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Abstract
The Theory of Sequential Processes includes deadlock, successful termination, action prefixing,
alternative and sequential composition. Intermediate acceptance, which is important for the
integration of classical automata theory, can be expressed through a combination of alternative
composition and successful termination. Recently, it was argued that complications arising from
the interplay between intermediate acceptance and sequential composition can be eliminated by
replacing sequential composition by sequencing. In this paper we study the equational theory of the
recursion-free fragment of the resulting process theory modulo bisimilarity, proving that it is not
finitely based, but does afford a ground-complete axiomatisation if a unary auxiliary operator is
added. Furthermore, we prove that bisimilarity is decidable for processes definable by means of a
finite guarded recursive specification over the process theory.
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1 Introduction

Successful termination has been a source of controversy from the early days of process algebra.
The process theory CCS [18] does not make the distinction between deadlock and successful
termination at all. The process theory ACP [9] does make the distinction semantically, but,
although it includes a constant denoting deadlock, it does not, in its original formulation,
include a constant denoting the successfully terminated process. Only later proposals were
made for including such a constant [1, 24].

From a concurrency-theoretic perspective, including a constant 1 for successful termination
raises philosophical questions without clear-cut answers. For instance, what is the behaviour
of a process a.1 + 1 that may non-deterministically choose between performing the action a
and successfully terminating? Can it perform the action a at all? Is it successfully terminated
even when it can still perform activity? And what does it mean to sequentially compose
a.1 + 1 with the process b.1? Can (a.1 + 1) · b.1 do a b immediately or should it wait until
a.1 + 1 has performed the a?

In the classical theory of automata and formal languages, the constant 1 has a more
accepted status. The algebras of regular expressions and µ-regular expressions include a
constant 1 denoting the language consisting of the empty string. Without the inclusion of
the constant, the correspondence between regular expressions and finite automata [16], and
the correspondence between µ-regular expressions and pushdown automata [17, 21] would be
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11:2 Sequencing and Intermediate Acceptance

lost. Finite automata and pushdown automata are endowed with an acceptance predicate
separate from the transition relation defined on states, and hence they admit intermediate
acceptance: states may at the same time satisfy the acceptance predicate and have outgoing
transitions.

The research presented in this paper is part of a larger project in which we are trying
to explore and strengthen connections between the classical theory of automata and formal
languages and concurrency theory [3, 4, 5, 6], with the aim to establish a unified theory. Our
aim for such a unified theory motivates us to study process algebras including a constant for
successful termination.

The operational semantics for sequential composition in the presence of a constant 1
denoting successful termination (see, e.g., [2]) prescribes that the sequential composition
(a.1 + 1) · b.1 may perform the b transition immediately, on grounds that a.1 + 1 satisfies
the termination predicate. We refer to this phenomenon as transparency. In the presence
of recursion, transparency leads to considerable expressiveness; for instance, it facilitates
the specification of unboundedly branching behaviour (cf. Example 1 below). Recently,
we proposed a revised operational semantics for sequential composition that leads to a
different interplay between successful termination and sequential composition [7]. The revised
operational rules closely resembles the rules of the sequencing operator proposed by Bloom
[10], although his theory does not distinguish between deadlock and successful termination.
We shall, in this paper, reserve sequential composition (denoted by ·) for the operator with
the operational semantics as described in [2] and use sequencing (denoted by ;) for the
operator with the revised operational semantics.

Under the sequencing interpretation, the process (a.1 + 1) ; b.1 cannot perform the
b-transition immediately (no transparency); first, the left argument of the sequencing op-
erator must execute until no further activity is possible. The effect of replacing sequential
composition by sequencing indirectly changes the interpretation of the constant 1: it no
longer refers to the option to terminate, but rather signals acceptance. For instance, the
process (a.1 + 1) ; (b.1 + 1) is in an accepting state since both a.1 + 1 and b.1 + 1 are
accepting; the process a.1 ; (b.1 + 1) on the other hand is not in an accepting state.

Replacing sequential composition by sequencing has advantages and disadvantages for
the integration of automata theory and concurrency theory. A disadvantage is that language
equivalence is not a congruence for sequencing (see Remark 5 at the end of Section 2). As was
shown in [7], advantages are that, in the theory with sequencing every context-free behaviour
can be simulated by a pushdown automaton up to strong bisimilarity, while this is not the
case in the theory with sequential composition, and that every executable processes can be
specified, up to divergence-preserving branching bisimilarity, in a process theory without
recursion but with a first-order recursive nesting operation.

In this paper, we continue the investigation of the theory of sequential processes with
sequencing instead of sequential composition.

First, we consider the equational theory of the recursion-free fragment modulo bisimilarity.
We prove that the equational theory is not finitely based (i.e., does not admit a finite
equational axiomatisation). Then, we introduce an auxiliary unary operator and prove that,
using this auxiliary operator the ground equational theory (i.e., the set of all valid equations
without variables) admits a finite axiomatisation. And finally we present arguments for the
conjecture that, even with the auxiliary operator, the full equational theory (i.e., the set of
all valid equations with variables) is not finitely based.

Then, we prove that bisimilarity is decidable for processes definable by means of a guarded
recursive specification in the theory with sequencing. To this end, we consider the seminal
proof by Christensen, Hüttel and Stirling that bisimilarity is decidable for the theory of
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sequential processes without intermediate acceptance [13], and observe that several crucial
properties needed in their argument fail in a setting with intermediate acceptance. Our
contribution is then to show that, when a form of redundant intermediate acceptance is
eliminated from recursive specifications, then these properties are restored and the proof
ideas of [13] apply to establish decidability.

This paper is organised as follows: In Section 2 we introduce the Theory of Sequential
Processes with sequential composition replaced by sequencing, illustrating the difference
between the two operators with an example. In Section 3, we consider the equational
theory of the recursion-free fragment. In Section 4, we establish decidability of bisimilarity
for processes definable by means of a guarded recursive specification over the Theory of
Sequential Processes with sequencing instead of sequential composition. In Section 5 we
present some conclusions. For elaborate proofs of the results claimed in this article we refer
to the first author’s MSc thesis [8].

2 Sequential Processes

In this section we present the Theory of Sequential Processes adopting the revised operational
semantics for sequential composition proposed in [7]. To emphasise that the operational
semantics for sequential composition deviates from that in [2], we shall refer to it by the
term sequencing and denote it by ; instead of by ·, reserving · for the variant of sequential
composition in [2].

Let A be a set of actions, symbols denoting atomic events, and let P be a finite set of
process identifiers. The sets A and P serve as parameter of the process theory TSP;(A,P)
that we shall introduce below. The set of process expressions associated with TSP;(A,P) is
generated by the following grammar (a ∈ A, X ∈ P):

p ::= 0 | 1 | a.p | p+ p | p ; p | X .

The constants 0 and 1 respectively denote the deadlocked (i.e., inactive but not successfully
terminated) process and the successfully terminated process. For each a ∈ A there is a unary
action prefix operator a._. The binary operators + and ; denote alternative composition
and sequencing, respectively. We adopt the convention that a._ binds strongest and + binds
weakest. For a (possibly empty) sequence p1, . . . , pn we inductively define

∑n
i=1 pi = 0 if

n = 0 and
∑n
i=1 pi = (

∑n−1
i=1 pi) + pn if n > 0. The symbol ; is often omitted when writing

process expressions. In particular, if α ∈ P∗, say α = X1 · · ·Xn, then α denotes the process
expression inductively defined by α = 1 if n = 0 and α = (X1 · · ·Xn−1) ;Xn if n > 0. We
denote by |α| the length of the sequence.

A recursive specification over TSP;(A,P) is a mapping ∆ from P to the set of process
expressions associated with TSP;(A,P). The idea is that the process expression p associated
with a process identifier X ∈ P by ∆ defines the behaviour of X. We prefer to think of ∆ as
a collection of defining equations X def= p, exactly one for every X ∈ P . We shall, throughout
the paper, presuppose a recursive specification ∆ defining the process identifiers in P, and
we shall usually simply write X def= p for ∆(X) = p. Note that, by our assumption that P is
finite, ∆ is finite too.

We associate behaviour with process expressions by defining, on the set of process
expressions, a unary acceptance predicate ↓ (written postfix) and, for every a ∈ A, a
binary transition relation a−→ (written infix), by means of the transition system specification
presented in Fig. 1. We write p a9 for “there does not exist p′ such that p a−→ p′” and p9
for “p a9 for all a ∈ A”. Furthermore, when w ∈ A∗, say w = a1 . . . an, then we write p w→−→ p′
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a.p
a−→ p

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p
a−→ p′ X

def= p

X
a−→ p′

1↓
p↓

(p+ q)↓
q↓

(p+ q)↓
p↓ X

def= p

X↓

p↓ q↓
(p ; q)↓

p
a−→ p′

p ; q a−→ p′ ; q
p↓ p9 q

a−→ q′

p ; q a−→ q′

Figure 1 Operational semantics for TSP;(A).

if there exist p0, . . . , pn such that p = p0, pi−1
ai−→ pi (1 ≤ i ≤ n) and pn = p′. Also, we

write p −→ p′ for there exists a ∈ A such that p a−→ p′. Similarly, we write p →−→ p′ for there
exists w ∈ A∗ such that p w→−→ p′ and say that p′ is reachable from p.

It is well-known that transition system specifications with negative premises may not
define a unique transition relation that agrees with provability from the transition system
specification [15, 11, 14]. Indeed, in [7] it was already pointed out that the transition system
specification in Fig. 1 gives rise to such anomalies, e.g., if ∆ includes for X the defining
equation X def= X ; a.1 + 1. For then, on the one hand, if X 9, according to the rules for
sequencing and recursion we find that X a−→ 1, while on the other hand, the transition
X

a−→ 1 is not provable from the transition system specification.
We remedy the situation by restricting our attention to guarded recursive specifications,

i.e., we require that every occurrence of a process identifier in the definition of some (possibly
different) process identifier occurs within the scope of an action prefix. If ∆ is guarded, then
it is straightforward to prove that the mapping S from process expressions to natural numbers
inductively defined by S(1) = S(0) = S(a.p) = 0, S(p1 +p2) = S(p1 ;p2) = S(p1) +S(p2) + 1,
and S(X) = S(p) if (X def= p) ∈ ∆ gives rise to a so-called stratification S′ from transitions
to natural numbers defined by S′(p a−→ p′) = S(p) for all a ∈ A and process expressions p
and p′. In [15] it is proved that whenever such a stratification exists, then the transition
system specification defines a unique transition relation that agrees with provability in the
transition system specification.

The operational rules in Fig. 1 deviate from the operational rules for the process theory
TSP(A) discussed in [2] in only two ways: to get the rules for TSP(A), the symbol ; should
be replaced by ·, and the negative premise p9 should be removed from the right-most rule
for sequencing. The replacement of ; by · is, of course, insignificant; the removal of the
negative premise p9, however, does have a significant impact. The negative premise ensures
that a sequencing can only proceed to execute its second argument when its first argument
not only satisfies the acceptance predicate, but also cannot perform any further activity. The
semantic difference between ; and · is illustrated in the following example.

I Example 1. Consider the recursive specification

X
def= a.(XY ) + b.1 Y

def= c.1 + 1 .

Depending on whether we interpret the concatenation of process identifiers as sequential
composition (·) or sequencing (;), we obtain the transition system shown in Fig. 2 with or
without the dashed c-transitions. Note that, under the ·-interpretation, the phenomenon
of transparency plays a role: from Y n we have c-transitions to every Y k with k < n, by
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X XY XY 2 XY n−1 XY n

1 Y Y 2 Y n−1 Y n

a a a

b b b b b

ccc

c

c

c

c
c

c

c

Figure 2 The difference between ; and ·.

executing the c-transition of the kth occurrence of Y , thus skipping the first k−1 occurrences
of Y . This behaviour is prohibited by the negative premise in the rule for ;, for, since Y c−→ 1,
none of the occurrences of Y can be skipped.

I Remark 2. As Fig. 2 illustrates, the use of sequential composition (as opposed to sequencing)
in guarded recursive specifications may give rise to an unbounded reachable branching degree
(i.e., there need not be an upper bound on the branching degrees of states reachable from
some particular state). As far as we know, this is the only process algebra without an
operator for parallel composition that facilitates communication between parallel components
that gives rise to unboundedly branching behaviour. It is this kind of behaviour that, e.g.,
cannot be exhibited by the transition system associated with a pushdown automaton [3].

We proceed to define when two process expressions are behaviourally equivalent.

I Definition 3. A binary relation R on the set of process expressions associated with
TSP;(A,P) is a bisimulation iff R is symmetric and for all p and q such that (p, q) ∈ R:
1. If p a−→ p′, then there exists a term q′, such that q a−→ q′, and (p′, q′) ∈ R.
2. If p↓, then q↓.
Process expressions p and q are bisimilar (notation: p ↔ q) iff there exists a bisimulation R
such that (p, q) ∈ R.

The operational rules presented in Fig 1 are in the so-called panth format from which it
immediately follows that bisimilarity is a congruence [23].

I Proposition 4. The relation ↔ is a congruence for TSP;(A,P).

I Remark 5. Note that language equivalence is not a congruence for the sequencing operator:
a.b.1+a.1 and a.(b.1+1) have the same language {ab, a}, but the language of (a.b.1+a.1);c.1
is {abc, ac} and the language of a.(b.1 + 1) ; c.1 is {abc}.

3 Equational theory

In this section we shall consider TSP;(A, ∅), i.e., the recursion-free fragment of the Theory
of Sequential Processes. Let us abbreviate TSP;(A, ∅) by TSP;(A).

For the purpose of concisely expressing equational properties, we shall use variables from
some countably infinite set V of variables. (These variables should be thought of as ranging
over process expressions, and should not be confused with process identifiers.) The set of
TSP;(A)-terms is generated by the following grammar (a ∈ A, x ∈ V):

t ::= 0 | 1 | a.t | t+ t | t ; t | x .
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11:6 Sequencing and Intermediate Acceptance

A TSP;(A)-term is closed if it does not contain variables. Note that the set of closed TSP;(A)-
terms coincides with the set of process expressions associated with TSP;(A, ∅) in the previous
section. A closed substitution is a mapping σ from variables to process expressions. If t is a
TSP;(A)-term and σ is a closed substitution, then we denote by σ(t) the process expression
obtained by replacing every occurrence of a variable x in t by σ(x).

Let t and u be TSP;(A)-terms; an expression of the form t = u is called a TSP;(A)-
equation. A TSP;(A)-equation t = u is valid if σ(t)↔ σ(u) for every closed substitution σ.
The equational theory of TSP;(A) is the set of all valid TSP;(A)-equations.

Let E be a set of valid equations and let t = u be a TSP;(A)-equation. We shall write
E ` t = u if t = u can be derived from the equations in E by means of the rules of equational
logic. We wish to characterise the equational theory of TSP;(A) by giving a finite collection
E of valid TSP;(A)-equations such that E ` t = u for every valid TSP;(A)-equation t = u.
Such a collection E is then referred to as a finite basis for the equational theory of TSP;(A);
we say that an equational theory is finitely based if there exists a finite basis for it.

We shall prove two fundamental results pertaining to the equational theory of TSP;(A).
First, we shall establish that there does not exist a finite basis for the equational theory of
TSP;(A). Second, we shall prove that when an auxiliary operator is added, then the resulting
ground equational theory (consisting only of all valid TSP;(A)-equations without variables)
is finitely based. At the end of Section 3.2 we shall conclude with presenting some evidence
for a conjecture that, even with the auxiliary operator added, the full equational theory
(consisting of all valid TSP;(A)-equations with variables) is not finitely based.

3.1 TSP;(A) is not finitely based
A central axiom of the theory of TSP(A) of [2] is the axiom (x+ y) · z = x · z + y · z, which
expresses that sequential composition distributes from the right over alternative composition.
For sequencing, the axiom is no longer valid in general as the following example illustrates.

I Example 6. Consider the process expressions

p ≡ (a.1 + 1) ; b.1 and q ≡ a.1 ; b.1 + 1 ; b.;1 .

(We write ≡ for syntactic equality of TSP;(A)-terms and reserve = to express TSP;(A)-
equations.) Note that, one the one hand, since a.1 + 1 a−→ 1, we have that p b9. On the
other hand, since 1↓ and 1 9, we do have that 1 ; b.1 b−→ 1 and hence q b−→ 1. It follows
that p and q are not bisimilar.

Note that, a fortiori, we have that p↔ a.1 ;b.1. That the first argument of the sequencing
operator satisfies the acceptance predicate has no effect, because the second argument of the
sequencing operator does not satisfy the acceptance predicate. Thus, if the second argument
of sequencing does not satisfy the acceptance predicate, then a 1-summand in the first
argument is redundant.

We shall prove that the redundancy of 1 at the left-hand side of sequencing cannot be
finitely axiomatised without using an auxiliary operator. To this end, let us fix ã, b̃ ∈ A and
consider the following infinite collection of valid equations (n ∈ N):

(ã.1 + 1) ;
n∑
i=1

b̃.(b̃.1 + 1)i = ã.1 ;
n∑
i=1

b̃.(b̃.1 + 1)i . (en)

(For every natural number i process expression p, pi denotes the iterated sequencing of p,
inductively defined by p0 = 1 and pi+1 = pi ; p.)
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Each of these equations expresses the redundancy of the occurrence of 1 in the subexpres-
sion ã.1 + 1 on the left-hand side of the equation. For this redundancy it is important that
the right-hand side of the sequencing operator, i.e., the process expression

∑n
i=1 b̃.(b̃.1 + 1)i,

does not satisfy the acceptance predicate, since it is a summation of b̃-prefixes without
1-summand. That the number of summands is n will be used in our argument that (en),
for sufficiently large n ∈ N, cannot be derived from a particular finite collection of valid
equations. Instead of referring to the notion of number of summands, it is more convenient
to refer to the notion of width that we shall now define.

I Definition 7. The width of a process expression p, written as width(p), is the cardinality
of the set {p′ | p a−→ p′, for some a ∈ A}. We extend the notion of width to TSP;(A)-terms
by defining, for all TSP;(A)-terms t, that width(t) = width(σ0(t)) where σ0 denotes the
closed substitution that maps all variables to 0.

Note that variables do not contribute to the width of a TSP;(A)-term.
Suppose that E is a finite set of valid equations, and let n ∈ N exceed the maximum of

the widths of all subterms occurring in the equations in E. To prove that (en) cannot be
derived from E, we define a predicate Ψn on TSP;(A)-terms that is satisfied by the left-hand
side (en), but not by the right-hand side, and that is maintained by equational derivations
from E.

I Definition 8. Let p be a process expression. For every n ∈ N, we define that Φn(p) holds
iff p ≡ p1 ;p2 such that p1 ↔ ã.1 + 1 and p2 ↔

∑n
i=1 b̃.(b̃.1 + 1)i. For every n ∈ N, we define

Ψn(p) iff p ↔ (ã.1 + 1) ;
∑n
i=1 b̃.(b̃.1 + 1)i and p has a summand p1 ; p2 such that one of the

following cases holds:
1. Φn(p1 ; p2).
2. p1 ↔ 1 and Ψn(p2).
3. Ψn(p1) and p2 ↔ 1.
The predicate Φn formalises a property satisfied by the left-hand side of (en), but not by
the right-hand side. The property Φn is, however, not preserved by equational derivations
due to certain trivial syntactic manipulations involving, e.g., the idempotence of +, 0 being
a neutral element for + and 1 being a left- and right neutral element for sequencing (see
Table 1 below). The definition of Ψn takes such syntactic manipulations into account. Note
that the definition of Ψn is with recursion on the syntactic structure; it is well-defined since
in the last two cases of its definition it is evaluated on a proper subterm.

In general, bisimilarity does not preserve width as defined above, but it does hold that
if p ↔ q and there exist process expressions p1, . . . , pn such that p a−→ pi and pi ↔ pj
implies i = j for all 1 ≤ i, j ≤ n, then width(q) ≥ n. Note that the process expression∑n
i=1 b̃.(b̃.1 + 1)i has this property. We exploit it to argue that if t is a TSP;(A)-term such

that width(t) < n and σ is a closed substitution such that σ(t) ↔
∑n
i=1 b̃.(b̃.1 + 1)i, then

necessarily t has a variable summand, say x, such that σ(x) b̃−→. This means that with
a minor modification of σ, we obtain a substitution ϑ(σ,x) such that ϑ(σ,x)(t)↓. We define
ϑ(σ,x) as follows:

ϑ(σ,x)(y) =
{
σ(y) + 1 if y = x

σ(y) otherwise.

The following lemma essentially applies this idea in a slightly more general situation, where
σ(t) satisfies Ψn.

CALCO 2019



11:8 Sequencing and Intermediate Acceptance

I Lemma 9. Let t be a TSP;(A)-term and let n be a natural number such that width(t′) < n

for every subterm t′ of t. If Ψn(σ(t)) for some closed substitution σ, then there is a variable
x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

Proof. See the proof of Lemma 35 in Appendix A. J

The following lemma establishes the converse of Lemma 9.

I Lemma 10. Let t be a TSP;(A)-term, let x be a variable, and let σ be a closed substitution.
If σ(t) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→, then

Ψn(σ(t)).

Proof. See the proof of Lemma 40 in Appendix A. J

The following theorem states that if E is a set of valid equations and n exceeds the
maximum of the widths of all subterms of the equations in E, then equational derivations
from E preserve Ψn.

I Theorem 11. Let E be a finite set of valid TSP;(A)-equations, and let n be a natural
number such that for each axiom t = u ∈ E, for each subterm t′ of t and each subterm u′

of u, width(t′) < n and width(u′) < n. Furthermore, let p and q be closed TSP;(A)-terms
such that E ` p = q. It then holds that if Ψn(p), then Ψn(q).

Proof. The proof is by induction on a derivation of the equation p = q from E. So, we
distinguish cases, according to the last rule used in this derivation, and assume that for each
derivation of p′ = q′ that is a sub-derivation of the derivation of p = q, if Ψn(p′) then Ψn(q′)
(IH). Here we only consider the most interesting case in which the derivation consists of a
substitution instance of an axiom in E.

If p = q is a substitution instance of an axiom in E, then there exist TSP;(A)-terms t and
u and a closed substitution σ such that σ(t) = p, σ(u) = q and t = u ∈ E. If Ψn(p), then
Ψn(σ(t)) and thus σ(t)↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Since t = u is sound with respect

to bisimilarity, σ(u)↔ σ(t)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Furthermore, by Lemma 9,

there must be some variable x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→ p for
some closed TSP;(A)-term p. Hence, since ϑ(σ,x)(t)↔ ϑ(σ,x)(u), also ϑ(σ,x)(u)↓. Then, since
σ(u) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and ϑ(σ,x)(u)↓, by Lemma 10, we conclude that

Ψn(σ(u)) holds, and thus Ψn(q) holds. J

We use Theorem 11 to prove that the equational theory of TSP;(A) is not finitely based
by showing that no set E of valid TSP;(A)-equations can be a finite basis. To this end, let
E be a finite set of valid TSP;(A)-equations. Then, since E has finitely many equations and
the terms occurring on both sides of these equations each have finitely many subterms, there
exists n ∈ N that exceeds the widths of all these subterms. By Theorem 11 we have that
whenever E ` p = q and Ψn(p), then also Ψn(q); it follows that E 0 (en). Since (en) is a
valid TSP;(A)-equation, it follows that E is not a finite basis for the equational theory of
TSP;(A). Thus, we obtain the following corollary.

I Corollary 12. There does not exist a finite basis for TSP;(A).
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3.2 Ground-completeness with an auxiliary operator
By the ground equational theory of TSP;(A) we mean the set of all valid TSP;(A)-equations
without variables. Note that, since the equations (en) do not include variables and the
predicate Ψn is defined on process expressions, it immediately follows from Theorem 11 that
the ground equational theory of TSP;(A) is not finitely based either. We proceed to extend
TSP;(A) with a unary auxiliary operator NT and show that ground equational theory of the
extension TSP;

NT(A) is finitely based.
The syntax of TSP;

NT (A) consists of the syntax of TSP;(A) with the unary operation NT
added; this operation can be used both in the construction of process expressions associated
with TSP;

NT(A) and of TSP;
NT(A)-terms. Intuitively, NT (p) denotes the non-terminating

part of p; for example, NT (a.p) = a.p and NT (a.p+ 1) = a.p.

p
a−→ p′

NT (p) a−→ p′

Figure 3 The operational rule for NT .

The operational rule for NT is presented in Figure 3. The rule is in the panth format, so
bisimilarity is a congruence also for the extended theory. Furthermore, from [22, Theorem
3.9] it follows that TSP;

NT (A) is an operational conservative extension of TSP;(A), meaning
that TSP;(A) process expressions have the same operational semantics in the extended theory
TSP;

NT(A).

Table 1 A finite basis for the ground equational theory of TSP;
NT (A).

x+ y = y + x A1
x+ (y + z) = (x+ y) + z A2
x+ x = x A3

(x ; y) ; z = x ; (y ; z) A5
x+ 0 = x A6
0 ; x = 0 A7
x ; 1 = x A8
1 ; x = x A9
a.x ; y = a.(x ; y) A10

NT(x+ y) ; z = NT(x) ; z + NT(y) ; z A11
(a.x+ y + 1) ; NT(z) = (a.x+ y) ; NT(z) A12
(a.x+ y + 1) ; (z + 1) = (a.x+ y) ; (z + 1) + 1 A13

NT(0) = 0 NT1
NT(1) = 0 NT2
NT(a.x) = a.x NT3
NT(x+ y) = NT(x) + NT(y) NT4

Table 1 presents a finite collection of valid TSP;
NT(A)-equations. It includes the well-

known axioms A1–3 and A5–10 adapted from TSP(A) (see [2]). Note, however, that the
axiom A4, which in TSP(A) expresses distributivity from the right of sequencing over
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11:10 Sequencing and Intermediate Acceptance

alternative composition, has been omitted since it is not valid. It has been replaced by axiom
A11, which, intuitively, expresses that sequencing distributes from the right over alternative
composition only if the alternative composition does not satisfy the acceptance predicate.
Axioms A12 and A13 allows us to eliminate redundant occurrences of 1 at the left-hand side
of sequencing. Finally, axioms NT1–4 express the interaction of NT with the constants 0
and 1, action prefix and alternative composition.

For detailed proofs that the axioms in Table 1 are valid we refer to [8]. We shall,
henceforth, write TSP;

NT(A) ` t = u if the TSP;
NT(A)-equation t = u can be derived from

the axioms in Table 1 using the rules of equational logic. To prove that the axioms in Table 1
constitute a finite basis for the ground equational theory of TSP;

NT (A), we use the following
elimination theorem.

I Theorem 13. For every process expression p associated with TSP;
NT(A) there exists a

process expression q without occurrences of ; and NT such that TSP;
NT (A) ` p = q.

In [2, Theorem 4.4.12] it is proved that axioms A1–3 and A6 constitute a finite basis for
the ground equational theory of BSP(A), which is obtained from TSP;

NT(A) by removing ;
and NT . Hence, we get the following corollary from Theorem 13.

I Corollary 14. The axioms in Table 1 constitute a finite basis for the ground equational
theory of TSP;

NT(A).

The axioms in Table 1 do not constitute a finite basis for the full equational theory of
TSP;

NT(A). For example, it is easy to see that the valid equation NT(NT (x)) = NT(x)
cannot be derived from TSP;

NT (A). We proceed to argue that, although the ground equational
theory of TSP;

NT(A) is finitely based, the full equational theory of TSP;
NT(A) is not; the

argument will be very similar to the argument showing that TSP;
NT (A) is not finitely based.

Consider the equation:

(x+ 1) ; x = x ; x . (1)

To see that it is valid, note that the symmetric closure of the relation

R = {((p+ 1) ; p, p ; p), (p, p) | p a TSP;
NT(A) process expression}

is a bisimulation relation.
Recall the equations (en) used in Section 3.1 to show that the equational theory of

TSP;(A) is not finitely based. For the redundancy of the 1-summand in the left-hand side
of the sequencing operator it is essential that the left-hand side also admits a transition
while the right-hand side does not satisfy the acceptance predicate. Equation (1) above
does not satisfy this property for every closed substitution. Nevertheless, the 1-summand
is redundant, due to the fact that x appears in both arguments of the sequencing operator.
The idea can be generalised, resulting in the infinite collection of valid equations n ∈ N):

(x+ 1) ;
n∑
i=1

(x ; (a.1 + 1)i) = x ;
n∑
i=1

(x ; (a.1 + 1)i) . (e′n)

Similarly to the equations (en) used in Section 3.1, the size of the right hand side of this
equation is not bounded. We conjecture that by similar reasoning as used in Section 3.1 it
can be argued that there does not exist a finite set of valid TSP;

NT (A)-equations from which
the equations e′n can be derived for all n ∈ N.
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4 Decidability

Christensen, Hüttel and Stirling have established that bisimilarity is decidable for processes
definable by means of a guarded recursive BPA specification [13], where BPA can be thought
of as TSP;(A) without intermediate acceptance. Our goal in this section is to extend that
decidability result to TSP;(A). Our proof closely follows the presentation of the decidability
proof for BPA in [12], and we shall focus on the extension and skip over parts that are
similar.

The starting point is the presupposed TSP;(A,P) recursive specification ∆, which is
finite since we have assumed that P is finite. The decision problem we wish to solve is: Given
any two process expressions p and q does it hold that p ↔ q? We shall first recall a few
standard observations to simplify the formulation of the decision problem.

The first observation is that we may assume, without loss of generality, that p and q are
both process identifiers. For if not then we could first solve the decision problem for process
identifiers, and then decide p↔ q by considering TSP;(A,P ′), where P ′ is P with two new
process identifiers X and Y added and ∆′ is ∆ with the two extra defining equations X def= p

and Y def= q, and determine whether X ↔ Y .
The second observation is that we may assume, again without loss of generality, that ∆

is in so-called Greibach Normal Form (GNF): for every defining equation (X def= p) ∈ ∆ we
have that

p ≡
n∑
i=1

ai.αi(+1) . (2)

Here we assume that n ∈ N (recall our convention that the empty summation denotes 0),
αi ∈ P∗, and (+1) denotes an optional 1-summand. We refer to [8] for the description of an
effective procedure that associates with every recursive specification ∆ over TSP;(A,P) a set
P ′ ⊇ P and a recursive specification ∆′ over TSP;(A,P ′) in GNF such that for all X,Y ∈ P
we have that X ↔ Y with respect to ∆ if, and only if, X ↔ Y with respect to ∆′. The
advantage of assuming that ∆ is in GNF is that then every process expression reachable (by
following the transition relation) from a process identifier associated with TSP;(A,P) is an
element of P∗.

The third observation is that it is semi-decidable whether p 6↔ q. This is a straightforward
consequence of the well-known fact that for image-finite transition systems there is a stratified
characterisation of bisimilarity; see [8] for such a characterisation taking the acceptance
predicate into account. Therefore, to solve the aforementioned decision problem, it suffices
to argue that bisimilarity is semi-decidable.

The argument presented in [12] to show that bisimilarity is semi-decidable for BPA then
proceeds by showing that process identifiers X and Y are bisimilar if, and only if, there
exists a finite bisimulation base1 that contains the pair (X,Y ), and that it is semi-decidable
whether a finite binary relation on P∗ is a bisimulation base. It then follows that X ↔ Y is
semi-decidable: enumerate all finite binary relations on P∗ containing the pair (X,Y ) and
check, in parallel, whether one of them is a bisimulation base.

We adapt the definition of bisimulation base, originally from [13], to our setting with an
acceptance predicate. It uses the following auxiliary notation: if R is a binary relation on P∗,

1 Note that a bisimulation base is a bisimulation up to congruence with respect to the operation of
concatenation on finite sequences of process identifiers [20].
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then we denote by R≡ the least equivalence relation that contains R and all pairs (αα′, ββ′)
whenever it contains the pairs (α, β) and (α′, β′).

I Definition 15. A binary relation R on P∗ is a bisimulation base if, and only if, R is
symmetric and for all pairs (α, β) ∈ R and all a ∈ A, it holds that:

if α a−→ α′, then β a−→ β′ for some β′ such that α′ R≡ β′; and
if α ↓, then β ↓.

Our goal will be to show that there exists a finite bisimulation base R such that α R≡ β
if, and only if, α↔ β for all α, β ∈ P∗. The argument relies on a partitioning of the set of
process identifiers into normed and unnormed process identifiers.

I Definition 16. Let p be a TSP;(A,P) process expression. The norm n(p) of p is the
length of a shortest transition sequence from p to a process expression bisimilar to 1 if such
a sequence exists, and ∞ otherwise, i.e.,

n(p) = min
(
{|w| | ∃p′. p w→−→ p′ ∧ p′ ↔ 1} ∪ {∞}

)
.

A process expression p is normed if n(p) <∞; otherwise it is unnormed. We denote by Pn
the set of all normed process identifiers and by Pu the set of all unnormed process identifiers.

In the case of BPA, which does not have intermediate acceptance, the following three
properties hold for all sequences of process identifiers α, β and γ:
1. if α is unnormed, then αβ ↔ α;
2. |α| ≤ n(α); and
3. if α, β and γ are normed, then αγ ↔ βγ implies α↔ β.
These properties are crucial for pruning the cardinality of the bisimulation base. The following
example illustrate that neither of these properties holds in our setting with intermediate
acceptance:

I Example 17. Consider the following recursive specification in GNF:

X
def= a.Y WZ + a.Y W + a.ZZ + a.UV Z

def= b.1 V
def= 0

Y
def= b.1 + 1 U

def= b.U + 1 W
def= 0 + 1

Then we have that U is unnormed, but UV 6↔ U since U↓ whereas UV 6↓, refuting the first
property. Furthermore, |YWZ| = 3 > 2 = n(YWZ), refuting the second property. And
finally YWZ ↔ ZZ, but YW 6↔ Z, refuting the third property.

Note that the sequences used in Example 17 to refute the properties above all suffer from
some form of redundant intermediate acceptance.

Violation of the first property can only be due to the presence of a process identifier that
is bisimilar to 1. Note that, in a recursive specification in GNF, a process identifier X is
bisimilar to 1 if, and only if, (X def= 0 + 1) ∈ ∆; let us call such a process identifier a 1-
identifier. Whether some process identifier is a 1-identifier can easily be decided. Furthermore,
occurrences of 1-identifiers can simply be eliminated from the right-hand sides of defining
equations of other process identifiers. Thus, it remains to solve the decision problem for
recursive specifications in GNF without 1-identifiers.

Our main contribution in the remainder of this section will be the notion of Acceptance
Irredundant Greibach Normal Form (AIGNF), a special variant of GNF that precludes
redundant intermediate acceptance from sequences reachable from process identifiers. We
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shall prove that it is enough to solve the decision problem for recursive specifications in
AIGNF and then show that the argument for the existence of a finite bisimulation base of
[13] works for such recursive specifications.

4.1 Acceptance Irredundant Greibach Normal Form
We partition the set of process identifiers P into sets P↓ = {X ∈ P | X↓} and P6↓ = {X ∈ P |
X 6↓}. Furthermore, we define the set P 6↓ of hereditarily non-terminating process identifiers
as the largest subset of P 6↓ such that for all X ∈ P 6↓ we have that if (X def= p) ∈ ∆ and Y is
a process identifier occurring in p, then Y ∈ P 6↓. The set P 6↓ can be computed iteratively:
start with P ′ = P 6↓ and in every iteration remove from P ′ all process identifiers X such that
(X def= p) ∈ ∆ and p has an occurrence of some process identifier Y with Y 6∈ P ′ until a fixed
point is reached (i.e., nothing can be removed from P ′ anymore). We shall say that α ∈ P∗
is acceptance irredundant if α ∈ P∗6↓P 6↓P∗↓ ∪ P∗↓ .

I Definition 18. A recursive specification ∆ is in Acceptance Irredundant Greibach Normal
Form (AIGNF) if for every defining equation (X def= p) ∈ ∆ we have that p ≡ 0 or

p ≡
n∑
i=1

ai.αi(+1) ,

with n ∈ N+ and each αi acceptance irredundant.

The following example illustrates how a recursive specification in GNF and without
1-identifiers can be transformed into AIGNF.

I Example 19. Consider the following recursive specification in GNF:

X
def= a.Y Z + a.Y + a.ZZ + a.UV Z

def= b.1

Y
def= b.1 + 1

As Z 6↓, the intermediate acceptance of Y in a.Y Z is redundant. We cannot simply remove
it from the definition of Y , however, since in a.Y the intermediate acceptance of Y is not
redundant. Instead, we introduce a fresh variable Ȳ , that is defined as Y but without the
intermediate acceptance. Then, we replace all occurrences of Y of which the intermediate
acceptance is redundant with Ȳ , resulting in:

X
def= a.Ȳ Z + a.Y + a.ZZ + a.UV Z

def= b.1

Y
def= b.1 + 1 Ȳ

def= b.1

The idea explained in the preceding example can be exploited to prove the following
proposition.

I Proposition 20. For every recursive specification ∆ over TSP;(A,P) in GNF without
1-identifiers there exist P ′ ⊇ P and a recursive specification ∆′ in AIGNF over TSP;(A,P ′)
such that for all X,Y ∈ P we have that X ↔ Y with respect to ∆ if, and only if, X ↔ Y

with respect to ∆′.

Let α ