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—— Abstract

We present robust, adaptive routing policies for time-varying networks (temporal graphs) in the
presence of random edge-failures. Such a policy answers the following question: How can a traveler
navigate a time-varying network where edges fail randomly in order to maximize the traveler’s
preference with respect to the arrival time? Our routing policy is computable in near-linear time in
the number of edges in the network (for the case when the edges fail independently of each other).

Using our robust routing policy, we show how to travel in a public transit network where the
vehicles experience delays. To validate our approach, we present experiments using real-world delay
data from the public transit network of the city of Zurich. Our experiments show that we obtain
significantly improved outcomes compared to a purely schedule-based policy: The traveler is on time
5-11 percentage points more often for most destinations and 20-40 percentage points more often
for certain remote destinations. Our implementation shows that the approach is fast enough for
real-time usage. It computes a policy for 1-hour long journeys in around 0.1 seconds.
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1 Introduction

Real-World networks, such as communication and transportation networks, change over time
and can be subject to delays and edge failures. Routing a traveler (or packet) through such
a stochastic and time-dependent network (from a source vertex to a destination vertex) is
challenging and requires robust routing policies that not only recommend a fixed route, but
give alternatives in case the intended route becomes infeasible.

What constitutes a “best” policy depends on the preference the traveler has with respect
to the arrival time. For example, one goal could be to minimize the expected time of arrival.
Another goal could be to maximize the probability to arrive before a given deadline. These
goals are distinct in the stochastic setting because they express different attitudes towards
risk. In particular, when the goal is to arrive before a given deadline, as the available time
to reach the destination becomes smaller, the best policy might have to become more and
more risky (i.e. choose edges that are more likely to fail) in order to have a chance to arrive
on time. In contrast, if only the expected arrival time has to be minimized, a route is chosen
that is “good in most cases”. These preferences of the traveler can be expressed as wtility
functions on the arrival times.

Inherently time-dependent networks can be well-represented by temporal graphs [12, 1, 10],
which model time explicitly: every edge is only available at certain points in time (consider
Figure 1). For example, the connections of a public transit network are only available at
certain points in time (when a vehicle departs).
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Figure 1 Every edge in a temporal graph can Figure 2 A strictly time-respecting path
only be traversed at a certain availability time. has increasing edge availability times. The bold
In the example, there is an edge from vertex b  path is the only strictly time-respecting path
to vertex d at availability time 2. from a to ¢ and has arrival time 3.

A core characteristic of traveling inside a public transit network is the possibility of
missing a transfer connection. This can occur because of delays of a vehicle or even because
the connecting vehicle leaves too early. When a connection breaks, the traveler needs to
change their route during the journey. Therefore, small delays of a vehicle can cause larger
delays for a traveler’s journey.

This motivates adding random edge failures to a temporal graph, and thus obtaining
a faulty temporal graph. For this setting, we show how to provide optimal robust routing
policies for any efficiently computable utility function in near-linear time in the size of the
temporal graph. In this paper, we show how public transit networks can be modeled as faulty
temporal graphs and we give an algorithm for robust routing in public transit networks. We
validate our robust routing policies by using real-world public transportation data. Note that
our focus is not on catastrophic network failures due to accidents or other highly disruptive
events, but on failures due to everyday delays caused for example by traffic congestion. In
principle, our approach could also be applied to other time-varying and failure-prone networks
such as ad-hoc or mobile phone networks.

1.1 Preliminaries
Temporal Graphs

To represent a network where edges can only be taken at a certain moment in time, we can
use a temporal graph [12, 1, 10, 20, 8]. Formally, a temporal graph G = (V, E, T)) has vertices
V and temporal edges E, where E is a multiset of directed edges on V. Each temporal edge
e = (u,v) has a nonnegative integer availability time T'(e¢). The semantic of the temporal
graph is that at time T'(e), the edge e = (u,v) can be used to go from vertex u to vertex
v (see Figure 1). Note that there can be multiple temporal edges going from u to v. The
number of edges that are incident to a vertex v is the degree deg(v) of v.

Note that in a variant of temporal graphs (so-called interval graphs [10]) every edge is
available during an interval of time. This is not appropriate for our purposes, as in our main
application (for public transport), connections are only available at discrete points in time.

A strictly time-respecting path p = ey,..., e, in a temporal graph (V, E,T) is a path
in the graph (V, E) where the edges have increasing availability times (according to T).
That is, if two edges e; and e;4; follow each other in the strictly time-respecting path p,
then T'(e;) < T(ei+1) (see Figure 2). We call the availability time of the last edge ey in a
time-respecting path p the arrival time of the path p.
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Faulty Temporal Graphs

When the connections of a network change probabilistically over time, we can model this
using a temporal graph with edges that fail at random. Formally, we augment the definition
of a temporal graph with a failure distribution F' over the edges.

A faulty temporal graph G = (V, E, T, F) has vertices V, directed edges from a multiset
E, discrete nonnegative edge availability times T : '+ N, and a failure distribution F'. The
number of vertices is n = |V| and the (maximum) number of edges in the faulty temporal
graph is m = |E|. A faulty temporal graph defines a random variable whose outcomes are
temporal graphs with vertices V', edges that are a subset of E, and with availability times
given by T. Specifically, for an edge e € E we say it is potentially available at the fixed
availability time T(e). The edge fails with probability p. and F'(e) is the indicator random
variable for the event that edge e fails. If not stated otherwise, we assume that the edges
fail independently of each other. This assumption is relaxed in Section 2.3, where the edge
distributions follow a kind of Markovian assumption.

