
Mode Personalization in Trip-Based Transit
Routing
Vassilissa Lehoux
NAVER LABS Europe, Meylan, France
https://europe.naverlabs.com/people_user/vassilissa-lehoux/
firstname.lastname@naverlabs.com

Darko Drakulic
NAVER LABS Europe, Meylan, France
https://europe.naverlabs.com/people_user/darko-drakulic/
firstname.lastname@naverlabs.com

Abstract
We study the problem of finding bi-criteria Pareto optimal journeys in public transit networks. We
extend the Trip-Based Public Transit Routing (TB) approach [18] to allow for users to select modes
of interest at query time. As a first step, we modify the preprocessing of the TB method for it to be
correct for any set of selected modes. Then, we change the bi-criteria earliest arrival time queries,
and propose a similar algorithm for latest departure time queries, that can handle the definition of
the allowed mode set at query time. Experiments are run on 3 networks of different sizes to evaluate
the cost of allowing for mode personalization. They show that although preprocessing times are
increased, query times are similar when all modes are allowed and lower when some part of the
network is removed by mode selection.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Public transit, Route planning, Personalization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.13

1 Introduction

In public transit networks, part of the information is available in the form of timetables that
give the schedules at given stations of different public transportation modes such as buses,
trains or tramways. Transfers between those modes of transportation are possible by walking
between the stations, if they are not too far away from one another.

Finding paths in such public transit networks is highly relevant in practice, as millions of
users use routing applications such as Naver Map1, Citymapper2 or Google Maps3 to plan
their trips daily. In the recent years, research has been very active for this problem [3] and
many dedicated techniques, such as Transfer Patterns [2], RAPTOR [5] or CSA [6] have
been developed to make this routing efficient.

However, defining criteria and constraints to optimize those paths according to user
preferences is a complicated task. Many criteria can be considered, such as earliest arrival
time (given a start time or a start time range), latest departure time (given an arrival
time or an arrival time range), number of transfers, travel cost, total transfer duration,
total waiting time, etc. In multicriteria optimization, a solution is said to be dominated in
the Pareto sense if there is another solution that is strictly better on one criteria and at
least as good on the others. It is frequent to look for either the Pareto set, that is all the

1 https://map.naver.com/
2 https://citymapper.com/
3 https://www.google.com/maps

© Vassilissa Lehoux and Darko Drakulic;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 13; pp. 13:1–13:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://europe.naverlabs.com/people_user/vassilissa-lehoux/
mailto:firstname.lastname@naverlabs.com
https://europe.naverlabs.com/people_user/darko-drakulic/
mailto:firstname.lastname@naverlabs.com
https://doi.org/10.4230/OASIcs.ATMOS.2019.13
https://map.naver.com/
https://citymapper.com/
https://www.google.com/maps
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Mode Personalization in Trip-Based Transit Routing

non-dominated solutions in the Pareto sense, or the Pareto front, that is the image of the
Pareto set in the criteria space. For minimum total cost path problems, considering two or
more criteria often makes the problem of finding all the optimal solutions intractable, with
possibly exponential size Pareto sets [11], although the number of optimal solutions in the
Pareto sense can be manageable in practice for some problems [15]. In this work, we consider
the following polynomial bi-criteria problems: minimizing the arrival time and the number
of transfers and maximizing departure time and minimizing the number of transfers. We are
interested in finding the Pareto front, rather than the Pareto set, and we want to be able
to compute one solution corresponding to each element of the Pareto front for minimum
number of transfers and either minimum arrival time or latest departure time. Note that in
that case, the maximum number of solutions returned is bounded by the number of public
transport trips (as we cannot make more transfers) and is hence polynomial in the size of
the instance. Providing sets of solutions rather than a single solution enables users to make
their own compromises between the number of transfers and the travel time of the trip,
according to their preferences. We choose not to compute the complete Pareto set, but only
one solution for each element in the Pareto front to ensure polynomial time construction of
the set of solutions. Note that the actual Pareto set can be much larger in practice. Indeed,
in multimodal networks, having several solutions with the same value in the criteria space
can be frequent for the considered criteria, for instance solutions sharing the same final (resp.
initial) trip when optimizing earliest arrival time (resp. latest departure time) and number
of transfers. In a theoretical network, it can be of exponential size.

As a second step toward more personalized solutions, we consider an additional constraint:
at query time, the user can exclude some modes of transportation from the network. For
example, a user want to avoid buses, because he/she thinks that they are not reliable enough.

Indeed, the type of transit modes is an important vector of choice between itineraries. In
addition to the speed to reach destination, it impacts the price, the comfort, and of course,
some modes are more or less appreciated by the user depending on his/her preferences.
In many cases, the mode type information is available in the transit data. For instance,
the General Transit Feed Standard format [10], very often used to describe public transit
information, proposes this information as mandatory. In an itinerary planning application
or website, the user will often be able to choose the modes that he/she wants to enable or
disable in the interface as option for the search.

Several methods have been designed for mode related personalization. In [12], the authors
consider a graph based approached with a time-dependent model of the timetables [16]. They
propose personalized mode sequences described by a regular language and solve the associated
regular language constrained shortest path problem using a combination of the DRegLC [1]
and ALT [9] algorithms called State-Dependent ALT. Preprocessing time is light (less than a
minute on Île-De-France transportation network), but the languages involved must be defined
at the preprocessing step. The User-Constrained Contraction Hierarchy [7] on the other
hand, doesn’t have this restriction and the mode sequence can be defined at query time. It is
also based on a time-depend model for the transit modes and uses Contraction Hierarchy [8]
on each mode’s network to speed up the search. As a consequence, preprocessing time can
be important on large networks (42 min for a small Europe network with 30K stations).

