
A Simpler Undecidability Proof for System F
Inhabitation
Andrej Dudenhefner
Technical University of Dortmund, Dortmund, Germany
andrej.dudenhefner@cs.tu-dortmund.de

Jakob Rehof
Technical University of Dortmund, Dortmund, Germany
jakob.rehof@cs.tu-dortmund.de

Abstract
Provability in the intuitionistic second-order propositional logic (resp. inhabitation in the polymorphic
lambda-calculus) was shown by Löb to be undecidable in 1976. Since the original proof is heavily
condensed, Arts in collaboration with Dekkers provided a fully unfolded argument in 1992 spanning
approximately fifty pages. Later in 1997, Urzyczyn developed a different, syntax oriented proof.
Each of the above approaches embeds (an undecidable fragment of) first-order predicate logic into
second-order propositional logic.

In this work, we develop a simpler undecidability proof by reduction from solvability of Diophan-
tine equations (is there an integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer
coefficients?). Compared to the previous approaches, the given reduction is more accessible for
formalization and more comprehensible for didactic purposes. Additionally, we formalize soundness
and completeness of the reduction in the Coq proof assistant under the banner of “type theory inside
type theory”.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases System F, Lambda Calculus, Inhabitation, Propositional Logic, Provability,
Undecidability, Coq, Formalization

Digital Object Identifier 10.4230/LIPIcs.TYPES.2018.2

Supplement Material https://github.com/mrhaandi/ipc2

Acknowledgements We would like to thank Paweł Urzyczyn for sharing his insights on second order
propositional logic provability, which helped to develop the presented results.

1 Introduction

Polymorphic λ-calculus (also known as Girard’s system F [7] or λ2 [2]) is directly related to
intuitionistic second-order propositional logic (IPC2) via the Curry–Howard isomorphism
(for an overview see [11]). In particular, provability in the implicational fragment of IPC2 (is
a given formula an IPC2 theorem?) corresponds to inhabitation in system F (given a type,
is there a term having that type in system F?).

Provability in IPC2 was shown by Löb to be undecidable [8] (see also [5] for an earlier
approach by Gabbay in an extension of IPC2). Löb’s proof is by reduction from provability
in first-order predicate logic via a semantic argument. Since the original proof is heavily con-
densed (14 pages), Arts in collaboration with Dekkers provided a fully unfolded argument [1]
(50 pages) reconstructing the original proof. Later, Urzyczyn developed a different, syntax
oriented proof showing undecidability of inhabitation in system F [13] (6 pages, moderately
condensed). Urzyczyn’s proof is by reduction from two-counter automata to a fragment of
first-order predicate logic to inhabitation in system F. In 2010 Sørensen and Urzyczyn [12]
gave a general translation of intuitionistic first-order predicate logic, covering the full set of
logical connectives, into intuitionistic second-order propositional logic.

© Andrej Dudenhefner and Jakob Rehof;
licensed under Creative Commons License CC-BY

24th International Conference on Types for Proofs and Programs (TYPES 2018).
Editors: Peter Dybjer, José Espírito Santo, and Luís Pinto; Article No. 2; pp. 2:1–2:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrej.dudenhefner@cs.tu-dortmund.de
mailto:jakob.rehof@cs.tu-dortmund.de
https://doi.org/10.4230/LIPIcs.TYPES.2018.2
https://github.com/mrhaandi/ipc2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 A Simpler Undecidability Proof for System F Inhabitation

In order to show undecidability of provability in IPC2, each of the above approaches
embeds (a fragment of) first-order predicate logic into IPC2. However, if one is solely
interested in a concise and rigorous undecidability proof (e.g. for formalization or didactics),
then there is no need to represent an expressive logic.

In this work we provide a reduction from solvability of Diophantine equations (is there an
integer solution to P (x1, . . . , xn) = 0 where P is a polynomial with integer coefficients?) to
inhabitation in system F. Compared to the previous approaches, the described reduction is
more accessible for formalization and more comprehensible for didactic purposes. Compared
to Löb’s proof, we separate IPC2 proof normalization from the main argument. Compared
to Urzyczyn’s proof, we only need to axiomatize natural number addition and multiplication,
instead of a fragment of first-order predicate logic.

Additionally, we formalize [3] soundness and completeness of the reduction in the Coq
proof assistant under the banner of “type theory inside type theory”.

Organization of the paper. The polymorphic λ-calculus (system F) is described in Section 2
together with the associated inhabitation problem (Problem 6). In Section 3 we reduce a
decision problem (Problem 9), which is equivalent to solvability of Diophantine equations,
to inhabitation in system F. Additionally, in Paragraph 3.3 we outline a formalization of
soundness (Theorem 27) and completeness (Theorem 19) of the described reduction. We
conclude the paper in Section 4.

2 Polymorphic Lambda-Calculus

The Polymorphic Lambda-Calculus (also known as Girard’s system F [7] or λ2 [2]) pro-
vides a concise proof notation for the implicational fragment of intuitionistic second-order
propositional logic (IPC2) under the Curry-Howard isomorphism. In this section we as-
semble necessary prerequisites in order to discuss inhabitation in system F (or equivalently
provability in IPC2).

