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Abstract
Visual computing has become highly attractive for boosting research endeavors in the materials
science domain [1]. Using visual computing, a multitude of different phenomena may now be
studied, at various scales, dimensions, or using different modalities. This was simply impossible
before. Visual computing techniques generate novel insights to understand, discover, design,
and use complex material systems of interest. Its huge potential for retrieving and visualizing
(new) information on materials, their characteristics and interrelations as well as on simulating
the material’s behavior in its target application environment is of core relevance to material
scientists. This Dagstuhl seminar on Visual Computing in Materials Sciences thus focuses on
the intersection of both domains to guide research endeavors in this field. It targets to provide
answers regarding the following four challenges, which are of imminent need:

The Integrated Visual Analysis Challenge identifies standard visualization tools as
insufficient for exploring materials science data in detail. What is required are integrated
visual analysis tools, which are tailored to a specific application area and guide users in their
investigations. Using linked views and other interaction concepts, these tools are required to
combine all data domains using meaningful and easy to understand visualization techniques.
Especially for the analysis of spatial and temporal data in dynamic processes (e.g., materials
tested under load or in different environmental conditions) or multimodal, multiscale data,
these tools and techniques are highly anticipated. Only integrated analysis concepts allow to
make the most out of all the data available.
The Quantitative Data Visualization Challenge centers around the design and im-
plementation of tailored visual analysis systems for extracting and analyzing derived data
(e.g., computed from extracted features over spatial, temporal or even higher dimensional
domains). Therefore, feature extraction and quantification techniques, segmentation tech-
niques, or clustering techniques, are required as prerequisites for the targeted visual analysis.
As the quantification may easily end up in 25 or more properties to be computed per feature,
clustering techniques allow to distinguish features of interest into feature classes. These fea-
ture classes may then be statistically evaluated to visualize the properties of the individual
features as well as the properties of the different classes. Information visualization techniques
will be of special interest for solving this challenge.
The Visual Debugger Challenge is an idea which uses visual analysis to remove errors in
the parametrization of a simulation or a data acquisition process. Similarly, to a debugger in
computer programming, identifying errors in the code and providing hints to improve, a visual
debugger in the domain of visual computing for materials science should show the following
characteristics: It should indicate errors and identify wrongly used algorithms in the data
analysis. Such a tool should also identify incorrect parameters, which either show no or very
limited benefit or even provide erroneous results. Furthermore, it should give directions on
how to improve a targeted analysis and suggest suitable algorithms or pipelines for specific
tasks.
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The Interactive Steering Challenge uses visual analysis tools to control a running sim-
ulation or an ongoing data acquisition process. Respective tools monitor costly processes
and give directions to improve results regarding the respective targets. For example, in the
material analysis domain, this could be a system which provides settings for improved data
acquisition based on the current image quality achieved: If the image quality does no more
fulfill the target requirements, the system influences all degrees of freedom in the data acquis-
ition to enhance image quality. The same holds for the materials simulation domain. Visual
analysis can help to steer target material properties in a specific application environment by
predicting tendencies of costly simulation runs, e.g., using cheaper surrogate models.
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In this Dagstuhl workshop, we brought together computer and computational scientists
interested in building tools for use in visual computing with material scientists with expressed
interest in using such tools. As would be anticipated when one brings together two distinct
fields, the initial challenge we encountered was that of language. Although both groups
came together having experiences with visual computing tools – some as developers and
some as users – although they often used the same terms, they semantically meant different
things. We found that the Dagstuhl philosophy of “immersion” was most helpful to this issue
as having several days together helped break down these barriers. Over the course of the
week, we interspersed talks by computational scientists and material scientists. The talks
by computational scientists often presented their current understanding of what kinds of
tools are needed, demonstrations of current tools they have developed in collaboration with
domain-specific experts, and success stories of applications they have currently impacted.
The talks by the material scientists often presented a description of the tools they currently
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use, the positive points and deficiencies of current tools, the types of features that they would
like to see in future tools, and examples of current challenge problems and how they might
be impacted by the next generation of tools.

Fundamental Results:

1. The systems that are desired by many material scientists will be used both for exploration
and for interactive steering. When used for exploration, material scientists want tools
that not only present the data with its corresponding reliability (uncertainty) bounds,
but which also give predictive capabilities such as where next to sample.

2. There is a general acknowledgement that both automation and interactivity are needed.
Automation of tasks and procedures through AI and Machine Learning can be used to
help deal with the volumes of data being produced – helping scientists sift through the
field of possibilities to isolate those places for which they should expend human effort. At
the same time, there are many current practices that continue to require “the human in
the loop” to make decisions. In such cases, tools are needed that have smart defaults but
yet allow the user to explore, navigate and possibly refine data.

3. Although many current tools used for material science applications leverage previous
visualization and interaction technologies, there is still much to be done. Many material
science applications require specialization of currently existing algorithms and techniques,
especially in cases of real-time systems. Furthermore, many techniques originally designed
for batch or manual processing need to be re-engineered to allow for the interactive
procedures required by current and future material science application scientists.

4. With regards to visualization scientists, there is a need for both data and tasks. Many
researchers requested data on which they can try their methods. In addition to the
data itself, descriptors of the data are necessary so that it can be interpreted properly.
Once read into their system, the visualization scientists then requested a collection of
tasks (driven by the material science domain experts) which would help drive their tool
development and evaluation.

Final Comments

Due to the ever-increasing interest in this topic, we foresee that future review articles and/or
special issues of journals driven by multilateral research cooperations between seminars’
participants will be an outcome of this workshop. To ensure and stimulate further cooperation
in this field, a list of specific follow up activities has been elaborated and discussed with
the participants. All in all, a fruitful discussion was stimulated across the two domains
throughout the complete week of this Dagstuhl workshop which will become more obvious in
joint research efforts of all kinds.
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3 Overview of Talks

3.1 Intuition-based Visual Analysis of Microstructures
Amal Aboulhassan (Material Solved – Alexandria, EG)

License Creative Commons BY 3.0 Unported license
© Amal Aboulhassan

In our ongoing research, we propose a new direction of analyzing microstructures based on
an intuitive visual analysis paradigm. We enable the researchers to predict the structure-
function relationships even if modelling techniques or experimental data are limited due to
various reasons (multi-scale and multiphysics phenomena occurring during the process, or
limited access to the measurements). Our paradigm aims to include the human intuition
into the analysis process naturally. It is achieved through an instantaneous update of the
properties due to the edits in the microstructure. For example, the user immersed in the
microstructure finds a small potential defect or bottleneck, removes it manually and gets
an instant update on the properties. To enable such instant feedback the online analysis
of the existing information is needed. In an ideal case scenario, the optimal update is also
suggested. To handle the latter situation the inverse problem needs to be solved. Both these
scenarios rely on two critical elements: (i) enabling the user to alter parts of the data and (ii)
quantifying how these edits influence the overall performance. Editing the microstructures
on the fly and link it with the properties is a challenging problem since this type of data
is complex and big in many cases. Visual analysis and exploration is one strong potential
solution in this case. Finally, once the ideal update to the structure is identified, the question
remains – how to modify the manufacturing process to realize this editing? – which is an
open problem in materials science.

3.2 Inline inspection and dynamic angle acquisition
Jan De Beenhouwer (Universiteit Antwerpen – Wilrijk, BE)

License Creative Commons BY 3.0 Unported license
© Jan De Beenhouwer

URL https://visielab.uantwerpen.be/

In conventional X-ray-CT inspection of objects generated from a computer-aided design
(CAD) model, a 3D CT reconstruction of the object is compared with the reference CAD
model. This is a cost inefficient and tedious procedure, unsuitable for inline inspection.
Alternatively, X-ray radiography based inspection is fast but fails to provide full 3D inspection.
Here, we propose an inspection scheme based on a limited set of radiographs, which are
dynamically selected during the scanning procedure. An efficient framework is described to
determine the optimal view angle acquisition from a given CAD model and to automatically
estimate the object pose in 3D with a fast, iterative algorithm that dynamically steers the
acquisition geometry to acquire the set of chosen projections.
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://visielab.uantwerpen.be/


C. Heinzl, R.M. Kirby, S. V. Lomov, G. Requena, and R. Westermann 9

3.3 Tomography and the challenges in visualization
Gursoy Doga (Argonne National Laboratory – Lemont, US)

License Creative Commons BY 3.0 Unported license
© Gursoy Doga

X-ray tomography is a nondestructive imaging technique that provides the internal structure
of samples and its implementations at synchrotrons is heavily used by materials scientists.
However, as the applications are pushed further into the nanoscale, the radiation dose
limited conditions become more apparent, leading to challenges in achieving high resolution
reconstructions. In this talk I will introduce a set of new computational imaging techniques
that can yield superior reconstructions for high-speed or photon-limited imaging conditions
when implemented as an integral part of the imaging setup. This approach requires re-design
of both hardware and software components of a tomography system such that the overall
performance is optimized rather than optimizing individual components. I will highlight
some of the main challenges in visualization and other parts of this system compared to
conventional systems.