If we want to select the enabled scheduled modes for a query, rather than defining specific
mode sequences, dynamic programming approaches such as CSA or RAPTOR might be
used with very few modifications. The Connection Scan Algorithm [6] is based on a sorted
connections array that contains all the trip segments between two consecutive stops. You
can pass from one connection to the next if they are one after another in the same trip or if

V. Lehoux and D. Drakulic 13:3

you can leave the first connection and reach the next on time to take it (for instance by a
walking transfer). This algorithm could be modified for mode personalization by pruning at
query time the search space by taking only connections corresponding to allowed scheduled
modes. Similarly, the RAPTOR algorithm [5] works directly with timetable information. It
uses a round-based approach where in each round, trips are taken from lines passing at stops
reached at the preceding iteration. In this context, some trips of disabled scheduled modes
could also be avoided at query time by saving and checking the mode of each line. This
approach can be found in [17] where a wider set of mode sequences is considered. Another
approach can be found in [4], where the authors use the number of buses as an additional
criterion for computing a subset of the Pareto set. They can hence obtain optimal solutions
with no buses (as well as solutions with several bus trips).

In this work, we are interested in extending the Trip-Based Public Transit Routing
approach [18] (TB) in order to be able to personalize the set of scheduled modes used at
query time. TB is a round-based approach, iterating on the maximum number of transfers
allowed in a solution, that relies on a different graph model: the nodes of the graph are
the trips, while the arcs represent possible transfers. A preprocessing phase computes a
non-minimal arc set T such that for any value in the Pareto front, there exists a solution S
with this value such that all the transfers of S belong to T . Search phase is then breadth-first
search like and builds one solution for each element of the Pareto front for minimum arrival
time and minimum number of transfers. Note that the author uses a slightly modified
definition of Pareto dominance to call the set built Pareto set, but here we choose to keep
the standard definition.

2 Preliminaries

As we extend the TB algorithm, we give in this section a brief description of this method
and discuss some of the claims made by the author in his article.

2.1 Notations
We will use notations similar to that of [18] to describe the public transit network. A
sequence of stops −→p (t) = 〈p1

t , p
2
t , . . . 〉 is associated with each trip t. The schedule of t is

defined by the arrival and departure times of t at the stops of its sequence. We denote
by τarr(t, i) (resp. τdep(t, i)) the arrival time (resp. departure time) of t at the ith stop
of −→p (t). Trips are grouped into lines, that do not exactly represent the routes of the public
transport network. First, all the trips of a line L have exactly the same sequence of stops,
denoted −→p (L) = 〈p1

L, p
2
L, . . . 〉. Second, all the trips of a line are completely ordered following

comparison relations � and ≺ defined for two trips having the same sequence:{
t � u⇐⇒ ∀i ∈ [0, |−→p (t)|) , τarr(t, i) ≤ τarr(u, i)
t ≺ u⇐⇒ t � u and ∃i ∈ [0, |−→p (t)|) , τarr(t, i) < τarr(u, i)

Lt denotes the line of trip t. For a given stop s, we define L(s) as the set of all pairs (L, i)
with L a line and i an index in the sequence of L such that s = pi

L. A displacement between
the ith stop of t and the jth stop of t using trip t is denoted pi

t → pj
t and similarly, a walking

transfer between trip t at the ith station and trip u at the jth station is denoted pi
t → pj

u.
Walking transfer times are defined for any pair of stops (p, q), p 6= q that are close enough
of one another and the associated duration is ∆τfp(p, q). When transferring between two
trips at a given station (pi

t = pj
u = p), a minimum change time ∆τfp(p, p) can be defined, to

represent the time needed to move within this station.

ATMOS 2019

13:4 Mode Personalization in Trip-Based Transit Routing

2.2 Preprocessing
The aim of the preprocessing of the TB algorithm is to build a set T of transfers between trips
such that any transfer pi

t → pj
u of T is feasible, that is τarr(t, i) + ∆τfp(pi

t, p
j
u) ≤ τdep(u, j),

and for any element of the Pareto front, there exists an optimal solution with this element
as value, such that all its transfers pi

t → pj
u belong to T . Note that the algorithm does not

require the set T to be minimal, that is to be a set of minimum cardinality with this property.
It needs only to be correct, that is to contain only feasible transfers and to contain all the
transfers of at least one optimal solution per element in the Pareto front.

In order to compute a correct set of transfers, the preprocessing considers the transfers
from each trip separately, which allows for trivial parallelization of the algorithm. For a
given trip t, starting from the last stop of −→p (t) and taking the sequence in reverse order,
we consider for each stop pi

t with i > 1 all the reachable stops q from pi
t (i.e. such that

∆τfp(pi
t, q) is defined). We set the earliest arrival and change times at each of those stops at

τarr(t, i) + ∆τfp(pi
t, q) and we look for transfers to all the possible lines passing by q. For

each of those lines, we find the earliest trip u such that the transfer pi
t → pj

u is feasible (with
pj

u = q and j < |−→p (u)|). We remove U-turn transfers as described in [18]. Then, in order to
reduce the transfer set, we try and update or set earliest arrival and earliest change times
at the stops later in the sequence of u or at the stops reachable from those stops. If any
improvement occurs or a new stop is reached, the transfer is kept. If not, it will be removed
from the set of transfers. Note that if two transfers are equivalent (in term of reachable stops
and arrival and change times at those stops), only the first one generated will be kept. Since
we are looking at the stop sequence −→p (t) in reverse order, the later transfers are added to
the set before equivalent earlier transfers that will be checked later in the process.