Robust Adaptive Routing

In the robust adaptive routing problem, a traveler in a faulty temporal graph starts out at a
designated starting vertex at time 0. Whenever the traveler arrives at a vertex ¢ at a time ¢,
the traveler picks a temporal edge e = (4,j) with availability time T'(e) larger than ¢. At
that time T'(e), the traveler tries to go across this edge. If the edge does not fail, the traveler
succeeds and arrives at the endpoint j of that edge at time T'(e). If the edge fails, the traveler

remains at vertex ¢ and must pick a new edge to take with availability time larger than T'(e).

Note that this means that the traveler traverses a strictly time-respecting path in the faulty
temporal graph using only edges that did not fail. The goal of the traveler is to maximize
the expectation of a computable wutility function of the time at which a destination vertex is
reached. For example, they might want to arrive at a destination vertex before the deadline
x with the largest possible probability. Then, the utility is 1 if the traveler arrives on time
and 0 otherwise.

The algorithmic question that solves the robust adaptive routing problem is to preprocess
the faulty temporal graph such that we can quickly answer the following routing query:

“When arriving at vertex i at time t, where should the traveler go next?”

A set of answers to these routing queries is called a routing policy. We are interested in
optimal routing policies in the sense that they maximize the expected utility of the traveler.

If desired for a certain application, a routing policy could also be used to generate a
temporal path a-priori (such a path represents the journey in case no connection breaks and
can be thought of as an optimistic preview). This path would be followed until one of the
edges fails. In this event, the policy would be queried again to compute a new path.

We continue with a more formal statement of the routing problem. We are given a
faulty temporal graph G = (V, E,T, F) and a set of destination vertices S C V. A policy
P maps every (non-destination) vertex i € V — S and every time ¢ to an edge €' = (i, j)
with larger availability time T'(¢’) > ¢, or to a special symbol L in case no edge ¢ = (i, )
with availability time larger than ¢ exists. The semantics of the policy are such that if the
traveler is at vertex ¢ at time ¢, they choose the edge e = P(i,t) to traverse next according
to the policy. If the edge e = (4,5) does not fail, the traveler goes to the other endpoint j of
e at time T'(e) and continues to choose an edge from there. Otherwise, the traveler stays
at vertex ¢ but the time also changes to T'(e). The traveler stops as soon as they reach a
destination vertex or once the policy returns |, which means that the traveler is stuck.
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We formalize the preference of the traveler with respect to the arrival time in a utility
function. Such a wutility function U;(t) maps every vertex ¢ € S and every time ¢ to a
real-valued utility, where higher values correspond to a higher preference of the traveler. This
terminology highlights the relation to Stochastic Optimal Control [2], where an agent tries
to make decisions that optimize their expected utility. The idea is that if we arrive at vertex
i through an edge e with availability time ¢t = T'(e), the utility for the traveler is U;(t). For
example, to maximize the on-time arrival probability, the utility is 1 if the traveler arrives at
a destination vertex before a given deadline and 0 otherwise. If the traveler ever gets stuck,
the utility obtains a smallest possible value that we denote by U°. For example, if the utility
corresponds to the probability to arrive at a destination on time, then U° = 0.

The utility of a policy P starting from starting vertex ¢ and starting time ¢ is the value of
the utility function at the vertex and time where the traveler stops. Note that the utility of
a policy is a random variable. We consider the expected utility of the policy P, where the
expectation is over the random failures of the edges of the faulty temporal graph.

1.2 Related Work

There is a vast variety of approaches to path finding problems in stochastic networks. We

can categorize approaches based on the following criteria:
A-priori or Adaptive. Does the traveler decide upfront which way to go (a-priori) [7,
15, 17] or can they change the route along the way (adaptive)?
Time-dependent or Time-independent. Does the network change with time (time-
dependent) or not (time-independent)? In a time-dependent network, the time it takes to
go between two vertices changes depending on the time the traveler attempts to do so.
An extreme case is when certain links are only available at discrete points in time.
Scoring Criterion. How are different outcomes scored for the traveler? For example,
does the traveler of the stochastic network want to maximize the on time arrival probability
(SOTA) or does the traveler want to obtain a least expected arrival time (LET). Note that
a utility function is not the only way to score a path. Alternatives include approaches
which search for paths that are pareto-optimal with respect to multiple criteria [5, 16].
Runtime. Is the solution obtained in polynomial time, pseudo-polynomial time (i.e. it
depends on the number of time steps in the problem), or super-polynomial time?

Adaptive and Time-Independent

There are two motivations to take an adaptive approach as opposed to an a-priori approach.
First, a-priori probabilistic path problems have only been solved in polynomial time for
special cases (like for affine and exponential utility functions [15]) and hence it is pragmatic
to take a different approach. Second, the outcome for the traveler can be improved if “live’
information can be incorporated into the decision making process.

Fan and Nie [6] show termination for an algorithm to solve the adaptive SOTA problem
(in the continuous time domain). They propose a set of (integral) equations which are solved

)

iteratively, starting out with a trivial approximation, then using the approximation of the
last iteration to compute the next iteration of the utility functions. Although they show
convergence of the approximation to the true value, the algorithm can take an exponential
number of iterations.