3.4 Droplets, Bubbles and other Material Structures
Thomas Ertl (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Thomas Ertl

Visualization research at the University of Stuttgart contributes to material science in several
large interdisciplinary projects primarily in the context of simulation-based research. The
SFB 716 focused on particle simulation for which we developed MegaMol, a visualization
framework providing advanced interactive visualization techniques for large particle datasets.
The presented examples cover space-time clustering of atoms in laser ablation, extracting
stacking faults, debugging clustering criteria in nucleation simulations, or discovering flexo-
electricity effects in cracking metal oxides. The SFB/TRR 75 deals with droplet behavior
under extreme conditions. By direct multi-phase flow simulation, breakup and coalescence
of droplets are studied which pose many visualization challenges like coupling the spatial
representation with space-time diagrams showing the topological evolution or tracking
droplet dynamics over time. In the new SFB 1313 on interfaces in porous media we study
the relation of CO2 bubbles and its porous surrounding geometry in saturated sandstone.
The distribution of these bubbles does influence seismic properties of the material which
will influence measuring leakage in CO2 sequestration. We present an analysis pipeline
which groups extracted bubbles and surrounding structures according to their similarity and
clusters them, allowing visual comparison after registration. By investigating bubble size
and shape distribution, effects on phase velocity dispersion could be demonstrated.
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3.5 The visualization challenge of tensor-valued strain data from
loading experiments to predict mechanical failure

Christian Gollwitzer (BAM – Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Christian Gollwitzer

Concrete bars were subjected to mechanical load in different configurations (uniaxial pressure,
double punch test and reinforcement bar pullout) until the samples were broken. During
the loading, the samples were observed using X-ray computed tomography. Digital Volume
Correlation (DVC) was then used to measure the deformation field in the sample between
the unloaded state and the individual load steps. It would be valuable to predict the failure
of the sample from the small deformations inside the sample. Classic failure criteria for
concrete (Drucker-Prager, von Mises) were tested to evaluate the correlation between the
location of the final cracks and the locations indicated by the failure criteria. Due to the
derivative of the measured deformation fields for the failure criteria, the data is very noisy
which makes the predicted locations of failure hard to see. On the other hand, displaying the
projection of the deformation field across the crack direction indicates, that the information
of the crack location is contained in the data. The challenge was formulated to derive a good
visualization indicating only the failure location without computing noise-prone numerical
derivatives.

3.6 Reformation and Sparse Interaction in Visualization
Eduard Gröller (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Eduard Gröller

Data visualization provides computer-supported interaction with visual representations of
(abstract) data to amplify cognition. The increasing complexity of data requires interaction
support and simplification of visual representations, also in light of investigating ensembles
of data. Motivated by historical examples, typical case scenarios from various domains
are discussed. These include: curved planar reformations, myocardium unfolding to bull’s-
eye plots, knowledge-based navigation, molecular dynamics exploration, defects analysis in
industrial XCT data, and comparisons of large sets of volumetric data.

3.7 MESHFREE: CFD-simulation with interactive/computational
steering

Hans Hagen (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Hans Hagen

MESHFREE is an innovative, gridfree simulation tool in fluid and continuum mechanics,
developed by Fraunhofer ITWM. The numerical modelling is based on a cloud of points
carrying all relevant physical information. Due to the meshfree character, it almost naturally
mimics applications with free surfaces, moving geometries, and fluid structure interaction
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(FSI). The gridfree setting of the method allows local/global refinement of the pointcloud
(adaption of numerical resolution) as well as immediate response of the simulation towards
changes in the geometry (adaption to form changes). Both types of adaptions may be subject
to interactive steering, to be performed while the simulation is running. On-the-fly adaption
of parameters of a running simulation is highly efficient, saving a lot of computation time
as well as man-power in optimizing simulation results, especially in industrial design cycles.
Only gridfree simulation methods provide the full potential to interactive steering. Based on
a body inside of a flow, we will show how to: (1) interactively adapt the (local) refinement of
the numerical pointcloud in order to gain a requested quality of the computed result (let us
say the resistance force), and (2) interactively perform a simple shape optimization of the
body towards some optimization constraint (let us say the minimization of resistance force).

3.8 Tomviz: An open source integrated tool for analysis, visualization,
and debugging

Marcus Hanwell (Kitware – Clifton Park, US)

License Creative Commons BY 3.0 Unported license
© Marcus Hanwell

The Tomviz project has been funded by the US Department of Energy SBIR program, and
offers a permissively licensed open source tool for tomography. It uses JSON to describe its
pipeline, including all processing steps, and visualization parameters. This is coupled with a
Python-centric data processing pipeline, and wrapped C++ taking advantage of parallelism
and GPUs for visualization. Recently “live updates” were added to aid in the development of
and debugging of reconstruction parameters in challenging atomic/high resolution scanning
transmission electron microscopy tomography. The live updates of the pipeline as data is
acquired on a microscope will also be described as it pertains to aiding in data acquisition.
More generally at Kitware we develop a number of open source libraries, and open source tools
for scientific data including VTK, ParaView, ITK, CMake, and others. There is a new project
with a national lab to extend Tomviz to help their beamline tomography users, and a new
project with another national lab to process 4D STEM data using HPC resources for very high
data rate acquisitions. A recent Phase I SBIR seeks to develop a general framework for high
data rate 4D STEM microscopy, offering a Python/C++ library for processing, web-based
data management platform, and web application visualizing/previewing data. At the core the
development of open source platforms as collaborative research and development platforms
offers viable business models that can help drive open, reproducible science workflows forward.
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3.9 Visually assisted reconstruction of geometric objects in microscopic
data

Hans-Christian Hege (Konrad-Zuse-Zentrum – Berlin, DE)

License Creative Commons BY 3.0 Unported license
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The reconstruction of geometric objects from voxel data is a very common task in many
fields, including almost all natural, materials, engineering, environmental and life sciences,
as well as other fields such as archaeology. Research in image and geometry processing
over the past decades has provided solutions for image denoising, image registration, image
segmentation, surface and volume mesh creation that enable us nowadays to build up a
generic geometry reconstruction pipeline in which at each stage a particular algorithm can
be plugged in, selected from a small set of field-proven algorithms. This results in a fully
automated reconstruction. The only phase for which considerable progress is still required is
image segmentation. Here we should continue to strive for a smaller set of general applicable
approaches that meet the needs of a wide range of applications with rather different needs (in
terms of image properties, prior knowledge and segmentation objectives). Machine learning
methods are particularly promising here.

Focusing on the situation, where the generic reconstruction pipeline needs to be extended
or modified by some complex operation, the following strategy has proven to be successful:
First, try to bridge the difficult/complex parts of the geometry reconstruction pipeline with
manual, interactive, visually supported operations. Second, apply the resulting pipeline to
real-world data sets, thereby creating (hopefully) ground truth results and getting more
insight into the problem while solving it manually. Finally, utilize the gained insight and
the established ground truth results to algorithmize the remaining manual portion. Do
this gradually, until (ideally) no manual interaction is left. This approach has proven to
be successful in many applications where a pure computer-vision approach, trying to solve
the entire problem algorithmically from the beginning, would have failed. The strategy
is illustrated on the example of two problems: (a) the reconstruction and quantification
of dislocation substructures from stereo-TEM and (b) the reconstruction and unrolling of
ancient papyri from µCT.

3.10 Imaging and Tracking Dynamic Phenomena in Materials Research
Wolfgang Heidrich (KAUST – Thuwal, SA)

License Creative Commons BY 3.0 Unported license
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Many applications in Material Science require imaging of time-varying data as well as an
analysis of the motion fields between different configurations. In this talk I will focus on
joint 4D (space+time) geometry and motion analysis using new tomographic reconstruction
methods. These methods are applicable in any scenario where either a) a time-varying
phenomenon is investigated with tomographic methods (X-ray, EM etc), and the time scale
of the motion is comparable the frame rate of projections in the imaging system, or b)
whenever the sample undergoes uncontrolled deformation during the scanning process (e.g.
drift, heat expansion, or sample degradation). I will illustrate the methods using examples
from composite material analysis and material porosity analysis among others. I will also
highlight the relationship of these methods to recent fluid imaging methods.
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3.11 Quantitative X-ray computed tomography for materials sciences
Johann Kastner (FH Oberösterreich – Wels, AT)

License Creative Commons BY 3.0 Unported license
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URL http://www.3dct.at

X-ray computed tomography (XCT) currently transforms from a qualitative diagnostic tool
to a quantitative characterization method. Quantitative XCT is the combination of XCT
with quantitative 3D image analysis. Only through preprocessing and data enhancement,
segmentation, feature extraction and quantification, rendering of the results, in-depth insights
into XCT data a sample may be facilitated. In the beginning of industrial XCT, XCT images
were generated mainly for visual inspection. The most important application of quantitative
XCT is metrology Additionally, quantitative XCT is increasingly used for extracting a large
variety of characteristics of materials and samples:

Characterization of pores metallic and polymeric foams
Porosity evaluation of metals and polymers
Determination of fiber orientation, diameter and length of fiber-reinforced polymers as
well as their distributions
Fiber bundle extraction and characterization of technical textiles
Quantitative data concerning the 3D structure of inhomogeneous metals or other materials
(e.g., interconnectivity, sphericity, etc.)
3D characterization of isolated discontinuities such as cracks, voids, inclusions, delamina-
tion, etc.
Phase identification and characterization
Physical and mechanical properties (physical density, crack growth, wear) and, to a
certain extent, chemical composition (alloy and phase identification, impurities)

3.12 Uncertainty Quantification and Its Role in Materials By Design
Robert Michael Kirby (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Robert Michael Kirby

When computational methods or predictive simulations are used to model complex phenomena
such as the response of physical systems to a range of conditions or configurations, researchers,
analysts and decision-makers are not only interested in understanding the data but are
also interested in understanding the uncertainty present in the data as well. Quantification,
communication and interpretation of uncertainty are necessary for the understand and control
of the impact of variability; these three – quantification, communication and interpretation
of uncertainty – help add both understanding and robustness to the design process. In
this talk, we present an overview of the multiscale modeling and uncertainty quantification
efforts accomplished as part of the Center for Multiscale Modeling of Electronic Materials
(MSME), a collaborative partnership between academia and the Army Research Laboratory.
In particular, we will focus on our successes in cross-cutting areas – bringing uncertainty
quantification techniques originally developed within a particular discipline to a broader class
of materials by design problems. We will also attempt to address the question of “why now?”
– what current factors and trends explain the recent rise in uncertainty quantification efforts,
and what we can learn from these trends.
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3.13 Advanced impact damage characterisation of composite
laminates by X-ray Computed Tomography

Fabien Leonard (BAM – Berlin, DE)
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One of the great strengths of X-ray computed tomography over conventional inspection
methods (ultrasound, thermography, radiography) is that it can image damage in 3D. However
for curved or deformed composite panels, it can be difficult to automatically ascribe the
damage to specific plies or inter-ply interfaces. An X-ray computed tomography (CT) data
processing methodology is developed to extract the through-thickness distribution of damage
in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre
reinforced polymer (CFRP) panels subjected low velocity impact damage (5 J up to 20 J)
providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach
allows slices to be taken that approximately follow the composite curvature allowing the
impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this
way the interply delaminations have been mapped, showing characteristic peanut shaped
delaminations with the major axis oriented with the fibres in the ply below the interface.
This registry to the profile of the panel constitutes a significant improvement in our ability
to characterise impact damage in composite laminates and extract relevant measurements
from X-ray CT datasets.