2.3 Query phase
The TB algorithm deals with earliest arrival time queries, where given a start time, the
objective is to find the Pareto front for earliest arrival time and number of transfers.

At initialization, origin trip segments (trips segments whose boarding stop can be reached
by a walking displacement from the origin point) and destination trip segments (trips segments
from the unboarding stop of which the destination point can be reached) are computed.
Origin trips are added to a queue. Note that instead of considering only departure from
stops, it is possible to consider a departure from any location on the transportation network
by allowing to compute shortest paths in the walking network to or from the closest stops.

The query phase is then a breadth-first search like procedure in the graph whose nodes
are the trips and whose arcs are the possible transfers. At each iteration n, all the trip
segments of queue Qn are processed in order. If one is a destination trip, current earliest
arrival time at destination is updated. It can be used to prune the search, by not adding
transfers to the queue if they cannot be part of a solution that improves on this arrival time.
For a given trip segment of Qn, all possible transfers from it are performed, increasing the
number of transfers by one in the partial solutions computed. When a transfer reaches a trip
segment that is not marked, the trip segment is added to the queue for the next iteration and
the trip itself and all the corresponding later trip segments of the same line are marked as
processed. Iterations continue until maximum transfer number has been reached or current
arrival time at destination cannot be improved (which means that the queue of trip segments
is empty). The earliest arrival time itinerary to destination obtained at iteration k (when it
exists) is hence an earliest arrival time itinerary with at most k transfers. The Pareto front
for earliest arrival time and number of transfers is hence generated during the search phase.

V. Lehoux and D. Drakulic 13:5

2.3.1 Construction of the solution

Witt [18] claims to optimize latest departure time as a secondary criterion to break ties, but
the construction proposed does not ensure this property. To build solutions, he suggests to
store for each trip segment a pointer to its origin trip segment when the trip is added to the
queue, in order to rebuild the sequence of trips and to compute optimal transfer between the
trips as a postprocessing. Consider the very simple example shown in Figure 1.

Figure 1 Small network with 3 trips and 2 transfers.

The network consists in 2 lines, one with trips t1 and t2 such that t1 ≺ t2, one with
trip t3. Both trips t1 and t2 can transfer from their ith stop to the same index j of trip t3.
When preprocessing those transfers, both are kept in the set as they update the arrival times
of the stops of t3. In the search phase, starting from source xsrc, trip t1 is the earliest trip of
the line that can be reached and is hence added to the queue. Then transfer to t3 is done
to reach destination xtgt. Hence, the sequence of trips is t1 and then t3, while with latest
departure time as a secondary criterion, t2 and then t3 should have been returned. As there
is no sorting on departure trips, a similar example can be built with trip t2 belonging to
another line if the search starts with t1.

Note that in both cases, the transfers in the solution with latest departure time for the
given earliest arrival time and number of transfers were in the computed set of transfers.

In order to actually find the maximum departure time for a given number of transfers and
a given arrival time, it is possible to consider several strategies, such as using profile queries.

Profile queries are given a time range as input. In our case, for every possible start time
(resp. arrival time) in that range, you want to compute optimal values of the Pareto front
for earliest arrival time (resp. latest departure time) and number of transfers. In order to
speed profile queries, Witt proposes for earliest arrival time profile queries to start by the
end of the time range and to iterate backward on this time interval. The idea is to keep the
labels of the preceding time step as journey starting later never dominates earlier ones.

Consider an earliest arrival time solution S with value (τarr, k) in the Pareto front obtained
for start time τ . In order to find the latest departure time for which there exists a solution
with value (τarr, k), it is possible to make a profile query with departure time range [τ, τarr].
Going backward, we compute the Pareto front for each instant of the range. Unless origin
and destination are equal, for a departure time t = τarr, value (τarr, k) doesn’t belong to
the Pareto front, but it will belong to it for a departure time of τ . Hence, decreasing the
minimum departure time value from τarr to τ , (τarr, k) will belong to the Pareto set at a
certain iteration. The latest departure time associated with (τarr, k) is the first instant when
value (τarr, k) belongs to the Pareto set.

ATMOS 2019

13:6 Mode Personalization in Trip-Based Transit Routing

3 Scheduled mode selection

The preprocessing phase of the TB algorithm removes transfers from the search phase
without modifying the Pareto front when all the modes are available. Consider the example
of Figure 2.

Figure 2 Example of transfer removed by the TB algorithm’s preprocessing pruning phase.

Suppose that we have only those 3 lines in a public transportation network. Lines A and
B are tramway lines (represented with solid lines) and the line C is a bus line (represented
with a dashed line). A walking transfer (dotted line) is possible between the stop p on line A
and the stop q on line B. Suppose that exploring the transfers from a trip from line A at
stop p, we first look at the transfer from that trip to line C at stop p. We set the arrival and
change times of the stops q, r and s and move to the next transfer. We now try and update
stops’ arrival times by transferring from the current trip of line A to B. The earliest trip of
line B does not improve arrival or change times at stops r or s. It is hence pruned.

