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Abstract
We aim at exploiting parallelism in shared-memory multiprocessing systems, in order to speed up the
execution time with as small redundancy in work as possible, for an elementary task that comes up
frequently as a subroutine in the daily maintenance of large-scale time-dependent graphs representing
real-world relationships or technological networks: the many-to-all time-dependent shortest paths
(MATDSP) problem. MATDSP requires the computation of one time-dependent shortest-path tree
(TDSPT) per origin-vertex and departure-time, from an arbitrary collection of pairs of origins and
departure-times, towards all reachable destinations in the graph.

Our goal is to explore the potential and highlight the limitations of amorphous data parallelism,
when dealing with MATDSP in multicore computing environments with a given amount of processing
elements and a shared memory to exploit. Apart from speeding-up execution time, consumption
of resources (and energy) is also critical. Therefore, we aim at limiting the work overhead for
solving a MATDSP instance, as measured by the overall number of arc relaxations in shortest-path
computations, while trying to minimize the overall execution time. Towards this direction, we
provide several algorithmic engineering interventions for solving MATDSP concerning: (i) the
compact representation of the instance; (ii) the choice and the improvement of the time-dependent
single-source shortest path algorithm that is used as a subroutine; (iii) the way according to which
the overall work is allocated to the processing elements; (iv) the adoption of the amorphous data
parallelism rationale, in order to avoid costly synchronization among the processing elements while
doing their own part of the work.

Our experimental evaluations, both on real-world and on synthetic benchmark instances of time-
dependent road networks, provide insight how one should organize heavy MATDSP computations,
depending on the application scenario. This insight is in some cases rather unexpected. For instance,
it is not always the case that pure data parallelism (among otherwise totally independent processors)
is the best choice for minimizing execution times. In certain cases it may be worthwhile to limit
the level of data parallelism in favor of algorithmic parallelism, in order to achieve more efficient
MATDSP computations.
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1 Introduction

Recent advances on hardware and algorithms for mining and analyzing a large data corpus,
have unveiled an entire novel era of Algorithmic Data Science, which is perceived as the
new revolution in Computer Science. Apart from the computational efficiency of executing
elementary tasks, possibly numerous times and on huge data sets, another crucial aspect
is the consumption of resources for these computations. For example, despite the huge
improvements of Natural Language Processing via the exploitation of Artificial Intelligence
and Machine Learning, there are some serious concerns about the environmental impact
of these improvements: As demonstrated in [22], training a single AI model for NLP
corresponds to the emissions of carbon of five cars in their entire lifetimes, including their
own production phases.

The emphasis of the present work is on exploiting parallelism for speeding up cautiously
(i.e., as work-efficiently as possible) the execution-time of an elementary but demanding task:
computing earliest-arrival-times and/or the corresponding paths, from each of a collection
of pairs of origins and departure-times, towards all reachable destinations, in large-scale
graphs with time-dependent arc-traversal-time functions. Such instances represent real-world
networks like road network infrastructures, social/friendship/collaboration networks, power
grids, etc. This task, called the Many-To-All Time-Dependent Shortest Path (MATDSP)
problem, appears quite often as a typical subroutine in the daily maintenance of such graphs,
e.g., for the creation of metric related metadata.

Our motivation comes from the need for fast MATDSP computations when dealing
with travel-time, landmark-based, oracles for large-scale road networks with time-dependent
arc-traversal-time functions. A typical travel-time oracle preprocesses the instance as effi-
ciently as possible, in order to create a carefully designed data structure (called travel-time
summaries) of subquadratic space requirements. This data structure will then be exploited by
a query algorithm which responds to arbitrary earliest-arrival-time queries in time sublinear
in the size of the instance, and with provable approximation guarantees about the quality
of the chosen path. During the preprocessing phase of such an oracle (e.g., of CFLAT [11]
which is to date the most efficient travel-time oracle), MATDSP is repeatedly used while pre-
computing approximate earliest-arrival-time functions, from selected origins (the landmarks)
and for carefully selected departure-times, towards all reachable destinations. The MATDSP-
algorithm for CFLAT in [11] was based on a priori splitting the overall workload of landmarks
among the available processing elements, i.e., a static, work-sharing approach. Consequently,
each processing element would employ a time-dependent shortest path subroutine to execute
its own part of the job.

An algorithm for MATDSP would need as a subroutine an algorithm for the Time-
Dependent Shortest Path (TDSP) problem of computing a time-dependent shortest-path tree
from a given origin and departure-time towards all reachable destinations. Two classical
algorithms for TDSP, at least when the instance obeys the celebrated FIFO property for the
arc-traversal-times, are:
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the time-dependent variant (TDD) [8] of Dijkstra’s (DIJ) algorithm [7], and
the time-dependent variant (TDBF) [18] of the Bellman-Ford (BF) algorithm [4, 10].

The main difference of the time-dependent variants TDD and TDBF from DIJ and BF,
respectively, concern the relaxations of arcs which can only occur as the result of an evaluation
of an arc’s traversal-time function at a given departure-time from its tail that is depicted
by its current label. For the time-independent case (static arc-costs), several variants and
hybrids of the classical DIJ and BF algorithms have appeared in the literature. Especially
for DIJ, numerous priority queues have been also considered, e.g. see [12] and references
therein. We proceed with an analogous experiment for TDD, on real-world time-dependent
road network instances.

Our first contribution is an experimental evaluation of our own implementations of the
TDD algorithm with (i) binary-heap (TDDbh), (ii) implicit-priority heap (TDDph) and (iii)
sequence heap (TDDsh) in real-world road-network instances. Our experiments demonstrate
that TDDsh is superior to both TDDbh and TDDph, at least for workloads coming from
real-world road networks.