We denote polymorphic types (Definition 1) by σ, τ, ρ, where type variables are denoted by
a, b, c and drawn from the denumerable set A. Conventionally, the operator → binds more
strongly than ∀.

I Definition 1 (Polymorphic Types, T). T 3 σ, τ, ρ ::= a | (σ → τ) | (∀a.σ)

Type variables that are not bound by the operator ∀ are free, and the set of free type variables
in a type σ is denoted by Var(σ) = {a ∈ A | a is free in σ}. A substitution of occurrences of
a free type variable a in σ by τ is denoted by σ[a := τ].

We denote Church-style polymorphic λ-terms (Definition 2) byM,N , where term variables
are denoted by x, y, z.

I Definition 2 (Church-style Polymorphic λ-Terms).
M,N ::= x | (M N) | (λx : σ.M) | (Λa.M) | (M τ)

A type environment, denoted by ∆, is a finite set of type assumptions having the shape x : σ
for distinct term variables.

I Definition 3 (Type Environment). ∆ ::= {x1 : σ1, . . . , xn : σn} where xi 6= xj for i 6= j

We define the domain, the erasure, the extension of ∆, and the free type variables in ∆.

A. Dudenhefner and J. Rehof 2:3

I Definition 4 (Domain, Erasure, Extension, Free Type Variables).
dom(∆) = {x1, . . . , xn} |∆| = {σ1, . . . , σn}

∆, x : σ = ∆ ∪ {x : σ} if x 6∈ dom(∆) Var(∆) =
⋃
σ∈|∆|

Var(σ)

The rules of the system F with judgements of shape ∆ ` M : σ are given below (cf. [11,
Section 12]). This system enjoys subject reduction and strong normalization properties.

I Definition 5 (system F).

(Ax)
∆, x : τ ` x : τ

∆ ` M : σ → τ ∆ ` N : σ (→E)
∆ ` M N : τ

∆ ` M : ∀a.σ (∀E)
∆ ` M τ : σ[a := τ]

∆, x : σ ` M : τ (→I)
∆ ` λx : σ.M : σ → τ

∆ ` M : τ a 6∈ Var(∆)
(∀I)

∆ ` Λa.M : ∀a.τ
We sometimes superscript types assigned to subterms in a derivation of a judgement, e.g.

∅ `
(
λx : (∀a.a→ a).

(
(x (b→ b))(b→b)→(b→b) (x b)

)b→b) (Λa.λy : a.y
)∀a.a→a

: b→ b

One core decision problem for any typing system is inhabitation (Problem 6).

I Problem 6 (Inhabitation, ∆ ` ? : τ). Given a type environment ∆ and a type τ , is there a
term M such that ∆ `M : τ?

Inhabitation in system F directly corresponds to provability in IPC2 [11, Section 12] (Propo-
sition 7).

I Proposition 7. ∆ ` M : τ iff τ is derivable from |∆| in the intuitionistic second-order
propositional logic.

Whenever the particular inhabitant M is immaterial, we write |∆| ` τ for ∆ `M : τ . A key
property of system F is that given a type derivation ∆ ` M : τ , there exists a term Nτ

in β-normal η-long form such that ∆ ` N : τ [13, Lemma 4]. The property of η-longness
(Definition 8, cf. fully applied in [13]) is defined inductively, taking into account types
(ascribed in supersripts) which are assigned to individual subterms.

I Definition 8 (η-longness). A term Mτ is η-long if one of the following conditions is met
Mτ = xσ t1 . . . tn and τ = a for some term variable x, type variable a and types or η-long
terms t1, . . . , tn
Mτ = (λx : σ.Nρ)σ→ρ where Nρ is η-long
Mτ = (Λa.Nρ)∀a.ρ where Nρ is η-long

We say that N is a long normal inhabitant of τ in ∆, if ∆ ` N : τ and Nτ is in β-normal
η-long form.

3 Undecidability of Inhabitation

In the remainder of this work we use N to denote the set of positive integers. As a starting
point, we use the following Problem 9, which is undecidable by reduction from solvability
of Diophantine equations (for an overview see [9]). In particular, solvability of Diophantine
equations in integers is equivalent to solvability of Diophantine equations in N, which by
routine subterm decomposition is equivalent to Problem 9.

TYPES 2018

2:4 A Simpler Undecidability Proof for System F Inhabitation

I Problem 9. Given a set A = {e1, . . . el} of constraints over variables V = {a1, . . . , an}
where each e ∈ A is of shape either a .= 1 or a .= b+ c or a .= b · c for some a, b, c ∈ V, does
there exist a substitution ζ : V → N that satisfies A?

I Proposition 10. Problem 9 is undecidable.

