for our purposes the running time is
dominated by O∗(|Ct,p|).

Proof of the running time of Algorithm 2. To enumerate the set Ct,p we need O∗(|C| +
2n/2) time (see Lemma 3.8). To find two subsets X,Y ∈ C, such that Σ(X) = Σ(Y ) we need
O∗(|C| log |C|) time: we sort C and scan it.

The prime number p is at most 2n−`+1 and the expected size of C is O∗(2`). Because we
assumed that ` > n

2 the expected running time is O∗(2`) (we can terminate algorithm when
it exceeds O∗(2`) to Monte Carlo guarantees). The probability of success is Ω(1/poly(n)).
We can amplify it with polynomial overhead to any constant by repetition. J

This concludes the proof of Theorem 3.4.

3.3 Trade-off for Equal-Subset-Sum
In this section, we will proof the Theorem 3.1 by combining Theorem 3.4 and Theorem 3.3.

Proof of Theorem 3.1. Both Theorem 3.4 and Theorem 3.3 solve Equal-Subset-Sum. Hence,
we can focus on bounding the running time. By the trade-off between Theorem 3.4 (which
works for ` ∈ (n2 , (1− ε)n) and Theorem 3.3 the running time is:

O∗
(

max
`∈[1,n/2]∪[(1−ε)n,n]

{(
n/2
`/2

)
2`/2

}
+ max
`∈(n/2,(1−ε)n)

{
min

{(
n/2
`/2

)
2`/2, 2`

}})
For simplicity of analysis we bounded the sums by the maximum (note that O∗ notation

hides polynomial factors). When ` ≤ n/2, the running time is maximized for ` = n/2,
because (let ` = αn):

O∗
((

n/2
`/2

)
2`/2

)
= O∗

(
2 n

2 (h(α)+α)
)

and the entropy function h(x) is increasing in range [0, 0.5). For ` = n
2 the running time

is O∗(20.75n) ≤ O∗(1.682n). Similarly, we get a running time superior to the claimed one
when ` ∈ [(1− ε)n, n]. Note that h(x) ≤ 2

√
x(1− x), which means that the running time is

bounded by O∗(2 n
2 (h(1−ε)+(1−ε))) ≤ O∗(2 n

2 (1+2
√
ε)) which is smaller than our running time

for a sufficiently small constant ε.
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Finally, when ` ∈ [n/2, (1− ε)n] we upper bound the running time by the:

O∗
(

max
`∈[n/2,(1−ε)n)

{
min

{
2 n

2 (h(α)+α), 2αn
}})

.

The above expression is maximized when h(α) = α. By numeric calculations α < 0.77291,
which gives the final running time O∗(2αn) ≤ O∗(1.7088n). J

4 Polynomial Space Algorithm

The naive algorithm for Equal-Subset-Sum in polynomial space works in O∗(3n) time. We
are given a set S. We guess a set A ⊆ S and then guess a set B ⊆ S \A. Finally, we check if
Σ(A) = Σ(B). The running time is:

O∗
((
|S|
|A|

)(
|S| − |A|
|B|

))
≤ O∗(3n).

Known techniques for Subset-Sum allow us to get an algorithm running in O∗(21.5n) and
polynomial space.

I Theorem 4.1. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum
in polynomial space and O∗(21.5n) ≤ O∗(2.8285n) time. The algorithm assumes random
read-only access to exponentially many random bits.

A crucial ingredient of Theorem 4.1 is a nontrivial result for the Element Distinctness
problem [6, 8]. In this problem, one is given read-only access to the elements of a list x ∈ [m]n
and the task is to find two different elements of the same value. The problem can be naively
solved in O(n2) time and O(1) space by brute force. Also by sorting, we can solve Element
Distinctness in Õ(n) time and Õ(n) space. [8] showed that the problem can be solved in
Õ(n3/2) randomized time and Õ(1) space. The algorithm assumes access to a random hash
function f : [m]→ [n].

Proof of Theorem 4.1. We can guarantee random access to the list L = 2S of all subsets
of the set S = {a1, . . . , an} on the fly. Namely, for a pointer x ∈ {0, 1}n we can return an
element of the list L that corresponds to x in O∗(1) time by choosing elements ai for which
xi = 1. More precisely:

L(x1, . . . , xn) = {ai | i ∈ [n], xi = 1}.

Now to decide Equal-Subset-Sum on set S we execute the Element Distinctness algorithm
on the list L of sums of subsets. The list has size 2n, hence the algorithm runs in O∗(21.5n)
time. Element Distinctness uses only polylogarithmic space in the size of the input, hence
our algorithm uses polynomial space. J

Quite unexpectedly we can still improve upon this algorithm.

4.1 Improved Polynomial Space Algorithm
In this section, we show an improved algorithm.

I Theorem 4.2. There exists a Monte Carlo algorithm which solves Equal-Subset-Sum in
polynomial space and time O∗(2.6817n). The algorithm assumes random read-only access to
exponentially many random bits.
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Similarly to the exponential space algorithm for Equal-Subset-Sum, we will combine
two algorithms. We start with a generalization of Theorem 4.1 parametrized by the size of
the solution.

I Lemma 4.3. Let S be a set of n positive integers, A,B ⊆ S be the solution to Equal-
Subset-Sum (denote a = |A| and b = |B|). There exists a Monte Carlo algorithm which solves
Equal-Subset-Sum in polynomial space and time

O∗
(((

n

a

)
+
(
n

b

))1.5
)
.

The algorithm assumes random read-only access to exponentially many random bits.

Proof. The proof is just a repetition of the proof of Theorem 4.1 for a fixed sizes of solutions.
Our list L will consists of all subsets

(
S
a

)
and

(
S
b

)
. Then we run Element Distinctness

algorithm, find any sets A,B ∈ L such that Σ(A) = Σ(B) and return A \B,B \A to make
them disjoint.

The running time follows because Element Distinctness runs in time Õ(n1.5) and
polylog(n) space. J

Note that the runtime of Lemma 4.3 is maximized when |A| = |B| = n/2. The next
algorithm gives improvement in that case.

I Lemma 4.4. Let S be a set of n positive integers, A,B ⊆ S be the solution to Equal-
Subset-Sum (denote a = |A| and b = |B|). There exists a Monte Carlo algorithm which solves
Equal-Subset-Sum in polynomial space and time

O∗
(

min
{(

n

a

)
20.75(n−a),

(
n

b

)
20.75(n−b)

})
.

The algorithm assumes random read-only access to exponentially many random bits.

Proof of Lemma 4.4. Without loss of generality, we focus on the case a ≤ b. First we guess
a solution set A ⊆ S. We answer YES if we find set B ⊆ S \A such that Σ(A) = Σ(B) or find
two disjoint subsets with equal sum in S \A. We show that we can do it in O∗(20.75(|S\A|))
time and polynomial space which finishes the proof.

First, we arbitrarily partition set S \ A into two equally sized sets S1 and S2. Then
we create a list L1 = [Σ(X) | X ⊆ S1] and list L2 = [Σ(A) − Σ(X) | X ⊆ S2]. We do
not construct them explicitly because it would take exponential space. Instead we provide
a read-only access to them (with the counter technique). We run Element Distinctness
on concatenation of L1 and L2. If element distinctness found x ∈ L1 and y ∈ L2 such
that x = y, then we backtrack and look for X ⊆ S1, such that Σ(X) = x and Y ⊆ S2,
such that Σ(Y ) = Σ(A) − y and return (A,X ∪ Y ) which is a good solution, because
Σ(Y ) + Σ(X) = Σ(A).

In the remaining case, i.e. when Element Distinctness finds a duplicate only in one of the
lists then, we get a feasible solution as well. Namely, assume that Element Distinctness finds
x, y ∈ L1 such that x = y (the case when x, y ∈ L2 is analogous). Then we backtrack and
look for two corresponding sets X,Y ⊆ L1 such that X 6= Y and Σ(X) = Σ(Y ) = x. Finally
we return (X \ Y, Y \X).

For the running time, note that the size of the list |L1| = |L2| = 20.5|S\A|. Hence Element
Distinctness runs in time O∗((|L1|+ |L2|)1.5) = O∗(20.75(n−a)). The backtracking takes time
O∗(|L1| + |L2|) and polynomial space because we scan through all subsets of S1 and all
subsets of S2 and look for a set with sum equal to the known value. J
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Proof of Theorem 4.2. By trade-off between Lemma 4.4 and Lemma 4.3 we get the following
running time:

O∗
(

max
1≤a,b≤n

{
min

{((
n

a

)
+
(
n

b

))1.5
,

(
n

a

)
20.75(n−a),

(
n

b

)
20.75(n−b)

}})

By symmetry this expression is maximized when a = b. Now we will write the exponents
by using entropy function (let a = αn):

O∗
(

max
α∈[0,1]

{
min

{
21.5h(α)n, 2(h(α)+0.75(1−α))n

}})
The expression is maximized when 1.5h(α) = h(α) + 0.75(1− α), By numerical computa-

tions α < 0.36751, which means that the running time is O∗(21.42312n) ≤ O∗(2.6817n). J

5 Conclusion and Open Problems

In this paper, we break two natural barriers for Equal-Subset-Sum: we propose an improve-
ment upon the meet-in-the-middle algorithm and upon the polynomial space algorithm. Our
techniques have additional applications in the problem of finding collision of hash function in
cryptography and the number balancing problem (see [35, Appendix E]).

We believe that our algorithms can potentially be improved with more involved tech-
niques. However, getting close to the running time of Subset-Sum seems ambitious. In
[35, Appendix B] we show that a faster algorithm than O∗(1.1893n) for Equal-Subset-Sum
would yield a faster than O∗(2n/2) algorithm for Subset-Sum. It is quite far from our bound
O∗(1.7088n). The main open problem is therefore to close the gap between upper and lower
bounds for Equal-Subset-Sum.
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Abstract
Consider collections A and B of red and blue sets, respectively. Bichromatic Closest Pair is the
problem of finding a pair from A× B that has similarity higher than a given threshold according
to some similarity measure. Our focus here is the classic Jaccard similarity |a ∩ b|/|a ∪ b| for
(a,b) ∈ A× B.

We consider the approximate version of the problem where we are given thresholds j1 > j2 and
wish to return a pair from A× B that has Jaccard similarity higher than j2 if there exists a pair in
A× B with Jaccard similarity at least j1. The classic locality sensitive hashing (LSH) algorithm
of Indyk and Motwani (STOC ’98), instantiated with the MinHash LSH function of Broder et al.,
solves this problem in Õ(n2−δ) time if j1 ≥ j1−δ

2 . In particular, for δ = Ω(1), the approximation
ratio j1/j2 = 1/jδ2 increases polynomially in 1/j2.

In this paper we give a corresponding hardness result. Assuming the Orthogonal Vectors
Conjecture (OVC), we show that there cannot be a general solution that solves the Bichromatic
Closest Pair problem in O(n2−Ω(1)) time for j1/j2 = 1/jo(1)

2 . Specifically, assuming OVC, we prove
that for any δ > 0 there exists an ε > 0 such that Bichromatic Closest Pair with Jaccard similarity
requires time Ω(n2−δ) for any choice of thresholds j2 < j1 < 1− δ, that satisfy j1 ≤ j1−ε

2 .
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important service that Twitter provides is helping users discover other users that they might

© Rasmus Pagh, Nina M. Stausholm, and Mikkel Thorup;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 74; pp. 74:1–74:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1516-9306 
mailto:pagh@itu.dk
https://orcid.org/0000-0002-4322-7163
mailto:nimn@itu.dk
https://orcid.org/0000-0001-5237-1709
mailto:mikkel2thorup@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2019.74
https://arxiv.org/abs/1907.02251
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


74:2 Hardness of Bichromatic Closest Pair with Jaccard Similarity

like to follow, by making suggestions. This service is called the You might also want to
follow-service and is better known as the WTF (Who To Follow) recommender system [6].
In order to suggest connections that the user might like, they should be similar to the user’s
existing connections. As an example, if a user is already connected to Cristiano Ronaldo,
Twitter might suggest Lionel Messi as a new connection, since the connection to Ronaldo
hints that the user likes famous soccer players. Hence, we need a way to decide if a connection
is similar to an existing connection. We might for instance suggest a new connection if the
tweets are similar to the tweets of an existing connection or if the connection has a lot of the
same followers as an existing connection.

The main challenge is to find similar connections when the number of user accounts
increases drastically and the task is particularly difficult when the similarity does not need
to be significant, i.e., when we look for connections that have only little in common with
existing ones, while they may still be of interest to the particular user [5]. This leads us to
the notion of similarity search, which concerns the general problem of searching for similar
objects in a collections of objects. Often we consider these objects as sets representing some
concept or entity. An object could for example be a document that is represented by a set of
words. Hence, we talk about set similarity search.

There are several versions of the problem addressing different situations. In this paper
we consider a batched version of set similarity search, namely the Bichromatic Closest Pair
which can be informally described as follows:

Suppose we are given collections A and B, each of n sets from a universe of size O(logn).
We refer to the sets in A as red and the sets in B as blue. Bichromatic Closest Pair is the
problem of finding the pair consisting of a red and a blue set that is closest with respect
to some distance or similarity measure. We will concern ourselves with Jaccard similarity,
which is defined for a pair of sets (a,b) ∈ A× B as

J(a,b) = |a ∩ b|
|a ∪ b| = |a ∩ b|

|a|+ |b| − |a ∩ b| . (1)

In particular, we consider the following decision version of Bichromatic Closest Pair with
Jaccard similarity: decide whether there exists a pair (a,b) ∈ A× B such that J(a,b) ≥ j1
or if all pairs (a,b) ∈ A× B, has J(a,b) < j2 for given thresholds j1 and j2.

It is well-known that we can solve Bichromatic Closest Pair with Jaccard similarity for
thresholds satisfying j1 ≥ j1−δ

2 in time O(n2−δ) (see Section 1.1). In particular, for δ = Ω(1),
the approximation ratio j1/j2 = 1/jδ2 increases polynomially in 1/j2. In this paper, we will
present a corresponding hardness result. The hardness is conditioned on one of the most
well-known and widely believed hypotheses, namely the Orthogonal Vectors Conjecture [11].

I Conjecture 1 (Orthogonal Vectors Conjecture (OVC)). For every δ > 0 there exists c = c(δ)
such that given two collections A,B ⊂ {0, 1}m of cardinality n, where m = c logn, deciding
if there is a pair (a,b) ∈ A× B such that a · b = 0 requires time Ω(n2−δ).

Assuming OVC, we show that there cannot be a general solution that solves the Bichro-
matic Closest Pair problem with Jaccard similarity in O(n2−Ω(1)) time for j1/j2 = 1/jo(1)

2 .
More specifically, we show

I Theorem 2. Assuming the Orthogonal Vectors Conjecture (OVC), the following holds: for
any δ > 0, there exists an ε > 0 such that for any given j2 < j1 < 1− δ satisfying j1 ≤ j1−ε

2 ,
solving Bichromatic Closest Pair with Jaccard similarity for n red and n blue sets for sets
from a universe of size ln(n)/jO(log 1/j1)

2 for thresholds j1 and j2 requires time Ω(n2−δ).

The dependence of ε on δ is unspecified because the function c(δ) in OVC is not specified,
see discussion in Appendix B in the full version on ArXiv [8, App. B].
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1.1 Techniques and Related Work
Similarity search can be performed in several ways – a popular technique is Locality Sensitive
Hashing (LSH) [7] which attempts to collect similar items in buckets in order to reduce the
number of sets needed to check similarity against. We can for example use Broder’s MinHash
[1] with locality sensitive hashing to solve Bichromatic Closest Pair with Jaccard similarity in
time Õ(n2−ε) when j1 ≥ j1−ε

2 for any ε. This is done by ensuring that the collision probability
for pairs with similarity j2 is 1/n and the collision probability for pairs with similarity j1
is 1/n1−ε. Hashing n1−ε times means that we find a pair with similarity j1 if one exists.
The ChosenPath method presented in [4] also uses the LSH framework to solve Bichromatic
Closest Pair with Braun-Blanquet similarity in time Õ(n2−ε) for thresholds j1 ≥ j1−ε

2 .
The proof of Theorem 2 will be based on a result by Rubinstein [9]: Assuming the

Orthogonal Vectors Conjecture, a (1 + ε)-approximation to Bichromatic Closest Pair with
Hamming, Edit or Euclidean distance requires time Ω(n2−δ). The required approximation
factor 1 + ε depends on δ, and tends to 1 as δ tends to zero. We translate this into an
equivalent conditional lower bound for Jaccard similarity for certain constants j1 and j2.

In order to handle smaller subconstant values of j1 and j2 we use a technique that we
call squaring, which allows us to increase the gap in similarities between pairs with high
Jaccard similarity and pairs with low Jaccard similarity by computing the cartesian product
of a binary vector with itself. A similar technique is used in [10] by Valiant. His technique is
called tensoring and is used to amplify the gap between small and large inner products of
vectors. We also see a similar technique in the LSH framework with MinHash, where we use
concatenation of hash values (which are sampled set elements) to amplify the difference in
collision probability, and hence in the Jaccard similarity.

Combining two simple reductions with the above squaring we show that for any δ, we can
always find ε such that Bichromatic Closest Pair with Jaccard similarity cannot be solved in
time O(n2−δ) for any pair j1, j2 < 1− δ when j1 ≤ j1−ε

2 . Contrast this with the above LSH
upper bound of Õ

(
n2−δ) for j1 ≥ j1−δ

2 . We also know that there are parts of the parameter
space where j1 = j1−δ

2 that can be solved in Õ
(
n2−δ−Ω(1)) time, see the discussion in [4].

While LSH with MinHash is not the fastest possible algorithm in terms of the exponent
achieved, it has been unclear how far from optimal it might be.

Other related work

Very recently, Chen and Williams [3] showed that assuming the OVC we cannot additively
approximate our Bichromatic Closest Pair problem with Jaccard similarity. It might be
possible to use Chen and Williams as a base for showing our main theorem, but this would
require reductions quite different from the ones presented in this paper.

An earlier of result of Chen [2] shows that it is not possible (under OVC) to compute a
(d/ logn)o(1)-approximation to Maximum Inner Product (Max-IP) with two sets of n vectors
from {0, 1}d in time O(n2−Ω(1)).

2 Preliminaries

2.1 Notation
We will occasionally consider a set, x, from a finite universe U = {u1, ..., u|U |} as a vector
v of dimension |U | such that vi = [ui ∈ x], in Iverson notation. We call this vector
the characteristic vector for x. Hence, we refer to the set of indexes and the universe
interchangeably. We denote the Hamming weight of a binary vector v by |v|. In the following,
we will not only index vectors with integers, but also with vectors of integers. Hence, we will
consider vectors of dimension d2 with entries vij , for i = (i1, ..., id) and j = (j1, ..., jd).

ESA 2019
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2.2 Bichromatic Closest Pair
Recall Jaccard similarity as is defined in (1). We define Bichromatic Closest Pair with
Jaccard similarity for thresholds t1 and t2 as follows: Let U be a universe of size O(logn).
Given collections A and B, each of n sets from U , and thresholds t2 < t1 < 1, we will consider
the problem of finding a pair of sets (a,b) ∈ A× B with J(a,b) ≥ t2 if there exists a pair
(a∗,b∗) ∈ A × B with J(a∗,b∗) ≥ t1. If all pairs have J(a,b) < t2, we must not return
any pair of sets.

2.3 Useful instances of Bichromatic Closest Pair
The following lemma corresponds to Theorem 4.1 in [9] and will form the basis of our results.
It includes the important properties of the instances constructed in the proof the theorem,
which we will use actively to prove our own Theorem 2.

I Lemma 3. Assume OVC. Given δ > 0, there exist ε > 0 and values h1, h2 where
h2 = (1 + ε)h1 such that Bichromatic Closest Pair with Hamming distance for thresholds h1
and h2 requires time Ω(n2−δ) for instances with n red and n blue sets from a universe of size
O(logn). There are instances that require this time with the following properties, where we
let T = O

( 1
ε

)
and m = O(logn):

All red sets have size Tm and all blue sets have size m.
The thresholds h1 and h2 are m(T − 1) and mT , respectively.
All sets in the instance come from a universe of size 2Tm.

In particular, the lemma states that we cannot compute a (1 + ε)-approximation to
Bichromatic Closest Pair with Hamming distance in truly subquadratic time. We will extend
this result in a few steps, using the properties of the hard instances, to achieve Theorem 2.

2.4 Hardness of Bichromatic Closest Pair with Jaccard similarity
In order to prove Theorem 2, we need the following lemma, which extends Lemma 3 in the
natural way to Jaccard similarity.

I Lemma 4. Assuming OVC, we have the following: For any δ > 0 there exist j1, j2 with
j1 = 2 · j2 such that Bichromatic Closest Pair with Jaccard similarity with thresholds j1 and
j2 requires time Ω(n2−δ).

Proof. We use instances as described in Lemma 3. First, note that

J(a,b) = |a ∩ b|
|a ∪ b| =

|a|+|b|−dH(a,b)
2

|a|+ |b| − |a|+|b|−dH(a,b)
2

= |a|+ |b| − dH(a,b)
|a|+ |b|+ dH(a,b)

which implies that letting

j1 = Tm+m−m(T − 1)
Tm+m+m(T − 1) = 1

T
and j2 = Tm+m− Tm

Tm+m+ Tm
= 1

2T + 1 ,

we cannot solve Bichromatic Closest Pair with Jaccard similarity in time O(n2−δ). Since
T = O

( 1
ε

)
, as mentioned in Lemma 3, we get a lower bound for the approximation factor:

1
T
1

2T+1
= 2T + 1

T
= 2 + 1

T
= 2 + Ω(ε).

In particular, we achieve hardness of a 2-approximation. J
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3 Overview of reductions used

We prove Theorem 2 by combining several reductions into one. So let (A,B) be any instance
of Bichromatic Closest Pair with Jaccard similarity as described in Lemma 3. We give a
brief introduction to each of these reductions – note that all reductions are self-reductions.
We give the details of the proof and the use of each reduction in Section 5. Further details
can be found in Appendix B in the full version on ArXiv [8, App. B].

Adding common elements to sets: Adding common elements to all sets in collections
A and B increases the Jaccard similarity between any pair of red and blue sets.
Adding different elements to sets: Adding elements to all sets in A decreases the
Jaccard similarity between any pair of red and blue sets.
Squaring: Consider all sets by their characteristic vector. We define squaring as follows:
given vector a = (a1, ..., ad) the squared vector has entries

a′ij = ai · aj for i, j ∈ {1, ..., d}.

The resulting vector a′, which is the characteristic vector for a × a, has dimension d2 as
described in Section 2.1. Vector a′ can equivalently be considered as a set from a universe
of size d2. We will use this reduction iteratively to reduce the Jaccard similarity between
any pair of vectors in the instance of Bichromatic Closest Pair.
Sampling: We will use sampling to reduce the size of the universe after each step
of squaring. Hence, we consider squaring and sampling as a single reduction which
first squares the vectors and then samples from the resulting vectors. We will use the
squaring-and-sampling reduction iteratively.

4 The squaring-and-sampling reduction – details

In the proof of Theorem 2 we will take any instance of Bichromatic Closest Pair with Jaccard
similarity with the properties described in Lemma 3 and use the squaring reduction described
in Section 3 to decrease the Jaccard similarity of every pair of sets in the instance. We will
argue that a solution for the new instance also provides a solution for the original instance.
When squaring all sets, the Jaccard similarity between any pair of sets will decrease, so we
need to capture this change in the thresholds, such that a solution for the new instance
implies a solution for the initial instance. When squaring the sets in A and B, the size of the
sets will be squared and it is easy to see that so will the size of the intersection. Hence, the
Jaccard similarity of a pair (a,b) after squaring i times, (ai,bi) is

J (ai,bi) = |a ∩ b|2i

|a|2i + |b|2i − |a ∩ b|2i . (2)

In order to keep down the size of the universe, we need to sample after each step of squaring.
This might incur a small error in the Jaccard similarity. The next few sections will bound
this error. From this point, we will denote the squaring-and-sampling reduction by f . Hence,
applying the reduction f to a set, v, i times will yield a set f(v, i).

4.1 Subsampling
We bound the error incurred in each of |a ∩ b|, |a| and |b| and combine these with a union
bound to get a bound on the error in the Jaccard similarity. We shall see that when sampling
sufficiently many elements from the universe the sets are taken from, we get that with
high probability a solution for the constructed instance will provide a valid solution for the
original instance.
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The following lemmas will help us show that sampling after squaring will not distort the
similarity of the resulting vectors too much.

I Lemma 5. Let 0 < m′ < m < 1 and let p be a set from a universe of size s2 for an integer
s. Assume that (m′ · s)2 ≤ |p| ≤ (m · s)2. Sample s′ elements from the universe uniformly
at random, z, thus generating sample set p ∩ z. We have

(1− γ) ·m′2 · s′ ≤ |p ∩ z| ≤ (1 + γ) ·m2 · s′

with probability at least 1− 2n−10 when sampling s′ ≥ 30 ln(n)
γ2m′2 elements.

Proof. The result is an immediate consequence of the Chernoff bound: when we sample
s′ ≥ 20 ln(n)

γ2m′2 elements, we have with probability at least 1− n−10 that

(1− γ) (m′ · s)2 · s
′

s2 ≤ |p ∩ z|.

A similar result gives the upper bound on |p ∩ z| for s′ ≥ 30 ln(n)
γ2m2 . As m′ ≤ m, we maximize

s′ by 30 ln(n)
γ2m′2 and thus ensure both bounds with probability at least 1 − 2n−10 using a

union bound. J

We are generally going to use γ as the same fixed parameter (to be determined later)
every time we invoke the sampling of Lemma 5.

Lemma 5 will be used to show that sampling after squaring will not distort the Jaccard
similarity of a pair of vectors too much, and hence we get the benefits of squaring without
the exploding vector dimensions. We start by bounding the resulting sizes for each of |a|, |b|
and |a ∩ b| for any choice of a,b ∈ A× B from squaring and sampling i times.

I Lemma 6. Let v be a set from a universe of size d or the intersection of such two sets.
Let f(v, i) denote the resulting set after running i iterations of the squaring-and-sampling
reduction on set v for i ≥ 1. We have

(1− γ)2i |v|2i

d2i si ≤ |f(v, i)| ≤ (1 + γ)2i |v|2i

d2i si

with probability at least 1− 2in−10 where si ≥ 30 ln(n)d2i

γ2(1−γ)2i−2|v|2i .

Proof. Let v be as described. We show the lemma by induction on i. Clearly, when
squaring the vector v once, i.e., for i = 1, the resulting vector has Hamming weight |v|2 and
dimension d2. Hence, by Lemma 5 we have

(1− γ) |v|
2

d2 · s1 ≤ |f(v,1)| ≤ (1 + γ) |v|
2

d2 · s1

with probability at least 1−2n−10 for our choice of s1. Assume now that after i−1 iterations
the following bounds hold:

(1− γ)2i−1−1 |v|2
i−1

d2i−1 si−1 ≤ |f(v, i− 1)| ≤ (1 + γ)2i−1−1 |v|2
i−1

d2i−1 si−1. (3)

Then Lemma 5 gives that after i iterations of the squaring-and-sampling reduction, we have

(1− γ)2i−1 |v|2
i

s2
i−1

d2i · si
s2
i−1
≤ |f(v, i)| ≤ (1 + γ)2i−1 |v|2

i

s2
i−1

d2i · si
s2
i−1
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with probability at least 1− 2n−10 for si ≥ 30 ln(n)d2i

γ2(1−γ)2i−2|v|2i . This particularly means that

(1− γ)2i |v|2i

d2i · si ≤ |f(v, i)| ≤ (1 + γ)2i |v|2i

d2i · si.

Now, to ensure these bounds, we assumed that |f(v, i− 1)| satisfies certain bounds (see (3)).
So in order to ensure that f(v, i) satisfies the given bounds, we need f(v, j) to satisfy similar
bounds for every 1 ≤ j ≤ i. By a union bound, we see that |f(v, j)| satisfies both upper
and lower bounds for all 1 ≤ j ≤ i (simultaneously) with probability at least 1 − 2in−10

when sampling sj ≥ 30 ln(n)d2j

γ2(1−γ)2j−2|v|2j at step j. Hence, |f(v, i)| satisfies the given bound with
probability at least 1− 2in−10. J

The next section will use Lemma 6 to bound the Jaccard similarity after i iterations of
the squaring/sampling reduction.

4.2 Combining the bounds
For a given pair of vectors a and b, Lemma 6 gives upper and lower bounds on the Jaccard
similarity J = J

(
f(a, i), f(b, i)

)
. We claim that with probability at least 1− 6in−10:

J ≥
(1− γ)2i−1 |a∩b|2

i

d2i si

(1 + γ)2i−1 |a|2
i

d2i si + (1 + γ)2i−1 |b|2
i

d2i si − (1− γ)2i−1 |a∩b|2i

d2i si

≥ (1− γ)2i |a ∩ b|2i

(1 + γ)2i
(
|a|2i + |b|2i

)
− (1− γ)2i |a ∩ b|2i

J ≤
(1 + γ)2i−1 |a∩b|2

i

d2i si

(1− γ)2i−1 |a|2
i

d2i si + (1− γ)2i−1 |b|2
i

d2i si − (1 + γ)2i−1 |a∩b|2i

d2i si

≤ (1 + γ)2i |a ∩ b|2i

(1− γ)2i
(
|a|2i + |b|2i

)
− (1 + γ)2i |a ∩ b|2i

.

This is easily seen by taking a union bound over the probabilities that each of |a|, |b| and
|a ∩ b| violate either the upper or the lower bound. Next, we claim that these bounds imply:

J ≥ (1− γ)2i |a ∩ b|2i

(1 + 4γ)2i
(
|a|2i + |b|2i − |a ∩ b|2i

) ≥ (1− γ)2i |a ∩ b|2i

(1 + γ)2i
(
|a|2i + |b|2i

)
− (1− γ)2i |a ∩ b|2i

J ≤ (1 + γ)2i |a ∩ b|2i

(1− γ)2i
(
|a|2i + |b|2i

)
− (1 + γ)2i |a ∩ b|2i

≤ (1 + γ)2i |a ∩ b|2i

(1− 4γ)2i
(
|a|2i + |b|2i − |a ∩ b|2i

) .
The argument can be found in Appendix A in the full version on ArXiv [8, App. A]. In

particular, we have argued for the following lemma. We ignore the sample size for now and
discuss it in Section 4.3.

I Lemma 7. Let A and B be an instance of Bichromatic Closest Pair with Jaccard similarity.
After applying the Squaring and Sampling mapping, f , i times as previously described to
each set in A and B, we have for all n2 pairs (a,b) ∈ A× B in the instance that:
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(
1−γ
1+4γ

)2i

|a ∩ b|2i

|a|2i + |b|2i − |a ∩ b|2i ≤ J
(

f(a, i), f(b, i)
)
≤

(
1+γ
1−4γ

)2i

|a ∩ b|2i

|a|2i + |b|2i − |a ∩ b|2i

with probability at least 1− 6in−8.

Hence, with high probability none of the Jaccard similarities diverge too much from (2) due
to sampling. This was exactly what we wanted, as this allows us to reduce the dimension
by sampling.

4.3 Summing up
Recall that in our setting we reduce from instances where the set sizes of all red and blue
sets are fixed. We now describe thresholds such that solving the instances constructed by
the reduction f cannot be done in truly subquadratic time.

I Lemma 8. Let A and B be two collections of n sets from a universe of dimension d, where
all sets in A have size y and all sets in B have size z. Assume that (A,B) is taken from a
family of instances of Bichromatic Closest Pair with Jaccard similarity, which require time
Ω(n2−δ) for thresholds t1 = x1

y+z−x1
and t2 = x2

y+z−x2
. The reduction which applies f i times

to each set in s ∈ A ∪ B for i ≥ 1 constructs an instance of Bichromatic Closest Pair with
Jaccard similarity, which requires time Ω(n2−δ) time for thresholds

t′1 =
(

1− γ
1 + 4γ

)2i

x2i

1
y2i + z2i − x2i

1
, and t′2 =

(
1 + γ

1− 4γ

)2i

x2i

2
y2i + z2i − x2i

2
.

whose solution provides a valid solution to the original instance with high probability when
sampling sj > 30 ln(n)d2j

γ2(1−γ)2j−2x2j

2
at each step 1 ≤ j ≤ i.

Proof. Lemma 7 ensures that with high probability a solution to the constructed instance
provides a valid solution to the original instance, since no pair of sets is likely to have Jaccard
similarities that deviate beyond the chosen thresholds.

In Lemma 7 we skipped the discussion of the sample size at each iteration – we will argue
for it now. From Lemma 6, it is easily seen that we maximize the needed sample size for all
of |a|, |b| or |a ∩ b| for any choice of a and b in iteration i by

si >
30 ln(n)d2i

γ2(1− γ)2i−2 min(a,b)∈A×B {|a ∩ b|}2
i .

Hence, sampling si elements from the universe will ensure that each of the upper and lower
bounds for either |a|, |b| or |a ∩ b| will fail with probability at most n−10 in that iteration.
As min(a,b)∈A×B {|a ∩ b|} is unknown, we instead use x2, which was the intersection size for
a pair with Jaccard similarity j2. Such a pair need not exist, but as the set sizes are fixed,
x2 can be easily computed.

We have left to argue that the pairs with intersection smaller than x2 also satisfy the
bounds in Lemma 7 with high probability. The main observation is that they only need to
satisfy the upper bound, as the resulting Jaccard similarities need only to stay below the
lower threshold, t′2 – the Jaccard similarities can become arbitrarily small without affecting
the result.

By bounding the size of each term as we did in Lemma 6 using the chosen si, we see that
the error probabilities are still at most n−10 for each of |a|, |b| and |a ∩ b| for any choice of
(a,b) ∈ A× B. J
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5 Main Result

We are now ready to prove Theorem 2. We first give some intuition behind the proof and
state a few lemmas to ease the proof. For convenience we restate Theorem 2.

I Theorem 9. Assuming the Orthogonal Vectors Conjecture (OVC), the following holds: for
any δ > 0, there exists an ε > 0 such that for any given j2 < j1 < 1− δ satisfying j1 ≤ j1−ε

2 ,
solving Bichromatic Closest Pair with Jaccard similarity for n red and n blue sets for sets
from a universe of size ln(n)/jO(log(1/j1))

2 for thresholds j1 and j2 requires time Ω(n2−δ).

5.1 Intuition
The proof of Theorem 2 reduces instances of Bichromatic Closest Pair as described in
Section 2.3 by composing three reductions, that together construct instances of Bichromatic
Closest Pair with Jaccard similarity, which requires time Ω(n2−δ) for the given thresholds j1
and j2 and some ε. A short description of each of the reductions can be found in Section 3.
Below, we give three lemmas showing that these reductions preserve hardness.

The first lemma states that adding common elements to all sets in the instance will
preserve hardness. This reduction increases the Jaccard similarity of all pairs of red and
blue sets, and by choice of the number of added elements, we ensure that pairs of sets that
initially had Jaccard similarity higher than the lower threshold will get Jaccard similarity
greater than 1− δ. Hence, we get hardness for thresholds that are greater than 1− δ. From
this point we can decrease the thresholds using two other reductions to achieve the given
thresholds, that by assumption are less than 1− δ.

The second lemma states that the squaring-and-sampling reduction, discussed in detail in
Section 4, preserves hardness. The squaring-and-sampling reduction allows us to decrease the
thresholds, so they come close to j1 and j2. Finally, the third lemma states that the reduction,
which adds elements to only red sets will still preserve hardness. This reduction ensures
that we can decrease the Jaccard similarity further. We will use it in such a way, that we
effectively multiply the upper bound by a well-chosen α that ensures that the upper threshold
is j1 after this reduction. The proof ends by picking an ε, such that j2 is strictly greater
than the current lower threshold, and thus preserves hardness for the thresholds j1 and j2.

5.2 Supporting Lemmas
In the following, assume that A and B are collections of n red and n blue sets from a
universe U , respectively.

I Lemma 9. Let 0 < δ ≤ 1 be given and let (A,B) be any instance of Bichromatic Closest Pair
with Jaccard similarity as described in Lemma 3. Define ` := maxq∈A∪B{|q|} · (1/δ − 1) and
x := {x1, ..., x`} such that x∩(A∪B) = ∅, and further define the mapping g : A∪B → A′∪B′
by g(v) = v ∪ x where A′ = A∪ x and equivalently B′ = B ∪ x. The reduction that applies g
to every element of A and B generates an instance (A′,B′) of Bichromatic Closest Pair with
Jaccard similarity that requires time Ω(n2−δ) for some thresholds t′1, t′2 ≥ 1− δ.

Proof. First, note that if v ∈ A, then g(v) ∈ A′ and similarly if v ∈ B then g(v) ∈ B′. We
recall that instances of Bichromatic Closest Pair as described in Lemma 3 are constructed
such that all red sets have the same size and all blue sets have the same size. We also have
maxq∈A∪B{|q|} = |a|, for any a ∈ A, since the sets in A were larger than the sets in B. It is
easy to see that hardness is preserved under the reduction.
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We finally argue that the resulting thresholds are larger than 1− δ: Let (a,b) be any
pair from A× B which has Jaccard similarity at least t2 and let a′ = g(a) and b′ = g(b).
We argue that any such pair satisfies |a ∩ b| ≥ |b|2 : Note that with these particular instances
of Bichromatic Closest Pair and from the proof of Lemma 4, we have

J(a,b) = |a ∩ b|
|a ∪ b| = |a ∩ b|

Tm+m− |a ∩ b| ≥ t2 = t1
2 = 1/T

2 .

Since |b| = m ≥ |a ∩ b|, this implies

|a ∩ b| ≥ m

2 + m

2T −
|a ∩ b|

2T ⇒ |a ∩ b| ≥ m/2 = |b|/2.

We will consider the Jaccard similarity of a′ and b′:

J(a′,b′) = |a ∩ b|+ |a|(1/δ − 1)
(|a|+ |a|(1/δ − 1)) + (|b|+ |a|(1/δ − 1))− (|a ∩ b|+ |a|(1/δ − 1))

= |a ∩ b|+ |a|(1/δ − 1)
|a|/δ + |b| − |a ∩ b| .

By assumption |a ∩ b| ≥ |b|2 , so:

|a ∩ b|+ |a|(1/δ − 1)
|a|/δ + |b| − |a ∩ b| ≥

|b|/2 + |a|(1/δ − 1)
|a|/δ + |b|/2 ≥ 1− δ

⇔ |b|
2 + |a|(1/δ − 1) ≥ |a|(1/δ − 1) + |b|2 −

|b|δ
2

which is always satisfied. Hence, J(a′,b′) ≥ 1 − δ for any choice of δ > 0, and so, we
construct an instance where every pair with Jaccard similarity higher than t2 will have
Jaccard similarity higher than 1− δ. Thus, there are thresholds that are greater than 1− δ,
that make the constructed instance hard. J

I Lemma 10. Let 0 < δ ≤ 1 be given and consider any instance of Bichromatic Closest
Pair with Jaccard similarity, (A,B), from a family of instances which require time Ω(n2−δ)
for thresholds t1 and t2. Using the reduction f defined in Section 4 on each v ∈ A ∪ B for
i iterations where i ≥ 1, we construct a valid instance of Bichromatic Closest Pair with
Jaccard similarity with high probability, which requires time Ω(n2−δ) for thresholds that are
decreasing functions of i.

Proof. The lemma follows immediately from Lemma 8. J

I Lemma 11. Let 0 < δ ≤ 1 be given and consider any instance of Bichromatic Closest
Pair with Jaccard similarity, (A,B), from a family of instances which require time Ω(n2−δ)
for thresholds t1 and t2. Define ` := maxq∈A∪B{|q|} · (1/α − 1) and y := {y1, ..., y`} such
that y ∩ (A ∪ B) = ∅. Define mapping h : A → A′ where A′ = A ∪ Y by h(a) = a ∪ y. The
reduction that applies h to every element of A generates an instance (A′,B) of Bichromatic
Closest Pair with Jaccard similarity that requires time Ω(n2−δ) for some thresholds t′1, t′2.

Proof. Clearly, hardness is preserved under the reduction that simply adds new elements to
all red sets. In particular this reduction decreases the thresholds by decreasing the similarity
between red and blue pairs. J
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5.3 Proof outline for Theorem 2
Proof. For simplicity and readability we leave out most of the calculations – details can be
found in Appendix B in the full version on ArXiv [8, App. B].

Let δ > 0 be given and let j1, j2 be given such that j2 < j1 < 1− δ. Take any instance
of Bichromatic Closest Pair with Jaccard similarity satisfying the properties described in
Lemma 3. Recall from this lemma that T = O

( 1
ε

)
.

Apply the reductions from first Lemma 9 to achieve an instance, which requires time
Ω(n2−δ) for thresholds greater than 1− δ. We wish to reduce to an instance that is hard for
smaller thresholds j1 and j2. The reduction from Lemma 10 is used to decrease the thresholds,
where we pick the largest i, such that the resulting upper threshold t1 is no smaller than
j1, i.e., t1 ≥ j1. This reduction decreases the thresholds until the upper threshold is only
slightly greater than j1. Now, let α = j1

t1
and apply the reduction from Lemma 11 to ensure

that the resulting upper threshold is now equal to j1. This eventually gives an instance of
Bichromatic Closest Pair with Jaccard similarity, which cannot be solved in time O(n2−δ)
for thresholds

t′1 = α

(
1− γ
1 + 4γ

)2i (
δ

T
+ 1− δ

)2i

t′2 =
(

1 + γ

1− 4γ

)2i (
δ

2T + 1− δ
)2i

1
α +

(
δ
T + 1− δ

)2i

−
(
δ

2T + 1− δ
)2i

where we observe that by construction t′1 = α · t1 = j1. We refer to Appendix B in the full
version on ArXiv for the calculations [8, App. B]. So we have constructed an instance which
is hard for thresholds j1 and t′2.

Set t∗2 =
(

1+γ
1−4γ

)2i (
δ

2T + 1− δ
)2i

. Then t′2 < αt∗2 and so the hardness for t′1 = j1 and t′2
implies hardness for t′1 = j1 and αt∗2. We show that there is an ε that only depends on δ
such that αt∗2 < j2. Then the hardness for t′1 = j1 and αt∗2 implies hardness for the given j1
and j2.

Note that we have chosen α ≥ t1, since otherwise i could not be maximal. So we have:

log(j1)
log (αt∗2) = log (αt1)

log (αt∗2) ≤
log
(
t21
)

log
(
t1 ·
(

1+γ
1−4γ

)2i

·
(
δ

2T + 1− δ
)2i
)

=
2i · log

((
1−γ
1+4γ

)2
· (δ/T + 1− δ)2

)
2i · log

((
1−γ
1+4γ

)
· (δ/T + 1− δ)

(
1+γ
1−4γ

)
·
(
δ

2T + 1− δ
)) .

We need to show that this expression is bounded by 1− ε for some ε that depends on δ, but
not on j1 and j2. Observe that the factors 2i cancel out and we may pick γ small enough
that it can essentially be ignored. We show in Appendix B in the full version on ArXiv [8,
App. B] that we can use any γ < min

{ 1
2i+1 ,

δ
20T
}
. Then for given δ, there exists an ε such

that the expression is bounded by 1− ε, since T can be considered a constant for a fixed δ.
Recall that T was defined in Lemma 3. By the assumption j1 ≤ j1−ε

2 we then have αt∗2 < j2.
Then the hardness of t′1 and αt∗2 where t′1 = j1 and αt∗2 < j2, implies the desired hardness
for the given j1 and j2.
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We finally argue about the size of the universe of the instance constructed by the
compositions of reductions described. In the following, d is the size of the universe of the
initial instance of Bichromatic Closest Pair with Jaccard instance. In the proof of Lemma 8,
we argued that we could use x2, which was the size of the intersection for a pair with Jaccard
similarity j2, in the sample size si, which means that

si ≥
30 ln(n)d2i

γ2(1− γ)2ix2i

2
= 30 ln(n)d2i

γ2(1− γ)2i(j2(|a|+ |b| − x2))2i

= 30 ln(n)
γ2(1− γ)2ij2i

2
·

(
δ + 1

1 + δ
2T

)2i

.

Again, the calculations can be found in Appendix B in the full version on ArXiv [8, App. B].
Hence, the sets constructed by the composition of reductions come from a universe whose
size is bounded by

|U | ≤ si + si(1/α− 1) = si
α
≤ 30 ln(n)

γ2j2i

2

(
δ + 1(

δ
T + 1− δ

) (
δ

2T + 1
))2i (

1 + 4γ
(1− γ)2

)2i

By Assumption t′21 < j1 ≤ t′1, which implies that 2i = O
(

log j1
log c

)
= O

(
log 1

j1

)
for constant

c < 1. Hence, we conclude that the size of the universe is ln(n)/jO(log 1/j1)
2 . This finishes the

proof of Theorem 2. J

6 Final Comments

On a final note, we remark that one can obtain a result similar to Theorem 2 for Braun-
Blanquet similarity. Recall that we define Braun-Blanquet similarity for a pair of sets
(a,b) ∈ A× B as

BB(a,b) = |a ∩ b|
max

{
|a|, |b|

} ∈ [0, 1]

In fact, the proof is slightly simpler than the one given in Section 5.3 and the calculations
are somewhat nicer. The proof ideas, i.e., the choice and order of reductions, are exactly the
same and should be easy to carry out by following the structure of the proof of Theorem 2.

The main open problem we leave is whether existing upper bounds are near-optimal
when ε is an arbitrary constant between 0 and 1. Our techniques only work when ε is
sufficiently small.
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Abstract
Oblivious routing is an attractive paradigm for large distributed systems in which centralized control
and frequent reconfigurations are infeasible or undesired (e.g., costly). Over the last almost 20 years,
much progress has been made in devising oblivious routing schemes that guarantee close to optimal
load and also algorithms for constructing such schemes efficiently have been designed. However, a
common drawback of existing oblivious routing schemes is that they are not compact: they require
large routing tables (of polynomial size), which does not scale.

This paper presents the first oblivious routing scheme which guarantees close to optimal load
and is compact at the same time – requiring routing tables of polylogarithmic size. Our algorithm
maintains the polylogarithmic competitive ratio of existing algorithms, and is hence particularly
well-suited for emerging large-scale networks.

2012 ACM Subject Classification Networks → Routing protocols; Theory of computation → Routing
and network design problems; Networks → Network algorithms

Keywords and phrases Oblivious Routing, Compact Routing, Competitive Analysis
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1 Introduction

1.1 Motivation
With the increasing scale and dynamics of large networked systems, observing and reacting
to changes in the workload and reconfiguring the routing accordingly becomes more and
more difficult. Not only does a larger network and more dynamic workload require more
fine-grained monitoring and control (which both introduce overheads), also the process of
re-routing traffic itself (see e.g. [15]) can lead to temporary performance degradation and
transient inconsistencies.

Oblivious routing provides an attractive alternative which avoids these reconfiguration
overheads while being competitive, i.e., while guaranteeing route allocations which are almost
as good as adaptive solutions. It is hence not surprising that oblivious routing has received
much attention over the last two decades. Indeed, today, we have a good understanding of
fast (i.e., polynomial-time constructable) and “competitive” oblivious routing algorithms
(achieving a polylogarithmic approximation of the load, which is optimal).

However, while oblivious routing seems to be the perfect paradigm for emerging large
networked systems, there is a fly in the ointment. Oblivious routing algorithms that aim
to minimize congestion require large routing tables: namely polynomial in the network size.
This is problematic, as fast memory in routers is expensive, not only in terms of monetary
costs but also in terms of power consumption.

The goal of this paper is to design oblivious routing schemes which only require small
routing tables (which are compact), and that at the same time still guarantee a close-to-
optimal load.
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1.2 The Problem in a Nutshell
The network is given as an undirected graph G = (V,E) with n vertices. The edges E are
weighted by a capacity function cap : V × V → R+

0 ; if {x, y} ∈ E, the function returns 0,
otherwise a positive value.

The oblivious routing problem is to set up a unit flow for each source-target pair (s, t) ∈
V × V that determines how demand between s and t is routed in the network G. This unit
flow is pre-specified without knowing the actual demands. When a demand vector ~d is given
that specifies for each pair of vertices the amount of traffic to be sent, the demand-vector is
routed by simply scaling the unit flow between a pair (s, t) by the corresponding demand dst
between the two vertices. This means that traffic is routed along pre-computed paths and
that no path-selection is done dynamically.

The congestion Cobl(G, ~d) resulting from a given oblivious routing scheme, is then
compared to the optimal possible congestion Copt(G, ~d) that can be obtained for demand
vector ~d in G. The competitive ratio of the oblivious routing scheme is defined as

max
~d

Cobl(G,~d)

Copt(G,~d)

In this paper, we are interested in designing packet forwarding rules that allow the packets
to follow a flow of an oblivious routing scheme with a good competitive ratio. Apart from
the competitiveness of the underlying oblivious routing scheme one goal is to encode the
forwarding rules compactly with small space requirement. In particular we require that for a
vertex v the space requirement is only O(deg(v) polylog(n)), where deg(v) is the degree of
the vertex. In other words, this means we rougly require a polylogarithmic number of rules
per network link. It seems unavoidable to let the memory requirement of a vertex depend
on its degree as otherwise the routing scheme might not be able to efficiently utilize all
network links.

In addition to the competitive ratio, the runtime, and the table size, we are also interested
in the required vertex labels (i.e., their size) and the required packet header size.

1.3 Our Contributions
This paper presents the first compact oblivious routing scheme. Our approach builds upon
an oblivious path selection scheme based on classic decomposition trees, which is then
adapted to improve scalability, and in particular, to ensure small routing tables and message
headers, while preserving polynomial runtime (for constructing the routing tables) and a
polylogarithmic competitive ratio.

We present two different implementations of our approach and our results come in two
different flavors accordingly (more detailed theorems will follow):

I Theorem 1. There exist oblivious routing strategies that achieve a polylogarithmic compet-
itive ratio w.r.t. the congestion and require routing tables of polylogarithmic size for
1. networks with arbitrary edge capacities which have a decomposition tree of bounded degree,

and for
2. arbitrary networks with uniform edge capacities.
Our algorithms only require small (polylogarithmic) header sizes and vertex labels. The
routing tables can be constructed in polynomial time.