Samarayake et al. [19] observe that there is a minimum time that it takes to traverse
an edge. They obtain pseudo-polynomial runtime (in the number of such traversals that
can occur within the time-budget). Instead of computing the utility functions iteratively,
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they construct parts of the functions one after the other. They discretize the problem by
dividing the time-domain into y evenly sized pieces (y is a parameter such that the pieces
are smaller than the minimum time it takes to traverse an edge). On this discretized version,
they obtain a runtime of a O(my?), where m is the number of edges.

Because the SOTA utility functions are not of some nice form that can be integrated
efficiently, the surveyed approaches all eventually discretize the time-domain. Samarayake
et al. use evenly spaced time-intervals and do not provide bounds on the approximation
quality as a function of the number of time-interval. This downside is addressed by Hoy
and Nikolova [11], who give a polynomial-time approximation scheme for the SOTA and
LET problem on acyclic directed graphs that obtains an additive error of 1/€ in O(mn?/e?)
time. Similar to our approach, they can handle general scoring functions that depend on the
arrival time of the traveler.

Adaptive and Time-Dependent SOTA

Transit networks consisting of trains and buses are different from street networks because
vehicles that connect physical locations in a transit network are only available at a specific
point in time (before the vehicle leaves a station), whereas streets remain available most of
the time (although delays and infrequent disruptions are possible). In particular, missed
transfer connections between distinct vehicles can play a crucial role in transit networks.

Keyhani et al. [13] looks at estimating the reliability of transfers and fixed (a-priori) paths
in a train network. Keyhani [14] deepens this work on the reliability of train transfers and
connections. They present an adaptive approach to solving SOTA in a similar transit network
problem setting as ours. However, they allow the traveler to change the route depending on
the arrival time at every vertex. This requires a model of the arrival-time distributions and
leads their algorithms to have pseudo-polynomial runtime in the size of the support of the
arrival-time distributions. Another difference to our work is that Keyhani does not represent
the schedule as a temporal graph, but use their own problem-specific model.

Adaptive and Time-Dependent LET

In the bus network problem [3], the traveler decides whether to take a bus whenever it arrives.
The traveler has access to the statistics of the bus arrivals, but they do not know exactly
when a bus will actually arrive, until it arrives. The goal is to reduce the expected time that
a policy takes to move a traveler from the start station to the destination station.

Boyan and Mitzenmacher [3] present results for the case when the buses arrive independ-
ently of each other and satisfy additional conditions (in particular they can be distributed
according to exponential, uniform, or normal distributions). They generalized a previous
more limited result by Datar and Ranade [4]. In order to compute a policy minimizing the
expected travel time in polynomial time, they need to be able to compute the expected
arrival time of a bus given that it has not arrived yet. However, exact computation of these
expectations involves a convolution that can take polynomial time in the number of time
steps considered and it is not shown how an approximate solution to the expectations impacts
the accuracy of the result.

In contrast to our problem setting, the traveler in the bus network problem can change
their decision whenever a bus arrives (whereas Keyhani [14] and in our model we only allow a
decision when the traveler arrives at a station or a connection breaks). On the other hand, in
our model we allow more general delay distributions and our runtime is strongly polynomial.

4:5
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1.3 QOur Contribution

We obtain a near-linear runtime for computing an optimal robust adaptive routing policy in
a faulty temporal graph. For a faulty temporal graph with m edges that fail independently
of each other, computing an optimal routing policy takes O(mlogm) time. We need O(m)
space to store the policy and take O(logm) time per query. We allow any utility function
that can be evaluated in O(logm) time.

When the edge failure probability depends on the last edge the traveler attempted to
traverse, we compute an optimal routing policy in O(mlogm + >,y deg?(i)) time.

As an application of our model, we represent traveling inside a public transit network
that is subject to delays as robust adaptive routing in a faulty temporal graph. We transform
a timetable with IV entries where at most d vehicles run through any station into a faulty
temporal graph with O(Nd) edges. This gives O(Ndlog N) time to compute a robust
routing policy for a transit network with independent delays. We evaluate our routing policy
using real-world transit network delay data from the public transit network of the city of
Zurich. We compare our approach to a traveler that travels to arrive as early as possible
using only the schedule provided by the city of Zurich and to a traveler that has perfect
knowledge of all future delays. Our evaluation shows that our model is accurate in predicting
the probability of being on time and our routing policy provides (in less than 0.1 seconds)
significant improvements over an approach that neglects delays.

2 Robust Adaptive Routing

The efficiency and generality of our approach is enabled by two observations. First, the
problem has an acyclic nature, since the traveler navigates strictly time-respecting paths.
Hence, a dynamic programming formulation emerges. This initial dynamic program (presented
in Section 2.1) is, however, too slow because it depends on the largest availability time.
Second, only certain points in time matter (those where there is an edge with that availability
time). This leads to an improved dynamic program (described in Section 2.2) that achieves
near-linear runtime.

2.1 Pseudo-Polynomial Time Algorithm

We start out with a basic dynamic program to compute a routing policy for any faulty
temporal graph (with independent edge failures).