In order to reduce Problem 9 to inhabitation in system F it suffices to axiomatize natural
number addition and multiplication. Let us fix an instance A of Problem 9 over variables
V = {a1, . . . , an}. In the remainder of this section we construct the type environment ∆A
such that A has a solution iff there exists a term M such that ∆A `M : N.

For our construction let us fix the type variables †, u, s, p,N, •1, •2, •3 and i for i ∈ N.
Additionally, for each variable ai ∈ V let us fix the type variable ai.

Similarly to [13, Section 7], we define the following types to represent particular predicates
on natural numbers.

I Definition 11 (Types †σ, U(σ), S(σ, τ, ρ), P (σ, τ, ρ)).
†σ = σ → †

U(σ) = (†σ → •1)→ (σ → •2)→ u

S(σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ s

P (σ, τ, ρ) = (†σ → •1)→ (†τ → •2)→ (†ρ→ •3)→ p

Intuitively, the type U(σ) is used to assert that σ represents a natural number, and S(σ, τ, ρ)
(resp. P (σ, τ, ρ)) is used to assert that the sum (resp. product) of natural numbers represented
by σ and τ is represented by ρ. The motivation behind the above encoding (including types †σ)
is of technical nature, leading to convenient inversion lemmas.

Using above types, we represent constraints as follows

I Definition 12 (Constraint Representation).

a
.= 1 = P (1, 1, a) a

.= b+ c = S(b, c, a) a
.= b · c = P (b, c, a)

Next, we axiomatize finite fragments of natural number arithmetic as follows

I Definition 13 (Type Environments ∆N,∆1).
∆N =

{
xu : ∀a.

(
U(a)→ ∀b.(U(b)→ S(a, 1, b)→ P (b, 1, b)→ N)→ N

)
,

xs : ∀abcde.
(
U(a)→ U(b)→ U(c)→ U(d)→ U(e)→

S(a, b, c)→ S(b, 1, d)→ S(c, 1, e)→ (S(a, d, e)→ N)→ N
)
,

xp : ∀abcde.
(
U(a)→ U(b)→ U(c)→ U(d)→ U(e)→

P (a, b, c)→ S(b, 1, d)→ S(c, a, e)→ (P (a, d, e)→ N)→ N
)}

∆1 =
{
yU(1) : U(1), yP (1,1,1) : P (1, 1, 1)

}
As we will see in the subsequent development, type assumptions in ∆N ∪∆1 encompass

the following assertions about members of a universe U which represent natural numbers
yU(1) asserts that 1 ∈ U and yP (1,1,1) asserts that 1 · 1 = 1
xu asserts that for any a ∈ U there is b ∈ U such that a+ 1 = b and b · 1 = b

xs asserts for a, b, c, d, e ∈ U : if a+ b = c, b+ 1 = d and c+ 1 = e, then a+ d = e

xp asserts for a, b, c, d, e ∈ U : if a · b = c, b+ 1 = d and c+ a = e, then a · d = e

A. Dudenhefner and J. Rehof 2:5

The choice of ∆N is motivated by the fact that a solution of A is supported by an appropriately
large finite fragment of natural number arithmetic and does not require the induction principle.

Let the type environment ∆A (Definition 14) encompass the axiomatization of natural
number arithmetic together with the assumption that the representation of a solution of A
implies N. We will reduce solvability of A to ∆A ` ? : N.

I Definition 14 (Type Environments ∆I ,∆A).
∆I = ∆N ∪

{
xA : ∀a1 . . . an.

(
U(a1)→ . . .→ U(an)→ e1 → . . .→ el → N

)}
∆A = ∆I ∪∆1

In the above, the type variable N assumes the role of the type variable false in [13].
Whereas [13] uses a positive description of first-order predicate logic, we (again, for technical
convenience) use doubly-negated conclusions in ∆N. Following this intuition, the type of xu
corresponds to ∀a.U(a)→ ¬(∀b.¬(U(b) ∧ S(a, 1, b) ∧ P (b, 1, b))) (cf. list of assertions above).
Possibly, we could have used a more natural second-order axiomatization of natural numbers
with conventional negation (¬σ = σ → ∀a.a) and existential (∃a.σ = ∀b.((∀a.(σ → b))→ b))
representations. However, both introduce additional universal quantifiers that are neither
necessary nor convenient in the proof.

In the remainder of this section we establish completeness (Theorem 19) and soundness
(Theorem 27) of the reduction from solvability of A to ∆A ` ? : N.

3.1 Completeness
In this paragraph we show that satisfiability of A implies ∆A ` M : N for some term M .
Intuitively, we derive |∆A| ` N in four steps by approaching the goal N many times, each
time adding new assumptions. Step 1 introduces representations 2, . . . ,N of natural numbers
2, . . . ,N, where N is the maximal element in the codomain of some solution of A. Additionally,
step 1 introduces assumptions U(i), S(i− 1, 1, i) and P (i, 1, i) for i = 2 . . .N. Step 2
introduces information on addition for numbers 1, . . . ,N, i.e. for i+j = k ≤ N we introduce the
assumption S(i, j, k). Step 3 introduces information on multiplication for numbers 1, . . . ,N,
i.e. for i·j = k ≤ N we introduce the assumption P (i, j, k). Finally, step 4 uses the introduced
assumptions to derive N using xA : ∀a1 . . . an.