Networks for which there are decomposition trees of small degree include for example
(constant-degree) grids. The exact requirements that a decomposition tree has to fulfill will
be given later.
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2 Algorithm and Analysis

This section describes an oblivious path selection scheme for general undirected networks
that obtains close to optimal congestion and can be implemented with routing tables and
routing headers of small size. In a nutshell, our algorithm leverages a path selection scheme
for general networks that guarantees a good competitive ratio w.r.t. congestion, and then
adapts it so that it can be implemented with small space requirements. We discuss the two
phases of this algorithm in turn.

2.1 Oblivious Path Selection Scheme
There exist essentially two path selection schemes that could be used as a basis for our
approach. First, there is the original result by Räcke [32] who showed that oblivious routing
with a polylogarithmic competitive ratio is possible in general networks, using a hierarchical
path selection scheme (cf. Section 2.1) that guarantees a competitive ratio of O(log3 n).
Second, there is a path selection scheme with an improved competitive ratio of O(logn) [33].
The latter scheme can be roughly viewed as a convex combination of spanning trees.1 A
path between a vertex s and a vertex t is chosen by sampling a random spanning tree and
then choosing the path between s and t in this tree.

In this paper, we will build upon the original result [32] which we call the hierarchical
path selection scheme. The challenge with implementing the path selection mechanism in [33]
space-efficiently is that the number of spanning trees is quite large (polynomial in n). It
seems difficult to avoid that a vertex in the graph has to store some information for every
tree, which yields routing tables of polynomial size. The approach in [32] is based on a single
tree which hence avoids the problem of [33].

The hierarchical path selection scheme is based on a hierarchical decomposition of the
graph G = (V,E). The vertex set V is recursively partitioned into smaller and smaller pieces
until all pieces contain just single vertices of G. We will refer to the pieces/subsets arising
during this partitioning process as clusters.

To such a recursive partitioning corresponds a decomposition tree T = (VT , ET ). A vertex
x in this tree corresponds to cluster Vx ⊆ V and there is an edge between a parent node p
and a child node c if the cluster Vc arises from partitioning Vp. The root r of T corresponds
to the subset Vr = V and the leaf vertices correspond to singleton sets {v}, v ∈ V .

In order to simplify the notation and description we assume that all leaf vertices in T have
the same distance to the root (this could e.g., be achieved by introducing dummy partitioning
steps in which a set is partitioned into itself). We use h to denote the height of the tree. Let
for a vertex v ∈ V , a`(v) denote the ancestor of {v} on level ` of the tree, where the level of
a vertex is its distance from the root. Here we use {v} as a shorthand for “the leaf node
that corresponds to cluster {v}”. The `-weight of v is the weight of all edges incident to v
that leave the cluster Va`(v). Formally w`(v) :=

∑
e={v,x}:x/∈Va`(v)

cap(e). We extend this
definition to subsets of V by setting w`(U) :=

∑
u∈U w`(u) for every subset U ⊆ V .

We also introduce for every cluster S in the decomposition tree a weight function
wS : S 7→ R+

0 and a weight function outS : S 7→ R+
0 . For a level `-cluster S we define

wS := w`+1�S and outS := w`�S , i.e., we define it as the restriction of w`+1 and w`,
respectively, to the vertex set of cluster S. Note that outS counts edges that connect vertices
of S to vertices outside of S while wS also counts edges that connect different sub-clusters of
S. We refer to wS as the cluster-weight of S and to outS as the border-weight of S.

1 This is not entirely correct as the trees are not proper spanning trees but the difference is not important
for the above discussion.
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Using this weight definition, we define a concurrent multicommodity flow problem (CMCF-
problem) for every cluster S in the decomposition tree. For every (ordered) pair (u, v) there
is a demand of wS(u)wS(v)/wS(S). Informally speaking, this means that every vertex injects
a total flow that is equal to its wS-weight and distributes this flow to the other vertices in
S, proportionally to the wS-weight of these vertices. We will use the decomposition tree T
in [32] with the following properties:

the height of T is O(logn), and
for every cluster S in the decomposition tree, the CMCF-problem for S can be solved
with congestion at most C = O(log2 n) inside S.

Now suppose that we are given a decomposition tree with these properties. The path
selection in [32] is then performed as follows. Suppose that we want to choose a path between
vertices s and t in G. Let xs and xt denote the leaf vertices in T that correspond to singleton
clusters {s} and {t}, respectively. Let xs = x1, x2, . . . , xk = xt denote the vertices in the
tree on the path from xs to xt. We first choose a random vertex vi from each cluster Vxi

according to the cluster-weight, i.e., the probability that v is chosen is wVxi
(v)/wVxi

(Vxi
).

Note that v1 = s and vk = t as the corresponding clusters just contain a single vertex. It
remains to select a path that connects the chosen vertices.

Suppose we want to connect two consecutive vertices vp and vc, where Vxp
is the parent

cluster of Vxc . We choose an intermediate vertex α inside Vxc according to the border-weight
of Vxc

, i.e., the probability that v is chosen is outVxc
(v)/ outVxc

(Vxc
). We then consider the

solution to the CMCF-flow problems for Vxc
and Vxp

. The first solution contains a flow
f(c, α) between vxc

and α, and the second contains a flow f(p, α) between vxp
and α. We

sample a random path from each flow. Concatenating these two paths, gives a flow between
vc and vp. For the following analysis we call the sub-path between xc and α the lower
sub-path and the path between α and xp the upper sub-path.

Concatenating all vertices vi in the above manner gives a path between xs and xt. In
the following we analyze the expected load generated on an edge due to this path selection
scheme under the condition that an optimal algorithm can route the demand with congestion
Copt. For completeness and as we will need to modify this proof later, we repeat the following
observations from [32].

I Lemma 2. The expected load on an edge is at most O(h · C · Copt).

Proof. Fix an edge e for which both end-points are contained in some cluster S. Let
S1,. . . ,Sr denote the child-clusters of S. We first analyze the total demand that we have to
route between a pair of vertices (a, b) ∈ S × S due to an upper sub-path where a is chosen
as the intermediate vertex α and b is chosen as a random vertex from the parent cluster
S. Assume a ∈ Si for some child cluster Si. Then the probability that we choose a as α
is Pr[a is chosen] = outSi

(a)/ outSi
(Si). The probability that we choose b as the random

end-point in S is Pr[b is chosen] = wS(b)/wS(S). Note that any message for which we route
between the child cluster Si and the parent cluster S has to leave or enter the cluster Si.
Therefore the total demand for these messages can be at most Copt · outSi

(Si), as otw. an
optimum congestion of Copt would not be possible. Hence, the expected demand for pair a
and b is only

outSi(Si)Copt · Pr[a is chosen] · Pr[b is chosen] = outSi(Si)Copt ·
outSi(a)
outSi

(Si)
· wS(b)
wS(S)

= wS(a) · wS(b)
wS(S) · Copt , (1)

where we used the fact that outSi
(a) = wS(a), which holds since Si is a direct child-

cluster of S.
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Now we analyze the demand that is induced for a pair (a, b) ∈ S×S due to the lower part
of a message between S and its parent cluster. We assume that a is chosen as the intermediate
vertex α and b is chosen as a random node in the child-cluster S. The probability that a is
chosen as intermediate vertex is Pr[a is chosen] = outS(a)/ outS(S) and the probability that
b is chosen is Pr[b is chosen] = wS(b)/wS(S). Every such message has either to leave or enter
cluster S. Hence, the total demand for these messages induced on pair (a, b) is at most

outS(S)Copt · Pr[a is chosen] · Pr[b is chosen] = outS(S)Copt ·
outS(a)
outS(S) ·

wS(b)
wS(S)

≤ wS(a) · wS(b)
wS(S) · Copt , (2)

where we used the fact that outS(a) ≤ wS(a).
Combining Equation 1 and Equation 2 gives that the messages involving cluster S induce

a demand of only 2wS(a) · wS(b)/wS(S) · Copt between vertices a and b from S. Since we
route this demand according to the multicommodity flow solution of the CMCF-problem for
cluster S, the resulting load is at most 2C · Copt on any edge inside cluster S, while edges
not in S have a load of zero. Summing the load induced by messages for all clusters and
exploiting the fact that an edge is at most contained in h different clusters, gives a maximum
load of 2hC · Copt, i.e., a competitive ratio of 2hC. J

Harrelson, Hildrum and Rao [21] present a decomposition tree in which the congestion for
the CMCF-problem of clusters is not uniformly bounded by C but it is guaranteed that along
a root-to-leaf path the congestion values of the respective flow problems sum up to at most
O(log2 n log logn). Then the expected load in Lemma 2 becomes O(log2 n log logn · Copt).
In addition the construction of this decomposition tree is polynomial time.

In the following description we base our oblivious routing scheme on the results in [32] as
it slightly simplifies the write-up. For the theorems we also present the improved version
obtained by plugging in the decomposition tree from Harrelson et al.

2.2 Implementation A: Decomposition Trees with Small Degree
We now present a space efficient implementation of the above path selection scheme. In the
following, we will assume that the maximum degree of the decomposition tree T is small.

The basic building block for our implementation is a method that given a random starting
point v ∈ S chosen according to the cluster-weight of S (i.e., the probability of choosing v
is wS(v)/wS(S)), routes to a random node vi ∈ Si chosen according to the border weight
of Si. Here Si is either a child-cluster of S (in case we want to communicate downwards
in the tree) or Si = S (in case we want to communicate upwards). In the following we use
Si, i ∈ {1, . . . , r} to denote the child-clusters of S and S0 = S to denote S itself. Let G[S]
denote the sub-graph induced by vertices in S.

For every i ∈ {0, . . . , r} we compute a single commodity flow fi in G[S] as follows. We add
a super-source s and connect it to every vertex v ∈ S with an edge of capacity wS(v)·outSi(Si)
and a super-target t to which every vertex in v ∈ S connects with capacity outSi

(v) · wS(S).
Note that all source edges together have the same capacity as the target edges.

We now compute a flow fi between si and ti that saturates all edges from si and to ti.
We can find such flows fi (for all i) such that the combined congestion for these flows (on
edges in S; edges from si’s and to ti’s have congestion 1) is only wS(S) · C. To see this
observe that in the CMCF-solution for cluster S the commodity (vi, v) with vi ∈ Si and
v ∈ S ships a flow of outSi

(vi)wS(v)/wS(S) between vi and v. By “merging” the flows of all
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commodities (vi, v) ∈ Si × S into a single commodity we obtain the desired flow (up to a
wS(S)-factor). Merging the commodities does not increase the congestion and, hence, the
congestion is only wS(S) · C.

The flows fi that we constructed so far may have fractional values that are difficult to
store exactly. Therefore we slightly change the flows so that we can store them efficiently.
For this we first scale every flow and the capacity of every edge up by a factor of r. Let
f ′i and cap′(e) denote the scaled flows and capacities. Then every edge e makes a capacity
reservation for every flow fi. Suppose the (scaled) flow sends f ′i(e) along edge e; then the
edge e reserves a capacity of df ′i(e)e for the i-th flow. Note that the total capacity reservation
is at most

∑
idf ′i(e)e ≤

∑
i f
′
i(e) + r ≤ wS(S) · C cap′(e) + r ≤ 2wS(S) · C cap′(e), because

the scaled capacity of an edge is at least r.
Now we resolve every flow problem separately with the restriction that the flow should stay

within its capacity reservation. This is clearly possible and since the capacity reservations
and the demands are all integral we now have an integral flow f ′i . Undoing the scaling gives
us flows fi that can (concurrently) be routed with congestion at most 2wS(S) ·C, and where
flow values are a multiple of 1/r.

We now store the flows fi in a distributed manner at the vertices of S, as follows. Fix
v ∈ S. For every edge we store how much flow enters or leaves v. In order to route from the
cluster-distribution of S to the border-distribution for Si, i ∈ {0, . . . , r}, we choose random
outgoing links (where a link is taken with probability proportional to the outgoing flow) until
the chosen link is the super-target t. When we want to route from the border-distribution of
Si to the cluster-distribution of S, we take random incoming links (where a link is chosen
with probability proportional to the incoming flow), until the chosen link corresponds to the
super-source s. The proof of the following claim is analogous to Lemma 2.

B Claim 3. The expected load of an edge due to the path selection scheme is only O(h·C ·Copt).

Proof. Suppose that the optimum congestion is Copt. The total traffic that the scheme
has to route between the cluster-distribution of S and the border-distribution of Si is only
outSi(Si) · Copt. We route this traffic according to flow fi of value outSi(Si)wS(S). Hence,
the maximum load of an edge in G[S] (according to original capacity) is C · Copt.

Since an edge is contained in h different clusters the claim follows. C

B Claim 4. The path selection scheme can be implemented with routing tables of size
O(deg(v) deg(T )(logm + logW )), labels of length O(h log(deg(T ))), and header length
O(h log(deg(T ))).

Proof. Suppose that the capacities of the graph are integers in the range {1, . . . ,W}. A flow
value fi(e) along an edge is at most wS(S) ·W · C (note that we assume that C is integral).
Edges from s and to t have a capacity of wS(v) outSi

(Si) and wS(S) outSi
(v), respectively.

Using the fact that wS(S) and outSi
(Si) are at most mW , and d,C ≤ m we get that a

number describing the flow value along an edge can be encoded with

log2(m2W 2r) = O(log(m) + log(W ) + log(r))

many bits (since flow values are a multiple of 1/r). Hence, a node v has to store only
O(deg(v) deg(T )(logm+ logW )) many bits, where we used that r ≤ m.

For the routing scheme we relabel the vertices. We number the children of a vertex
in the tree and encode a leaf vertex by its path from the root. This generates labels of
O(h log(deg(T ))) bits. The routing algorithm now only needs to have the label of the
source vertex and the target vertex and a marker that marks where in the tree the routing
currently is. C



H. Räcke and S. Schmid 75:7

In summary, we obtain the following theorem.

I Theorem 5 (Decomposition Trees of Small Degree). For decomposition trees of degree
deg(T ) one can construct an oblivious routing strategy that requires routing tables of size
O(deg(v) deg(T )(log(m) + log(W ))), labels of length O(h log(deg(T ))), and header sizes
of O(h log(deg(T ))). Depending on the decomposition tree used, we obtain two different
competitive ratios:

Using the decomposition tree from [32] the scheme guarantees a competitive ratio of
O(hC) = O(log3(n)) w.r.t. congestion.
Using the decomposition tree from [21] the scheme can be constructed in polynomial time
and guarantees a competitive ratio of O(log2(n) log log(n)).

2.3 Implementation B: Uniform Capacities
In this section we present a different implementation of the hierarchical routing scheme,
for scenarios where the decomposition trees can be of arbitrary degree but where network
capacities are uniform. Again the basic building block is to route from a node chosen
according to the cluster-distribution of some cluster S to the border distribution of Si where
either Si = S or Si is a child-cluster of S.

Assume that every edge in the graph G has capacity 1. We round the outgoing capacity
outSi

(Si) of a child-cluster Si, i ≥ 0 to the next larger power of 2 and denote the rounded
value with ‖Si‖. We also re-order the children w.r.t. this value, i.e., S1 is the child-cluster
with smallest ‖Si‖-value. Since there are at most m possible values for outSi

(Si), there
are only logm possible values for ‖Si‖. There are only

(
r+logm

logm
)
possibilities to choose the

‖Si‖-values of the r children of cluster S. Hence, we can store these with O(log(m) · log(r))
many bits. In addition we store the value of ‖S0‖, which requires O(log logm) bits, and the
value of wS(S) which requires O(logm) bits.

In order to design the routing scheme for an individual cluster, we embed a hypercube
of dimension d := dlog2(

∑
i≥0 ‖Si‖)e. We first order the hypercube nodes in an arbitrary

way and then reserve a range of ‖Si‖ consecutive hypercube nodes for every i ≥ 0 (the i-th
range). Note that we store the (rounded) size of all children and that it is straightforward to
compute the ranges assigned for any i from this information.

Then we map the hypercube nodes to nodes of S. First we map hypercube nodes in the
i-th range to nodes with outSi

(v) > 0 such that each node receives at least outSi
(v) and at

most 2 outSi
(v) hypercube nodes. Hypercube nodes that remain unmapped after this step

(i.e., nodes that do not fall within any range) are mapped arbitrarily subject to the constraint
that a cluster node v does not receive more than 8wS(v) hypercube nodes. This can easily be
done as the number of hypercube nodes (2d) is at most 2

∑
i ‖Si‖ ≤ 4

∑
i

∑
v∈Si

outSi(v) =
4(wS(S) + outS(S)) ≤ 8wS(S).

I Observation 6. There are at most 8wS(v) hypercube nodes mapped to any graph node.

For the embedding we set up a concurrent multicommodity flow problem as follows. For
every edge {x, y} of the hypercube that is mapped to endpoints {vx, vy}, we introduce a
demand of 1 between vx and vy in both directions. Then every node sends and receives a
total traffic of at most 8d · wS(v). By adding fake traffic we can turn this instance into a
balanced multicommodity flow instance in which every vertex sends and receives a traffic of
exactly 8d · wS(v).

We can solve this multicommodity flow instance with congestion at most 16dC inside the
cluster S by using Valiant’s trick [38, 25] of sending to random intermediate destinations
and using the fact that each flow can send a traffic of wS(v) to random destinations with
congestion C.
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2.3.1 Using the Hypercube
How do we exploit the embedded hypercube? If during the routing scheme we are required to
send a message from a cluster node vp to a cluster node vc ∈ Si we proceed as follows. Instead
of choosing an intermediate node α according to probability distribution outSi(v)/ outSi(Si)
we choose a random hypercube node from the i-th range. Then we route a message inside
the hypercube to this node. For this we let the message start at a random hypercube node
from the nodes that are mapped to vp.

Note that this means that the probability that the message is sent to node α lies between
outSi

(α)/‖Si‖ and 2 outSi
(α)/‖Si‖ as the hypercube nodes in the i-th range are not mapped

completely uniformly.
For the second part of the message we proceed analogously in the hypercube of Si. We let

the message start at a random hypercube node mapped to α and choose a random hypercube
node as its target.

Again due to the non-uniform mapping, the target distribution on Si (i.e., wSi(v)/wSi(Si))
is not reached exactly, but deviations by a constant factor might occur. This only influences
the congestion of a single step by a constant factor, but it could be problematic if we used
this approach along a path in the tree: in each step the distribution would change by a
constant factor.

Therefore, we add an additional step that fixes the distribution over Si. We embed an
additional hypercube HS for every cluster S with dimension dlog2(wS(S))e. The mapping
is done such that each cluster-vertex v ∈ S receives exactly wS(v) hypercube nodes among
the first wS(S) nodes from HS (the remaining nodes are distributed uniformly). Since every
node in the cluster S stores the value of wS(S), we can route from a node v ∈ S to a random
node chosen according to distribution wS(v)/wS(S), by just selecting a random hypercube
node from the first wS(S) nodes.

2.3.2 Analysis
We showed that the congestion for sub-messages that involve cluster S is small. There are
two types of such messages:
1. messages that start at an intermediate node (distributed according to the border weight

of Si for some i ≥ 0) and are sent to a random node v ∈ S distributed according to the
cluster-weight of S; and

2. messages that start at a random node v ∈ S and are sent to some intermediate node.
It was shown that the total traffic that is sent between a pair vi and v, where v is distributed
according to the cluster weight of S and vi is distributed according to the border weight of
Si, is only outSi

(vi)wS(v)/wS(S) · Copt.
In our new scheme this changes slightly. For messages of the second type the source is

distributed as before but the target may have a slightly different distribution (as we choose a
random hypercube node in the i-th range). For messages of the first type already the source
may have a slightly different distribution (as we choose a random hypercube node from some
range in the hypercube for a child- or parent-cluster). Also the target distribution is slightly
skewed as we choose a random hypercube node as the target.

But since the distributions are only changed by a constant factor this difference does not
really influence our analysis. We still have the property that the traffic between vi and vS is
Θ(outSi

(vi)wS(v)/wS(S) · Copt).
The second difference is that the traffic is not sent according to the CMCF-problem for

cluster S but it is instead sent along the hypercube. Note that due to the embedding of the
hypercube, a cluster node v ∈ Si has Θ(outSi(v)) = Θ(wS(v)) hypercube nodes in the i-th
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range mapped to it (i.e., hypercube nodes are balanced perfectly up to constant factors).
Hence the demand between vi and v will be split among Θ(outSi

(vi)wS(v)) pairs in the
cube. Therefore the demand for every pair in the cube is only Θ(Copt/wS(S)) = Θ(Copt/2d).
This means that at most a traffic of O(Copt) starts and ends at every vertex and routing
this traffic using Valiant’s trick gives a congestion of O(dCopt) in the hypercube. Since we
embedded the hypercube with congestion O(dC), the congestion of a graph edge will be
O(d2C ·Copt) (as each hypercube node has degree d), which gives rise to the following lemma.

I Lemma 7. Implementation B guarantees a maximum expected load of O(hd2C · Copt).

Proof. The lemma follows by applying the previous argument for each level of the tree.
It remains to bound the edge-load induced by the re-randomization steps. The total

traffic that is send to a cluster S in the tree is at most (
∑
i out(Si)) ·Copt = Θ(wS(S) ·Copt).

For each such message we require a re-randomization, because in our current scheme, it is
only distributed approximately according to the cluster-weight of S.

However by design each vertex receives exactly a wS(v)/wS(S)-fraction of the re-randomi-
zation messages, and a Θ(wS(v)/wS(S))-fraction of messages start at v, since the messages
are approximately distributed according to cluster-weight. Sending these messages along
the hypercube introduces congestion Θ(d · Copt) in the cube and Θ(d2C · Copt) due to the
embedding. J

I Lemma 8. Implementation B requires space O(hC log(m) log log(m) deg(v)) bits at every
vertex and a label and header length of O(h log(deg(T ))).

Proof. We will use the following helper lemma:

I Lemma 9. Let X1, . . . , Xn denote a set of negatively correlated random variables taking
values in the range [0, 1]. Let X denote their sum and let µ ≤ E[X] denote a lower bound on
the expectation of X. Then for any δ ≥ 1

Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3 .

A vertex v ∈ S has to store the approximate size ‖Si‖ of the child-clusters of S. Summing
this over all levels gives O(h log(m) · log(r)) bits. In addition one has to encode the embedding
of the hypercubes. The congestion of the solution to the concurrent multicommodity flow
problem for embedding a hypercube is O(dC). This fractional solution will encode a flow for
every hypercube edge. Using a standard randomized rounding approach, we can route the
flows to paths with a congestion of O(dC + log(m)) = O(dC). This is done as follows. For
every pair {x, y} we take the unit flow and first decompose this unit flow into flow-paths.
Then we choose for every pair one of the flow-paths at random (proportional to its weight).
Let Xi(e) denote the random variable that describes whether the flow path for the i-th pair
includes edge e. By design the above process guarantees E[Xi(e)] = fi(e), where fi(e) is the
flow for pair i that goes through edge e. The total load on edge e is

∑
iXi(e). This is a sum

of negatively correlated random variables with expectation µ = O(dC). Using Lemma 9 with
δ = 3 ln(m)/µ gives that with constant probability, no edge exceeds load O(dC + logm).

Therefore only O(deg(v)dC) paths traverse a vertex v (recall that C ≥ logm). For
every path, we need to store the outgoing edge and the id of the paths on this edge. This
requires (log2(deg(v)) + log2(dC)) bits for every path and O(ddeg(v)C log(ddeg(v)C)) bits
in total. Multiplying with the height and using d = Θ(logm) gives O(hC log(m)(log(deg v) +
log logm) deg(v)) = O(hC log2(m) · deg(v)) bits.
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The header- and label-length is analogous to Implementation A. We just use the root-to-
leaf path in the tree as a label and a header consists of the source-label, the target-label, and
a marker. J

In summary we derived the following result:

I Theorem 10 (Compact Oblivious Routing for Uniform Capacities). For arbitrary networks of
uniform capacities, there exists an oblivious routing strategy which requires label and header
length of O(h log(deg(T ))), and which comes in two flavors, depending on the decomposition
tree used:

Using the decomposition tree from [32] the scheme requires O(hC log2(m) deg(v)) =
O(log5(n) deg(v)) bits at every vertex and guarantees a competitive ratio of O(hC log2(n)) =
O(log5(n)) w.r.t. congestion.
Using the decomposition tree from [21] the scheme requires
O(log2 m log2(n) log logn) deg(v)) = O(log4 n log logn) deg(v)) bits at every vertex and
guarantees a competitive ratio of O(log4(n) log log(n)) w.r.t. congestion. The oblivious
routing scheme can be constructed in polynomial time.

3 Related Work

The drawbacks of adaptive routing have been discussed intensively in the literature, see
e.g., [34] for a survey. In particular, adaptive routing schemes need global information about
the routing problem in order to calculate the best paths, and even if it were possible to collect
such information sufficiently fast, it can still take much time to compute a (near-)optimal
solution to that problem (large linear programs may have to be solved).

One of the first and well-known results on oblivious routing is due to Borodin and
Hopcroft [8] who showed that competitive oblivious routing algorithms require randomization,
as deterministic algorithms come with high lower bounds: given an unweighted network with
n nodes and maximum degree ∆, there exists a (permutation) routing instance such that the
congestion induced by a given deterministic oblivious routing scheme is at least Ω(

√
n/∆3/2).

This result was improved by Kaklamanis et al. [22] to a lower bound of Ω(
√
n/∆).

For randomized algorithms Valiant and Brebner [38] showed how to obtain a polylogar-
ithmic competitive ratio for the hypercube by routing to random intermediate destinations.
Räcke [32] presented the first oblivious routing scheme with a polylogarithmic competitive
ratio of O(log3 n) in general networks. The paper by Räcke was also the first to propose
designing oblivious routing schemes based on cut-based hierarchical decompositions. However,
Räcke’s result is non-constructive in the sense that only an exponential time algorithm was
given to construct the hierarchy. This approach has subsequently been used to obtain approx-
imate solutions for a variety of cut-related problems that seem very hard on general graphs
but that are efficiently solvable on trees, see e.g. [2, 3, 5, 10, 14, 23, 26, 33]. Polynomial-time
algorithms for constructing the hierarchical decomposition were given by Bienkowski et al. [7]
and Harrelson et al. [21]. However, none of these results provide an (asymptotically) optimal
competitive ratio.

Azar et al. [4] gave a polynomial time algorithm that for a given graph computes the
optimal oblivious routing via a linear programming approach, i.e., without using a hierarchical
decomposition.

An optimal competitive ratio of O(logn) (which matches a known lower bound from
grids [6, 30]) was first presented by Räcke [33] . Instead of considering a single tree to
approximate the cut-structure of a graph G, [33] proposes to use a convex combination
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of decomposition trees. The paper relies on multiplicative weight updates and the proof
technique is similar to the technique used by Charikar et al. [9] for finding a probabilistic
embedding of a metric into a small number of dominating tree metrics.

More recently, inspired by the ideas on cut matching games introduced by Khandekar, Rao,
and Vazirani [24], Räcke et al. [35] presented a fast construction algorithm for hierarchical
tree decompositions, i.e., for a single tree: given an undirected graph G = (V,E, c) with edge
capacities, a single tree T = (VT , ET , cT ) can be computed whose leaf nodes correspond to
nodes in G and which approximates the cut-structure of G up to a factor of O(log4 n) (i.e.,
the faster runtime comes at the price of a worse approximation guarantee). In particular,
the authors present almost linear-time cut-based hierarchical decompositions, by establishing
a connection between approximation of max flow and oblivious routing. This overcomes the
major drawback of earlier algorithms such as [21] and even [29] which required high running
times for constructing the decomposition tree (or the distribution over decomposition trees).
The bound has been improved further by Peng in [31].

Previous results on compact routing focus on routing strategies that aim to minimize
the path length instead of the congestion (see e.g. [13, 27, 39]). There are two variants: labeled
(the designer is free to name the nodes according to the topology and the edge weights of the
graph) and name-independent (name determined by an adversary). The research community
has derived many interesting results on compact shortest path routing on special graphs, e.g.,
characterizing hypercubes, trees, scale-free networks, and planar graphs [17, 18, 19, 28, 37].
A well-known recent result on compact routing in the name-independent model on general
graphs is by Abraham et al. [1].

However, it is also known that it is impossible to implement shortest path routing with
routing tables whose size in all network topologies grows slower than linear with the increase
of the network size [16, 20]. As a resort, compact routing research studies algorithms to
decrease routing table sizes at the price of letting packets to be routed along suboptimal
paths. In this context, suboptimal means that the forwarding paths are allowed to be longer
than the shortest ones, but the length increase is bounded by a constant stretch factor. A
particularly interesting result is by Thorup et al. [37] who presented compact routing schemes
for general weighted undirected networks, ensuring small routing tables, small headers and
low stretch. The approach relies on an interesting shortest path routing scheme for trees of
arbitrary degree and diameter that assigns each vertex of an n-node tree a label of logarithmic
size. Given the label of a source node and the label of a destination it is possible to compute,
in constant time, the port number of the edge from the source that heads in the direction of
the destination. An interesting recent work by Retvari et al. [36] generalizes compact routing
to arbitrary routing policies that favor a broader set of path attributes beyond path length.
Using routing algebras, the authors identify the algebraic requirements for a routing policy
to be realizable with sublinear size routing tables.

There also exist interesting works focusing on scalable oblivious traffic engineering, e.g.,
for confluent (per-destination) routing schemes [11, 12]. However, we are not aware of any
results on compact oblivious routing which provides polylogarithmic approximation ratios
along both dimensions, table size and congestion.

4 Conclusion

Given the fast growth of communication networks (e.g., due the advent of novel paradigms
such as Internet-of-Things), the high costs of network equipment (e.g., fast memory is
expensive and power hungry), as well as the increasing miniaturization of communication-
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enabled devices, we in this paper initiated the study of oblivious routing schemes which only
require small routing tables. In particular, we presented the first compact oblivious routing
scheme, requiring polylogarithmic tables only (as well as polylogarithmic packet headers and
vertex labels).

We believe that our work opens an interesting avenue for future research. In particular,
while our algorithms provide poly-logarithmic routing tables and competitive ratios, it may
be possible to further improve these results by logarithmic factors. Furthermore, it would be
interesting to generalize our results to non-uniform network capacities, as well as to explore
whether our results can be improved for special network topologies arising in practice.
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Abstract
We consider the minimization of edge-crossings in geometric drawings of graphs G = (V,E), i.e.,
in drawings where each edge is depicted as a line segment. The respective decision problem is
N P-hard [5]. Crossing-minimization, in general, is a popular theoretical research topic; see Vrt’o [26].
In contrast to theory and the topological setting, the geometric setting did not receive a lot of
attention in practice. Prior work [21] is limited to the crossing-minimization in geometric graphs
with less than 200 edges. The described heuristics base on the primitive operation of moving a
single vertex v to its crossing-minimal position, i.e., the position in R2 that minimizes the number
of crossings on edges incident to v.

In this paper, we introduce a technique to speed-up the computation by a factor of 20. This
is necessary but not sufficient to cope with graphs with a few thousand edges. In order to handle
larger graphs, we drop the condition that each vertex v has to be moved to its crossing-minimal
position and compute a position that is only optimal with respect to a small random subset of the
edges. In our theoretical contribution, we consider drawings that contain for each edge uv ∈ E and
each position p ∈ R2 for v o(|E|) crossings. In this case, we prove that with a random subset of the
edges of size Θ(k log k) the co-crossing number of a degree-k vertex v, i.e., the number of edge pairs
uv ∈ E, e ∈ E that do not cross, can be approximated by an arbitrary but fixed factor δ with high
probability. In our experimental evaluation, we show that the randomized approach reduces the
number of crossings in graphs with up to 13 000 edges considerably. The evaluation suggests that
depending on the degree-distribution different strategies result in the fewest number of crossings.
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1 Introduction

The minimization of crossings in geometric drawings of graphs is a fundamental graph
drawing problem. In general the problem is NP-hard [5, 13] and has been studied from
numerous theoretical perspectives; see Vrt’o [26]. Until recently only the topological setting,
where edges are drawn as topological curves, has been considered in practice [6,8,14]. In our
previous paper [21] we describe geometric heuristics that compute straight-line drawings of
graphs with significantly fewer crossings compared to common energy-based layouts. One
of the heuristics is the vertex-movement approach that iteratively moves a single vertex v
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to its crossing-minimal position, i.e., a position p? so that crossings of edges incident to
v are minimized. Unfortunately, the worst-case running time to compute this position is
super-quadratic in the size of the graph as the following theorem states.

I Theorem 1 (Radermacher et al. [21]). The crossing-minimal position of a degree-k vertex
v with respect to a straight-line drawing Γ of a graph G = (V,E) can be computed in
O
(
(kn+m)2 log (kn+m)

)
time, where n = |V |,m = |E|.

This is not only a theoretical upper bound on the running time but is also a limitation that
has been observed in practice. The implementation we used previously requires considerable
time to compute drawings with few crossings. For this reason we were only able evaluate our
approach on graphs with at most 200 edges. For example, on a class of graphs that have 64
vertices and 196 edges our implementation already required on average about 35 seconds to
compute a drawing with few crossings.

Energy-based methods are common and well engineered tools to draw graphs [16]. For
example, the aim of Stress Majorization (or simply Stress) is to compute a drawing such
that the Euclidean distance of each two vertices corresponds to their graph-theoretical
distance [12]. The algorithm has been engineered to handle graphs with up to 106 vertices
and 3 · 106 edges [19]. Kobourov [16] claimed that Stress tends to minimize the number of
crossings. In our previous experimental evaluation [21] we demonstrated that the statement
is not true for a varied set of graph classes.

Fabila-Monroy and López [11] introduced a randomized algorithm to compute a drawing
of Kn with a small number of crossings. Many best known upper bounds on the rectilinear
crossing number of Kn, for 44 ≤ k ≤ 99, are due to this approach [1]. The algorithm
iteratively updates a set P of n points, by replacing a random point p ∈ P by a random point
q that is close to p, if q improves the number of crossings. Since the number of crossings of
Kn is in Θ(n4), the bottleneck of their approach is the running time for counting the number
of crossings induced by P . A similar randomized approach has been used to maximize the
smallest crossing angle in a straight-line drawing [3, 10]. The approach iteratively moves
vertices to the best position within a random point set.

Contribution. The main contribution of this paper is to engineer the vertex-movement
approach for the minimization of crossings in geometric drawings described in [21] to be
applicable on graphs with a few thousands vertices and edges.
1. In Section 3 we introduce so-called bloated duals of line arrangements, a combinatorial

technique to construct a dual representation of general line arrangements. In our applica-
tion this results in an overall speed-up of about a factor of 20 in comparison to the recent
implementation. This speed-up is necessary but not sufficient to handle graphs with a
few thousands vertices and edges.

2. In Section 4 we demonstrate that taking a small random subset of the edges is sufficient
to compute drawings with few crossings. Moreover, in Section 4.1 we prove that under
certain conditions the randomized approach is an approximation of the co-crossing number
of a vertex, with high probability.

3. Based on the insights of the evaluation in Section 4.2, we introduce a weighted sampling
approach. A comparison to a restrictive approach of sampling points suggests that the
degree-distribution of the graph is a good indicator to decide which approach results in
fewer crossings.

4. Overall, our experimental evaluation shows that we are now able to handle graphs with
12 000 edges, which are 60 times more than the graphs that have been considered in the
evaluation in [21].
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u1
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Figure 1 The black, blue and red segments show the arrangement A(Γ, v) of the black drawing
Γ. The blue and red region show the complement of the visibility regions of u1 and u2, respectively,
and the edge e. The green region is crossing minimal.

2 Preliminaries

We repeat some notation from [21]. Let Γ be a straight-line drawing of a G = (V,E). Denote
by N(v) ⊆ V the set of neighbors of v and by E(v) ⊆ E the set of edges incident to v. For a
vertex v ∈ V , denote by Γ[v 7→ p] the drawing that is obtained from Γ by moving the vertex
v to the point p. We denote the number of crossings in a drawing Γ by cr(Γ), the number of
crossings on edges incident to v by cr(Γ, v), and we refer with cr(Γ, e, f) to the number of
crossings on two edges e and f in Γ, i.e., cr(Γ, e, f) ∈ {0, 1} if e 6= f . For a point u and a
segment e, denote by VR(u, e) the visibility region of u and e, i.e., the set of points p ∈ R2

such that the segment up and e do not intersect. Moreover, let BD(u, e) be the boundary of
VR(u, e). Let A(Γ, v) be the arrangement over all boundaries BD(u, e) for each neighbor
u ∈ N(v) of v and each edge e ∈ E \ E(u); see Figure 1. The arrangement has the property
that two points p and q in a common cell of A(Γ, v) induce the same number of crossings for
v, i.e., cr(Γ[v 7→ p], v) = cr(Γ[v 7→ q], v) [21]. Thus, the computation of a crossing minimal
position p? reduces to finding a crossing-minimal region f? in A(Γ, v).

For our experiments, we used two different compute servers. Both systems ran with an
openSUSE Leap 15.0 operating system. All algorithms were compiled with g++ version 7.3.1
with optimization mode -O3. System 1 was used for running time experiments, i.e., for the
experiments evaluated in Section 3.1 and in Section 4.2. System 2 is used for the experiments
evaluated in Section 4.3.
System 1 Intel Xeon(tm) E5-1630v3 processor clocked at 3.7 GHz, 128GB RAM.
System 2 Two Intel Xeon(tm) E5-2670 CPU processors clocked at 2.6 GHz, 64GB RAM.

3 Efficient Implementation of the Crossing-Minimal Position

The vertex-movement approach iteratively moves a single vertex to its crossing-minimal
position. The running time of the overall algorithm crucially depends on an efficient
computation of this operation. Therefore the aim of this section is to provide an efficient
implementation of the crossing-minimal position of a vertex. Our previous implementation [21]
heavily relies on CGAL [24], which follows an exact computations paradigm and uses exact
number types to, e.g., represent coordinates and intermediate results. This helps to ensure
correctness but considerably increases the running time of the algorithms. We introduce
an approach to compute the crossing-minimal position that drastically reduces the usage of
exact computations.

Computing a crossing-minimal position of a vertex v is equivalent to computing a crossing-
minimal region f? in the arrangement A(Γ, v). The region f? of a vertex v can be computed
by a breadth-first search in the dual graph A(Γ, v)?. Thus, the time-consuming steps to
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Figure 2 (a) Bloated dual A+ (blue) of an arrangement A (black). Inserting edges dual to a
segment s (b) and within a face (c).

compute f? are to construct the arrangement A(Γ, v) and then to build the dual A(Γ, v)?.
Instead of computing the dual A(Γ, v)? we construct a so-called bloated dual A(Γ, v)+. The
advantage of this approach is that it suffices to compute the set of intersecting segments in
A(Γ, v) to construct A(Γ, v)+ and it is not necessary to compute the arrangement A(Γ, v)
itself, i.e., the exact coordinates of each intersection.

Let S be a set of line segments and let A be the arrangement of S. A bloated dual of A
is a graph A+ that has the following properties (compare Figure 2a):
(i) each edge e incident to a face f corresponds to a vertex vf

e in A+,
(ii) if two distinct segments s, s′ ∈ S of f have a common intersection on the boundary of

f , then vf
s v

f
s′ ∈ E(A+), and

(iii) for two distinct faces f, g sharing a common segment s, there is an edge vf
s v

g
s ∈ E(A+).

Note that given a crossing-minimal face and vf
s0
, the geometric representation of f has to

be computed in order to compute a crossing-minimal position p ∈ f . Further a vertex vf
s0

belongs to a cycle vf
s0
, vf

s1
, . . . vf

sk
. Then, the geometric representation of the boundary of f

can be computed by intersecting the segments si and si+1, where we set k + 1 = 0. In the
following, we will show that it is sufficient to know the order in which the segments in S
intersect to construct the bloated dual. Thus, exact number types only have to be used to
determine the order of two segments whose intersections with a third segment s have a small
distance on s.

We construct the bloated dual of A in two steps. First, we insert all vertices vf
s , v

g
s and

the corresponding edge vf
s v

g
s . In the second step, we insert the remaining edges vf

s v
f
s′ within

a face f . For a compact description we assume that no intersection point of two segments is
an endpoint of a segment. We define the source of s and target of s to be the lexicographically
smallest and largest point on s, respectively. We direct each segment s from its source to its
target.

Let p1, p2, . . . , pl be the intersection points on a segment s in lexicographical order. These
intersection points correspond to a set of left faces fL

1 , f
L
2 , . . . , f

L
l+1 and to a set of right faces

fR
1 , f

R
2 , . . . , f

R
l+1, such that fL

i and fR
i share parts of their boundary; see Figure 2b. Thus,

we can associate a set of vertices vL
i , v

R
i , 2 ≤ i ≤ l+ 1, with s, and add the edges vL

i v
R
i to A+.

Note that only the order and not the actual coordinates of the points p1, . . . , pl has to be
known to insert the edges. Thus, given the set of segments that intersect s, an exact number
type is only necessary to determine the order of two segments si and sj whose intersection
points pi and pj on s have a small distance.

We now add the remaining edges within a face f . Let S′ = {s1, . . . , sk} ⊆ S be the set
of segments that intersect s in pi; see Figure 2c. The two segments sL, sR ∈ S′ that lie
on the boundary of fL

i and fR
i can be determined as follows. To find the segment sL, we
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Figure 3 Comparing the running time of two approaches (orange Precise, blue Bd) to compute
the crossing minimal region. Each point corresponds to a graph G. The x-axis shows the number of
edges of G. The y-axis depicts the running time in seconds to compute the crossing minimal regions
for all vertices of G.

distinguish two cases. First, assume that there exists a segment s′ ∈ S′ whose source is left
of s. Observe that if there is a segment s′′ whose target is left of s, the segment s′′ cannot
be the segment sL. Thus, we assume without loss of generality that all sources of segments
in Si

s are left of s. Then a segment s′ ∈ S′ is the segment sL if and only if the segment s′
and each segment s′′ ∈ S′ \ {s′} form a right turn. Now consider the case that there is no
segment whose source is left of s. Then a segment s′ is sL if and only if the segment s′ and
each segment s′′ ∈ S′ \ {s′} form a left turn. The segment sR can be determined analogously.

Implementation Details. We give some implementation details which allow us to efficiently
implement the construction of the bloated dual. We use the index of a vertex to decide
whether it is left or right of s, i.e., vertices with an odd index are left of s and vertices with
an even index are right of s. The fact that each vertex of A+ has degree at most 3 allows
us to represent A+ as a single array B of size 3n, where n is the number of vertices of A+.
The vertices incident to a vertex vi occupy the cells B[3i], B[3i+ 1] and B[3i+ 2]. Moreover,
each pair of segments in S can be handled independently to construct the bloated dual. This
enables a parallelization over the segments in S.

3.1 Evaluation of the Running Time
In this section, we compare the running time of the two approaches to compute the crossing-
minimal region of a vertex. We refer with Precise to the approach that uses CGAL to
compute the crossing minimal region and with Bd to the approach based on the bloated
dual. In order to compute all intersecting segments, we use a naive implementation of a
sweep-line algorithm [4]. In this approach all segments within a specific interval are pairwise
checked for an intersection. This has the advantage that the computation is independent of
the coordinates of the intersection.

The experimental setup is as follows. Given a drawing Γ of a graph G, we are interested
in the running time of moving all vertices of a graph to their crossing-minimal positions.
Therefore, we measure the running time of computing the crossing-minimal regions of all
vertices. In order to guarantee the comparability of the two approaches, we use the same
vertex order and only compute the crossing-minimal region but do not update the positions of
the vertices. We use the same set of benchmark graphs used in [21]: North1, Rome1, graphs

1 http://graphdrawing.org/data.html

ESA 2019

http://graphdrawing.org/data.html


76:6 Geometric Crossing Minimization

0 50 100 150 200
104

106

108

adjnoun c.neural c.metabolic

Figure 4 The x-axis shows the vertex-degree and the y-axis the number of intersecting edges in
the arrangement A(Γ, v). The y-axis is in log-scale.

that have Community structure, and Triangulations on 64 vertices with an additional 10
random edges. For each graph class, 100 graphs were selected uniformly at random. We use
the implementation of Stress [12] provided by Ogdf [7] (snapshot 2017-07-23) to compute
an initial layout of the graphs.

The plots in Figure 3 shows the results of the experiments. Each point in the plot
corresponds to the running time of computing all crossing-minimal region of a single graph.
The plot shows that the Bd implementation is considerably faster than the Precise im-
plementation. For each graph class, we achieve on average a speed-up of at least 20. The
minimum speed-up on the North graphs is 8. For each graph class, the speed-up is at least
18 for at least 75 out of 100 instances.

4 Random Sampling

The worst-case running time of computing the crossing-minimal region of a vertex v is
super-quadratic in the size of the graph, see Theorem 1. Figure 4 shows the number of
intersecting segment in the arrangement A(Γ, v) compared to the vertex-degree of v, for
vertices of three selected graphs with at most 2 133 edges, compare Table 1. For these graphs
the arrangement already contains up to 440 685 519 intersecting segments. Indeed, we were
not able to compute the number of intersections for all vertices of the graph c.metabolic,
since the algorithm ran out of memory first. Due to the high number of intersections in
graphs with a high number of edges or a large maximum vertex-degree, it is for these graphs
infeasible to compute a crossing-minimal position of a vertex. This motivates the following
question: Is a small subgraph of G sufficient to considerably reduce the number of crossings
in a given drawing?

To address this question, we follow the vertex-movement approach. Let Γ0 be a drawing
of G and let v1, v2, . . . , vn be an ordered set of the vertices V of G. For each vertex vi we
obtain a new drawing Γi from the drawing Γi−1 by moving vi to a new position p?

i . To
compute the new position we consider a primal sampling approach, i.e., a sampling of points
in the solution space R2, and a dual sampling approach, i.e., a sampling of edges that induce
constraints to the solution space.

More formally, we consider the following approach to compute a new position of a single
vertex vi. Let Si ⊂ E be a uniform random subset of the edges of G and let V (Si) ⊂ V be the
vertices that are incident to an edge in Si. The graph G|Si

= (V (Si)∪N(vi)∪{vi}, Si∪E(vi))
induces a drawing Γ|Si in Γi−1. Let Ri be the crossing-minimal region of vi with respect to
the drawing Γ|Si

. Recall that for Si = E the region Ri has the property that cr(Γ|Si
[vi 7→
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p], vi) = cr(Γ|Si [vi 7→ q], vi) for any two points p, q ∈ Ri, compare Section 2. If Si is a strict
subset of E, then Ri does not necessarily have this property anymore. For this reason, let
Pi ⊂ Ri be a set of uniform random points and let p?

i ∈ Pi∪{p′i} be the point that minimizes
cr(Γ[v 7→ p?

i ], vi), where p′i is the position of vi in Γi−1.
This remainder of this section is organized as follows. First, we analyze the dual sampling

from a theoretical perspective (Section 4.1), followed by an experimental evaluation that
compares the primal to the dual sampling (Section 4.2). Finally, based on the insights
from this evaluation, we introduce in Section 4.3 a weighted sampling approach that is less
restrictive than the dual sampling.

4.1 Approximating the Co-Crossing Number of a Vertex
In this section we study the dual sampling approach, i.e., the sampling of edges, with tools
introduced in the context of the theory of VC-dimension. A thorough introduction into the
theory of VC-dimension can be found in Matoušek’s Lectures on Discrete Geometry [18].
For a fixed vertex v, a drawing Γ is ε-well behaved if for each point p ∈ R2 and each vertex
u ∈ N(v), the edge uv crosses at most (1 − ε)|E| edges in the drawing Γ[v 7→ p]. The
co-crossing number co-cr(Γ, v) of a vertex v is the number of edge pairs e ∈ E and uv ∈ E
that do not cross. We show that given an ε-well-behaved drawing Γ of a graph G = (V,E)
and a degree-k vertex v, a random sample S ⊂ E of size Θ(k log k) enables us to compute a
position q? whose co-crossing number is a (1− δ)-approximation of the co-crossing number
of a vertex v. Note that we are not able to guarantee that a large co-crossing number of a
vertex v implies a small crossing number of v. On the other hand, the co-crossing number is
of interest for a variety of (sparse) graph. For example, drawings that contain many triangles
are ε-well-behaved, since every line intersects at most two segments of a triangle.

A set system is a tuple (X,F) with a base set X and F ⊆ 2X . In the following, we assume
X to be finite. For some parameters ε, δ ∈ (0, 1], a set S ⊆ X is a relative (ε, δ)-approximation
for the set system (X,F) if for each R ∈ F the following inequality holds.

∣∣∣∣ |S ∩R||S|
− |R|
|X|

∣∣∣∣ ≤ δmax{ |R|
|X|

, ε} (1)

The proof of the following proposition and of proofs of statements that are marked with
(?) can be found in the appendix of the full version.

I Proposition 2 (?). For ε, δ ∈ (0, 1], let S be an (ε, δ)-approximation of the set system
(X,F). If every R ∈ F has size at least ε|X| then Equation (1) can be rewritten as follows:

(1− δ) |R| ≤ |X| |S ∩R|
|S|

≤ (1 + δ) |R| .

Let F|A = {R ∩ A | R ∈ F} be the restriction of F to a set A ⊆ X. A set A ⊆ X is
shattered by F if every subset of A can be obtained by an intersection of A with a set R ∈ F ,
i.e., F|A = 2A. The VC-dimension of a set system (X,F) is the size of the largest subset
A ⊆ X such that A is shattered by F [25].

I Theorem 3 (Har-Peled and Sharir [15], Li et al. [17]). Let (X,F) be a finite set system with
VC-dimension d, and let δ, ε, γ ∈ (0, 1]. A uniform random sample S ⊆ X of size

Θ
(
d · log ε−1 + log γ−1

εδ2

)
is a relative (ε, δ)-approximation for (X,F) with probability (1− γ).
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For a vertex u ∈ N(v), let Euv(Γ) = {e ∈ E | cr(Γ, e, uv) = 0} denote the set of edges
that are not crossed by the edge uv in Γ. Then we have co-cr(Γ, v) =

∑
u∈N(v)

∣∣∣Euv(Γ)
∣∣∣.