Now, consider that you want to allow only tramways for a given query. If buses cannot
be taken, the removed transfer could have found itself in an optimal solution, for instance
starting with the trip of A and arriving at s on line B.

A possible solution, to avoid loosing correctness, could be to have several instances of
the routing service, each corresponding to a selection of transit modes. Each server would
run on preprocessed data for the corresponding subnetwork. To consider all the possible
combinations of modes, you will need 2|M |−1 servers, if M is the set of modes of the network.

A second option, that we will use as a base line, it to use the complete set of transfers in
the search phase, without any pruning based on arrival times. In [18], the author reports
query times about 3 times as slow with this graph compared to the pruned one.

In this article, we propose a method for computing a reduced transfer set that is correct
for any set of modes asked by the user at query time, which enables to answer that type of
queries with a single server. This preprocessing step is explained in Section 3.1. Then, with
such set as input, the search phase requires only a few modifications that will be explained
in Section 4.

3.1 Preprocessing with mode selection
The aim of the preprocessing would now be to return a set of transfers T that is correct
when enabling any subset µ of the set of all transit modes M .

In order to achieve this aim, we propose to change the pruning phase to be sure that
for each value of the Pareto front and for any µ ⊆ M there is at least one solution with
this value that uses only transfers of T . As before, we preprocess the transfers of each trip

V. Lehoux and D. Drakulic 13:7

separately. We denote mt ∈ M the mode associated with the line of trip t. As we are
computing transfers from trip t, mode mt needs to be allowed for the transfer to potentially
belong to an optimal solution. So for a transfer to a line l of mode m to be in an optimal
solution, at least mode mt and mode m need to be in the subset µ of allowed modes.

For a given trip t, we propose to compute the contribution to the set of transfers T that
will be used in the search phase in the following way. At each stop of the network, we try
and update a minimum arrival time and minimum change time for any given subset µ of M
such that µ = {m, mt} with m ∈M . Hence, at most 2|M | values are recorded for each stop.
When transferring to a trip t of mode m ∈M \{mt}, we can use the same procedure as before
to update arrival and change times when using only modes m and mt. When transferring to
another trip of mode mt, the arrival and change times for all the subsets of M are updated
simultaneously, as mode mt is necessarily allowed when transferring from t. We denote
by τA(q, m) (resp. τC(q, m)) the minimum arrival time (resp. minimum change time) found
so far during the execution of the procedure when transferring from t for subset µ = {m, mt}
of allowed modes. The procedure is presented in Algorithm 1.

Algorithm 1 Pruning.

Input: Timetable data, footpath data, transfer set T
Output: Reduced transfer set T
for trip t do

τA(., .) ←∞ . Earliest arrival time at stops for a given mode subset
τC(., .) ←∞ . Earliest change time at stops for a given mode subset
for i← |−→p (t)| − 1, . . . , 1 do

Update(pi
t, mt, mt, τarr(t, i), τarr(t, i) + τfp(pi

t, p
i
t))

for each stop q 6= pi
t such that ∆τfp(pi

t, q) is defined do
Update(q, mt, mt, τarr(t, i) + τfp(pi

t, q), τarr(t, i) + τfp(pi
t, q))

for each transfer pi
t → pj

u ∈ T do
keep← false
for each stop pk

u on trip u with k > j do
keep← keep ∨ τarr(u, k) < τA(pk

u,mu)
keep← keep ∨ τarr(u, k) + τfp(pk

u, p
k
u) < τC(pk

u,mu)
Update(q, mt, mu, τarr(u, k), τarr(u, k) + τfp(pk

u, p
k
u))

for each stop q 6= pk
u such that ∆τfp(pk

u, q) is defined do
ρ← τarr(u, k) + ∆τfp(pk

u, q)
keep← keep ∨ (ρ < τA(q, mu)) ∨(ρ < τC(q, mu))
Update(q, mt, mu, ρ, ρ)

if ¬keep then
T ← T \ {pi

t → pj
u} . No improvement: remove the transfer

procedure Update(q, mt, mu, e, c)
Input: stop q, mode mt, mode mu, arrival time e, change time c
τA(q, mu) ← min (τA(q, mu), e)
τC(q, mu) ← min (τC(q, mu), c)
if mt = mu then . Mode mt is allowed since we are transferring from it

for each m ∈M \ {mt} do
τA(q,m) ← min (τA(q,mt), τA(q,m))
τC(q,m) ← min (τC(q,mt), τC(q,m))

ATMOS 2019

13:8 Mode Personalization in Trip-Based Transit Routing

I Proposition 1. Algorithm 1 computes a correct set of transfers for earliest arrival time
and minimum number of transfers, for any subset µ of M .

Proof. First, note that, when transferring from trip t, as mt belongs to all the considered
subsets of M , it is sufficient to update the value of the keep variable before the Update
procedure, even if mu = mt. Hence, for a given starting trip t, and an index i in its sequence
of stops, keep will be set to true whenever a transfer pi

t → pj
u improves the arrival time or

the change time at a given stop for the subset µ = {m, mt} of M . Hence if transfer pi
t → pj

u

belongs to an optimal solution for µ = {m, mt}, at least one equivalent transfer is added to
the set of transfers returned at the end of the procedure.