For every vertex ¢ € V and every time t € N, we denote the computed expected utility
starting from vertex ¢ at time ¢ with u;(¢). The basic idea is to find a recursion for w;(t),
parameterized by the current vertex ¢ and the current time ¢. Since the traveler traverses a
strictly time-respecting temporal path, the traversed edges have increasing availability time.
Therefore, the subproblems overlap in an acyclic way and this gives a dynamic program.

Let us start with the base cases. If the vertex i is a destination vertex, the expected
utility w;(t) coincides with the value of the utility function, hence we set u;(t) = U;(¢).

Next, we recursively describe the best decision to take being in vertex i at time f.
Intuitively, the idea is to try every incident outgoing edge and then take the best such edge.
For this, we need to compute the expected utility given that we take a particular edge. For
each such edge e with an availability time 7'(e) larger than the current time ¢, we condition
on the event that the edge e fails. Using the law of total expectation, we relate the expected
utility at time ¢ to an expected utility at some time larger than ¢. If an edge e = (4, j) fails,
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the traveler stays at vertex ¢ and the (conditional) expected utility is u;(T(e)). Otherwise,
the traveler reaches vertex j and the (conditional) expected utility is u;(7T'(e)). We can
express this in the following recursive formula (for any vertex ¢ that is not a destination):

e=(i,)EE
T(e)>t

u;(t) = max ((1 — De) - Uj (T(e)) + pe-uy (T(e)))

For any time ¢ and vertex 4, the expected utility u;(¢) at vertex 7 and time ¢ only depends
on values u;(t") with ¢ > ¢. Hence, we can process the expected utilities u;(t) in order of
decreasing time t. When the traveler is at some vertex ¢ at some time t, the routing policy is
to take the edge e = (7, ) which obtains the maximum value in the expression for u;(t) (take
any edge if several edges are tied for the same value). If there is no edge e with T'(e) > ¢,
then u;(t) = UY. In that case, the traveler is stuck and cannot reach a destination at all (i.e.,

the policy returns L). See Appendix A.1 for an inductive correctness proof of the algorithm.

Let x be the largest availability time that occurs in 7', then the runtime of this approach
is O(m z). Initializing the base cases takes time O(z + n). Afterwards, each of the vertices
needs to compute at most x different values (the utility for all times larger than x is trivially
U® and does not need to be computed). To compute the value for a particular vertex and
time, we need to look up an already computed value for each of the neighbors. Thus, a
vertex ¢ with degree deg(i) takes O(deg(¢) x) time to find its best decision. The runtime is
thus O(} ¢y deg(i) ) = O(m ). As we explicitly store the result to all routing queries,
the routing policy uses O(n ) space and each routing query takes O(1) time.

2.2 Near-Linear Time Algorithm

The problem with the basic dynamic program is that its runtime and space depends on the
largest availability time x. This value is not polynomial in the input size and so the basic
dynamic program runs in pseudo-polynomial time. In practice, this means that increasing
the time-resolution of the data (say from measuring in minutes to seconds) also increases the
runtime of the algorithm proportionally. We now show how to reduce the runtime of the
basic algorithm by improving the order in which we evaluate the recursion and by leaving
out redundant points in time. The new algorithm runs in near-linear time.

Observe that only those times are relevant for the traveler where there is some incident
edge. More precisely, if there is no edge leaving vertex i inside some time interval ¢, ..., ¢,
then the expected utility for vertex ¢ is the same for all those times. This is because when
the traveler is at vertex i, the traveler cannot take any new decision in that time range and
the traveler does not learn any new information. It thus suffices to compute the expected
utility for 5. We store the computed utilities sorted by increasing times for each vertex. To
query the expected utility at a certain time, we do a binary search for the next largest time
that has a computed value.

A closer look at the recursive equation reveals that the expected utility for vertex i and
time ¢ is the maximum of the expected utility at time ¢t + 1 and the maximum possible
expected utility given that we take an edge leaving at time ¢ + 1. We therefore process the
edges in decreasing order of availability times. For each edge e = (i,7), we compute the
best possible expected utility u(e) given that the traveler plans to take this edge e using
the expression

u(e) = (1=p.) -y (T() + pe-ui(T(e))
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After processing all edges at time ¢+ 1, we update all adjacent vertices. For each vertex 4
that has some edge leaving at time t + 1, we set

u;(t) = max max u(e) | ,u;(t+1)
e=(i,j)EE
T(e)=t+1
If the maximum expected utility is obtained by taking some edge e at time ¢t + 1, this
edge is chosen for time ¢. Otherwise, the same edge is chosen as for time ¢+ 1. Recall that we
do not explicitly store the choices and utilities for all times and vertices, but only remember
decisions for vertices and times, where the vertex has an outgoing edge.

» Theorem 1. Computing an optimal routing policy in a faulty temporal graph with inde-
pendent edge failures takes O(mlogm) time. The policy uses O(m) space and a routing query
takes O(logm) time.

