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—— Abstract

This paper is concerned with voting processes on graphs where each vertex holds one of two different
opinions. In particular, we study the Best-of-two and the Best-of-three. Here at each synchronous
and discrete time step, each vertex updates its opinion to match the majority among the opinions of
two random neighbors and itself (the Best-of-two) or the opinions of three random neighbors (the
Best-of-three). Previous studies have explored these processes on complete graphs and expander
graphs, but we understand significantly less about their properties on graphs with more complicated
structures.

In this paper, we study the Best-of-two and the Best-of-three on the stochastic block model
G(2n,p, q), which is a random graph consisting of two distinct Erdés-Rényi graphs G(n,p) joined
by random edges with density ¢ < p. We obtain two main results. First, if p = w(logn/n) and
r = q/p is a constant, we show that there is a phase transition in r with threshold r* (specifically,
r* = /5 — 2 for the Best-of-two, and r* = 1/7 for the Best-of-three). If r > r*, the process reaches
consensus within O(loglogn + logn/log(np)) steps for any initial opinion configuration with a bias
of Q(n). By contrast, if » < r*, then there exists an initial opinion configuration with a bias of Q(n)
from which the process requires at least 2¢2(n) steps to reach consensus. Second, if p is a constant
and r > r*, we show that, for any initial opinion configuration, the process reaches consensus within
O(logn) steps. To the best of our knowledge, this is the first result concerning multiple-choice voting
for arbitrary initial opinion configurations on non-complete graphs.
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1 Introduction

This paper is concerned with voting processes on distributed networks. Consider an undirected
connected graph G = (V, E) where each vertex v € V initially holds an opinion from a finite
set. A voting process is defined by a local updating rule: Each vertex updates its opinion
according to the rule. Voting processes appear as simple mathematical models in a wide
range of fields, e.g. social behavior, physical phenomena and biological systems [32, 30, 4].
In distributed computing, voting processes are known as a simple approach for consensus
problems [20, 23].
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1.1 Previous work

The synchronous pull voting (a.k.a. the voter model) is a simple and well-studied voting
process [33, 25]. In the pull voting, at each synchronous and discrete time step, each vertex
adopts the opinion of a randomly selected neighbor. Here, the main quantity of interest
is the consensus time, which is the number of steps required to reach consensus (i.e. the
configuration where all vertices hold the same opinion). Hassin and Peleg [25] showed that
the expected consensus time is O(n®logn) for all non-bipartite graphs and for all initial
opinion configurations, where n is the number of vertices. Note that, for bipartite graphs,
there exists an initial opinion configuration that never reaches consensus.

The pull voting has been extended to develop voting processes where each vertex queries
multiple neighbors at each step. The simplest multiple-choice voting process is the Best-of-two
(two sample voting, or 2-Choices), where each vertex v € V' randomly samples two neighbors
(with replacement) and, if both hold the same opinion, adopts it'. Doerr et al. [19] showed
that, for complete graphs initially involving two possible opinions, the consensus time of the
Best-of-two is O(logn) with high probability?. Likewise, the Best-of-three (a.k.a. 3-Majority)
is another simple multiple-choice voting process where each vertex adopts the majority
opinion among those of three randomly selected neighbors. Several researchers have studied
this model on complete graphs initially involving & > 2 opinions [8, 7, 10, 22]. For example,
Ghaffari and Lengler [22] showed that the consensus time of the Best-of-three is O(klogn) if
k= O(n'/3/\/logn).

Several studies of multiple-choice voting processes on non-complete graphs have considered
expander graphs with an initial bias, i.e. a difference between the initial sizes of the largest
and the second largest opinions. Cooper et al. [13] showed that, for any regular expander
graph initially involving two opinions, the Best-of-two reaches consensus within O(logn) steps
w.h.p. if the initial bias is Q(n\g), where Aq is the second largest eigenvalue of the graph’s
transition matrix. This result was later extended to general expander graphs, including
Erdés-Rényi random graphs G(n, p), under milder assumptions about the initial bias [14].
Recall that the Erdés-Rénri graph G(n,p) is a graph on n vertices where each vertex pair is
joined by an edge with probability p, independent of any other pairs. In [15], the authors
studied the Best-of-two and the Best-of-three on regular expander graphs initially involving
more than two opinions. In [3, 28], the authors studied multiple-choice voting processes on
non-complete graphs with random initial configuration.

Recently, the Best-of-two on richer classes of graphs involving two opinions have been
studied. Previous works proved interesting results which do not hold on complete graphs or
expander graphs. Cruciani et al. [17] studied the Best-of-two on the core periphery network,
namely a graph consisting of core vertices and periphery vertices. They showed that a phase
transition can occur, depending on the density of edges between core and periphery vertices:
Either the process reaches consensus within O(logn) steps, or remains a configuration where
both opinions coexist for at least Q(n) steps. Cruciani et al. [18] studied the Best-of-two
on the (a,b)-regular stochastic block model, which is a graph consisting of two a-regular
graphs connected by a b-regular bipartite graph. Under certain assumptions including
b/a = O(n=99), they showed that, starting from a random initial opinion configuration,
the process reaches an almost clustered configuration (e.g. both communities are in almost
consensus but the opinions are distinct) within O(logn) steps with constant probability, then
stays in that configuration for at least Q(n) steps w.h.p. They also proposed a distributed
community detection algorithm based on this property.