Now, consider an arbitrary subset µ of M and an optimal value (τarr, k) of the Pareto
front with 1 ≤ k and a solution s from the Pareto set of value (τarr, k). We represent this
solution by the trip segment sequence that composes it:
s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
. . . , p

jk+1
tk+1
→ p

ik+1
tk+1

〉
Consider the last transfer pik

tk
→ p

jk+1
tk+1

of s. Since s is an optimal solution for µ, it is not
possible to arrive sooner at stop pik+1

tk+1
from trip segment pjk

tk
→ pik

tk
. Hence, either pik

tk
→ p

jk+1
tk+1

is in T or there is a transfer from tk at pi′k
tk
, ik ≤ i′k in T leading to a trip with the same

arrival time at pik+1
tk+1

for the subset
{
mtk

,mtk+1

}
of µ. Let pi′k

tk
→ p

j′k+1
t′

k+1
be the transfer that

is actually in T . Trip t′k+1 is either of mode mtk
or of mode mtk+1 which both belong to µ.

Now consider the previous transfer in s, pik−1
tk−1
→ pjk

tk
. Either this transfer is in T or, as

jk ≤ j′k, there exist another transfer from tk−1 in T that has a change time at least as early at
stop pj′k

tk
. We denote pj′k−1

tk−1
→ p

i′k
t′

k
, with jk−1 ≤ j′k−1 the transfer actually in T . The transfer

from t′k at stop pj′k
tk

to trip segment pj′k+1
t′

k+1
→ p

i′k+1
t′

k+1
with pi′k+1

t′
k+1

= p
ik+1
tk+1

is feasible as trip t′k has
a change time at least as early as tk at that stop. Hence, either it is in T or there is a transfer
with at least as good an arrival time at pik+1

tk+1
for the subset of modes

{
mt′

k
,mt′

k+1

}
⊆ µ that

is in T . Hence, going backward in the transfer of s, we can build a solution using a subset
of the modes of s, with the same number of transfers, all its transfers being in T and the
arrival time at pik+1

tk+1
being identical. This solution has therefore the same value as s. J

I Lemma 2. Algorithm 1 computes a correct set of transfers for latest departure time and
minimum number of transfers for any subset µ of M .

Proof. As before, we need to prove that for any element (τdep, k) of the Pareto front, there
exists a solution those transfers are in T such that the value of s is (τdep, k). Consider
an instance Idep = (τ, µ, xorg, xtgt) of the latest departure time problem with τ the latest
departure time, µ ⊆ M the allowed modes, xorg the origin and xdest the destination.
Let (τdep, k) be an optimal value of the Pareto front and τarr the earliest arrival time when
starting at τdep and using at most k transfers. Let s be an optimal solution of the latest
departure time problem for Idep with value (τdep, k) and arrival time τarr.

Consider the following earliest arrival time problem and an instance Iarr = (τdep, µ, xorg,

xtgt) with the same origin, the same destination and a minimum departure time equals
to τdep.

Suppose that a solution s′ with k transfers arrives at τarr and leaves at τ > τdep. Then,
it dominates s for the latest departure time problem and instance Idep which is not possible
as s is optimal. So no solution with k transfers can improve other s.

It remains the possibility of an optimal solution s′′ with value (τarr, k
′) with k′ < k for

the earliest arrival time problem with instance Iarr and departure time τ ≥ τdep. Suppose

V. Lehoux and D. Drakulic 13:9

first that τ > τdep. In that case, solution s′ dominates s for the latest departure time problem
and instance Idep, which is not possible as s is optimal. Hence τ = τdep. In that case, we
have a contradiction as (τdep, k) is optimal for Idep and would be dominated by (τdep, k

′).
So all the optimal solutions with k transfers of the earliest arrival time problem for Iarr

start at τdep and arrive at τarr. From Proposition 1, T contains all the transfers of at least
one of those solutions, that we denote sarr. sarr is also optimal for the latest departure time
problem and instance Idep, which completes the proof. J

4 Earliest arrival time and latest departure time queries

Algorithm 2 Latest departure time query.

Input: Transfer set T , origin xsrc, destination xtgt, latest arrival time τ , mode selection µ
Output: Pareto front J
J ← ∅ . Pareto front
L ← ∅ . Target lines
Qn ← ∅ for all n = 1, 2, Queue of trips for each iteration
R(t)← 0 for all trips t . Maximum index at which a trip is unboarded during the search
for each stop q such that ∆τfp(xsrc, q) is defined do

∆τ ← 0 if xsrc = q, else ∆τfp(xsrc, q)
for each (L, i) ∈ L(q) such that mL ∈ µ do
L ← L ∪ {(L, i,∆τfp(xsrc, q))}

for each stop q such that ∆τfp(q, xtgt) is defined do
∆τ ← 0 if xtgt = q, else ∆τfp(q, xtgt)
for each (L, i) ∈ L(q) such that mL ∈ µ do

t← latest trip of L such that τarr(t, i) + ∆τ ≤ τ
BW_ENQUEUE(t, i, 0)

n← 0
τmax ← 0
while Qn 6= ∅ do

for each pb
t → pe

t ∈ Qn do
for each (L, i, ∆τ) ∈ L with b ≤ i < e and τdep(t, i)−∆τ > τmax do

τmax ← τdep(t, i)−∆τ
J ← J ∪ {(τmax, n)} and remove dominated entries

for each pi
u → pj

t ∈ T with b ≤ j < e and mt ∈ µ do
if τdep(u, i− 1) < τmax then

BW_ENQUEUE(u, i, n+ 1)
n = n+ 1

return J

procedure BW_ENQUEUE(trip t, index i, nb transfers n)
if Rn(t) < i then

Qn ← Qn ∪
{
p

Rn(t)
t → pi

t

}
for each trip u such that Lt = Lu and u � t do

R(u)← max(R(u), i)