A notable hybrid of DIJ and BF is the Delta-Stepping (DS) algorithm [14], which connects
smoothly these two extremes. Ideally, one would like to trade-off as smoothly as possible the
(optimal) work of the essentially sequential DIJ algorithm, with the optimal completion time
of the fully parallelizable BF algorithm. This is exactly what DS is doing, by organizing
the arc relaxation requests to be served in a more loose partial order than that of DIJ, but
certainly in a more structured way than BF which considers all the arc relaxation requests
in an arbitrary order (which is exactly its main advantage with respect to parallelization).
We adapt the DS algorithm to work for FIFO-abiding TDSP instances.

Our second contribution is the first (to our knowledge) implementation and experimental
evaluation of a time-dependent variant (TDDS) of the DS algorithm. The experimental
evaluation demonstrates that TDDS is more efficient than TDDsh, at least for road network
instances.

When trying to exploit parallelism for MATDSP, there are several aspects one should
take into account. The challenge is, given a small number P of parallel computing nodes, to
achieve as much speedup as possible (ideally up to P times) in execution-time, compared to
the most efficient sequential execution-time as a subroutine, consuming as small overhead in
work as possible. Although many papers in the literature deal with speeding up many-to-all
shortest path computations in time-independent instances, most of them exploit either
massively-parallel architectures or GPU-computing (e.g., [6, 5]) to speedup the wallclock
execution time, regardless of the work efficiency. On the other hand, our own approach tries
to achieve as much speedup as possible, for a given amount of P = 24 threads at our disposal,
approaching the optimum speedup of 24 as much as possible, and also with a small overhead
in the overall work as measured by the number of arc-relaxation requests (the elementary
operations in label-setting/correcting algorithms for shortest paths).

A parallel MATDSP algorithm must make two crucial strategic decisions: (i) allocate
the overall work to the processing elements either statically (i.e., at the beginning of the
computation) at the cost of possibly unbalanced portions of work, or dynamically (i.e., at
runtime) at the cost of centrally controlling the pending work to be allocated; (ii) either to
abide with the partial ordering of the arc-relaxation requests (as the sequential variants of
TDD and TDDS would do), or else allow for cautious violations of these orderings, as is done
according to the amorphous-data-parallelism (ADP) rationale [19].

Our third contribution is the consideration of the ADP rationale in the parallel imple-
mentations of both the TDDS algorithm for MATDSP, and the entire preprocessing phase of
the CFLAT oracle.
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Our parallel implementation of TDDS was based on the ADP implementation of DS in the
Galois system [2, 16, 17], which was for time-independent shortest-path tree computations.
We also applied the ADP and dynamic work allocation rationales to the preprocessing phase
(and the query algorithm) of the CFLAT oracle, leading to a new, more efficient version
which we call the OFLAT oracle. The workload in the preprocessing phase is always allocated
dynamically (i.e., at runtime), both to processes (for landmarks) and threads (for chunks of
arc-relaxation requests); as for the ADP rationale, it is adopted for the entire preprocessing
phase, not just for the parallel implementation of TDDS. Moreover, we used static allocation
of equal work shares for generic MATDSP instances, but fully dynamic allocation of work for
the preprocesing phase of the OFLAT oracle since the exact work load cannot be accurately
predicted in this latter case.

For our experimental evaluations we used two real-world road networks, plus one synthetic
benchmark instance, with arc-traversal-time functions to determine the time-dependent cost
of traversing each arc in the network at a particular time of the day. The real-world instances
represent the metropolitan area of Berlin (BER) and the German road network (GER),
respectively. The synthetic instance represents the road network of Europe (EUR). The
graphs are assumed to be fixed, in the sense that the input data does not change. We have
experimentally evaluated the performances of the following MATDSP solvers:

The sequential MATDSP solvers with TDDbh, TDDph, TDDsh as TDSP subroutines: It
turns out that, at least for random workload instances in road networks, TDDsh is the
most time-efficient subroutine for a work-optimal sequential MATDSP solver.
The sequential MATDSP solvers with TDDsh and TDDS as TDSP subroutines: TDDS
is already more time-efficient than TDDsh, achieving speedups ranging from 1.036 for
BER, 1.042 for GER, and 1.092 for EUR.
A parallel MATDSP solver based on the ADP rationale, that employs P/Q independent
processes (i.e., executables), each running an ADP variant of TDDS with Q threads,
called TDDS(Q), as a subroutine. Each process gets a priori (i.e., statically) its own
share of the the workload: the achieved speedups range from 18.86 for BER, 18.73 for
GER and 16.56 for EUR, compared to our best sequential MATDSP solver using the
TDDS(1) subroutine.

Our experimental evaluation for the preprocessing phase of OFLAT demonstrates that it
actually pays off to combine data-parallelism with task-parallelism. For example, compared
to the pure data-parallelism used in the original CFLAT oracle, the use of P/Q independent
processes, each with its own dynamically allocated load share to serve with Q threads, we
achieved (for appropriate choices of Q) further speedups in preprocessing by 1.46 times in
BER, 1.38 times in GER and 1.49 times in EUR.

As for our trave-ltime query algorithm, OFCA, it is worth mentioning that parallelism
only pays off for very large instances. For example, in the EUR instance OFCA achieves
less than half the query time of CFCA [11], although it is still inferior to the query time of
KaTCH [3], essentially due to space limitations. On the other hand, for the instances of
BER and GER, OFCA is much faster than both CFCA and KaTCH.