3.14 Through the micro-CT and what we found there? Quantifying
images of fibrous materials

Stepan V. Lomov (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
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Description of a textile composite microstructure involved, identification of individual
yarns/fibrous plies in the textile reinforcement. definition of local parameters of fibrous
geometry: local fibre directions, local fibre volume fraction and description of the amount
and (especially in the case the textile is a reinforcement of an impregnated composite) mor-
phology of voids. The advanced method for acquiring such a description is micro-computed
(micro-CT) tomography, which is a powerful tool for imaging of the internal structure of
materials. The result of a micro-CT imaging is a 3D array of values (“grey scale”), which
characterise the X-ray attenuation in the corresponding locations in the material. The
challenge of the textile materials characterisation using micro-CT images is quantification
of the image, identifying the parameters of the microstructure by analysis of the grey scale
array. Such a quantification can be partially done by image thresholding and binarisation,
which is the most common way of the 3D image processing. However, direction-related
features are not easily determined using the binarisation. The paper describes methods and
the software (VoxTex), which analyse the grey scale array to produce the description of the
textile microstructure as an array of volume elements (voxels), each of element carrying
information of the fibre directions and fibre volume fraction in it. Apart from that, the void
contents and the voids morphology in textile composites are characterised. The methods
are based on a two-parameters analysis of the image: local grey scale value and anisotropy,
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defined via the structure tensor of the grey scale field [1]. The paper presents validation
of the VoxTex quantification of fibre directions and voidage measured with independent
methods and overviews application of the methods to different problems related to details of
the fibrous microstructure of textiles.

References
1 Straumit, I., S. V. Lomov and M. Wevers, “Quantification of the internal structure and auto-

matic generation of voxel models of textile composites from X-ray computed tomography
data”, Composites Part A, 69: 150-158 (2015)

3.15 Experiences with synchrotron users working in material science
and some of their challenges in the domain of ’The integrated
Visual Analysis’

Lucia Mancini (Elettra – Sincrotrone Trieste S.C.p.A. – Trieste, IT)
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Imaging techniques based on the use of hard X-rays play an important role in several
research fields and industrial applications. Many topics in medicine, biology, material science,
geosciences and cultural heritage studies can be afforded thanks to the high potential and
large applicability of hard X-ray imaging techniques. In the last twenty years a great effort
has been devoted to the development of X-ray computed microtomography (micro-CT)
techniques, both employing microfocus and synchrotron radiation sources. Nowadays, these
techniques allows to produce 3D or 4D (dynamic) micro-CT images of the internal structure
of objects at the micron- and submicron- scale. Investigations performed directly in the 3D
domain overcome the limitations of stereological methods usually applied to microscopy-based
analyses and a non-destructive method is more suitable for further complementary analyses
and for precious or unique samples (fossils and archeological finds, in-vivo imaging, etc . . . ).
In the field of materials science, an intriguing challenge is to extract directly from 3D and 4D
images some parameters allowing to characterize structural, chemical and physical properties
of the studied materials. However, accurate image processing, analysis and visualization
methods for an effective assessment of these parameters are still an open issue especially
in the case of time-resolved and multi-scale and multi-modal CT experiments. In this talk,
thanks to the experience gained working in collaboration with several users of the SYRMEP
beamline of the Elettra synchrotron facility or working as user in different laboratories
and synchrotron facilities, several scientific applications of advanced hard X-ray imaging
techniques will be presented trying to critically expose the progress, limitations and open
problems in the different fields.
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3.16 Why do we need visual and automatised data reduction schemes
in X-ray experiments?

Rajmund Mokso (Lund University, SE)
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Tomographic measurements at synchrotron and laboratory X-ray sources are today fast and
come with a large data sizes. Visualisation is important at various stages of these studies and
we may distinguish between three types of visualisation tools as a function of time counted
from the start of an X-ray imaging experiment. First we aim to follow the acquisition process
itself but visualising the streams of data. At this stage we would need to employ robust and
simple visualisation tools which will enable quick decision making during the acquisition. The
second stage is just after the data is acquired. The tomographic reconstruction is fast and in
the majority of cases we rely on visualising a gray scale image of one slice as quality control.
Here we would welcome the visualisation of the features of interest in 3D instead of the
gray scale slice. In the third stage for the final quantification of the volumes, the challenge
is in decomposing the found quantities (e.g. particle shapes, orientations or curvatures)
into as simply as possible arrays to characterise the material in 3D and often in a time
resolved manner. Owners of imaging data are most often not experts in image analysis or
visualisation, accordingly the tools must be well documented and as simple to work with as
possible. The actual computing time and performance in terms of speed is only important
for the first group of these tools used during the acquisition. The remaining two groups must
focus on user friendly operation and the capability to deal with volumes of at least 2k x 2k x
2k pixels.

3.17 The DQS Advisor: A Visual Interface to Recognize Tradeoffs in
Dose, Quality, and Reconstruction Speed and ColorMapND: A
Data-Driven Tool for Mapping Multivariate Data to Color

Klaus Mueller (Stony Brook University, US)
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The DQS Advisor: Achieving high-quality CT reconstructions from the limited projection
data collected at reduced x-ray radiation is challenging, and iterative algorithms have been
shown to perform much better than conventional analytical schemes in these cases. A problem
with iterative methods in general is that they require users to set many parameters, and if set
incorrectly high reconstruction time and/or low image quality are likely consequences. Since
the interactions among parameters can be complex and thus effective settings can be difficult
to identify for a given scanning scenario, these choices are often left to a highly-experienced
human expert. The DQS Advisor is a computer-based assistant that allows users to balance
the three most important CT metrics – dose (D), quality (Q), and reconstruction speed (S)
– by ways of an intuitive visual interface. Using a known gold-standard, the system uses
an evolutionary optimization algorithm to generate and learn the most effective parameter
settings for a comprehensive set of DQS configurations. A visual interface then presents
the numerical outcome of this optimization, while a matrix display allows users to compare
the corresponding images. The interface allows users to intuitively trade-off GPU-enabled
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reconstruction speed with quality and dose, while the system picks the associated parameter
settings automatically. Once this knowledge has been generated, it can be used to correctly
set the parameters for any new CT scan taken at similar scenarios.

ColorMapND: In volume visualization transfer functions are widely used for mapping voxel
properties to color and opacity. Typically, volume density data are scalars which require
simple 1D transfer functions to achieve this mapping. If the volume densities are vectors of
three channels, one can straightforwardly map each channel to RGB which requires a trivial
extension of the 1D transfer function editor. We devise a new method that applies to volume
data with more than three channels. These types of data often arise in scientific scanning
applications, where the data are separated into spectral bands. Our method expands on
prior work in which a multivariate information display was fused with a perceptual color
map in order to visualize multi-band 2D images. In this current work we extend this joint
interface to blended volume rendering. We design a set of functionalities and lenses that
allow users to interactively control the mapping of the multivariate volume data to color and
opacities. The latter enables users to isolate or emphasize volumetric structures with desired
multivariate properties that can be identified in the joint interface. We also show that our
method enables more insightful displays even for RGB data. We demonstrate our method
with three datasets obtained from spectral electron microscopy and high energy X-ray.

3.18 Topology-driven approaches for analysis and visualization of
material structures

Vijay Natarajan (Indian Institute of Science – Bangalore, IN)
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Data resulting from high fidelity computational simulations and high resolution imaging
devices is becoming increasingly complex in terms of the number of features. Topological
structures such as the contour tree, mapper, Reeb graph, and Morse-Smale complex provide
abstract representations of features in the data that are succinct and amenable to visual
analysis. Topological Data Analysis (TDA) refers to the study of such abstract representations
for data analysis. These structures support feature detection, extraction, comparison, and
tracking and hence enable methods for effective visualization and exploration of feature-rich
data sets. In this talk, I will first give an introduction to TDA with a focus on scientific
data. Next, I will introduce the problem of symmetry and similarity detection in scientific
data and describe its role in the design of feature-directed visualization methods. I will
present algorithms to detect symmetry and discuss applications to visualization, interactive
exploration, and visual analysis of time-varying and multivariate data.
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3.19 Next Generation NDT – An Enabling Technology for the Industry
of the Future