In order to adapt earliest arrival time queries from [18] to transit mode selection, only a few
modifications are necessary. First, only add to the queue by the ENQUEUE procedure trips
that belong to the selected set of modes µ. Then, when considering transfers from a given
mode, only scan transfers to modes that belong to µ. The set of transfers being correct for
any value of µ with preprocessing of Section 3.1, the search will compute the Pareto front.

ATMOS 2019

13:10 Mode Personalization in Trip-Based Transit Routing

Table 1 Data sets used for the experiments.

stops trips lines foot paths connections Modes
TCL 4583 70614 578 87834 1425044 Bus, subway,

tram, funicular
IDFM 42404 351908 1869 1061959 7803633 Bus, subway, rail,

tram, funicular
Korea 180948 446741 31708 4195659 22346975 Bus, subway, rail, tram

In order to deal with latest departure time queries, we propose the following modifications
of the base algorithm. Basically, the search is a backward search in the graph of trips and
transfers. When we add a trip t to the queue, we hence mark the maximum index R(t) at
which t is unboarded rather than the minimum index at which it is taken (see procedure
BW_ENQUEUE of Algorithm 2). When a trip segment of the queue is processed, we first
check if we can improve on the latest departure time found so far and update the Pareto
front accordingly. Then transfers are scanned, and the origin trip segment of the transfer is
potentially added to the queue. To take into account mode selection, the same modifications
as before are necessary, as we check the modes of the trip segments before adding them to
the queue. The algorithm can be found in Algorithm 2.

5 Experiments

The experiments are run on a 64 2.7 GHz CPU Intel(R) Xeon(R) CPU E5-4650 server with
20 M of L3 cache and 504 GB of RAM. We perform our tests on three data sets. The first,
the TCL [13] (Transports en Commun de Lyon) data set, is made available by the Grand
Lyon metropolitan area for research purpose. The second covers the Ile-De-France area and
is provided by Île de France Mobilités [14] with permissive license. We denote it IDFM. Note
that although it has been used in previous publications, it might be different to the one cited
due to regular updates. In [12], for instance, the size of the IDF network is closer to that of
the TCL data set. The last is a proprietary data set for whole Korea. For those data sets,
we use a mixture of the provided footpaths (if any) and generated footpaths. Closure of the
footpaths is not required by the TB algorithm or our adaptation (as opposed to RAPTOR [5]
or CSA [6]) but users will often accept to walk, for limited distances, between stations. Hence,
for each stop, we include footpaths to all the stops reachable within a distance of 600 m,
using a walking speed of 3.6 kph. Data set information is summarized in Table 1.

Table 2 Comparison of preprocessing steps between MS, STD and NP versions.

Data Set TCL IDFM Korea
Preproc. MS (s) 18 521 1326
Preproc. STD (s) 6 141 381
Preproc. NP (s) 4 56 69
Preproc. MS/STD 3.0 3.7 3.5
transfers MS (in million) 11.7 110.7 259
transfers STD (in million) 10.9 103.6 245
transfers NS (in million) 136 1984 3479
transfers per trip MS 166 315 580
transfers per trip STD 155 295 571
transfers per trip NS 1952 5651 7800

V. Lehoux and D. Drakulic 13:11

Table 2 compares the results of the preprocessing obtained with the standard version
(STD) and with the modified version that allows correct results for a selection of modes
(MS). As an additional base line, we also run our experiment with a version that performs
no pruning, but implements the mode selection in the search phase (NP). As it uses the
complete set of transfers, this baseline will give correct solution sets.

As expected, the number of transfers in T is only slightly increased by the modifications
of the preprocessing. On the other hand, the duration of the preprocessing is significantly
increased. This is probably explained by the interconnection of the different networks: a
large part of the lines will be able to connect to most of the different modes and hence,
earliest arrival times are updated for nearly all trips and modes.

In order to test the effect of our modifications on query times, we generate 500 random
origin-destination pairs for each data set. We compare in Table 3 our 3 implementations
(with and without mode selection, and mode selection without pruning). Note that our
execution times include the computation of one solution for each element in the Pareto
front. The average and maximum number of solutions for the different test sets can be found
in Appendix A in Table 6. As expected from Witt [18], the version without pruning is much
slower (more than 3 times slower on Korea and IDFM) due to the larger number of transfers
in the search phase.

Table 3 Comparison of query times between MS, STD and NP versions.