2 Preliminaries and Notation

Let G = (V,E) be a directed graph representing a road network. Such a graph is typ-
ically sparse (in particular, with constant maximum degree) and non-planar. ∀uv ∈ E,
D[uv] : [0, T ) 7→ R≥ 0 is a continuous, piecewise-linear (pwl) function providing the arc-
traversal-times from the tail u to the head v, for departure times from a given period
[0, T ). It is assumed that this function has minimum slope greater than −1, so as to
abide with the strict FIFO (a.k.a. non-overtaking) property of road networks. ∀uv ∈ E,
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∀tu ∈ [0, T ), Arr[uv](tu) = tu + D[uv](tu) is the corresponding function providing arc-
arrival-times at the head v, for different departure-times from u. Let Pu,v denote all
the (u, v)-paths in G. ∀π = 〈x0x1, x1x2, . . . , xk−1xk〉 ∈ Pu,v, ∀tu ∈ [0, T ), Arr[π](tu) =
Arr[xk−1xk]( · · · Arr[x0x1](tu) · · · ) is the function of path-arrival-times from the ori-
gin u = x0 to the destination v = xk, when traveling via the (u, v)-path π. D[π](tu) =
Arr[π](tu) − tu is the corresponding function of path-travel-times between u and v via π.
∀tu ∈ [0, T ), Arr[u, v](tu) = minπ∈Pu,v

{ Arr[π](tu) } is the function of earliest-arrival-times,
from the origin u to the destination v. D[u, v](tu) = Arr[u, v](tu) − tu is the correspond-
ing function of minimum-travel-times from u to v, not necessarily always via the same
(u, v)-path. ∀ε > 0, the function ∆[u, v] s.t. D[u, v](tu) ≤ ∆[u, v](tu) ≤ (1 + ε) ·D[u, v](tu)
∀tu ∈ [0, T ), is a (1 + ε) upper-approximation of D[u, v]. Analogously, the function ∆[u, v] s.t.
D[u, v](tu)/(1 + ε) ≤ ∆[u, v](tu) ≤ D[u, v](tu) ∀tu ∈ [0, T ), is a (1 + ε) lower-approximation
to D[u, v]. For sake of succinctness in their representations, both ∆[u, v] and ∆[u, v] are also
required to be continuous and pwl functions.

3 Algorithm-Engineering Interventions

In this section we provide a detailed overview of the main algorithmic-engineering interventions
in order to exploit parallelism towards speeding up the execution times of either generic
MATDSP computations, or the preprocessing phase (and secondarily the query algorithm)
of the CFLAT oracle, without causing too much additional computational effort. We start
with the presentation of the interventions concerning our first application scenario for generic
MATDSP computations in time-dependent road networks. We then explain some additional
interventions which are necessary for the work-efficient parallelization of the preprocessing
phase in the CFLAT oracle. In particular, as we shall explain later, we had to redesign
entirely the preprocessing phase, not just the MATDSP subroutine, in order to abide with
the rationales of dynamic work allocation and amorphous-data-parallelism.

3.1 Algorithm-Engineering Interventions for Generic MATDSP
Computations

In order to provide a time- and work-efficient parallel algorithm for generic MATDSP
computations, we proceeded with the following algorithmic-engineering interventions:

3.1.1 Graph Representation
We reconsidered the representation of the time-dependent graph instances. Rather than
using the graph type of PGL [13], a quite robust data type that was used in CFLAT’s
implementation, which aims to support dynamic updates of the graph structure, we adopted
here its static version (with no empty slots), which coincides with the FORWARD-STAR
graph data type [1]. The reason for this decision was that during the preprocessing phase of
the oracle, the underlying road network infrastructure does not undergo any alteration. This
change had a noticeable improvement on the memory consumption and the cache hit rate.

3.1.2 Optimizing the implementation of TDD
It is well-known that the (theoretically optimal) Fibonacci heap is not the best choice for
an implementation of DIJ (or any of its variants), due to both the complications in its own
implementation, and the fact that other priority queues (e.g., implicit binary heaps) are
known to perform better in practice. Indeed, there have been numerous discussions on the
choice of an efficient priority queue for DIJ (e.g. see [12] and references therein).

ATMOS 2019



9:6 Exploiting Amorphous Data Parallelism to Speed-Up Massive TDSP Computations

We departed from the standard implementation of TDD with an implicit binary heap
(TDDbh), and tested also its execution time with the implicit pairing heap1 (TDDph variant)
and Sander’s implementation [20] of the sequence heap2 (TDDsh variant). Our experiments
demonstrated that, at least for time-dependent road-network workloads, it definitely pays off
to adopt TDDsh as a work-optimal TDSP subroutine.

3.1.3 Alternative (sequential) TDSP Algorithms
We considered the substitution of TDD with the, quite efficient in practice, (sequential)
TDDS algorithm, as a TDSP subroutine of our sequential MATDSP algorithm. As already
mentioned, TDDS is a controllable label-correcting algorithm that allows the relaxation
of arcs in a more loose order than that of TDD. The nice thing about TDDS is that it
uses a bucket-based structure for the pending arc relaxations, without enforcing too much
additional work for determining their total order because of its label-correcting nature within
each bucket. Our experimental evaluation demonstrated a clear advantage of the (sequential)
TDDS algorithm over the best implementation of TDD, which is TDDsh.

From now on, for sake of comparison, we use our most efficient implementation of a
sequential MATDSP algorithm, which uses TDDS as a TDSP subroutine. All speedups due
to parallelism are compared to the performance of this sequential MATDSP algorithm. As
for the work overheads, these are compared to the optimal work of the sequential MATDSP
algorithm with TDDsh as a subroutine.