Moreover, let Euv(p) = Euv(Γ[v 7→ p]). Then the set Fuv =
⋃

p∈R2

{
Euv(p)

}
contains for

each drawing Γ[v 7→ p] the set of edges that are not crossed by the edges uv, i.e, Euv(p). In
particular (E,Fuv) is a set system and we will prove that it has bounded VC-dimension.
This allows us to approximate the number of edges that are not crossed by the edge uv. We
facilitate this to approximate the co-crossing number of a vertex for ε-well behaved drawings.

I Lemma 4. The VC-dimension of the set system (E,Fuv) is at most 8.

Proof. Recall that that vertex u has a fixed position. Let BD(u, e) be the boundary of the
visibility region of u and the edge e ∈ E. Let A denote the arrangement of all boundaries
BD(u, e), e ∈ E. Let F be the set of faces in A. Note that by Lemma 3.1 in [21] for every
two points p, q ∈ f the sets Ep and Eq of edges that have a non-empty intersection with
the edge uv when v is moved to p and q, respectively, coincide. Hence, the set Ef ⊆ E

of edges that cross the edge uv, in the drawing obtained from Γ where v is moved to an
arbitrary position in f , is well defined. Thus, the number of faces |F | is an upper bound
for
∣∣∣Fuv|A

∣∣∣ for every A ⊂ E. Note that there may be subsets of E that are represented by
more than one face. Moreover, observe that the visibility region VR(u, e) is the intersection
of three half-planes. Let l1e , l2e , l3e be the supporting lines of these half-planes and let A′ be
the arrangement of lines lie, e ∈ E. Hence, the number of faces in the arrangement A′ of 3m
lines is an upper bound for |F |, with m = |E|. The number of faces |F ′| of A′ is bounded by
f(m) := 3m(3m− 1)/2 + 1 [20]. Thus, it is not possible to shatter a set A ⊂ E if the number
of faces |F ′| is smaller than the number of subsets of A. The largest number for which the
equality 2m ≤ f(m) holds is between 8 and 9. Since 2m grows faster than f(m), the largest
set that can possibly be shattered has size at most 8. J

Due to Proposition 2 and Theorem 3 a relative (ε, δ)-approximation Su of (E,Fuv) allows
us to approximate the number of edges that are not crossed by the edge uv. In the following
we show that we can approximate the co-crossing number of a vertex v in any drawing
Γ[v 7→ p] if we are given a relative (ε, δ)-approximation Su for each vertex u that is adjacent
to v. The number |Euv(p) ∩ Su|/|Su| corresponds to the relative number of edges in Su that
are not crossed by the edge uv. Hence, the function λ(p) = |E|

∑
u∈U |Euv(p) ∩ Su|/|Su| can

be seen as an estimation of co-cr(p) = co-cr(Γ[v 7→ p], v).

I Lemma 5 (?). Let ε, δ ∈ (0, 1] be two parameters and let Γ be an ε-well behaved drawing
of G. For every u ∈ N(v), let Su be a relative (ε, δ)-approximation of the set system (E,Fuv).
Then (1− δ) co-cr(p) ≤ λ(p) ≤ (1 + δ) co-cr(p) holds for all p ∈ R2.

Assume that ε, δ, γ ∈ (0, 1) are constants. Lemma 5 shows that k independent samples Su

of constant size approximate the co-crossing number of v. By slightly increasing the number
of samples, we can use a single set S for all neighbors u. This reduces the running time from
O(k3 log k) to O(k2 log3 k).

I Lemma 6 (?). Let v be a degree-k vertex and let ε, δ, γ ∈ (0, 1] with γ ≤ 1/k. A uniformly
random sample S ⊆ E of size Θ

(
(log ε−1 + log γ−1)/(εδ2)

)
is a relative (ε, δ)-approximation

the set system (E,Fuv) with probability 1− kγ, for each uv ∈ E.

With Lemma 5 and Lemma 6 at hand, we have all the necessary tools to prove the
main theorem.
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I Theorem 7. Let ε, δ, γ ∈ (0, 1] be three constants and let G = (V,E) be a graph with a
ε-well behaved drawing Γ and let v ∈ V be a degree-k vertex. Let p? be the position that
maximizes co-cr(Γ[v 7→ p?], v). A (1− δ)-approximation of co-cr(Γ[v 7→ p?]) can be computed
in O

(
k2 log3 k

)
time with probability 1− γ.

Proof. Let γ′ = γ · k−1 and δ′ = δ/2. Let S ⊆ E be a uniformly random sample of size
Θ
(
(log ε−1 + log γ′−1)/(εδ′2)

)
. According to Lemma 6, for each uv ∈ E, the sample S is a

(ε, δ′)-approximation of the (E,Fuv) with probability 1− kγ′ = 1− γ.
According to Lemma 5 the expected number of crossing-free edges λ(p) is a (1 − δ)-

approximation of co-cr(p), i.e., (1 + δ′) co-cr(q) ≥ λ(q) ≥ (1 − δ′) co-cr(q). Let p? be the
position that maximizes co-cr(p) and let q? be the position that maximizes λ(q). Hence, we
have λ(q?) ≥ λ(p?). Observe that over δ′ > 0 the inequality (1− δ′)/(1 + δ′) ≥ 1− 2δ′ holds.
We use this to prove that co-cr(q?) ≥ (1− 2δ′) co-cr(p?).

co-cr(q?) ≥ 1
(1 + δ′)λ(q?) ≥ 1

(1 + δ′)λ(p?) ≥ 1− δ′

1 + δ′
co-cr(p?) ≥ (1− 2δ′) co-cr(p?)

Plugging in the value δ/2 for δ′ yields that co-cr(q?) is a δ-approximation of co-cr(p?).
Since the three parameters ε, δ, γ are constants, the size of the sample S is in Θ(log k).
Recall that the running time to compute the crossing-minimal position of v in a drawing
Γ is O

(
(kn+m)2 log (kn+m)

)
(Theorem 1). Thus the position q? can be computed in

O(k log k + log k)2 log(k log k + log k)) time, since m = |S| ∈ Θ(log k) and n ≤ 2m. The
following estimation concludes the proof.

O
(
k2 log2 k log(k log k)

)
= O

(
k2 log2 k log(k2)

)
= O(k2 log3 k) J

Note that the previous techniques can be used to design a δ-approximation algorithm for
the crossing number of a vertex. But this requires drawings of graphs where at least ε|E|
edges, i.e., Ω(|E|), are crossed. This restriction is not too surprising, since sampling the set
of edges can result in an arbitrarily bad approximation for a vertex whose crossing-minimal
position induces no crossings.

4.2 Experimental Evaluation
In this section we complement the theoretical analyses of the random sampling of edges
with an experimental evaluation. We first introduce our benchmark instances, followed by a
description of a preprocessing step to reduce trivial cases and a set of configurations that
we evaluate.

Benchmark Instances. We evaluate our algorithm on graphs from three different sources.
DIMACS The graphs from this classes are selected from the 10th Dimacs Implementation

Challenge - Graph Partitioning and Graph Clustering [2].
Sparse MC Inspired by the selection of benchmark graphs in [19], we selected a few arbitrary

graphs from the Suite Sparse Matrix Collection (formerly known as the Florida Sparse
Matrix Collection) [9].

k-regular For each k = 3, 6, 9 we computed 25 random k-regular graphs on 1000 vertices
following the model of Steger and Wormald [23].

Preprocessing. Some of the benchmark graphs contain multiple connected components.
Moreover, we observed that the Stress layout introduces crossings with edges that are
incident to a degree-1 vertex. In both cases, these crossings can be removed. Therefore, we
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reduce the benchmark instances so that they do not contain these trivial cases as follows.
First, we evaluate only the connected component GC of each graph G that has the highest
number of vertices. Further, we iteratively remove all vertices of degree 1 from GC .

The vertex-movement approach takes an initial drawing of a graph as input. Note that
the experimental results in [21] showed that drawings obtained with Stress have the smallest
number of crossings compared to other energy-based methods implemented in Ogdf. In
order to avoid side effects, we first computed a random drawing for each graph GC where
each coordinate is chosen uniformly at random on a grid of size m × m. Afterwards we
applied the Stress method implemented in Ogdf [7] (snapshot 2017-07-23) to this drawing.

Configurations. The previously described approach moves the vertices in a certain order.
We use the order proposed in [21], i.e, in descending order with respect to the function
cr(Γ0, vi)2, vi ∈ V , where Γ0 is the initial drawing. The computation of the new position p?

i

of a vertex vi depends on three parameters (|Si|, |Pi|,K). The parameter K is a threshold on
the degree ki of vi, since we observed in our preliminary experiments, that in case that ki is
large, 128GB of memory are not sufficient to compute the crossing-minimal region. Note that
in case that |Si| is constant the running time to compute Ri is O((ki · n′)2 logn′) = O(k2

i ),
where n′ = |V (S)| ∈ O(|S|). We handle vertices of degree larger than K, as follows. Let
N1 ∪ · · · ∪Nl be a partition of the neighborhood N(v) of v with l = |N(v)|/K. Further, let
u1, u2, . . . , uk be a random order of N(v), then Nj contains the vertices ua with j ≤ a ≤ j+K.
For each j, we compute a random sample Sj

i and a crossing-minimal position q?
j of vertex

v with neighborhood Nj with respect to Sj
i . The new position p?

i of vi is the position that
minimizes cr(Γ[vi 7→ q?

j ], vi).
We select the same parameters for each vertex and thus denote the triple by (|S|, |P |,K).

We expect that with an increasing number |S| the number of crossings decreases. The sample
size |S| = 512, was the largest number of samples such that we are able to compute a final
drawing of our benchmark instances in reasonable time. As a baseline we sample 1000 points
in the plane. Thus, we evaluate the following two configuration, S512 = (512, 1, 100) and
S0 = (0, 1000,∞). Finally, we restrict the movement of a single vertex to be within an
axis-aligned square that is twice the size of the smallest axis-aligned squares that entirely
contains Γ0.

Evaluation. Table 1 lists statistics for the Dimacs and the Sparse MC graphs. In particular
the number of crossings of the initial drawing (Stress) and the drawing obtained by the S512
and S0 configurations. Furthermore, we report the running times for the two configurations.
Since we use an external library (Ogdf) to compute the initial drawing, the reported times
do not include the time to compute the initial drawing. Note that Stress required at most
0.9min to complete on the Dimacs graph and 2.3min on the Sparse MC graphs. Since the
size of the arrangement A(Γ, v) depends on the degree of v, the overall running time varies
with the number of vertices and the average degree. Compare, e.g., c.metabolic to c.neural,
or mk9-b2 to bcsstk08. Moreover, the commanche graph shows that the running time of S0
is not necessarily smaller than the running time of S512. For each point p ∈ P the number
of crossings of edges incident to v in Γ[v 7→ p] have to be counted. Since the commanche
graph contains over 11 000 edges, the S512 configuration with |P | = 1 is faster than the S0
configuration, which has to count the number of crossings for 1 000 points.

Now consider the number of crossings in the initial drawing (Stress) and in the drawing
obtained by the S512 configuration. Since we move a vertex only if it decreases its number
of crossings, it is expected that the number of crossings decreases on all graphs. For most
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Table 1 Statistics for the Dimacs and Sparse MC graphs. n, m, and ∆ correspond the number
of vertices, edges and the mean vertex-degree, respectively.

n m ∆ crossings time [min]
Stress S512 S0 S512 S0

Dimacs
adjnoun 102 415 8.14 6 576 3 775 4 468 0.11 0.09
football 115 613 10.66 6 865 3 568 4 030 0.14 0.17
netscience 352 887 5.04 1 724 583 814 0.53 0.31
c.metabolic 445 2 017 9.07 113 117 55 714 63 028 11.29 2.29
c.neural 282 2 133 15.13 128 068 86 641 90 920 5.23 2.07
jazz 193 2 737 28.36 223 990 143 647 153 040 5.22 3.31
power 3 353 5 006 2.99 7 622 6 854 6 293 4.56 10.74
email 978 5 296 10.83 504 144 342 020 357 272 37.12 12.48
hep-th 4 786 12 766 5.33 836 809 546 780 638 069 72.86 78.24
Sparse MC
1138_bus 671 991 2.95 657 402 467 0.41 0.33
ch7-6-b1 630 1 243 3.95 64 055 24 928 26 055 6.54 0.79
mk9-b2 1 260 3 774 5.99 412 397 248 884 252 198 20.33 7.14
bcsstk08 1 055 5 927 11.24 455 069 342 996 344 644 67.30 18.70
mahindas 1 258 7 513 11.94 1 463 437 933 247 1 042 787 68.17 24.09
eris1176 892 8 405 18.85 1 682 458 1 030 881 1 087 605 77.09 27.33
commanche 7 920 11 880 3.00 6 332 6 239 6 146 6.52 56.75

graphs, the S512 configuration decreases the number of crossings by over 30%. In case of
the ch7-6-b1 and the netscience graph the number of crossings are even decreased by over
60%. Exceptions are the bcsstk08, power and commanche graphs with 24%, 10% and 1.4%
respectively. Comparing the number crossings obtained by S512 to the configuration S0, S0
results in fewer crossings only on two graphs (power, commanche).

Observe that the power, 11138_bus, ch7-6-b1 and commanche graphs all have an average
vertex-degree of roughly 3.0. The comparison of the number of crossing obtained by S512 and
S0 is not conclusive, since S0 yields fewer crossings on the power and commanche graphs and
S512 on the remaining two. In order to be able to further study the effect of the (average)
vertex degree we evaluate the number of crossings of k-regular graphs. We use the plots
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Figure 5 Number of crossings of the k-regular graphs.
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in Figure 5 for the evaluation. Each point (xG, yG) corresponds to a k-regular graph G.
The color encodes the vertex-degree. Let ΓA and ΓB be two drawings of G obtained by an
algorithm A and B, respectively. The x-value xG corresponds to the number of crossings
in ΓA in thousands, i.e., cr(ΓA)/1000. The y-value yG is the quotient cr(ΓB)/ cr(ΓA). The
titles of the plots are in the form (A,B) and encode the compared algorithms. For example
in Figure 5a algorithm A is Stress and B is S0. For example, the Stress drawings of the
3-regular graphs have on average 12 487 crossings. Drawings obtained by S0 have on average
17% less crossings, i.e., 10 402. On the other hand, S512 decreases the number of crossings
on average by 20%. For k = 6, 9, S0 and S512 both reduce the number of crossings by 25%.
In particular, Figure 5c shows that for k = 6, 9 it is unclear, whether S512 or S0 computes
drawings with fewer crossings.

4.3 Weighted Sampling
For some graphs, the previous section gives first indications that sampling a set of edges
yields a small number of crossings compared to a pure sampling of points in the plane. In
particular Figure 5c indicates that the edge-sampling approach does not always have a clear
advantage over sampling points in the plane. One reason for this might be that sampling
within the set of points Pi in the region Ri is too restrictive. Observe that the region Ri

is only crossing-minimal with respect to the sample S and does not necessarily contain the
crossing-minimal position p?

i of the vertex vi with respect to all edges E. On the other hand,
sampling the set of points Pi in R2 does not use the structure of the graph at all. This
motivates the following weighted approach of sampling points in R2.

For a set S ⊂ E, let crj be the number of crossings of the vertex vi with respect to Γ|S ,
when vi is moved to a cell cj of the arrangement A(Γ|S , vi). Let M be the maximum of all
crj . We select a cell cj with the probability 2M−crj/

∑
k 2M−crk . Within a given cell, we

draw a point uniformly at random. Note that in case that there are exactly n cells such
that cell cj induces j crossings, the probability that the cell c0 is drawn converges to 1/2
for n→∞.

Benchmark Instances, Preprocessing & Methodology. We use the same benchmark set
and the same preprocessing steps as described in Section 4. In order to obtain more reliable
results, we perform 10 independent iterations for each configuration on the Dimacs and
Sparse MC graphs. Since the k-regular graphs are uniform randomly computed, they are
already representative for their class. Therefore, we perform only single runs on these graphs.

Configuration. We compare the following three configurations. R0 refers to the uniform
random sampling of points in R2 with the parameters (|S|, |P |,K) = (0, 1000,∞), R512 to
the restricted sampling in Ri with the parameters, (512, 1000, 100), andW512 to the weighted
sampling in R2 with the parameters (512, 1000, 100). The configurations are selected such
that R0 and R512 differ only in a single parameter, i.e., in the number of sampled edges. The
only difference between R512 and W512 is the sampling strategy. Note that the parameters
of R0 and S0 coincide, but not the parameters of S512 and R512.

Evaluation. Since we executed 10 independent runs of the algorithm on each graph, Table 2
lists the mean and standard deviation of the computed number of crossings for each graph.
For each graph, we marked the cell with the lowest number of crossings in green and the
largest number in blue. For each graph, we used the Mann-Witney-U test [22] to check the
null hypothesis that the crossing numbers belong to the same distribution. The test indicates
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Table 2 Mean and standard deviation (std) of the number of crossing categorized by configuration.
For each graph the configuration with the lowest and highest number of crossings in marked.

R0 R512 W512
mean std mean std mean std

Dimacs
adjnoun 4 445.0 39.55 3 655.7 62.96 3 951.2 19.53
football 3 973.6 97.93 3 350.0 83.38 3 247.0 73.84
netscience 819.0 30.73 497.1 28.78 437.8 12.87
c.metabolic 62 170.4 760.47 56 032.3 1 227.23 62 987.9 1 907.64
c.neural 89 744.3 1 239.22 86 500.8 1 364.5 99 426.1 1 258.98
jazz 152 013.8 1 930.13 147 387.1 3 134.15 213 019.4 1 696.07
power 6 301.1 33.51 4 512.8 63.09 3 912.5 30.97
email 356 583.4 3 512.0 341 503.8 3 480.74 351 168.7 2 624.18
hep-th 640 515.2 3 443.22 515 109.1 3 983.23 392 189.7 1 551.53
Sparse MC
1138_bus 474.6 13.25 342.9 12.91 247.6 9.8
ch7-6-b1 25 874.7 356.58 25 172.4 582.48 28 443.5 960.3
mk9-b2 251 360.9 1 514.05 245 447.4 2 914.18 228 794.5 2 069.96
bcsstk08 346 404.4 3 730.3 328 182.0 6 127.69 330 213.8 1 726.01
mahindas 1 036 745.7 11 494.88 936 889.0 11 207.34 1 105 850.9 10 185.51
eris1176 1 103 184.6 21 475.11 1 037 509.5 29 877.3 1 492 423.4 25 457.93
commanche 6 135.2 13.08 5 370.3 24.75 5 979.4 14.72

that we can reject the null hypothesis at a significance level of α = 0.01, for all graphs with
the exception of football, ch7-6-b1 and bcsstk08. First, observe that the R0 configuration
never computes a drawing with fewer crossings than R512. Including the football, ch7-6-b1
and the bcsstk08 graphs, 11 of the drawings with the fewest crossing were obtained from the
R512 configurations. Only 7 correspond to the W512 configuration. Table 1 shows that these
graphs have an average vertex-degree of at most 11. Moreover, the degree-distributions of
these graphs follow the power-law (compare full version). On the other hand, a few of the 8
graph where R512 outperforms W512 also have a small average vertex-degree.

We use Figure 6 to compare the effect of the vertex-degree on the number of crossings.
The plot follows the same convention as the plots in Figure 5. Observe that for each k, the
W512 configuration computes drawings with fewer crossings than R512. The improvement
decreases with an increasing k. The same observation can be made for the comparison of
W512 to R0 but not for the comparison for R512 to R0, which indicates that sampling the set
of points Pi within the region Ri is indeed too restrictive, at least on our k-regular graphs.

Overall our experimental evaluation shows that even with a naive uniform random
sampling of a set of points in the plane the number of crossings in drawings of Stress can
be reduced considerably. Using a random sample of a subset of the edges helps to compute
drawings with even less crossings. The mean-vertex degree and the degree-distributions
are good indicators for whether the restrictive or the weighted sampling of the point set Pi

results in a drawing with the smallest number of crossings.

ESA 2019
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Figure 6 Comparison of the number of crossing of the k-regular graphs computed by W512

and R512.

5 Conclusion

In our previous work we showed that the primitive operation of moving a single vertex
to its crossing-minimal position significantly reduces the number of crossings compared to
drawings obtained by Stress. In this paper we introduced the concept of bloated dual
of line arrangements, a combinatorial technique to compute a dual representation of line
arrangements. In our applications of computing drawings with a small number of crossings,
this technique resulted in a speed-up of factor of 20. This improvement was necessary to
adapt the approach for graphs with a large number of vertices and edges. On the other
hand, since the worst-case running time is super-quadratic, this improvement is not sufficient
to cope with large graphs. In Section 4 we showed that random sampling is a promising
technique to minimize crossings in geometric drawings. In Section 4.1 we proved that a
random subset of edges of size Θ(k log k) approximates the co-crossing number of a vertex
v with a high high probability. Further, we evaluated three different strategies to sample
a set of points in the plane in order to compute a new position for the vertex vi. First,
the evaluation confirms that the number of crossings compared to Stress can be reduced
considerably. Furthermore, sampling a small subset of the edges is sufficient to reduce the
number of crossings compared to a naive sampling of points the plane. Our evaluation
suggests that weighted sampling is a promising approach to reduce the number of crossings in
graphs with a low average vertex degree. Otherwise, the evaluation indicates that restricted
sampling results in fewer crossings.

The running time of the vertex-movement approach in combination with the sampling of
the edges mostly depends on the number of vertices. Since a single movement of a vertex
is not optimal anymore, two vertices can be moved independently. Thus, future research
should be concerned with the question whether a parallelization over the vertex set is able to
further reduce the running time while preserving the small number of crossings. Moreover,
we ask whether it is sufficient to move a small subset of the vertices to considerably reduce
the number of crossings.
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Abstract
The Feedback Vertex Set problem is a fundamental computational problem which has been
the subject of intensive study in various domains of algorithmics. In this problem, one is given an
undirected graph G and an integer k as input. The objective is to determine whether at most k
vertices can be deleted from G such that the resulting graph is acyclic. The study of preprocessing
algorithms for this problem has a long and rich history, culminating in the quadratic kernelization
of Thomasse [SODA 2010].

However, it is known that when the solution is required to induce a connected subgraph (such a
set is called a connected feedback vertex set), a polynomial kernelization is unlikely to exist and the
problem is NP-hard to approximate below a factor of 2 (assuming the Unique Games Conjecture).

In this paper, we show that if one is interested in only preserving approximate solutions (even
of quality arbitrarily close to the optimum), then there is a drastic improvement in our ability to
preprocess this problem. Specifically, we prove that for every fixed 0 < ε < 1, graph G, and k ∈ N,
the following holds.

There is a polynomial time computable graph G′ of size kO(1) such that for every c ≥ 1, any
c-approximate connected feedback vertex set of G′ of size at most k is a c ·(1+ε)-approximate
connected feedback vertex set of G.

Our result adds to the set of approximate kernelization algorithms introduced by Lokshtanov
et al. [STOC 2017]. As a consequence of our main result, we show that Connected Feedback
Vertex Set can be approximated within a factor min{OPTO(1), n1−δ} in polynomial time for
some δ > 0.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Approximation algorithms
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1 Introduction

Polynomial time preprocessing is one of the widely used methods to tackle NP-hardness
in practice, and the area of kernelization has been extremely successful in laying down a
mathematical framework for the design and rigorous analysis of preprocessing algorithms for
decision problems. The central notion in kernelization is that of a kernelization algorithm,
which is a preprocessing algorithm that runs in polynomial time and transforms a “large”
instance of a decision problem into a significantly smaller, but equivalent instance (called a
kernel). Over the last decade, the area of kernelization has seen the development of a wide
range of tools to design preprocessing algorithms, as well as a rich theory of lower bounds
based on assumptions from complexity theory [2, 6, 3, 15, 5, 9, 18, 7, 17]. We refer the
reader to the survey articles by Kratsch [19] or Lokshtanov et al. [20] for relatively recent
developments, or the textbooks [4, 8], for an introduction to the field.
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An “efficient preprocessing algorithm” in this setting is referred to as a polynomial
kernelization and is simply a kernelization whose output has size bounded polynomially in a
parameter of the input. The central classification task in the area is to classify any problem
as one which has a polynomial kernel, or as one that does not.

One fundamental class of problems for which polynomial kernels have been ruled out under
certain complexity theoretic hypotheses, is the class of “subgraph hitting” problems with
a connectivity constraint. It is well-known that placing connectivity constraints on certain
subgraph hitting problems can have a dramatic effect on their amenability to preprocessing.
A case in point is the classic Vertex Cover problem. This problem is known to admit a
kernelization whose output has O(k) vertices [4]. However, the Connected Vertex Cover
problem is amongst the earliest problems shown to exclude a polynomial kernel [7] (under a
complexity theoretic hypothesis) and this lower bound immediately rules out the possibility of
such a kernelization for numerous well-studied generalizations of it. Consequently, obtaining
a finer understanding of the impact of connectivity constraints on the limits of preprocessing
is an important objective in furthering the study of preprocessing techniques. This is
even more relevant when one intends to run approximation algorithms or heuristics on the
preprocessed instance.

Unfortunately, the existing notion of kernels, having been built around decision problems,
does not combine well with approximation algorithms and heuristics. In particular, in order
for kernels to be useful, one is required to solve the preprocessed instance exactly. However,
this may not always be possible and the existing theory of kernelization says nothing about
the inference of useful information from a good approximate solution for the preprocessed
instance. In order to facilitate the rigorous analysis of preprocessing algorithms in conjunction
with approximation algorithms, Lokshtanov et al. [22] introduced the notion of α-approximate
kernels. Informally speaking, an α-approximate kernelization is a polynomial-time algorithm
that, given an instance (I, k) of a parameterized problem, outputs an instance (I ′, k′) such
that |I ′|+ k′ ≤ g(k) for some computable function g and any c-approximate solution to the
instance (I ′, k′) can be turned in polynomial time into a (c · α)-approximate solution to the
original instance (I, k).

As earlier, the notion of “efficiency” in this context is captured by the function g being
polynomially bounded, in which case we call this algorithm, an α-approximate polynomial
kernelization. We refer the reader to Section 2 for a formal definition of all terms related to
(approximate) kernelization.

In their work, Lokshtanov et al. considered several problems which are known to exclude
polynomial kernels and presented an α-approximate polynomial kernelization for these
problems for every fixed α > 1. This implies that allowing for an arbitrarily small amount
of error while preprocessing can drastically improve the extent to which the input instance
can be reduced, even when dealing with problems for which polynomial kernels have been
ruled out under the existing theory of lower bounds. In particular, they showed that the
Connected Vertex Cover problem admits an α-approximate polynomial kernelization
for every α > 1. Their result provided a promising starting point towards obtaining a refined
understanding of the role played by connectivity constraints in relation to preprocessing for
covering problems on graphs.

In this paper, we consider one of the most natural generalizations of Connected Vertex
Cover, the Connected Feedback Vertex Set (CFVS) problem defined as follows. In
this problem, the input is a graph G and integer k (the parameter). The goal is to decide
whether or not there is a set S ⊆ V (G) of size at most k such that G[S] is connected and
G− S is acyclic? The set S is called a connected feedback vertex set of G.
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Misra et al. [23] were the first to study the CFVS problem from the point of view
of parameterized complexity and obtained a single-exponential fixed-parameter algorithm,
that is, an algorithm running in time 2O(k)nO(1), where n is the number of vertices in the
input. They also observed that a straightforward reduction from Connected Vertex
Cover implies that CFVS is also unlikely to admit a polynomial kernelization under
standard complexity theoretic hypotheses. This raises the natural question of the existence
of approximate kernelizations for this problem and the tradeoffs between preprocessing speed,
output size and loss in the quality of the preserved solution.

Our results

A formal definition of α-approximate kernels can be found in Section 2.

I Theorem 1. For every fixed 0 < ε < 1, Connected Feedback Vertex Set has a
(1 + ε)-approximate kernelization of polynomial size.

Note that the exponent in the size of our kernelization depends on ε.
The proof techniques we use in order to prove Theorem 1 also lead to a polynomial time

approximation for this problem (Theorem 3) via the following parameterized approximation.

I Theorem 2. There is an algorithm that given a graph G and k ∈ N, runs in polynomial
time and either correctly concludes that G has no connected feedback vertex set of size at
most k or returns a connected feedback vertex set of G of size kO(1).

As a direct consequence of Theorem 2, we obtain the following result.

I Theorem 3. There is a 0 < δ < 1 such that Connected FVS can be approximated within
a factor min{OPTO(1), n1−δ} in polynomial time.

Proof. By iteratively invoking Theorem 2 for k = 1, . . . , n, one can find the least k for which
the algorithm does not return a negative answer and returns a connected feedback vertex
set of the input graph of size at most kc for some fixed c > 0. Since OPT ≥ k, it follows
that the returned solution has size at most OPTc. Moreover, this algorithm always returns a
solution whose size is bounded by n. The theorem follows from fact that the approximation
ratio guaranteed by this algorithm is at most min{OPTc−1, n

OPT} ≤ n
1− 1

c . J

Our approximation result complements the classic result of Yannakakis [25] who showed
that it is NP-hard to approximate within a factor-O(n1−δ) (for any δ > 0) the minimum
number of vertices to delete from a graph such that the resulting graph is connected and
has a property Π which is hereditary, non-trivial, “interesting” on connected graphs, and is
determined by the blocks of the graph. In particular, this result holds if Π = acyclicity.

Related work on connected hitting set problems. Grigoriev and Sitters [16] studied the
design of approximation algorithms for the Connected Feedback Vertex Set problem
on planar graphs and obtained a Polynomial Time Approximation Scheme (PTAS), building
upon the result of Escoffier et al. [13] for Connected Vertex Cover. Eiben et al. [11]
obtained an approximate kernelization for the Connected H-hitting set problem where
H is a fixed set of graphs and the solution is a minimum set of vertices which induces a
connected subgraph and hits all copies of graphs in H, in G. Recently, Eiben et al. [12]
obtained approximate kernelizations for the Connected Dominating Set problem on
various sparse graph classes.
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2 Preliminaries

A set S ⊆ V (G) such that G− S is a forest is called a feedback vertex set of G. For a path
P , we denote by Vint(P ) the set of internal vertices of the path P . Similarly, we denote by
Vend(P ) the set of endpoints of P . Two paths P1 and P2 are said to be internally vertex
disjoint if Vint(P1) ∩ Vint(P2) = ∅. For a graph G, we denote by CC(G) the set of connected
components of G. For ease of presentation, we will abuse notation and interchangeably
refer to X ⊆ V (G) both as a vertex set and as a connected component of G if clear from
the context.

I Definition 4. Let G be a graph and x, y ∈ V (G). Let P be a set of internally vertex-disjoint
x-y paths in G. Then, we call P an x-y flow. The value of this flow is |P|.

Recall that Menger’s theorem states that for distinct non-adjacent vertices x and y, the
size of the smallest x-y separator is precisely the value of the maximum x-y flow in G.

Parameterized problems and (approximate) kernels. A parameterized problem Π is a
subset of Γ∗×N for some finite alphabet Γ. An instance of a parameterized problem consists
of a pair (x, k), where k is called the parameter. We assume that k is given in unary and
hence k ≤ |x|.

I Definition 5 (Kernelization). Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm
referred to as a kernelization (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in time
polynomial in |x| + k, a pair (x′, k′) ∈ Γ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π, and (b) max{|x′|, k′} ≤ g(k). If g(k) = kO(1) then we say that Π admits a
polynomial kernel.

I Definition 6 ([22]). A parameterized optimization (minimization or maximization) problem
is a computable function Π : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and a
solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the solution
s is Π(I, k, s).

Since we only deal with a minimization problem in this work, we state some of the
definitions only in terms of minimization problems when the definition for maximization
problems is analogous. The parameterized optimization version of Connected Feedback
Vertex Set is a minimization problem with the optimization function CFVS : Σ∗×N×Σ∗ →
R ∪ {∞} defined as follows.

CFVS(G, k, S) =
{

∞ if S is not a connected feedback vertex set of G,
min{|S|, k + 1} otherwise.

I Definition 7 ([22]). For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k
Π(I, k, s).

Consequently, in the case of Connected Feedback Vertex Set, we define

OPT(G, k) = min
S⊆V (G)

CFVS(G, k, S).



M.S. Ramanujan 77:5

I Remark 8 (Restricting our interest to solutions of size at most k). A reader encountering this
particular definition of parameterized optimization problems for the first time might find the
choice of k + 1 as a threshold a bit counter-intuitive because when one combines it with the
natural notion of approximate solutions in the most intuitive way, the size of the solution
would appear to always exceed k + 1, thus being normalized by this explicit threshold.

However, this definition is in fact equivalent (upto constant factors) to the more seemingly
natural definition and in addition allows us to define the problem we are tackling independently
of the (approximation factor of) algorithms for the problem. An additional point which we
encourage the reader to keep in mind is the following. We consider k as a threshold; for
solutions of size at most k we care about what their size is, while all solutions of size larger
than k are equally bad in our eyes, and are consequently assigned value k + 1. We point the
interested reader to Section 2.1, [22] and Section 3.2, [21] for an in-depth discussion of these
definitions and their motivations.
We now recall the other relevant definitions from [22] regarding approximate kernels.

I Definition 9 ([22]). Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate polynomial time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes a
map RA : Σ∗ × N→ Σ∗ × N. Given as input an instance (I, k) of Π the reduction algorithm
outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes as input
an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm, and
a solution s′ to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k) such that Π(I,k,s)

OPT (I,k) ≤ α ·
Π(I′,k′,s′)
OPT (I′,k′) .

The size of a polynomial time preprocessing algorithm A is a function sizeA : N → N
defined as sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

I Definition 10 ([22], α-approximate kernelization). An α-approximate kernelization (or
α-approximate kernel) for a parameterized optimization problem Π, and real α ≥ 1, is an
α-approximate polynomial time preprocessing algorithm A for Π such that sizeA is upper
bounded by a computable function g : N→ N. We say that A is an α-approximate polynomial
kernelization if g is a polynomial function.

I Definition 11 ([22]). A polynomial size approximate kernelization scheme (PSAKS) for a
parameterized optimization problem Π is a family of α-approximate polynomial kernelization
algorithms, with one such algorithm for every α > 1.

Least Common Ancestor-Closure of sets in trees. For a rooted tree T and vertex set
M ⊆ V (T ) the least common ancestor-closure (LCA-closure) LCA-closure(M) is obtained
by the following process. Initially, set M ′ = M . Then, as long as there are vertices x and
y in M ′ whose least common ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M . The following folklore lemma summarizes
the properties of LCA-closures which we will use in this paper.

I Lemma 12. Let T be a rooted tree, M ⊆ V (T ) and M ′ = LCA-closure(M). Then
|M ′| ≤ 2|M | and for every connected component C of T −M ′, |N(C)| ≤ 2. Moreover, the
number of connected components of T −M ′ which have exactly 2 neighbors in M ′ is at
most |M ′| − 1.

I Observation 2.1. Let T be a rooted tree and T ′ a subtree of T with a unique neighbor in
V (T ) \ V (T ′). If M ⊆ V (T ) \ V (T ′), then LCA-closure(M) is disjoint from V (T ′).
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3 Overview of our Techniques

This section is devoted to an overview of the proof techniques we use to obtain our results.
Fix 0 < ε < 1 and let (G, k) be the input. Our initial objective is to identify a partition
(A,B, C) of V (G), where |B| = kO(1), G−B is acyclic and there are no edges between A and
C. In other words, B separates A and C. Moreover, we will be able to prove that the vertices
in C only play the role of “connectors” and removing them from a connected feedback vertex
set S of G may disconnect G[S], but will still leave a subset of S which hits all cycles in
G. On the other hand, the interaction of vertices in A with the solution S could be much
more complex. However, the number of connected components of G[A] will be shown to be
kO(1) and these can be shown to have a highly structured neighborhood in B. For instance,
we will be able to ensure (after a small modification to G) that the neighborhood of any
connected component of G[A] can be partitioned into 2 sets T and J such that T is part of
every feedback vertex set of G and |J | = 2. For every such component, the sets T and J can
be efficiently computed from A.

Once we have this partition in hand, we focus on each connected component of G[A]
separately and from each component we identify a set of kO(f(1/ε)) vertices which, together
with B and a kO(f(1/ε)) sized subset of C cover a (1 + ε)-approximate solution. Finally, the
remaining vertices are discarded by either deleting or contracting edges as appropriate. We
note that the high level approach of trying to identify “hitters” and “connectors” among the
vertices is quite natural and has been used in other work [22, 11, 12]. However, the structure
is much more complex in our case due to the highly non-local nature of the forbidden
structures (cycles) and the fact that there is no clear way of completely separating the two
tasks of hitting cycles and connectivity. In fact, the main difficulty arises from the need
to detect and control subsets of vertices which are critical with respect to both objectives
simultaneously.

We now proceed to a slightly more detailed overview of the steps in our algorithm. Let
δ be a positive constant such that (1 + δ)3 ≤ 1 + ε. We also fix a constant ρ = 2O(1/δ)2

satisfying certain appropriate inequalities. As mentioned, our PSAKS for Connected
Feedback Vertex Set has two main parts: a structural decomposition and a reduction
using marking rules.

3.1 Structural Decomposition
The first part of our PSAKS is the decomposition given by Lemma 13 below(also see Figure 1).
To get the required partition (A,B, C) we set B = H ∪X ∪Z where H,X,Z are as defined in
the statement of Lemma 13. We then set C to be the set of vertices in connected components
of G− (H ∪X ∪ Z) which are adjacent to at most one vertex of Z and A to be the rest of
the vertices in G− (H ∪X ∪ Z).

I Lemma 13. There is a polynomial-time algorithm that given a pair (G, k), either correctly
concludes that G has no connected feedback vertex set of size at most k or outputs pairwise
vertex disjoint subsets H,X,Z ⊆ V (G) satisfying the following properties.
1. |H| ≤ (1 + δ

2 )k, |X| = O(k), |Z| = O(k6).
2. H ∪X is a feedback vertex set of G and if G has a connected feedback vertex set S of size

at most k, then there is one of size at most (1 + δ
2 )|S| that contains H.

3. Every connected component of the graph G̃Z = G− (H ∪X ∪ Z) is adjacent to at most
2 vertices of Z and there are O(k6) connected components in G̃Z which are adjacent to
exactly 2 vertices of Z.
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4. No vertex of X has a neighbor in a connected component of G̃Z which is adjacent to 2
vertices of Z and moreover, every vertex in any such component is adjacent to vertices in
O(1/δ) connected components of G[H].

5. For every connected component D in the graph G̃Z with at most 1 neighbor in Z and for
every minimal feedback vertex set S of G−H of size at most 2k, |N(D) \ (H ∪ S)| ≤ 1.

Proof. (Sketch for the construction of H,X,Z). We only sketch the construction of these
sets here.

Step 1: This step is inspired by Fomin et al. [14]. However, since we need to handle
connectivity constraints, we need to enhance the output of this step further with several
problem specific features. Let H = {v1, . . . , vr} be a maximal set such that for every
i ∈ [r], there is a vi-flower of order 2k+ 1 (2k+ 1 cycles which are pairwise disjoint except
for intersecting at vi) in G−Hi−1, where Hi = {v1, . . . , vi} and H0 = ∅. It is known that
there is a polynomial time algorithm that, given G, v, ` (assuming v is not incident on a
self-loop) either outputs a v-flower of order ` or a set X ⊆ V (G) \ {v} of O(`) vertices
intersecting every cycle containing v [24]. Hence H can be computed in polynomial time.
Furthermore, it can be observed that every vertex in H is part of every feedback vertex
set of size at most 2k. Therefore, if |H| > k, then we may correctly conclude that G has
no feedback vertex set of size at most k.
Let Q be a feedback vertex set of G computed using the 2-approximation algorithm of
Bafna et al. [1]. If |Q| > 2k, then we may correctly conclude that G has no feedback
vertex set of size at most k. Otherwise, H ⊆ Q and we define X = Q \H. Due to the
maximality of H, it follows that for every x ∈ X, there is a set Px which is disjoint from
x, has size O(k) and intersects every cycle containing x in G−H.
For every pair x, y ∈ X such that there is no x-y flow of value 2k + 3 in the graph
Gxy = G − (H ∪ (X \ {x, y})), we denote by Zxy an arbitrarily chosen minimum x-y
separator in the graph G′xy, where G′xy = Gxy if (x, y) /∈ E(G) and G′xy = Gxy − (x, y)
otherwise. By Menger’s Theorem, for every such pair x, y, the size of the set Zxy is
at most 2k + 2. We define J = (

⋃
x∈X Px ∪

⋃
x,y∈X Zxy) \ (X ∪ H), where for every

pair x, y ∈ X such that there is an x-y flow of value at least 2k + 3 in the graph
Gxy = G− (H ∪ (X \ {x, y})), Zxy is defined to be ∅. We now define Y = LCA-closure(J)
with the LCA-closure taken in the graph G−(H∪X) where each tree is arbitrarily rooted.
Since |H| ≤ k and |X| ≤ 2k, it follows that |J | = O(k3) and Lemma 12 implies that
|Y | = |LCA-closure(J)| = O(k3), every connected component of the graph G−(H∪X∪Y )
is adjacent to at most 2 vertices of Y and there are O(|Y |) of these components which
are adjacent to exactly 2 vertices of Y .

Step 2: Since Step 1 guarantees that there are no cycles in G− (H ∪ Y ∪ (X \ {x})) for any
x ∈ X we conclude that no vertex of X can have 2 neighbors in any connected component
of G̃Y = G− (H ∪X ∪Y ). Let R denote the set of all connected components of G̃Y which
have no neighbors in Y , let Q denote the set of all connected components of G̃Y which
have exactly 1 neighbor in Y , and let W denote the set of all connected components of
G̃Y which have exactly 2 neighbors in Y .
For every x ∈ X and y ∈ Y , we define the set Jxy as the set of components of G̃Y
which are adjacent to x and whose neighborhood in Y is exactly {y}. We say that the
set Jx,y is rich if |Jxy| ≥ 2k + 3 and poor otherwise. We call a connected component
in Q poor if it appears in at least one poor set and rich otherwise. Let Qpoor denote
the set of poor components in Q. By definition, the size of the set Qpoor is bounded by
|X| · |Y | · (2k+2) = O(k5). Let P1 denote the neighborhood of X in the set of components
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H XZ

Type 0 ∪ Type 1

Type 2

Figure 1 An illustration of the decomposition guaranteed by Lemma 13. The (blue) circles below
the set (H ∪ Z ∪X) represent components of G− (H ∪ Z ∪X) with 2 neighbors in Z. Note that
there are no edges between X and such a component.

in Qpoor. Since every vertex of X has at most 1 neighbor in each of these components,
the size of P1 is at most |X| · |Qpoor| = O(k6). Let P2 denote the neighborhood of X in
the set of components of G̃Y with exactly 2 neighbors in Y . Since there are only O(k3)
such components (from Step 1), the size of P2 is O(k4).

Finally, we define Z = LCA-closure(Y ∪ P1 ∪ P2) where the LCA-closure is taken in the
graph G− (H ∪X) with an arbitrary rooting of each tree. From Lemma 12, it follows
that |Z| = O(k6), every connected component of the graph G̃Z = G − (H ∪X ∪ Z) is
adjacent to at most 2 vertices of Z and there are O(k6) connected components in the
graph G̃Z which are adjacent to exactly 2 vertices of Z. Moreover, we will be able to
argue using flow arguments and the definition of rich/poor components that (i) no vertex
of X has a neighbor in a connected component of G̃Z which is adjacent to 2 vertices of Z
and (ii) for every connected component D in the graph G̃Z with at most 1 neighbor in Z
and for any minimal feedback vertex set S of G−H of size at most 2k, S contains all
but at most one vertex of N(D) \H.

Step 3: We will finally augment the set H by adding some more vertices. Specifically, we will
grow the set H by “buying a cheap set of vertices” as follows. As long as there is a vertex
v which is adjacent to at least d 2

δ e+ 1 connected components of G[H] and contained in a
connected component of G̃Z adjacent to 2 vertices of Z, we set H := H ∪ {v}. When
this process terminates, it must be the case that every vertex which is in a connected
component of G̃Z adjacent to 2 vertices of Z, has at most d 2

δ e neighboring components
of G[H]. A simple counting argument based on the fact that we repeatedly decrease the
number of connected components in G[H] shows that the blow-up in the size of H is at
most a δ/2 fraction of the original value of |H|. J

We call a component D of G̃Z a Type 0 component if |N(D)∩Z| = 0, a Type 1 component
if |N(D)∩Z| = 1 and a Type 2 component if |N(D)∩Z| = 2. Lemma 13 (5) implies that the
Type 0 and Type 1 components (which comprise the set C) only play the role of connectors
and Lemma 13 (3) guarantees that the number of Type 2 components (which comprise the
set A) is O(k6).
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3.2 Marking Rules and Reduction Strategy via Steiner Trees
Once the partition (A,B, C) is computed, the second part of the PSAKS relies on an extension
of the following result of Du et al. [10] to a special case of the Group Steiner Tree problem
where at most one group can have size greater than 1.

I Proposition 14 ([10]). For every p ≥ 1, graph G, R ⊆ V (G), cost function w : E(G)→
N ∪ {0} and R-Steiner tree T , there is a p-restricted R-Steiner tree in G of cost at most
(1 + 1

blog2 pc
) · w(T ).

In the above proposition, an R-Steiner tree is a subtree of G containing R and a p-
restricted R-Steiner tree is a connected subgraph of G containing R and whose edge set can
be written as the union of the edge sets of Steiner trees for some subsets of R of size at
most p where these subsets appear as the leaves of the respective Steiner trees In a similar
spirit to Proposition 14, we show that for every p ≥ 1, graph G, R ⊆ V (G), cost function
w : E(G)→ N ∪ {0} and R-Steiner tree T intersecting a set Z of arbitrary size disjoint from
R, there is a 2p+ 1-restricted R-Steiner tree in G of cost at most (1 + 1

blog2 pc
) · w(T ) which

also intersects Z. We believe that this extension and close variants thereof are likely to have
have future applications in dealing with connectivity constraints. We design a set of marking
rules that achieve the following.

I Lemma 15. There is an algorithm that, given G, k and the partition (A,B, C), runs in
time kO(ρ)nO(1) and marks a set A′ ⊆ A of kO(ρ) vertices such that for any S which is a
connected feedback vertex set of G of size at most k, there is a connected feedback vertex set
of G of size at most (1 + δ)2|S| whose intersection with A is contained in A′.

The main technical difficulty in the above lemma lies in identifying and marking vertices
such that for any subset of S ∩ A which may be performing the dual job of “hit” and
“connect”, the set A′ of marked vertices contains a subset which would do the same job with
only a small increase in size. Moreover, since we deal with each connected component of G[A]
separately, we cannot simply use Proposition 14 or its extension we propose. This is where
the upper bound on the degree of vertices of A into the set H will be crucial (Lemma 13 (4)).

Using Lemma 15, we will show that there is a way to reduce the graph G[A] by deleting
or contracting all but kO(ρ) of the rest of the edges so that the only unbounded set following
this step is the set C. As we know that the vertices in C only perform the job of “connectors”
and are not necessary to hit cycles in G, we will mark the optimal Steiner tree (if it is small
enough) in G for every choice of a sufficiently small subset of A′ ∪ B as the set of terminals
and use Proposition 14 to prove the following.

I Lemma 16. There is an algorithm that, given G, k and the partition (A,B, C), runs in
time kO(ρ2)nO(1) and marks a set C′ ⊆ C of kO(ρ2) vertices such that for any S which is a
connected feedback vertex set of G of size at most k, there is a connected feedback vertex set
of G of size at most (1 + δ)3|S| whose intersection with C is contained in C′.

Finally, we show that we can delete the unmarked vertices in C after marking an additional
kO(1) new vertices and edges simply to remember the cycles passing through C. Since we
chose δ such that (1 + δ)3 ≤ 1 + ε, we will have obtained the required graph. Specifically, we
prove the following lemma.

I Lemma 17. There is an algorithm that given G, k and the outputs of Lemma 13, Lemma 15
and Lemma 16 runs in time kO(ρ2)nO(1) and either correctly concludes that G has no connected
feedback vertex set of size at most k or returns a graph G′ such that:
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1. |V (G′)| = kO(ρ2).
2. Every minimal connected feedback vertex set of G′ of size at most (1 + ε)k is contained

in V (G′) ∩ V (G) and is also a connected feedback vertex set of G.
3. For every S which is a minimal connected feedback vertex set of G of size at most k, G′

has a connected feedback vertex set of size at most (1 + ε)|S|.

We summarize the steps of our algorithm below.

1. (Lemma 13) In polynomial time, identify a partition (A,B, C) of V (G) such that:
|B| = kO(1), G− B is acyclic, and B separates A and C.
For every connected feedback vertex set S of G, G− (S \ C) is acyclic.
Every connected component of G[A] has exactly 2 neighbors in B and there are kO(1)

connected components in G[A].
2. (Lemma 15 + Lemma 16) In time kf(1/ε)nO(1), mark sets A′ ⊆ A and C′ ⊆ C of kO(f(1/ε))

vertices such that for any S which is a connected feedback vertex set of G of size at
most k, there is a connected feedback vertex set of G of size at most (1 + ε)|S| whose
intersection with A (C) is contained in A′ (C′).

3. (Lemma 17) In time kf(1/ε)nO(1), compute a graph G′ with kO(f(1/ε)) vertices where:
Every minimal connected feedback vertex set of G′ of size ≤ (1 + ε)k is contained in
V (G′) ∩ V (G) and is also a connected feedback vertex set of G.
For every S which is a minimal connected feedback vertex set of G of size at most k,
G′ has a connected feedback vertex set of size at most (1 + ε)|S|.