Proof. Sorting the edges takes O(mlogm) time. Then, each edge e is processed once to
compute u(e), which uses two already computed utilities. Looking up those utilities takes
O(logm) time (by using a binary search for the successor). Updating a vertex at a certain
time takes time proportional to the number of edges at that time, so O(1) per edge. Inserting
a new expected utility value into the sorted array takes O(1) amortized time by using
standard array doubling (store the array in decreasing order of time so that inserting a new
expected utility always occurs at the end of the array). |

2.3 Last-Edge Markovian Failures

So far, we assumed the edges to fail completely independently of each other and independently
of time. We can also consider the situation when the probability for an edge to fail depends
on the last edge the traveler planned to take (they either attempted to traverse this edge
and failed or succeeded to traverse this edge). By replacing our independence assumption by
a Markovian independence assumption given the last edge the traveler attempted to take,
we obtain Last-Edge-Markovian failures. As detailed in Appendix B, we can modify our
dynamic program to obtain the following result:

» Theorem 2. Computing an optimal routing policy in a faulty temporal graph with Last-Edge-
Markovian failures takes O(mlogm + Y,y deg”(i)) time. The policy uses O(Y",;y, deg(i))
space and a routing query takes O(1) time.

3 Applications in Public Transit Networks

Traveling in a public transit network in the presence of delays can be modeled as robust
adaptive routing in a faulty temporal graph, as we show in this section. In a public transit
network, there are several lines of buses, trains, trams, and other vehicles. Each of those
lines connects a series of stations in a predetermined order. Along each line, vehicles run
according to a schedule which prescribes when a vehicle is supposed to arrive and to leave a
station. The schedule contains N tuples that contain the line of the vehicle, the departure
time, departure station, arrival time, and arrival station.

We assume that the traveler leaves the start station sgiar¢ at the starting time and wants
to arrive at the destination station sgest while maximizing their preference with respect to
the arrival time: this preference is expressed as a utility function u(t) of the arrival time
and the goal is to maximize the expected value of this utility function (the expected utility).



B. Geissmann and L. Gianinazzi

At every station, the traveler can get off the current vehicle and attempt to transfer onto
another vehicle (which succeeds if the latter vehicle departs after the arrival time of the
current one plus the time it takes to transfer between the two vehicles).

Our model restricts traveling to routes that are feasible according to the schedule. This is
somewhat pessimistic in that certain connections infeasible in the schedule could be feasible
in practice due to delays and early arrivals. However, we argue that being slightly pessimistic
is compatible with our goal of giving robust routes. Moreover, recommending such infeasible
routes might be counter-intuitive to users of a transit system.

3.1 Public Transit Network Model
Temporal Graph Model

We map the transit network onto a temporal graph G = (V, E, T, F'). Note that our model is
related to the time-expanded-graph model in [18], where each edge has a weight instead of
an availability time. Without modeling failure probabilities, the latter model can be used to
compute a route which minimizes the earliest arrival time.

To construct the temporal graph, we first add the vertices and edges that correspond to
a single-hop ride with a vehicle. Say that, according to the schedule, some vehicle of line [
leaves station s at time ¢ and arrives at station s’ at time ¢’ . Then, there is a departure vertex
(dep, !, s,t) and an arrival vertex (arr,l,s’,t') connected by a temporal edge with availability
time t’. Next, we add the connections that correspond either to transfers or to staying in a
vehicle. In particular, there is an edge connecting every arrival vertex (arr,l, s’,t’) to every
departure vertex (dep,l’, s’,t"’) at the same station s’ with larger departure time than arrival
time (¢ > ¢'). Finally, there is a special extra vertex start. The start vertex is connected
to every departure vertex (dep,(, Sstart, ) at the start station sgart with a temporal edge at
time t — 1 equal to the starting time minus 1. This shifting by one is necessary since the
traveler traverses strictly time-respecting paths.

The temporal graph has n = 2N + 1 vertices (recall that N is the size of the schedule).
Because of the transfer edges, the number of edges of the constructed graph depends on the
largest number of vehicles that pass through a station. Let d be this maximum number of
vehicles per station. Then, the temporal graph contains m = O(Nd) edges.

Every arrival vertex (arr, [, Sqest, t) at the destination station sqest is a destination vertex.
The utility at such a destination vertex (arr,l, Sqest,t) should correspond to an estimate of the
expected utility when using the vehicle v that arrives at that vertex. Given a list of observed
arrival times t1, ..., t; for vehicle v at station sqest, compute Us, ., = (Zf Us,... (tl)> /k, the
average value of the utility function for those arrival times (Justification in Appendix A.2).

We now describe how to set the edge failure probabilities based on the probability that
vehicles are delayed. For simplicity, we assume that neither edges corresponding to traveling
(these go from a departure vertex to an arrival vertex) nor edges that correspond to staying
inside a vehicle can fail. This means that only transfer edges, which go from an arrival vertex
of some line [ to a departure vertex of some other line I’ can fail completely. Intuitively, the
probability for this edge to fail is the probability that we are too late to catch the connection.
We are given samples for the arrival time of a vehicle a, departure time of vehicle b, and
transfer time between the two platforms. Then, the failure probability for the transfer edge
assuming independent vehicle travel is estimated as the fraction of samples where the transfer
is infeasible (i.e. the arrival time plus transfer time is larger than the departure time).

Note that we do not require to model the actual delay of vehicles (which can be time-
dependent and congestion-dependent [9]), since we are only interested in the probability to
miss a connection.

4:9
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Computation of the Policy

We can apply our policy construction algorithm from Section 2.2 to our model of a transit
network. We call such a policy a robust transit network routing policy and we obtain the
following bounds, which follow from Theorem 1 since the number of edges is in O(Nd):

» Corollary 3. For a schedule of size N where at most d vehicles run through any sta-
tion, computing a robust transit network routing policy with independent edge failures takes
O(Ndlog N) time and uses O(Nd) space.