Ahmad Osman (HTW – Saarbrücken, DE)
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The digital transformation has high influence on our society and a clear impact on almost
every industrial segment. This essentially includes the technologies and tools for the factory of
the future, medical and health care systems as well as materials development and processing.
In order to continue serving as an enabling technology in industrial sectors (automotive,
railway, infrastructure etc.), Nondestructive Testing (NDT) has to raise to a next level, the
so called NDT 4.0 or Next Generation NDT. In modern NDT, sensors are considered not
only as data providers but data processing is expected to be sensor integrated and to guide
the data acquisition strategy. Modern sensor systems will be capable of transferring the big
data into smart data with information that helps monitoring and optimizing production
processes and products throughout their complete life cycles. Such cognitive systems will
be able to autonomously specify the optimal settings for data acquisition: how, where and
which data are required to assess a scene. NDT sensor systems with embedded intelligence,
i.e. AI-algorithms for real time data processing and evaluation, will be part of IoT. These
smart devices produce data and decisions which are saved into a digital product memory
that describes the history and changes in the product properties. This upcoming evolution
of sensor systems requires a radical transformation on several levels such as the qualification
courses of NDT personnel, on human-machine interaction modes etc. The sensor systems
should be able to guide the human in his inspection task, thereby reducing the complexity
of his work, accelerating the evaluation through on-site visualization and feedback to the
operator. In this work, we present features and algorithms for smart NDT inspection system
which can be used for ultrasound probes, eddy current probes or micro-magnetic sensor
systems. For the ultrasound probes, the sensor position is tracked using commercial webcams.
The operator is not expected to follow specific trajectories in scanning the surface of a
structure. The camera system tracks the probe position and acquired A-scans per position
are simultaneously transferred to parallel processes. The quality of these raw signals is
autonomously verified according to several criteria. Feedback is given to the operator in
case where settings deviations occur or unsatisfactory data are generated. The operator can
then repeat the scan to cover the indicated area. Qualified A-scans are then reconstructed
into a three dimensional volume. The volumetric data are visualized in real time via various
ways of augmented reality, for example on AR-lenses. The data reconstruction is done in
3D using online capable method, referred to as progressive Synthetic Aperture Focusing
Technique (SAFT). The presented system is an enabler for a more flexible, faster and
unconventional qualification of personnel. It eases the task of appropriate data interpretation
and guarantees optimized scanning settings, repeatable and reliable quality control results
for onsite inspection tasks. The system can be easily integrated into digital surrounding for
data communication. As the system can be used to cover large surfaces, aspects related
to big data handling, data reduction, sparse data representation, inline data processing
and visualization are challenges that are currently being addressed in ongoing research and
development activities at Fraunhofer Institute for Nondestructive Testing.
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3.20 Quantitative analysis of CT data using Machine Learning
Sidnei Paciornik (BAM – Berlin, DE)
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One of the most difficult steps in image analysis for Materials Science is segmentation.
Traditionally, objects would be discriminated by their intensity, contour or texture. However,
there are many situations in which none of these approaches work and, importantly, it is
difficult to extrapolate from one problem to another. Moreover, there is no analytical or
general way to decide the best segmentation method. It is always a trial and error situation.
Deep Learning (DL) Convolutional Neural Networks (CNN) bring a new perspective to this
problem. Using as input data the individual pixel/voxel intensities, the CNN automatically
extracts discriminating features and can converge to a set of classes/objects given a reasonable
training set. The training, which also serves as ground truth, is typically defined as regions
of each object/class manually outlined by the user. This is the most work intensive step.
However, once the network produces a reliable segmentation, in principle it can be directly
applied to similar images with no further effort. This approach was used to segment two
challenging sample types: a 3-phase Strain Hardening Composite Cement (SHCC) imaged by
lab-scale microCT and a 5-phase Metal Matrix Composite (MMC) imaged by synchrotron
microCT. In both cases morphological features included elongated fibers and more equiaxial
objects. Initial results using the same network architecture – the so-called U-Net [1, 2] were
very promising. Fibers and other phases were automatically segmented with good agreement
with the ground truth. Different training strategies involving data augmentation were tested.
Transfer learning between different samples was also successful by adding a small amount of
training data to a previously trained network. These initial results raise several questions
about the best strategy for using DL CNN’s in image segmentation. Is there an ideal CNN
architecture? How large must the training set be? Which parameters should be included
in the data augmentation procedure? How should we proceed from 2D to 3D training set
creation? What is required in terms of network architecture and GPU capabilities to obtain
true 3D segmentation?
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(MICCAI), Springer, LNCS, Vol. 9351: 234–241, 2015.
2 Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry, Nature
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3.21 Application of Machine Learning tools for quantitative 3D-4D
materials science

Guillermo Requena (DLR – Köln, DE) and Federico Sket (IMDEA Materiales – Madrid, ES)
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Neural networks (NN) have become a state of the art tools for the analysis of imaging data
and the prediction of process behaviour in several fields such as medicine, earth observation
and climate research. In the present contribution we explore the use of machine learning
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tools based on neural networks to solve current 3D and 4D material issues that can hardly
be approached using classical methods. Two examples are given: (1) Segmentation of
3D imaging data using convolutional neural networks: the separation of microstructural
constituents in multiphase materials can be a tedious task that requires several hundreds
of hours of human work to obtain trustable 3D or 4D data for subsequent analysis. We
implemented a U-net-based CNN architecture that is able to achieve at least 94% accuracy
in the segmentation of absorption plus phase contrast tomography images in Al-Si alloys.
Open challenges to further advance in the segmentation of 3D-4D data were also presented.
(2) Understanding and prediction of mechanical properties of materials: as an example
of the use of NN for the prediction of material behaviour, a framework combining design
of experiment (DoE), computational micromechanical modelling, and Neural network is
presented. An analytical surrogate model including some material properties was obtained
and the possibility to extend it by incorporating more material properties and other simulated
failure modes across relevant length scales discussed. Finally, two examples on which NN
could assess the production process of materials were presented, one for in-situ curing of
composite materials and other for selective laser melting manufacturing. In combination
with in-line sensoring of the production process the challenge of collect data from the process
as it occurs, training a machine learning algorithm to analyse them, and predict or decide
in-line improvements and/or corrections was presented.

3.22 Multivariate Data Analysis using Fiber Surfaces for Material
Science

Gerik Scheuermann (Universität Leipzig, DE)
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Application like structural mechanics of composite materials or geomechanics of nuclear
waste deposits require the analysis of multiple scalar fields at the same time. An example is
provided by all invariants of tensors. A more complicated example are variables from different
models in coupled simulations where structural mechanics, hydrology, and thermodynamics
are simulated at the same time, all creating multiple variables to study. In this talk, I present
three case studies in material science where we used tailored visualization techniques like
effective combination of tensor fields to show potential failure, fiber surfaces of the stress
tensor invariant space, and exploration of three scalar attributes at the same time. The
studied materials are short glass fiber reinforced polymers, a hybrid metal-carbon fiber
reinforced polymer component, and a combination of different rock layers in geomechanics.

3.23 Image modelling and computational materials science
Katja Schladitz (Fraunhofer ITWM – Kaiserslautern, DE)
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Material versatility is ever-increasing, accompanied by need for more complex and precise
structures and properties. The rise in complexity requires continued development of scalable
and dedicated analysis tools, which again enable further optimization and research. Fraunhofer
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ITWM and TU Kaiserslautern (departments of Computer Science and Mathematics), having
decades of joint experience, form a group of leading experts in complex analysis tool
development. We are working to bring new algorithms and methods for visualization,
inspection, modelling and simulation of material structures and properties to the market.
In order to precisely model the structural properties, material representations must first be
deduced from measurements, e.g. image data of various dimensions and types/modalities.
Deduction of complex materials micro-structures such as fiber reinforced composites, as
well as complex surfaces calls for custom developed algorithms, which further need to
be verified and validated. Validation requires the ground truth representation, which is
unfortunately often unavailable due to the fact that there is no other measurement method
or the phenomenon to be captured is extremely rare. Only way out, when the ground
truth is unavailable, is modelling of the surface, material or structure and simulation of
the imaging method. Moreover, stochastic geometry models for complex materials micro-
structures are the key ingredient for so-called virtual materials design. Not only the right
trade-off between the truth and physical or geometric model has to be found, models have
to be visually convincing too. Atop of the correctness of the model, results of geometric
analysis (curvatures, orientations) and of simulations (stress, strain, temperature...) must be
visualized in a way which allows intuitive analysis and evaluation. This task is challenging,
considering that we are dealing with local results on complex micro-structure as well as
the embedded micro-structural information in a multi-scale simulation. However, we have
developed many significant contributions to modelling, simulation and visualization and are
continuously working on new ones, thanks to wide variety of collaborations with mechanical,
process and civil engineers.

3.24 Visual Comparison of Ensemble Datasets
Johanna Schmidt (AIT – Austrian Institute of Technology – Wien, AT)
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Comparative visualization refers to the process of using visualization techniques to understand
how different datasets are similar or different, and to be able to interactively explore these
differences. Comparison is getting an increasingly important task in data analysis, as it can
be very cumbersome in case many data items, or complex data items have to be compared.
Visualization systems successively have to move from representing one phenomenon to
allowing users to analyze several datasets at once. Large data collections that contain a lot
of individual, but related, datasets with slightly different characteristics can also be called
ensembles. In the course of this talk a technique for the comparative visualization of 2D image
datasets and for the comparison of 3D shapes are introduced. Both techniques focus on the
scalable analysis to support ensemble analysis. When comparing 2D images, we propose to
not only outline the differences in the data, but also to use clustering and interactive widgets
to further understand the structure of the differences – how many images are affected by the
difference, and how to they look like. For analyzing 3D shapes we went one step further, since
here we are not only able to study individual differences, but it is also possible to understand
relations between differences, e.g., if differences are always caused by the same ensemble
item. We achieve this by aligning regions of interest on a reference shape as axes in a parallel
coordinate plot, and then draw polylines for all ensemble items according to its error rate
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in the specific regions. This way the error rate of ensemble items over several regions of
interests can be studied. In the course of material sciences, comparative visualization can be
targeted towards the comparison of different segmentation results, either in 2D images or as
3D shapes. According to the challenge “The Visual Debugger”, comparative visualization
can support users to understand and analyze differences in the data being introduced when
running certain feature extraction mechanisms (e.g., segmentation) with different parameters.
Comparative visualization can also be seen as an extension for parameter space analysis.