3.3 The PSAKS and Factor-OPTO(1) Approximation
We are now ready to prove Theorem 1 by translating Lemma 17 into a PSAKS for Con-
nected Feedback Vertex Set under the framework from [22]. Recall the definition of
the parameterized optimization version of Connected Feedback Vertex Set has the
optimization function CFVS : Σ∗ × N× Σ∗ → R ∪ {∞} defined as follows.

CFVS(G, k, S) =
{

∞ if S is not a connected feedback vertex set of G
min{|S|, k + 1} otherwise

We define OPT(G, k) = minS⊆V (G) CFVS(G, k, S). We point out that ∞ can be replaced
in our setting with a sufficiently large value depending on |V (G)| while serving the same
purpose and avoiding potentially undefined operations.

I Theorem 1. For every fixed 0 < ε < 1, Connected Feedback Vertex Set has a
(1 + ε)-approximate kernelization of polynomial size.

Proof. We begin by describing the reduction algorithm. If G is a forest, then return (G′, 0)
where G′ is the empty graph. Henceforth we ignore this corner case and assume that G
contains a cycle. Given G, k and ε, we execute the algorithm of Lemma 17. If this algorithm
concludes that G does not contain a connected feedback vertex set of size at most k, then we
return the instance (G′, k) where G′ is a connected graph with k + 1 vertex disjoint cycles
and having O(k) vertices. Clearly such a graph exists. For instance, take the disjoint union
of k + 1 triangles and connect them in the form of a path by selecting exactly one vertex
from each triangle. Otherwise, suppose that this algorithm returns a graph G′. Then the
reduction algorithm returns the instance (G′, k′) where k′ = (1 + ε)k. At this point, we may
assume that G is connected and so V (G) is a connected feedback vertex set of G. If G′ has
multiple connected components containing cycles, then it cannot have a connected feedback
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vertex set of any size, implying (by Lemma 17 (3)) that G cannot have a connected feedback
vertex set of size at most k. Therefore we fall back into the previous case and so we may
assume going forward that G′ is also connected (if there are multiple components but only
one contains cycles, then discard the rest) and so V (G′) is a connected feedback vertex set
of G′. The polynomial bound on the size of the output instance and the time required to
obtain G′ follow from Lemma 17.

We now describe the solution lifting algorithm as follows. Let S′ be the given solution
for (G′, k′). If S′ is not a connected feedback vertex set of G′, then the algorithm outputs
∅ as the solution for (G, k). If S′ is a connected feedback vertex set of G′ and |S′| > k′,
then the algorithm outputs V (G) as the solution for (G, k). Finally, if S′ is a connected
feedback vertex set of G′ and |S′| ≤ k′, then the algorithm returns S′ as the solution for
(G, k). We denote by S the output of the solution lifting algorithm. Clearly, the solution
lifting algorithm runs in polynomial time.

We now prove that this reduction algorithm and the solution lifting algorithm together
constitute a (1 +ε)-approximate kernelization for Connected Feedback Vertex Set. We
show that if CFVS(G′, k′, S′) ≤ c ·OPT(G′, k′), then CFVS(G, k, S) ≤ (1 + ε)c ·OPT(G, k).
In the case where we concluded that G has no connected feedback vertex set of size at
most k and returned (G′, k), notice that CFVS(G′, k, S′) = CFVS(G, k, S) and OPT(G, k) =
OPT(G′, k) = k+1. Hence, we are left with the following cases which arise when the invocation
to Lemma 17 returned a graph G′. We will use the fact that OPT(G′, k′) ≤ (1+ε)OPT(G, k).

Case 1: S′ is a connected feedback vertex set of G′ and |S′| > k′. In this case, S = V (G).
We now consider two subcases: G has a connected feedback vertex set of size at most k
or it does not. If G has no connected feedback vertex set of size at most k, it follows that
OPT(G, k) = CFVS(G, k, V (G)) = k + 1. This is because G is connected and so V (G) is
a connected feedback vertex set. Therefore,

CFVS(G, k, V (G))
OPT(G, k) = 1 ≤ (1 + ε) · CFVS(G′, k′, S′)

OPT(G′, k′) . (1)

Hence, we may assume that G has a connected feedback vertex set of size at most k.
That is, OPT(G, k) ≤ k. But this implies the following.

CFVS(G, k, V (G))
OPT(G, k) = k + 1

OPT(G, k) ≤ (1+ε)· k′ + 1
OPT(G′, k′) = (1+ε)CFVS(G′, k′, S′)

OPT(G′, k′) . (2)

Case 2: S′ is a connected feedback vertex set of G′ and |S′| ≤ k′. In this case, OPT(G′, k′) ≤
k′. We consider two subcases: |S′| ≤ k or k + 1 ≤ |S′| ≤ k′. In the former subcase we
have the following.

CFVS(G, k, S)
OPT(G, k) = CFVS(G, k, S′)

OPT(G, k) = CFVS(G′, k′, S′)
OPT(G, k) ≤ (1 + ε)CFVS(G′, k′, S′)

OPT(G′, k′) . (3)

And if k + 1 ≤ |S′| ≤ k′, then we have the following.

CFVS(G, k, S)
OPT(G, k) = CFVS(G, k, S′)

OPT(G, k) = k + 1
OPT(G, k) ≤ (1 + ε) k + 1

OPT(G′, k′)

≤ (1 + ε)CFVS(G′, k′, S′)
OPT(G′, k′) . (4)
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Case 3: S′ is not a connected feedback vertex set of G′. Then, the set returned by the
solution lifting algorithm, ∅, is also not a connected feedback vertex set of G and so,
CFVS(G′, k′, S′) = CFVS(G, k, ∅). As a result, the required inequality follows and this
completes the proof of the theorem. J

Lemma 17 also implies the following OPTO(1)-approximation for Connected Feedback
Vertex Set.

I Lemma 18. There is a polynomial time algorithm that given G, k, either correctly concludes
that G has no connected feedback vertex set of size at most k or returns a connected feedback
vertex set of G of size kO(1).

Proof. Given G, k, we set ε to be an arbitrary constant between 0 and 1, say 1
2 . We then

invoke Lemma 17 to either correctly conclude that G has no connected feedback vertex set
of size at most k or compute the graph G′ guaranteed by the lemma. In the former case we
return the same. Otherwise, we check for each connected component of G[V (G′) ∩ V (G)]
whether it is a connected feedback vertex set of G. If such a component exists, then we
return the vertex set of this component and otherwise we conclude that G has no connected
feedback vertex set of size at most k. The correctness follows from the fact that if G contains
at least one connected feedback vertex set of size at most k then at least one connected
component of G[V (G′)∩V (G)] is guaranteed to contain a connected feedback vertex set of G
according to Lemma 17 and such a connected component by itself must also be a connected
feedback vertex set of G. This completes the proof of the lemma. J

4 Conclusions and Open Problems

Our result on approximate kernelization for Connected Feedback Vertex Set provides
another useful data point in improving our understanding of the extent to which (approximate)
preprocessing can be performed in the presence of connectivity constraints. Moreover, we
believe that our techniques could have further applications in the design of approximate
kernels for covering problems with connectivity constraints. Finally, this line of investigation
offers several interesting opportunities for further research.

For instance, is there a space efficient PSAKS for Connected Feedback Vertex Set?
In a space efficient PSAKS, we require the size of the output to be bounded by f( 1

ε ) · kc,
where f is a computable function and c is a constant independent of the error parameter ε.
Essentially, a PSAKS is an apt analogue of a PTAS in the approximate kernelization world
and an Efficient PSAKS is a natural analogues of an Efficient PTAS in this setting. We end
by pointing out that the existence of a space efficient PSAKS is open even in the case of the
Connected Vertex Cover problem.
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Abstract
We study rumor spreading in graphs, specifically multicommodity multicast problem under the
wireless model: given source-destination pairs in the graph, one needs to find the fastest schedule to
transfer information from each source to the corresponding destination. Under the wireless model,
nodes can transmit to any subset of their neighbors in synchronous time steps, as long as they
either transmit or receive from at most one transmitter during the same time step. We improve
approximation ratio for this problem from Õ(n 2

3 ) to Õ(n 1
2 +ε) on n-node graphs. We also design

an algorithm that satisfies p given demand pairs in O(OPT + p) steps, where OPT is the length of
an optimal schedule, by reducing it to the well-studied packet routing problem. In the case where
underlying graph is an n-node tree, we improve the previously best-known approximation ratio of
O( log n

log log n
) to 3. One consequence of our proof is a simple constructive rule for optimal broadcasting

in a tree under a widely studied telephone model.
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1 Introduction

1.1 Motivation and Formulation

Rumor spreading problems have been popular for decades motivated by applications ranging
from increasing throughput in synchronizing networks [3], keeping object copies in distributed
databases synchronized [11], to recreational mathematics [4]. Common objectives in rumor
spreading involve the total number of messages, the total number of transmissions (especially
when message sizes are bounded in transmissions) and the completion time. In this paper, we
study the minimum completion time objective for the multicast version of the problem where
a set of source terminals wish to send their messages to their respective subsets of sinks.

The requirements for rumor spreading problem range from sending a single message from
a single source to all nodes (broadcast), a subset of nodes (multicast) or a more generalized
multicommodity version of multicast that we study. The rules for message transmission that
have been widely studied are synchronous and range from the telephone model [5], the radio
model [1] and the recently introduced wireless [6] model that shares the features of the first
two. We mainly study the wireless model in this paper.
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Multicommodity Multicast Problem. Given a communication graph G and demand pairs
of vertices (s1, t1), . . . , (sp, tp), where each source si has a unique piece of information (message
or packet), the problem is to find a schedule that transfers the message from every source si
to its corresponding destination ti in a minimum number of steps. The rules under which
the information is allowed to be sent in each step depend on the model.

Wireless Model. During each step, every node v in G is allowed to pick some of the vertices
adjacent to v and send all information v has accumulated to those nodes at once (so there is
no bound on message size). Nodes cannot receive from more than one source, nor can they
send and receive during the same time step.

1.2 Related Work
The type of models that have been studied could be differentiated by the demand requirements
and the rules under which information is spread. We highlight three different models
relevant to our study, which roughly correspond to spanning, Steiner and generalized Steiner
connectivity requirements studied in network design.
1. In the Broadcast problem, there is a single source (root) that must send its information

to all nodes in the system.
2. In the more general Multicast problem, the root only needs its information to reach a

subset of nodes in the system.
3. In the even more general Multicommodity Multicast problem, we are given source-

destination pairs, and every source must transmit its message to the corresponding
destination node.

We describe various models that define the rules of synchronous information transmission
in rounds.
1. In the Telephone model, during one time step, every node with information is allowed

to send it to only one of the adjacent nodes (neighbours) in the graph.
2. In the Radio model, a set of transmitting nodes send out information and only the

other nodes that have unique transmitting neighbors can receive the information from
that neighbor1.

3. In the Wireless model, during one time step, every node with information is allowed
to send it to any subset of neighbours.

In all models, nodes cannot receive from more than one source, nor can they send and receive
during the same time step. The key difference between the radio and wireless models is that
in the wireless model, receivers have tunable apparatus that allows them to listen in one
exactly one of the neighbors that may be transmitting, whereas in the radio model, a node
with two neighbors transmitting cannot receive any information due to interference. The
most widely studied versions do not restrict the number of messages sent between a pair of
nodes in each step, but capacitated versions are possible.

1.2.1 Telephone model
For the broadcast/multicast problems under the telephone model Ravi [10] showed a poly-
logarithmic approximation in general graphs, by relating it to spanning/Steiner trees that
simultaneously have small max degree and diameter (the so-called poise of the graph).

1 We do not discuss this model further in this paper.
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For this broadcast/multicast problem under the telephone model Elkin and Kortsarz [2]
gave the best known O( log k

log log k )-approximation factor, where k is the number of terminals
the information should be delivered to.

I Theorem 1 (Multicast approximation [2]). Given graph G, root r and k target sinks, there
is a poly-time algorithm TelephoneMulticast that finds a schedule that sends information
from the root to all sinks in the telephone model and has approximation ratio O( log k

log log k ).

The very general multicommodity multicast under telephone model was studied as well,
where the best approximating ratio Õ(2

√
log k) was achieved by Nikzad and Ravi [9]. Note

that this ratio is super-polylogarithmic but sub polynomial in k, the number of terminals. No
better approximations are known and part of the difficulty stems from the inability to relate
this objective directly to graph parameters since the solution can in general be disconnected.
This problem was also studied for special classes of graphs. First, it is known that if G is
a tree, then a polynomial time algorithm to find optimal schedule for telephone broadcast
can be derived through dynamic programming. Recently Iglesias, Rajaraman, Ravi and
Sundaram [7] have shown a O( log3 k logn

log logn )-approximation for multicommodity multicast for
planar graphs.

1.2.2 Wireless model
Given that there are no restrictions on the number of neighbors receiving a transmission, for
both the broadcast and multicast problems, optimal schedules under wireless model can be
found in polynomial time using a simple Breadth-First Search (BFS) algorithm.

For the multicommodity multicast problem the best known approximate ratio was given
by Iglesias, Rajaraman, Ravi and Sundaram [6], who also introduced the wireless model.
They also showed an O( logn

log logn )-approximation when the underlying graph is an n-node tree,
as well as Õ(n 2

3 )-approximation for general n-node graphs. There were two main ideas used
in their paper: (i) If there are many sources that want to send to the same sink, we can
satisfy them quickly using approximation algorithm for multicast under the telephone model;
(ii) If there are many short disjoint path from sources to their respective destinations, we
can satisfy them in parallel, otherwise we can reduce the number of sources considerably.

1.3 Packet routing problem
Another widely studied problem related to our work is so-called store-and-forward packet
routing problem, where given packets at different source nodes, one needs to find a synchronous
schedule of transporting them to given destinations, with the only restriction that no two
packets can traverse the same edge at the same time step.

The main difference between store-and-forward packet routing and multicommodity
multicast under wireless model is that the capacity restriction is put on the edge, not on the
node. This means that a node can do the following: (i) receive several packets at the same
time; (ii) send several packets as long as they use different edges; (iii) send and receive at
the same time. What is not allowed in this model is to accumulate several packets and send
them along one edge altogether, in contrast with the wireless model which can do that.

The analysis of packet routing problem involves a trade-off between the “dilation” para-
meter d (maximum path length) and the “congestion” criterion c (maximum number of
paths using any edge). Note, that both c and d are lower bounds on the length of the
optimal schedule for packet routing. Srinivasan and Teo [12] showed a polynomial time
algorithm to find a schedule of length O(c+ d), which achieves a constant approximation.
We reduce wireless multicommodity multicast problem to a packet routing problem to derive
one of our results.

ESA 2019



78:4 Multicommodity Multicast, Wireless and Fast

When the paths for the packets are given, Leighton, Maggs and Rao [8] initiated a long
line of work that showed the existence and efficient construction of schedules of length
O(c+ d), which was used extensively in the work cited above on finding such near optimal
routes when the paths are not specified in advance.

1.4 Our Contributions
In this paper we focus on multicommodity multicast problem under the wireless model.

We show that for any given constant ε > 0, there is a polynomial time Õ(n 1
2 +ε)-

approximation algorithm that, given an arbitrary graph G and pairs of source-destination
nodes (si, ti), finds a schedule to transfer information from source si to destination ti for
all i (Theorem 2). This algorithm generalizes the ideas of Iglesias et al. [6] and applies
them recursively.
We design a polynomial time algorithm that, given an arbitrary graph G and p pairs
of source-destination nodes (si, ti), finds a schedule of length O(OPT + p) to transfer
information from source si to destination ti for all i, where OPT is the length of the
optimal one (Theorem 10). To prove this result, we reduce our problem to an instance of
packet routing in an appropriately defined auxiliary digraph.
We show that there is a polynomial time 3-approximation algorithm that, given a tree T
and pairs of source-destination nodes (si, ti), finds a schedule to transfer information from
source si to destination ti for all i (Theorem 16). This result decomposes the schedule
into sending messages up the tree followed by a phase that sends it down the tree.
We give a simple optimal schedule for the broadcast in the tree under telephone model
(Theorem 23). This is not a new result but a conceptual improvement over the previous
strategies that all rely on dynamic programming by providing a simple explicit rule for
choosing the transmitting pairs.

The widely studied telephone and relatively new wireless models are related to each other
in the following way. Even though spreading information from one source to several sinks
under wireless model can be done efficiently using BFS, collecting information from several
sources into one sink is equivalent under both models. This follows from the fact that while
collecting to one sink every piece of information travels on a straight path. This observation
implies that the gossip problem, where every node in the graph has to sent its message to all
other nodes, is equivalent under both models, up to a constant factor. More precisely, the
optimal schedule for the gossip problem under the wireless model is no longer than twice
the optimal broadcast schedule under the telephone model, which can be used to sweep
all information to a fixed root and spread it back in a BFS tree to all nodes. In the other
direction, the optimal schedule for the gossip problem under the wireless model is at least as
long as the optimal broadcast schedule under the telephone model since both models are
required to collect information from all the nodes to a root under the same constraints.

The multicommodity multicast problem is a generalization of both multicast and gossip
problems, so combines the difficulty of both. Finding approximation algorithms for this
problem under wireless model includes difficulties for multicommodity multicast under
telephone model. As mentioned earlier, the best-known approximation ratio of Õ(2

√
logn) [9]

for multicommodity multicast under telephone model is sub polynomial in n, whereas the
best-known ratio for this problem under the wireless model is Õ(n 2

3 ) [6]. Thus, the very
general multicommodity multicast problem under the wireless model appears to be quite
hard to approximate. Our work significantly improve this ratio down to roughly O(

√
n).
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2 General graphs

In this section, we study general multicommodity-multicast problem in arbitrary graphs. The
best known approximation ratio so far is Õ(n 2

3 ) [6]. We improve this bound to roughly Õ(
√
n).

I Theorem 2. Algorithm 3 is a polynomial algorithm that, given any ε > 0 and arbitrary
graph with demand pairs, can find a multicommodity-multicast schedule in the wireless model
with approximation ratio O

(
n

1
2 +ε
)
.

In the sequel, we assume that we are given the length L of the optimal rumor spreading
schedule. Note that there is always a wireless multicast schedule of linear length in a
connected graph by using any spanning tree, and traversing an Euler tour of the tree twice
and using the edges in the traversal in order. Thus, we can guess the length L at the very
beginning in the range [1, 4(n− 1)].

2.1 Algorithm
Our algorithm exploits two main observations that were introduced by Iglesias, Rajaraman,
Ravi and Sundaram [6].

2.1.1 Idea 1
The first key idea is the following. If there are numerous sources that want to send to the
same sink, we can satisfy all demands that originate in those sources. Algorithm 1 shows
how this can be done. The analysis of the algorithm is summarized in Lemma 3.

I Lemma 3 (Big in-demand [6]). Given a vertex t that is a sink in demand pairs (s1, t), . . . ,
(sd, t), Algorithm 1 satisfies all demands from nodes s1, . . . , sd in Õ(L) steps.

Note that we are not only satisfying d demand pairs, but potentialy up to d · n demands,
because every si could be a source of up to n demand pairs.

Algorithm 1 Algorithm for satisfying all demands in the “demand-neighbourhood” of a given
vertex.

procedure InDemand(G,S, t)
Input: graph G, source nodes S = {s1, . . . , sd} with the same sink t.

Run TelephoneMulticast(G, t, S) to get schedule TM that spreads information
from t to all nodes in S under telephone model.

Reverse schedule TM and run it on G to collect all information from s1, . . . , sd in t.
Run BFS(t) to spread information from t to all sinks that correspond to sources in S.

end procedure

2.1.2 Idea 2
The key observation here is the following. If we can find a lot of disjoint source-destination
paths, we can satisfy all of them in parallel, and hence in at most the length of the longest
path. We will try to greedily find as many paths of length at most L as possible from given
sources to corresponding destinations. Algorithm 2 summarizes this procedure.
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Algorithm 2 Algorithm for finding disjoint paths between sources and destinations.

procedure DisjointPath(G,D,L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and the length of the optimal

algorithm L.

P = ∅
while there is a demand pair (s, t) ∈ D such that the distance between s and t is at

most L do
Add shortest path from s to t to P .
Delete all vertices in this path from G.

end while
Return P .

end procedure

2.1.3 Our idea
Iglesias, Rajaraman, Ravi and Sundaram [6] used both ideas and balanced parameters in
them to achieve Õ(n 2

3 )-approximation. We will combine and generalize these ideas in a
different way.

Idea 2.1.1 is useful when there is a vertex with high in-demand. More precisely, it allows
us to reduce the number of distinct sources while there are a lot of demand pairs.

Idea 2.1.2 instead shows how we can either satisfy a lot of demand pairs in parallel or
significantly reduce the number of distinct sources.

Our contribution comes from generalizing both ideas and combining them alternatively.
We use the first idea to reduce the number of demand pairs, then we use the second idea
to reduce the number of distinct sources. Now, given smaller number of sources we exploit
the first idea again to reduce the number of demand pairs even further, etc. Algorithm 4
corresponds to the first idea of reducing the number of demand pairs given the number of
distinct sources, whereas Algorithm 5 corresponds to the second idea of reducing the number
of distinct sources given fixed number of demand pairs. These two algorithms call each other
recursively. If we keep doing this infinitely long, we will achieve Õ(

√
n)-approximation, so

the main Algorithm 3 stops when it gets ε-close to it.
The analysis of the algorithm is presented in the main Lemma 7. The key idea in the

analysis is that the first observation can improve the performance of the second one, and
vice versa. So we alternatively apply each observation to improve the previous one.

2.2 Correctness and Complexity
B Claim 4. Algorithm 3 satisfies all given demands in the graph under wireless model rules.

First, note that the length L of the optimal schedule is at most 4(n− 1), where n is the
number of vertices, so one of the runs of S(G,D, k, L) will use the correct guess of L and
hence will satisfy all demands as long as Algorithm 4 works properly.

B Claim 5. Algorithms 4 and 5 satisfies all given demands in the graph under wireless
model rules.

Proof. First, note that algorithms 4 and 5 call each other alternatively, but every second
time, the parameter k (which keeps track of the number of iterations) decreases by 1, so it
will eventually reach 0. Also, note that every time any of these algorithms modify the set of
demand pairs D, they correctly satisfy or split demands. After k reaches 0, Algorithm 4 just
runs BFS from every source node, which clearly satisfies all demands. C
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Algorithm 3 Algorithm for rumor spreading in the general graph.

procedure GeneralMM(G,D, ε)
Input: unweighted graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and precision

ε > 0.

Take integer k = d 1
4εe.

for L = 1, 2, . . . , 4(n− 1) do . guess for the length of the optimal schedule
if S(G,D, k, L) produces a shorter schedule then

Save S(G,D, k, L) as current answer in BestSchedule.
end if

end for
Return BestSchedule.

end procedure

Algorithm 4 Algorithm for general graphs based on the number of sources.

procedure S(G,D, k, L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)}, iteration number k and the

length of the optimal schedule L.

if k = 0 then . condition to exit the recursion
for every distinct source s do

Run BFS(s). . to satisfy all demands in D that start in s
end for
Exit.

end if

Compute s to be the number of vertices in the graph that are sources in at least one
demand pair in D.

Take α = 1+k logs n
2k+1 .

while there is a vertex t with at least s1−α demands going into it do
Compute St to be those vertices that needs to send information to t. So St =

{s | (s, t) ∈ D}.
Run InDemand(G,St, t) to satisfy all demands that originate in St.
Delete all demands that originate in St from D.

end while
Run P (G,D, k − 1, L).

end procedure

B Claim 6. Algorithm 3 runs in polynomial time(n, 1
ε ).

Proof. First, note that Algorithm 1 runs in polynomial time, because TelephoneMulticast
as well as BFS run in polynomial time. Since we can find shortest path between any two
nodes in a graph is polynomial time, Greedy Algorithm 2 runs in polynomial time as well
since we decrease the number of vertices in the graph at each iteration.

Then, Algorithm 3 runs Algorithm 4 4(n − 1) times, so it is polynomial time as long
as Algorithm 4 is.

Algorithms 4 and 5 call each other alternatively, at most k = d 1
4εe = O( 1

ε ) times each.
So it is enough to show that both of these algorithms each run in polynomial time.
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Algorithm 5 Algorithm for general graph based on the number of demand pairs.

procedure P(G,D, k, L)
Input: graph G, demand pairs D = {(s1, t1), . . . , (sp, tp)} and iteration number k and

the length of the optimal algorithm L.

Take β = 1+k logp n
2k+2 .

while the number of disjoint paths d = |DisjointPath(G,D,L)| is at least p1−β do
Satisfy all d demands in parallel following paths in DisjointPath(G, D, L).
Delete all those demands from D.

end while

Denote DisjointPath(G,D,L) to be the disjoint paths for demand pairs
{(s1, t1), . . . , (sd, td)}.

Let a new graph G′ be G with added complete binary tree with leaves t1, . . . , td and
root r.

Compute S to be all vertices in G that are sources in at least one demand pair in D.
TM = TelephoneMulticast(G, r, S). . TM spreads information from the root r to

all sources in D under telephone model
Reverse schedule TM and run it on G. . It will collect all information from sources in

D into t1, . . . , td

Dnew = ∅
for (s, t) ∈ D do

Find ti among t1, . . . , td that has information from source s.
Add demand pair (ti, t) into Dnew.

end for
Run S(G,Dnew, k, L).

end procedure

Algorithms 4 runs Algorithm 1 at most s
s1−α = sα times. Given that α = 1+k logs n

2k+1 we
have that sα = 2k+1

√
snk ≤ 2k+1

√
nk+1 ≤ n. As we have already noted, Algorithm 1 also runs

in poly-time, so overall 4 is poly-time in terms of n and 1
ε .

Algorithms 5 runs Algorithm 2 at most p
p1−β = pβ times. Given that β = 1+k logp n

2k+2 we
have that pβ = 2k+2

√
pnk ≤ 2k+2

√
nk+1 ≤ n. As we have already noted, Algorithm 2 also runs

in poly-time. So overall Algorithm 4 is polynomial time in terms of n and 1
ε . C

2.3 Analysis
First, assume that for the given graph and demand pairs the optimal schedule takes L time
steps. The main Theorem 2 will follow from the following key lemma:

I Lemma 7. For every k ∈ N0 the following holds:
(Sk) If the number of distinct sources is s, then there is a Õ( 2k+1

√
snk)-approximation

schedule.
(Pk) If the total number of demand pairs is p, then there is a Õ( 2k+2

√
pnk)-approximation

schedule.

Note that s ≤ n, so for every k ∈ N0 from Sk we can have Õ( 2k+1
√
snk) = Õ(n

k+1
2k+1 )

approximation schedule. As k →∞, k+1
2k+1 →

1
2 , and hence we can find a schedule that has

approximation ratio O(n 1
2 +ε) for any positive ε. Thus, Lemma 7 implies the main Theorem 2.
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To prove the main lemma, we use an important observation that handles aggregated
messages with a few sinks.

I Lemma 8. If there is only one sink in multicommodity multicast under wireless model,
then there is an O( log p

log log p )-approximation algorithm for satisfying all demands, where p is
the number of sources.

Proof. The proof is based on the fact that collecting information from several sources to one
sink t under wireless model is equivalent to multicasting information from t to those sources
under telephone model (in reverse).

Note that because we are collecting information at one node, every piece of information
travels on the path (the node never sends information to several neighbours at the same
time) and so every step of the schedule is a matching - in other words, we have never used
the power of wireless model over telephone model. Hence, collecting information at one node
under wireless model is equivalent to collecting under telephone model, which is further
equivalent to multicast under telephone model by reversing the schedule.

Using the known approximation result for multicasting under the telephone model given
in Theorem 1, we can find a multicast schedule of length at most O(L · log p

log log p ). Reversing it
leads to a schedule that collects all information into t in time O(L · log p

log log p ). J

We can now prove our initial lemma about satisfying all the demands of sources corres-
ponding to a single sink.

Proof of the Lemma 3. We will produce a schedule that will satisfy all demands from nodes
s1, . . . , sd in Õ(L) steps. It will go in two stages:
1. Collect all information from s1, . . . , sd in t using Lemma 8.
2. Send it all together from t to all sinks of s1, . . . , sd using BFS.
Note that the second step could be done in O(L) by BFS from t, because the distance from t

to any sink of si is at most the distance from t to si plus the distance from si to sink, which
is at most L+ L = 2L. J

Proof of key Lemma 7. We prove this by induction on k. Moreover, the structure will be
as follows.

1. Sk ⇒ Pk for every k ≥ 0.
2. Pk ⇒ Sk+1 for every k ≥ 0.

Base case. It is enough to prove base case S0, in other words that it is possible to satisfy
all demands with approximation ratio O(s). Note that if we fix an arbitrary source v, we can
satisfy all its demands in O(L) steps by BFS starting at v (exploiting the power of wireless
model where we can send to several neighbours at the same time). By repeating this over
the s sources, it is possible to satisfy all demands in O(L · s) steps.

Induction step. Fix an arbitrary k ≥ 0.
1. We want to prove that Sk ⇒ Pk.

To recall, this means that: if there is a Õ( 2k+1
√
snk) approximation schedule for s sources,

then there is a Õ( 2k+2
√
pnk) approximation schedule for p demand pairs.

Assume that we are given p demand pairs.
Forming greedy paths: Start with an arbitrary source and try to find a path of length
at most L to one of its destinations. If found, delete all vertices in this path from the
graph and repeat. This corresponds to Algorithm 2.
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After this stage we have some maximal number d of disjoint paths (s1, t1), . . . , (sd, td).
Note that because they are disjoint we can satisfy all of them in parallel in L steps.
Let β ∈ [0, 1] be a constant we will set afterwards. The idea of Algorithm 5 is the
following.
a. If the number of greedy paths d is at least p1−β , then satisfy those demands in

parallel and repeat.
b. If the number of greedy paths d is less than p1−β , we will reroute/collect all

information at t1, . . . , td using Lemma 9 and finish everything in one shot by applying
Sk to it.

We cannot repeat the first case more that p
p1−β = pβ times, and so the total number of

rounds in the schedule is at most Õ(L · pβ).
In the second case, there are d ≤ p1−β sources now, so by applying Sk we get that we can
send all information in Õ(L · 2k+1

√
p1−βnk). Combining the two cases gives approximation

ratio Õ(pβ + 2k+1
√
p1−βnk). Minimizing this leads to β = 1+k logp n

2k+2 and approximation
ratio Õ( 2k+2

√
pnk), which is exactly what we wanted.

Technical note: we need to ensure that β ∈ [0, 1]. Clearly β ≥ 0. Now, k = 0 leads to
β = 1

2 , giving a √p approximation ratio. For k ≥ 1 we have that p ≥ n⇒ β ≤ 1, but in
the case p < n the approximation ratio √p is better than Õ( 2k+2

√
pnk) for any k.

The only thing left is to prove the following lemma.
I Lemma 9 ([6]). If there are d greedy paths (s1, t1), . . . , (sd, td), we can collect all
information at one of the t1, . . . , td in Õ(L) time.
Figure 1 gives an example illustration of the Lemma 8.

s1 t1

s2 t2

s3 t3

s’

t’

t’’

s’’

s’’’

t’’’

s’’’’

t’’’’

Figure 1 Collecting information from all sources into t1, . . . , tk.

Proof. For the simplicity of the argument (and to use results about broadcast time,
which is the same as collecting information at one node), we will add to our graph a
dummy complete binary tree with leaves t1, . . . , td and root r and our goal will be to
collect all information at r in Õ(L) time. Obviously, if we can do this, then we also will
be able to collect all information at one of the t1, . . . , td in the same amount of time.
Consider an arbitrary source s and pick a fixed sink t for it (only one). Consider the
path between s→ t in the optimal schedule. This path has length at most L and hence
it should intersect with path si → ti for some i (otherwise we can find one more disjoint
path of length at most L). This means that if we run the optimal schedule, then nodes
on the greedy paths will contain information from all sources. Hence if we run it for L
more steps by transmitting information only along greedy paths, information from all
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sources will eventually be at one of t1, . . . , td. The dummy binary tree has depth at most
log d ≤ logn, so if we run the schedule for 2 logn more rounds (two parallel rounds per
level), the root r will contain all the information.
This means that it is possible to collect all information in r in at most 2L + 2 logn
steps. Using Lemma 8 we can find schedule that collects all information into r in at most
O((2L+ 2 logn) logn

log logn )) = Õ(L) steps. J

2. We want to prove that Pk ⇒ Sk+1.
Here we will expoit Lemma 3. Note that we are not just satisfying d demand pairs, but
potentialy up to d · n demands, because every source si could be in up to n demand pairs.
Also, by the base case we know that this could be done in O(dL) steps, but this lemma
gives a much better bound.
Now, assume that we have s sources, and let α ∈ [0, 1] be number that we will define
afterwards. The main idea of Algorithm 4 is the following.
a. If there is a vertex with at least s1−α demands going into it, then satisfy those

demands by Lemma 3 and repeat.
b. If every vertex has less than s1−α demands going into it, then the total number

p of demand pairs is small and we will finish in one shot by applying Pk.
In the first case we can satisfy all demands in Õ(L) steps by the lemma, and also we will
repeat this at most s

s1−α = sα times, so the total number of steps is Õ(L · sα).
In the second case, if every vertex has less than s1−α demands going into it, then the
total number of demands is p ≤ s1−αn. Applying Pk gives that we can find a schedule to
satisfy all demands in Õ(L · 2k+2

√
s1−αnk+1).

Combining the two yields to approximation ratio Õ(sα + 2k+2
√
s1−αnk+1). By minim-

izing this we get α = 1+(k+1) logs n
2k+3 for the call to S(G,D, k + 1, L) and corresponding

approximation ratio Õ( 2k+3
√
snk+1), which is what we wanted.

Technical note: we need to ensure that α ∈ [0, 1]. Clearly α ≥ 0. Note that α ≤ 1 if and
only if s ≥

√
n, but in the case s <

√
n the approximation ratio O(s) in the base case is

better than Õ( 2k+3
√
snk+1) for any k. J

3 Reduction to packet routing

In this section we draw a connection between multicommodity multicast problem and
extensively studied store-and-forward packet routing problem. We further derive an algorithm
that satisfies all demands in O(OPT + number of demand pair) for multicommodity multicast
under wireless model using approximation results from packet routing problem. Note that
if the number of given demand pairs is small or the optimal schedule is long, this gives a
better approximation result compared to the one we have shown in Section 2.

I Theorem 10. There is a polynomial time algorithm that finds a schedule of length O(L+p)
for multicommodity multicast problem with p demand pairs under wireless model.

3.1 Packet routing problem
We are going to relate wireless multicommodity multicast and packet routing problem.

I Definition 11 (Store-and-forward packet routing problem). Given an arbitrary (directed)
graph G and source-sink pairs of vertices (s1, t1), . . . , (sp, tp), where each source si has a
unique packet, the problem is to find a schedule that transfers packets from every source si to
every destination ti in a minimum amount of steps, so that no two packets can traverse the
same edge at the same unit of time.
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Note that under wireless model we are allowed to send several pieces of information at
once along one edge, which is not the case for packet routing problem. On the other hand,
packet routing problem has no other restrictions. This implies that a node can: (i) receive
several packets at the same time (ii) send several packets as long as they use different edges
(iii) send and receive at the same time.

The analysis of packet routing problem involves a trade-off between the “dilation” para-
meter d (maximum path length) and the “congestion” criterion c (maximum number of paths
using any edge). Note that both c and d are lower bounds on the length of the optimal
schedule for packet routing. Since the paths for the packets are not specified a priori, note
that the problem also first involves finding such paths minimizing the sum of the dilation
and congestion and then constructing an actual (offline centralized) schedule that completes
in about this many rounds. Srinivasan and Teo [12] do just that and show how to construct
a schedule of length O(c+ d), which achieves constant approximation.

I Theorem 12 ([12]). There is a polynomial time algorithm that finds a schedule for store-
and-forward packet routing problem and gives a constant approximation.

3.2 Reduction from wireless to packet routing
We prove Theorem 10 by reducing multicommodity multicast under the wireless model to
packet routing problem and using Theorem 12. There are two superior properties in the
packet routing problem: (i) a node can receive from several sources per time step; (ii) a node
can send and receive at the same time step.

First, we will show how to eliminate (i). The number of incoming messages is a lower
bound under wireless model (because a node can receive only from one source), whereas it
is not the case in packet routing problem. Given an instance for wireless multicommodity
multicast, we are going to modify it to create another instance for packet routing and use
its schedule to design a fast wireless schedule that satisfies given demand pairs. Formally
speaking, given an arbitrary undirected graph G we construct directed graph G′ in the
following way. For every node v ∈ G we create two nodes vin and vout in G′ and put a
directed edge vin → vout. Also, for every edge (u, v) ∈ G we put directed edges uout → vin
and vout → uin in G′. Then, every demand pair (s, t) in G correspond to demand pair
(sin, tout) in G′. We split every original vertex into “only receiving” and “only sending” part.
In this way the inbound restriction of v in G is translated into congestion restriction of edge
vin → vout in G′.

We still need to address the second difference (ii) between packet routing and wireless.
But for now we relax this condition and show how to transform wireless multicommodity
multicast to packet routing allowing nodes to send and receive at the same time under
wireless model.

I Definition 13. The Upgraded Wireless model is the relaxation of the wireless model
in which a node is allowed to send and receive information at the same time.

I Lemma 14 (Packet to information routing). Given a schedule for packet routing problem
on the graph G′, it is possible to transform it in polynomial time to a schedule of the same
length on the graph G under the upgraded wireless model.

Proof. First, given a packet routing schedule R on G′ we modify R to schedule R′ such that
the following is true: (i) R′ sends information through the same path as R (ii) R′ finishes in
the same amount of steps as R (iii) the graph G′ does not contain any nodes that receive
from more than one source at any time step. Then we show how given R′ one can simply
construct an upgraded wireless schedule of the same length on G.
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Let’s fix an arbitrary time step in R. Every node that sends to several destinations, or
sends and receives at the same time can still do so under upgraded wireless model. The
only issue is that a node cannot receive from several sources. Note that vout can receive
only from vin, so we will show how to alter the schedule R so that every node vin receives a
packet from at most one neighbor. The main idea is that instead of accumulating packets
at ’receiving’ vertices vin, we will accumulate information at ’sending’ vertices uout. More
precisely, if vertex uout sends packet pi to vin at some point t in time in R, then the new
schedule R′ does the following: vertex uout will hold packet pi and send it to vin right before
the time step when vin sends pi to vout in R. So we send information only when needed,
otherwise hold it in the previous node.

Note that in R′ there is no vertex that receives from more than one node at a time.
Moreover, the time at which every packet arrives to any vertex vout under R is the same as
in R′. This follows from the fact that whenever some vertex vout needs a packet pi from vin,
vertex vin would have already collected packet pi by construction of R′.

We are left to show that packet routing R′ on graph G′ could be transformed into
upgraded wireless schedule W of the same length on graph G. Every time vertex uout sends
a packet pi to vin, let W send information i from u to v. Indeed, W has the same number of
steps as R′ and satisfies all demands, because it just mirrors packet schedule of R′. Moreover,
W is a valid upgraded wireless schedule, since in R′ every node receives from at most one
node at every time step. J

I Lemma 15. Given a schedule under upgraded wireless model it is possible to transform
it in polynomial time to a schedule under wireless model, which has at most 3 times as
many steps.

Proof. Fix a time step and let S to be the directed graph of information flow of the given
schedule under upgraded wireless model at this specific time step. So there is a directed edge
u→ v in S if and only if node u sends information to node v during this time step. We will
show how to send all information that S does using wireless model in three time steps.

Note that the in-degree of every node in S is at most 1, because under upgraded wireless
model a node still cannot receive from more than one source per time step. Each connected
component in any directed graph with in-degree bounded by 1 has a simple characterization.
It is a directed cycle with outbound trees hanging from it. More precisely, it is a union of
the cycle v1 → v2 → . . .→ vk → v1 with several trees each rooted at one of vi’s, where every
edge in a tree is directed out from the root. Note that it is enough to show how to transfer
information in one connected component of schedule S using the wireless model and then
run this in parallel across different connected components.

Deleting an edge vk → v1 from the cycle (any other edge works as well) leads us to a
tree rooted at v1, where every edge is directed out from the root. We show how to send
all information along the edges in such a tree. We apply the following trick: let the level
of the vertex be its distance to the root of the tree. Now, call the vertex even if its level
is even and odd if its level is odd. First, all odd nodes that need to send information will
do so (and so even ones will be able to receive). Then, all even nodes will be allowed to
send information (and so odd ones will receive). In this way every node is either receiving or
sending information. Finally, we send information along the deleted edge vk → v1 from the
cycle. Hence instead of sending all information in one time step, we did it in three. This
blows up the total number of time steps by a factor of 3. J

I Remark. The result in Lemma 15 is sharp, for instance when underlying demand graph S
is a directed cycle on 3 vertices. Under thre upgraded wireless model information could be
sent in 1 step, whereas under the usual wireless model it requires 3 steps.
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We are going to combine these results to prove Theorem 10. Given multicommodity
multicast problem under wireless model on graph G with p demand pairs, we construct
graph G′ as described. Also, for every demand pair (si, ti) in G we create a separate packet
that originates at si and needs to be delivered to ti. Note that even if there is one piece of
information that originates at source s and needs to be sent to different sinks t1, . . . , tk, we
create different packets p1, . . . , pk for each of these demands. If we consider optimal wireless
schedule of length L on G and trace the path of every packet pi, then the length of every
such path is at most L, and on every edge the number of paths that uses that edge is at
most p (because there are p paths in total). Hence, dilation d ≤ L and congestion c ≤ p. We
do not know the optimal wireless schedule, but both c and d are lower bound on the length
of optimal packet routing schedule, and hence c+d

2 is also a lower bound. Theorem 12 gives
a constant-approximation schedule for packet routing, and hence this schedule satisfy all
demands in O(c + d) = O(L + p) time steps. Then we exploit Lemma 14 and Lemma 15
to transform it into a O(L+ p) schedule for multicommodity multicast problem under the
wireless model, which proves Theorem 10.

4 Rumor spreading in trees

In this section we present a simple polynomial algorithm Tree that gives a constant approx-
imation for wireless rumor spreading in trees, which improves the best known O( logn

log logn )-
approximation ratio for n-node trees.

I Theorem 16. Algorithm Tree runs in polynomial time and gives 3-approximation for
multicommodity multicast problem in a tree under wireless model.

The algorithm consists of two parts. We use the same idea as Iglesias, Rajaraman,
Ravi and Sundaram [6], by rooting the tree and splitting rumor spreading into sending all
information up the tree to ancestors, and then sending it down the tree to descendants.

4.1 Algorithm

Algorithm 6 Algorithm for rumor spreading in the tree.

procedure Tree(T,D)
Input: Tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}.
Pick an arbitrary vertex r and root the tree T at r.
Dup := ∅
Ddown := ∅
for (s, t) ∈ D do

Find the least common ancestor lca(s, t) of s and t.
Add demand pair (s, lca(s, t)) to Dup.
Add demand pair (lca(s, t), t) to Ddown.

end for
Run TreeUp(T,Dup).
Run TreeDown(T,Ddown).

end procedure

In order to send information up the tree, algorithm TreeUp uses a greedy approach to
send information that should go the furthest first. This strategy satisfies all demand pairs
in at most 2·OPT time steps, where OPT is the length of the optimal schedule. Lemma 19
provides an analysis of the algorithm.
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Algorithm 7 Algorithm for rumor spreading, when all demands go up the tree.

procedure TreeUp(T,D)
Input: Rooted tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}, where ti is an

ancestor of si in the tree, for every i.
Dclean := ∅ . This will contain a subset of demand pairs D with non-repeating sources.
for every vertex s ∈ G that is a source in D do

Among all demand pairs in D with source s consider the one, which has the longest
distance between s and corresponding sink in the tree.

Add this pair in Dclean.
end for
Set the depth of every node v, d(v) to be the length of the path from v to the root r.
Set current number of steps i := 0.
while not all demands in Dclean are satisfied do

for v ∈ G do
if d(v) has same parity as i then

Find child u of v with the piece of information that at the current state
needs to travel the longest distance up in the tree to its sink.

Send all information u has up to v.
end if

end for
i = i+ 1

end while
end procedure

The algorithm TreeDown sends information down the tree very fast, using two obser-
vations. First, it exploits the fact that under wireless model information could be sent to
several neighbours simultaneously. Second, we note that any two nodes in a tree have disjoint
set of children. We show that this strategy shows satisfies all demands in at most OPT+1
steps. Lemma 20 gives this analysis of algorithm TreeDown 8.

Algorithm 8 Algorithm for rumor spreading, when all demands go down the tree.

procedure TreeDown(T,D)
Input: Rooted tree T and demand pairs D = {(s1, t1), . . . , (sp, tp)}, where ti is a

descendant of si in the tree, for every i.
Set the depth of every node v, d(v) to be the length of the path from v to the root r.
Set current number of steps i := 0.
while not all demands are satisfied do

for v ∈ G do
if d(v) has same parity as i then

send all information v has to all its children in the tree.
end if

end for
i = i+ 1

end while
end procedure

Combining these two algorithms, we get the overall algorithm Tree for wireless mul-
ticommodity multicast in the tree.
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4.2 Correctness and Complexity
B Claim 17. Algorithm Tree 6 satisfies all given demands in the tree under wireless
model rules.

Proof. First, it is clear that if we first send information from source s to lca(s, t) for every
demand pair (s, t), and then from lca(s, t) to t for all (s, t), then we would have sent
information from every s to corresponding t.

Now, we need to show that algorithms TreeUp 7 and TreeDown 8 correctly send
information up and down the tree respectively. First, let’s show that both algorithms obey
wireless rules. Note that in both algorithms only nodes with the same parity of depth can
send information, and so node with opposite parity of depth will receive information, hence
there is no vertex that is trying to send and receive information at the same time.

Next, we show that none of the nodes is trying to receive information from more than one
vertex. Every vertex v in algorithm TreeUp 7 receives from only one if its children (if any).
For algorithm TreeDown 8, observe that nodes with even (or odd) depth are pairwise not
connected, and so sets of theirs children are disjoint.

Finally, note that both algorithms will run until all demands are satisfied. Since at every
step at least one piece of information becomes closer to the destination, it should satisfy all
demands in finite number of steps. C

B Claim 18. Algorithm Tree runs in polynomial time.

Proof. It is enough to show that both algorithm TreeUp 7 and algorithm TreeDown 8
run in polynomial time. Note that since at every step at least one piece of information
becomes closer to the destination, the number of while loops is at most (number of demand
pairs)·(maximum distance in the tree), which is polynomial in the number of vertices in
the tree. In algorithm TreeUp 7 at each iteration of the while loop, we also need to loop
through all children of v and find the one that needs to send information the furthest. This
could be done in poly-time as well, because the number of children, pieces of information
and diameter of the tree are all polynomial in n. C

We show that algorithm Tree outputs a rumor spreading schedule that is at most 3
times longer than the optimal one. Let us denote the length of the optimal schedule to be L.

It is enough to analyze approximation ratios of both algorithm TreeUp and algorithm
TreeDown. We show that the first one gives a 2-approximation and the second one is
almost optimal.

I Lemma 19. Algorithm TreeUp 7 produces the schedule that satisfies all demands in at
most 2L steps.

I Lemma 20 ([6]). Algorithm TreeDown 8 produces the schedule that satisfies all demands
in at most L+ 1 steps.

These two lemmas clearly imply that algorithm Tree 6 has approximation ratio 3.

Proof of Lemma 19. Note that for every source s, all of its sinks could only be the vertices
along the path from s to the root. Observe that for each s− t pair the path from s to t is
unique and hence we can also define a distance from s to t.

If s has to send to several sinks, we can leave only the furthest sink and remove others -
because the tree path from s to the furthest sink also passes through closer sinks. So now we
assume that every source has exactly one sink, which corresponds to the new set of demand
pairs Dclear.
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First, let us assume that the vertex is allowed to send and receive at the same time,
but still is not allowed to receive from more than one source. Under this assumption,
algorithm TreeUp 7 (after removing the line “If d(v) has same parity as i”) achieves
the optimal spreading time! Figure 2 illustrates the execution of this modified version of
algorithm TreeUp 7.

3

2

s1

t1

t2

s2

1

1

2

1

2

1

Figure 2 Illustration of precursor to algorithm Tree 6.

Recall that the algorithm is the following: if node v contains some information, it will try
to send it up. So if no other vertices are trying to send information to the parent of v, then
v is allowed to send information and it is obviously the best possible move.

I Definition 21 (The best/optimal move). Given a multicommodity-multicast problem, the
move is called optimal if there exists a subsequent sequence of moves that will achieve optimal
rumor spreading time.

Now, imagine that at the specific point in time there are several nodes v1, . . . , vk who
want to send to their common parent t.

I Definition 22 (The priority of the vertex). Given a vertex v that has information from
sources s1, . . . , sk, define the priority of v at this particular state of the system to be the
maximum distance from v to all sinks t1, . . . , tk that correspond to sources s1, . . . , sk.

The rule will be that vertices with larger priorities always send first. More precisely, if
there are several nodes v1, . . . , vk who want to send information to their common parent t at
this point in time, then pick the vertex vi with the largest priority and allow it to propagate
information to t (we will break any ties arbitrarily).

We argue that this is an optimal move. Consider the optimal algorithm and the first
moment in time when the state is different from the state in our greedy algorithm. We will
show that optimal algorithm could be modified, so that it still finishes rumor spreading in
the same number of steps, but also does the same move as our greedy algorithm.