L If the graph initially involves two possible opinions, this definition matches the rule described in Abstract.
2 In this paper “with high probability” (w.h.p.) means probability at least 1 — n~¢ for a constant ¢ > 0.
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1.2 Our results

This paper considers the stochastic block model, a well-known random graph model that
forms multiple communities. This model has been well-explored in a wide range of fields,
including biology [11, 31], network analysis [5, 24] and machine learning [2, 1], where it serves
as a benchmark for community detection algorithms. The study of the voting processes on
the stochastic block model has a potential application in distributed community detection
algorithms [6, 9, 18]. In this paper, we focus on the following model which admits two
communities of equal size.

» Definition 1 (Stochastic block model). Forn € N and p, q € [0, 1] with ¢ < p, the stochastic
block model G(2n,p,q) is a graph on a vertex set V.= Vi U Vs, where |Vi| = |Va| =n and
ViNVa = 0. In addition, each pair {u,v} of distinct vertices u € V; and v € V; forms an
edge with probability 0, independent of any other edges, where

q otherwise.
Note that G(2n, p, q) is not connected w.h.p. if p = o(logn/n) [21]. Throughout this paper,
we assume p = w(logn/n), in which regime each community is connected w.h.p.
In this paper, we first generate a random graph G(2n, p, q), and then set an initial opinion
configuration from {1,2}. Let A, A1 . be a sequence of random vertex subsets where

A® is the set of vertices of opinion 1 at step ¢. For any A C V, the consensus time Tpons(A)
is defined as

Teons(4) := min {t >0: AW e {9, v}, AO = A} .

We obtain two main results, described below.

Result I: phase transition

Observe that, if p = ¢ =1, then G(2n,1,1) is a complete graph and the consensus time of
the Best-of-two is O(logn), from the results of [19]. On the other hand, the graph G(2n,1,0)
consists of two disjoint complete graphs, each of size n, meaning that, depending on the
initial state, it may not reach consensus. This naturally raises the following question: Where
is the boundary between these two phenomena? This motivated us to study the consensus
times of the Best-of-two and the Best-of-three on G(2n, p, q) for a wide range of r := ¢/p,
and led us to propose the following answers.

» Theorem 2 (Phase transition of the Best-of-three on G(2n, p, q)). Consider the Best-of-three

on G(2n,p,q) such that r := ;1) s a constant.

(i) Ifr > %, then G(2n,p, q) w.h.p. satisfies the following property: There exist two positive
constants C,C" > 0 such that

VACV of [|A| - [V\ Al = Q(n) :

logn o
Pr |Teons(A) < log 1 >1- )
r{ (A) C’(og ognJrlOg(np))] O(n )

(i) If r < %, then G(2n,p,q) w.h.p. satisfies the following property: There exist a set

A CV with [|[A] — |V \ A|| = Q(n) and two positive constants C,C’ > 0 such that

Pr [Tuons(A) > exp(Cn)] > 1— 0 (n*C’) .
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» Theorem 3 (Phase transition of the Best-of-two on G(2n,p, q)). Consider the Best-of-two
on G(2n,p,q) such that r:= 1 is a constant.

(i) If r > /5 — 2, then G(2n,p, q) w.h.p. satisfies the following property: There exist two
positive constants C,C’ > 0 such that

VACV of ||A]— [V \ Al| = Q(n) :

l !
Pr {TCOHS(A) <C (loglogn+ ogn)] >1-0 (n*C ) .
log(np)
(i) Ifr < /5 —2, then G(2n,p,q) w.h.p. satisfies the following property: There exist a set
A CV with ||A] — |V \ A|| = Q(n) and two positive constants C,C’ > 0 such that

Pr [Teons(4) = exp(Cn)] 2 1-0 (n=¢").

Note that the upper bound Teons(A) = O(loglogn + logn/log(np)) is tight up to a constant
factor if logn/log(np) > loglogn. To see this, observe that there exists an A C V' such that
Teons(A) is at least half of the diameter. In addition, it is easy to see that the diameter of
G(2n,p,q) is O(logn/log(np)) w.h.p. [21].

We also note that the consensus time of the pull voting is O(poly(n)) for any non-
bipartite graph [25]. To the best of our knowledge, Theorem 2 and Theorem 3 provide
the first nontrivial graphs where the consensus time of a multiple-choice voting process is
exponentially slower than that of the pull voting.

Result ll: worst-case analysis

The most central topic in voter processes is the symmetry breaking, i.e. the number of
iterations required to cause a small bias starting from the half-and-half state. Here, we are
interested in the worst-case consensus time with respect to initial opinion configurations. To
the best of our knowledge, all current results on worst-case consensus time of multiple-choice
voting processes deal with complete graphs [19, 7, 10, 22]. All previous work on non-complete
graphs has involved some special bias setting (e.g. an initial bias [13, 14, 15], or a random
initial opinion configuration [3, 18, 28]). In this paper, we present the following first worst-case
analysis of non-complete graphs.