3.1.4 Synchronous vs. Asynchronous Parallelism
A major burden in shared-memory environments is that one may have to periodically execute
costly barrier-synchronization (SYNC) operations among the threads, when the parallelism
is not only on data but also within the tasks. The parallel variants (with Q threads) of
label-correcting algorithms for TDSP, e.g., TDBF(Q) and TDDS(Q), have a significant
advantage: When an arc is tentatively relaxed, although it is not yet one of the arcs that
TDD would choose next for relaxation, this (possibly redundant) tentative work cannot harm
the correctness of the TDSP computation. Of course, the overall work is also a commodity
that needs to be consumed with caution, especially when one is provided with a rather limited
number of computational resources. In order to avoid as much as possible the need for SYNC
operations, but without suffering too many unnecessary computations as in TDBF(Q), we
adopt the rationale of amorphous-data-parallelism (ADP) [19] for our parallel implementation
TDDS(Q) of TDDS. ADP lets each thread within a parallel algorithm, like TDBF(Q) or
TDDS(Q), proceed with its own (eagerly allocated to it) computations independently of the
other threads. The only indirect SYNC is done via the common pool of pending work, which
is centrally handled in the shared memory of the system. TDBF(Q) would create a single
pool of arc-relaxation requests, and each idle processor would then request to be allocated
chunks of requests from this pool. TDDS(Q), on the other hand, organizes these pending
arc-relaxation requests in buckets of different sizes (representing travel-time distances of the
arcs’ tails from the origin), so that arcs which emerge from vertices belonging to buckets
closer to the origin, are relaxed before arcs which emanate from vertices in buckets that are
further away. Nevertheless, SYNC operations are limited on the threads’ time-dependent

1 Source code: https://code.google.com/archive/p/priority-queue-testing/.
2 Source code: http://algo2.iti.kit.edu/sanders/programs/spq/.
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SPT3 frontiers. Each thread runs at its own speed and simply adopts this partial order for
the arcs which are allocated to it. The only care that is taken is that every idle thread always
pops from the shared memory a chunk of pending arc-relaxation requests for arcs whose tails
belong to the first (in order) non-empty shared bucket.

3.1.5 Data vs. Task Parallelism

When a single process (i.e., executable) uses all the available threads (i.e., Q = P ) for
conducting a parallel computation, a major bottleneck is the shared-memory that is used by
all of them. The more threads an algorithm has at its disposal for a parallel computation, the
more likely it becomes to have conflicts in shared-memory access, e.g., due to false sharing
and collisions in atomic-write operations. To tackle this difficulty, one could use P/Q > 1
processes, each with its own dedicated fraction of the shared-memory and Q threads at its
disposal, leading to less bottleneck while accessing the shared-memory (which is fragmented
among the processes). An extreme point (corresponding to pure data-parallelism) would
be to have P independent processes, each running with a single thread at its disposal. For
Q > 1 threads per process (and thus, less than P independent processes), there is some
sort of blending between (i) data-parallelism among the processes which statically (for
MATDSP) or dynamically (for CFLAT) share the overall workload, and (ii) task-parallelism
within each process since an ADP implementation , TDDS(Q), of the TDDS algorithm as a
TDSP algorithm.

On the contrary, for the CFLAT preprocessing scenario, even the allocation of work
among the processes will be done dynamically, as it will be explained later.

We have experimented the hybrid approach between pure data-parallelism (Q = 1)
and task-parallelism (Q > 1), for both for generic MATDSP computations, and for the
preprocessing phase of CFLAT. In both cases we observed that it pays off to use more
processes each with fewer threads, rather than a single process with all the available threads
at its disposal.

3.2 Further Algorithm-Engineering Interventions for CFLAT

In this subsection we reconsider the parallelization of the preprocessing phase in the CFLAT
oracle[11]. Our goal is to create an ADP-compliant variant of it, which also handles the
allocation of work in a dynamic way. This variant is called OFLAT. Consequently, we
also considered the exploitation of our parallel TDSP subroutine TDDS(Q) for the query
algorithm of the oracle, called OFCA.

We focus on the main building block of CFLAT’s preprocessing phase, which is the
approximation algorithm CTRAP in CFLAT to preprocess travel-time functions from selected
landmark-vertices towards all reachable destinations from them in the network. We proceed
with the presentation of a novel approximation algorithm, called OTRAP, which adopts
both the dynamic task-allocation and the ADP rationales in its implementation. Moreover,
a different methodology is considered for creating upper-approximating functions between
consecutive samples of the unknown travel-time functions.

3 In this work, when referring to an SPT we mean to say a time-dependent shortest SPT.
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3.2.1 OTRAP: ADP Approximation Algorithm For Travel-Time
Summaries

The goal of OTRAP is to compute continuous, piecewise-linear functions ∆[`, v] : [0, T ) 7→
R≥ 0 which are upper-approximations of an unknown minimum-travel-time function D[`, v]
from a given landmark (the origin) to each reachable destination v ∈ V . D[`, v] can be
efficiently sampled at specific departure-time points (breakpoints). We target for a sampling
procedure that will produce a reasonable amount of breakpoints per approximating function,
compared to any other upper-approximation that respects a required approximation guarantee
of 1 + ε, or equivalently, a relative error of at most ε. Towards this direction, OTRAP mimics
the steps of CTRAP, but with some notable differences. In particular, given a targeted
relative error of ε > 0, the algorithm starts from ts = 0 and time-horizon tf = T , and
keeps sampling properly selected departure-times tnext ∈ [ts, tf ) from `, until we can be
sure that the already constructed upper-approximating travel-time functions from ` provide
approximation guarantees no more than 1 + ε. The resulting oracle, which bases its own
preproccesing on the OTRAP algorithm, is called OFLAT.

We proceed with a more detailed presentation of OTRAP, which is the most notable
difference between OFLAT and CFLAT. OTRAP starts with the computation of an SPT
T f` from `, under the free-flow metric according to which each arc uv ∈ E has weight
w[uv] = mint∈[0,T ){ D[uv](t) }. Assume inductively that we have already determined the
required samples of departure-times and have constructed the corresponding time-dependent
SPTs, by calling a TDSP algorithm from our origin `, up to a last sample ts ∈ [0, T ). Assume
also that tf ∈ (ts, T ] is the current time-horizon of interest to our approximation (initially we
set ts = 0 and tf = T ). We have to decide whether to consider a new sample of departure-time
from ` within (ts, tf ). For this, exactly as in CTRAP, we need two approximating functions
of D[`, v] (per destination v) within [ts, tf ), a lower-approximating function ∆[`, v] and an
upper-approximating function ∆[`, v].