(
U(a1)→ . . .→ U(an)→ e1 → . . .→ el → N

)
.

For a more accessible presentation of the proof of completeness (Theorem 19), we define
type environments ∆m

U ,∆m
S ,∆m

P that contain assumptions for natural numbers up to a
bound m that are introduced using xu. Observe that ∆1 = ∆1

U ∪∆1
S ∪∆1

P .

I Definition 15 (Type Environments ∆m
U ,∆m

S ,∆m
P). For m ∈ N let

∆m
U = {yU(i) : U(i) | i = 1 . . .m}

∆m
S = {yS(i−1,1,i) : S(i− 1, 1, i) | i = 2 . . .m}

∆m
P = {yP (i,1,i) : P (i, 1, i) | i = 1 . . .m}

The following Lemmas 16, 17, and 18 each contain the inductive argument used in
the outlined steps 1, 2, and 3. Specifically, these lemmas are used to introduce sufficient
information on representations of natural numbers to verify a solution of A.

I Lemma 16. Let m ∈ N. If ∆I ∪∆m+1
U ∪∆m+1

S ∪∆m+1
P ` N : N,

then ∆I ∪∆m
U ∪∆m

S ∪∆m
P `M : N for some M .

Proof. Immediate using M = xu m yU(m) (Λm+ 1.M ′), where
M ′ = λyU(m+1) : U(m+ 1).λyS(m,1,m+1) : S(m, 1,m+ 1).λyP (m+1,1,m+1) : P (m+ 1, 1,m+ 1).N .

J

TYPES 2018

2:6 A Simpler Undecidability Proof for System F Inhabitation

I Lemma 17. Let i, j, k,m ∈ N be such that i, j, k ≤ m and let ∆S ⊇ ∆m
S be a type

environment such that (yS(i,j,k) : S(i, j, k)) ∈ ∆S.
If ∆I ∪∆m

U ∪∆S ∪ {yS(i,j+1,k+1) : S(i, j + 1, k + 1)} ∪∆m
P ` N : N,

then ∆I ∪∆m
U ∪∆S ∪∆m

P `M : N for some M .

Proof. Immediate using
M = xs i j k j + 1 k + 1 yU(i) yU(j) yU(k) yU(j+1) yU(k+1) yS(i,j,k) yS(j,1,j+1) yS(k,1,k+1) M

′,
where M ′ = λyS(i,j+1,k+1) : S(i, j + 1, k + 1).N . J

I Lemma 18. Let i, j, k,m ∈ N be such that i, j, k ≤ m, ∆S ⊇ ∆m
S be such that

(yS(k,i,k+i) : S(k, i, k + i)) ∈ ∆S and ∆P be such that (yP (i,j,k) : P (i, j, k)) ∈ ∆P .
If ∆I ∪∆m

U ∪∆S ∪∆P ∪ {yP (i,j+1,k+i) : P (i, j + 1, k + i)} ` N : N,
then ∆I ∪∆m

U ∪∆S ∪∆P `M : N for some M .

Proof. Immediate using
M = xp i j k j + 1 k + i yU(i) yU(j) yU(k) yU(j+1) yU(k+i) yP (i,j,k) yS(j,1,j+1) yS(k,i,k+i) M

′,
where M ′ = λyP (i,j+1,k+i) : P (i, j + 1, k + i).N . J

By repeated application of the above Lemmas 16, 17, and 18 we show that a solution of
A induces an inhabitant M such that ∆A `M : N.

I Theorem 19 (Completeness). If A has a solution, then ∆A `M : N for some M .

Proof. Let ζ : V → N solve A, and let N = max{ζ(a) | a ∈ V}. We derive ∆A ` M : N in
four steps.

Step 1: By repeated application of Lemma 16, in order to derive |∆A| ` N, it suffices to
derive |∆I ∪∆N

U ∪∆N
S ∪∆N

P | ` N. Observe that
For S(i, j, k) ∈ |∆N

S | we have j = 1 and i+ j = k

For P (i, j, k) ∈ |∆N
P | we have j = 1 and i · j = k

Step 2: By repeated application of Lemma 17, in order to derive |∆I∪∆N
U∪∆N

S∪∆N
P | ` N,

it suffices to derive |∆I ∪∆N
U ∪∆S ∪∆N

P | ` N,
where ∆S = {yS(i,j,k) : S(i, j, k) | i, j, k ∈ N and i+ j = k ≤ N}.

Step 3: By repeated application of Lemma 18, in order to derive |∆I∪∆N
U∪∆S∪∆N

P | ` N,
it suffices to derive |∆I ∪∆N

U ∪∆S ∪∆P | ` N,
where ∆P = {yP (i,j,k) : P (i, j, k) | i, j, k ∈ N and i · j = k ≤ N}.