» Theorem 4 (Worst-case analysis of the Best-of-three on G(2n,p,q)). Consider the Best-
of-three on G(2n,p,q) such that p and q are positive constants. If% > %, then G(2n,p,q)
w.h.p. satisfies the following property: There exist two positive constants C,C’ > 0 such that

VA CV : Pr[Thons(A) < Clogn] >1 -0 (n*C’) .

» Theorem 5 (Worst-case analysis of the Best-of-two on G(2n,p, q)). Consider the Best-of-
two on G(2n,p,q) such that p and q are positive constants. If% > /5 — 2, then G(2n,p,q)
w.h.p. satisfies the following property: There exist two positive constants C,C’ > 0 such that

VACV : PrTeons(4) <Clogn]| >1-0 (nfc,> .
Based on these theorems, an immediate but important corollary follows.

» Corollary 6. For any constant p > 0, the Best-of-two and the Best-of-three on the Erdds-
Rényi graph G(n,p) reach consensus within O(logn) steps w.h.p. for all initial opinion
configurations.

Recall that the Best-of-two and the Best-of-three on G(n,p) has been extensively studied in
previous works but these works put aforementioned assumptions on initial bias.



N. Shimizu and T. Shiraga

Qo (e%]
(1,1) . (1,1)
s (_V. 4
s consensus r
A 7/ 7/
N 4 7/
7 . saddle .7
v ’ Sink N N s ’
N\ e 7
A e N 4
saddle . A D .
N 7 Tec AN e
N , N N .
saddle saddle

4 N 4 N i+~
+“source "~ . i deg
z N 2 N NA
7z N 7 N
. N . N
. . . sink
e . saddle
. < p
7 N 7
4
2\ consensus saddle ~_ Z\ @
A

(0,0) g (0,0) a1

(@) r>1/7 (b) r < 1/7

Figure 1 Four types of zero areas are illustrated. The sink areas do not appear if r > 1/7.

1.3 Strategy
Known techniques and our technical contribution

Cousider a voting process on a graph G = (V, E) where each vertex holds an opinion from
{1,2}, and let A be the set of vertices holding opinion 1. In general, a voting process with
two opinions can be seen as a Markov chain with the state space {1,2}V. For A C V, let A’
denote the set of vertices that hold opinion 1 in the next time step. Then, [A’| =3 .\ Lycar
is the sum of independent random variables; thus, |A’| concentrates on E[|A’| | 4].

If the underlying graph is a complete graph, the state space can be regarded as {0,...,n}
(each state represents |A|). Therefore, E[|A’| | A] is expressed as a function of |A|, e.g. in the
Best-of-two, B[|A'| | A] = f(|A]) == |A](1 = (D)) + (n— 4] (1)* = n(3(121)% —2(141)?).
Doerr et al. [19] exploited this idea for the Best-of-two and obtained the worst-case analysis
for the consensus time on complete graphs. Somewhat interestingly, we also have E[|A’| |
Al = f(J4]) in the Best-of-three.

Cooper et al. [13] extended this approach to the Best-of-two on regular expander graphs.
Specifically, they proved that E[|A’| | A] = f(JA|) £ O(e) for all A C V', where € = e(n, \y) =
o(n) is some function using the expander mizing lemma. This argument assumes an initial
bias of size Q(e). In another paper, Cooper et al. [14] improved this technique and proved

more sophisticated results that hold for general (i.e. not necessarily regular) expander graphs.

In this paper, we consider G(2n,p,q) on the vertex set V = V3 UV, Let 4; =
ANV, for A CV and i = 1,2. We prove that G(2n,p,q) w.h.p. satisfies E[|4}| | A] =
F;(|A1],|Az]) £ O(y/n/p) for all A C V in the Best-of-three, where F; : N> — N is some
function (i = 1,2). See (2) for details. We show the same result for the Best-of-two. Here,
our key tool is the concentration method, specifically the Janson inequality [21] and the
Kim-Vu concentration [29].

High-level proof sketch

Consider the Best-of-three on G(2n,p, q), and let A ADW  be a sequence of random
vertex subsets determined by A®*+1 := (A®)’ for each t > 0. Consider a stochastic process
a) = (agt),aéﬂ) € [0,1]? where aﬁ“ = |A® N V;|/n for i = 1,2. Our technical result in the
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previous paragraph approximates the stochastic process a¥) by the deterministic process
a®) defined as a“t!) = H(a®) and a® = a(® for some function H : [0,1]> — [0,1]? (See
(4) and Figure 2). The function H induces a two-dimensional dynamical system, which we
call the induced dynamical system. Using this, we obtain two results concerning a(*).

First, we show that, for any initial configuration, the process reaches one of the zero areas
(a neighbor of a fixed point of H) within a constant number of steps. To show this, in addition
to the approximation result, we used the theory of competitive dynamical systems [26].