3.25 Features of tensor fields (latent model) extracted from Kalman
filter tracking data

Jeff Simmons (AFRL – Wright Patterson, US)

License Creative Commons BY 3.0 Unported license
© Jeff Simmons

Traditional homogenization approaches produce mesoscale representations by developing
a Representative Volume Element (RVE) whose properties are, with acceptable scatter,
independent of position in the material. This is accomplished by biasing the analysis with an
Independent and Identically Distributed (iid) assumption on the microstructural elements.
That is, in order to reduce the variance to the point that the volume element is representative,
it is necessary to invoke an iid assumption, which is inconsistent with the existence of an
anomalous condition. Such occurrences are simply treated as outliers and “averaged away” in
the process. We propose an alternative approach of applying a model-based bias, specifically,
that the fibers behave as streamers in a laminar flowing fluid. With this model, the fiber
orientation becomes the basis for the mesoscale representation. By analogy with fluid
dynamics and the tracking discipline, we refer to this orientation as the ‘velocity.’ Following
successful approaches in fluid dynamics analysis, we can extract a ‘velocity gradient’ from
the data. The velocity may be extended to be a continuum field by the hypotheses that (1)
the velocity field is smooth and (2) that it matches the computed velocity values at the fiber
detection points. With these assumptions, the velocity field may be expanded into a Taylor’s
series about a detection point and the velocity gradient appears naturally as the second
order coefficient. This is evaluated from a set of detection points in the neighborhood of the
target point by the pseudoinverse of the matrix of distances of the neighboring detection
points on the computed changes in velocity from the target point and the neighboring points.
Local homogeneous strains produced in the neighborhood of fibers, as the reference frame
is translated down the fiber axes, can then be computed from the symmetric part of the
velocity gradient. The rotation produced by this motion, the chirality, may be computed
from the anti-symmetric component. Non-uniformities can then be computed by performing
an anomaly test on the fiber velocities by classifying velocities having a likelihood below a
threshold as being anomalous. A consistency check, in which the anomalous classification
persists through multiple successive layers is used to differentiate a true anomaly from one
resulting from detection noise. It is suggested that this approach may be used to coarse
grain many other microstructures by s suitable choice of biasing model. Additional image
processing steps needed to extract the fiber detection positions are also described.
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3.26 Machine Learning for Material Sciences: Computer Vision at
Scientific Facilities

Daniela Ushizima (Lawrence Berkeley National Laboratory, US)

License Creative Commons BY 3.0 Unported license
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URL http://bit.ly/idealdatascience

Advances in imaging for the design and investigation of materials have been remarkable: the
growth of X-ray brilliance and extremely quick snapshots have enabled the description of
dynamic systems at the atomic scale; micro CT has focussed on capturing shape and structural
properties of new compounds to measure the function and resilience of new materials. Our
recent efforts in machine learning applied to image representation and structural fingerprints
have streamlined sample sorting and ranking including the identification of special material
configurations from million size datasets.

References
1 Araujo, Silva, Ushizima, Parkinson, Hexemer, Carneiro, Medeiros, “Reverse Image Search

for Scientific Data within and beyond the Visible Spectrum”, Expert Systems and Applic-
ations 2018 .

2 Liu, Melton, Venkatakrishnam, Pandolfi, Freychet, Kumar, Tang, Hexemer, Ushizima,
“Convolutional Neural Networks for Grazing Incidence X-ray Scattering Patterns: Thin
Film Structure Identification”, Materials Research Society – Special Issue on Artificial In-
telligence (published), 2019.

3 MacNeil, Ushizima, Panerai, Mansour, Barnard, Parkinson, “Interactive Volumetric Seg-
mentation for Textile Microtomography Data using Wavelets and Non-local means”,
Journal of Statistical Analysis and Mining, Sep 2019.

4 Araújo, Silva, Resende, Ushizima, Medeiros, Carneiro, Bianchi, “Deep Learning for Cell
Image Segmentation and Ranking”, Computerized Medical Imaging and Graphics, Mar
2019.

5 Ke, Brewster, Yu, Yang, Ushizima, Sauter, “A Convolutional Neural Network-Based Screen-
ing Tool for X-ray Serial Crystallography”, Journal of Synchrotron Radiation 2018.

3.27 Visual Debugging in Particle-Based Simulation
Daniel Weiskopf (Universität Stuttgart, DE)
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Visualization can play an important role for debugging because it allows us to potentially
identify problems in a dataset that might be connected to issues earlier in the data production
pipeline. Here, I focus on particle-based simulation as the source of data, leading to
multivariate data sets in which particles are associated with multiple attributes (such as
pressure, forces, etc.). The specific use case is smoothed particle hydrodynamics (SPH). I
report on our experiences with a visualization system that combines spatial representations
of the particles with non-spatial views such as scatterplots and parallel coordinates plots
that show multivariate attributes. With such a system, we were able to identify problems
with a software implementation, but we were also able to identify the impact of different
models and parameters on the simulation results. Finally, I discuss the role of debugging in
the larger setting of visual data analysis as well as challenges specific to visual debugging in
materials sciences.
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3.28 Visualization of Quantitative Data Derived from Volumetric
Imaging

Thomas Wischgoll (Wright State University – Dayton, US)
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This presentation discusses techniques and issues with obtaining quantitative data from
imaging technology at high levels of accuracy. Current techniques are capable of deriving
quantitative data from volumetric images at sub-voxel levels. However, there are limitations
stemming from the fact that there are issues with different artifacts, such as noise, partial
volume effects, etc., that lead to uncertainties inherently encoded within the data. Awareness
of that fact can help improve the segmentation of the data and as a result the quantitative
information extracted. The quantitative data can then be used for additional modelling and
further analysis.

4 Working groups

4.1 Working Group Discussion Summary: Ensembles, uncertainty and
parameter space analysis, multi objective / multi parameter
optimization

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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The following topics were discussed:
UQ: not much data available, many phantoms but no specific phantom available, uncer-
tainty on grey values not available by CT device manufacturers or detector manufacturers.
Uncertainty information is mainly available on derived data (e.g. metrology); aleatoric
part of uncertainty can be estimated by repeated measurements, but epistemic error
remains unknown ==> Finding: info on uncertainty missing.
Parameter space analysis: Used in a very focused way for optimizing specific algorithms or
specific parts of a quantification pipeline for a new experiment. Parameter space analysis
should also be important for materials design. Question: is Parameter space analysis
here the correct term or does materials science rather need an analysis of the solution
space? Question: What is the solution space ==> highly dependent on the application
Where can Vis actually help? ==> only where the human is in the loop Data processing
for Materials Science ==> characterization of materials Comparative Visualization is a
big issue for setting up experiments and analyses
Can Vis help for DoE (Design of Experiments)? For example more coarse simulation
methods (e.g., using surrogate models) can help to reduce the need for extensive and
complex simulations but still find the sweet spot. Question: Can automatic DoE
algorithms be combined with human (not yet formalized or quantified) knowledge?
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Come up with a pipeline – what is the current pipeline? Measurements ==> raw data
==> scripts/tools to get the info they are after.
Questions:

Can we add to/streamline that workflow?
In need of more expertise.
What tools are available?
What are the bottlenecks?

Uncertainties:
What sources of uncertainty are there?
Are we even the right group to address this?
Doesn’t seem to be much data, so vis is hard

Parameter Space:
All are so different: reconstruction, each material is different, really tricky
Try to optimize typically mechanical properties of the final result
How can we support this? Can visualization actually support this or are there better
mathematical tools?
Visualization is out of the game whenever the human is out of the game.
But if things are really high-dimensional you will not be doing things completely
automatically.
Can we help with the design of experiments?
Maybe help with questions like how to get the voids smaller or other structural
questions.
Human is looking for correlations with the hope of finding relations
But again – how could we support that?
Is visualization used in the design of experiments? Selectively. Some people in materials
find it unscientific. More like data science than materials science. But this is going to
go railway
Cheap preview. Simple simulation to narrow down possibilities. In-silico modeling to
reduce cost
In an engineering application using simulation/visualization – find places where bad
effects occur and what the conditions will be to produce those results.
In a science application – situational awareness.
Can we look to how wet-labs use simulation?
Seems to be some reluctance to use vis.

4.2 Working Group Discussion Summary: Image Processing
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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The group was lead by a presenter, Wolfgang Heidrich, who summarized topics related to
volume correlation, denoising and segmentation. The state of the art for these three areas
are summarized as follows:

19151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


26 19151 – Visual Computing in Materials Sciences

1. Volume correlation: Local DVC (neighbourhood based), and optical flow in computer
vision can be better than local DVC.

2. Denoising: 99% time materials scientists use Median and Gaussian, and Sparsity-based
(like TV denoising) from the data processing specialist or non-local means give better
results, but are rarely applied in practice

3. Segmentation: Deep learning produces very good results, and transfer learning is frequently
used to a pretrained network and update the training.

The needs and barriers in these three areas can be summarized as follows:
1. Volume Correlation

a. Need: Fibre breaking in a synchrotron CT measurement: loading along the feature
direction is difficult to see.

b. Need: Evaluation of DVC algorithms in realistic conditions.
c. Barrier: Window problem of optical flow.
d. Barrier: Missing texture. Introduction of artificial tracer particles is not always easy.

2. Denoising
a. Need: Faster acquisition gives noisy data.
b. Need: Killing artifacts and detect hidden features. Get simple examples where denoising

helps to find features.
c. Need: Concrete solution: e.g. publish the algorithm at TomoBank.
d. Need: Web page / Resource / network with implementations of different algorithms –

like TomoBank.
e. Barrier: Implementations not readily available NLM is available, but other denoising

are not.
f. Barrier: Distinguishing features from noise is hard, real features might be deleted.

3. Segmentation
a. Need: Multilevel heterogeneity. Fibre material, organised in bundles of fibres. The

individual fibres are to small to be detected or segmented.
b. Need: Superresolution can be used to improve the segmentation..
c. Need: Theoretical analysis could be useful, but is not available.
d. Need: Segmentation thresholds have a strong influence on the results. E.g. porosity

values are dependent on segmentation thresholds.
e. Need: Segmentation can be implemented by discrete optimization.
f. Need: Segmentation of medical data?
g. Barrier: Superresolution: available processing power.

To summarize, the main barriers expressed during this session were related to accessibility
for the material science community and related to real data for verification for those people
doing optimization.