3.2 Experimental Methodology

We evaluate our algorithm by applying it to the public transportation network of the city of
Zurich (ZVV network). We investigate the performance of our routing policy on real transit
network delay data for the year 2018. Throughout all experiments, we consider a traveler
who wants to arrive at a given destination station at a given (hard) arrival deadline time z,
within some time budget b (i.e., the traveler starts the journey at time x — b in some station).
We considered three main questions for our study:

1. Quality of the solution. How well does the computed policy compare to a deterministic
schedule-based policy and how much room for improvement is there compared to an oracle
policy with perfect knowledge of the future?

2. Model error. How well do the predicted utilities (according to the policy) match the
simulated utilities when following the policy? The model error evaluates the underlying
model assumptions empirically (e.g., that edges fail independently).

3. Runtime. How does the time to compute a policy scale with the time budget b7

We evaluated these questions for time budgets between 10 and 60 minutes in 10-minute
increments. For our policies, we train an edge failure model that uses the last two weeks of
delay data before the first evaluated day.

Evaluation Approach

We evaluate the performance of the candidate policies for 38 destinations (and for each
destination for every possible departure station) and 13 random destination deadlines between
7am and 6pm.

For the evaluation, we first compute the frequency (during a 1 month period) with which
we can reach a given destination from a given source station at a given time using a given
candidate policy (and we repeat this for every such set of parameters). Then, we compute
the desired quantity (either an error value or some difference in utility) by averaging over
all source stations for the given destination. For the error metrics we take the average over
those source stations which reach the destination with nonzero probability (using the oracle
policy). Note that for the other source stations the error metric is trivially 0.

In Figures 3 — 6 we use box plots to show the results, where the dot indicates the median
of the values, the boxes indicate the lower and upper quartile, and the whiskers indicate
minima and maxima. Note that each plot summarizes data for different destination stations
and deadlines (and thus the variation is not due to probabilistic reasons only, but mainly due
to differences depending on the destination stations). See Appendix C for a more detailed
description of our experimental setup.
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3.3 Results
Quality of the Solution

Figure 3 shows that the largest improvement (with respect to the schedule-based policy)
occurs for time budgets of 30 and 40 minutes, where it is 7 — 11 percentage points depending
on the destination station and deadline. This makes sense, as for too short time budgets
there are few possible routes and there is not much to improve, while for very long time
budgets, the choices matter less as the traveler has enough slack time for delays. For the
longer configurations the median improvement is around 5 percentage points. For the very
short configurations (i.e., 10 minutes) the median improvement is only slight with 1 — 2
percentage points. Note that there are several destination stations where our improvement
over the deterministic policy is especially high (i.e., 10-40 percentage points). These are the
stations reachable by a single bus, where delays have a larger impact. Figure 4 shows that
the maximum potential for improvement over our policy lies between 2 and 8 percentage
points, where our policy is closer to optimal for longer time budgets. In conclusion, we see
significant improvements for the vast majority of configurations. Improvements are on the
order of improving the probability to be on time by around 5 — 11 percentage points.

Model Accuracy

Figure 5 shows that the mean model error is small (less than 5 percentage points for all time
budgets). With increasing time budget, the mean error decreases slightly. Note that the
mean error is negative for most of the cases, which means that the simulated utility from the
policy is better than the expected utility from the model. Since the mean model error is
relatively small, this shows that in practice, the assumption that the edges fail independently
of each other does mot significantly impact the applicability of the approach.

Note that the obtained error is nontrivial, as, interestingly, using 5 months old delay

data would yield a median error of 25 percentage points (and provide no improvement w.r.t.

the schedule-based policy): Our approach is able to capture seasonal variations in delay
distributions.
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Runtime

As seen in Figure 6, the median runtime is around 0.02 seconds for the 30 minutes time budget
and around 0.105 seconds for the 60 minutes time budget. As the time budget b increases,
we expect the runtime to grow slightly faster than proportional to b2. This is because the
number of possible transfers (and hence the size of the graph) increases quadratically with
the time budget. The observed runtimes roughly follow the predicted trend.

4 Conclusion

We showed an approach to robust adaptive routing in time-dependent networks that both
is tractable (computable in near-linear time in the size of the network) and yields useful
improvements in practice over a purely schedule-based routing despite our simplifying
assumptions (as exemplified by our analysis of travel inside a public transit network).

One next step could be to try variations on how to train the edge probabilities. It would
be interesting to investigate other types of dependencies between the edge failure distributions
and how they affect the quality of the solution.

We saw that the age of the training data affects the results. In principle, one could alter
the model every day and always use the most up-to date delay data (say over the last one
or two weeks) instead of changing the model every month as we did in our experiments.
Another extension would be to include other forms of travel, for example travel by foot. This
would not require a fundamental change in the model, but just a way to estimate travel
durations for these trips.

In terms of theory, it would be interesting to know how the error in approximating the
edge failure probabilities affects the error in the quality of the solution.