Second, we characterize the behavior of a®) in zero areas. The zero areas depend only
on r = ¢/p, and are classified into four types using the Jacobian matrix: consensus, sink,
saddle and source areas (see Figure 1 for a description). In consensus areas, we show that
the process reaches consensus within O(loglogn + logn/log(np)) steps. In sink areas, we
show that the process remains there for at least 2%(") steps, and also that sink areas only
appear if r < 1/7. In saddle and source areas, we show that the process escapes from there
within O(logn) steps if p is a constant by using techniques of [19]. Intuitively speaking, in
these two kinds of areas, there are drifts towards outside. To apply the techniques of [19],
we show that Var[|A}|] = Q(n) in the area if p is constant, which leads to our worst-case
analysis result. Indeed, any previous works working on expander graphs did not investigate
the worst-case due to the lack of variance estimation.

These arguments also enable us to study the Best-of-two process, which implies Theorem 3.

1.4 Related work

The consensus time of the pull voting process is investigated via its dual process, known as
coalescing random walks [25, 12, 16]. Recently coalescing random walks have been extensively
studied, including the relationship with properties of random walks such as the hitting time
and the mixing time [27, 34].

Other studies have focused on voting processes with more general updating rules. Cooper
and Rivera [16] studied the linear voting model, whose updating rule is characterized by a
set of n X n binary matrices. This model covers the synchronous pull and the asynchronous
push/pull voting processes. However, it does not cover the Best-of-two and the Best-of-three.
Schoenebeck and Yu [35] studied asynchronous voting processes whose updating functions
are majority-like (including the asynchronous Best-of-(2k + 1) voting processes). They gave
upper bounds on the consensus times of such models on dense Erdés-Rényi random graphs
using a potential technique.

Organization

First we set notation and precise definition of the Best-of-three in Section 2. After explaining
key properties of the stochastic block model in Section 3, we show some auxiliary results of
the induced dynamical system in Section 4. Then we derive Theorems 2 and 4 in Section 5.
Our general framework of voting processes and results of the general induced dynamical
systems are given in Section 6 and Section 7, respectively. Due to the page limitation, we
omit detailed proofs and the discussion of the Best-of-two. See the full paper [36] for details.

2 Best-of-three voting process

For an £ € N, let [¢] := {1,2,...,¢}. For a graph G = (V, E) and v € V, let N(v) be the
set of vertices adjacent to v. Denote the degree of v € V by deg(v) = |[N(v)|. For v € V
and S CV, let degg(v) = |S N N(v)|. Here, we study the Best-of-three with two possible
opinions from {1, 2}.
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» Definition 7 (Best-of-three). Let G = (V, E) be a graph where each vertex holds an opinion
from {1,2}. Let

893 (2) = (2)353 + @) 22(1 —z) = 32% — 22°.

For the set A of vertices holding opinion 1, let A’ denote the set of vertices that hold opinion 1
after an update. In the Best-of-three, A' = {v € V : X, = 1} where (X,)yev are independent
binary random variables satisfying

PI‘[XU — 1] _ fB03 (degA(U)) .
deg(v)
For a given vertex subset A C V', we are interested in the behavior of the Markov chain
(A®)92 i.e. the sequence of random vertex subsets determined by A¢+1) := (A®) for each
t>0. Let A, :=V;NAfor ACV and i = 1,2. Since |A}| = Xy, the Hoeffding bound
implies that the following holds w.h.p for i = 1,2:

143 = E[JA}[]| = O(v/nlogn). (1)

veV;

3 Concentration result for the stochastic block model

In this paper, we consider the Best-of-three on the stochastic block model G(2n,p, ¢) (Defini-
tion 1). Then, E [|A%]] in (1) is a random variable since G(2n, p, ¢) is a random graph. Here,
our key ingredient is the following general concentration result for G(2n,p, q).

» Definition 8 (f-good G(2n,p, q)). For a given function f :[0,1] — [0,1], we say G(2n,p, q)
is f-good if G(2n,p,q) satisfies the following properties.

(P1) It is connected and non-bipartite.
(P2) A positive constant Cy exists such that, for all A,S CV and i € {1,2},

deg 4 1 (Ailp + As—i|g n
>, (o) oo (055 | = oy

veSNV;
(P3) A positive constant Co exists such that, for all ACV, S € {A,V\A,V} andi € {1,2},

d A; As_; I
3 f( ega(v >§|Sﬂ%f<| Ip + |As Iq)+C2|A| ogn.
2 st no+ 0 w

» Theorem 9 (Main technical theorem). Suppose that f : [0,1] — [0,1] s a polynomial
function with constant degree, p = w(logn/n) and q > logn/n%. Then G(2n,p,q) is f-good
w.h.p.
Note that the proof of 1 is not difficult since p = w(logn/n) and g > logn/n? [21]. Proving
2 and 3, however, is more challenging: see the full version of this paper [36].