C. Heinzl, R.M. Kirby, S. V. Lomov, G. Requena, and R. Westermann 27

4.3 Working Group Discussion Summary: Machine Learning
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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Tools:

Tools need to be made available with machine learning/deep learning to material scientists.
Trying to understand results and limitations.

Which network architectures are more successful for certain problems?
Which knobs need to be adapted?

Discussion Topics:

We discussed a lot on ground truth and measures of quality and generalizability of network
architectures and parameters. The group reflected on the following issues:

Connectivity of microstructural constituents is important in many cases. How to train
and test with respect to connectivity?
Convolutional CNNs may not work if applied to graph structures?
Can other information be used in addition to voxel intensities? Surface normals, curvature
and depth for example -&gt; use it as input to deep learning. What is the consequence
for the required training set?

Segmentation as one of the most urgent issues.

Tomographic data:

Typically reconstructed as isotropic data whereas microscopy data can be strongly anisotropic,
thus looking in a traversal direction is considerably different from any orthogonal direction.
Contrast is often different on different devices; histogram matching as a possible solution or
re-training with one slice from the new dataset to adjust weights. Noise reduction and image
fusion are other issues for deep learning.

Training data:

Transfer learning for similar data. Training data with damages and artifacts, e.g. beam
hardening and streaking.

TomoBank:

Database with annotated training data and challenges, e.g. streak metal artifacts. Role
of data augmentation: U-Net people use distortion and noise. What are the right data
augmentation techniques for tomography. Examples where data augmentation was negative
in certain cases in terms of accuracy where mentioned. Networks should be uploaded? How?
What format? Exchange/share networks with data. Archival of networks/data. Perhaps
only little re-training is required.
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SciVis Contest:

Create a visualization contest. Which data/problem is most urgent? What are metrics for the
quality of the result? For image analysis: It would be Dice-coefficient, Hausdorff distance? But
for a visualization contest. Structural similarity as a quality criterion. Sensitivity/specificity.
Insights/hypothesis/influence on problem solving related to material science visualization.

2D vs 3D:

Training of the network in 2D vs. 3D. 3D as interpolated from 2D slices.

4.4 Working Group Discussion Summary: Materials Science
Applications for Visualization Beyond Existing Tools (requirements
for vis tools from materials sciences perspective)

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), and Rüdiger Westermann (TU München, DE)
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For these breakout groups, we split the group randomly into two subsets containing both
material scientists and visualization scientists. Both groups were posed the same question.

Materials Science Applications for Visualization Beyond Existing Tools
(requirements for vis tools from materials sciences perspective) Working Group
Discussion: Group A:

Our lead-off question to this group was as follows: Material scientists: Tell us the science
problems you want to solve. Visualization scientists: Where can Vis help solve those particu-
lar problems?

The challenges we decided on could all fit within a topic of “Steering Acquisition,” but
each could be useful as a separate goal. These are:
1. Real time dynamic sensing for data acquisition,
2. Accelerated understanding of the materials state for decision making,
3. Identification of interesting events and accelerated discovery of materials property,
4. Real time design of experiments that is robust to changes in strategies during data

collection.

To accomplish this, it is envisioned that we design a challenge to the community that
will establish a benchmark problem that can be reused for additional efforts.

Accelerate Discovery and Determination of Material Properties
How to improve visibility of your structure without losing the context.
Tracking dynamic phenomena.
Design of experiments. Why is it not used more regularly? Maybe use visualization to
aid the design of experiments.
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Detect, track and predict behavior from anomalies
Identify things that are similar and/or symmetries.

Steering Acquisition
Dynamic Control
Early detection of characteristics to steer/optimize further data acquisition.
Maximize information obtained while reducing the acquisition of “useless” data.
Tracking dynamic phenomena.
Combine exploratory approaches with optimization of data acquisition.
Take advantage of visualization to accelerate useful data acquisition.
Find a common set of samples/phantoms to work on.

Dynamic Sensing Simulation
The relevance of simulation to help in optimizing acquisition.

Data fusion
Visualization as a tool to facilitate and optimize fusion

Materials Science Applications for Visualization Beyond Existing Tools
(requirements for vis tools from materials sciences perspective) Working Group
Discussion: Group B:

Our lead-off question to this group was as follows: Material scientists: Tell us the science
problems you want to solve. Visualization scientists: Where can Vis help solve those particular
problems?

Problems and Tasks identified by the Material Scientists

Overview:
Get a concise and quick overview of the data right after recording it, show interesting
points immediately (holes, pores, cracks), find slices that are of interest. Find interesting
points in a volume Find slices with something different than the canonical slices (“first
10”)
In-situ experiments:
The in-situ experiments require to adapt several forces to the material (temperature,
pressure) and record the results. The application of these forces causes the microstructures
in the material to change. Experiments can be very different, taking a long time with
only a view changes, or events that happen very suddenly (e.g., brittle material under
load, cracks happen soon, in contrast to laser powder melting, stabilize melting). For
these experiments, at the long run, an automatic decision system should be available to
automatically adjust the experiment parameters. In the meantime, visualization can help
to visualize the intermediate steps, for an interactive steering of the process. Visualization
can help here in the following ways:

Timely feedback during the experiment. Possibility of on-line data reduction and
preliminary segmentation during the experiment, to better use beamtime. Especially
badly needed for fast experiments. Offline-evaluation of data often leads to the problem,
that the data cannot be used in the end (extract characterization quickly from the
measurement data to get an overview. Very big volumes, many parameters, need to
understand that)
Parameter visualization to understand the causality between material and experiment
parameters (e.g., how does an experiment parameter affect the physical material
properties). For example, there can be more roughness in the prepared material, how
does this impact the final part
Vector field visualization to understand forces
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Pore tracking over several timesteps (pore segmentation works fine, but the tracking
over several timesteps is still a problem – maybe also integrate physical properties of
the pore?)
Comparative visualization to understand where and when events occurred in the data
Change detection to see which parts of the data that has been recorded during the
experiment can be thrown away
Prediction to better steer the acquisition times of the machines, trigger when something
important is going to happen (more a computational effort, not a visualization topic)

Visualization or large 3D data structures:
Apart from large volume data, other large 3D structures like skeletons have to be studied.
This is currently a problem due to occlusions in 3D. Other options like projections into
2D space would be of help here, where patterns can be analyzed more easily in 2D.
Visualization or large 3D data structures:
Apart from large volume data, other large 3D structures like skeletons have to be studied.
This is currently a problem due to occlusions in 3D. Other options like projections into
2D space would be of help here, where patterns can be analyzed more easily in 2D.
Visualization of clustering parameters:
When clustering pores with multiple criteria, it is often hard to understand the relation
between these pores. Visualizations towards the representation of cluster parameters
(e.g., in a graph, similar to MegaMol that Tom Ertl showed in his talk) could help the
domain experts to better understand the clusterings.
Segmentation Crowd Challenge:
Getting better, faster and more accurate segmentation algorithms is still an open issue.
A common crowd challenge on segmentation, including machine learning, would be of
interest – how could gamification be included?
Suggestion from the VIS community: Tensor field data
Tensor field data is used, data sets are available. New CT techniques like SAXS-CT and
Nested tensor tomography allow to record more data (e.g., spectrums) for all data points.
However, there not so many applications for these types of CTs yet, mainly because it
takes a lot of time to acquire a sample.
Suggestion from the VIS community: Measurement uncertainty
Currently material scientists trust their measurements (e.g., for segmentation), so there
is no need for the visualization of measurement uncertainty

4.5 Working Group Discussion Summary: Multilateral Cooperation
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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The discussion group on multilateral cooperation was finished with a list of concrete action
items to be pursued after this Dagstuhl workshop:
1. Benchmarking datasets

As a free initiative datasets will be provided in order to facilitate a benchmark across
participating groups. The benchmark will contain, datasets, currently applied protocols,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


C. Heinzl, R.M. Kirby, S. V. Lomov, G. Requena, and R. Westermann 31

data analysis pipeline as well as parametrization. The goal is to have a documentation of
a complete workflow in order to either come up with improved results, to compare with
existing results, as well as to improve specific steps in a workflow. Benchmarking and
testcases may contain permeability analysis, porosity, fiber breakage, generalization of
internal structure (connectivity, topology) as well as other aspects. In this context als a
SciVis Contest may be targeted.

2. Plenary talk at Materials conferences
Plenary Talks on Visual Computing in Materials Sciences are planned at Composite
Conferences. Conferences of interest will be the European conference on composite
materials or the TexComp.

3. Special issue in journal
As a direct outcomes of this workshop two special issues in the domain of Visual Computing
in Materials Science are planned. More specifically, “Computer Graphics & Applications”,
as well as “Materials” will be targeted.

4. Viewpoints article
Visualization Viewpoints article offer detailed technical opinions on trends in visualization?

5. Dagstuhl seminar report
Another direct output of the workshop is a cumulative report of all talks and discussion
groups which is found in this report.

6. Tutorials
A tutorial in Visual Computing in Materials Sciences will be targeted in an upcoming
conference. As primary venues conferences on Materials will be targeted. Euromat will
be the primary candidate for this purpose.

7. Further workshops
An joint workshop is planned in Lund at MaxIV for 2019. In addition the submission of
proposal regarding a Dagstuhl workshop, an Erice Workshop or a Banff workshop on this
or a related topic will be discussed by the end of 2019.

Additional Materials Provided As Part Of Breakout Sessions:
Here is the link to the SciVis contest which was mentioned in the discussions: http://
sciviscontest.ieeevis.org/. Some of the data sets are still available.