We begin with the construction of the upper-approximating functions. We first traverse
all the tree arcs of the time-dependent SPT T`(ts), in BFS order, so as to compute per
arc uv ∈ T`(ts) an upper-bounding function A[πv](t) of the path-arrival-time function at
v, Arr[πv](t), where πv is the unique (`, v)-path in T`(ts). This is done in two steps: We
construct, as a function composition, the function Â[πv](t) = A[πu](t) +D[uv](A[πu](t)) =
Arr[uv](A[πu](t)) of the already known (via the BFS visit order of the tree arcs on T`(ts))
upper-bounding function A[πu](t), starting from A[πl](t) = A[πl](t) = t, and the actual
arc-arrival-time function Arr[uv](t). The function ∆̂[πv](t) = Â[πv](t)−t is already an upper-
approximation of D[`, v] within [ts, tf ), but with possibly too many breakpoints. We thus
construct an upper-bounding function ∆[πv](t) of ∆̂[πv](t), within the considered departure-
times subinterval [ts, tf ), which only imposes at most 4 breakpoints, the two extreme points
and at most two intermediate breakpoints. In particular, ∆[πv](t) has a trapezoidal shape,
as the lower-envelope of three lines: The constant line, parallel to the departure-times axis,
that is tangent to the maximum point of D̂[πv](t) within [ts, tf ). Let tm ∈ (v) be the
corresponding departure-time for this maximum value of D̂[πv]. We construct two more
lines: The first line passes via the point ( ts, ∆̂[πv](ts) ) and is an upper-bounding tangent
line to the left part of ∆̂[πv](t), i.e., for the subinterval [ts, tm(v)]. The second line passes
via the point ( tf , ∆̂[πv](tf ) ) and is also an upper-bounding tangent line, to the right part
of ∆̂[πv](t) this time, i.e., for the subinterval [tm(v), tf ). The required upper-approximating
function ∆[πv](t), with the (at most) 4 breakpoints, is the lower-envelope of these three lines
(cf. the solid-orange pwl function in Figure 1).



S. Kontogiannis, A. Papadopoulos, A. Paraskevopoulos, and C. Zaroliagis 9:9

As for the lower-approximating functions ∆[`, v] within [ts, tf ), these are constructed
a bit differently from CTRAP: We consider a single line passing by ( ts, D[πv](ts) ) and
decreasing at slope −Λmin = −1 (i.e., the smallest possible slope, given the FIFO property
for travel-time functions), and the constant line representing the free-flow distance w[πv]
from ` to v. Then, ∆[`, v] is the upper-envelope of these two lines (cf. the solid-green pwl
function in Figure 1).

Figure 1 The construction of the upper- and lower-approximating functions by OTRAP. Solid
lines represent the pwl approximations. The upper-approximating function ∆̂[πv] is defined as
the composition of the (already constructed, due to BFS order) function ∆[πu] and the exact
arc-traversal-time function D[uv]. The relative error at time t ∈ [ts, tf ) is defined as follows:
RelError[v](t) = ( ∆[πv](t)−∆[`, v](t) ) / ∆[`, v](t). The failure-time for v is: tfail[v] = inf{t >
ts : RelError[v](t) > ε}.

Given the two approximating functions per destination v ∈ V , OTRAP’s next step is
to determine the earliest departure time tfail[v] > ts at which these two functions induce
a relative error larger than ε. The next departure-time sample tnext is then equal to the
minimum failure-time, tnext = minv∈V { tfail[v] }, among all reachable destinations from
`. OTRAP then moves ts to tnext, updates the time-horizon tf appropriately (see next
subsection), and repeats until no destination has failure time within [0, T ).

In order to have fast access to the value of tnext, the OTRAP algorithm maintains a
vector failBucket of failure-time slots, with index 1, 2, . . . , T . Each destination v ∈ V

is then assigned to the bucket i = btfail[v]c. The earliest failure time is determined by
the smallest index of a non-empty bucket. Moreover, for each sampled departure-time,
rather than constructing a complete SPT, we only target at some active destinations whose
current failure times (and possibly also the ones after the computation of the new SPT)
are more likely to affect the determination of the next sampling point. In particular, if
inext is the next non-empty bucket, the vertices having the current earliest failure times
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tfail[v] ∈ [inext, inext + 1) are marked as active destinations. The next sampling needs to
be done at tnext = minv∈failBucket[inext]{tfail[v]}, constructing the next time-dependent
SPT from (`, tnext) until all active destinations are settled. Their settlement signifies an
early-stopping condition for the TDSP algorithm (see Figure 2).

Let Dmax be the maximum travel-time of these active destinations in the new tree. Some
additional vertices, having failure-time less than ζ + tnext < T , and travel-time less than
γ ·Dmax, for a given parameter γ ≥ 1, are also marked as active destinations (red nodes in
Figure 2). The inclusion of those “nearby” destinations reduces OTRAP’s computational cost,
because it is most likely that those destinations are going to take part in the following sampling
steps. The execution of the TDSP algorithm from (`, tnext) then resumes, and continues
until all these additional active destinations also become settled. The new subinterval of
departure times to consider will be [ ts := tnext, tf := min{tnext + δ · Dmax, T} ), where
δ ≥ 1 determines the width of the departure-times domain for the upper-approximating
path-travel-time functions. The parameters γ and ζ adjust the depth of the shortest path
tree that is required to be built, whereas δ adjusts the width of the departure-times interval,
for the the upper-bounding functions. The algorithm terminates when all the destinations
from ` have failure-times beyond T .