Future work could also include looking at applications of our approach for routing in
ephemeral or ad-hoc communication networks. In that context, a distributed computation of
the policy might be interesting.
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A  Correctness Proofs

We show that the computed policies indeed achieve the largest possible utility. Moreover,
to justify our transit network model, we slightly generalize our notion of utility functions
to probabilistic utility functions. Then, we show that computing an optimal policy with
respect to the expectation of this probabilistic utility suffices to obtain an optimal policy
with respect to the probabilistic utility function.

We denote the expectation of a random variable X as E[X], denote its conditional
expectation given another random variable Y with E[X|Y], and denote the probability of an
event E with P[E].

A.1 Deterministic Utility Functions

We show that the algorithm presented in Section 2.1 computes an optimal policy. The
algorithm in Section 2.2 is equivalent, as already argued therein.

» Theorem 4. The algorithm from Section 2.1 computes a policy that obtains the largest
possible expected utility for all start vertexes and start times.

Proof. The proof is by strong induction with decreasing time. The basic idea is that a policy
with largest expected utility starting from vertex i at time ¢ must try to use some edge e
leaving 7 at time larger than ¢ and use a policy that maximizes the expected utility for each
of the two possible outcomes (edge e fails or does not fail).

Let u}(t) be the largest possible expected utility of any policy starting at vertex 4 at time
t. That is, u}(t) gives the true optimal utility, whereas u;(t) is the computed utility. The
proof consists of showing the two are equal.

For any time ¢, the induction hypothesis H(t) is that for all times ¢’ > ¢ and all vertexes i,
we have that w;(t') = w}(¢). Assume that H(¢) holds for some ¢ > 0. We show that H(t — 1)
holds. Consider some vertex 4. If i is a destination vertex, then w;(t) = U;(t) = u}(¢) holds
by construction. By H(t), then u;(t') = U;(t') = u} (') holds for any ¢’ > ¢.

Next, consider the case where 7 is not a destination vertex. If there is no edge leaving
vertex i at a time larger than ¢, then u;(t) = U = uX(t), as there is no way to reach the
destination. Otherwise, the following equation is used to compute u;(¢):
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e=(i,j)€EE
T(e)>t

u;(t) = max <(1—pe) ~uj<T(e)) + pe~ui<T(e))> .

By induction hypothesis, all the utilities appearing on the right-hand side correspond to
the largest possible expected utilities:

u;i(t) = max (1 —pe) - uf (T(e)) + pe-u} (T(e)) .
e=(i,j)EE
T(e)>t
Let P, be the policy that uses edge e first and continues using the optimal policy after
that. Let U(P.) be its utility starting from vertex ¢ at time ¢. Then, we can see that:

wi(t) = max <P[F(e) =1]-E[U(P.) | F(e) = 1]

+ P[F(e) = 0] - E[U(F) | Fe) = 0])

= max E[U(P,)]
e=(i,j)€E
T(e)>t

=ui(t) ,

where the last step follows because among all possible policies P, we choose the one with
largest expected utility. Finally, note that H(t) implies that u;(¢t') = U;(¥') = uf(¢') holds
for any t' > t. <

A.2 Probabilistic Utility Functions

Recall that in our application to public transit networks in Section 3.1, we set the utility at a
destination vertex to the average utility for the observed arrival times. We proceed to justify
this as a way to compute optimal policies with respect to probabilistic utility functions.

For each destination vertex ¢, we introduce a random variable U; that gives a utility
distribution at the destination vertex i (given that we arrive at vertex ¢). In order to be
able to define the expected value of a policy with respect to such utilities, we require that
these random variables have finite expectation. Moreover, we assume that each random
variable U; is independent of the edge failure variables F'. As before, we require that there is
a smallest (deterministic) utility U° with the property that if the traveler gets stuck at a
non-destination vertex j, their utility is always U; = U°.

The expected utility of a policy with start vertex ¢ and start time t is now the expected
value of the utility function at the vertex where the traveler stops. Here, the expectation is
both over the random edge failures and the outcome of the utility functions.

We prove that if we replace the probabilistic utility functions with their expectations and
compute a policy with maximum value with respect to these deterministic utilities, we obtain
a policy with maximum expected utility with respect to the probabilistic utilities.

» Lemma 5. For every destination vertez i, set the utility U;(t) to the expected value E[U;],
(for all t). Let P be a policy with mazimum expected utility with respect to U;(t). Then, P is
a policy with mazimum expected utility with respect to the probabilistic utilities U;.
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Proof. Let the start vertex j and start time ¢ be arbitrary.

Let P’ be some policy, let U(P’) be its utility with respect to the probabilistic utilities,
and let U(P’) be its utility with respect to the deterministic utilities E[U;]. The goal is to
show that E[U(P’)] = E[U(P’)]. Let STOP(P’) be the random variable that denotes the
vertex where the traveler stops. By conditional expectation, we have that

E[U(P)] =Y E[U(P') | STop(P') = i] - P[STOP(P') = i]

eV

= ZE[UZ» | STOP(P') = i] - P[STOP(P’) = i
eV

=Y E[U;] - P[STOP(P') = i]
i€V

=Y E[U(P') | STor(P') = i] - P[STOP(P') = i]
i€V

=E[U(P)]

where we can leave out conditioning on STOP(P’) because the utilities U; do not depend
on the edge failures (which are the only thing that affects where the traveler stops). We
can see that a policy P’ that maximizes the expected utility E[U(P’)] with respect to the
deterministic utilities also maximizes the expected utility E[U(P’)] with respect to the
probabilistic utilities. <

B Last-Edge Markovian Failures

To compute an optimal policy for the case of Last-Edge-Markovian edge failures, we condition
the expected utility equations on the last edge that the traveler planned to take. Since we are
in a temporal graph, this implicitly also encodes the time at which the last edge was taken.
Notice that a decision only needs to happen at the times when there is an incident edge.