Step 4: Finally, the claim follows from the following judgement

∆I ∪∆N
U ∪∆S ∪∆P ` xA ζ(a1) . . . ζ(an) y

U(ζ(a1)) . . . yU(ζ(an)) ye1 . . . yel : N

In particular, we have
ζ(ai) ≤ N implies U(ζ(ai)) ∈ |∆N

U | for i = 1 . . . n

ζ(a) = 1 implies ζ(a) .= 1 = P (1, 1, 1) ∈ |∆P |

ζ(a) = ζ(b) + ζ(c) ≤ N implies ζ(a) .= ζ(b) + ζ(c) = S(ζ(b), ζ(c), ζ(a)) ∈ |∆S |

ζ(a) = ζ(b) · ζ(c) ≤ N implies ζ(a) .= ζ(b) · ζ(c) = P (ζ(b), ζ(c), ζ(a)) ∈ |∆P | J

A. Dudenhefner and J. Rehof 2:7

3.2 Soundness

In this paragraph we show that ∆A `M : N implies satisfiability of A. Intuitively, we show
that a derivation of ∆A ` M : N, where M is β-normal and η-long, necessarily completes
(parts of) the four steps described in Section 3.1, only adding sound assumptions wrt. addition
and multiplication.

Let us define the set of types C (Definition 20), observing that † 6∈ C and 1 6∈ C.

I Definition 20 (Set of Types C). C = {u, s, p,N, •1, •2, •3}.

We use C, from which any formula in |∆A| is derivable, to hide particular structure of ∆A
and identify certain types that are “logically equivalent” wrt. ∆A.

I Lemma 21. Let a, b ∈ A \ (C ∪ {†}) be type variables. If C ` †a→ †b, then a = b.

Proof. A long normal inhabitant M of †a→ †b in C is necessarily of the shape
M = λx : †a.λy : b.(x†a yb)†, which implies a = b. J

I Corollary 22. Let σ, τ be types and let a, b ∈ A\ (C ∪{†}) be type variables. If C ` †a→ †σ,
C ` †σ → †τ and C ` †τ → †b, then a = b.

Using the above Corollary 22 we can lift functions with type variable domain to functions
with type domain (Definition 23).

I Definition 23. Given a map J·K : U → N for some finite set U ⊆ A \ (C ∪ {†}) of type vari-

ables, we define J·K∗ : T→ N by JσK∗ =
{

JaK if a ∈ U , C ` †a→ †σ and C ` †σ → †a
undefined otherwise, i.e. there is no such a

By Corollary 22 the partial map J·K∗ : T → N is well-defined. Intuitively, the condition
C ` †a → †σ and C ` †σ → †a identifies σ with a wrt. ∆A in the sense of the following
Lemma 24.

I Lemma 24. Let σ ∈ T be a type and let U ⊆ A \ (C ∪ {†}) be a finite set of type variables.
If {s, p,N} ∪ {U(a) | a ∈ U} ` U(σ), then C ` †a→ †σ and C ` †σ → †a for some a ∈ U .

Proof. A long normal inhabitant M of U(σ) is necessarily of the shape

M = λx1 : †σ → •1.λx2 : σ → •2.zU(a) (λy1 : †a.x1 N
†σ
1)†a→•1 (λy2 : a.x2 N

σ
2)a→•2

for some a ∈ U . Therefore, for Γ = {s, p,N} ∪ {U(a) | a ∈ U} we have
1. Γ, †σ → •1, σ → •2, †a ` †σ which implies C ` †a→ †σ
2. Γ, †σ → •1, σ → •2, a ` σ which implies C ` a→ σ, therefore C ` †σ → †a J

I Corollary 25. Let σ ∈ T be a type and let J·K : U → N be a map for some finite set
U ⊆ A \ (C ∪ {†}) of type variables. If {s, p,N} ∪ {U(a) | a ∈ U} ` U(σ), then JσK∗ ∈ N.

The above Corollary 25 establishes a correspondence between σ and some type variable
a ∈ U via derivability of U(σ). This will allow us to reason about arbitrary (impredicative)
instances of types in ∆A. The following Lemma 26 extends this correspondence to sums and
products.

TYPES 2018

2:8 A Simpler Undecidability Proof for System F Inhabitation

I Lemma 26. Given a map J·K : U → N for some finite set U ⊆ A\(C∪{†}) of type variables,
let ΓS ⊆ {S(σ1, σ2, σ3) | Jσ1K∗ + Jσ2K∗ = Jσ3K∗ ∈ N}
and ΓP ⊆ {P (σ1, σ2, σ3) | Jσ1K∗ · Jσ2K∗ = Jσ3K∗ ∈ N}.
For types τ1, τ2, τ3 ∈ T such that Jτ1K∗, Jτ2K∗, Jτ3K∗ ∈ N we have
(i) If {u, p,N} ∪ ΓS ` S(τ1, τ2, τ3), then Jτ1K∗ + Jτ2K∗ = Jτ3K∗ ∈ N.