Data set Algorithm EAT (ms) profile 1H (ms) profile day (ms)
TCL MS 12 56 366
TCL STD 20 55 304
TCL NP 34 123 702
IDFM MS 57 157 848
IDFM STD 57 173 857
IDFM NP 382 1007 6432
Korea MS 46 236 1922
Korea STD 51 239 1940
Korea NP 148 940 8042

For queries with sets of allowed modes, we try and remove different scheduled modes and
look at the influence on query times. Note that for the 3 data sets, the network contains a
majority of bus trips. Table 4 compares our results with the no pruning base line. We also
provide the results of [12] in Table 5 as an example of integration in the time-expended model:
although the data set used is not exactly identical to ours, the algorithm also builds solutions
(only the earliest arrival time one) and results are provided for several mode selections. Note
that for [12], the query times are similar for the different mode selections, but with the TB
modifications that we propose, we see that removing parts of the public transit network
improves the query time. It is expected as the transfers to disabled modes will not be
performed during the search, effectively reducing the number of trip segments processed
(see Table 7 in Appendix A). This property also holds for the version without pruning, but
although forbidding some modes reduces the execution times, the improvement brought by
the pruning is still clear, especially on more time consuming profile instances.

ATMOS 2019

13:12 Mode Personalization in Trip-Based Transit Routing

Table 4 Comparisons of query times for several selections of modes.

MS NP MS NP MS NP
Data set Forbidden modes EAT EAT profile profile profile profile

(ms) (ms) 1H (ms) 1H (ms) day (ms) day (ms)
TCL None 12 34 56 123 366 702
TCL Bus 5 10 16 26 96 128
TCL Bus, train 5 10 15 29 96 126
TCL Subway 10 25 41 195 277 528
TCL Subway, tram, train 10 21 37 88 223 445
IDFM None 57 382 173 1007 857 6432
IDFM Bus 17 72 34 126 114 647
IDFM Bus, tram, train 8 25 18 56 56 257
IDFM Subway 50 318 135 1621 698 5165
IDFM Subway, tram, train 51 319 144 816 680 4392
Korea None 46 148 236 940 1922 8042
Korea Bus 28 56 47 82 185 340
Korea Bus, tram, train 25 48 44 76 172 323
Korea Subway 39 112 227 892 1746 7313
Korea Subway, tram, train 37 116 216 923 1759 7698

Table 5 Query times of SDALT from [12] for several selections of modes.

Data set Forbidden modes EAT (ms)
IDFM - SDALT None 186
IDFM - SDALT Bus, train 175
IDFM - SDALT Subway, tram, train 216

6 Conclusion

In this article, we present an extension of the Trip-Based Public Transit Routing algorithm [18].
It enables the user to select any subset of the possible scheduled modes at query time as the
enabled modes for the query. The preprocessing time is increased by the modification, but we
show that it guaranties that the Pareto front is returned by the algorithm, and that, similarly
to the standard version, it significantly improves the query times. We also prove that the
computed transfer set is still correct for latest departure time queries, that we propose as
an extension. Query times are not much impacted when all the modes are allowed, and
removing any scheduled mode from the list of the enabled modes reduces the computation
time significantly, making those personalized queries faster than the regular ones.

A perspective of this work could concerns the adaptation of the Trip-Based Public Transit
Routing using condensed search trees [19] to mode selection. In his article, Witt propose
to a speed-up technique based on the idea of Transfer Patterns [2]. A specific search graph
is precomputed for each origin from one-to-all all day profile queries. The result of those
queries is of course dependent of the allowed lines and hence the obtained search graphs
cannot be used directly to compute optimal queries for all possible mode selections. As the
preprocessing time is important even for the standard version (231 hours for Germany on 64
threads), trade-off between correctness and preprocessing execution times might be needed
for enabling mode selection at query time.

V. Lehoux and D. Drakulic 13:13

References
1 Christoper L. Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained

path problems. SIAM Journal on Computing, 30(3):809–837, 2000. doi:10.1137/
S0097539798337716.

2 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Proceedings of the 18th Annual European Conference on Algorithms:
Part I, ESA’10, pages 290–301, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.
acm.org/citation.cfm?id=1888935.1888969.

3 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Algorithm Engineering:
Selected Results and Surveys, chapter Route Planning in Transportation Networks, pages
19–80. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-49487-6_2.

4 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and exact public transit routing with
restricted pareto sets. In Stephen Kobourov and Henning Meyerhenke, editors, Proceedings of
the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX), pages
54–65, 2019. doi:10.1137/1.9781611975499.5.

5 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit routing. In
Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 130–140, 2012. doi:10.1137/1.9781611972924.13.

6 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and fast
transit routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela,
editors, Experimental Algorithms. SEA 2013, volume 7933 of Lecture Notes in Computer
Science, pages 43–54, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-38527-8_6.

7 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-constrained multi-modal route
planning. In SIAM, editor, Proceedings of the 14th Workshop on Algorithm Engineering and
Experiments (ALENEX’12), pages 118–129, 2012. doi:10.1137/1.9781611972924.12.

8 R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In Catherine C. McGeoch, editor, Proceedings
of the 7th Workshop on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes
in Computer Science, pages 319–333, Berlin, Heidelberg, 2008. Springer. doi:10.1007/
978-3-540-68552-4_24.

9 Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets
graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, pages 156–165, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1070432.1070455.