Note that the traveler is always aware of the last edge they planned to take when the
next decision needs to be taken. It would not yield any benefits for the traveler to condition
on an event the traveler cannot observe (as they could not gather the necessary information
to decide which case to use). If more global information was available, one could also
condition on the complete past at the cost of an explosion in runtime (the state space grows
exponentially with the number of past edges considered).

Proof (of Theorem 2). Let us describe the new dynamic program to compute an optimal
robust routing policy in a faulty network with Last-Edge-Markovian edge failures. The
approach is very similar to before, except that now we have different probabilities and we
cannot apply the optimization that reduced the computation time to O(1) per utility value.

The starting vertex receives a special dummy loop edge (at the starting time 0) so that
all equations have the same form. For each vertex i and each incident edge é = (k,4) or
(i, k), we define the expected utility u;(€) as the largest possible expected utility that can be
obtained starting from vertex i, given that € is the last edge which the traveler planned to
take. Furthermore, we denote by p.|s the probability that e fails conditioned on é.

The base cases are as follows. The expected utility u;(€) for the case where i is a
destination vertex i is initialized as U;(T'(€)). In any case, the expected utility u;(€) is U°
for every vertex ¢ where there is no edge e that leaves after é arrives.
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For all other cases, the expected utility equation is (by conditional expectation):

w@ = (=) w(T©) + pewlT@) ) -
T(e)>T(?)

We evaluate the dynamic program in decreasing order of the edge availability times. This
works because the expected utility of an edge € only depends on the utilities of edges e that
have strictly larger availability times, i.e., T'(e) > T'(é).

Each vertex 4 has deg(i) entries that need to be computed. Each such entry depends
on O(deg(i)) other values. Hence, the runtime is O(mlogm + ;. deg®(i)). Note that
O(ZiEV degQ(z’)) = O(mmax; deg(i)) = O(m?). >

C Experimental Setup

C.1 Data

We use the publicly available data set “Fahrzeiten 2018 der VBZ im SOLL-IST-Vergleich”!
from the VBZ (which is available via Open Data Zurich). It includes the actual (i.e. measured)
departure and arrival times for all buses and trams in the Zurich transit network. The data
also includes the scheduled times for those events. All times are reported in seconds (although
the measured accuracy may vary and is not specifically documented). Initial testing revealed
that a very small number (around 3 — 8 per day) of departure/arrival pairs are erroneous
such that the departure time is larger than the arrival time. We ignore these clearly incorrect
data points in our study.

C.2 Algorithms

All evaluated approaches follow the basic idea of modeling the problem as a temporal graph
and computing a policy (in the sense of Section 2) that maximizes the utility given some
edge failure probabilities. For training our probabilistic policy, we use the delay data over the
last two weeks before the first evaluated week.

We compare our algorithm to the deterministic policy that follows the schedule to find a
journey with the earliest arrival time. This is equivalent to computing a policy using our
algorithm by setting the failure probabilities based on the schedule times and using a utility
that is zero minus the arrival time.

Moreover, we compare our algorithm to the oracle policy which has perfect knowledge of
which connections break and which do not. This means that the failure probabilities are set
based on the actual arrival and departure times. Note that the oracle policy will never miss
a connection and always arrives on time if that is possible at all.

C.3 Evaluation

We evaluated the performance of the candidate policies for 38 destinations (and for each
destination for every possible departure station). The stations are spread throughout the
city and are of varying size. Some are exclusively tram or bus stations, others run both. The
sample includes very centrally located stations and also more remote stations that often are
terminal stations.

1 https://data.stadt-zuerich.ch/dataset/vbz_fahrzeiten_ogd_2018, on 11.04.2019
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For each destination station, we evaluated the policies during three 1-month evaluation
periods in the year 2018 (namely in February, May, and November). All three periods have
the same schedule. During this initial evaluation we focussed on 30 and 40 minute time
budgets. As the experiments did not show any qualitative differences between the three
time-periods, our final reporting focuses on the period in May (but reports on a larger variety
of time budgets, where we found larger differences).

During the implementation and pre-evaluation, we used only 18 of the evaluated destina-
tions and older data from the years 2015 and 2016. This helped us to avoid over-fitting our
implementation to the evaluation periods and chosen destination stations.

In each evaluation period, we considered the average performance of the policies over
the weekdays. For each configuration (which is given by an evaluation day, arrival deadline,
time budget, and destination station), we simulate travel using the candidate policies. In the
simulation, the feasibility of every transfer is determined based on the actual travel data for
that day. The time for a transfer is assumed to be fixed and known. When a transfer fails,
the policy is queried for a connection with time larger than the schedule time of the missed
connection.

Finally, we measured the runtime on the Euler compute cluster using nodes equipped
with Intel Xeon E5-2680 v3 processors (a 2.5 Ghz, 12-core processor with 30 MB last-level
cache). Our computations required at most 4 GB of RAM.
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