The new DFG-funded Collaborative Research Center 1313 at the University of Stut-
tgart on “Interface-Driven Multi-Field Processes in Porous Media – Flow, Transport and
Deformation” https://www.sfb1313.uni-stuttgart.de/index.html will have a dedicated project
for providing benchmarks for porous media simulation. https://www.sfb1313.uni-stuttgart.
de/research-areas/project-area-d/research-project-d3/. A first version can be found here:
https://arxiv.org/abs/1809.06926
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4.6 Working Group Discussion Summary: Shared Data Set and
Benchmark Problems

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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TomoBank:

All datasets will be available at the following link: https://tomobank.readthedocs.io/en/
latest/source/dagstuhl.html The following datasets were added by various members of the
workshop as part of a dataset and benchmark problem working group:

Dataset 1: Description: Multiphase engineering alloys: Al-Si alloys, Ti alloys. The
data covers 3D networks in the same sample before and after heat treatment [1]. When
comparing small regions of the networks [1] before heat treatment and after heat treatment,
disconnections have occured in these specific reions.
Questions: What has changed after the heat treatment? Connectivity? Morphology?
How can we visualize the changes in 3D for the whole network? Can we identify/quantify
this regions and, more importantly, visualize them clearly in large structures Tasks:
1. Segmentation of raw data: TBD
2. Topological descriptors of segmented data
3. 3D visualization of geometrical features
Download Link: will be uploaded to tomobank, data also available through direct Contact:
Guillermo Requena (guillermo.requena@dlr.de);
Dataset 2: Description: Water migration in one-sided heated concrete. A paper is
available here: https://link.springer.com/article/10.1007/s10921-018-0552-7 Concrete
bars were heated in one end, which causes the water inside the concrete to evaporate,
condense deeper in the concrete in pores and lead to a water wave. This can lead to
explosive spallation of the concrete and causes problems (tunnel fire accidents). The data
set consists of several consecutive rounds of cone-beam CT while the concrete is heated.
Tasks:

Better reconstruction (SpaceTimeTomography?) that takes into account the sample
expansions during the experiment
Determination of the water content (by subtracting expansion corrected volume data)
3D / 4D visualisation of the migration of the water. In the paper, there is no
“convincing” visualization of the water migration and condensation.

Download Link: The paper is not open access, but a preprint can be made available upon
request.
Contact: Bartosz Powierza (Bartosz.Powierza@bam.de);
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4.7 Working Group Discussion Summary: Suggestions for further
discussions

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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Datasets & Tasks
From the visualization side, it would be great to get access to datasets and specific tasks.
There was the suggestion to upload data to the Tomobank and also attach specific tasks
to it, so that visualization people could work on them.
SciVis Challenge
Starting a SciVis challenge on the topic would also include more visualization people, and
hopefully result in many suggestions how to visualize the data (and also many citations,
since this data is publicly available and people will use it as a benchmark).
Review Paper
The material scientists are lacking a better overview on the available software tools
and how they could use them. There was the suggestion to write a review paper, with
materials scientists as co-authors, published in the material science community, where
important tasks are outlined, with suggestions which visualization techniques and software
tools to use.
Software tools
As mentioned above, an overview of available techniques and software tools would be of
great help for the material scientists.
Pipeline
A possible pipeline could be Experiment -> data Processing -> Visualization. Therefore,
data processing is the missing link here in this group (machine learning would be a way
to avoid image processing).

4.8 Working Group Discussion Summary: Time-Varying Data
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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The group was formed by two materials scientists and two computer vision people. During
the session, the problems in materials science where the evolution can provide much more
information were highlighted. Then, selected experiments were shown where the use of 3D +
time experiments provide a lot of information that needs extraction and evaluation.

The discussion was oriented to a couple of examples where visual computing could help:
1. Tracking features in consecutive volumes during time: Here, it was mentioned that there

are a couple of tracking algorithms that could be used for particle tracking but there is
no reliable open source tool for that purpose. Even commercial tools are not so efficient
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in that sense. Even more, the possibility to track particles with the ability to filter some
of characteristics while tracking was proposed.

2. Link the 2D to the 3D space: With the intention to avoid recording and storing not useful
data, it is important to be able to, either detect some changes in the acquisition in 2D or
with analysis in in-line reconstruction in 3D. A visual analysis of some parameters should
be able to trigger the data collection systems when some important change is detected.
This is especially important for fast occurring processes where the data acquisition is a
constrain because of memory, storage, or other limitations.

4.9 Working Group Discussion Summary: Tools
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), and Rüdiger Westermann (TU München, DE)
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Tomviz
Further information: The Tomviz project is a cross platform, open source application for
the processing, visualization, and analysis of 3D tomographic data. It is developed in C++,
using Qt, building on VTK, ParaView, ITK, Python, SciPy and NumPy. The complete
pipeline of data processing steps from alignment and reconstruction to visualization and
analysis of 3D data can be presented, saved, and restored. A suite of Python tools for
3D analysis is packaged to accommodate custom algorithms. The initial focus was on
high resolution scanning transmission electron microscopy, but that has been broadened
to include improved support for other types of tomographic data. Tomviz can load
custom Python scripts in the user’s home directory to add new extensions to its menus
for processing. Tomviz is tested and packaged on Windows, macOS, and Linux with full
source code available on GitHub.
Link: https://tomviz.org/
Licencing: 3-clause BSD
Contact person: Marcus D. Hanwell (marcus.hanwell@kitware.com)
Datasets: A sample tilt series and reconstruction are included with the package, also
links to a Nature Data paper with CC-BY licensed data sets hosted on Figshare.
open_iA
Further information: open_iA is an open source tool for the visual analysis and processing
of volumetric datasets, with a focus on industrial CT datasets. As graphical user interface
the cross-platform framework Qt is used, which facilitates an easy to use and attractive
interface. In-house visualisation and image processing algorithms are supported by
algorithms of the ITK and VTK toolkit, which make open_iA a powerful tool for both 3D
visualisation and CT data analysis. open_iA is capable of loading various volume dataset
formats as well as different surface model formats. It provides slice by slice navigation
in its 2D views, common 3D navigation with arbitrary cutting planes in the 3D view,
together with custom views for individual visualization. open_iA is easily extensible and
serves as central development platform of the research group computed tomography @
University of Applied Sciences Upper Austria, Wels Campus and therefore integrates all
algorithms and methods developed within the group.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://tomviz.org/
mailto:marcus.hanwell@kitware.comm


C. Heinzl, R.M. Kirby, S. V. Lomov, G. Requena, and R. Westermann 35

Link: https://github.com/3dct/open_iA Licencing: GPLv3
Contact person: Christoph Heinzl (c.heinzl@fh-wels.at)
Datasets: Sample datasets are provided with the respective tools
aRTist
Further information: Simulation tool for X-ray radiography and CT. A few CT examples
are shown on the gallery page: http://artist.bam.de/en/gallery/index.htm
Link: http://aRtist.bam.de
Link: https://github.com/ElettraSciComp/Pore3Dcencing
Licencing: commercial, evaluation licenses available, within projects licenses are usually
granted for free for project partners
Contact person: Carsten Bellon (Carsten.Bellon@bam.de)
Super-resolution CT reconstruction
Further Information: tomographic reconstruction tool for datasets with very thin features
(fibers or sheets). This is research code with datasets, as well as the scientific publications.
Project page: https://vccimaging.org/Publications/Zang2018SuperResolutionCT/
Code:https://drive.google.com/open?id=1Ws454D65kopVprnuVP_OMajbtRN0Um24
License: Creative Commons, attribution noncommercial
Contact: Wolfgang Heidrich (Wolfgang.Heidrich@kaust.edu.sa)
Space-Time Tomography
Further Information: tomographic reconstruction of 4D time varying data. Research code
+ datasets + scientific publication.
Project page: https://vccimaging.org/Publications/Zang2018Space-timfore/
Code: https://github.com/gmzang/SpaceTimeTomography
License: Creative Commons, attribution noncommercial
Data: https://repository.kaust.edu.sa/handle/10754/627676
Contact: Wolfgang Heidrich (Wolfgang.Heidrich@kaust.edu.sa)
Pore3D
Further Information: Pore3D is a software toolbox for processing and analysis of three-
dimensional images. The core of Pore3D consists in a set of state-of-the-art functions
and procedures for performing filtering, segmentation, skeletonization of 3D data and
extraction of quantitative parameters. A full control of algorithms parameters and inter-
mediate results is possible at each step of the analysis.. Easy integration with other sw
tools is possible (fro GUI, 3D visualization, . . . ). Although three-dimensional data can
be produced by several techniques (for instance: magnetic resonance, X-ray scattering or
confocal microscopy), the library was developed and optimized for Computed Tomography
data. Pore3D features are available through the high-level scripting environment IDL
and it has been tested with IDL 64-bit from versions 6.4 to 8.5.
The original project page can be found at: http://www.elettra.eu/pore3d/ but now the
sw is available on Github.
Main bibliographic reference at: https://www.sciencedirect.com/science/article/pii/
S0168900210002615 Code: https://github.com/ElettraSciComp/Pore3D License: The
project is licensed under the GPL-v3 license
Contact: Lucia Mancini (lucia.mancini@elettra.eu); (pore3d@elettra.eu)
SYRMEP Tomo Project (STP)
Further Information: SYRMEP Tomo Project (STP) has been developed for the users of
the SYRMEP beamline of the Elettra synchrotron facility (http://www.elettra.eu) to
perform the digital image processing required by parallel beam absorption and propagation-
based phase contrast CT experiments. This sw is routinely used at by all SYRMEPl users
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during CT experiments but the underlying idea is also to let users perform post-beamtime
optimization, fine tuning and/or additional tests with common hardware at their home
institution. The software has been also developed for teaching and educational purposes.
SYRMEP Tomo Project is available only for Windows 64-bit machines.
Main bibliographic references are: http://dx.doi.org/10.3233/FI-2015-1273 and http:
//dx.doi.org/10.1186/s40679-016-0036-8.
Code: https://github.com/ElettraSciComp/STP-Gui
License: The project is licensed under the GPL-v3 license.
Data: Many datasets from the SYRMEP beamline are available on TomoBank at the
link https://tomobank.readthedocs.io/en/latest/
PITRE and H-PITRE
Further Information: PITRE (Phase-sensitive x-ray Image processing and Tomography
REconstruction) is a software developed by INFN Trieste n order to facilitate and
standardize the simulation and elaboration of X-ray phase contrast images. The acronym
PITRE in Italian is pronounced /’pi.tre/; the pronunciation is the same of “P3”, which is
then chosen as a logo for the PITRE program. A batch processing manager for PITRE,
called PITRE_BM, can execute a series of tasks (“jobs”), which is created via PITRE,
without manual intervention.
H-PITRE (High-performance software for Phase-sensitive x-ray Image processing and
Tomography REconstruction) is a fast tomography reconstruction program which uses
the parallel computing abilities of NVIDIA GPU (Graphics Processing Unit).
Code: https://sites.google.com/site/rongchangchen/
License:
Data:
TTK, Topology ToolKit
Further Information: Open-source library and software collection for topological data
analysis integrated with visual exploration tools. It is built as a general purpose library,
not specific to material science. Easy-to-use plugins for the visualization front end
ParaView. All data format and interaction support is available thanks to ParaView.
Written in C++ but has bindings (VTK/C++, Python) and command line support.
Link: https://topology-tool-kit.github.io
Licensing: BSD
Mailing List: (ttk-users@googlegroups.com)
ASTRA Toolbox
Further information: The ASTRA Toolbox is a MATLAB and Python toolbox of high-
performance GPU primitives for 2D and 3D tomography. We support 2D parallel
and fan beam geometries, and 3D parallel and cone beam. All of them have highly
flexible source/detector positioning. A large number of 2D and 3D algorithms are
available, including FBP, SIRT, SART, CGLS. The basic forward and backward projection
operations are GPU-accelerated, and directly callable from MATLAB and Python to
enbale building new algorithms. The source code of the ASTRA Toolbox is available on
GitHub.
Link: www.astra-toolbox.com
License: GPLv3
Contact person: Jan de Beenhouwer (jan.debeenhouwer@uantwerpen.be)
MegaMol
Further Information: Megamol is a visualization framework for large particle data. It
originated from research in the DFG Collaborative Research Center 716 and provides
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advanced visualization techniques for point-based data like molecular dynamics, SPH,
laser point clouds etc.
Link: https://megamol.org/ https://www.sfb716.uni-stuttgart.de/index.en.html
Contact person: Guido Reina (guido.reina@visus.uni-stuttgart.de)
Gephi
Further information: Open-source tool for the visualization of large graphs and networks.
Link: https://gephi.org/
Licencing: Open-source
Orange
Further information (Daniel Weiskopf): “Data Mining Fruitful and Fun: Open source
machine learning and data visualization for novice and expert. Interactive data analysis
workflows with a large toolbox.” (quote from their web page). A general framework for
useful, e.g., for multidimensional data. Comes with interactive visualization As discussed
in the breakout group 2 on Thu, multidimensional data analysis could play a role in some
applications
Link: https://orange.biolab.si/
License: GNU General Public License as published by the Free Software Foundation;
either version 3.0 of the License, or (at your option) any later version.