Figure 2 The SPT sampling is done at the earliest failure-time point, among the vertices’ failure-
times along their paths from ` in T`(ts), in order to preserve the upper approximation guarantee.
Red nodes denote vertices with earlier failure-time, which require an earlier sampling. Orange nodes
denote vertices that have later failure-times, and thus require a sampling at a later step. Green
nodes denote vertices that have achieved the required upper-approximation of the min-travel-time
function over T and thus they don’t need further sampling.

As for the space requirements, OTRAP follows the same lossless compression scheme
for the output data as in the case of CTRAP, with an additional procedure on the storage
of predecessor-vertices’ IDs: In place of each predecessor-vertex ID, we choose to store the
position-index of the corresponding arc in the vertex’s list of incoming arcs. Moreover, the
predecessor-arcs indices are stored in bit-field arrays, thus further reducing the required
number of bytes.

3.2.1.1 Dynamic Scheduling of Work

Due to the label-setting nature of TDDS(Q), and the the early termination of the sampling
procedure when computing the upper-approximating functions ∆[`, v](t), the actual work
that corresponds to serving each of the landmarks during the preprocessing phase is not
known a priori. For this reason, we chose to dynamically allocate work during runtime of
OTRAP. We consider two different approaches towards this direction:
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Exploitation of joint data- and task-parallelism: We consider a number P/Q of independ-
ent processes (executables), each running on its own copy of the input. Each process
claims pending (i.e., not yet assigned to other processes) landmarks dynamically, ex-
ploiting system routines for handling file descriptors: Each preprocessed information
on behalf of a particular landmark has to eventually be stored in a file by the process
handling it. Therefore, when a process becomes idle it claims a new landmark by first
checking whether this file already exists. If not, it opens it and locks it for exclusive-write
access. In order to avoid claiming already served landmarks, each process considers the
landmarks in its own random order. Each process employs Q threads for serving the
landmarks assigned to it, independently of the other processes.
Dynamic allocation of work: Within each process (with Q threads at its disposal), every
landmark is assigned dynamically to a unique thread that becomes idle, so that the overall
work load is shared among the available threads as evenly as possible. In particular, each
thread that becomes idle requests for an available landmark (i.e., not yet being assigned
to another thread), and then calls OTRAP to preprocess it. Except for the indirect
synchronization via the allocation of pending landmarks to idle threads, each thread’s
work is done independently of the other threads. The TDSP subroutine employed by
OTRAP is the time-dependent and amorphous-data-parallel variant TDDS(Q) of the DS
algorithm. OTRAP also makes a breadth-first-search (BFS) traversal of the arcs in the
produced SPT, in ADP fashion. An amorphous-data-parallel variant BFS(Q) of a BFS
traversal was implemented, which starts from the landmark ` at which the current SPT is
routed. The traversal of all the destination vertices in the same BFS level can clearly be
done independently and in parallel, offering an equivalent result as in the sequential BFS
traversal. Even destinations at different levels can be processed independently of each
other, provided that all their ancestors in the BFS tree have already been processed. This
is exactly what is exploited by our ADP implementation BFS(Q) of BFS: Each thread is
allowed to move deeper in the tree, so long as it is assured that all the predecessor have
already been traversed.

3.2.1.2 Other improvements w.r.t. OTRAP

The OTRAP approximation algorithm achieves even better execution times when we apply
the following classical optimizations for shortest-path computations:

Vertex reordering: Similar to well-known observations concerning performance enhance-
ments of DIJ [6, 21], we reorder the vertices of the graph so that neighboring vertices
are actually located in adjacent memory blocks. This way, the Cache misses are reduced
and the execution times are further decreased. For this re-ordering we used a variant of
the depth first search (DFS) traversal of the graph: in each step we visit and insert into
a LIFO queue all the adjacent vertices from the current vertex just popped out of the
queue. That is, we adopt a traversal of vertices moving as much as possible in-depth first,
and following a local-breadth scan (i.e., among sibling vertices) only when further depth
is not possible for the moment. This order achieves a significant reduction on the Cache
misses of both DIJ and DS(Q).
Cache-friendly and compact data allocation: We order all the required variables (e.g.,
distances, predecessors, and sample containers) of both the OFCA (query) and OTRAP
(preprocessing) algorithms for each vertex and arc, in order to enforce a contiguous
memory allocation and thus reduce as much as possible the Cache misses whenever the
algorithm needs to access the memory.
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3.2.2 OFCA: The ADP query algorithm of OFLAT
The query algorithm OFCA of OFLAT is quite similar to the query algorithm CFCA of
CFLAT, essentially following three main steps: In Step 1, a small time-dependent SPT ball is
grown from the query’s origin pair (o, to), until a given number of N ∈ {1, 2, 4, 6} landmarks
are settled. In step 2, starting from the query’s destination d, we recursively move backwards
towards the origin o, following the preprocessed tree arcs in all the time-dependent trees
routed at these settled landmarks, until some of the settled vertices from step 1 is reached.
Step 3, finally, runs a TDSP subroutine in the subgraph induced by the arcs that have been
marked in Step 2, in order to determine the best time-dependent od-path in this subgraph.

The difference between CFCA and OFCA lies only in Steps 1 and 3, and has to do
with the choice of the TDSP subroutine. CFCA always uses the time-dependent variant of
TDDbh, whereas OFCA considers either TDDsh or TDDS(Q), depending on the size of the
network, which determines whether it really pays off to parallelize the query algorithm.

4 Experiments

4.1 Experimental Setup
All our algorithms were implemented in C++ (GNU GCC version 5.4.0) and Ubuntu Linux
(16.04 LTS). All our experiments were conducted on a dual 6-core Intel Xeon CPU E5-2643v3
3.40GHz machine, with 128GB of RAM and 20MB SmartCache and 2 hardware threads per
core. We used all 24 threads for the parallelization of both the MATDSP computation and
the preprocessing phase of the CFLAT oracle.