From Theorem 9, G(2n, p, q) is fB°3-good w.h.p. Hence, we consider the Best-of-three on
an fB°3-good G(2n,p,q). From 2 and 3, we have

sl 3 0 () oo (W) O

oev, deg n(p + q) +0 (|A‘ logn)

for all A CV and i = 1,2. Here, we remark that 3 is stronger than 2 if |A| is sufficiently
small. This property will play a key role in the proof of Proposition 14.
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Idea of the proof of Theorem 9

We consider the property 2. Note that we may assume f(x) = x* for some constant k
w.l.o.g. since it suffices to obtain the concentration result for each term of f. For simplicity,
let us exemplify our idea on the special case of k = 3. It is known that deg(v) = n(p + ¢) +

3
O(v/nplogn) holds for all v € V w.h.p. (see, e.g. [21]). This implies that } g (ff&g}?) =

% fog;;g/np) > peg deg 4 (v)? holds for all S, A C V. Indeed, it is not difficult to see that

the term O(y/logn/np) can be improved to O(1/1/np).

The core of the proof is the concentration of Y, .o deg,(v)?. Note that >, o deg,(v) =
Y ves Doaca Lisayer counts the number of cut edges between S and A. For fixed S and
A, the Chernoff bound yields the concentration of it since each edge appears independently.
Similarly, the summation ) g deg,(v)? = Y ves Ea’b’ceA L{v,a},{v,b},{v,cteE counts the
number of “crossing stars” between S and A. However, the Chernoff bound does not
work here due to the dependency of the appearance of crossing stars. Fortunately, we can
obtain a strong lower bound using the Janson inequality as follows: For S, A, B,C' C V, let
W(S; A, B,C) =3, cgdeg,(v) degg(v)dege(v). From the Janson inequality and the union
bound on S, A, B,C C V, we can show that W (S; A, B,C) > E[W(S; A, B, C)] — O(n3°p*?)
holds for all S, A, B,C CV w.h.p. On the other hand, it is easy to check that

—W(V;V\ A, B,C)-W(V\S; A, B,C).

The Kim-Vu concentration yields W(V;V,V,V) < E[W (V;V,V, V)] + O(n3°p*®) since we
do not consider the union bound here. For the other terms, we apply the 1ower bound by
the Janson inequality. Then, we have a strong concentration result that »° o deg,(v)? =
W(S; A, A, A) = E[W(S; A, A, A)] & O(n°p*®) holds for all S, A C V w.h.p. Finally, we
estimate the gap between E[W (SN V;, A, A, A)] and |S N V;|(|As|p + |As—i|q)3. See the full
version [36] for details.

4 Induced dynamical system

1. A}l

Let o; := "2"‘, a; == and 1= %. Suppose that r is a constant. Then, for an

G(2n,p,q), it holds w.h.p. that

oo (o) o ()

for all A CV and i = 1,2 since (1) and (2) hold.
Throughout this paper, we use a = (a1, ) and o’ = (af, o}) as vector-valued random
variables. Equation (3) leads us to the dynamical system H, where we define H : R? — R? as

fBOg—gOOd

H:a— (Hy(a), Hy(a)), (4)

and H;(ay,ay) := fB°3 (W#

By combining (3) with the Lipschitz condition, it is not difficult to show the following
result; see Section 6 for the proof.
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Figure 2 The induced dynamical system H of (4). The points d] are the fixed points given in

(7). Here, the horizontal and vertical axes correspond to a1 and aa, respectively. We can observe
two sink points in (b), but none in (a).

» Theorem 10. Consider the Best-of-three on an fB°3-good G(2n,p,q), starting with the
vertex set A C V holding opinion 1. Let (a(t)),?io be a stochastic process given by
a® = (ol o) and az(-t) =AD" V;|/n. Let H be the mapping (4) and define (a®)52, as

a® = a0,
alttl) = m(a®).

Then there exists a positive constant C > 0 such that

()

V0 <t <n°M vAO C v,

1 logn _
- a®), < C" <—Wp+ ; )] 21 =m0,

Broadly speaking, Theorem 10 approximates the behavior of a*) by the orbit a® of the

Pr

corresponding dynamical system H. We call the mapping H the induced dynamical system.

Indeed, the same results as (2) hold for the Best-of-two voting. Therefore, analogous results
of Theorem 10 hold, which enable us to analyze the Best-of-two on G(2n, p, q) via its induced
dynamical system. The dynamical system H of (4) is illustrated in Figure 2.

To make the calculations more convenient, we change the coordinate of H by

0 = (81,02) := (a1 — g, a1 + ag — 1).

1—r

Note that d; and do axes are corresponding to the dotted lines of Figure 1. Let u :=
Then we have

1
E[6; | A] = T;(01, 6 —
[z| ] (172)+O<\/n—p)»
where
. ud; 2 2 _ o 2 2
Tl(dl,dz) = T (3 - (udl) - 3d2) ; Tg(dl,dg) = ? (3 - 3(ud1) - d2) .

1+r-
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This suggests another dynamical system T'(d) = (T1(d), T2(d)). Here, we use d = (dy, d2)
as a specific point and § = (41, d2) as a vector-valued random variable. Consider o) =
69,6y and (d®)32,, where d© = §© and A1) = T(d®) for each t > 0. From
Theorem 10, it holds w.h.p. that

1 logn
) _q® <Ot —— g
6 —d®]l, < <m+ 8 ) (6)

for sufficiently large constant C' > 0, any 0 < ¢t < n°(!) and any initial configuration A C V.
For notational convenience, we use &' := 6V for § = 6. Similarly, we refer d’ to T'(d).