10 General Transit Feed Standard (GTFS). https://developers.google.com/transit/gtfs/
reference/.

11 Pierre Hansen. Bicriterion path problems. In Günter Fandel and Tomas Gal, editors, Mul-
tiple Criteria Decision Making Theory and Application. Proceedings of the Third Conference
Hagen/Königswinter, West Germany, August 20-24, 1979, volume 177 of Lecture Notes in
Economics and Mathematical Systems, pages 109–127, Berlin, Heidelberg, 1980. Springer.
doi:10.1007/978-3-642-48782-8_9.

12 Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo. Efficient computation of shortest
paths in time-dependent multi-modal networks. Journal of Experimental Algorithmics, 19:1–29,
January 2014. doi:10.1145/2670126.

13 Data Grand Lyon. https://data.grandlyon.com/.
14 Île De France Mobilités. Open data. URL: https://opendata.stif.info.
15 Matthias Müller-Hannemann and Karsten Weihe. Pareto shortest paths is often feasible

in practice. In Gerth Stølting Brodal, Daniele Frigioni, and Alberto Marchetti-Spaccamela,
editors, Algorithm Engineering. WAE 2001, pages 185–197, Berlin, Heidelberg, 2001. Springer.
doi:10.1007/3-540-44688-5_15.

ATMOS 2019

https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1137/S0097539798337716
http://dl.acm.org/citation.cfm?id=1888935.1888969
http://dl.acm.org/citation.cfm?id=1888935.1888969
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1137/1.9781611972924.13
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1137/1.9781611972924.12
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://developers.google.com/transit/gtfs/reference/
https://developers.google.com/transit/gtfs/reference/
https://doi.org/10.1007/978-3-642-48782-8_9
https://doi.org/10.1145/2670126
https://data.grandlyon.com/
https://opendata.stif.info
https://doi.org/10.1007/3-540-44688-5_15

13:14 Mode Personalization in Trip-Based Transit Routing

16 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models
for timetable information in public transportation systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1–39, 2008. doi:10.1145/1227161.1227166.

17 Luis Ulloa, Vassilissa Lehoux, and Frédéric Rouland. Trip planning within a multimodal urban
mobility. IET Intelligent Transport Systems, 12(2):87–92, 2018. doi:10.1049/iet-its.2016.
0265.

18 Sascha Witt. Trip-based public transit routing. In Nikhil Bansal and Irene Finocchi, editors,
Algorithms - ESA 2015, volume 9294 of Lecture Notes in Computer Science, pages 1025–1036,
Berlin, Heidelberg, 2015. Springer. doi:10.1007/978-3-662-48350-3_85.

19 Sascha Witt. Trip-based public transit routing using condensed search trees. In Marc Goerigk
and Renato Werneck, editors, Proccedings of the 16th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS’16), number Article No.
10, pages 10:1–10:12, 2016. doi:10.4230/OASIcs.ATMOS.2016.10.

A Additional numerical results

In this section, we add figures about the earliest arrival time and profile queries. In Table 6,
the mean and maximum number of solutions for earliest arrival time and profile queries on
the different networks are compared. In Table 7, the mean total number of elements in the
queues are displayed for the Korean network for each set of forbidden modes used during the
experiments.

Table 6 Comparisons of mean and max number of solutions for several selections of modes.

mean - max - mean - max - mean - max -
Data set Forbidden modes EAT EAT profile profile profile profile

1H 1H day day
TCL None 2.82 7 28.36 117 268.75 1152
TCL Bus 1.17 5 8.27 89 87.95 975
TCL Bus, tram, train 1.17 5 8.25 82 87.91 953
TCL Subway 2.48 6 21.82 87 205.12 778
TCL Subway, tram, train 2.42 6 19.84 63 176.03 598
IDFM None 2.15 6 5.78 57 25.2 419
IDFM Bus 1.12 4 2.1 60 8.8 403
IDFM Bus, tram, train 1.05 4 2.31 60 13.28 403
IDFM Subway 2.12 6 9.41 32 14.56 269
IDFM Subway, tram, train 4.06 10 16.09 41 98.2 337
Korea None 2.94 10 32.78 80 317.84 791
Korea Bus 1.32 5 11.72 44 105.11 320
Korea Bus, tram, train 1.32 5 11.71 44 105.28 324
Korea Subway 2.59 7 26.44 62 224.5 695
Korea Subway, tram, train 2.58 7 28.17 63 273.1 695

https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1049/iet-its.2016.0265
https://doi.org/10.1049/iet-its.2016.0265
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.4230/OASIcs.ATMOS.2016.10

V. Lehoux and D. Drakulic 13:15

Table 7 Comparisons of mean queue sizes for several selections of modes on the Korean network.

MS NP MS NP MS NP
Data set Forbidden modes EAT EAT profile profile profile profile

(k) (k) 1H (k) 1H (k) day (k) day (k)
Korea None 35.6 87.5 183.2 373.8 1881.9 3536.2
Korea Bus 9.7 11.3 13.8 17.0 71.6 76.2
Korea Bus, tram, train 8.5 9.4 13.5 14.5 65.4 68.3
Korea Subway 30.7 78.2 169.6 358.0 1668.1 3213.3
Korea Subway, tram, train 28.6 72.8 166.0 350.6 1650.5 3193.8

ATMOS 2019

	Introduction
	Preliminaries
	Notations
	Preprocessing
	Query phase
	Construction of the solution

	Scheduled mode selection
	Preprocessing with mode selection

	Earliest arrival time and latest departure time queries
	Experiments
	Conclusion
	Additional numerical results