Assume at this state vertices v1, . . . , vk want to send to their parent t. One of the vertices
vi should be allowed to send info to t since one more piece of information will move closer to
the sink this way. Consider what the optimal algorithm will do. Say it allows vertex vj to
send information to its parent. If vi = vj , then we are done (meaning our current move is
optimal). If not, then consider a different algorithm, where we swap vi in place of vj , and
move this step where vj sends information to its parent to the next time when vi is scheduled
to do so in the optimal algorithm. We claim that this modified algorithm is still optimal.
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To see this, consider the optimal algorithm again. Both vertices vi and vj have common
path to the top (except the very first edge to their parent, which we will ignore). Moreover,
because the priority of vi is at least the priority of vj , then the demand from vj is a subpath
of the demand for vi (remember we associate demand with both the source-sink pair and
the path between them). Because vj goes first and takes the same route as vi, but vi goes
further, we have that at some point during the optimal schedule the current information from
vertices vi and vj will be at the same vertex (somewhere along the demand path). Hence
at the end of the optimal schedule both sinks that correspond to vi and vj will contain the
current information from both vi, vj . And so if we swap vi and vj in our algorithm, after
the same number of time steps as in the optimal schedule again, both sinks that correspond
to vi, vj will contain current information from both vi, vj . Hence our modified algorithm is
optimal as well.

To sum up, this proves that our greedy algorithm which allows vertices with higher
priority to send first is optimal.

To finish the proof we need to get rid of the assumption that a node can send and receive
information at the same time. For this, we use the following idea: let the level of the vertex
be its distance to the root of the tree. Now, call the vertex even if its level is even and odd if
its level is odd. We will alternate between even/odd levels to send/receive. First, all odd
nodes that need to send information will do so (and so even ones will be able to receive).
Then, all even nodes will be allowed to send information (and so odd ones will receive). This
is then repeated. In this way every node is either receiving or sending information at every
step. Clearly, we have increased the number of time step by at most factor 2. Therefore our
algorithm will finish in at most 2L steps. J

Proof of Lemma 20. First, note that the distance between any source and sink is at most
L, because in the optimal schedule all distances are at most L. But we cannot start greedily
send information down, because a vertex cannot both send and receive information at
the same time.

Hence we will use the same idea again - vertices with even/odd levels will alternate to
send/receive. Note that our algorithm TreeDown 8 does the following: first, all even nodes
that need to send information will do so (and so odd ones will be able to receive). Then,
all odd nodes will be allowed to send information (and so even ones will receive). This is
repeated as before.

Consider a fixed source. If it is even, then it will start sending information down right
away, if it is odd, there will be a delay of one step. But after the vertex started sending
information, there will be no delays! For example, if the vertex is even, then it sends
information to the odd one, and at the next iteration all odd vertices are allowed to send
information. Hence, it will take at most L+ 1 steps to deliver all information. J

4.3 Optimal Telephone Broadcast in a Tree
I Corollary 23 (Optimal broadcast in the tree under telephone model). There is a simple
optimal schedule for broadcasting in the tree from any root under telephone model.

Note that it is well-known that the optimal schedule for broadcast in the tree under
telephone model can be found in polynomial time. For instance, one can find such a schedule
using dynamic programming. But this approach only gives an implicit algorithm to find
such a schedule. We will present a very simple explicit optimal schedule algorithm
TreeBroadcast 9.
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Algorithm 9 Algorithm for optimal broadcast in the tree under telephone model.

procedure TreeBroadcast(T )
Input: rooted tree T .

OptimalSchedule = ∅
while T is not empty do

Matching = ∅
for every vertex v ∈ T do

If v is not connected to any leaf, then continue to another v.
Among all children of v, pick an arbitrary leaf u.
Add edge u→ v to Matching.

end for
Add Matching to OptimalSchedule.
Delete Matching from T and any isolated vertices.

end while

Return reversed OptimalSchedule
end procedure

B Claim 24. Algorithm TreeBroadcast 9 outputs the optimal broadcast schedule in
the tree.

Proof. Every broadcast schedule that sends information from the root to all nodes is equivalent
to a schedule that sends information from the root to all leaves. This is further equivalent to
a schedule that collects information from all leaves to the root - by reversing the direction of
information flow and hence the schedule. We will present such a schedule.

Assume we are given that each leaf has a unique piece of information that it wants to
transmit to the root. The schedule is very simple: every leaf that has some information (one
or several pieces collected from other nodes) tries to send it to its parent. After the leaf
successfully propagates the information up, we delete this vertex from the tree. If there are
several leaves who try to send to the same parent, then choose one arbitrarily.

This is an optimal move because in each conflict when several leaves are trying to
send to the parent, the priority of each of these conflicting leaves is the same (since their
distance to the root is the same), so the argument is exactly the same as in the analysis of
Algorithm TreeUp.

The only additional point here is that we do not allow for non-leaf vertices to send
information, even though they might have some information available. This is because if
there is an internal node v, such that in its subtree there are leaves with information that
they haven’t sent up to v yet, there is no need in an optimal scheme for v to try to send
available information up, since it can wait until the very last information in its subtree will
reach v. More formally, the priority of the node v is less than the priority of a leaf in a
subtree of v, and hence we should give a priority to the leaf (by the same argument as in
that of Algorithm TreeUp). This rule makes sure that there is no vertex that is trying to
send and receive information and the same time. C

5 Conclusion

We have studied well-known rumor spreading problem under the wireless model. We designed
approximation algorithms for the most general multicommodity multicast set-up that improve
approximation ratios both for general graphs and when the underlying graph is a tree. For
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general graphs we improve approximation ratio for this problem from Õ(n 2
3 ) to Õ(n 1

2 +ε) on
n-node graphs. We also design an algorithm that satisfies p demand pairs in O(OPT + p)
steps, by reducing it to the well-studied packet routing problem. When underlying graph is an
n-node tree, we improved approximation ratio from O( logn

log logn ) to a constant 3-approximation.
A consequence of our algorithm is the simple constructive rule for optimal broadcasting in a
tree under a widely studied telephone model.
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Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing
planar Laman graphs. A simple algorithm with running time O(n3/2) and a more complicated algo-
rithm with running time O(n log3 n) based on involved planar network flow algorithms. Both improve
upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica,
7(5-6):465–497, 1992] with running time O(n

√
n log n).

To solve this problem we introduce two algorithms (with the running times stated above) that
check whether for a directed planar graph G, disjoint sets S, T ⊆ V (G), and a fixed k the following
connectivity condition holds: for each vertex s ∈ S there are k directed paths from s to T pairwise
having only vertex s in common. This variant of connectivity seems interesting on its own.
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Related Version A preliminary version of this article appeared at EuroCG 2019 (available from
http://www.eurocg2019.uu.nl/).

1 Introduction

Let G = (V,E) be a graph with n vertices. The graph G is called a Laman graph if it has
2n− 3 edges and every subset V ′ ⊆ V , with |V ′| ≥ 2, induces a subgraph with no more than
2|V ′| − 3 edges. A bar-joint framework is a physical structure made from fixed-length bars
that are linked by universal joints (allowing 360◦ rotations) at their endpoints. A bar-joint
framework is flexible if it has a continuous motion other than a global rotation or translation.
A nonflexible framework is called rigid. Moreover it is called minimally rigid, if it is rigid, but
it becomes flexible after removing any bar. For detailed definitions we refer to Jordán [21].
Interestingly, in 2d a bar-joint framework (in a generic configuration) is minimally rigid, if
and only if its underlying graph is a Laman graph. In other words, almost every embedding
of a Laman graph will be rigid. For nongeneric configurations Laman graphs can yield a
flexible framework though (see Figure 1).

Various characterizations of Laman graphs are known [17, 25, 26]. The class of plane
Laman graphs provides even more structure [9, 16, 23]. Of particular interest for our result is
the following geometric characterization: A geometric graph is a pointed pseudotriangulation
(PPT) if each inner face contains exactly three angles less than π, called small, and every vertex
is incident to an angle larger than π, called big [31]. Streinu [33] proved that the underlying
graph of a pointed pseudotriangulation is a Laman graph. Moreover, Haas et al. [16] showed
that every planar Laman graph has an embedding as a pointed pseudotriangulation. Pointed
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(a) (b)

Figure 1 A flexible drawing of a Laman graph (a), and a rigid drawing of the same graph (b).

pseudotriangulations have many applications as a geometric data structure. Maybe most
prominently, they are used as a tool to show that every polygonal linkage can unfold in 2d
without intersections [6, 33]. More applications come from problems in ray shooting, motion
planning and polygon guarding. We refer the interested reader to the survey of Rote, Santos,
and Streinu [31].

Haas et al. [16] also give an algorithm that computes a PPT realization for a Laman graph
in time O(n3/2). We could turn their algorithm into a recognition algorithm by checking
whether the derived realization is a PPT. If the original graph is not a Laman graph, then
the construction either fails at some intermediate step or some parts of the drawing collapse.
To check whether it collapsed requires computations with exponentially large numbers. So
it depends on the model of computation if the overall algorithm runs in O(n3/2) time. We
present combinatorial algorithms for recognizing planar Laman avoiding these subtleties.

Checking the Laman condition for general graphs can be done in polynomial time. The
fastest (but very complicated) algorithm is due to Gabow and Westermann [13] and needs
O(n
√
n logn) time. Their algorithm is based on a characterization by means of matroid

sums (see also [7] for a time analysis specifically for Laman graphs). There is also a very easy
so-called pebble-game algorithm that runs in O(n2) time [3, 20] (a brief survey of further
algorithmic aspects is given in the introduction of [26]).

1.1 Our contribution
Our recognition algorithms for planar Laman graphs rely on the theory of combinatorial
pseudotriangulations developed by Haas et al. [16] which will be described in detail in
Section 4. The crucial step in the algorithm is to check the following connectivity condition
for a certain auxiliary directed planar graph. Consider a positive integer k, a directed graph
G, and disjoint sets S, T ⊆ V (G). We call S k-connected to T if for each vertex s ∈ S there
are k directed paths from s to T pairwise having only vertex s in common.

A naive approach to check this condition can be implemented in O(|S|m) time and is
described in Section 1.2 . We present two algorithms checking this condition for planar
directed graphs that are faster for large sets S. In Section 2 we present a simple algorithm
that checks this connectivity condition for planar directed graphs provided that each vertex
is either in S or T . This gives the following theorem.

I Theorem 1. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and a partition V (G) = S ∪ T whether S is k-connected to T in O(n3/2) time.

We show how to combine this algorithm with simple algorithms of Haas et al. [16] to
check the Laman property for a plane graph in time O(n3/2) in Section 4.
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If all vertices in T are incident to a common face then we obtain a much faster algorithm
for the connectivity check. We then even could drop the condition that each vertex is either
in S or T . It is based on latest planar network flow algorithms and presented in Section 3.

I Theorem 2. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and disjoint sets S, T ⊆ V (G) whether S is k-connected to T in O(n log3 n) time,
provided that all vertices in T are incident to a common face in G.

It turns out that this condition is satisfied when checking for the Laman property. This
leads to a fast algorithm for recognizing planar Laman graphs which we describe in Section 4.

I Theorem 3. There is an algorithm deciding for each planar graph whether it is a Laman
graph in O(n log3 n) time.

1.2 Related work on connectivity in directed graphs
Here we discuss how the algorithms from Theorems 1 and 2 relate to known algorithms. We
briefly recall the basic definitions and results on connectivity of directed graphs first. Note
that we consider only unweighted graphs. For two vertices s and t in a directed graph let
κ(s, t) and λ(s, t) denote the largest number of internally vertex disjoint respectively edge
disjoint directed paths from s to t. It is well known that λ(s, t) is equal to the value of a
maximum s-t flow and hence to the size of a minimum s-t cut. A directed graph is strongly
connected if for each vertex there is a directed path to each other vertex. A directed graph
with at least k vertices is called k-vertex connected (k-edge connected) if the removal of any
k − 1 vertices (edges) yields a strongly connected directed graph. Let κ(G) (λ(G)) denote
the largest k such that G is k-vertex connected (k-edge connected). By means of Menger’s
theorem we have that κ(G) = min

s6=t
κ(s, t) and λ(G) = min

s6=t
λ(s, t) [2].

For general directed graphs κ(s, t) and λ(s, t) can be computed with time in O(nm) [30].
Checking whether κ(s, t) ≥ k or whether λ(s, t) ≥ k for some fixed k can be done by k steps
of the Ford–Fulkerson algorithm and hence in O(m) time (see [2, p. 205]). In both cases
the computation of vertex connectivity can be easily reduced to the edge connectivity [10].
Further the values of κ(G) and λ(G) can be computed with algorithms due to Gabow
with time in O(m(n+ min(κ(G)5/2, κ(G)n3/4))) [12] and time in O(λ(G)m log(n2/m)) [11]
respectively. Checking whether κ(G) ≥ 2 and whether λ(G) ≥ 2 can be done with time
in O(n + m) [14, 19]. For larger fixed k the fastest algorithms checking κ(G) ≥ k and
λ(G) ≥ k are based on Gabows algorithms above with times in O(m(n+ min(k5/2, kn3/4)))
and O(km log(n2/m)) respectively.

For planar directed graphs κ(s, t) and λ(s, t) can be computed in linear time [8, 22]
(and O(n logn) in the weighted case). Further λ(G) can be calculated with time in
O(n log logn) [28]. We are not aware of algorithms computing κ(G) specifically for pla-
nar directed graphs.

A naive approach to check whether a set S is k-connected to T (the notion considered
in this paper) works as follows. First introduce a new vertex t and all arcs xt, x ∈ T , and
then check whether κ(s, t) ≥ k for each s ∈ S. This leads to an O(|S|m) time algorithm
for general directed graphs and constant k. For planar directed graphs our algorithm from
Theorem 1 is faster than this approach in case |S| ∈ ω(

√
n) and V (G) = S ∪ T . For planar

directed graphs where the vertices in T can be embedded incident to a common face our
algorithm from Theorem 2 is faster already for |S| ∈ ω(log3 n).

Further questions related to connectivity of (planar) directed graphs include the all-pairs
reachability [15, 18], all pairs minimum cuts [4].
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(a) (b)

S
T ′

T
A

T

s

Figure 2 If S is k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T

(a). This statement applied where T ′ = A is a separator (b).

2 Checking directed k-connectivity

In this section we prove the statement of Theorem 1. We first give some structural results.
The following statement is similar to Menger’s theorem. We provide a proof for completeness.

I Lemma 4. Let k ≥ 0, G be a directed (not necessarily planar) graph, and S, T ⊆ V (G)
be disjoint with |T | ≥ k. Then S is k-connected to T if and only if for each s ∈ S and
A ⊆ V (G)\{s} with |A| = k−1 there is a directed path from s to T not using the vertices in A.

Proof. Clearly, if S is k-connected to T then for each s ∈ S and A ⊆ V (G) \ {s} with
|A| = k − 1 there is a directed path from s to T not using the vertices in A. We deduce
the reverse statement from Menger’s theorem. Obtain a directed graph G′ by adding a new
vertex z and edges tz for each t ∈ T . Then S is k-connected to T in G if and only if for each
s ∈ S there are k internally vertex disjoint directed paths joining s and z in G′. Suppose
that for each s ∈ S and A ⊆ V (G) \ {s} with |A| = k − 1 there is a directed path from s to
T in G not using the vertices in A. Then, under the same assumptions, there is a directed
path from s to z in G′ not using the vertices in A. So by Menger’s theorem there are k
internally vertex disjoint directed paths joining s and z in G′. In particular S is k-connected
to T in G. J

The following observation is crucial for using separators recursively. An illustration is
given in Figure 2.

I Lemma 5. Let G be a directed graph and let S, T , T ′ ⊆ V (G) be disjoint. If S is
k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T .

Proof. Let s ∈ S and fix a set A ⊆ V (G) \ {s} of size k − 1. We shall find a directed path
from s to T not using vertices from A. There is a directed path from s to some vertex
u ∈ T ∪ T ′ not using vertices from A since S is k-connected to T ∪ T ′. If u ∈ T we are done.
If u ∈ T ′, then there is a directed path from u to T not using vertices from A since T ′ is
k-connected to T . In each case there is a directed path from s to T not using vertices from
A. So S is k-connected to T by Lemma 4. J

For a single vertex we can decide in linear time whether it is k-connected to T by means of
Ford–Fulkerson’s algorithm (similar to the naive approach from Section 1.2). An st-connector
in a directed graph G is a set of edge disjoint directed paths from vertex s to vertex t. Given
an st-connector P the residual graph GP is obtained by reversing all arcs of paths in P. It
is well known that P is a largest st-connector in G if and only if there is no directed path
from s to t in GP [2].
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I Lemma 6. For each k ∈ N there is an algorithm deciding for any directed (not necessarily
planar) graph G, s ∈ V (G), and T ⊆ V (G) whether s is k-connected to T in O(k(|V (G)|+
|E(G)|)) time.

Proof. We apply the following standard modification due to Ford and Fulkerson [10]. Split
each v ∈ V (G) into two vertices vi and vo and replace each arc uv by an arc uovi. Further
add all arcs vivo, v ∈ V (G). Finally add a new vertex z and the arcs toz, t ∈ T . Let G′
denote the resulting directed graph. Then s is k-connected to T in G if and only if there is
an soz-connector of size k in G′.

The algorithm iteratively builds an soz-connector P in G′ in at most k steps. In each step
a directed path P from so to z is searched in the residual graph G′P . If no such path exists,
then the set P is a largest soz-connector in G′. Otherwise, in G′ the symmetric difference of
the set of arcs from paths in P and the set of arcs from P (which might not be a path in G′)
forms an soz-connector of size |P|+ 1 in G′.

Clearly the algorithm decides whether there is an soz-connector of size k in G′ and hence
whether s is k-connected to T in G. The construction of G′ in the beginning and in each step
the construction of the residual graph as well as the search can be implemented in O(n+m)
time. Since there are at most k steps the overall time is O(k(n+m)). J

We call A ⊆ V (G) a separator if removing A splits G into two (not necessarily connected)
subgraphs G1 and G2, such that |V (G1)|, |V (G2)| ≤ 2

3 |V (G)|. For every planar graph G a
separator with size in O(

√
n) can be found in linear time [27].

Proof of Theorem 1. The algorithm works recursively as follows. Let A denote a separator
of G of size O(

√
n). Use Lemma 6 to check for each a ∈ A ∩ S whether a is k-connected to

T in G. Let G1 and G2 denote the two subgraphs of G separated by A (each including A).
For i = 1, 2 let Si = (S ∩ V (Gi)) \ A and let Ti = (T ∩ V (Gi)) ∪ A. Apply the algorithm
recursively to check whether Si is k-connected to Ti in Gi, for i = 1, 2.

Recall that V (G) = S ∪ T . The algorithm indeed checks whether S is k-connected to T
in G since either it finds some vertex in A ∩ S that is not k-connected to T in G, or it is
sufficient to check whether S \A is k-connected to A ∪ T by Lemma 5. Then it is sufficient
to check G1 and G2 separately. See Figure 2(b) for an illustration

The separator can be found in linear time. Then the algorithm from Lemma 6 is called
O(
√
n) times for each vertex in the separator, each call with linear time (since k is constant

and |E(G)| is linear in n). So the total time for each step of the recursion and hence for the
whole algorithm is O(n3/2). J

3 A faster algorithm for checking directed k-connectivity

In this section we prove Theorem 2. First we use a construction similar to one of Kaplan
and Nussbaum [22] transforming the problem into a question about network flow. Consider
a directed graph H and distinct s, t ∈ V (H). Kaplan and Nussbaum construct a directed
planar graph Hs,t obtained from H by replacing each v ∈ V (H) \ {s, t} by a cycle Cv with
vertices v1, . . . , vd, where d is the degree of v in H, such that arcs incident to v are replaced
by arcs of (flow) capacity 1 not sharing endpoints while keeping their orientation and the
cyclic order around v. The edges of the cycle Cv are oriented in both directions and receive
(flow) capacity 1/2. See Figure 3.

I Lemma 7 ([22]). There are k internally vertex disjoint s-t-paths in H if and only if in
Hs,t the maximum s-t-flow has value at least k.

ESA 2019



79:6 Recognizing Planar Laman Graphs

u
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v
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ueve

H Hs,t u

v

ueve

~G

(a) (b) (c)

Figure 3 A directed planar graph H (a), the modification Hs,t of Kaplan and Nussbaum (b),
and the modification ~G used in the algorithm for Theorem 2 (c). The modification of Kaplan and
Nussbaum does not include the original vertices inside of the new cycles. We need this since all the
original vertices except a fixed source are targets in our algorithm.

Since we need to calculate s-t-flows for several distinct targets t at the same time we need a
modification independent of t.

I Lemma 8. Consider k ≥ 1, a directed planar graph G and disjoint sets S, T ⊆ V (G)
where all vertices of T are incident to a common face. Then a directed planar graph ~G

with |V (~G)| ≤ 7|V (G)| can be computed in linear time together with some s ∈ V (~G) and
T ′ ⊆ V (~G) such that S is k-connected to T in G if and only if in ~G for each t ∈ T ′ the value
of a maximum s-t-flow is at least k.

Proof. We consider an embedding of G where all vertices of T are incident to the outer face.
Let H denote the directed planar graph obtained by reversing the direction of each arc in
G and by adding a new vertex s in the outer face of G connected by arcs sv to all vertices
v ∈ T . Further let T ′ = S. Then S is k-connected to T in G if and only if in H there are k
internally vertex disjoint s-t-paths for each t ∈ T ′ (note that we reversed the direction of all
the edges).

We obtain a directed planar graph ~G by splitting each vertex in V (H) \ {s} into a cycle
as follows. Replace each arc e in H, directed from u 6= s to v, by arcs ueve and vev, where
ue, ve are new vertices (and distinct for all e). Replace each arc e in H, directed from s to v,
by arcs sve, and vev, where ve is a new vertex. Further for each vertex v in H connect the
new vertices ve by a cycle Cv in the cyclic order of the arcs e around v, where the edges are
directed in both directions. Finally a (flow) capacity function is defined where all arcs on
cycles Cv receive capacity 1/2 and all other arcs capacity 1. See Figure 3.

This construction corresponds to the graph Hs,t constructed by Kaplan and Nussbaum,
except that there is not a specific target t and, additionally the original vertices from H are
kept inside of the cycles together with their incoming arcs. In particular ~G is planar and
V (G) ⊆ V (H) ⊆ V (~G). Consider some t ∈ T ′ = S. Note that each s-t-flow in ~G does not
use vertices from V (H) \ {s, t}, since these vertices do not have outgoing arcs in ~G. Hence
for each t ∈ T ′ any s-t-flow in ~G corresponds to an s-t-flow in Hs,t (by contracting t and Ct

to a single vertex). By Lemma 7 there are k internally vertex disjoint s-t-paths in H if and
only if in ~G the value of a maximum s-t-flow is at least k.

Clearly ~G can be constructed in linear time and |V (~G)| ≤ |V (G)|+2|E(G)|+1 ≤ 7|V (G)|.
This shows that ~G together with s and the set T ′ = S satisfies the desired conditions. J
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(a) (b)

Figure 4 A CPPT with big angles are marked by solid circles that is not stretchable (a) and
the derived directed graph ~G where the highlighted vertices do not have 3 disjoint paths to the
outer face (b).

Proof of Theorem 2. First construct a planar directed graph ~G with some s ∈ V (~G) and
T ′ ⊆ V (~G) with the algorithm from Lemma 8. Then apply an algorithm due to Ła̧cki et al. [24]
to ~G, which computes for the source s the maximum flow value to each other vertex in ~G in
O(n log3 n) time. By Lemma 8 S is k-connected to T in G if and only if in ~G for each t ∈ T ′
the value of a maximum s-t-flow is at least k. J

4 Recognizing Planar Laman Graphs

Since any Laman graph is 2-connected and 2-connectivity can be checked in linear time, see,
e.g., [32], we consider only 2-connected graphs in this section. Further we assume that the
graph is given with some plane embedding. As mentioned in the introduction our recognition
algorithms are based on the theory due to Haas et al. [16] which they developed in order to
show that exactly the planar Laman graphs can be realized as pointed pseudotriangulations.
They transfer the concept of PPTs to graphs given with a plane (combinatorial) embedding.
A combinatorial pointed pseudotriangulation (CPPT) is a plane graph with 2n− 3 edges and
with an assignment of the labels “small”/“big” to the angles satisfying the properties of a
PPT. That is, only big angles are incident to the outer face, each inner face contains exactly
three small angles and each vertex is incident to exactly one big angle. A CPPT is called
stretchable if there is a PPT realization (that is, a drawing) of its underlying graph respecting
the given labels of the angles and the embedding. Not every CPPT can be stretched to a
PPT, see Figure 4(a) for an example. But Haas et al. show that every plane Laman graph
admits a CPPT assignment and each CPPT whose underlying graph is Laman is stretchable.
This shows that every Laman graph has a realization as a pointed pseudotriangulation.
Note that the nonstretchable CPPT in Figure 4(a) contains K4 as a subgraph which has
6 > 2 · 4− 3 edges and hence is not a Laman graph.

This already outlines how our algorithms check whether a given plane graph G is Laman:
Step 1: Check whether G admits a CPPT assignment and compute one if it exists.
Step 2: Check whether the CPPT from Step 1 is stretchable.

The first step can be reduced to searching for a (generalized) matching in the following
planar bipartite graph. The vertex-face incidence graph of a plane graph G = (V,E) with
face set F is a planar bipartite graph H = (V ∪ F,E′) where (v, f) ∈ E′ if and only if v ∈ V
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79:8 Recognizing Planar Laman Graphs

is incident to f ∈ F in G. Note that for each face each vertex appears at most once along
its boundary since we assume that G is 2-connected. A plane graph G admits a CPPT
assignment if and only if its vertex-face incidence graph has a subgraph A where each interior
face of G has degree 3 in A, the outer face of G has degree 0 in A, and each vertex of G has
degree in A equal to its degree in G minus 1. This means that the edges of A correspond to
small angles in the CPPT assignment. See Figure 5 for an illustration. Haas et al. provide
a simple algorithm with running time O(n3/2) checking whether such a subgraph A exists,
that is, the algorithm computes a CPPT assignment for a given plane graph if any exists.
Note that this algorithm does not compute a drawing and hence does not face the numerical
issued mentioned in the introduction.

(a) (b) (c)

1

1
1

1

1

1

4

0

Figure 5 A plane graph G with a CPPT assignment with big angles marked with a solid circle
(a), the vertex-face incident graph of G where vertices corresponding to faces in G are marked with
a solid square and the subgraph A corresponding to the CPPT is highlighted in gray (b), the flow
network H ′ constructed from G in the proof of Lemma 9 (some capacities are omitted for better
readability) (c).

In order to implement the first step with running time in O(n log3 n) we use an algorithm
by Borradaile et al. [5] computing a maximum flow between multiple sources and sinks.

I Lemma 9. There is an algorithm computing a CPPT assignment for any planar graph G
if any exists in O(n log3 n) time.

Proof. Consider the planar directed graph H ′ whose vertex set consists of two vertices u1
and u2 for each u ∈ V (G) and two vertices f1, f2 for each face of G. For each u ∈ V (G)
add an arc u1u2 with capacity 1, for each interior face f of G add an arc from f1f2 with
capacity equal to the number of vertices incident to f minus 3, and for the outer face f of G
add an arc f1f2 with capacity equal to the number of vertices incident to f . Finally for each
vertex u and face f add an arc f2u1 with capacity 1 if u is incident to f . Then there is a
1-1-correspondence between CPPT assignments of G and integer flows in H ′ with sources in
{f1 | f face in G}, sinks in {u2 | u ∈ V (G)}, and value |V (G)|. Note that the size of H ′ is
linear in the size of G and can be constructed in linear time. In particular the algorithm of
Borradaile et al. [5] (which computes an integer flow) can be used to compute a maximum
flow in O(n log3 n) time. If this flow has value |V (G)| we computed a CPPT assignment if
any exists, otherwise there is no CPPT assignment. J

For the second step, that is, checking whether a given CPPT is stretchable, we use the
following characterization of stretchability by Haas et al. Recall that a set S ⊆ V (G) is
3-connected to a set T ⊆ V (G) \ S if for each vertex s ∈ S there are three vertex disjoint
directed paths from u to distinct vertices in T . Figures 4 and 6 give illustrations of the
following result.
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I Lemma 10 ([16]). For a CPPT G a directed plane graph ~G, with V (~G) = V (G), can be
computed in linear time such that G is stretchable if and only if the set of interior vertices of
~G is 3-connected to the set of boundary vertices of ~G.

(a) (b)

Figure 6 (a) The derived directed graph ~G from the CPPT in Figure 5(c). (b) The stretched
pointed pseudotriangulation.

In fact any directed graph ~G satisfying the following conditions is suitable in the previous
lemma (see [16, Lemma 16] and note that G is a CPPT): (i) ~G contains the underlying graph
of G and has a planar embedding that respects the embedding of G, (ii) the vertices on the
outer face have no outgoing edges, and (iii) every interior vertex v has three outgoing edges
where two of them are the extreme edges in G (these are the edges incident to the big angle)
and one is an edge to a vertex in the boundary of the face of G containing the big angle at v.

We give a computation of such a graph ~G similar to the one of Hass et al. [16] for
completeness. First for each vertex v the two extreme edges incident to its big angle are
oriented from v to the respective neighbors (it might happen that some edges are oriented in
both directions). Next, we triangulate the underlying graph of G as follows. Consider an
inner face of G. If the face contains no big angles, we are done. Otherwise let a, b, and c
be the vertices corresponding to the three small angles and let Xab, Xbc, and Xac denote
the vertices between a and b, between b and c, and between a and c, respectively. Assume
that Xa,b 6= ∅. Let x and y denote the vertices in Xa,b adjacent to a respectively b (it might
happen that x = y). Then we add directed diagonals from each vertex in Xa,b to c, from
each vertex in Xa,c to x, and from each vertex in Xb,c to y. See Figure 7 for an illustration.
We do this for all faces and the obtained triangulation satisfies the conditions (i) – (iii) stated
above. Finally we remove all undirected edges. This construction can be implemented in
linear time by traversing the boundary of each face once.

(a)

a b

c

x y
a b

c

x y

(b)

Figure 7 (a) An inner face in a CPPT with big angles marked with a solid circle. (b) The directed
diagonals added to that face to obtain a directed graph satisfying the assumption of Lemma 10.
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Now we are ready to describe how to check whether a given plane graph G is Laman.
Note that a graph that admits a CPPT assignment has exactly 2n−e edges [16]. The simpler
algorithm uses the algorithms of Haas et al. [16] to find a CPPT assignment and the directed
plane graph ~G from Lemma 10, and then the algorithm from Theorem 1 to decide whether
the set of interior vertices of ~G is 3-connected to the set of boundary vertices. Note that
each vertex in ~G is either an inner vertex or on the boundary. This decides whether G is a
plane Laman graph by Theorem 1 and Lemma 10 and has running time O(n3/2). The faster
algorithm works as follows.

Proof of Theorem 3. First, search for a CPPT assignment of G using the algorithm from
Lemma 9. If there is no such assignment then G is not Laman. Otherwise G is Laman if
and only if the CPPT computed in the first step is stretchable. To check this we compute
the auxiliary directed plane graph ~G from Lemma 10 such that the CPPT is stretchable if
and only if the set of interior vertices of ~G is 3-connected to the set of boundary vertices of
~G. Note that the boundary vertices of ~G are clearly incident to a common face. Hence we
can check the connectivity property using the algorithm from Theorem 2. This algorithm
decides whether G is a plane Laman graph by Theorem 2 and Lemma 10 and has running
time O(n log3 n). J

5 Conclusions and further directions

An obvious direction for future research is to search for faster or simpler algorithms recognizing
(planar) Laman graphs.

Our algorithms do not provide any certificate for their correctness. This could be a
Henneberg sequence [17] or a decomposition into two acyclic subgraphs [7]. We do not know
how to compute either of these faster than using the algorithm of Gabow and Westermann [13].

Further our strategy heavily depends on planarity. Thus it seems unlikely that we can
extend our approach to nonplanar Laman graphs. Instead it seems interesting to extend our
strategies to more general pseudotriangulations. Orden et al. [29] show a characterization of
general pseudotriangulations that extends the one for PPTs described in Section 4. Again
there is a notion of combinatorial pseudotriangulations (CPT) which are stretchable if and
only if certain combinatorial conditions hold. Besides a connectivity condition similar to the
one for CPPTs there is an additional condition on sizes of subgraphs. In particular, a CPT
might not be stretchable although the underlying graph is realizable as a pseudotriangulation.
We do not know how to identify the stretchable CPTs.

Instead of asking if a graph has a representation as a (pointed) pseudotriangulation one
can also ask for other representations such as straight-line triangle representations [1]. For
this problem no polynomial time algorithm is known, although the problem shares many
similarities with the Laman graph recognition problem.

Finally it is of independent interest to see if the connectivity results for directed graphs
can be extended. In the last part of the introduction we describe a naive approach checking
for a general directed graph whether a set S is k-connected to a set T with time in O(|S|m).

When each vertex is either in S or in T we can adapt the ideas presented in Section 2 for
classes of graphs with small separator. Then the running time becomes linear for graphs with
separators of constant size and stays in O(n3/2) as long as there are separators of size O(

√
n).

We do not know how to improve upon the naive approach for general directed graphs when
some vertices are not in S ∪ T .



J. Rollin, L. Schlipf, and A. Schulz 79:11

References
1 Nieke Aerts and Stefan Felsner. Straight line triangle representations. Discrete Comput. Geom.,

57(2):257–280, 2017.
2 Jørgen Bang-Jensen and Gregory Gutin. Digraphs. Springer Monographs in Mathematics.

Springer, London, second edition, 2009.
3 Alex R. Berg and Tibor Jordán. Algorithms for graph rigidity and scene analysis. In

Algorithms—ESA 2003, volume 2832 of Lecture Notes in Comput. Sci., pages 78–89. Springer,
Berlin, 2003.

4 Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen. All-pairs
minimum cuts in near-linear time for surface-embedded graphs. In 32nd International Sympo-
sium on Computational Geometry (SoCG’16), volume 51 of LIPIcs. Leibniz Int. Proc. Inform.,
pages 22:1–22:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

5 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017.

6 Robert Connelly, Erik D. Demaine, and Günter Rote. Straightening Polygonal Arcs and
Convexifying Polygonal Cycles. Discrete Comput. Geom., 30(2):205–239, 2003.

7 Ovidiu Daescu and Anastasia Kurdia. Towards an optimal algorithm for recognizing Laman
graphs. J. Graph Algorithms Appl., 13(2):219–232, 2009.

8 David Eisenstat and Philip N. Klein. Linear-time algorithms for max flow and multiple-source
shortest paths in unit-weight planar graphs. In 45th ACM Symposium on Theory of Computing
(STOC’13), pages 735–744. ACM, New York, 2013.

9 Zsolt Fekete, Tibor Jordán, and Walter Whiteley. An inductive construction for plane Laman
graphs via vertex splitting. In Algorithms—ESA 2004, volume 3221 of Lecture Notes in
Comput. Sci., pages 299–310. Springer, Berlin, 2004.

10 Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, N.J., 1962.

11 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. System Sci., 50(2):259–273, 1995.

12 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–844,
2006.

13 Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(5-6):465–497, 1992.

14 Loukas Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t
paths in digraphs. In 37th International Colloquium on Automata, Languages and Programming
(ICALP’10), volume 6198 of Lecture Notes in Comput. Sci., pages 738–749. Springer, Berlin,
2010.

15 Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemysław
Uznański. All-pairs 2-reachability in O(nω log n) time. In 44th International Colloquium on
Automata, Languages, and Programming, volume 80 of LIPIcs. Leibniz Int. Proc. Inform.,
pages 74:1–74:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

16 Ruth Haas, David Orden, Günter Rote, Francisco Santos, Brigitte Servatius, Herman Servatius,
Diane Souvaine, Ileana Streinu, and Walter Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. Comput. Geom., 31(1-2):31–61, 2005.

17 Lebrecht Henneberg. Die Graphische Statik der Starren Körper. In Felix Klein and Conrad
Müller, editors, Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer An-
wendungen: Vierter Band: Mechanik, pages 345–434. Vieweg+Teubner Verlag, Wiesbaden,
1908.

18 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Planar reachability in linear space and
constant time. In 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’15), pages 370–389. IEEE Computer Society, Los Alamitos, CA, 2015.

ESA 2019



79:12 Recognizing Planar Laman Graphs

19 Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Finding strong bridges and strong
articulation points in linear time. Theoret. Comput. Sci., 447:74–84, 2012.

20 Donald J. Jacobs and Bruce Hendrickson. An algorithm for two-dimensional rigidity percolation:
the pebble game. J. Comput. Phys., 137(2):346–365, 1997.

21 Tibor Jordán. Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks.
In Discrete geometric analysis, volume 34 of MSJ Mem., pages 33–112. Math. Soc. Japan,
Tokyo, 2016.

22 Haim Kaplan and Yahav Nussbaum. Maximum flow in directed planar graphs with vertex
capacities. Algorithmica, 61(1):174–189, 2011.

23 Stephen Kobourov, Torsten Ueckerdt, and Kevin Verbeek. Combinatorial and geometric
properties of planar Laman graphs. In 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’12), pages 1668–1678. SIAM, Philadelphia, PA, 2012.

24 Jakub Ła̧cki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Single Source –
All Sinks Max Flows in Planar Digraphs. In 53rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS’12), pages 599–608. IEEE Computer Society, Washington, DC,
2012.

25 Gerard Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331–340,
1970.

26 Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs. Discrete Math.,
308(8):1425–1437, 2008.

27 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math., 36(2):177–189, 1979.

28 Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. Minimum cut of directed
planar graphs in O(n log log n) time. In 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’18), pages 477–494. SIAM, Philadelphia, PA, 2018.

29 David Orden, Francisco Santos, Brigitte Servatius, and Herman Servatius. Combinatorial
pseudo-triangulations. Discrete Math., 307(3-5):554–566, 2007.

30 James B. Orlin. Max flows in O(nm) time, or better. In 24th ACM Symposium on Theory of
Computing (STOC’13), pages 765–774. ACM, New York, 2013.

31 Günter Rote, Francisco Santos, and Ileana Streinu. Pseudo-triangulations—a survey. In Surveys
on discrete and computational geometry, volume 453 of Contemp. Math., pages 343–410. Amer.
Math. Soc., Providence, RI, 2008.

32 Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Inform. Process. Lett.,
113(7):241–244, 2013.

33 Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom.,
34(4):587–635, 2005.



Simultaneous Representation of Proper and Unit
Interval Graphs
Ignaz Rutter
Faculty of Computer Science and Mathematics, University of Passau, Germany
rutter@fim.uni-passau.de

Darren Strash
Department of Computer Science, Hamilton College, Clinton, NY, USA
dstrash@hamilton.edu

Peter Stumpf
Faculty of Computer Science and Mathematics, University of Passau, Germany
stumpf@fim.uni-passau.de

Michael Vollmer
Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany
michael.vollmer@kit.edu

Abstract
In a confluence of combinatorics and geometry, simultaneous representations provide a way to realize
combinatorial objects that share common structure. A standard case in the study of simultaneous
representations is the sunflower case where all objects share the same common structure. While the
recognition problem for general simultaneous interval graphs – the simultaneous version of arguably
one of the most well-studied graph classes – is NP-complete, the complexity of the sunflower case
for three or more simultaneous interval graphs is currently open. In this work we settle this question
for proper interval graphs. We give an algorithm to recognize simultaneous proper interval graphs in
linear time in the sunflower case where we allow any number of simultaneous graphs. Simultaneous
unit interval graphs are much more “rigid” and therefore have less freedom in their representation.
We show they can be recognized in time O(|V | · |E|) for any number of simultaneous graphs in the
sunflower case where G = (V,E) is the union of the simultaneous graphs. We further show that
both recognition problems are in general NP-complete if the number of simultaneous graphs is not
fixed. The restriction to the sunflower case is in this sense necessary.
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1 Introduction

Given a family of sets R, the corresponding intersection graph G has a vertex for each set
and two vertices are adjacent if and only if their sets have a non-empty intersection. If all
sets are intervals on the real line, then R is an interval representation of G and G is an
interval graph; see Figure 1.

In the context of intersection graph classes, much work has been devoted to efficiently
computing a representation, which is a collection of sets or geometric objects having an
intersection graph that is isomorphic to a given graph. For many well-known graph classes,
such as interval graphs and chordal graphs, this is a straightforward task [14, 28]. However,
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Figure 1 (a) A graph, with (b) an interval representation and (c) proper interval representation.

often it is desirable to consistently represent multiple graphs that have subgraphs in common.
This is true, for instance, in realizing schedules with shared events, embedding circuit graphs
of adjacent layers on a computer chip, and visualizing the temporal relationship of graphs
that share a common subgraph [19]. Likewise, in genome reconstruction, we can ask if a
sequence of DNA can be reconstructed from strands that have sequences in common [13].

Simultaneous representations capture this in a very natural way. Given simultaneous
graphs G1, G2, . . . , Gk where each pair of graphs Gi, Gj share some common subgraph, a
simultaneous representation asks for a fixed representation of each vertex that gives a valid
representation of each Gi. This notion is closely related to partial representation extension,
which asks if a given (fixed) representation of a subgraph can be extended to a representation
of the full graph. Partial representation extension has been extensively studied for graph
classes such as interval graphs [20], circle graphs [8], as well as proper and unit interval
graphs [20]. For interval graphs, Bläsius and Rutter [3] have even shown that the partial
interval representation problem can be reduced to a simultaneous interval representation
problem on two graphs in linear time.

Simultaneous representations were first studied in the context of embedding graphs [2, 7],
where the goal is to embed each simultaneous graph without edge crossings while shared
subgraphs have the same induced embedding. Unsurprisingly, many variants are NP-
complete [12, 26, 1, 11]. The notion of simultaneous representation of general intersection
graph classes was introduced by Jampani and Lubiw [19], who showed that it is possible to
recognize simultaneous chordal graphs with two graphs in polynomial time, and further gave a
polynomial time algorithm to recognize simultaneous comparability graphs and permutation
graphs with two or more graphs that share the same subgraph (the sunflower case). They
further showed that recognizing three or more simultaneous chordal graphs is NP-complete.

Golumbic et al. [15] introduced the graph sandwich problem for a graph class Π. Given a
vertex set V and edge sets E1 ⊆ E2 ⊆

(
V
2
)
it asks whether there is an edge set E1 ⊆ E ⊆ E2

such that the sandwich graph G = (V,E) is in Π. Jampani and Lubiw showed that if Π is an
intersection graph class, then recognizing k simultaneous graphs in Π in the sunflower case is
a special case of the graph sandwich problem where (V,E2 \ E1) is a k-partite graph [19].

We consider simultaneous proper and unit interval graphs. An interval graph is proper if
in an interval representation no interval properly contains another one (see Figure 1), and it
is unit if all intervals have length one. Interestingly, while proper and unit interval graphs
are the same graph class as shown by Roberts [25], simultaneous unit interval graphs differ
from simultaneous proper interval graphs; see Figure 2. Unit interval graphs are intersection
graphs and therefore the graph sandwich paradigm described by Jampani and Lubiw applies.
Proper interval graphs are not since in a simultaneous representation intervals of distinct
graphs may contain each other which means that the intersection graph of all intervals in
the simultaneous representation is not proper.

Sunflower (unit) interval graphs are a generalization of probe (proper) interval graphs,
where each sunflower graph has only one non-shared vertex. Both variants of probe graphs
can be recognized in linear time [22, 23].
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s1 s2
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Figure 2 A simultaneous proper interval representation of a sunflower graph G consisting of
two paths G1 = (s1, a, b, c, s2) (dashed) and G2 = (s1, d, s2) (dotted) with shared start and end
s1, s2 (bold). They have no simultaneous unit interval representation: The intervals a and c enforce
that b lies between s1 and s2. Interval d therefore includes b in every simultaneous proper interval
representation. In particular, not both can have size one.

Simultaneous interval graphs were first studied by Jampani and Lubiw [18] who gave a
O(n2 lgn)-time recognition algorithm for the special case of two simultaneous graphs. Bläsius
and Rutter [3] later showed how to recognize two simultaneous interval graphs in linear time.
Bok and Jedličková showed that the recognition of an arbitrary number of simultaneous
interval graphs is in general NP-complete [4]. However, the complexity for the sunflower case
with more than two simultaneous graphs is still open.

Our Results. We settle these problems with k not fixed for simultaneous proper and unit
interval graphs – those graphs with an interval representation where no interval properly
contains another and where all intervals have unit length, respectively [10, 27, 9, 16]. For
the sunflower case, we provide efficient recognition algorithms. The running time for proper
interval graphs is linear, while for the unit case it is O(|V | · |E|) where G = (V,E) is the union
of the sunflower graphs. In the full version we prove NP-completeness for the non-sunflower
case. The reductions are similar to the simultaneous independent work of Bok and Jedličková
for simultaneous interval graphs [4].

Organization. We begin by introducing basic notation and existing tools throughout Sec-
tion 2. In Section 3 we give a characterization of simultaneous proper interval graphs, from
which we develop an efficient recognition algorithm. In Section 4 we characterize simultaneous
proper interval graphs that can be simultaneous unit interval graphs, and then exploit this
property to efficiently search for a representation among simultaneous proper interval graph
representations. Proofs of lemmas and theorems marked with ? are omitted.

2 Preliminaries

In this section we give basic notation, definitions and characterizations. Section 2.1 collects
basic concepts on graph theory, orderings, and PQ-trees. Section 2.2 introduces (proper)
interval graphs and presents relations between the representations of such graphs and
their induced subgraphs. Finally, Section 2.3 introduces the definition and notation of
simultaneous graphs.

2.1 Graphs, Orderings, and PQ-trees
Unless mentioned explicitly, all graphs in this paper are undirected. For a graph G = (V,E)
we denote its size |G| := |V |+ |E|.

Let σ be a binary relation. Then we write a1 ≤σ a2 for (a1, a2) ∈ σ, and we write
a1 <σ a2 if a1 ≤σ a2 and a1 6= a2. We omit the subscript and simply use < and ≤ if the
ordering it refers to is clear from the context. We denote the reversal of a linear order σ by
σr, and we use ◦ to concatenate linear orders of disjoint sets.
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A PQ-tree is a data structure for representing sets of linear orderings of a ground set
X. Namely, given a set C ⊆ 2X , a PQ-tree on X for C is a tree data structure T that
represents the set Consistent(T ) containing exactly the linear orders of X in which the
elements of each set C ∈ C are consecutive. The PQ-tree T can be computed in time
O(|X|+

∑
C∈C |C|) [6]. Given a PQ-tree T on the set X and a subset X ′ ⊆ X, there exists a

PQ-tree T ′, called the projection of T to X ′, that represents exactly the linear orders of X ′
that are restrictions of orderings in Consistent(T ). For any two PQ-trees T1 and T2 on the
set X, there exists a PQ-tree T with Consistent(T ) = Consistent(T1)∩Consistent(T2),
called the intersection of T1 and T2. Both the projection and the intersection can be computed
in O(|X|) time [5].

2.2 Interval Graphs, Proper Interval Graphs, and Their Subgraphs

An interval representation R = {Iv | v ∈ V } of a graph G = (V,E) associates with each
vertex v ∈ V an interval Iv = [x, y] of real numbers such that for each pair of vertices u, v ∈ V
we have Iu ∩ Iv 6= ∅ if and only if {u, v} ∈ E, i.e., the intervals intersect if and only if the
corresponding vertices are adjacent. An interval representation R is proper if no interval
properly contains another one, and it is unit if all intervals have length 1. A graph is an
interval graph if and only if it admits an interval representation, and it is a proper (unit)
interval graph if and only if it admits a proper (unit) interval representation. It is well-known
that proper and unit interval graphs are the same graph class.

I Proposition 1 ([25]). A graph is a unit interval graph if and only if it is a proper
interval graph.

However, this does not hold in the simultaneous case where every simultaneous unit
interval representation is clearly a simultaneous proper interval representation of the same
graph, but not every simultaneous proper interval representation implies a simultaneous unit
interval representation; see Figure 2.

We use the well-known characterization of proper interval graphs using straight enumer-
ations [10]. Two adjacent vertices u, v ∈ V are indistinguishable if we have N [u] = N [v]
where N [u] = {v : uv ∈ E(H)} ∪ {u} is the closed neighborhood. Being indistinguishable
is an equivalence relation and we call the equivalence classes blocks of G. We denote the
block of G that contains vertex u by B(u,G). Note that for a subgraph G′ ⊆ G the block
B(u,G′) may contain vertices in V (G′) \B(u,G) that have the same neighborhood as u in
G′ but different neighbors in G. Two blocks B, B′ are adjacent if and only if uv ∈ E for
(any) u ∈ B and v ∈ B′. A linear order σ of the blocks of G is a straight enumeration of G if
for every block, the block and its adjacent blocks are consecutive in σ. A proper interval
representation R defines a straight enumeration σ(R) by ordering the intervals by their
starting points and grouping together the blocks. Conversely, for each straight enumeration
σ, there exists a corresponding representation R with σ = σ(R) [10]. A fine enumeration
of a graph H is a linear order η of V (H) such that for u ∈ V (H) the closed neighborhood
NH [u] is consecutive in η.

I Proposition 2 ([24, 10, 17]). (i) A graph is a proper interval graph if and only if it has a
fine enumeration. (ii) A graph is a proper interval graph if and only if it admits a straight
enumeration. (iii) A straight enumeration of a connected proper interval graph is unique
up to reversal.
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2.3 Simultaneous Graphs
A simultaneous graph is a tuple G = (G1, . . . , Gk) of graphs Gi that may each share vertices
and edges. Note that this definition differs from the one we gave in the introduction. This
way the input for the simultaneous representation problem is a single entity. The size
|G| of a simultaneous graph is

∑k
i=1 |Gi|. We call G connected, if

⋃k
i=1 Gi is connected.

A simultaneous (proper/unit) interval representation R = (R1, . . . , Rk) of G is a tuple of
representations such that Ri ∈ R is a (proper/unit) interval representation of graph Gi and
the intervals representing shared vertices are identical in each representation. A simultaneous
graph is a simultaneous (proper/unit) interval graph if it admits a simultaneous (proper/unit)
interval representation.

An important special case is that of sunflower graphs. The simultaneous graph G is a
sunflower graph if each pair of graphs Gi, Gj with i 6= j shares exactly the same subgraph S,
which we then call the shared graph. Note that, for G to be a simultaneous interval graph, it
is a necessary condition that Gi ∩Gj is an induced subgraph of Gi and Gj for i, j = 1, . . . , k.
In particular, in the sunflower case the shared graph S must be an induced subgraph of
each Gi. The following lemma allows us to restrict ourselves to instances whose union graph⋃
G =

⋃k
i=1 Gi is connected.

I Lemma 3 (?). Let G = (G1, . . . , Gk) be a simultaneous graph and let C1, . . . , Cl be the
connected components of

⋃
G. Then G is a simultaneous (proper) interval graph if and only if

each of the graphs Gi = (G1 ∩ Ci, . . . , Gk ∩ Ci), i = 1, . . . , l is a simultaneous (proper/unit)
interval graph.

3 Sunflower Proper Interval Graphs

In this section, we deal with simultaneous proper interval representations of sunflower graphs.
We first present a combinatorial characterization of the simultaneous graphs that admit
such a representation. Afterwards, we present a simple linear-time recognition algorithm.
Finally, we derive a combinatorial description of all the combinatorially different simultaneous
proper interval representations of a connected simultaneous graph, which is a prerequisite for
the unit case.

3.1 Characterization
Let G = (V,E) be a proper interval graph with straight enumeration σ and let VS ⊆ V be a
subset of vertices. We call σ compatible with a linear order ζ of VS if, we have for u, v ∈ VS
that u ≤ζ v implies B(u,G) ≤σ B(v,G).

I Lemma 4. Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES).
Then G admits a simultaneous proper interval representation R if and only if there exists a
linear order ζ of VS and straight enumerations σi for each Gi that are compatible with ζ.

Proof Sketch. For a given representation R the straight enumerations σi = σ(Ri) and linear
order ζ of VS given by their left endpoints in R clearly satisfy the lemma. Conversely
we build a linear order of interval endpoints from each σi that equals a proper interval
representation. As each σi is compatible with ζ, all endpoint orderings allow the same
ordering for vertices in S, thus permitting one global ordering of all endpoints. Drawing
the intervals according to this ordering then yields a simultaneous representation R since it
extends each individual ordering. J
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Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES) and for each
Gi ∈ G let σi be a straight enumeration of Gi. We call the tuple (σ1, . . . , σk) a simultaneous
enumeration if for any i, j ∈ {1, . . . , k} and u, v ∈ VS we have B(u,Gi) <σi

B(v,Gi) ⇒
B(u,Gj) ≤σj B(v,Gj). That is, the blocks containing vertices of the shared graph are not
ordered differently in any straight enumeration.

I Theorem 5 (?). Let G = (G1, . . . , Gk) be a sunflower graph. There exists a simultaneous
proper interval representation R = (R1, . . . , Rk) of G if and only if there is a simultaneous
enumeration (σ1, . . . , σk) of G. If (σ1, . . . , σk) exists, there also exists R with σ(Ri) = σi for
each Ri ∈ R.

3.2 A Simple Recognition Algorithm
In this section we develop a very simple recognition algorithm for sunflower graphs that
admits a simultaneous proper interval representation based on Theorem 5.

Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES). By
Proposition 2, for each graph Gi, there exists a PQ-tree T ′i that describes exactly the fine
enumerations of Gi. We denote by Ti = T ′i |S the projection of Ti to the vertices in S.
The tree Ti thus describes all proper interval representations of S that can be extended
to a proper interval representation of Gi. Let T denote the intersection of T1, . . . , Tk. By
definition, T represents all proper interval representations of S that can be extended to
a proper interval representation of each graph Gi. Thus, G admits a simultaneous proper
interval representation if and only if T is not the null-tree.

If T is not the null-tree, we can obtain a simultaneous representation by choosing any
ordering O ∈ Consistent(T ) and constructing a simultaneous representation S of S. Using
the algorithm of Klavík et al. [20], we can then independently extend S to representations Ri
of Gi. Since the trees Ti can be computed in time linear in the size of the graph Gi, and
the intersection of two trees takes linear time, the testing algorithm takes time linear in the
total size of the Gi. The representation extension of Klavík et al. [20] runs in linear time.
We therefore have the following theorem.

I Theorem 6. Given a sunflower graph G = (G1, . . . , Gk), it can be tested in linear time
whether G admits a simultaneous proper interval representation.

3.3 Combinatorial Description of Simultaneous Representations
Let G be a sunflower proper interval graph with shared graph S and simultaneous represen-
tation R. Then, each representation R ∈ R uses the same intervals for vertices of S and
implies the same straight enumeration σS(R) = σS(R) = σ({Iv ∈ R : v ∈ V (S)}).

I Lemma 7. Let G be a connected sunflower proper interval graph with shared graph S.
Across all simultaneous proper interval representations R′ of G, the straight enumeration
σS(R) of S is unique up to reversal.

Proof. Let R be a simultaneous representation of G and σS(R) the straight enumeration
of S induced by R. Since G is connected, for any two blocks Bi and Bi+1 of S consecutive
in σS(R), there exists a graph G ∈ G such that Bi and Bi+1 are in the same connected
component of G. Since S is an induced subgraph of G, for any two vertices u, v ∈ V (S)
with B(u, S) 6= B(v, S) we have B(u,G) 6= B(v,G). This means that a straight enumeration
of G implies a straight enumeration of S. Additionally, the straight enumeration of each
connected component of G is unique up to reversal by Proposition 2. As a result, for any
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A B C

Figure 3 Simultaneous proper interval representation of G1 (green solid), G2 (red dotted), G3

(blue dashed) with shared graph S (black bold). S has three blocks A, B, C. We denote the
component of Gi containing a block D by CiD. C2

A, C2
B , C3

B , C2
C are loose. C2

A is independent.
(C2

B , C
3
B) is a reversible part. (C2

C) is not a reversible part, since C1
C is aligned at C and not loose.

proper interval representation R of G, the blocks Bi and Bi+1 are consecutive in σS(R).
This holds for any two consecutive blocks in σ, which means that the consecutivity of all
blocks of S is fixed for all simultaneous representations of G. As a consequence σS(R) is
fixed up to complete reversal. J

Let G be a proper interval graph consisting of the connected components C1, . . . , Ck with
straight enumerations σ1, . . . , σk. Let σ1 ◦ · · · ◦ σk be a straight enumeration of G. Then
we say the straight enumeration σ′ = σ1 ◦ · · · ◦ σi−1 ◦ σri ◦ σi+1 ◦ · · · ◦ σk is obtained from σ

by reversal of Ci. For a sunflower graph G containing G with shared graph S = (VS , ES),
we call a component C = (VC , EC) of G loose, if all vertices VS ∩ VC are in the same block
of S. Reversal of loose components is the only “degree of freedom” among simultaneous
enumerations, besides full reversal, and is formally shown in the full version.

To obtain a complete characterization, we now introduce additional terms to specify
which reversals result in simultaneous enumerations (see Figure 3). Let G = (G1, . . . , Gk)
be a connected sunflower proper interval graph with shared graph S. We say a component
C of a graph in G aligns two vertices u, v ∈ S if they are in different blocks of C, i.e.,
B(u,C) 6= B(v, C). If in addition u and v are in the same block B of S, we say C is oriented
at B. If there is another component C ′ among graphs in G oriented at B, the orientation of
their straight enumerations in a simultaneous enumeration of G are dependent; that is, they
cannot be reversed independently. This is shown formally in the full version.

For each block B of S, let C(B) be the connected components among graphs in G oriented
at B. Since a component may contain B without aligning vertices, we have 0 ≤ |C(B)| ≤ k.
If C(B) contains only loose components, we call it a reversible part. Note that a reversible
part C(B) contains at most one component of each graph Gi. Additionally, we call a loose
component C independent, if it does not align any two vertices of S. Let (σ1, . . . , σk) and
(σ′1, . . . , σ′k) be tuples of straight enumerations of G1, . . . , Gk. We say (σ′1, . . . , σ′k) is obtained
from (σ1, . . . , σk) through reversal of reversible part C(B), if σ′1, . . . , σ′k are obtained by
reversal of all components in C(B).

I Theorem 8 (?). Let G = (G1, . . . , Gk) be a connected sunflower graph with shared graph
S and simultaneous enumeration ρ = (σ1, . . . , σk). Then ρ′ = (σ′1, . . . , σ′k) is a simultaneous
enumeration of G if and only if ρ′ can be obtained from ρ or ρr through reversal of independent
components and reversible parts.

4 Sunflower Unit Interval Graphs

In the previous section we characterized all simultaneous enumerations for a sunflower proper
interval graph G. We say a simultaneous proper/unit interval representation of a sunflower
graph G realizes a simultaneous enumeration ζ = (ζ1, . . . , ζk) of ζ, if for i ∈ {1, . . . , k} the
representation of Gi corresponds to the straight enumeration ζi. In Section 4.1 we provide a
criterion which determines for a given simultaneous enumeration ζ of G whether there is a
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G1

G2

v w

u x

�

(a)

v w

u x

⇓

(b)

v w

u x

⇑

(c)

v w

u x

⇒

(d)

v w

u x

⇐

(e)

Figure 4 (a): The forbidden configuration of Corollary 11. (b)–(e): The four implications of
Corollary 12.

simultaneous unit interval representation of G that realizes ζ. Namely, the criterion is the
avoidance of a certain configuration in a partial vertex order of

⋃
G induced by ζ. In Section 4.2

we combine these findings to efficiently recognize simultaneous unit interval graphs.

4.1 Simultaneous Enumerations of Sunflower Unit Interval Graphs
We first obtain a combinatorial characterization by reformulating the problem of finding a
representation as a restricted graph sandwich problem [15].

I Lemma 9 (?). A sunflower graph G has a simultaneous unit interval representation that
realizes a simultaneous enumeration ζ = (ζ1, . . . , ζk) if and only if there is some graph H
with V (H) = V (G) that contains the graphs G1, . . . , Gk as induced subgraphs and has a fine
enumeration σ such that for i ∈ {1, . . . , k} straight enumeration ζi is compatible with σ on Vi.

Our approach is to obtain more information on what graph H and the fine enumeration
σ must look like. We adapt a characterization of Looges and Olariu [21] to obtain four
implications that can be used given only partial information on H and σ (as given by
Lemma 9); see Figure 4. For the figures in this section we use arrows to represent a partial
order between two vertices. We draw them solid green if they are adjacent, red dotted if they
are non-adjacent in some graph Gi, and black dashed if they may or may not be adjacent.

I Theorem 10 (Looges and Olariu [21]). A vertex order of a graph H = (V,E) is a fine
enumeration if and only if for v, u, w ∈ V with v <σ u <σ w and vw ∈ E we have vu, uw ∈ E.

I Corollary 11 (?). A vertex order of a graph H = (V,E) is a fine enumeration if and only
if there are no four vertices v, u, x, w ∈ V with v ≤σ u ≤σ x ≤σ w and vw ∈ E and ux 6∈ E.

I Corollary 12. Let H = (V,E) be a graph with fine enumeration σ. Let v, u, x, w ∈ V and
u ≤σ x as well as v ≤σ w. Then we have (see Figure 4):
(i) vw ∈ E ∧ v ≤σ u ∧ x ≤σ w ⇒ ux ∈ E
(ii) ux 6∈ E ∧ v ≤σ u ∧ x ≤σ w ⇒ vw 6∈ E
(iii) vw ∈ E ∧ ux 6∈ E ∧ v ≤σ u⇒ w <σ x

(iv) vw ∈ E ∧ ux 6∈ E ∧ x ≤σ w ⇒ u <σ v.

Now we introduce the forbidden configurations for simultaneous enumerations of sunflower
unit interval graphs. Throughout this section let G = (G1, . . . , Gk) be a sunflower graph with
shared graph S and simultaneous enumeration ζ = (ζ1, . . . , ζk). Furthermore, let Vi = V (Gi)
and Ei = E(Gi), for i ∈ {1, . . . , k}. Finally, let V = V1∪ · · ·∪Vk. For a straight enumeration
η of some graph H we say for u, v ∈ V (H) that u <η v, if u is in a block before v, and we
say u ≤η v, if u = v or u <η v. We call ≤η the partial order on V (H) corresponding to η.
Note that for distinct u, v in the same block we have neither u >η v nor u ≤η v. We write
u ≤i v and u <i v instead of u ≤ζi

v and u <ζi
v, respectively.



I. Rutter, D. Strash, P. Stumpf, and M. Vollmer 80:9

s1 a b s2
G1 G2

s1 d f s2 s1 s2
c

d

c e

fe

a b

Figure 5 A sunflower graph G = (G1, G2) with shared vertices s1, s2 (black, bold). Let ζ be the
simultaneous enumeration realized by the given simultaneous proper interval representation. In
(G1, ζ1) we have the (s1, s2)-chain C = (s1, a, b, c, s2) of size 5 (green, solid). In (G2, ζ2) we have the
(s1, s2)-bar B = (s1, d, e, f, s2) of size 5 (red, dotted). Hence, sunflower graph G has the conflict
(C,B) for the simultaneous enumeration ζ.

s1 s2
b1 b2 b3

c1 c2 c3

b1 b2 b3

c1 c2 c3

s1 s2

 

(a) (b)

G1

G2

Figure 6 (a): A simultaneous enumeration with conflict. (b): Result with added orderings after
scouting, starting at s2 and finding the conflict in s1.

Let u, v ∈ V (S) with u 6= v. For i ∈ {1, . . . , k} a (u, v)-chain of size m ∈ N in
(Gi, ζi) is a sequence (u = c1, . . . , cm = v) of vertices in Vi with c1 <i · · · <i cm that
corresponds to a path in Gi. A (u, v)-bar between u and v of size m ∈ N in (Gi, ζi) is a
sequence (u = b1, . . . , bm = v) of vertices in Vi with b1 <i · · · <i bm that corresponds to an
independent set in Gi. An example is shown in Figure 5. If there is a (u, v)-chain C in Gi
of size l ≥ 2 and a (u, v)-bar B in (Gj , ζj) of size at least l, then we say that (C,B) is a
(u, v)-(chain-bar-)conflict and that G has conflict (C,B) for ζ. Note that one can reduce
the size of a larger (u, v)-bar by removing intervals between u and v. Thus, we can always
assume that in a conflict, we have a bar and a chain of the same size l ≥ 2. Assume G has a
simultaneous unit interval representation realizing ζ. If a graph G ∈ G has a (u, v)-chain of
size l ≥ 2, then the distance between the intervals Iu, Iv for u, v is smaller than l − 2. On
the other hand, if a graph G ∈ G has a (u, v)-bar of size l, then the distance between Iu, Iv
is greater than l − 2. Hence, sunflower graph G has no conflict. The result of this section is
that the absence of conflicts is not only necessary, but also sufficient.

I Theorem 13. Let G be a sunflower proper interval graph with simultaneous enumeration
ζ. Then G has a simultaneous unit interval representation that realizes ζ if and only if G has
no conflict for ζ.

Recall that Vi = V (Gi) for i ∈ {1, . . . , k} and V = V1 ∪ · · · ∪ Vk. Let α? be the union of
the partial orders on V1, . . . , Vk corresponding to ζ1, . . . , ζk. Set α to be the transitive closure
of α?. We call α the partial order on V induced by ζ. The rough idea is that the partial
order on V induced by the simultaneous enumeration ζ is extended in two sweeps to a fine
enumeration of some graph H that contains G1, . . . , Gk as induced subgraphs; see Figures 6,
7. For (u, v) ∈ α we consider u to be to the left of v. The first sweep (scouting) goes from
the right to the left and makes only necessary extensions according to Corollary 12 (iv). If
there is a conflict, then it is found in this step. Otherwise, we can greedily order the vertices
on the way back by additionally respecting Corollary 12 (iii) (zipping) to obtain a linear
extension where both implications are satisfied. In the last step we decide which edges H
has by respecting Corollary 12 (i).

For h ∈ {1, . . . , k} we say two vertices u, v ∈ Vh are indistinguishable in G if we have
NGi(u) = NGi(v) for all i ∈ {1, . . . , k} with u, v ∈ Vi. In that case u, v can be represented
by the same interval in any simultaneous proper interval representation. Thus, we identify
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a1 a2

d1 d2 d3

s1 s2 s1 s2 s1 s2
a1 a2 a1 a2

d1 d2 d3 d1 d2 d3

(a) (b) (c)

G1

G2 s1 s2a1 a2

d1 d2 d3

(d)

Figure 7 (a): A simultaneous enumeration without conflict. (b): Result with added orderings
after scouting. (c): Resulting linear order after zipping. Note that a1 comes before d2 in the linear
order thanks to scouting. Choosing otherwise would imply a contradiction at s2. (d): Resulting unit
interval representation for the sandwich graph.
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Gj
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Ri,j

w
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v wj

u x

Gj
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s

(b)

v wj

u x

Gj

Gi

c3 c2

s

b3 b2

(c)

Figure 8 (a): The vertices ui, vj , wj as derived from x and X. The introduced ordering (ui, vj)
is marked with Ri,j . (b),(c): Both cases of a chain-bar pair for u and v.

indistinguishable vertices. If u, v ∈ Vh are not indistinguishable, then we have NGj (u) 6=
NGj

(v) for some j ∈ {1, . . . , k}. In that case u, v are ordered by ζj and therefore by α. That
is, we can assume α to be a linear order on Vi for i ∈ {1, . . . , k}. Note that u, v may be
ordered even if they are indistinguishable in some input graphs.

For i ∈ {1, . . . , k}, let Gci = (Vi,
(
Vi

2
)
\ Ei) be the complement of Gi. We set E =

{(u, v) ∈ α | uv ∈ E1 ∪ · · · ∪ Ek} and F = {(u, v) ∈ α | uv ∈ E(Gc1 ∪ · · · ∪Gck)}. We call a
partial order σ on V left-closed if we have

∀v, w, u, x ∈ V : (vw ∈ E ∧ ux ∈ F ∧ x ≤σ w) ⇒ u <σ v. (1)

Note that a fine enumeration of a graph H with G1, . . . , Gk as induced subgraphs is left-closed
by Corollary 12 (iv). We describe the result of the first sweep with the following lemma.

I Lemma 14. A sunflower graph G has no conflict for a simultaneous enumeration ζ if and
only if there is a left-closed partial order τ that extends the partial order on V (G) induced by ζ.

Proof Sketch. If there is a conflict (C,B), then the partial order α induced by ζ cannot be
extended to be left-closed since then for i ∈ {1, . . . , k − 1} the i’th vertex of C and B must
be ordered and distinct while the first vertex is shared; see Figure 6.

Otherwise, we process the vertices from the right to the left and add for each of them
the implied orderings (each is considered as vertex x in the definition of left-closed). First
consider the case of just two input graphs G1, G2. Let X be the set of already processed
vertices and let σ be the current partial order. We next process a maximal vertex x ∈ V \X.
Let x ∈ Vi. Then we choose ui to be the rightmost vertex in Vi with uix ∈ F and for j 6= i

we choose wj to be the leftmost vertex in Vj with x ≤ wj and vj to be the leftmost vertex in
Vj with vjwj ∈ E; see Figure 8a. Each of ui, vj , wj may not exist. If they do, we extend σ to
σ′ by adding the ordering ui ≤σ′ vj . The other implied orderings are exactly those obtained
by transitive closure.

Two vertices u ∈ V1, v ∈ V2 are only ordered by α if there is a shared vertex s with
u ≤α s ≤α v or v ≤α s ≤α u. The key observation is that if u is ordered before v due to a
necessary extension, then there is a shared vertex s and a (v, s)-chain and a (u, s)-bar of equal
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vj = b5 wj

ui = c5 x
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s

b2b3b4
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b′2b′3

s′
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(b)

Figure 9 (a): Example situation for (vj , ui) ∈ τi,j \ α?. We have the (vj , s)-bar (vj , b4, b3, b2, s)
and the (ui, s)-chain (ui, c4, c3, c2, s) and obtain x ≤τi,j wj ≤τi,j b4 ≤τi,j c4 ≤τi,j x. (b): Example
situation for the transitivity of τ where we have a chain-bar pair for u, v as well as for v, w. We obtain
b4 ≤τi,j c4 ≤τi,j b

′
3 ≤τi,j c

′
3 and since u <α b4 and w <α c

′
3 we get b4 ≤τi,h c′

3 in an appropriate
induction and with τi,h being left-closed we obtain u ≤τi,h w. (The base cases for the induction
involve shared vertices and thereby only two input graphs.)

size (chain-bar pair): If we have x ≤α wj , then there is a shared vertex x ≤α s ≤α wj and
by Theorem 10 we obtain us ∈ F and vs ∈ E, which yields a chain-bar pair; see Figure 8b.
Otherwise we have a chain-bar pair for x and wj that can be extended by u and v; see
Figure 8c. With the absence of conflicts this ensures that vertices ordered according to the
left-closed property are actually distinct.

Assume a new extension would violate the property of antisymmetry. This would mean
we already had vj <σ ui, which would imply a cyclic ordering of x, wj with elements of the
(necessary) chain-bar pair for vj , ui in a prior step; see Figure 9a. Finally, for more than two
input graphs we obtain a corresponding ordering τi,j for each pair of input graphs Gi, Gj .
Let τ =

⋃
i,j∈{1,...,k} τi,j be their union. For u <τi,j v <τj,h

w we can prove u <τi,h
w by

using chain-bar pairs and induction; see Figure 9b. Hence, τ is already transitive and the
other properties are easy to verify. J

By respecting the orderings obtained by scouting we avoid wrong decisions when greedily
adding vertices to a linear ordering in the zipping step; see Figure 7.

I Lemma 15. Let G be a sunflower graph with a simultaneous enumeration ζ. There is a
left-closed linear order τ that extends the partial order α on V (G) induced by ζ if and only if
there is a left-closed partial order σ ⊇ α.

Proof Sketch. Given σ we process the vertices from the left to the right. We add in each
step a leftmost vertex u of the remaining vertices to a set U of the processed vertices that
are linearly ordered. We denote the current order by σ′. Vertex u is then ordered before
all other vertices in V \ U . To avoid that the left-closed property is violated when adding
such orderings for another vertex, we ensure our extended order σ′′ ⊇ σ′ is right-closed on U
meaning that

∀u, v ∈ U,w, x ∈ V : (vw ∈ E ∧ ux ∈ F ∧ v ≤ u)⇒ w < x. (2)

To this end, we consider the current vertex u as vertex u in the definition of right-closed
and add all implied orderings in σ′′. This means for each vertex y ∈ Y = {y ∈ V | ∃u′ ∈
U : uy ∈ E} and each vertex z ∈ Z = {z ∈ V | uz ∈ F} we set y ≤σ′′ z; see Figure 10a. We
further extend σ′′ to be transitive. Note that there are no two vertices y ∈ Y, z ∈ Z with
y ≤σ z, since σ is left-closed and for u′ ∈ U we have u′ ≤σ u. With this observation we can
verify that σ′′ is antisymmetric and left-closed; see Figure 10b. J
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Figure 10 (a): orderings added during a zipping step (blue dash-dotted). All vertices in
Y = {y, y′} are ordered before those in Z = {z, z′}. (b): The case for σ′′ being left-closed where
we have x ≤σ′′ w due to transitivity. This means there is some ordering (y, z) ∈ Y × Z with
x ≤σ′ y ≤σ′′ z ≤σ′ w. We further have a vertex u′′ ∈ U with u′′y ∈ E and uz ∈ F . Given vertices
u′, v ∈ V with u′x ∈ F and vw ∈ E we obtain u′ <σ′ u′′ and u <σ′ v since σ′ is left-closed. This
yields u′ <σ′′ v.

Finally, we construct a graph H = (V,E′) for which the obtained linear order τ is a
fine enumeration. We do so by setting E′ = {ux ∈ V 2 | ∃vw ∈ E : v ≤τ u <τ x ≤τ w} in
accordance with Corollary 12 (i).

I Lemma 16 (?). Let G = (G1, . . . , Gk) be a sunflower graph with a simultaneous enu-
meration ζ. A linear order τ that extends the partial order on V (G) induced by ζ is a fine
enumeration for some graph H that has G1, . . . , Gk as induced subgraphs if and only if τ is
left-closed.

Combining Lemmas 9, 14, 15 and 16 we obtain Theorem 13.

I Theorem 13. Let G be a sunflower proper interval graph with simultaneous enumeration
ζ. Then G has a simultaneous unit interval representation that realizes ζ if and only if G has
no conflict for ζ.

4.2 Recognizing Simultaneous Unit Interval Graphs in Polynomial Time
With Theorems 8 and 13 we can now efficiently recognize simultaneous unit interval graphs.

I Theorem 17. Given a sunflower graph G = (G1, . . . , Gk), we can decide in O(|V | · |E|)
time, whether G is a simultaneous unit interval graph, where (V,E) = G? = G1 ∪ · · · ∪Gk.
If it is, then we also provide a simultaneous unit interval representation in the same time.

Proof Sketch. Here we establish polynomial time recognition, and the stated time is proven
in the full version. As discussed earlier, we can assume that G? is connected. With Theorem 6
we obtain a simultaneous enumeration ζ of G, unless G is not a simultaneous proper interval
graph. By Theorem 13, the sunflower graph G is a simultaneous unit interval graph if and
only if there is a simultaneous enumeration η for which G has no conflict. In that case ηr
also has no conflict. With Theorem 8 we have that η or ηr is obtained from ζ by reversals of
reversible parts and independent components. Hence, we only need to consider simultaneous
enumerations obtained that way.

Since every single graph Gi is proper, it has no conflict and we only need to consider
(u, v)-conflicts with u, v ∈ V (S), where S is the shared graph. The minimal (u, v)-chains for
Gi are exactly the shortest paths in Gi and thus independent from reversals. On the other
hand, for the maximal size of (u, v)-bars in Gi only the reversals of the two corresponding
components C,D of u, v are relevant, while components in-between always contribute their
maximum independent set regardless of whether they are reversed. We can thus compute
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for i, j ∈ {1, . . . , k}, u, v ∈ V (S) and each of the four combinations of reversal decisions
(reverse or do not reverse) for the corresponding components C,D of u, v, whether they
yield a conflict at (u, v). We can formulate a corresponding 2-SAT formula F : For every
independent component and every reversible part we introduce a literal that represents
whether it is reversed or not. For every combination of two reversal decisions that yields a
conflict we add a clause that excludes this combination. If F is not satisfiable, then every
simultaneous enumeration yields a conflict. Otherwise, a solution yields a simultaneous
enumeration without conflict. We obtain a simultaneous unit interval representation by
following the construction in Section 4.1. J

5 Conclusion

We studied the problem of simultaneous representations of proper and unit interval graphs.
We have shown that, in the sunflower case, both simultaneous proper interval graphs and
simultaneous unit intervals can be recognized efficiently. While the former can be recognized
by a simple and straightforward recognition algorithm, the latter is based on the three
ingredients: 1) a complete characterization of all simultaneous proper interval representations
of a sunflower simultaneous graph, 2) a characterization of the simultaneous proper interval
representations that can be realized by a simultaneous unit interval representation and 3) an
algorithm for testing whether among the simultaneous proper interval representations there
is one that satisfies this property.

Future Work. While our algorithm for (sunflower) simultaneous proper interval graphs
has optimal linear running time, we leave it as an open problem whether simultaneous unit
interval graphs can also be recognized in linear time.

Our main open question is about the complexity of sunflower simultaneous interval graphs.
Jampani and Lubiw [18] conjecture that they can be recognized in polynomial time for any
number of input graphs. However, even for three graphs the problem is still open.
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Abstract
Several clustering frameworks with interactive (semi-supervised) queries have been studied in the
past. Recently, clustering with same-cluster queries has become popular. An algorithm in this
setting has access to an oracle with full knowledge of an optimal clustering, and the algorithm can
ask the oracle queries of the form, “Does the optimal clustering put vertices u and v in the same
cluster?” Due to its simplicity, this querying model can easily be implemented in real crowd-sourcing
platforms and has attracted a lot of recent work.

In this paper, we study the popular correlation clustering problem (Bansal et al., 2002) under the
same-cluster querying framework. Given a complete graph G = (V,E) with positive and negative
edge labels, correlation clustering objective aims to compute a graph clustering that minimizes the
total number of disagreements, that is the negative intra-cluster edges and positive inter-cluster
edges. In a recent work, Ailon et al. (2018b) provided an approximation algorithm for correlation
clustering that approximates the correlation clustering objective within (1 + ε) with O( k

14 logn log k
ε6 )

queries when the number of clusters, k, is fixed. For many applications, k is not fixed and can grow
with |V |. Moreover, the dependency of k14 on query complexity renders the algorithm impractical
even for datasets with small values of k.

In this paper, we take a different approach. Let COPT be the number of disagreements made
by the optimal clustering. We present algorithms for correlation clustering whose error and query
bounds are parameterized by COPT rather than by the number of clusters. Indeed, a good clustering
must have small COPT . Specifically, we present an efficient algorithm that recovers an exact optimal
clustering using at most 2COPT queries and an efficient algorithm that outputs a 2-approximation
using at most COPT queries. In addition, we show under a plausible complexity assumption, there
does not exist any polynomial time algorithm that has an approximation ratio better than 1 + α

for an absolute constant α > 0 with o(COPT ) queries. Therefore, our first algorithm achieves the
optimal query bound within a factor of 2.

We extensively evaluate our methods on several synthetic and real-world datasets using real
crowd-sourced oracles. Moreover, we compare our approach against known correlation clustering
algorithms that do not perform querying. In all cases, our algorithms exhibit superior performance.
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1 Introduction

In correlation clustering, the algorithm is given potentially inconsistent information about
similarities and dissimilarities between pairs of vertices in a graph, and the task is to
cluster the vertices so as to minimize disagreements with the given information [7, 10]. The
correlation clustering problem was first proposed by Bansal, Blum and Chawla [7] and
since then it has found numerous applications in document clustering, image segmentation,
grouping gene expressions etc. [7, 10].

In correlation clustering, we are given a complete graph G = (V,E), |V | = n, where each
edge is labelled either + or −. An optimal clustering partitions the vertices such that the
number of intra-cluster negative edges and inter-cluster positive edges is minimized. The
problem is known to be NP-Hard. The seminal work of Bansal et al. [7] gave a constant factor
approximation for correlation clustering. Following a long series of works [7, 9, 4, 16, 12], the
best known approximation bounds till date are a 3-approximation combinatorial algorithm [1]
and a 2.06-approximation based on linear programming rounding [10]. The proposed linear
programming relaxation for correlation clustering [9, 1, 10] is known to have an integrality
gap of 2, but there does not exist yet a matching algorithm that has an approximation
ratio 2 or lower.

Correlation clustering problem can be extended to weighted graphs for an O(logn)-
approximation bound and is known to be optimal [12]. Moreover, when one is inter-
ested in maximizing agreements, a polynomial time approximation scheme was provided by
Bansal et al. [7].

Over the last two decades, crowdsourcing has become a widely used way to generate
labeled data for supervised learning. The same platforms that are used for this purpose can
also be used for unsupervised problems, thus converting the problems to a semi-supervised
active learning setting. This can often lead to significant improvements in accuracy. However,
using crowdsourcing introduces another dimension to the optimization problems, namely
minimizing the amount of crowdsourcing that is used. The setting of active querying has
been studied previously in the context of various clustering problems. Balcan and Blum [6]
study a clustering problem in which the only information given to the algorithm is provided
through an oracle that tells the algorithm either to “merge” two clusters or to “split” a
cluster. More recently, Ashtiani, Kushgra and Ben-David [5] considered a framework of
same-cluster queries for clustering; in this framework, the algorithm can access an oracle
that has full knowledge of an optimal clustering and can issue queries to the oracle of the
form “Does the optimal clustering put vertices u and v in the same cluster?” Because of its
simplicity, such queries are highly suited for crowdsourcing and has been studied extensively
both in theory community [3, 19, 2, 15] and in applied domains [23, 14, 17, 22]. Correlation
clustering has also been considered in this context. Ailon, Bhattacharya and Jaiswal [2]
study correlation clustering in this framework under the assumption that the number k of
clusters is fixed. They gave an (1 + ε) approximation algorithm for correlation clustering



B. Saha and S. Subramanian 81:3

that runs in polynomial time and issues O(k14 logn log k/ε6) queries. However, for most
relevant applications, the number of clusters k is not fixed. Even for fixed k, the dependence
of k14 is huge (consider k = 2 and 214 = 16384 with additional constants terms hidden
under O() notation).

In this paper, we give near-optimal algorithms for correlation clustering with same-cluster
queries that are highly suitable for practical implementation and whose performance is
parameterized by the optimum number of disagreements. Along with providing theoretical
guarantees, we perform extensive experiments on multiple synthetic and real datasets. Let
COPT be the number of disagreements made by the optimal clustering. Our contributions
are as follows.
1. A deterministic algorithm that outputs an optimal clustering using at most 2COPT queries

(Section 3).
2. An expected 2-approximation algorithm that uses at most COPT queries in expectation

(Section 4).
3. A new lower bound that shows it is not possible to get an (1 + α) approximation for

some constant α > 0 with any polynomial time algorithm that issues o(COPT ) queries
assuming GAP-ETH (see definition in Section 5).

4. An extensive experimental comparison that not only compares the effectiveness of our
algorithms, but also compares the state-of-the art correlation clustering algorithms that
do not require any querying (Section 6).

Assumption of an optimum oracle [5, 2] is quite strong in practice. However, our experiments
reveal that such an assumption is not required. In correlation clustering, often the ± edges
are generated by fitting an automated classifier, where each vertex corresponds to some
object and is associated with a feature vector. In our experiments with real-world data,
instead of an optimum oracle, we use crowdsourcing. By making only a few pair-wise queries
to a crowd oracle, we show it is possible to obtain an optimum or close to optimum clustering.
After our work, it came to our notice that it may be possible to use Bocker et al.’s [8] results
on fixed-parameter tracktability of cluster editing to adapt to our setting, and get better
constants on the query complexity. This is an ongoing work. Our algorithms and techniques
are vastly different from [8] and are also considerably simpler.

2 Related Work

Asthiani et al. [5] considered the k-means objective with same-cluster queries and showed that
it is possible to recover the optimal clustering under k-means objective with high probability
by issuing O(k2 log k + k logn) queries if a certain margin condition holds for each cluster.
Gamlath, Huang and Svensson extended the above result when approximation is allowed
[15]. Ailon et al. [2] studied correlation clustering with same-cluster queries and showed
that there exists an (1 + ε) approximation for correlation clustering where the number of
queries is a (large) polynomial in k. Our algorithms are different from those in [2] in that
our guarantees are parameterized by COPT rather than by k. Kushagra et al. [18] study a
restricted version of correlation clustering where the valid clusterings are provided by a set of
hierarchical trees and provide an algorithm using same-cluster queries for a related setting,
giving guarantees in terms of the size of the input instance (or the VC dimension of the
input instance) rather than COPT . [19] studied, among other clustering problems, a random
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instance of correlation clustering under same-cluster queries. Our algorithms are based on
the basic 3-approximation algorithm of Ailon et al. [1] that selects a pivot vertex randomly
and forms a cluster from that vertex and all of its +-neighbors. They further honed this
approach by choosing to keep each vertex in the pivot’s cluster with a probability that is a
function of the linear programming solution. Chawla et al. [10] used a more sophisticated
function of the linear programming solution to design the current state-of-the-art algorithm,
which gives a 2.06 approximation for correlation clustering.

3 Finding an Optimal Clustering

We are given a query access to an oracle that given any two vertices u and v returns whether
or not u and v are together in a cluster in an optimal solution. Let OPT denote the optimal
solution which is used by the oracle. Given a positive (+) edge (u, v), if OPT puts u and v
in different clusters, then we say OPT makes a mistake on that edge. Similarly for a negative
(−) edge (u, v), if OPT puts them together in a cluster then again OPT makes a mistake
on it. Similarly, our algorithm can decide to make mistakes on certain edges and our goal
is to minimize the overall number of mistakes. It is easy to see that an optimal solution
for a given input graph makes mistakes only on edges that are part of a (+,+,−) triangle.
Moreover, any optimal solution must make at least one mistake in such a triangle.

The pseudocode for our algorithm, QueryPivot, is given in Algorithm 1. The algorithm
is as follows (in the following description, we give in brackets the corresponding line number
for each step). We pick a pivot u arbitrarily from the set of vertices that are not clustered
yet [line 5]. For each (+,+,−) triangle (u, v, w) [line 10], if we have not yet determined via
queries that OPT makes a mistake on {u, v} or that OPT makes a mistake on {u,w} [lines
11-14], then (1) we query {u, v} [line 17] and if OPT makes a mistake on this edge, we too
decide to make a mistake on this edge and proceed to the next (+,+,−) triangle involving u
and (2) if OPT does not make a mistake on {u, v}, then we query {u,w} [line 23] and make
a mistake on it if OPT makes a mistake on it. Note that if we have already queries one of
{u, v} or {u,w} and found a mistake, we do not query the other edge [line 11]. Once we have
gone through all (+,+,−) triangles involving u then for every v 6= u, if we have not already
decided to make a mistake on {u, v}, then if {u, v} is a + edge we keep v in u’s cluster and
if {u, v} is a − edge we do not put v in u’s cluster. On the other hand, if we have decided to
make a mistake on {u, v}, then if {u, v} is a − edge we keep v in u’s cluster and if {u, v} is a
+ edge we do not put v in u’s cluster. Finally, we remove all vertices in u’s cluster from the
set of remaining vertices and recursively call the function on the set of remaining vertices.

In the pseudocode, Queried[v] = 1 means the algorithm has already issued a query
(pivot, v) to the oracle, Mistake[v] = 1 means it has decided to make a mistake on the edge
(pivot, v) based on the oracle answer, and Oracle(pivot, v) returns 1 iff OPT makes a mistake
on the edge {pivot, v}. We prove the following theorem that shows that QueryPivot is
able to recover the optimal clustering known to the oracle with a number of queries bounded
in terms of COPT .

I Theorem 3.1. Let COPT be the number of mistakes made by an optimal clustering.
The QueryPivot algorithm makes COPT mistakes and makes at most 2COPT queries to
the oracle.
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Algorithm 1 QueryPivot.

1: Input: vertex set V , adjacency matrix A, oracle Oracle
2: if V == ∅ then
3: return ∅
4: end if
5: pivot← Arbitrary vertex in V
6: T← all (+,+,−) triangles that include pivot
7: C← V
8: Queried← length-n array of zeros
9: Mistakes← length-n array of zeros
10: for (pivot, v, w) ∈ T do
11: if Mistake[v] == 1 or Mistake[w] == 1 then
12: continue
13: else if Queried[v] == 1 and Queried[w] == 1 then
14: continue
15: else if Queried[v] == 0 then
16: Queried[v]← 1
17: if Oracle(pivot, v) == 1 then
18: Mistake[v]← 1
19: end if
20: end if
21: if Queried[w] == 0 and Mistake[v] == 0 then
22: Queried[w]← 1
23: if Oracle(pivot, w) == 1 then
24: Mistake[w]← 1
25: end if
26: end if
27: end for
28: for v ∈ V \ {pivot} do
29: if (v ∈ N−(pivot) and Mistake[v] == 0) or (v ∈ N+(pivot) and Mistake[v] == 1) then
30: C = C \ {v}
31: end if
32: end for
33: return {C} ∪QueryPivot(V \ C,A,Oracle)

For a given cluster C and a vertex w ∈ C, we denote by N+
C (w) the set of vertices in

C that have + edges with w. Similarly, we denote by N−C (w) the set of vertices in C that
have − edges.

The algorithm time complexity is dominated by the time taken to check (+,+,−) triangles
involved with the pivots. Let E+ denote the set of positive edges in G. Then all the (+,+,−)
triangles that include a pivot can be checked in time O(|E+| ∗ n).

I Lemma 3.2. The QueryPivot algorithm outputs a valid partition of the vertices.

Proof. Note that the pivot is never removed from C. Hence, between each pair of consecutive
recursive calls, at least one vertex is removed from V . The algorithm must then terminate
after at most n recursive calls. Moreover, in each recursive call, the set of vertices passed
to the next recursive call is disjoint from the cluster created in that recursive call. Thus,
inductively, the sets returned by the algorithm must be disjoint. J

I Lemma 3.3. Consider a clustering C in which some cluster C contains vertices u, v s.t.
{u, v} is a − edge and s.t. u and v do not form a (+,+,−) triangle with any other vertex in
C. C is suboptimal.
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Proof. If we were to remove v from C and put it in a singleton cluster, we would make
|N−C (v)| − |N+

C (v)| fewer mistakes than C. If |N−C (v)| − |N+
C (v)| > 0, then C is suboptimal.

Therefore, assume |N−C (v)| ≤ |N+
C (v)|. Now, note that ∀w ∈ N+

C (v), w ∈ N−C (u) because
otherwise, u, v, and w form a (+,+,−) triangle. Thus |N+

C (v)| ≤ |N−C (u)| − 1 because
v ∈ N−C (u). Moreover, |N+

C (u)| ≤ |N−C (v)| − 1 because u ∈ N−C (v).
Hence, if we were to remove u from C and put it in a singleton cluster, we would make

|N−C (u)|−|N+
C (u)| ≥ |N+

C (v)|−|N−C (v)|+2 fewer mistakes than C. Since |N−C (v)|−|N+
C (v)| ≤

0, |N+
C (v)| − |N−C (v)|+ 2 > 0, so C is suboptimal. J

I Lemma 3.4. Consider a clustering C in which a cluster C1 contains a vertex u, a different
cluster C2 contains a vertex v, {u, v} is a + edge, and in every (+,+,−) triangle that includes
{u, v}, the clustering makes at least 2 edge mistakes. C is suboptimal.

Proof. If we were to remove u from C1 and put it in C2, we would make |N+
C2

(u)| +
|N−C1

(u)| − |N−C2
(u)| − |N+

C1
(u)| = 2|N+

C2
(u)|+ |C1| − |C2| − 2|N+

C1
(u)| fewer mistakes than

C. If 2|N+
C2

(u)|+ |C1| − |C2| − 2|N+
C1

(u)| > 0, then C is suboptimal. Otherwise, note that
∀w ∈ N+

C1
(u), w ∈ N+

C1
(v) because if not, u, v, w would form a (+,+,−) triangle in which

the algorithm makes fewer than 2 edge mistakes. By a similar argument, ∀w ∈ N+
C2

(v),
w ∈ N+

C2
(u). Thus, since in addition, {u, v} is a + edge, we have that |N+

C1
(v)| ≥ |N+

C1
(u)|+1

and |N+
C2

(u)| ≥ |N+
C2

(v)| + 1. Now if we were to remove v from C2 and put it in C1, the
number of mistakes will reduce by |N+

C1
(v)|+ |N−C2

(v)| − |N−C1
(v)| − |N+

C2
(v)| = 2|N+

C1
(v)|+

|C2| − |C1| − 2|N+
C2

(v)|. Since |N+
C1

(v)| ≥ |N+
C1

(u)|+ 1 and |N+
C2

(v)| ≤ |N+
C2

(u)| − 1, we have
that 2|N+

C1
(v)|+|C2|−|C1|−2|N+

C2
(v)| ≥ 2(|N+

C1
(u)|+1)+|C2|−|C1|−2(|N+

C2
(u)−1) . Since

2|N+
C2

(u)|+ |C1| − |C2| − 2|N+
C1

(u)| ≤ 0, 2(|N+
C1

(u)|+ 1) + |C2| − |C1| − 2(|N+
C2

(u)− 1) > 0,
so C is suboptimal. J

I Lemma 3.5. When given an oracle corresponding to an optimal clustering OPT , the
clustering returned by the QueryPivot algorithm is identical to OPT . It follows that the
algorithm’s clustering makes at most as many mistakes as OPT .

Proof. We will prove inductively that in each recursive call, the cluster C returned by the
algorithm is a cluster in OPT . Note that at the beginning of the first recursive call, the
claim that all clusters formed so far are clusters in OPT is vacuously true because there are
no clusters yet formed. Now consider an arbitrary but particular recursive call, and let u be
the pivot in this recursive call. Suppose for contradiction that C is not a cluster in OPT .
Case 1 : There is a vertex v such that v /∈ C, but in OPT , v is in the same cluster as u. Let
H be the cluster in OPT that contains u and v. First, observe that H must be a subset
of the remaining vertices in this recursive call; otherwise, one of the clusters formed in a
previous call contains some vertex in H but does not include u, contradicting the induction
hypothesis because this previously formed cluster is not a cluster in OPT . Next, note that
for any mistake that the algorithm makes on an edge incident on a pivot, the algorithm
queries the OPT oracle and makes the mistake iff OPT makes the mistake. Then if {u, v} is
a + edge, then the algorithm must have queried the oracle for {u, v} and found that OPT
makes a mistake on it because the algorithm decided to make a mistake on that edge. This
implies that OPT puts u and v in different clusters, which is a contradiction. Now suppose
instead that {u, v} is a − edge. Again if the algorithm queried the oracle for {u, v}, then
OPT must have put u and v in different clusters, so it must be the case that the algorithm
did not query the oracle for {u, v}. It follows that for any (+,+,−) triangle (u, v, w) that
includes {u, v}, our algorithm has queried {u,w} and found OPT makes a mistake on the
+ edge {u,w}. Then for any such triangle, w /∈ H. It follows that u and v do not form a
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(+,+,−) triangle with any vertex in H. Since u and v are in the same cluster H in OPT ,
{u, v} is a − edge, and u and v do not form a (+,+,−) triangle with any other vertex in
H, the conditions for Lemma 3.3 are satisfied. Therefore, OPT is a suboptimal clustering,
which is a contradiction.
Case 2 : There is a vertex v such that v ∈ C, but in OPT , v is not in u’s cluster. As in the
first case, if {u, v} were a − edge, the algorithm must make a mistake on {u, v} and so must
have queried OPT and found that OPT made a mistake on {u, v}, a contradiction. Now
suppose instead that {u, v} is a + edge. If there is some vertex w that was clustered prior
to this recursive call s.t. {u, v, w} is a (+,+,−) triangle in which OPT makes exactly one
mistake (on {u, v}), then note that either u or v should be in the same cluster as w because
one of {u,w} and {v, w} must be a + edge; in this case, we have reached a contradiction
with the inductive hypothesis because the previously formed cluster that included w did not
include u or v. Then in order to show that the conditions for Lemma 3.4 are satisfied, we
must show that for every vertex w in the set of remaining vertices when u is the pivot, if
(u, v, w) is a (+,+,−) triangle, then OPT must make at least two mistakes in the triangle.
Since OPT makes a mistake on {u, v} but the algorithm does not do so, it must be the case
that the algorithm did not query {u, v}. Since the algorithm did not query {u, v}, for every
(+,+,−) triangle (u, v, w) that includes {u, v} and such that w is in the set of remaining
vertices when u is the pivot, OPT must make a mistake on {u,w}. Then since OPT makes
a mistake on {u, v} and on {u,w} in any (+,+,−) triangle (u, v, w), we have by Lemma 3.4
that OPT is suboptimal clustering, which is a contradiction. J

I Lemma 3.6. Let COPT be the number of mistakes made by an optimal clustering OPT .
Then the QueryPivot algorithm makes at most 2COPT queries to the oracle.

Proof. The algorithm queries the oracle only when considering (+,+,−) triangles. Note that
whenever considering a particular (+,+,−) triangle, if the algorithm makes a query, it makes
at most two queries when considering that triangle and makes at least one mistake that had
not been made when considering previous triangles. Therefore, the algorithm makes at most
twice as many queries as mistakes. Since the algorithm makes exactly COPT mistakes, the
algorithm makes at most 2COPT queries. J

Theorem 3.1 follows directly from Lemmas 3.5 and 3.6.

4 A 2-Approximation Algorithm for Correlation Clustering

A natural question that arises from QueryPivot is how to use fewer queries and obtain
an approximation guarantee that is better than the state-of-the-art outside the setting
with same-cluster queries, which is a 2.06-approximation. In this section, we show that a
randomized version of QueryPivot gives a 2-approximation in expectation using at most
COPT queries in expectation.

The algorithm RandomQueryPivot(p) is as follows. We pick a pivot u uniformly
at random from the vertices yet to be clustered. For each (+,+,−) triangle (u, v, w), we
have two cases. (1) If {u, v} and {u,w} are both + edges, then with probability p (chosen
appropriately), we query both {u, v} and {u,w} and for each of these two edges we make a
mistake on the edge iff OPT makes a mistake on the edge. With probability 1− p we make
no queries for this triangle and proceed to the next triangle. (2) If one of {u, v} and {u,w}
is a + edge and the other is a − edge, then with probability p, we do the following. First,
we query the + edge and if OPT makes a mistake on it, then we make a mistake on it and
proceed to the next triangle. If OPT does not make a mistake on the + edge, then we query
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Algorithm 2 RandomQueryPivot.

1: Input: vertex set V , adjacency matrix A, oracle Oracle, parameter p
2: if V == ∅ then
3: return ∅
4: end if
5: pivot← Random vertex in V
6: T← all (+,+,−) triangles that include pivot
7: C← V
8: Queried← length-n array of zeros
9: Mistakes← length-n array of zeros

10: for (pivot, v, w) ∈ T do
11: // Without loss of generality, suppose that {pivot, v} is a + edge
12: Sample r from Uniform(0, 1)
13: if r > p then
14: continue
15: end if
16: if Oracle(pivot, v) == 1 then
17: Mistake[v]← 1
18: end if
19: if Mistake[v] == 0 or {pivot, w} is a + edge then
20: if Oracle(pivot, w) == 1 then
21: Mistake[v]← 1
22: end if
23: end if
24: end for
25: for v ∈ V \ {pivot} do
26: if (v ∈ N−(pivot) and Mistake[v] == 0) or (v ∈ N+(pivot) and Mistake[v] == 1) then
27: C = C \ {v}
28: end if
29: end for
30: return {C} ∪RandomQueryPivot(V \ C,A,Oracle)

the − edge and make a mistake on the − edge iff OPT does so. Again, with probability
1− p we make no queries for this triangle and proceed to the next triangle. Once we have
gone through all triangles, if we have not already decided to make a mistake on {u, v}, then
if {u, v} is a + edge we keep v in u’s cluster and if {u, v} is a − edge we do not put v in u’s
cluster. On the other hand, if we have decided to make a mistake on {u, v}, then if {u, v} is
a − edge we keep v in u’s cluster and if {u, v} is a + edge we do not put v in u’s cluster.
Finally, we remove all vertices in u’s cluster from the set of remaining vertices and recursively
call the function on the set of remaining vertices. Note that given a pivot u and a (+,+,−)
triangle containing u, if the algorithm chooses not to query either of the edges incident on u,
then the algorithm must make a mistake on the edge opposite to u in that triangle.

I Theorem 4.1. RandomQueryPivot(p) gives a max
(

2, 3
1+2p

)
-approximation in expect-

ation and uses at most max(4p, 1) ∗ COPT queries in expectation.

I Corollary 4.2. When p = 0.25, RandomQueryPivot gives a 2-approximation in expect-
ation and uses at most COPT queries in expectation.

I Lemma 4.3. In an arbitrary but particular recursive call, the probability that Random-
QueryPivot queries edge {u, v} on which OPT makes a mistake given that u is the pivot is
equal to the probability that RandomQueryPivot queries edge {u, v} given that v is the pivot.
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Proof. For a + edge {u, v} on which OPT makes a mistake, the probability that the edge
is queried given that one of the vertices is the pivot is a function only of the number of
(+,+,−) triangles that include the edge. In particular, if T is the number of (+,+,−)
triangles including the edge, the probability that the edge is queried is 1− (1− p)T . This
number of triangles does not depend on the pivot vertex, so the claim holds if {u, v} is a +
edge. If {u, v} is a − edge, then we claim that the probability that {u, v} is queried given
that either u or v is a function only of the number of (+,+,−) triangles that include {u, v}
in which OPT makes a mistake only on this − edge. This claim is true because (1) in any
(+,+,−) triangle in which OPT makes a mistake on the − and a + edge, OPT must make a
mistake on all of the three edges in the triangle and (2) when considering a (+,+,−) triangle
such that the pivot is an endpoint of the − edge, the algorithm queries the − edge iff OPT
does not make a mistake on the + edge of which the pivot is an endpoint. It follows that
for any (+,+,−) triangle in which the algorithm queries the − edge, OPT must make a
mistake only on the − edge. Since the number of (+,+,−) triangles that include {u, v} in
which OPT makes a mistake only on {u, v} does not depend on whether u or v is the pivot,
the claim holds when {u, v} is a − edge. J

Let suv = 1 if {u, v} is a − edge and 0 otherwise. Let c∗uv equal 1 if OPT makes a mistake
on {u, v} and 0 otherwise.

Let OPT t be the number of edges {u, v} s.t. c∗uv = 1 and the algorithm makes a decision
on {u, v} in iteration t. Let ALGt be the number of edges {u, v} s.t. the algorithm makes a
mistake on {u, v} and the algorithm makes a decision on {u, v} in iteration t.

Let Vt be the set of vertices remaining at the beginning of iteration t. Let Dt
uv be the

event that the algorithm makes a decision on {u, v} in iteration t.

I Lemma 4.4. Let T be the number of iterations that the algorithm takes to cluster all
vertices. If E[ALGt|Vt] ≤ αE[OPT t|Vt], for each iteration t, then E

[∑T
t=1ALG

t
]
≤

αE
[∑T

t=1OPT
t
]
.

Proof. Define X0 = 0 and for each s > 0, define Xs =
∑s
t=1 αOPT

t − ALGt. If the
condition in the lemma holds, then Xs is a submartingale because E[Xs+1|Xs] ≥ Xs. Also,
T is a stopping time that is almost surely bounded (since T ≤ n with probability 1). By
Doob’s optional stopping theorem [24, p. 100], if T is a stopping time that is almost surely
bounded and X is a discrete-time submartingale, then E[XT ] ≥ E[X0]. Then we have that
E[XT ] = E

[∑T
t=1 αOPT

t −ALGt
]
≥ E[X0] = 0. J

I Lemma 4.5. The expected number of mistakes made by the algorithm’s clustering is at
most max

(
2, 3

1+2p

)
COPT .

Proof Sketch. Here we give a sketch of the proof. By Lemma 4.4, if we show that E[ALGt−
αOPT t] ≤ 0 for any t, where α ≤ max

(
2, 3

1+2p

)
, then the claim will follow. Let Atw be the

event that w ∈ Vt is the pivot in iteration t.

E[OPT t|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

∑
w∈Vt

Pr[Dt
uv|Atw]

Now we will write E[ALGt|Vt] by charging the algorithm’s mistakes to each of OPT ’s
mistakes.
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Let M t
uv be the charge incurred to {u, v} in iteration t. We will assign charges such that

M t
uv = 0 if c∗uv = 0. Then

E[ALGt|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uvE[M t
uv] =

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
1
|Vt|

∑
w∈Vt

E[M t
uv|Atw]

Our goal is to compute an upper bound on E[M t
uv|Atw]. To do so, we define several events.

For each edge {u, v} s.t. c∗uv = 1, define the following subsets of Vt: {u, v}, ∀i ∈ {1, 2, 3},
Tuvi is the set of vertices w s.t. {u, v, w} is a (+,+,−) triangle in which OPT makes exactly
i mistakes, Suv is the set of vertices w s.t. {u, v, w} is a (+,−,−) or (+,+,+) triangle in
which OPT makes exactly 2 mistakes, Ruv ≡ Vt \ Tuv1 \ Tuv2 \ Suv \ {u, v}. Furthermore,
let Tuv2u be the subset of Tuv2 s.t. w ∈ Tuv2u if the 2 mistakes in {u, v, w} are both incident
on u. Similarly, let Suvu be the subset of Suv s.t. w ∈ Tuvu if the 2 mistakes in {u, v, w}
are both incident on u. ∀w ∈ Tuv1 , the probability that the algorithm makes a mistake on
{u, v} given that w is the pivot is Pr[Dt

uv|Atw] = 1. Note that Tuv1 , Tuv2 , {u, v}, Suv, and
Ruv partition Vt.

We compute E[M t
uv|Atw] (or an upper bound thereof) when w is in each of the sets {u, v},

Tuv1 , Tuv2u , Tuv2v , Suvu , Suvv , and Ruv, which partition Vt. Similarly, we analyze Pr[Dt
uv|Atw],

breaking up the calculation based on whether the pivot w is in Tuv1 , Tuv2u , Tuv2v , Suv2u , Suv2v ,
{u, v}, or Ruv.

In order to prove the claim, we show that

∑
w∈Vt

E[M t
uv|Atw] ≤ max

(
2, 3

1 + 2p

) ∑
w∈Vt

Pr[Dt
uv|Atw]

Thus, we have shown that E[ALGt|Vt] ≤ max
(

2, 3
1+2p

)
E[OPT t|Vt]. By Lemma 4.4,

the claim follows. J

I Lemma 4.6. The expected number of queries made by RandomQueryPivot is at most
max (4p, 1)COPT .

Proof. We follow an approach similar to that taken in the proof of Lemma 4.5. We will
bound the number of queries made by the algorithm in each iteration t by charging queries
to edges on which OPT makes a mistake and on which the algorithm makes a mistake in
iteration t. Let U t be the number of queries made by the algorithm in iteration t. We charge
queries as follows to an edge {u, v} on which OPT makes a mistake:
1. When u or v is the pivot, the algorithm makes at most 1 query on {u, v} itself.
2. When u or v is the pivot (suppose WLOG u is the pivot), ∀w ∈ Tuv1 (defined in the proof

of Lemma 4.5), the algorithm makes a query on {u,w} with probability p if {u,w} is a
+ edge.

3. When the pivot w is in Tuv1 , then with probability p at most 2 queries are made when
the algorithm considers the triangle {u, v, w}.

4. Note that we need not worry about charging mistakes in (+,+,−) triangles in which OPT
makes 2 mistakes because when considering such a triangle the algorithm is guaranteed
not to query the − edge on which OPT does not make a mistake. We also need not
worry about charging mistakes in (+,+,−) triangles in which OPT makes 3 mistakes
because each edge can be charged for any query made on that edge.
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E[U t|Vt] ≤
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

2(1 + p|Tuv1 |) +
∑

w∈Tuv
1

2p


≤

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

[2 + 4p|Tuv1 |]

Recall from the proof of Lemma 4.5 that

E[OPT t|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

∑
w∈Vt

Pr[Dt
uv|Atw] ≥

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

(2 + |Tuv1 |)

Here the second inequality follows from computing
∑
w∈Vt

Pr[Dt
uv|Atw] (see Case 1 and 7).

Clearly, 2+4p|Tuv
1 |

2+|Tuv
1 |

≤ max (4p, 1), so E[U t|Vt] ≤ max (4p, 1)E[OPT t|Vt]. Then by Lemma
4.4, the claim follows. J

Theorem 4.1 follows directly from Lemmas 4.5 and 4.6.

5 Lower bound on Query Complexity

The query complexities of the algorithms presented in this paper are linear in COPT , but it is
not clear whether this number of queries is necessary for finding an (approximately) optimal
solution. In this section, we show that a query complexity linear in COPT is necessary
for approximation factors below a certain threshold assuming that the Gap-ETH, stated
below, is true.

I Hypothesis 5.1 (Gap-ETH). There is some absolute constant γ > 0 s.t. any algorithm
that can distinguish between the following two cases for any given 3-SAT instance with n
variables and m clauses must take time at least 2Ω(m). (see e.g. [13])
i. The instance is satisfiable.
ii. Fewer than (1− γ)m of the clauses are satisfiable.

The proof of the following lemma is provided in the appendix, which appears in the
extended version of the paper.

I Lemma 5.2. Let COPT be the optimum number of mistakes for a given instance of
correlation clustering. Assuming Hypothesis 1, there is no

(
1 + γ

10
)
-approximation algorithm

for correlation clustering on N vertices that runs in time 2o(COP T )poly(N) where γ is as
defined in Hypothesis 1.

As a corollary to the above lemma, we obtain the following.

I Theorem 5.3. There is no polynomial-time
(
1 + γ

10
)
-approximation algorithm for correla-

tion clustering that uses o(COPT ) queries.

Proof. Suppose there exists an algorithm that approximates correlation clustering with an
approximation factor of

(
1 + γ

10
)
and uses at most o(COPT ) queries. We follow the algorithm

but instead when the algorithm issues a query, we branch to two parallel solutions instances
with the two possible query answers from the oracle. Since the number of queries is o(COPT ),
the number of branches/solutions that we obtain by this process is at most 2o(COP T ). We
return the one which gives the minimum number of mistakes. This gives a contradiction
to Lemma 5.2. J
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6 Experiments

In this section, we report detailed experimental results on multiple synthetic and real-world
datasets. We compare the performance of the existing correlation clustering algorithms that
do not issue any queries, alongside with our new algorithms. We compare three existing
algorithms: the deterministic constant factor approximation algorithm of Bansal et al. [7]
(BBC), the combinatorial 3-approximation algorithm of Ailon et al. [1] (ACN), and the
state-of-the-art 2.06-approximation algorithm of Chawla et al. based on linear program (LP)
rounding [10] (LP-Rounding). The code and data used in our experiments can be found at
https://github.com/sanjayss34/corr-clust-query-esa2019.

6.1 Datasets

Our datasets range from small synthetic datasets to large real datasets and real crowd
answers obtained using Amazon Mechanical Turk. Below we give a short description of them.

Synthetics Datasets: Small

We generate graphs with ≈ 100 nodes by varying the cluster size distribution as follows. [N]
represents 10 cliques whose sizes are drawn i.i.d. from a Normal(8, 2) distribution. This
generates clusters of nearly equal size. [S] represents 5 clusters of size 5 each, 4 clusters of
size 15 each and one cluster of size 30. This generates clusters with moderate skew. [D]
represents 3 cliques whose total size is 100 and whose individual sizes are determined by a
draw from a Dirichlet((3, 1, 1)) distribution. This generates clusters with extreme skewed
distribution with one cluster accounting for more than 80% of edges.

Synthetics Datasets: Large

We generate two datasets skew and sqrtn each containing 900 nodes of fictitious hospital
patients data, including name, phone number, birth date and address using the data set
generator of the Febrl system [11]. skew contains few (≈ logn) clusters of large size (≈ n

logn ),
moderate number of clusters (≈

√
n) of moderate size (≈

√
n) and a large tail of small

clusters. sqrtn contains
√
n clusters of size

√
n.

Noise Models for Synthetic Datasets

Initially, all intra-cluster edges are labelled with + sign and all inter-cluster edges are labelled
with − sign. Next, the signs of a subset of edges are flipped according to the following
distributions. Denote by C1, C2, ..., Ck the clusters that we generate. Let N denote the
number of vertices in a graph. Let `1 = 0.01, `2 = 0.1, and L be an integer. For the small
datasets, we set L = 100, and for the large skew and sqrtn datasets, we set L = b`2

(
N
2
)
c.

I. Flip sign of L edges uniformly at random.
II. Flip sign of min{bL/kc, |Ci| − 1} edges uniformly at random within each clique Ci. Do

not flip sign of the inter-cluster edges.
III. Flip sign of edges as in II in addition to selecting uniformly at random d`1|Ci||Cj |e

edges between each pair of cliques Ci, Cj and flipping their sign.

https://github.com/sanjayss34/corr-clust-query-esa2019
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Real-World Datasets

We use several real-world datasets.

In the cora dataset [20], each node is a scientific paper represented by a string determined
by its title, authors, venue, and date; edge weights between nodes are computed using
Jaro string similarity [14, 25]. The cora dataset consists of 1.9K nodes, 191 clusters with
the largest cluster-size being 236.
In the gym dataset [22], each node corresponds to an image of a gymnast, and each edge
weight reflects the similarity of the two images (i.e. whether the two images correspond to
the same person). The gym dataset consists of 94 nodes with 12 clusters and maximum
cluster size is 15.
In the landmarks dataset [17], each node corresponds to an image of a landmark in Paris
or Barcelona, and the edge weights reflect the similarity of the two images. The landmarks
dataset consists of 266 nodes, 13 clusters and the maximum size of clusters is 43.
In the allsports dataset [23], the nodes correspond to images of athletes in one of several
sports, and the edge weights reflect the similarity of the two images. The pairs of images
across sports are easy to distinguish but the images within the same category of sport
are quite difficult to distinguish due to various angles of the body, face and uniform.
The allsports dataset consists of 200 nodes with 64 clusters and with a maximum size of
cluster being just 5.

Since the underlying graphs are weighted, we convert the edge weights to ±1 labels by
simply labeling an edge + if its weight is at least 1/2 and − otherwise (the edge weights
in all of the weighted graphs are in [0, 1]). We also perform experiments directly on the
weighted graphs [10] to show how the above rounding affects the results.

Oracle

For small datasets, we use the Gurobi (www.gurobi.org) optimizer to solve the integer linear
program (ILP) for correlation clustering [10] to obtain the optimum solution, which is then
used as an oracle. For larger datasets like skew, sqrtn and cora, ILP takes prohibitively long
time to run. For these large datasets,the ground-truth clustering is available and is used as
the oracle.

For practical implementation of oracles, one can use the available crowd-sourcing platforms
such as the Amazon Mechanical Turk. It is possible that such an oracle may not always
give correct answer. We also use such crowd-sourced oracle for experiments on real datasets.
Each question is asked 3 to 5 times to Amazon Mechanical Turk, and a majority vote is
taken to resolve any conflict among the answers. We emphasize that the same-cluster query
setting can be useful in practice because two different sources of information can produce
the edge signs and the oracle – for instance, the edge signs can be produced by a cheap,
automated computational method (e.g. classifiers), while the oracle answers can be provided
by humans through the crowd-sourcing mechanism explained above.

6.2 Results
We compare the results of our QueryPivot and RandomQueryPivot algorithm as well
as the prior algorithms BBC [7], ACN [1] and LP-Rounding [10]. For the algorithms that
are randomized (ACN, LP-Rounding and RandomQueryPivot), we report the average
of three runs. The algorithm of Bansal et al. [7] requires setting a parameter δ. We tried
several values of δ on several of the datasets and chose the value that seemed to give the
best performance overall.
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Table 1 Results for Experiments on synthetic small datasets. BBC denotes the algorithm of
[7], ACN denotes the 3-approximation algorithm of [1], LP Rounding denotes the algorithm of [10],
QP denotes QueryPivot, and RQP denotes RandomQueryPivot(0.25). All numerical columns
except those marked as “Queries” give the number of mistakes made by the algorithm.

Mode
ILP

Oracle BBC ACN
LP

Rounding QP
QP

Queries RQP
RQP

Queries
N+I 100 271 205.67 100 100 113 104.33 63.3
N+II 48 104 70.0 48 48 47 56.33 27.33
N+III 93 201 130 123 93 91 97.67 66.0
D+I 100 100 267.0 100 100 86 100 83.33
D+II 48 48 144.33 48 48 57 48 40.67
D+III 64 64 216.33 64 64 71 64 75.0
S+I 100 969 206.0 100 100 136 100.67 92.0
S+II 60 831 100.67 61.67 60 71 63.67 58.67
S+III 137 913 297 141.33 137 159 139.33 107.33

Table 2 Results for Large Synthetic Datasets where Mistakes are measured with respect to
ground-truth clustering and the oracle is the ground-truth clustering.

Dataset/Mode
LP

Rounding BBC ACN QP QP Queries RQP RQP Queries
Skew (I) 8175 31197.67 0 17108 71.33 10051.33
Skew (II) 700 1182.33 60 668 282 558.0
Skew (III) 8175 12260.67 56 8977 293.0 4475.67
Sqrtn (I) 13050 36251.33 0 13171 9.67 7851.0
Sqrtn (II) 0 1484.67 0 748 0.0 711.0
Sqrtn (III) 13050 12711.33 0 6449 0.0 2693.33

Synthetic Datasets

Table 1 summarizes the results of different algorithms on small synthetic datasets.
As we observe, our QueryPivot algorithm always obtains the optimum clustering.

Moreover, RandomQueryPivot has a performance very close to QueryPivot but often
requires much less queries. Interestingly, the LP-rounding algorithm performs very well
except for N + III. ACN and BBC algorithms have worse performance than LP-Rounding,
and in most cases ACN is preferred over BBC.

For the larger synthetic datasets skew and sqrt, as discussed the ground-truth clustering
is used as an oracle. We also use the ground-truth clustering to count the number of mistakes.
On these datasets, the LP-rounding algorithm caused an out-of-memory error on a machine
with 256 GB main memory that we used. The linear programming formulation for correlation
clustering has O(n3) triangle inequality constraints; this results in very high time and space
complexity rendering the LP-rounding impractical for correlation clustering on large datasets.
Table 2 summarizes the results.

As we observe, QueryPivot algorithm recovers the exact ground-truth clustering in
several cases. RandomQueryPivot has a low error rate as well and uses significantly
fewer queries.
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Table 3 Results for Real-World Datasets where mistakes are measured with respect to ground-
truth clustering and the oracle is the ground-truth clustering. LP Rounding (weighted) refers to the
LP rounding of [10] applied to the weighted input graph.

Dataset/
Mode

LP
Rounding

LP
Rounding
(weighted) BBC ACN QP

QP
Queries RQP

RQP
Queries

Cora 62891 26065.0 4526 2188 4664.67 1474.33
Gym 221.0 332.67 449 301.67 8 150 82.67 97.33

Landmarks 29648.0 25790.0 31507 28770 3426 953 1124.67 1467.0
Allsports 230.0 226.33 227 253.33 217 41 223.67 21.0

Table 4 Running times (in seconds) for the results in Table 3. For randomized algorithms, the
time shown is the average over three trials.

Dataset/Mode
LP

Rounding

LP
Rounding
(weighted) BBC ACN QP RQP

Cora 1.58 0.16 2170.33 515.59
Gym 4.96 5.09 0.004 0.0014 0.33 0.27

Landmarks 190.96 9571.32 0.048 0.00067 1.96 2.82
Allsports 41.54 42.08 0.018 0.025 13.28 12.76

Real-World Datasets

The results for the real-world datasets are reported in Table 3, 5 and 6. It is evident from
Table 3 that our algorithms outperform the existing algorithms by a big margin in recovering
the original clusters. Table 3 also includes results for the LP-rounding algorithm applied to
the original weighted graph for the Gym, Landmarks, and Allsports datasets. We also report
in Table 4 the running times for the experiments in Table 3. These numbers show that the
BBC and ACN algorithms are substantially faster than the others, while our algorithms are
substantially faster than the LP-rounding algorithm.

Table 5 reports the results using a faulty crowd oracle. Contrasting the results of Table 3
and 5, we observe minimal performance degradation; that is, our algorithms are robust
to noise. The results in this table are important, as this setting is closest to the typical
real-world application of same-cluster queries. Note that the source of information that gives
the signs of the edges is different from that which is the crowd oracle. For the landmarks
dataset, the original edge weights are determined by a gist detector [21], while the oracle
used in Table 5 is given by high-quality crowd workers. For the gym and allsports datasets,
the original edge weights are determined by (lower quality) human crowd workers, but the
oracle used in Table 5 is based on high-quality crowd workers. Finally, in Table 6, we report

Table 5 Results for Real-World Datasets where mistakes are measured with respect to ground-
truth clustering and the oracle is the crowd.

Dataset/Mode QP QP Queries RQP RQP Queries
Gym 135 175 160.0 104.67

Landmarks 4645 1997 2172.33 1548.33
Allsports 218 41 223.67 21.0
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Table 6 Results for Real-World Datasets where mistakes are measured with respect to the graph
and the oracle is the optimal ILP solution for the graph.

Dataset/Mode
LP

Rounding BBC ACN QP QP Queries RQP RQP Queries
Gym 276.0 464 338.0 207 171 211.0 112.67

Landmarks 4092.0 4995 5240.67 4092 267 4092.0 265.33
Allsports 33.33 65 40.67 28 36 30.33 18.67

the results using the optimum ILP solution as the oracle. For the larger datasets, it is neither
possible to run the ILP nor LP-Rounding due to their huge space and time requirements.
Again our algorithms perform the best, followed by the LP-rounding algorithm.
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Abstract
Motivated by the classic Generalized Assignment Problem, we consider the Graph Balancing
problem in the presence of orientation costs: given an undirected multi-graph G = (V,E) equipped
with edge weights and orientation costs on the edges, the goal is to find an orientation of the edges
that minimizes both the maximum weight of edges oriented toward any vertex (makespan) and
total orientation cost. We present a general framework for minimizing makespan in the presence of
costs that allows us to: (1) achieve bicriteria approximations for the Graph Balancing problem
that capture known previous results (Shmoys-Tardos [Math. Progrm. ‘93], Ebenlendr-Krcál-
Sgall [Algorithmica ‘14], and Wang-Sitters [Inf. Process. Lett. ‘16]); and (2) achieve bicriteria
approximations for extensions of the Graph Balancing problem that admit hyperedges and
unrelated weights. Our framework is based on a remarkably simple rounding of a strengthened
linear relaxation. We complement the above by presenting bicriteria lower bounds with respect to
the linear programming relaxations we use that show that a loss in the total orientation cost is
required if one aims for an approximation better than 2 in the makespan.
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1 Introduction

We consider the Graph Balancing problem (Gb) where we are given an undirected multi-
graph G = (V,E) equipped with edge weights p : E → R+. The goal is to orient all the edges
of the graph, where each edge can be oriented to one of its endpoints. Given an orientation
of the edges the load of a vertex u is the sum of weights of edges oriented toward it. The
goal is to find an orientation of the edges that minimizes the maximum load over all vertices.

Gb was first introduced by Ebenlendr et al. [3] and since its introduction it has attracted
much attention (see, e.g., [10, 18, 6, 2, 12]). Besides being a natural graph optimization
problem on its own, a main motivation for considering Gb is the well known Generalized
Assignment Problem (Gap) (see, e.g., [15, 3, 16, 19]). In Gap we are given a collectionM
of m machines and a collection J of n jobs, along with processing times pi,j (the processing
time of job j on machine i) and assignment costs ci,j (the cost of assigning job j to machine
i). Each job must be assigned to one of the machines. The processing time of machine i is
the sum of processing times pi,j over all jobs j that are assigned to i, and the makespan of
an assignment is the maximum over all machines i of its processing time. Additionally, the
total assignment cost of an assignment is the sum of assignment costs ci,j over all machines
i and jobs j that are assigned to i. Given a target makespan T , we denote by C(T ) the
minimum total assignment cost over all assignments with makespan at most T . If there
are no assignments with makespan at most T , then C(T ) =∞. The goal in Gap, given a
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target makespan T , is to find an assignment with makespan at most T and total assignment
cost at most C(T ), or declare that no such assignment exists. We note that only T is given
to the algorithm whereas C(T ) is not. For this bicriteria problem, the celebrated result of
Shmoys and Tardos [15] provides an approximation algorithm that finds an assignment with
makespan at most 2T and total assignment cost at most C(T ).

Gb is a captured by Gap since one can: (1) setM to be V and J to be E; and (2) for
each job j ∈ J (which corresponds to an edge e ∈ E) set its processing time to be pe for
the two machines that correspond to the endpoints of e and ∞ for all other machines. Note
that assigning job j to machine i corresponds to orienting the edge e toward its endpoint
that corresponds to machine i. There are two important things to note. First, Gb was
originally defined as a single criterion optimization problem as opposed to Gap which is a
bicriteria optimization problem. Second, the weights p in Gb, which represent the processing
times of the jobs, are related, i.e., the processing times do not depend on the vertex the
edge is oriented to. Ebenlendr et al. [3] introduced a novel linear relaxation and rounding
algorithm that achieves an approximation of 1.75 with respect to the optimal makespan.
They also proved that even for this special case, no polynomial time algorithm can achieve
an approximation less than 1.5 unless P = NP , thus extending the hardness of Gap to Gb.

In this work we consider the bicriteria Gb problem, where we are also given orientation
costs, the equivalent to the assignment costs in Gap. Formally, an edge e = (u, v) has
orientation costs ce,u and ce,v and orienting it to u incurs a cost of ce,u. Similarly to Gap,
given a target makespan T , the goal is to find an orientation of the edges with total orientation
cost at most C(T ) and makespan at most T .1 To the best of our knowledge, the bicriteria Gb
problem was not previously considered. We say that an algorithm is a (α, β)-approximation
if given a target makespan T , it outputs an orientation with makespan at most αT and total
orientation cost at most βC(T ). Thus, [15] is a (2, 1)-approximation to Gb. We note that
the algorithm of [3] cannot handle orientation costs and is in fact a (1.75,∞)-approximation
for Gb. A result by Wang and Sitters [18] implicitly gives a (11/6, 3/2)-approximation for Gb.

We study the bicriteria tradeoff between makespan and total orientation cost in Gb,
presenting both upper and lower bounds (the latter are with respect to the linear programming
relaxations used in this work). We employ a remarkably simple general framework that
allows us to achieve bicriteria approximations for Gb that capture and extend known results.
Furthermore, we consider extensions of Gb that allow for: (1) hyperedges to be present, i.e.,
a job can be assigned to more than two machines; and (2) processing times can be unrelated,
i.e., the processing time of a job might depend on the machine it is assigned to. Our results
regarding these extensions improve upon the previously best known algorithms, and are also
based on the general framework presented in this paper. We believe this framework might
be of independent interest to other related scheduling problems.

1.1 Our Results

Our results are of three different flavors: bicriteria upper bounds for Gb, bicriteria lower
bounds for Gb, and both upper and lower bicriteria bounds for extensions of Gb (all lower
bounds are with respect to the linear programming relaxations we use). Let us now elaborate
on each of the above.

1 As in Gap, the total orientation cost of an orientation is defined as the sum of orientation costs ce,u
over all vertices u and edges e oriented toward u. C(T ) is defined as the minimum total orientation cost
over all orientations with makespan at most T . If no such orientation exists then C(T ) is set to ∞.
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1.1.1 Upper Bounds
We present a general framework for minimizing makespan in the presence of costs and obtain
two algorithms that achieve bicriteria approximations for Gb. This is summarized in the
following two theorems.

I Theorem 1. There exists a polynomial time algorithm that finds an orientation that is
a (1.75 + γ, 1/(2γ+0.5))-approximation for Graph Balancing, for every 1/12− ε ≤ γ ≤ 1/4

where ε =
√

33/4− 17/12 ≈ 0.02.

I Theorem 2. There exists a polynomial time algorithm that finds an orientation that is a
(1.75 + γ, 1 + 1/γ)-approximation for Graph Balancing, for every 0 ≤ γ ≤ 1/4.

Both the above theorems provide a smooth tradeoff between makespan and orientation cost
while capturing previous known results for Gb as special cases, i.e., Theorem 1 captures
the (2, 1) and (11/6, 3/2) approximations of [15] and [18] for γ = 1/4 and γ = 1/12 respectively,
whereas Theorem 2 captures the (1.75,∞)-approximation of [3] for γ = 0. Theorem 1 is
depicted in Figure 1.

1.1.2 Lower Bounds
We present bicirteria lower bounds for Gb. As previously mentioned, our lower bounds apply
to a strengthening of the relaxation of [3], which we denote by LPk (see subsection 3.2). The
lower bound is summarized in the follwing theorem and is depicted in Figure 1.

I Theorem 3. For every 0 ≤ γ < 1/4 and ε > 0, there exists an instance for Graph
Balancing and target makespan T such that: (1) LPk is feasible and has value of OPTLPk

,
and (2) every orientation whose makespan is at most (1.75 + γ)T has orientation cost of at
least 1/(γ+0.75+ε)OPTLPk

.

To the best of our knowledge, all algorithms for Gb that find an orientation that achieves an
approximation better than 2 with respect to the makespan use the relaxation of [3] (or no
relaxation at all, e.g., [6]). 2

1.1.3 Extensions
Using our general framework, we present bicriteria algorithms for extensions of Gb. The
extensions of Gb we consider allow hyperedges and unrelated weights to the edges. It is
important to note that all the upper bounds presented below hold for the single criterion
versions of these problems as well. In particular, we achieve an approximation strictly better
than 2, with respect to the makespan, to several problems that capture Gb and are not
captured by the Restricted Assignment problem (Ra).3 To the best of our knowledge,
this is the first polynomial time algorithm with approximation factor better than 2 to the
makespan for problems that capture Gb and are not captured by Ra. Let us now elaborate
on these extensions.

2 Recently, Jansen and Rohwedder [10] showed that using a different stronger relaxation called the
configuration LP one can achieve an approximation of less than 1.75 to the makespan. However, this
result does not produce a polynomial time algorithm that orients the edges but rather only approximates
the value of the optimal makespan. Moreover, this result has an unbounded loss with respect to the
orientation cost.

3 The Ra is a special case of Gap where each job has a set of machines it can be assigned to, and has an
equal processing time on each of them.
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The first extension allows for light unrelated hyperedges. Formally, given β ∈ [0, 1], the
input can contain hyperedges whose weight with respect to the vertices it shares may vary,
as long as it does not exceed β (we may assume without loss of generality that the largest
weight in p equals 1). We denote this problem by Graph Balancing with Unrelated
Light Hyper Edges (Gbuh(β)). A special case of this problem was introduced by Huang
and Ott in [6] who presented a (5/3 + β/3,∞)-approximation when β ∈ [4/7, 1). We improve
upon [6] in three aspects. First, we consider the general bicriteria problem, i.e., orientation
costs are present, and achieve bounded loss with respect to the total orientation cost (recall
that [6] cannot handle orientation costs). Second, we allow any β ∈ [0, 1], where [6] allows
for β ∈ [4/7, 1) only. Third, we allow the hyperedges to be unrelated, i.e., different weights to
different endpoints, where hyperedge weights in [6] are related. Our result for this extension
is summarized in the following theorem.

I Theorem 4. Let 0 ≤ β ≤ 1. For every max {1/12, β/3− 1/12} ≤ γ ≤ 1/4, there exists a poly-
nomial time algorithm that finds an orientation that is a (1.75 + γ, 1/(2γ+0.5))-approximation
to Gbuh(β).

The second extension further generalizes the first one, and it also allows edges to have
unrelated weights as long as the weights are greater than β. Unfortunately, we prove that
this problem in its full generality is as hard to approximate as Gap. However, if it is assumed
that the optimal makespan is at least 1 (as before we can assume without loss of generality
that the largest weight in p equals 1), we can achieve improved results. We denote this
problem by Graph Balancing with Unrelated Light Hyper Edges and Unrelated
Heavy Edges (Gbu(β)). 4

I Theorem 5. Let β ≥
√

2−1. For every β/3− 1/12 ≤ γ ≤ 1/4, there exists a polynomial time
algorithm that finds an orientation that is a (1.75 + γ, 1/(2γ+0.5))-approximation to Gbu(β).

We prove that there are values of β for which the bicriteria approximation of Theorem
5 is tight. Specifically, we prove the latter for β = 1/2 and LPk. The lower bounds are
summarized in the following theorem.

I Theorem 6. For every ε > 0, there exists an instance of Gbu(0.5) that is feasible to LPk
and every orientation has a makespan of at least 11/6− ε. Moreover, for every 1/12 ≤ γ ≤ 1/4,
target makespan T and ε > 0, there exists an instance for Gbu(0.5) that is feasible to LPk
and has a value of OPTLPk

, and every orientation with makespan at most (1.75 + γ)T has
an orientation cost of at least (1−ε)/(2γ+0.5) ·OPTLPk

.

In the third and final extension we allow the edges in Gb to be unrelated, but the
weights cannot vary arbitrarily. Formally, given a parameter c ≥ 1, every edge e = (u, v)
satisfies pe,u ≤ c · pe,v and pe,v ≤ c · pe,u. We denote this problem by Semi-Related Graph
Balancing (Srgb(c)). The following theorem summarizes our algorithm for Srgb(c).

I Theorem 7. There exists a polynomial time algorithm to Srgb(c), that finds an ori-
entation that is a (1.5 + 0.5a, 1/a)-approximation, where a is the root in the range [0.5, 1]
of the polynomial:

(1/c + 1/2) · a3 + (5/(2c)− 1/2) · a2 − 7/(2c) · a+ 1/c.

4 While the assumption that the largest weight p equals 1 implies that the optimal makespan is least 1
for Gb and Gbuh(β), this is not necessarily the case when the edge weights might be unrelated. Thus,
the assumption in Gbu(β) that the optimal makespan is at least 1 is not without loss of generality.
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Figure 1 Our bicriteria bounds for Graph Balancing. (a) is given in Shmoys and Tardos [15],
whereas (b) is implicitly given in Wang and Sitters [18].

We remark that the approximation guaranteed by Theorem 7 is never worse than 2 since
it can be proved that a = 1− Ω (1/c), yielding a (2− Ω(1/c), 1 +O(1/c))-approximation. It
is worth noting that when c = ∞, which corresponds to the most general case, even the
configuration LP has an integrality gap of 2 with respect to the makespan (see [4, 17]).

1.2 Our Techniques
We present a remarkably simple framework that allows us to provide bicriteria upper bounds
for both Gb and its extensions, i.e., Gbuh(β), Gbu(β), and Srgb(c). The framework is
based on rounding of a strengthening of the linear relaxation of [3].

The rounding is comprised of two complementary steps, the first local and the second
global. Intuitively, in the first local step, each edge can be oriented to one of its endpoints in
case the relaxation indicates a strong (fractional) inclination toward that endpoint. We note
that in order to quantify this inclination the weight of the edge is taken into account, where
lighter edges are less likely to be oriented. Specifically, denote by xe,u ∈ [0, 1] how much the
relaxation fractionally orients edge e = (u, v) toward its endpoint u. The local step orients
e toward u if xe,u > f(pe) for some non-increasing threshold function f : [0, 1] → [1/2, 1].
As previously mentioned, this step is considered local since only xe,u and pe are used to
determine whether to orient e, and if so to which of its two endpoints.5 In the second global
step of the rounding, we consider the remaining edges which were not yet oriented in the
first local step and apply the algorithm of Shmoys and Tardos [15] which finds a minimum
cost perfect matching in a suitable bipartite graph. As previously mentioned, this step is
considered global since all edges which are not yet oriented are taken into consideration when
computing the matching.

The above two-phase rounding is not sufficient on its own to obtain our claimed results, and
we further strengthen the relaxation of [3] by forcing additional new constraints. Intuitively,
for every vertex u our constraints state that if a collection of edges S touching u has total
weight of more than T then not all edges in S can be chosen. We enforce the above constraints
for all subsets of size at most k, for some fixed parameter k, resulting in a strengthened
linear relaxation which we denote by LPk. It is important to note that these constraints
cannot be inferred from the original relaxation of [3], and thus are required in our analysis of
the above two-phase rounding.

5 This rounding was used in Wang and Sitters [18] with a specific “step” threshold function f to implicitly
obtain a (11/6, 3/2)-approximation for Gb.
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1.3 Additional Related Work
Lenstra et al. [11] introduced the classic well known 2-approximation to the single criterion
Gap. They also proved that no polynomial time algorithm can approximate the makespan
within a factor less than 1.5 unless P = NP . This was followed by Shmoys and Tardos [15]
who introduced the bicriteria Gap and presented a (2, 1)-approximation for it. A slightly
improved approximation of 2− 1/m for the makespan was given by Shchepin and Vakhania
[14]. If the number of machines is fixed polynomial time approximation schemes are known
[5, 8]. For the case of uniformly related machines (each machine i has speed si and assigning
job j to machine i takes pj/si time) Hochbaum and Shmoys [13] presented a polynomial time
approximation scheme. The Restricted Assignment problem (Ra) is a special case were
each job has an equal processing time on the machines it can be assigned to (for every job
j and machine i: pi,j ∈ {pj ,∞}). For this special case, Svensson [16] proved that one can
approximate the value of the optimal makespan by a factor of 33/17 using the configuration
LP, that was first introduced by Bansal et al. for the Santa Claus Problem [1]. This was
subsequently improved by Jansen and Rohwedder [9] who presented an approximation of 11/6.
If one further assumes that the processing times have only two possible values [7] presented
an improved approximation of 5/3. The above results [16, 9, 7] do not present polynomial
time algorithms that produce a schedule with the promised makespan, but only approximate
the value of the makespan.

When considering Gb, Jansen and Rohwedder [10] recently showed a similar flavor result:
using the configuration LP one can estimate the value of the optimal makespan by a factor
of 1.75 − ε, for some small constant ε > 0. However, as before, [10] does not produce an
orientation in polynomial time. The special case of Gb where only two processing times are
present admits a (tight) 1.5-approximation (given independently by [6, 2, 12]).

To the best of our knowledge, no work on Gb considered orientation costs and in particular
the tradeoff between makespan and orientation cost.

1.4 Paper Organization
Section 2 contains the required preliminaries. In Section 3 we present our general framework
and apply it to Gb to obtain bicriteria algorithms. Section 4 contains our bicriteria lower
bound for Gb. Finally, in Section 5 we consider the mentioned extensions of Gb and apply
the framework to these extensions to obtain improved algorithms.

2 Preliminaries

Given a multi-graph G = (V,E) and a vertex u ∈ V denote by δ(u) , {e ∈ E | u ∈ e} the
collection of edges incident to u. In addition define: F(u) , {S ⊆ δ(u) |

∑
e∈S pe ≤ 1}, i.e.,

the collection of feasible subsets of edges incident to u (for simplicity of presentation we
further assume without loss of generality that T = 1 since we can scale all processing times
by T ). Moreover, we denote by OPTLP and OPTLPk

the optimal value of a feasible solution
to the relaxation LP and LPk respectively.

The algorithm of Shmoys and Tardos [15] is a key ingredient in our framework, thus we
present it not only for completion but also since understanding its inner-working helps in
analyzing our algorithms. Recall that [15] is a (2, 1)-approximation for Gap. We assume
without loss of generality that T = 1 since one can scale the processing times by T . First,
the relaxation in Figure 2 is solved, where J is the set of jobs andM is the set of machines.



R. Schwartz and R. Yeheskel 82:7

(LPGAP )

min
∑
j∈J

∑
i∈M

xi,jci,j

s.t
∑
i∈M

xi,j = 1 ∀j ∈ J (Job)∑
j∈J

xi,jpi,j ≤ 1 ∀i ∈M (Load)

xi,j = 0 ∀i ∈M, j ∈ J : pi,j > 1

xi,j ≥ 0 ∀i ∈M, j ∈ J

Figure 2 The relaxation by Shmoys and Trados [15] to Gap.

The variable xi,j , for each i ∈M and j ∈ J , indicates whether job j is scheduled on machine
i. Note that if there is no feasible solution to the relaxation, then the algorithm declares
there is no schedule with makespan at most T .

Given a solution x to LPGAP , the algorithm of [15] constructs a weighted bipartite graph
G = (J , S, E), which will be described shortly. Afterwards, the algorithm finds a minimum
cost perfect matching to the side J , i.e., each vertex in J is matched to a vertex in S.
Using this matching the algorithm assigns each job to a machine. The bipartite graph G
is constructed as follows, where we assume that J = {1, 2, . . . , n} is the set of jobs and S
is a collection of “slots”. Machine i is allocated ki , d

∑n
j=1 xi,je slots which we denote by

slot(i, 1), . . . slot(i, ki), each having a capacity of 1. For each machine i sort the jobs in a
non-increasing order of their processing time pi,j , and for each job j in this order add xi,j
units of job j to the next non-full slot of machine i (starting from slot(i, 1)). If xi,j is larger
than the remaining capacity of the slot, which we denote by r, add r units of job j to that
slot and xi,j − r units of job j to the next slot. An edge connecting job j and a slot (i, `) is
added to E if some of the xi,j units of j were added to the slot (i, `), and its cost is set to
ci,j . A description of [15] appears in Algorithm 1.

Algorithm 1 Shmoys-Tardos (x,p, c).

1 Construct the bipartite graph G = (J , S, E) as described above.
2 Find in G a minimum cost perfect matching with respect to J .
3 For each job j ∈ J , assign j to machine i if the slot that is matched to j belongs to i.

We say a slot is full if the remaining capacity of that slot is 0. Additionally, we say a
job j is on top of a slot if j is the first job to be inserted to that slot. It can be proved that
the load on machine i in the output of Algorithm 1 is at most 1 + pi,1, where pi,1 is the
processing time of the job on top of slot(i, 1), i.e., the largest processing time of a job that is
fractionally scheduled on machine i. Since, pi,1 ≤ 1, the makespan of the assignment is at
most 2. Furthermore, it can be shown that the cost of the assignment is at most OPTLPGAP

,
and thus at most C(T ).

We remark that when one is aiming to solve the single criterion version of this problem,
i.e., finding an assignment that minimizes the makespan, a binary search could be preformed
to find the smallest T such that the linear relaxation is feasible. In general, any (α, β)-
approximation for the bicriteria problem implies an approximation of α for the single
criteria problem.
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(LP )

min
∑
e∈E

∑
u∈e

xe,uce,u

s.t
∑
u∈e

xe,u = 1 ∀e ∈ E (Edge)∑
e∈δ(u)

xe,upe ≤ 1 ∀u ∈ V (Load)

∑
e∈δ(u): pe>0.5

xe,u ≤ 1 ∀u ∈ V (Star)

xe,u ≥ 0 ∀u ∈ V, e ∈ δ(u)

Figure 3 The relaxation by Ebenlendr et al. [3] to Gb.

3 The General Framework and Graph Balancing

We start by describing the general framework in the setting of Gb. For simplicity of
presentation, given a target makespan T , if there exists an edge e such that pe > T the
algorithm immediately declares that there is no orientation with makespan at most T .
Otherwise, we scale the processing times by T . Thus, without loss of generality, T = 1 and
pe ≤ 1 for every e ∈ E.

Currently, we consider the relaxation of [3], which we denote by LP , with the addition
of an objective function that minimizes the orientation cost.6 This relaxation appears
in Figure 3.

Note that the Star constraint of LP implies that at most a total fraction of 1 of big edges,
i.e., edges whose weight is larger than 1/2, can be oriented toward u. Moreover, we note that
later we strengthen this relaxation by adding additional constraints.

Once the processing times are scaled by T , the algorithm solves the relaxation LP . If
there is no feasible solution to the relaxation, then the algorithm declares that there is no
orientation with makespan at most T . Thus, from this point onward we assume that LP is
feasible and focus on the rounding.

Recall that the rounding consists of only two steps, the first local and the second global.
In the first step, some of the edges might be oriented, where an edge e is oriented toward u
if xe,u > f(pe) for a given threshold function f : [0, 1]→ [1/2, 1]. We employ the framework
for threshold functions f which are monotone non-increasing, thus making lighter edges
less likely to be oriented compared to heavier edges. In the second step, the remaining
un-oriented edges are oriented using Algorithm 1. The framework is described in Algorithm 2.
It receives as an input: (1) the graph G = (V,E,p, c); (2) x a solution to the relaxation; (3)
a threshold function f .

Algorithm 2 Framework(G = (V,E,p, c),x, f).

1 For each edge e and u ∈ e: if xe,u > f(pe) then orient e to u and remove e from E.
(Local Step)

2 Execute Algorithm 1. (Global Step)

6 In Section 5 we also need the constraint that appears in the relaxation of [15] which states that xe,u = 0
if pe,u > 1, for every e ∈ E and u ∈ e.
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Note that the Local Step of Algorithm 2 is well defined, i.e., no edge is oriented to both its
endpoints. This is due to the Edge constraints and the fact that for each p ∈ [0, 1]: f(p) ≥ 1/2.
Note that the framework captures Algorithm 1 as a special case since one can choose f ≡ 1.
We now focus on bounding the makespan and orientation cost produced by the framework,
for a general threshold function f . This analysis will be useful for the rest of the paper.

Let us start by focusing on bounding the makespan. We start by presenting a simple but
crucial observation. The observation states that if an edge e = (u, v) was not oriented at the
Local Step then xe,u and xe,v cannot vary much. It is important to note that this is the only
place in our proof we use the fact that e is an edge, i.e., the job that corresponds to e can be
assigned to only two machines u and v (otherwise our algorithm could have been applied to
the more general problem of Ra).

I Observation 1. Let e = (u, v) ∈ E such that e was not oriented to either u or v in the
Local Step. Then 1− f(pe) ≤ xe,u ≤ f(pe).

Proof. e was not oriented toward u in the Local Step, and therefore xe,u ≤ f(pe). Additionally,
the Edge constraint implies that xe,v = 1− xe,u, and since e was not oriented toward v in
the Local Step then 1− xe,u ≤ f(pe). This concludes the proof. J

Now we focus on bounding the makespan. Fix a vertex u ∈ V , and denote the slots that
were allocated to u in Algorithm 1 by: slot(u, 1), ..., slot(u, k) or alternatively by s1, ..., sk.
For i ∈ {1, 2, . . . , k} let ei be the edge on top of slot(u, i) and denote its processing time by
pi. We assume without loss of generality that pk+1 , 0 and xek+1,u = 1 (one can simply
add a 0 weight edge that is fully oriented toward u).7 Additionally, denote by e′1, . . . , e′t the
edges that were oriented to u in the Local Step, and denote by q1, . . . , qt, their processing
times respectively. Lastly, for a slot s and edge e we denote by ye,s the fraction that e is
assigned to s.

We now introduce a new observation that lower bounds the fractional load in the first
slot of u, i.e.,

∑
e∈slot(u,1) ye,s1pe. This observation will be useful in bounding the load on u.

I Observation 2. The fractional load in the first slot of u is at least:∑
e∈slot(u,1)

ye,s1pe ≥ (1− f(p1))p1 + f(p1)p2.

Proof. From Observation 1 we know that xe1 ≥ 1 − f(p1). Moreover, since e1 is the first
edge to be inserted to the first slot, then it is contained fully in slot(u, 1). Therefore,
ye1,s1 = xe1,u ≥ 1− f(p1). Recall that p2 ≤ p1. Since slot(u, 1) is full and its capacity equals
1, we can conclude:

∑
e∈slot(u,1) ye,s1pe ≥ f(p1)p1 + (1− f(p1))p2. J

Now we introduce a lemma that is inspired by [15] and upper bounds the load on u.

I Lemma 8. Let e′1, . . . , e′t be the edges that were oriented to u in the Local Step, and let
q1, . . . , qt be their processing times respectively. Then,

t∑
i=1

qi +
k∑
i=1

pi ≤ 1 +
t∑
i=1

(1− f(qi))qi + f(p1)p1 + (1− f(p1))p2.

7 Alternatively, we can also assume pk+2 = 0 and xek+2,u = 1 as well.
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Proof. First, recall that for every 1 ≤ s ≤ k−1 slot(u, s) has a capacity exactly 1. Moreover,
the slots are filled with edges in decreasing order of processing time. Therefore, we can
deduce that for each 1 ≤ i ≤ k − 1:∑

e∈slot(u,i)

ye,sipe ≥
∑

e∈slot(u,i)

ye,sipi+1 = pi+1
∑

e∈slot(u,i)

ye,si = pi+1.

Since at most one edge from each slot can be selected in the Global Step, the load on u from
edges that oriented to u in the Global Step is at most

∑k
i=1 pi. From the above inequality,

along with Observation 2, we can conclude that:

t∑
i=1

qi +
k∑
i=1

pi =
t∑
i=1

qi + p1 + p2 +
k∑
i=3

pi ≤
t∑
i=1

qi + p1 + p2 +
k−1∑
i=2

∑
e∈slot(u,i)

ye,si
pe

≤
t∑
i=1

qi + p1 + p2 +
k∑
i=1

∑
e∈slot(u,i)

ye,si
pe −

∑
e∈slot(u,1)

ye,s1pe

≤
t∑
i=1

qi + p1 + p2 +
∑
e∈δ(u)

xe,upe − ((1− f(p1))p1 + f(p1)p2)

≤
t∑
i=1

qi + f(p1)p1 + (1− f(p1))p2 +
(

1−
t∑
i=1

f(qi)qi

)

= 1 +
t∑
i=1

(1− f(qi))qi + f(p1)p1 + (1− f(p1))p2.

The last inequality follows from the Load constraint on u, and the fact that the edges
e′1, . . . , e

′
t were removed from E at the end of the Local Step. J

Lastly, we observe that all of the big edges, i.e., edges whose weight is larger than 1/2, that
are not oriented toward u in the Local Step are assigned to the first slot. This is summarized
in the following observation.

I Observation 3. Let e be an edge in slot(u, i) such that i > 1. Then, pe ≤ 1/2.