Two real-world instances (BER,GER) and one synthetic instance (EUR) of road networks
are used in our experiments, which have been provided to us for scientific purposes and are
typical benchmarks for time-dependent speedup techniques. The instance of Berlin, kindly
provided by TomTom in the frame of common R&D projects, describes the arc-travel-time
functions taken from historical data of a typical working day (Tuesday). The instance of
Germany, kindly provided by PTV AG in the frame of common R&D projects, describes
a typical working day (TUE-WED-THU). The instance of Europe is based on the (static)
road network instance of Western Europe provided in the 9th DIMACS challenge, which was
equipped with synthetically generated travel-time functions [15]. Table 1 summarizes the
description of the three benchmark instances:

Table 1 Statistics of the benchmark instances.

Instance #vertices #arcs
BER 473.253 1.126.468
GER 4.692.091 10.805.429
EUR 18.010.173 42.188.664

4.2 Testing TDD with different priority queues in MATDSP Instances
It was common knowledge for many years that implicit binary heaps are quite efficient, and
definitely more efficient than the theoretically optimal Fibonacci heaps for implementing DIJ.
Nevertheless, recent studies have argued about the superiority of other heap variants, such as
the implicit pairing heaps and the sequence heaps. For a comprehensive comparison of (static)
DIJ’s performance on various workloads, when using different priority queue implementations,
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the reader is referred to the excellent survey [12]. In our own experiment, we tested TDD’s
performance w.r.t. three different priority queues, for randomly created generic MATDSP
workloads that emerge in large-scale road networks. In particular, we have experimentally
tested generic MTDASP computations, with the following variants of TDD:

TDDbh, which is equipped with our own implementation of an implicit binary heap;
TDDph, which uses an implicit pairing heap [9], as provided by [12]; and
TDDsh, which uses Sanders’ implementation of a sequence heap [20].

We have always activated the DFS ordering of the vertices and the Cache-friendliness
optimizations (cf. Section 3). We tested the construction of complete SPTsfrom randomly
selected (origin,departure-time) pairs. The reported times are average times among inde-
pendent random selections of (origin,departure-time) pairs. The sequence heap appears to
have a clear advantage. Table 2 presents the results of our experimentation.

Table 2 TDD’s implementation with different (implicit) priority queues: TDDbh for binary heap,
TDDph for pairing heap, and TDDsh for sequence heap with fixed weight range (i.e., travel-times
diameter) precomputed. Three MATDSP instances were created, with 1000 random queries for
BER and GER, and with 100 random queries for EUR. For each query a complete time-dependent
SPT was constructed. Only one thread was used for each of these experiments. In all cases the
Cache-Friendliness and DFS ordering optimizations were used.

4.3 Comparing Sequential and Parallel TDSP Subroutines in MATDSP
Instances

Already for workloads on time-independent large-scale instances it was evident that the DS
algorithm is in practice more efficient than DIJ. We conducted an analogous experiment for
the time-dependent variants of the two alrogithms, when used as subroutines of a sequential
MATDSP solver.

As it is shown in the first two rows of Table 3, TDDS(1) is a more efficient algorithm
compared to our best implementation TDDsh of the time-dependent Dijkstra’s algorithm
with a sequence heap. The speedups of TDDS(1) over TDDsh ranges from 1.0363 for BER,
to 1.042 for GER and 1.092 for EUR (these times are the inverses of the reported values the
the last three columns of Row 1, in Table 3).

From now on we consider the execution-times reported in Row 2 of Table 3 as our baseline
sequential performance, for comparison with the performances of the parallel MATDSP
solvers that will be presented shortly. As demonstrated in Row 3 of Table 3, for the small BER
instance the fastest MATDSP algorithm uses 24 parallel processes, each using a single thread
for running its own TDDsh computations. On the other hand, Row 6 shows demonstrates
that for the larger instanecs of GER and EUR the best MATDSP algorithm uses only
4 processes, each employing 6 threads for calling TDDS(6). I.e., it actually pays off to
combine data-parallelism, e.g. statically splitting the workload among the 4 processes) with
task-parallelism, e.g. using 6 threads for the execution of the ADP implementation TDDS(6).
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Table 3 Comparing execution times of generic MATDSP instances. Rows 1 and 2 concern
sequential MATDSP algorithms (i.e., running on a single thread), which use TDDsh and TDDS as
their TDSP subroutines, respectively. The times reported in Row 2 are used as the ground-truth
for comparing the parallel algorithms’ speedups over our best sequential MATDSP solver. Row 3
presents our fastest parallel MATDSP algorithm for BER, which employs 24 independent processes
with a single thread. Row 6 and presents our fastest parallel MATDSP algorithm for BER, which
employs 4 independent processes with 6 threads per process, for the instances of GER and EUR.

The observed speedups of our parallel MATDSP algorithms compared to our best sequential
MATDSP algorithm, are 18.86 times for BER, 18.73 times for GER, and 16.558 times for
EUR. It is reminded that for these generic MATDSP instances the workload is statically split
among the different processes. It is also noted that the parallel implementation TDDS(Q)
(for Q > 1) abides with the ADP rationale.

4.4 Sensitivity of TDDS(Q) to the choice of chunk sizes in MATDSP
Instances

Since the ADP implementation of TDDS(Q) is dependent on the sizes of the chunks (with
pending relaxation requests) that we consider, we conducted MATDSP experiments consisting
of 1, 000 randomly chosen (origin,departure-time) pairs, each of which is allocated to one
of the P/Q processes (different executables) for construction of a complete time-dependent
SPT. These processes get statically their own shares of work (i.e., (Q/P ) · 1000 pairs each).