(ii) If {u, s,N} ∪ ΓP ` P (τ1, τ2, τ3), then Jτ1K∗ · Jτ2K∗ = Jτ3K∗ ∈ N.

Proof. For (i), let Γ = {u, p,N} ∪ ΓS and assume Γ ` S(τ1, τ2, τ3). A long normal inhabi-
tant M of S(τ1, τ2, τ3) is necessarily of the shape

M = λx1 : †τ1 → •1.λx2 : †τ2 → •2.λx3 : †τ3 → •3.zS(σ1,σ2,σ3) N†σ1→•1
1 N†σ2→•2

2 N†σ3→•3
3

where Ni = (λyi : †σi.xi L†τi

i) for i = 1, 2, 3 and S(σ1, σ2, σ3) ∈ ΓS .
Therefore, we have Γ, †τ1 → •1, †τ2 → •2, †τ3 → •3 ` †σi → †τi for i = 1, 2, 3, which

implies C ` †σi → †τi for i = 1, 2, 3. Additionally, by Definition 23 there exist type variables
a1, a2, a3, b1, b2, b3 ∈ U such that C ` †ai → †σi and C ` †τi → †bi for i = 1, 2, 3. By
Corollary 22, we obtain JσiK∗ = JτiK∗ for i = 1, 2, 3, which implies the claim.

The proof of (ii) is analogous to the proof of (i). J

Finally, we establish soundness of our reduction in the following Theorem 27.

I Theorem 27 (Soundness). If ∆A `M : N for some M , then A has a solution.

Proof. We show a more general claim. Given a map J·K : U → N for some finite set
U ⊆ A \ (C ∪ {†}) of type variables such that 1 ∈ U and J1K = 1, let ∆ = ∆I ∪∆U ∪∆S ∪∆P

such that

|∆U | = {U(a) | a ∈ U}
|∆S | ⊆ {S(σ1, σ2, σ3) | Jσ1K∗ + Jσ2K∗ = Jσ3K∗ ∈ N}
|∆P | ⊆ {P (σ1, σ2, σ3) | Jσ1K∗ · Jσ2K∗ = Jσ3K∗ ∈ N}

We show that |∆| ` N implies that A has a solution.
Assume |∆| ` N, then there exists a long normal form M such that ∆ ` M : N. We

proceed by induction on the depth of M , which necessarily has one of the following shapes:
xuσN

U(σ)(Λb.λyu : U(b).λys : S(σ, 1, b).λyp : P (b, 1, b).MN
1
)
:

Wlog. b, yu, ys, yp are fresh. We have
∆ ` N : U(σ), therefore JσK∗ ∈ N by Corollary 25.
∆, yu : U(b), ys : S(σ, 1, b), yp : P (b, 1, b) `M1 : N.

For U ′ = U ∪ {b} extending the domain of J·K to b by JbK := JσK∗ + 1, ∆′U = ∆U ∪ {yu :
U(b)}, ∆′S = ∆S ∪ {ys : S(σ, 1, b)} and ∆′P := ∆P ∪ {yp : P (b, 1, b)}, we have that
∆I∪∆′U∪∆′S∪∆′P `M1 : N. Since JbK∗ = JbK = JσK∗+1 = JσK∗+J1K and JbK∗ = JbK∗ ·J1K∗,
by the induction hypothesis we obtain the claim.
xsσ1 . . . σ5N

U(σ1)
1 . . . N

U(σ5)
5 L

S(σ1,σ2,σ3)
1 L

S(σ2,1,σ4)
2 L

S(σ3,1,σ5)
3 (λys : S(σ1, σ4, σ5).MN

1):
Wlog. ys is fresh. We have

∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . 5 by Corollary 25.
∆ ` L1 : S(σ1, σ2, σ3), ∆ ` L2 : S(σ2, 1, σ4) and ∆ ` L3 : S(σ3, 1, σ5). Therefore,
Jσ1K∗ + Jσ2K∗ = Jσ3K∗, Jσ2K∗ + J1K∗ = Jσ4K∗ and Jσ3K∗ + J1K∗ = Jσ5K∗ by Lemma 26.
∆, ys : S(σ1, σ4, σ5) `M1 : N

For ∆′S = ∆S ∪ {ys : S(σ1, σ4, σ5)} we have ∆I ∪ ∆U ∪ ∆′S ∪ ∆P ` M1 : N. Since
Jσ5K∗ = Jσ3K∗ + J1K∗ = Jσ1K∗ + Jσ2K∗ + J1K∗ = Jσ1K∗ + Jσ4K∗, by the induction hypothesis
we obtain the claim.