Note that d satisfies |01| 4 |02| < 1. In addition, the dynamical system T is symmetric:
Precibely, Tl(:tdl, :ng) :|:T1 (dh dg) and Tg(ﬂ:dl, :ng) = :FT2 (dl, d2) hold. In Lemma 11,
we assert that the sequence (d(V)2, is closed in

S = {(dl,dg) € [O, 1]2 cdy +dy < 1}.

From now on, we focus on S and consider the behavior of § around fixed points. A
straightforward calculation shows that d’ =d € S if and only if d € {d},d5,d%,d}}, where

(0,0) ifi=1,
(\/?70> 1f2—2andu2§ ;
(\/T 4u> ifi=3and u> % "
0,1) if i = 4.

Here, we provide auxiliary results needed for the proofs of Theorems 2 and 4. Section 7
contains generalized form of these results.

For x € R? and € > 0, let B(x,¢) = {y € R? : ||x — y||oc < €} be the open ball. For
d= (dl,dg) € RQ, let <d>+ = (|d1‘, ‘d2|) € R2.

» Lemma 11 (S is closed). For any d € S, it holds that d’ € S.

» Proposition 12 (Orbit convergence). For any sequence (d®)52,, lim; oo (d®) | = df for
some i € {1,2,3,4}. In addition, if u < % and a positive constant k > 0 exists such that the
initial point d(©) = (dgo), dgo)) € S satisfies |d(20)\ > K, then limy oo (d®), =dj.

» Proposition 13 (Dynamics around dj). Consider the Best-of-three on an fB°3-good

G(2n,p,q) such that r = q/p < 1/7 is a constant. Then there exists a positive constant
e = ¢(r) satisfying

Pr[(§')4 ¢ B(d3,€)| (8)+ € B(d3, )] < exp(—Q(n)).
In particular, Teons(A) = exp(Q(n)) w.h.p. for any A satisfying (8)1+ € B(d3,¢).

» Proposition 14 (Towards consensus). Consider the Best-of-three on an fB°3-good G(2n,p, q)
such that r = q/p is a constant. Then, there exists a universal constant € = €(r) > 0
satisfying the following: Teons(A) < O(loglogn + logn/log(np)) holds w.h.p. for all ACV
with min{|A|,2n — |A|} < en.

» Proposition 15 (Escape from fixed points). Consider the Best-of-three on an f3°3-good
G(2n,p,q) such that p and q are constants. If q/p > 1/7 and |(5éo)| = o(1), then it holds

w.h.p. that |5§T)| > K for some 7 = O(logn) and some constant k > 0.
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Intuitive explanations for Propositions 13 to 15

In Propositions 13 to 15, we consider the behavior of a*) around the fixed points (7). Let H
be the induced dynamical system and let J be the Jacobian matrix of H at a fixed point a*
with two eigenvalues A1, Ao. If the eigenvectors are linearly independent, we can rewrite J as
J =U7'AU, where A := diag(A1, A2) and U is some nonsingular matrix. Let 8 := U(a—a*).
Roughly speaking, if e is closed to a*, the Taylor expansion at a* (i.e. H(a) ~ a*+J(a—a*))
yields

E[f' | A]=U(E[d | A] —a*) = U(H(a) —a*) ~ AB.

In other words, 5] ~ A;53;. If max{|\{],|X2|} < 1 — ¢ for some constant ¢ > 0, we might
expect that ||B] = O(|la — a*||) is likely to keep being small. Here, we do not restrict
this argument on the Best-of-three. We will prove Proposition 19, which is a generalized
version of Proposition 13. If max{|A1],|A2|} > 1 + ¢ for some constant ¢ > 0, the norm
||B]] seems to become large in a small number of steps. We will exploit this insight and
prove Proposition 25, which immediately implies Proposition 15. Indeed, for consensus areas
(i.e. a* € {(0,0), (1,1)}), the induced dynamical systems of the Best-of-three and the Best-of-
two satisfy A\; = Ay = 0. Then, the Taylor expansion yields ||’ —a*|| ~ O(||a — a*||?). This
observation and the property 3 lead to the proof of Proposition 20 as well as Proposition 14.

5 Derive Theorems 2 and 4

Here, we prove Theorems 2 and 4 using Propositions 12 to 15.