Each process then employs the ADP implementation TDDS(Q) to serve its own workload
sequentially. The allocation of chunks of arc-relaxation requests to the Q threads of the
process is done dynamically this time: each thread that becomes idle claims the next available
chunk of pending requests. Figure 3 shows the results of this experiment in BER and GER
instances. In both cases the chunk size achieving the optimal execution time is decreasing
with the number of processes that we use. This makes sense, since the more threads a process
has at its disposal, the smaller chunks it should use in order to avoid having idle threads with
no task to be allocated to them. It is evident also that the larger the instance, the larger the
chunk size that we should use for TDDS(Q). It is finally noted that there is no significant
variation of the overall work to be done (measured by the number of arc relaxations), as a
function of the chunk size.

4.5 Data-Parallelism vs. Task-Parallelism in MATDSP Instances
Our next experiment was to determine the trade-off between pure data parallelism (that is
exploited by 24 processes each running TDDsh), and algorithmic parallelism which is also
exploited when using TDDS(Q): the work is (statically) among P/Q processes, each of them
employs TDDS(Q) for serving its own work load, with the chunks-load again dynamically
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Figure 3 Experimenting with chunk sizes of TDDS(Q) when constructing 1000 random SPTs.

allocated to the Q threads within DS(Q). We have run an experiment of 1, 000 random SPT
queries in BER, and 1, 000 random SPT queries in GER. Our first observation is that the
best execution times for MATDSP with TDDS(Q) is indeed when Q > 1, in both cases.
This implies that it pays off, at least for generic MATDSP instances, with TDDS(Q) as a
subroutine, to mix data parallelism (i.e., how the queries are split among the processes) with
algorithmic parallelism where each of the queries is handled by TDDS(Q). For the BER
instance the best choice is to use 12 processes with 2 threads each, whereas for GER the best
choice is to use only 4 processes with 6 threads each. When compared with the pure data-
parallelism of 24 processes each using TDDsh (recall that TDDsh is superior to TDDS(1)),
although this latter scenario is preferable for BER (the speedup of 12×TDDS(2) processes
is less than 1), it is inferior to the scenario 4×TDDS(6) in the case of GER, achieving a
speedup of more than 1.268. At the same time, the work overhead of both 12xTDDS(2) in
BER and 4xTDDS(6) in GER over 24xTDDsh(1)’s optimal work, as measured by the total
number of arc-relaxation requests, is at most 1.08.

Table 4 Comparison of using TDDsh or TDDS(Q), during the execution of a MATDSP task.

4.6 Effect of ADP Rationale in OFLAT
The effect of the ADP rationale was assessed with respect to the OFLAT oracle. In particular,
we executed the preprocessing phase using our improved OTRAP approximation technique,
both with one OTRAP process running 24 threads, each executing TDDsh (for which no
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Table 5 Comparison of preprocessing times of OFLAT, when using the amorphous-data-parallel
implementation of OTRAP with: (i) the time-dependent DIJsh, and (ii) time-dependent DS(Q).

ADP is needed since each thread executes its own part), and with (P/Q) OTRAP processes,
each running the ADP variant TDDS(Q) as a TDSP subroutine. In the latter case, it is noted
once more that, apart from TDDS(Q) which was already implemented according to the ADP
rationale, the entire preprocessing phase had to be redesigned and implemented under this
rationale as well. We conducted measurements for the construction of preprocessed landmark
information for BER, GER and EUR. Table 5 presents all these measurements. It is clear
that even for the smaller BER instance, the task-parallelism of the ADP implementation
TDDS(Q) pays off, compared to TDDsh, leading to speedups of 1.46 for BER, 1.38 for GER
and 1.49 for EUR.

Table 6 presents a final experiment which demonstrates the efficiency of the query
performance of OFCA, compared to those of CFLAT’s CFCA algorithm and the KaTCH
speedup technique, in the GER and EUR instances. BER instance is omitted simply because
already CFCA was superior to KaTCH for this instance [11].

We have tried both TDDsh and TDDS(Q) as TDSP subroutines for the first step of
the query algorithm, and it became evident that GER is still small for parallelism to be
useful. Indeed, the OFCA’s query performance was optimized with TDDsh. For EUR,
on the other hand, even the query performance becomes non-negligible and parallelism of
TDDS(Q) in OFLAT again pays off, compared to TDDsh of CFLAT. Compared to the query
performance of KaTCH, OFCA is faster for the GER instance, but still slower for the EUR
instance. Nevertheless, it is clearly faster than CFCA of CFLAT (even with the improved
TDDsh variant).

5 Conclusions and Future Work

In this work we have attempted to explore the potential but also highlight the limitations of
amorphous-data-parallelism and dynamic allocation of work, in generic MATDSP instances
as well as in the CFLAT oracle.

Our findings demonstrate the significance of carefully using the available resources
(hardware threads of the multicore environment) in order to achieve remarkable speedups
with relatively small work overheads. For example, for generic MATDSP instances we have
shown that the speedups of our parallel implementations range from 16.558 up to 18.860
in our experiments, compared to our most efficient sequential MATDSP solver 1xTDDS(1).
At the same time, the workload overhead against the work-optimal (but not as efficient)
sequential solver 1xTDDsh(1), is at most by no more than 1.08 times in the BER and
GER instances.
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Table 6 Comparison of query response times among CFLAT, OFLAT and KaTCH, in GER and
EUR instances. All reported times are average times of 50, 000 independent trials.

We have also seen the effectiveness of the ADP rationale for the parallelization of the
CFLAT oracle. The improvement in both the preprocessing phase and the query performance
of the OFLAT oracle, over CFLAT, is significant.

Even when compared to the prevailing speedup technique for TDSP, KaTCH, the OFCA
query algorithm is quite competitive: Its query-time is already better than that of KaTCH
in GER, but still inferior in EUR, mainly due to space limitations for the EUR instance
in the preprocessing phase. We are currently in the process of further improving the space
requirements of OFLAT’s preprocessing, so that more landmarks are affordable for the EUR
instance. This way, OFCA will become even faster for instances in the size of EUR.
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