A. Dudenhefner and J. Rehof 2:9

xpσ1 . . . σ5N
U(σ1)
1 . . . N

U(σ5)
5 L

P (σ1,σ2,σ3)
1 L

S(σ2,1,σ4)
2 L

S(σ3,σ1,σ5)
3 (λyp : P (σ1, σ4, σ5).MN

1):
Wlog. yp is fresh. We have

∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . 5 by Corollary 25.
∆ ` L1 : P (σ1, σ2, σ3), ∆ ` L2 : S(σ2, 1, σ4) and ∆ ` L3 : S(σ3, σ1, σ5). Therefore,
Jσ1K∗ · Jσ2K∗ = Jσ3K∗, Jσ2K∗ + J1K∗ = Jσ4K∗ and Jσ3K∗ + Jσ1K∗ = Jσ5K∗ by Lemma 26.
∆, yp : P (σ1, σ4, σ5) `M1 : N

For ∆′P = ∆P ∪ {yp : P (σ1, σ4, σ5)} we have ∆I ∪ ∆U ∪ ∆S ∪ ∆′P ` M1 : N. Since
Jσ5K∗ = Jσ3K∗ + Jσ1K∗ = Jσ1K∗ · Jσ2K∗ + Jσ1K∗ = Jσ1K∗ · (Jσ2K∗ + J1K∗) = Jσ1K∗ · Jσ4K∗, by
the induction hypothesis we obtain the claim.
xAσ1 . . . σnN

U(σ1)
1 . . . N

U(σn)
n L

e1[ai:=σi|i=1...n]
1 . . . L

el[ai:=σi|i=1...n]
l :

We have ∆ ` Ni : U(σi), therefore JσiK∗ ∈ N for i = 1 . . . n by Corollary 25. We show
that the map ai 7→ JσiK∗ satisfies each ej ∈ A by distinguishing the following cases for ej :
Case ai

.= 1: We have ej[ai := σi | 1 = 1 . . . n] = P (1, 1, σi). Since ∆ ` Lj : P (1, 1, σi),
we have JσiK∗ = J1K∗ · J1K∗ = 1 by Lemma 26.

Case ai1
.= ai2 + ai3 : We have ej[ai := σi | 1 = 1 . . . n] = S(σi2 , σi3 , σi1). Since

∆ ` Lj : S(σi2 , σi3 , σi1), we have Jσi1K∗ = Jσi2K∗ + Jσi3K∗ by Lemma 26.
Case ai1

.= ai2 · ai3 : We have ej[ai := σi | 1 = 1 . . . n] = P (σi2 , σi3 , σi1). Since
∆ ` Lj : P (σi2 , σi3 , σi1), we have Jσi1K∗ = Jσi2K∗ · Jσi3K∗ by Lemma 26. J

3.3 Formalization
In this paragraph we outline a formalization [3] of the above soundness (Theorem 27) and
completeness (Theorem 19) results in Coq 8.8 using the SSReflect proof methodology. The
formalization spans 4000 lines of code, of which three quarters is boilerplate.

The main result is formalized in MainResult.v as

Theorem correctness : ∀ (ds : list diophantine), Diophantine.solvable ds ↔
derivation (ΓI ds ++ [U one; P one one one]) triangle.

In the above, constraints of shape either a .= 1 or a .= b+ c or a .= b · c that are used in
Problem 9 are captured in Diophantine.v by the inductive type Inductive diophantine : Set.
Derivability in system F (or rather IPC2) is formalized in Derivations.v by the inductive
type

Inductive derivation (Γ : list formula) : formula → Prop

The property of long normal inhabitation (reflecting Definition 8) is internalized in the
definition of inductive type (also containing a bound on the depth of the derivation as the
first parameter)

Inductive normal_derivation : nat → list formula → formula → Prop

For an in-depth analysis of type derivations in system F see [6]. Normalization of system F
and existence of η-long inhabitants, i.e. completeness of normal_derivation wrt. derivation
is (at the time of writing) not part of the formalization

Axiom normal_derivation_completeness : ∀ (Γ : list formula) (s: formula),
derivation Γ s → ∃ (n : nat), normal_derivation n Γ s.

whereas soundness of normal_derivation wrt. derivation is shown by

Theorem normal_derivation_soundness : ∀ (n : nat) (Γ : list formula) (s: formula),
normal_derivation n Γ s → derivation Γs.

TYPES 2018

2:10 A Simpler Undecidability Proof for System F Inhabitation

The more general claim that is used in the proof of soundness (Theorem 27) is formalized in
Soundness.v as
Theorem soundness : ∀ (n : nat) (ΓU ΓS ΓP : list formula),
(∀ {s : formula}, In s ΓU → represents_nat s) →
(∀ {s : formula}, In s ΓS → encodes_sum s) →
(∀ {s : formula}, In s ΓP → encodes_prod s) →
∀ (ds : list diophantine),
normal_derivation n ((Encoding. ΓI ds) ++ ΓU ++ ΓS ++ ΓP) Encoding.triangle →
Diophantine.solvable ds.

Completeness (Theorem 19) is formalized in Completeness.v as
Lemma completeness : ∀ (ds : list diophantine), Diophantine.solvable ds →

derivation (ΓI ds ++ [U one; P one one one]) triangle.

where the first three steps in the proof of Theorem 19 are formalized individually as
Theorem completeness_U, Theorem completeness_S, and Theorem completeness_P.