5 Panel discussions

5.1 Overview Talk and Discussion Summary: Application of Machine
Learning tools for quantitative 3D-4D materials science!

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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Westermann

The discussion circled on topics regarding the applicability of the tools and methods which
were presented by the speakers. Special interest was seen in the different ML techniques as
well as how and where to use them.

5.2 Overview Talk and Discussion Summary: Machine Learning for
Material Sciences: Computer Vision at Scientific Facilities

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)

License Creative Commons BY 3.0 Unported license
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Westermann

In the discussion, the different ML techniques were addressed, which the speaker is using for
segmentation and classification of their dataset. The core tool was pyCBIR, a python tool for
content-based image retrieval (CBIR) capable of searching for relevant items in large databases
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given unseen samples. Furthermore, techniques and neural networks architectures such as
those found in LeNet, AlexNets and U-Net were discussed as well as their applicability for
different scenarios. Finally Xi-Cam was briefly introduced by the speaker, a versatile interface
for visualization and data analysis providing workflow for local and remote computing, data
management, and seamless integration of plugins.

5.3 Overview Talk and Discussion Summary: Real-time data analysis
and experimental steering: Do we need it? Are we ready for it?

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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The author summarized three challenge areas: 1) capturing ultra-fast and ultra-slow processes;
2) detecting spatially rare events in large volumes at meso/nano scale resolutions; and 3)
enabling multi-dimensional enquiry to explore spaces of higher dimension and size. The hope
is that real-time data collection and steering can bring the following benefits: 1) collect only
relevant data; 2) instrument error correction; 3) optimize temporal and spatial resolution;
4) zoom-in at different length scales; and 5) minimize radiation damage to specimens. It
is clear that the user (scientist) is needed in the loop, but the role of the user is changing.
Previous generations did lots of hand-tuning of parameters, whereas the current generation
relies on smart defaults. Moving forward, tools are needed to both help allow exploration of
the data (parameters, solution space, etc.) and to allow specialized enquiry.

5.4 Overview Talk and Discussion Summary: Through the micro-CT
and what we found there? Quantifying images of fibrous materials

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This talk presented recent advances in the imaging of fiber composite materials. The goal of
the work was to determine the internal structure of the fibrous material through images. This
was done by inferring a structure tensor from the image data, from which a classification and
an orientation of the material can be deduced. Studies were done to understand the impact of
image quality on the structural tensor that is inferred. Based upon the structural tensor that
is inferred, one desires a quantification of the fibrous structures and a seamless transfer of data
to mechanical modeling software, allowing the calculation of various quantities. Questions
were related to the similarities between this work and what is done in the medical imaging
world, what modeling assumptions were used (such as assuming symmetry of the structural
tensor), and concerning the use of higher-order tensors for input into damage models (and
how that damage information is used). The speaker proposed a benchmark exercise that
could be used by the imaging / visualization community to test their algorithms / tools.
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5.5 Panel Discussion Summary: The Integrated Visual Analysis
Challenge 1

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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In the integrated visual analysis challenge we touched on the core intersection between
visualization and materials science. From the talks and upcoming panel discussions it became
clear that in the daily work of materials scientists, image processing and feature detection
techniques are of very high importance. The discussion focussed on concrete hints to advanced
techniques in either field, which can help materials scientists to more accurately and efficiently
analyse their datasets. In particular, techniques that can employ temporal coherence in the
reconstruction step turned out to be of interest. Due to the complexity of the structures in
high-resolution measured data, visual data analysis is considered an important ingredient. To
the visualization community it became clear how huge and well-resolved scanned materials
can be, and that real-time capabilities often play a central role in large-scale research facilities.

5.6 Panel Discussion Summary: The Integrated Visual Analysis
Challenge 2

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This session was a continuation of the visual analysis challenge. As mentioned earlier, we
touched on the core intersection between visualization and materials science. From the
talks and upcoming panel discussions it became clear that in the daily work of materials
scientists, image processing and feature detection techniques are of very high importance. The
discussion focussed on concrete hints to advanced techniques in either field, which can help
materials scientists to more accurately and efficiently analyse their datasets. In particular,
techniques that can employ temporal coherence in the reconstruction step turned out to
be of interest. Due to the complexity of the structures in high-resolution measured data,
visual data analysis is considered an important ingredient. To the visualization community
it became clear how huge and well-resolved scanned materials can be, and that real-time
capabilities often play a central role in large-scale research facilities.
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5.7 Panel Discussion Summary: The Interactive Steering Challenge
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This session focussed on the presentation of various computational steering techniques and
tools designed for material and engineering design. In all cases, researchers were able to
leverage some existing technologies. However, it was clear that considerable effort still needed
to be expended to adapt current analysis and visualization tools to the needs of the domain
scientists. For instance, acceleration of techniques to enable real-time analysis, visualization
and refinement were needed, as well as new APIs to enable efficient data transfer, etc.
Questions about the balance between quantitative and qualitative visual comparisons were
proposed, as well as how important is it that tools represent solutions which are feasible to
manufacture or produce. It is clear that there are many things still needed to bridge current
tool technologies and the needs of material science domain experts.

5.8 Panel Discussion Summary: The Quantitative Data Visualization
Challenge 1

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This session focussed on various visualization algorithms, their application to materials
science problems, and the lessons learned. Topics such as the current role of interactivity
in procedures that in the future will be automated, uncertainty quantification and its
visualization, and the use of novel visualization techniques to displaying both similarities
and differences as seen in various material science applications. The questions related to
understanding the role of automatic learning (deep neural nets) and interpretability, how
material scientists use robustness information, and a greater understanding of how symmetries
can be exploited when employing segmentation algorithms.
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5.9 Panel Discussion Summary: The Quantitative Data Visualization
Challenge 2

Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This session focussed on various topics related to the quantitative use of analysis and
visualization in material science. The first two talks focussed on recent efforts on materials
containing fibers; how to interpret, model, visualize and reason about fiber orientations and
defects were discussed. We then transitioned to talks about the use of machine learning and
image processing / computer vision when doing quantitative analysis of material science
data. A consistent issue that was brought up was the need for benchmark problems (i.e.
ground truth) and for training data.

5.10 Panel Discussion Summary: The Visual Debugger Challenge
Christoph Heinzl (FH Oberösterreich – Wels, AT), Robert Michael Kirby (University of Utah
– Salt Lake City, US), Stepan V. Lomov (KU Leuven, BE), Guillermo Requena (DLR – Köln,
DE), Rüdiger Westermann (TU München, DE)
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This session focussed on the use of visual computing as a “debugging” tool within the materials
science pipeline. The discussion was mainly about the use of visualization for parameter-
space navigation and ensemble visualization. It turned out that in many applications in
materials science there is a need for exploring the similarities and dissimilarities between
multiple data sets, e.g. from measurements with different doses or reconstruction algorithms.
Also the possibility to directly visualize datasets from different measurements or simulation
technologies was requested. The discussion was also about which kind of interactivity is
required in materials science. It seemed that interactive visual exploration of 3D data sets is
desired, yet the community has some experience in this field. Concrete use cases where the
different kinds of interaction can be demonstrated are highly appreciated.
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