Proof of Theorem 2. If r > % and A0 C V satisfies ||A(0)| — n| = Q(n), then we have
|d§0)\ = |5§0)| > k for some constant x > 0. Next, for any constant e > 0, Proposition 12
implies (dW), € B(d},€) for some constant | = I(¢). From (6), we have (6()), € B(dj, )
for sufficiently large n. Set € be the constant mentioned in Proposition 14. Then, from Propo-
sition 14, it holds w.h.p. that Teons(A®) <14 Teons(A®) < O(loglogn + logn/ log(np)).
If r < 1, Proposition 13 yields Tuons(A?)) > exp(©(n)) w.h.p. for any A®) C V with
6 ¢ B(d3, €), where € > 0 is the constant from Proposition 13, which completes the proof
of ii. |

Proof of Theorem 4. If |§(?)| = o(1), then Proposition 15 yields that |§(")| > & for some
constant £ > 0 and some 7 = O(logn). Then, from Theorem 2, we have TCOHS(A(T)) <
O(loglogn + log n/log(np)). Thus, Teons(A®) < 7 4 Teons(A) < O(logn). <

6 Polynomial voting processes

Using Theorem 9, we can prove the same results as Theorem 10 for various models including
the Best-of-two. Hence, in this paper, we do not restrict our interest to the Best-of-three:
Instead, we prove general results that hold for polynomial voting process on G(2n,p, q).

» Definition 16 ((f, f2)-polynomial voting process). Let G = (V, E) be a graph where each
vertez holds an opinion from {1,2}. Let f1, f2 : [0,1] — [0,1] be polynomials. For the set A of
vertices with opinion 1, let A’ denote the set of vertices with opinion 1 after an update. In the
(f1, f2)-polynomial voting process, A’ = {v € V : X,, = 1} where (X,)pev are independent
binary random variables satisfying

bil def/*f,“) (ve A, ie v has opinion 1
Pr[X, = 1] = deg(v) )

f2 dfeg’&g) (ve V\ A, ie v has opinion 2).

32:11
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In other words, for i = 1,2,

Pr[v € A’ | A,v has opinion i| = f; (d(;eggA(( )))

Polynomial voting process includes several known voting models including the Best-of-two,
the Best-of-three, and so on. For example, fi(z) = fa(z) = fB°3(z) = 322 — 223 for the
Best-of-three. For the Best-of-two, f1(z) = 22(1 — ) and f2(z) = 2. We can define induced
dynamical system for any polynomial voting process on G(2n, p, q) via the following result:

» Theorem 17 (Theorem 10 for polynomial voting processes). Let fi and fa be polynomials
with constant degree. Consider an (f1, f2)-polynomial voting process, on an fi-good and
fa-good G(2n, p, q) starting with vertex set A©) CV of opinion 1. Let (A1), be a sequence
of random vertex subsets deﬁned by ACHD = (ADY for each t > 0. Let (aM)2,, where
alt) = (agt),aét)) and oz(t) |A®) N V;|/n. Define a mapping H = (Hy, Hy) as

a; +raz—; a; +ras_; .
Hi(alaa2) =a;if1 (HTS) + (1 - ai)f2 (1_'_:> fori=1,2.

Define ()22 as al® = a® and a*Y) = H(a®) for each t > 0. Then, there exists a
constant C' > 0 such that

Vo <t <n°M vAO C v

1 logn
0 _ a0 <ot [ == 4 /28" )| > 1 - 20,
|l al’| < (\/@—i— " > n

Remark that the mapping H of Theorem 17 is the induced dynamical system.

Pr

Proof. For any polynomial voting process, the cardinality |A;| = > vev, Xo is the sum of
independent random variables. Thus, if we fix A C V, the Hoeffding bound implies that (1)
holds w.h.p. Since

sl = Sl = S a (i) 2 6

veV; vEA; veEV\A;

the property 2 and (1) lead to

1 logn
" H < —
HOé (a)”oo _Cl <\/7Tp+ n )

for some constant C7 > 0.
Note that the function H satisfies the Lipschitz condition. Hence, a positive constant Co
exists such that

[H(x) = H(y)lloo < Callx =yl

holds for any x,y € [0,1]2. Let a® = (agt),aét)) be the vector-valued stochastic process

and a®) = (al” al)

o = 2o = [l = H(a") 4 H(aY) ~ H@ )|
<l = H(@"D) oo + Gl —al=D)|

1 logn
S@m@”—atww+@<wW+vfi>
1 logn
<CH — + 4/ ——

where C' is sufficiently large constant. <

be the vector sequence given in (5). Then, we have
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7 Results of general induced dynamical systems

Now let us focus on the orbit (a®)s2; such that H(a®) = a(® holds, where H is the
induced dynamical system. In this case, Theorem 17 does not provide enough information
about the dynamics. In dynamical system theory, a natural approach for the local behavior
around fixed points is to consider the Jacobian matriz. Recall that, the Jacobian matrix J of
a function H : x — (Hi(x), Ha(x)) at a € R? is a 2 X 2 matrix given by

J = (BHZ' (a)> .
Ox; i,5€[2]

In the following subsections, we will investigate the local dynamics from the viewpoint of the

maximum singular value and eigenvalue of the Jacobian matrix.

In contrast to the local dynamics, it is quite difficult to predicate the orbit of general
dynamical systems since some of them exhibits so-called chaos phenomenon. Therefore,
the proof of the orbit convergence (e.g. Proposition 12) is not trivial. Fortunately, the
induced dynamical system of the Best-of-three on G(2n,p, q) is competitive, a well-known
nice property for predicting the future orbit [26]. We can show Proposition 12 using known
results of competitive dynamical systems. The same argument leads to the orbit convergence
for the Best-of-two. Details are presented in the full version [36].

7.1 Sink point

We begin with defining the notion of sink points. Recall that the singular value of a matrix
A is the positive square root of the eigenvalue of AT A.

» Definition 18 (sink point). For a dynamical system H, a fived point a* € R? is sink if the
Jacobian matriz J at a* satisfies omax < 1, where omayx 15 the largest singular value of J.

» Proposition 19. Consider an (f1, f2)-polynomial voting process on an fi-good and fa-good
G(2n,p,q) such that r = % is a constant. Let H be the induced dynamical system. Then, for

any sink point a* and any sufficiently small € = w(~/1/np),
Pra’ ¢ B(a*,e)| o € B(a*,€)] < exp(—Q(e*n))

holds. In particular, let
7 :=inf {t eN:al) ¢ B(a*,e)}

be a stopping time. Then, T > exp(2(€?n)) holds w.h.p. conditioned on a'®) € B(a*,¢) for

any € satisfying € = w(max{1/,/np, /logn/n}).

7.2 Fast consensus

Suppose that the Jacobian matrix at the consensus point (i.e. @ € {(0,0),(1,1)} is the
all-zero matrix. Then, we claim that the polynomial voting process reaches consensus within
a small number of iterations if the initial set A has small size.

» Proposition 20. Consider an (f1, f2)-polynomial voting process on an fi-good and fa-good
G(2n,p,q) such that g is a constant. Suppose that the Jacobian matriz at the point a = (0, 0)
1s the all-zero matrixz. Then, there exists a constant C,Co, 0 > 0 such that

I
Pr {TconsM) <G <1og logn + —on )} >1-n"
log np

for all A CV satisfying |A] < dn.
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To show Proposition 20, we prove the following result which might be an independent
interest:

» Proposition 21. Consider a polynomial voting process on a graph G of n vertices. Suppose
that there exist absolute constants C,0 > 0 and a function € = e(n) = o(1) such that

ClA]?
n

E[A] < + €A

holds for all A C'V satisfying |A| < dn. Then, positive constants §',C’,C" exist such that

1 17
Pr {TCOHS(A) < <log logn + lognﬂ >1-n"¢
0

ge !
holds for all A C'V satisfying |A| < §'n.

It should be noted that in Proposition 21, we do not restrict the underlying graph G to
be random graphs.

7.3 Escape from a fixed point

Consider an (f1, f2)-polynomial voting process on an fi-good and fa-good G(2n,p, q) such
that p and g are constants. Let a* € R? be a fixed point of the induced dynamical system
H. Let J be the Jacobian matrix of H at a* and A, A2 be its eigenvalues. Let u; be the
eigenvector of J corresponding to \;. Suppose that ui,us are linearly independent. Then,
we can rewrite J as J = U7'AU, where A = diag(\1, \2) and U = (uj uz)~!. For a fixed
point a* € R?, let B = (31, 32) be a vector-valued random variable defined as

B=U(a—a"). (8)
Roughly speaking, from the Taylor expansion of H at a*, we have
E[B'| = AB

if || B|loo is sufficiently small. Thus, |5} = |A||5i]-

Recall that B(x, R) is the open ball of radius R centered at x. If |\;| > 1 for some i € [2],
one may expect that o™ ¢ B(a*,¢) holds for any A(®) C V and for some constant ¢y > 0.
We aim to prove this under some assumptions.

» Asspmption 22 (Basic assumptions). We consider an (f1, f2)-polynomial voting process on

an f1-good and fa-good G(2n,p,q) for constants p > q > 0. Let a* be a fized point and J be

the corresponding Jacobian matriz satisfying

(A1) The eigenvectors uy and uy are linearly independent.

(A2) A positive constant ey exists such that Var[o, | A] > Q(n~1) for all i € {1,2} and all
ACV ofa € B(a*, ).

(A3) The matriz J contains an eigenvalue X satisfying |A| > 1.

Under Assumption 22, we can define the random variable 8 of (8). Further, we put the
following.

» Asspmption 23. In addition to Assumption 22, we assume that there exists a positive
constant € satisfying the followings:
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(A4) There exist two positive constants €1, C' such that

C
|E[8] | Al > (1 +e)|B:] - n
holds for any A CV of ||B|| < € and any i € [2] of |\;| > 1.
(A5) For anyi € [2] of |Ni] <1,

Pr(|8)] <€ |8 < €] >1—n 20,

Sometimes, it might be not easy to check the conditions of Assumption 23. In this paper,
we provide the following alternative condition which is easy to check:

» Asspmption 24. In addition to Assumption 22, we assume the following:
(A6) The eigenvalues A1, A2 of J satisfies |N;| # 1 for all i € [2].

Based on the assumptions, we prove the following result:

» Proposition 25 (Escape from source and sink areas). Let a* be a fized point satisfying either
Assumption 28 or 24. Then, there exist T = O(logn) and a constant € > 0 such that the
followings hold w.h.p.:

(i) 18700 > ¢, and

(ii) 87 < ¢ for any j € [2] of [A;] < 1.
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