At the time of writing, theorems soundness and completeness use only the above axiom
normal_derivation_completeness as an assumption that is not formally proven.

Several aspects of the “informal” proof, at first glance, appear problematic and are
clarified in the formal proof. In Definition 23 we partially define an interpretation J·K∗ of
arbitrary types as natural numbers based on derivability in system F. Not only is derivability
undecidable, but it is the actual subject of our analysis. The map J·K∗ is formalized in
Encoding.v as
Inductive interpretation (s : formula) (n : nat) : Prop

and its well-definedness is shown in Soundness.v by
Lemma interpretation_soundness : ∀ (s : formula) (m1 m2 : nat),

interpretation s m1 → interpretation s m2 → m1 = m2.

The absence of classical principles or the axiom of choice (resp. Hilbert’s epsilon) as
assumptions in our main result ensures that the whole argument is constructive.

Another aspect elaborated in the formal proof is the argumentation based on the necessary
shape of long normal inhabitants. Clearly, a complete case analysis of all imaginable
inhabitants would clutter an “informal” proof, that is supposed to focus on interesting
cases. Luckily, the formal proof can utilize numerous tactics to deal with the trivial cases
automatically. Most prominently, the tactic decompose_USP implemented in Soundness.v
discovers and transforms suitable assumptions by full case analysis to apply Lemma 26.

4 Conclusion

This work contains the (as of yet) simplest, syntax oriented proof that inhabitation in
system F (resp. provability in intuitionistic second-order propositional logic) is undecidable.
The proof is by reduction from (a variant of) solvability of Diophantine equations. In spirit,
the reduction can be considered an instance of Sørensen’s and Urzyczyn’s reduction from
provability in first-order predicate logic to provability in second-order propositional logic.
Additionally, we formalized soundness and completeness results in the Coq proof assistant.

The next step is to eliminate the axiom regarding existence of long normal inhabitants in
system F by using existing work [10]. In near future, we envision to embed the formalization
into the larger framework of computational reductions in Coq [4] already containing a
collection of formalized reductions that are used in undecidability results.

A. Dudenhefner and J. Rehof 2:11

References
1 T. Arts and W. Dekkers. Embedding first order predicate logic in second order propositional

logic. Technical report 93-02, Katholieke Universiteit Nijmegen, 1993.
2 H. Barendregt. Introduction to Generalized Type Systems. J. Funct. Program., 1(2):125–154,

1991.
3 A. Dudenhefner. Reduction from Diophantine equations to provability in IPC2 / System F.

https://github.com/mrhaandi/ipc2. Accessed: 2018-09-18.
4 Y. Forster, E. Heiter, and G. Smolka. Verification of PCP-Related Computational Reductions

in Coq. In Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
pages 253–269, 2018. doi:10.1007/978-3-319-94821-8_15.

5 D. M. Gabbay. On 2nd order intuitionistic propositional calculus with full comprehension.
Archive for Mathematical Logic, 16(3):177–186, 1974.

6 P. Giannini and S. Ronchi Della Rocca. Characterization of typings in polymorphic type
discipline. In Proceedings of the Third Annual Symposium on Logic in Computer Science
(LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988, pages 61–70, 1988. doi:10.1109/LICS.
1988.5101.

7 J. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

8 M. H. Löb. Embedding First Order Predicate Logic in Fragments of Intuitionistic Logic. J.
Symb. Log., 41(4):705–718, 1976. doi:10.2307/2272390.

9 D. Martin. Hilbert’s tenth problem is unsolvable. The American Mathematical Monthly,
80(3):233–269, 1973.

10 K. Sakaguchi. A Formalization of Typed and Untyped lambda-Calculi in SSReflect-Coq and
Agda2. https://github.com/pi8027/lambda-calculus. Accessed: 2019-04-02.

11 M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of
Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.

12 M. H. Sørensen and P. Urzyczyn. A Syntactic Embedding of Predicate Logic into Second-
Order Propositional Logic. Notre Dame Journal of Formal Logic, 51(4):457–473, 2010. doi:
10.1215/00294527-2010-029.

13 P. Urzyczyn. Inhabitation in Typed Lambda-Calculi (A Syntactic Approach). In Typed
Lambda Calculi and Applications, Third International Conference on Typed Lambda Calculi
and Applications, TLCA ’97, Nancy, France, April 2-4, 1997, Proceedings, pages 373–389,
1997. doi:10.1007/3-540-62688-3_47.

TYPES 2018

https://github.com/mrhaandi/ipc2
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.1109/LICS.1988.5101
https://doi.org/10.1109/LICS.1988.5101
https://doi.org/10.2307/2272390
https://github.com/pi8027/lambda-calculus
https://doi.org/10.1215/00294527-2010-029
https://doi.org/10.1215/00294527-2010-029
https://doi.org/10.1007/3-540-62688-3_47

	Introduction
	Polymorphic Lambda-Calculus
	Undecidability of Inhabitation
	Completeness
	Soundness
	Formalization

	Conclusion