Proof. Assume for the sake of contradiction that pe > 1/2. Since the slots are filled in
a non-increasing weight order, all edges in slots 1, 2, . . . , i − 1 are filled with fractions of
edges whose processing time is greater than 1/2. Therefore,

∑
e∈δ(u): pe>1/2 xe,u > 1, which

contradicts the Star constraint on u. J

Let us now focus on the orientation cost. The following lemma upper bounds the
orientation cost of the orientation produced by Algorithm 2.

I Lemma 9. Given f : [0, 1]→ [0, 1/2], let c , (inf{f(p)|p ∈ [0, 1]})−1. Then Algorithm 2
with f outputs an orientation with a cost of at most c · C(T ).

3.1 Graph Balancing – Upper Bound on Tradeoff Between Makespan
and Orientation Cost

Let us now focus on applying the framework, with an appropriate threshold function f , to
Gb. First, we present a theorem that achieves part of the tradeoff claimed in Theorem 1, and
only in the next subsection we show how to extend this tradeoff to fully achieve Theorem 1.
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I Theorem 10. There exists a threshold function f such that Algorithm 2 finds an orientation
that is a (1.75 + γ, 1/(2γ+0.5))-approximation, for every 1/12 ≤ γ ≤ 1/4.

The function fα we use in the proof of Theorem 10 is the following:

fα(pe) =
{

1 if pe ≤ 1/2

α if pe > 1/2
(1)

where 2/3 ≤ α ≤ 1. The following lemma upper bounds the makespan of Algorithm 2 with
the above fα.

I Lemma 11. The makespan of the orientation produced by Algorithm 2 with fα is at most:
1.5 + 0.5α, where 2/3 ≤ α ≤ 1.

Proof. Consider the number of edges that were oriented toward u in the Local Step. First,
we note that from the Star constraint on u, at most one edge can be oriented toward u in
the Local Step. If this is not the case then let e′1 and e′2 be edges oriented to u in the Local
Step. Then, pe1 , pe2 > 1/2. However, xe1,u + xe2,u > α+ α ≥ 2/3 + 2/3 > 1, which contradicts
the Star constraint on u. Hence, there are only two cases to consider.

Case 1: Assume no edge is oriented toward u in the Local Step. Therefore, using Lemma 8
and Observation 3 the load on u is at most:

k∑
i=1

pi ≤ 1 + fα(p1)p1 + (1− fα(p1))p2 ≤ 1.5 + fα(p1)(p1 − 0.5)

≤ 1.5 + α · (1− 0.5) = 1.5 + 0.5α,

where the last inequality follows from the fact that the expression: fα(p1)(p1 − 0.5) is
maximized when p1 = 1 (and thus fα(p1) = α).

Case 2: Assume there is exactly one edge that was oriented toward u in the Local Step.
Recall we denote this edge as e′1 and its processing time by q1. Since q1 > 1/2 and
xe′

1,u
> α, then it must be the case that p1 ≤ 1/2 (otherwise Observation 1 implies that

xe′
1,u

+ xe1,u > α + 1− α = 1, which contradicts the Star constraint for u). Therefore,
from Lemma 8 the load on u in the output of Algorithm 2 is at most:

q1 +
k∑
i=1

pi ≤ 1 + (1− fα(q1))q1 + fα(p1)p1 + (1− fα(p1))p2 ≤ 1 + (1− α)q1 + p1

≤ 1 + (1− α) + 0.5 = 2.5− α ≤ 1.5 + 0.5α.

The second inequality follows from the fact that p2 ≤ p1 and fα(q1) = α (since q1 > 1/2),
whereas the third inequality from the fact that p1 ≤ 1/2. In addition, the last inequality
follows from the fact that 2/3 ≤ α ≤ 1. J

Now, we are ready to conclude the proof of Theorem 10:

Proof of Theorem 10. Applying Lemma 11, Lemma 9 and choosing γ = 0.5α−0.25 finishes
the proof. J

We now show that the analysis of Algorithm 2 with a threshold function fα is tight.
Formally, we prove the following lemma:
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I Lemma 12. For every 1/2 ≤ α < 1 there exists an instance such that the output of
Algorithm 2 with fα has makespan at least max {1.5 + 0.5α, 2.5− α} and orientation cost at
least 1/α ·OPTLP .

Lemma 12 shows the analysis of Algorithm 2 with a threshold function fα is tight.
Consequently, in order to extend the bicriteria tradeoff of Theorem 10, and obtain Theorem 1,
we require a different threshold function and a stronger relaxation.

3.2 Graph Balancing – Extending the Tradeoff

It is important to note that Lemma 12 implies that using Algorithm 2 with LP and the
threshold function fα cannot achieve an approximation better than 11/6 with respect to the
makespan. To this end we strengthen LP using the following constraint (which we denote by
Set constraints):∑

e∈S
xe,u ≤ |S| − 1 ∀u ∈ V,∀S ⊆ δ(u) : S /∈ F(u) and |S| ≤ k (Set)

We call the new relaxation LPk.8 Intuitively, the Set constraints enforce that given an
infeasible set of edges S touching u not all edges of S can be oriented toward u. In fact, for
our specific choice of a threshold function f we use k = 3. Thus, no separation oracle is
required when solving the relaxation. The exact result is formulated in the following theorem:

I Theorem 13. There exists a rounding function f such that Algorithm 2 finds an orientation
that is a (1.75 + γ, 1/(2γ+0.5))-approximation, for every 1/12 − ε/2 ≤ γ ≤ 1/12, where ε =
√

33/2− 17/6.

Note that this theorem extends the tradeoff achieved in Theorem 10, and together both
theorems achieve the tradeoff of Theorem 1. The threshold function fε we use in the proof
of Theorem 13 is defined as follows:

fε(pe) =


2/3− ε if pe > 1/2

2/3 + ε/2 if 1/3 < pe ≤ 1/2

1 if pe ≤ 1/3

(2)

where 0 ≤ ε ≤
√

33/2− 17/6. The following lemma upper bounds the makespan:

I Lemma 14. The output of Algorithm 2 with the threshold function fε, has a makespan of
at most 11/6− ε/2.

Now we conclude with the proofs of Theorems 13 and 1.

Proof of Theorem 13. Follows immediately from Lemmas 14 and 9, and choosing γ =
1/12− ε/2. J

Proof of Theorem 1. Follows immediately from Theorems 10 and 13. J

8 Similarly to LP , for some of the extensions of Gb we add that xe,u = 0 if pe,u > 1 (for every e ∈ E
and u ∈ e).
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4 Lower Bound on The Tradeoff Between Makespan and Cost

We show that using LPk for every k ∈ N, one must loose in the total orientation cost when
obtaining an approximation for the makespan that is strictly better than 2. This is in
contrast to the classic result of [15] for which one can achieve an approximation factor of 2
with respect to the makespan with no loss in the assignment cost. This result is formulated
in Theorem 3.

5 Extending Graph Balancing to Hyperedges and Unrelated Weights

5.1 Graph Balancing with Unrelated Light Hyperedges
Let us recall the definition of Gbuh(β), where β ∈ [0, 1]. The input consists of a hypergraph,
where each vertex represents a machine and each hyperedge represents a job. The jobs are
of two types, “light” and “heavy”. Every light hyperedge e ∈ E is associated with weights
pe,u, one for each vertex u ∈ e (i.e., e is unrelated since it has a different processing time
for each of the machines it can be assigned to). The requirement is that pe,u ≤ β for evert
u ∈ e. On the other hand, every heavy hyperedge e ∈ E must in fact be an edge, i.e., |e| = 2.
Such a heavy e is associated with a single weight pe ∈ [0, 1] (i.e., e is related since it has the
same processing time for each of the two machines it can be assigned to). In the above, as
previously mentioned, we assume without loss of generality that the largest weight equals
1. For both types, light and heavy, orienting e toward one of its endpoints is equivalent to
assigning the job e represents to the machine that is represented by the vertex e was oriented
to. It is important to note that when β = 1 the problem is exactly Gap, and when β = 0
the problem is exactly Gb.

Our result for Gbuh(β) is summarized in Theorem 4, which improves upon the previous
result of [6] (refer to Section 1 for a thorough discussion on how our result improves upon [6]).
To the best of our knowledge, our result provides the first approximation better than 2 with
respect to the makespan of a natural problem that captures Gb but is not captured by Ra.

5.2 Graph Balancing with Unrelated Light Hyperedges and Unrelated
Heavy Edges

The problem of Gbu(β) further generalizes the above Gbuh(β) as it allows heavy edges to
have unrelated weights. Formally, every heavy edge e = (u, v) ∈ E is associated with two
weights pe,u and pe,v, i.e., e is unrelated since pe,u indicates the processing time of the job e
represents on the machine that is represented by u. The requirement is that pe,u, pe,v ∈ (β, 1].
As mentioned earlier, it is assumed that the value of the optimal makespan is at least 1
(otherwise the problem is as hard as Gap). Our results relating to Gbu(β) are formulated
in Theorems 5 and 6.

5.3 Semi-Related Graph Balancing
Consider the general problem of Unrelated Graph Balancing, which is identical to
Gb except that an edge can have a different weight depending on its orientation: pe,u and
pe,v for every e = (u, v) ∈ E, i.e., the weights are unrelated. This generalization of Gb was
already considered in [17, 4], who presented lower bounds for the problem. Specifically, they
showed that the even the configuration LP (which captures LPk) has an integrality gap of 2
with respect to the makespan.
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Figure 4 Makespan approximation as a function of the value c.

We consider an interesting special case of the above problem where the weights are still
unrelated, but cannot vary arbitrarily. Formally, each edge e = (u, v) ∈ E has two weights
depending on the vertex e is oriented to, which satisfy: pe,u ≤ c · pe,v and pe,v ≤ c · pe,u
(where c ≥ 1 is a parameter of the problem). We denote this problem by Semi-Related
Graph Balancing (Srgb(c)).

Our result for Srgb(c) is formulated in Theorem 7. Note that Srgb(c) captures Gb when
c = 1, and indeed in Theorem 7 we achieve a (11/6, 3/2)-approximation for Srgb(c) when c = 1
(similarly to Theorem 10). Moreover, when c =∞ Theorem 7 achieves a (2, 1)-approximation
for Srgb(c), matching the integrality gap of [17, 4]. Finally, we also show that in general
Theorem 7 provides a (2− Ω(1/c), 1 +O(1/c))-approximation for Srgb(c).

Figure 4 shows the makespan approximation obtained in Theorem 7 as a function of c.
In order to prove Theorem 7 we use Algorithm 2 and LPk (replacing pe with pe,u) with a

suitable choice of a threshold function f .
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Abstract
The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric
spaces. However, there has been only limited algorithmic development to compute or approximate
this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees.
Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric
on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight
is treated as edge length and the metric is the induced shortest path metric in the tree. Previously,
Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate
the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a
fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance
between two general metric trees within a multiplicative factor of 14.

Interestingly, the development of our algorithm is made possible by a connection between the
Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge
trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary
(it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out
that an exact or approximation algorithm for the interleaving distance leads to an approximation
algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we
re-define the interleaving distance in a way that makes it easier to develop dynamic programming
approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the
interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm
to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm
to compute the interleaving distance between merge trees is of interest itself, as it is known that it
is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an
approximation factor of O(

√
n) even for trees with unit edge length.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Gromov-Hausdorff distance, Interleaving distance, Merge trees

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.83

Funding This work is partially supported by National Science Foundation (NSF) under grants
CCF-1740761, IIS-1815697 and CCF-1618247, as well as by National Institute of Health (NIH) under
grant R01EB022899.

Acknowledgements We thank reviewers for helpful comments. We would like to thank Kyle Fox,
for suggesting an elegant double-binary search procedure, to improve the time complexity of the
optimal interleaving distance by almost a factor of n2 (see Theorem 19), which further leads to a
similar improvement for approximating the Gromov-Hausdorff distance (Theorem 20).

1 Corresponding author

© E. Farahbakhsh Touli and Y. Wang;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 83; pp. 83:1–83:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.su.se/english/profiles/elfa1534-1.428605
mailto:elena.touli@math.su.se
https://web.cse.ohio-state.edu/~wang.1016/
mailto:yusu@cse.ohio-state.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.83
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


83:2 FPT-Algorithms for Computing GH and Interleaving Distances Between Trees

1 Introduction

Given two metric spaces (X, dX) and (Y, dY ), a natural way to measure their distance is via
the Gromov-Hausdorff distance δGH(X,Y ) between them [15], which intuitively describes
how much additive distance distortion is needed to make the two metric spaces isometric.

We are interested in computing the Gromov-Hausdorff distance between metric trees.
Roughly speaking, a metric tree (X, d) is a geodesic-metric space that can be realized by
the shortest path metric on a tree. Any finite tree T = (V,E) with positive edge weights
w : E → R can be naturally viewed as a metric tree T = (|T |, d): the space is the underlying
space |T | of T , each edge e can be viewed as a segment of length w(e), and the distance d
is the induced shortest path metric. See Figure 1 (a) for an example. Metric trees occur
commonly in practical applications: e.g., a neuron cell has a tree morphology, and can be
modeled as an embedded metric tree in R3. It also represents an important family of metric
spaces that has for example attracted much attention in the literature of metric embedding
and recovery of hierarchical structures, e.g., [2, 4, 3, 10, 11, 13, 23].

Unfortunately, it is shown in [1, 22] that it is not only NP-hard to compute the Gromov-
Hausdorff distance between two trees, but also NP-hard to approximate it within a factor of
3 even for trees with unit edge length. A polynomial-time approximation algorithm is given
in [1]; however, the approximation factor is high: it is O(

√
n) even for unit-edge weight trees.

Another family of tree structures that is of practical interest is the so-called merge tree.
Intuitively, a merge tree is a rooted tree T associated with a real-valued function f : T → R
such that the function value is monotonically decreasing along any root-to-leaf path – We can
think of a merge tree to be a tree with height function associated to it where all nodes with
degree > 2 are down-forks (merging nodes); see Figure 1 (b). The merge tree is a loop-free
variant of the so-called Reeb graph, which is a simple yet meaningful topological summary
for a scalar field g : X → R defined on a domain X, and has been widely used in many
applications in graphics and visualization e.g., [7, 14, 17, 24]. Morozov et al. introduced the
interleaving distance to compare merge trees [20], based on a natural “interleaving idea” which
has recently become fundamental in comparing various topological objects. Also, several
distance measures have been proposed for the Reeb graphs [5, 6, 12]. When applying them to
merge trees, it turns out that two of these distance measures are equivalent to the interleaving
distance. However, the same reduction in [1] to show the hardness of approximating the
Gromov-Hausdorff distance can also be used to show that it is NP-hard to approximate the
interleaving distance between two merge trees within a factor 3.

New work

Although the Gromov-Hausdorff distance is a natural way to measure the degree of near-
isometry between metric spaces [15, 19], the algorithmic development for it has been very
limited so far [1, 9, 21, 22]. In [22], Schmiedl gave an FPT algorithm for approximating the
Gromov-Hausdorff distance between two finite metrics, where the approximation contains
both an additive and multiplicative terms; see more discussion in Remarks after Theorem 20.
In this paper, we present the first FPT algorithm to approximate the Gromov-Hausdorff
distance for metric trees within a constant multiplicative factor.

Interestingly, the development of our approximation algorithm is made possible via a
connection between the Gromov-Hausdorff distance between metric trees and the interleaving
distance between certain merge trees (which has already been observed previously in [1]).
This connection implies that any exact or approximation algorithm for the interleaving
distance will lead to an approximation algorithm for the Gromov-Hausdorff distance for
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metric trees of similar time complexity. Hence we can focus on developing algorithms for the
interleaving distance. The original interleaving distance definition requires considering a pair
of maps between the two input merge trees and their interaction. One of the key insights of
our work is that we can in fact develop an equivalent definition for the interleaving distance
that relies on only a single map from one tree to the other. This, together with the height
functions equipped with merge trees (which give rises to natural ordering between points in
the two trees), essentially allows us to develop a dynamic programming algorithm to check
whether the interleaving distance between two merge trees is smaller than a given threshold
or not: In particular in Section 4, we first give a simpler DP algorithm with slower time
complexity to illustrate the main idea. We then show how we can modify this DP algorithm
to improve the time complexity. Finally, we solve the optimization problem for computing
the interleaving distance2 in Section 5, which leads to a constant-factor (a multiplicative
factor of 14) approximation FPT algorithm for the Gromov-Hausdorff distance between
metric trees.
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Figure 1 (a) A metric tree (T, dT ) with edge length marked. Tree nodes are white dots.
dT (x, z) = 3 + 5 + 2 = 10 is the length of the thickened path π(x, z). (b) A merge tree Th,
with examples of u�v, uε, Th(x) and depth(x) marked. (c) Tree alignment distance between T1

and T2 arbitrarily large, while δGH(T1, T2) is roughly bounded by the pairwise distance difference
which is small.

More on related work

There have been several tree distances proposed in the literature. Two most well-known ones
are the tree edit and tree alignment distances [8], primarily developed to compare labeled
trees. Unfortunately, both distances are MAX SNP-hard to compute for un-ordered trees
[18, 26]. For tree edit distance, it is MAX SNP-hard even for trees with bounded degree. For
the tree alignment distance, it can be computed in polynomial time for trees with bounded
degree. However the tree alignment distance requires that parent-child relation to be strictly
preserved, and thus the small local configuration change shown in Figure 1 (c) will incur a
large tree alignment distance.

We will not survey the large literature in metric embedding which typically minimizes
the metric distortion in a mulplicative manner. However, we mention the work of Hall
and Papadimitriou [16], where, given two equal-sized point sets, they propose to find the
best bijection under which the additive distortion is minimized. They show it is NP-hard
to approximate this optimal additive distortion within a factor of 3 even for points in R3.

2 We note that the final time complexity for the optimization problem presented in Theorem 19 is based
on an argument by Kyle Fox. His argument improves our previous n4 factor (as in Theorem 18) by an
almost n2 factor, by performing a double-binary search, instead of a sequence search we originally used.
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In contrast, the Gromov-Hausdorff distance is also additive, but allows for many-to-many
correspondence (instead of bijection) between points from two input metric spaces. We also
note that our metric trees consist of all points in the underlying space of input trees (i.e,
including points in the interior of a tree edge). This makes the distance robust against adding
extra nodes and short “hairs” (branches). Nevertheless, we can also consider discrete metric
trees, where we only aim to align nodes of input trees (instead of all points in the underlying
space of the trees). Our algorithms hold for the discrete case as well.

2 Preliminaries

Metric space, metric trees

A metric space is a pair (X, d) where X is a set and d : X ×X → R≥0 satisfies: (i) for any
x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 holds only when x = y; (ii) d(x, y) = d(y, x), and (iii)
for any x, y, z, d(x, z) ≤ d(x, y) + d(y, z). We call d a metric on the space X. A metric space
(X, d) is a finite metric tree if it is a length metric space3 and X is homeomorphic to the
underlying space |T | of some finite tree T = (V,E).

Equivalently, suppose we are given a finite tree T = (V,E) where each edge e ∈ E has a
positive weight `(e) > 0. View the underlying space |e| of e as a segment with length `(e)
(i.e, it is isometric to [0, `(e)]), and we can thus define the distance dT (x, y) between any
two points x, y ∈ |e| as the length of the sub-segment e[x, y]. The underlying space |T | of T
is the union of all these segments (and thus includes points in the interior of each edge as
well). For any x, z ∈ |T |, there is a unique simple path π(x, z) ⊂ |T | connecting them. The
(shortest path) distance dT (x, z) equal to the length of this path, which is simply the sum of
the lengths of the restrictions of this path to edges in T . See Figure 1 (a). The space |T |
equipped with dT is a metric tree (|T |, dT ).

Given a tree T = (V,E), we use the term tree nodes to refer to points in V , and an
arbitrary x ∈ |T | potentially from the interior of some tree edge is referred to as a point. Given
T , we also use V (T ) and E(T ) to denote its node-set and edge-set, respectively. To emphasize
the combinatorial structure behind a metric tree, in the paper we will write a metric tree
(T, dT ), with the understanding that the space is in fact the underlying space |T | of T .

Note that if we restrict this metric space to only the tree nodes, we obtain a discrete
metric tree (V (T ), dT ), and the distance between two tree nodes is simply the standard
shortest path distance between them in a weighted graph (tree T in this case). Our algorithms
developed in this paper can be made to work for the discrete metric trees as well.

Gromov-Hausdorff distance

Given two metric spaces X = (X, dX) and Y = (Y, dY ), a correspondence between them is a
relation C : X × Y whose projection on X and on Y are both surjective; i.e, for any x ∈ X,
there is at least one (x, y) ∈ C, and for any y′ ∈ Y , there is at least one (x′, y′) ∈ C. If
(x, y) ∈ C, then we say y (resp. x) is a pairing partner for x (resp. y); note that x (resp. y)
could have multiple pairing partners. The cost of this correspondence is defined as:

cost(C) = max
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y′)|,

which measures the maximum metric distortion (difference in pairwise distances) under this
correspondence. The Gromov-Hausdorff distance between them is:

δGH(X ,Y) = 1
2 inf

C∈Π(X,Y )
cost(C), where Π(X,Y ) = set of correspondences between X and Y.

3 (X, d) is a length metric space if d is the same as the shortest path (i.e, intrinsic) metric it induces on X.
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Merge trees

A merge tree is a pair (T, h) where T is a rooted tree, and the continuous function h : |T | → R
is monotone in the sense the value of h is decreasing along any root-to-leaf path. See Figure 1
(b) for an example. For simplicity, we often write the merge tree as Th, and refer to h as the
height function, and h(x) the height of a point x ∈ |T |. The merge tree is an natural object:
e.g., it can be used to model a hierarchical clustering tree, where the height of a tree node
indicates the parameter when the cluster (corresponding to the subtree rooted at this node)
is formed. It also arises as a simple topological summary of a scalar function h̃ : M → R
on a domain M , which tracks the connected component information of the sub-level sets
h̃−1(−∞, a] as a ∈ R increases.

To define the interleaving distance, we modify a merge tree Th slightly by extending a
ray from root(Th) upwards with function value h goes to +∞. All merge trees from now
on refer to this modified version. Given a merge tree Th and a point x ∈ |T |, Th(x) is the
subtree of Th rooted at x, and the depth of x (or of Th(x)), denoted by depth(x), is the
largest function value difference between x and any node in its subtree; that is, the height of
the entire subtree Th(x) w.r.t. function h. Given any two points u, v ∈ |T |, we use u�v to
denote that u is an ancestor of v; u�v if u is an ancestor of v and u 6= v. Similarly, v�u
means that v is a descendant of u. Also, the degree of a node in a merge tree is defined as the
downward degree of the node. We use LCA(u, v) to represent the lowest common ancestor
of u and v in |T |. For any non-negative value ε ≥ 0, uε represents the unique ancestor of u
in T such that h(uε)− h(u) = ε. See Figure 1 (b).

Interleaving distance

We now define the interleaving distance between two merge trees T f1 and T g2 , associated with
functions f : |T f1 | → R and g : |T g2 | → R, respectively.

I Definition 1 (ε-Compatible maps [20]). A pair of continuous maps α : |T f1 | → |T
g
2 | and

β : |T g2 | → |T
f
1 | is ε-compatible w.r.t T f1 and T g2 if the following four conditions hold:

(C1). g(α(u)) = f(u) + ε and (C2). β ◦ α(u) = u2ε for any u ∈ |T f1 |;
(C3). f(β(w)) = g(w) + ε and (C4). α ◦ β(w) = w2ε for any w ∈ |T g2 |.

To provide some intuition for this definition, note that if ε = 0, then α = β−1: In this case,
the two trees T1 and T2 are not only isomorphic, but also the function values associated to
them are preserved under the isomorphism. In general for ε > 0, this quantity measures how
far a pair of maps are away from forming a function-preserving isomorphism between T f1
and T g2 . In particular, β is no longer the inverse of α. However, the two maps relate to each
other in the sense that if we send a point u ∈ |T f1 | to |T

g
2 | through α : |T f1 | → |T

g
2 |, then

bring it back via β : |T g2 | → |T
f
1 |, we come back at an ancestor of u in |T f1 | (i.e, property

(C2)). This ancestor must be at height f(u) + 2ε due to properties (C1) and (C3).

I Definition 2 (Interleaving distance [20]). The interleaving distance between two merge trees
T f1 and T g2 is defined as:

dI(T f1 , T
f
2 ) = inf{ ε | there exist a pair of ε-compatible maps w.r.t T f1 and T g2 }. (1)

Interestingly, it is shown in [1] that the Gromov-Hausdorff distance between two metric trees
is related to the interleaving distance between two specific merge trees.

ESA 2019
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B Claim 3 ([1]). Given two metric trees T1 = (T1, d1) and T2 = (T2, d2) with node sets
V1 = V (T1) and V2 = V (T2), respectively, let fu : |T1| → R (resp. gw : |T2| → R)
denote the geodesic distance function to the base point u ∈ V1 (resp. v ∈ V2) defined
by fu(x) = −d1(x, u) for any x ∈ |T1| (resp. gw(y) = −d2(y, w) for any y ∈ |T2|). Set
µ := minu∈V1,w∈V2 dI(T

fu

1 , T gw

2 ). We then have that
µ

14 ≤ δGH(T1, T2) ≤ 2µ.

Note that to compute the quantity µ, we only need to check all pairs of tree nodes of T1
and T2, instead of all pairs of points from |T1| and |T2|.

We say a quantity A is a c-approximation for a quantity B if A
c ≤ B ≤ cA; obviously,

c ≥ 1 and c = 1 means that A = B. The above claim immediately suggests the following:

I Corollary 4. If there is an algorithm to c-approximate the interleaving distance between
any two merge trees in T (n) time, where n is the total complexity of input trees, then there is
an algorithm to O(c)-approximate the Gromov-Hausdorff distance between two metric trees
in n2T (n) time.

In the remainder of this paper, we will focus on developing an algorithm to compute the
interleaving distance between two merge trees T f1 and T g2 . In particular, in Section 3 we
will first show an equivalent definition for interleaving distance, which has a nice structure
that helps us to develop a fixed-parameter tractable algorithm for the decision problem of
“Is dI(T f1 , T

g
2 ) ≥ ε?” in Section 4. We show how this ultimately leads to FPT algorithms

to compute the interleaving distance exactly and to approximate the Gromov-Hausdorff
distance in Section 5.

3 A New Definition for Interleaving Distance

Given two merge trees T f1 and T g2 and δ > 0, to answer the question “Is dI(T f1 , T
g
2 ) ≤ δ?”, a

natural idea is to scan the two trees bottom up w.r.t the “height” values (i.e, f and g), while
checking for possible ε-compatible maps between the partial forests of T f1 and T g2 already
scanned. However, the interaction between the pair maps α and β makes it complicated to
maintain potential maps. We now show that in fact, we only need to check for the existence
of a single map from T f1 to T g2 , which we will call the ε-good map. We believe that this
result is of independent interest.

I Definition 5 (ε-good map). A continuous map α : |T f1 | → |T
g
2 | is ε-good if and only if:

(P1) for any u ∈ |T f1 |, we have g(α(u)) = f(u) + ε;
(P2) if α(u1) � α(u2), then we have u2ε

1 � u2ε
2 , (note u1 � u2 may not be true); and

(P3) if w ∈ |T g2 | \ Im(α), then we have |g(wF ) − g(w)| ≤ 2ε, where Im(α) ⊆ |T g2 | is the
image of α, and wF is the lowest ancestor of w in Im(α).

A map ρ : |Th1
1 | → |T

h2
2 | between two arbitrary merge trees Th1

1 and Th2
2 is monotone if

for any u ∈ |Th1
1 |, we have that h2(ρ(u)) ≥ h1(u). In other word, ρ carries any point u from

Th1
1 to a point higher than it in Th2

2 . If ρ is continuous, then it will map an ancestor of u in
Th1

1 to an ancestor of ρ(u) in Th2
2 as stated below (but the converse is not necessarily true):

I Observation 6. Given a continuous and monotone map ρ : |Th1
1 | → |T

h2
2 | between two

merge trees Th1
1 and Th2

2 , we have that if u1 � u2 in Th1
1 , then ρ(u1) � ρ(u2) in Th2

2 .
This implies that if w = ρ(u) for u ∈ |Th1

1 |, then ρ maps the subtree Th1
1 (u) rooted at u

into the subtree Th2
2 (w) rooted at w. This also implies that if w /∈ Im(ρ), neither does any of

its descendant.
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Note that an ε-good map, or a pair of ε-compatible maps, are all monotone and continuous.
Hence the above observations are applicable to all these maps.

The main result of this section is as follows. Its proof is in [25].

I Theorem 7. Given any two merge trees T f1 and T g2 , then dI(T f1 , T
g
2 ) ≤ ε if and only if

there exists an ε-good map α : |T f1 | → |T
g
2 |.

4 Decision Problem for Interleaving Distance
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Figure 2 (a) Green component within the slab is Bε(u, T f
1 ). The sum of degrees for nodes within

this ε-ball is 13. The ε-degree bound τε(T f
1 , T

g
2 ) is the largest value of this sum for any ε-ball in T f

1
or in T g

2 . (b) White dots are tree nodes of T f
1 and T g

2 . Green dots are newly augmented tree nodes
in T̂ f

1 and T̂ g
2 .

In this section, given two merge trees T f1 and T g2 as well as a positive value δ > 0, we aim to
develop a fixed-parameter tractable algorithm for the decision problem “Is dI(T f1 , T

g
2 ) ≤ δ?”.

The specific parameter our algorithm uses is the following: Given a merge tree Th and any
point u ∈ Th, let Bε(u;Th) denote the ε-ball

Bε(u;Th) = {x ∈ |T | | ∀y ∈ πT (u, x), |h(y)− h(u)| ≤ ε},

where πT (u, x) is the unique path from u to x in Th. In other words, Bε(u;Th) contains
all points reachable from u via a path whose function value is completely contained with
the range [f(u)− ε, f(u) + ε]. See Figure 2 (a) for an example: in particular, consider the
restriction of Th within the height interval [f(u) − ε, f(u) + ε]. There could be multiple
components within this slab, and Bε(u;Th) is the component containing u.

Parameter τδ: Let τε(T f1 , T
g
2 ) denote the largest sum of degrees of all tree nodes contained

in any ε-ball in T f1 or T g2 , which we also refer to as the ε-degree-bound of T f1 and T g2 . The
parameter for our algorithm for the decision problem will be τδ = τδ(T f1 , T

g
2 ).

4.1 A Slower FPT-Algorithm
Augmented trees

We now develop an algorithm for the decision problem “Is dI(T f1 , T
g
2 ) ≤ δ?” via a dynamic

programming type approach. First, we will show that, even though a δ-good map is defined
for all (infinite number of) points from T f1 and T g2 , we can check for its existence by inspecting
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only a finite number of points from T f1 and T g2 . In particular, we will augment the input
merge trees T f1 and T g2 with extra tree nodes, and our algorithm later only needs to consider
the discrete nodes in these augmented trees to answer the decision problem.

The set of points from tree T f1 or T g2 at a certain height value c is called a level (at
height c), denoted by L(c). For example, in Figure 2 (a), the level L(c1) for c1 = f(u) + ε,
contains 2 points, while L(c2) with c2 = f(u)− ε contains 7 points. The function value of a
level L is called its height, denoted by height(L); so height(L(c)) = c.

I Definition 8 (Critical-heights and Super-levels). For the tree T f1 , the set of critical-heights
C1 consists of the function values of all tree nodes of T f1 ; similarly, define C2 for T g2 . That is,

C1 := {f(x) | x is a tree node of T f1 }; and C2 := {g(y) | y is a tree node of T g2 }.

The set of super-levels L1 w.r.t. δ for T f1 and the set of super-levels L2 for T g2 are:

L1 := {L(c) | c ∈ C1} ∪ {L(c− δ) | c ∈ C2} while
L2 := {L(c+ δ) | c ∈ C1} ∪ {L(c) | c ∈ C2}.

Now sort all levels in Li in increasing order of their heights, denoted by L1 = {L(1)
1 ,L(1)

2 ,

. . . ,L(1)
m } and L2 = {L(2)

1 , . . . ,L(2)
m }, respectively. The child-level of super-level L(1)

i (resp.
L(2)
i ) is L(1)

i−1 (resp. L(2)
i−1) for any i ∈ [2,m]; symmetrically, L(1)

i (resp. L(2)
i ) is the parent-level

of L(1)
i−1 (resp. L(2)

i−1). Let h1, . . . , hm be the sequence of height values for L(1)
1 ,L(1)

2 , . . . ,L(1)
m ;

that is, hi = height(L(1)
i ). Similarly, let ĥ1, ĥ2, . . . , ĥm be the corresponding sequence

for L(2)
i ’s.

Note that there is a one-to-one correspondence between super-levels in L1 and L2:
specifically, for any i ∈ [1,m], we have ĥi = hi + δ. From now on, when we refer to the i-th
super-levels of T̂ f1 and T̂ g2 , we mean super-levels L(1)

i and L(2)
i . Also observe that there is no

tree node in between any two consecutive super-levels in either T f1 or in T g2 (all tree nodes
are from some super-levels). See Figure 2 (b) for an illustration.

Next, we augment the tree T f1 (resp. T g2 ) to add points from all super-levels from L1
(resp. from L2) also as tree nodes. The resulting augmented trees are denoted by T̂ f1 and
T̂ g2 respectively; obviously, T̂ f1 (resp. T̂ g2 ) has isomorphic underlying space as T f1 (resp. T g2 ),
just with additional degree-2 tree nodes. In particular, V (T̂ f1 ) (resp. V (T̂ g2 )) is formed by all
points from all super-levels in L1 (resp. L2). See Figure 2 (b): In this figure, solid horizontal
lines indicate levels passing through critical heights, while dashed ones are induced by critical
height from the other tree. In what follows, given a super-level L, we use V (L) to denote
the set of nodes from this level. Note that V (L(1)

m ) and V (L(2)
m ) each contain only one node,

which is root(T̂ f1 ) and root(T̂ g2 ) respectively. Given a node v from L(1)
i (resp. L(2)

i ), let Ch(v)
denote its children nodes in the augmented tree. Each child node of v must be from level
L(1)
i−1 (resp. L(2)

i−1), as there are no tree-nodes between two consecutive super-levels.

I Definition 9 (Valid pair). Given a node w ∈ V (T̂ g2 ) and a collection of nodes S ⊆ V (T̂ f1 ),
we say that (S,w) form a valid pair if there exists an index j ∈ [1,m] such that (1)
S ⊆ V (L(1)

j ) and w ∈ V (L(2)
j ) (which implies that nodes in S at height hj while w has height

g(w) = ĥj); and (2) all nodes in S have the same ancestor at height hj + 2δ (which also
equals ĥj + δ). Intuitively, it indicates that S has the basic condition to be mapped to w under
some ε-good maps.

We say that S is valid if it participates some valid pair (and thus condition (2) above holds).



E. Farahbakhsh Touli and Y. Wang 83:9

A first (slower) dynamic programming algorithm

We now describe our dynamic programming algorithm. To illustrate the main idea, we
first describe a much cleaner but also slower dynamic programming algorithm DPgoodmap()
below. Later in Section 4.2 we modify this algorithm to improve its time complexity (which
requires significant additional technical details).

Our algorithm maintains a certain quantity, called feasibility F (S,w) for valid pairs
in a bottom-up manner. Recall that we have defined the depth of a node u ∈ Th in a
merge tree Th as the height of the subtree Th(u) rooted at u; or equivalently depth(u) =
maxx�u |h(u)− h(x)|.

Algorithm 1 DPgoodmap(T f
1 , T

g
2 , δ).

Base case (i = 1): For each valid-pair (S,w) from level-1, set F (S,w) = 1 (“true”) if
and only if depth(w) ≤ 2δ; otherwise, set F (S,w) = 0 (“false”).

When i > 1: Suppose we have already computed the feasibility values for all valid-pairs
from level-(i−1) or lower. Now for any valid-pair (S,w) from level-i, we set F (S,w) = 1
if and only if the following holds: Consider the set of children Ch(S) ⊆ L(1)

i−1 of nodes
in S, and w’s children Ch(w) = {w1, . . . , wk} in L(2)

i−1.
If Ch(w) is empty, then F (S,w) = 1 only if Ch(S) is also empty; otherwise F (S,w) = 0.
If Ch(w) is not empty, then we set F (S,w)=1 if there exists a partition of Ch(S) =
S1 ∪ S2 ∪ . . . ∪ Sk (where Si ∩ Sj = ∅ for i 6= j, and it is possible that Si = ∅) such
that for each j ∈ [1, k],

(F-1) if Sj 6= ∅, then F (Sj , wj) = 1; and
(F-2) if Sj = ∅, then depth(wj) ≤ 2δ−(ĥi−ĥi−1); note that this implies that ĥi−ĥi−1 ≤ 2δ

in this case.
Output: DPgoodmap(T f1 , T

g
2 , δ) returns “yes” if and only if F (root(T̂ f1 ), root(T̂ g2 )) = 1.

Recall that root(T̂ f1 ) (resp. root(T̂ g2 )) is the only node in V (L(1)
m ) (resp. V (L(2)

m )).
We will first prove the following theorem for this slower. In Section 4.2 we show that

time complexity can be reduced by almost a factor of n.

I Theorem 10.
(i) Algorithm DPgoodmap(T f1 , T

g
2 , δ) returns “yes” if and only if dI(T f1 , T

g
2 ) ≤ δ.

(ii) Algorithm DPgoodmap(T f1 , T
g
2 , δ) can be implemented to run in O(n32ττ τ+1) time,

where n is the total size of T f1 , T
g
2 , and τ = τδ(T f1 , T

g
2 ) is the δ-degree-bound w.r.t. T f1

and T g2 .

Note that if τ is constant, then the time complexity is O(n3).

In the remainder of this section, we sketch the proof of Theorem 10.

Part (i) of Theorem 10: correctness

We first show the correctness of algorithm DPgoodmap(). Give a subset of nodes S′ from
some super-level of T̂ f1 , let F1(S′) denote the forest consisting of all subtrees rooted at nodes
in S′. For a node w′ ∈ T g2 , let T2(w′) denote the subtree of T g2 rooted at w′. We will now
argue that F (S,w) = 1 if and only if there is a “partial” δ-good map from F1(S)→ T2(w).

More precisely: a continuous map α : F1(S)→ T2(w) with (S,w) being valid is a partial-
ε-goodmap, if properties (P1), (P2), and (P3) from Definition 5 hold (with T f1 replaced by
F1(S) and T g2 replaced by T2(w)). Note that in the case of (P2), the condition in (P2) only
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needs to hold for u1, u2 ∈ F1(S) (implying that α(u1), α(u2) ∈ T2(w)); that is, if α(u1)�α(u2)
for u1, u2 ∈ F1(S), then, we have u2ε

1 �u2ε
2 . Note that while u1 and u2 are from F1(S), u2ε

1
and u2ε

2 may not be in F1(S) as it is possible that f(u2ε
1 ) = f(u1) + 2ε ≥ height(S). First,

we observe the following:

B Claim 11. At the top level where L(1)
m = {u = root(T̂ f1 )} and L(2)

m = {w = root(T̂ g2 )} both
contain only one node, if there is a partial-δ-good map from F1({u})→ T2(w), then there is
a δ-good map from |T f1 | → |T

g
2 |.

The correctness of our dynamic programming algorithm (part (ii) of Theorem 10) will
follow from Claim 11 and Lemma 12 below. Lemma 12 is one of our key techincal results,
and its proof can be found in [25].

I Lemma 12. For any valid pair (S,w), F (S,w) = 1 if and only if there is a partial-δ-good
map α : F1(S)→ T2(w).

Part (ii) of Theorem 10: time complexity

We now show that Algorithm DPgoodmap() can be implemented to run in the claimed
time. Note that the augmented-tree nodes contain tree nodes of T f1 and T g2 , as well as the
intersection points between tree arcs of T f1 (resp. T g2 ) and super-levels. As there are at most
m = 2n number of super-levels in L1 and L2, it follows that the total number of tree nodes
in the augmented trees T̂ f1 and T̂ g2 is bounded by O(nm) = O(n2). In what follows, in order
to distinguish between the tree nodes for the augmented trees (T̂ f1 and T̂ g2 ) from the tree
nodes of the original trees (T f1 and T f2 ), we refer to nodes of the former as augmented-tree
nodes, while the latter simply as tree nodes. It is important to note that the δ-degree-bound
is defined with respect to the original tree nodes in T f1 and T g2 , not for the augmented trees
(the one for the augmented trees can be significantly higher).

Our DP-algorithm essentially checks for the feasibility F (S,w) of valid-pairs (S,w)S.
The following two lemmas bound the size of valid pairs, and their numbers. Their proofs
are in [25].

I Lemma 13. For any valid pair (S,w), we have |S| ≤ τ and |Ch(S)| ≤ τ , where τ =
τδ(T f1 , T

g
2 ) is the δ-degree-bound w.r.t. T f1 and T g2 .

I Lemma 14. Let τ = τδ(T f1 , T
g
2 ) be the δ-degree-bound w.r.t. T f1 and T g2 . The total number

of valid pairs that Algorithm DPgoodmap(T f1 , T
g
2 , δ) will inspect is bounded by O(n32τ ), and

they can be computed in the same time.

To obtain the final time complexity for Algorithm DPgoodmap, consider computing
F (S,w) for a fixed valid pair (S,w). This takes O(1) time in the base case (the super-level
index i = 1). Otherwise for the case i > 1, observe that k = |Ch(w)| = degree(w) ≤ τ ,
and |Ch(S)| ≤ τ by Lemma 13. Hence the number of partitioning of Ch(S) is bounded by
O(|Ch(S)|k) = O(τ τ ). For each partition, checking conditions (F-1) and (F-2) takes O(k)
time; thus the total time needed to compute F (S,w) is O(kτ τ ) = O(τ τ+1). Combining this
with Lemma 14, we have that the time complexity of Algorithm DPgoodmap() is bounded
from above by O(n32ττ τ+1), as claimed.

4.2 A Faster Algorithm
It turns out that we do not need to inspect all the O(n32τ ) number of valid pairs as claimed
in Lemma 14. We can consider only what we call sensible-pairs, which we define now.
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I Definition 15. Given a valid-pair (S,w), suppose S is from super-level L(1)
i and thus

w is from super-level L(2)
i . Then, (S,w) is a sensiblepair if either of the following two

conditions hold:
(C-1) S contains a tree node from V (T f1 ), or its children Ch(S) ⊆ L(1)

i−1 in the augmented
tree T̂ f1 contains some tree node from V (T f1 ), or the parents of nodes of S in the
augmented tree T̂ f1 (which are necessarily from super-level L(1)

i+1) contains some tree
node from V (T f1 ); or

(C-2) w is a tree node of T g2 , or Ch(w) ⊆ L(2)
i−1 contains a tree node of T g2 ; or the parent of

w from super-level L(2)
i+1 in the augmented tree T̂ g2 is a tree node of T g2 .

Algorithm DPgoodmap() can be modified to Algorithm modified-DP() so that it only
inspects sensible-pairs. The modification is non-trivial, and the reduction in the bound on
number of sensible-pairs is by relating sensible-pairs to certain appropriately defined edge-list
pairs (A ⊆ E(T f1 ), α ∈ E(T g2 )). The rather technical details can be found in [25]. We only
summarize the main theorem below.

I Theorem 16.
(i) Algorithm modified-DP(T f1 , T

g
2 , δ) returns “yes” if and only if dI(T f1 , T

g
2 ) ≤ δ.

(ii) Algorithm modified-DP(T f1 , T
g
2 , δ) can be implemented to run in O(n22ττ τ+2 logn) time,

where n is the total complexity of input trees T f1 and T g2 , and τ = τδ(T f1 , T
g
2 ) is the

δ-degree-bound w.r.t. T f1 and T g2 .

Note that if τ is constant, then the time complexity is O(n2 logn).

5 Algorithms for Interleaving and Gromov-Hausdorff Distances

5.1 FPT Algorithm to Compute Interleaving Distance
In the previous section, we show how to solve the decision problem for interleaving distance
between two merge trees T f1 and T g2 . We now show how to compute the interleaving distance
δ∗, which is the smallest δ value such that dI(T f1 , T

g
2 ) ≤ δ holds.

The main observation is that there exists a set Π of O(n2) number of candidate values
such that δ∗ is necessarily one of them. Specifically, let Π1 = {|f(u)−g(w)| | u ∈ V (T f1 ), w ∈
V (T g2 )}, Π2 = {|f(u) − f(u′)|/2 | u, u′ ∈ V (T f1 )}, and Π3 = {|g(w) − g(w′)|/2 | w,w′ ∈
V (T g2 )}. Set Π = Π1 ∪Π2 ∪Π3. The proof of the following lemma can be found in [25].

I Lemma 17. The interleaving distance δ∗ = dI(T f1 , T
g
2 ) satisfies that δ∗ ∈ Π.

Finally, compute and sort all candidate values in Π where by construction, |Π| = O(n2).
Then, starting with δ being the smallest candidate value in Π, we perform algorithm
DPgoodmap(T f1 , T

g
2 , δ) for each δ in Π in increasing order, till the first time the answer is

“yes”. The corresponding δ value at the time is dI(T f1 , T
g
2 ). Furthermore, note that for the

degree-bound parameter, τδ(T f1 , T
g
2 ) ≤ τδ′(T f1 , T

g
2 ) for δ ≤ δ′. Combining with Theorem 16,

we can easily obtain the following trivial bound:

I Theorem 18. Let δ∗ = dI(T f1 , T
g
2 ) and τ∗ = τδ∗(T f1 , T

g
2 ) be the degree-bound parameter of

T f1 and T g2 w.r.t. δ∗. Then we can compute δ∗ in O(n42τ∗(τ∗)τ∗+2 logn) time.

However, it turns out that one can remove almost an O(n2) factor by using a double-binary
search like procedure, as discovered by Kyle Fox. We include this improved result below and
his argument below for completeness. See [25] for the proof.

I Theorem 19. Let δ∗ = dI(T f1 , T
g
2 ) and τ∗ = τδ∗(T f1 , T

g
2 ) be the degree-bound parameter of

T f1 and T g2 w.r.t. δ∗. Then we can compute δ∗ in O(n222τ∗(2τ∗)2τ∗+2 log3 n) time.
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5.2 FPT-Algorithm for Gromov-Hausdorff Distance
Finally, we develop a FPT-algorithm to approximate the Gromov-Hausdorff distance between
two input trees (T1, d1) and (T2, d2). To approximate the Gromov-Hausdorff distance between
two metric trees, we need to modify our parameter slightly (as there is no function defined
on input trees any more). Specifically, now given a metric tree (T, d), a ε-geodesic ball at
u ∈ |T | is simply B̂ε(u, T ) = {x ∈ |T | | d(x, u) ≤ ε}.
Parameter τ : Given T1 = (T1, d1) and T2 = (T2, d2), define the ε-metric-degree-bound

parameter τ̂ε(T1, T2) to be the largest sum of degrees of all tree nodes within any ε-
geodesic ball in T1 (w.r.t. metric d1) or in T2 (w.r.t. d2).

We obtain our main result for approximating the Gromov-Hausdorff distance between two
metric trees within a factor of 14. We note that to obtain this result, we need to also relate
the ε-metric-degree-bound parameter for metric trees with the ε-degree-bound parameter
used for interleaving distance for the special geodesic functions we use (in fact, we will show
that τ̂δ ≤ τδ ≤ τ̂2δ). The proof of the following main theorem of this section can be found [25].

I Theorem 20. Given two metric trees T1 = (T1, d1) and T2 = (T2, d2) where the total
number of vertices of T1 and T2 is n, we can 14-approximate the Gromov-Hausdorff distance
δ̂∗ = δGH(T1, T2) in O(n4 logn+n22τ̂ τ̂ τ̂+2 log3 n) time, where τ̂ = 2τ̂28δ̂∗(T1, T2) is twice the
metric-degree-bound parameter w.r.t. 28δ̂∗.

Remarks

We remark that the time complexity of the FPT approximation algorithm of [22] contains
terms nk, where k is the parameter and could be large in general – Indeed, k is the cardinality
of an ε-net of one of the input metric spaces, and ε also appears as an additive approximation
term for algorithm. In contrast, the dependency of our algorithm on the parameter τ̂ is
roughly O(2O(τ̂)), and our algorithm has only constant multiplicative approximation factor.
On the other hand, note that the algorithm of [22] works for general finite metric spaces.
We also remark that the Gromov-Hausdorff distance between two metric spaces (X, dX)
and (Y, dY ) measures their additive distortion, and thus is not invariant under scaling. In
particular, suppose the input two metric spaces T1 = (T1, d1), T2 = (T2, d2) scale by the same
amount to a new pair of input trees T ′1 = (T ′1, d′1 = c · d1), T ′2 = (T ′2, d′2 = c · d2). Then the
new Gromove-Hausdorff distance between them δGH(T ′1 , T ′2 ) = c · δGH(T1, T2). However, note
that the metric-degree-bound parameter for the new trees satisfies τ̂cδ(T ′1 , T ′2 ) = τ̂δ(T1, T2).
Hence the time complexity of our algorithm to approximate the Gromov-Hausdorff distance
δGH(T ′1 , T ′2 ) for scaled metric-trees T ′1 and T ′2 remains the same as that for approximating
the Gromov-Hausdorff distance δGH(T1, T2).

6 Concluding Remarks

In this paper, by re-formulating the interleaving distance, we developed the first FPT
algorithm to compute the interleaving distance exactly for two merge trees, which in turn
leads to an FPT algorithm to approximate the Gromov-Hausdorff distance between two
metric trees.

We remark that the connection between the Gromov-Hausdorff distance and the inter-
leaving distance is essential, as the interleaving distance has more structure behind it, as
well as certain “order” (along the function associated to the merge tree), which helps to
develop dynamic-programming type of approach. For more general metric graphs (which
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represent much more general metric spaces than trees), it would be interesting to see whether
there is a similar relation between the Gromov-Hausdorff distance of metric graphs and the
interleaving distance between the so-called Reeb graphs (generalization of merge trees).
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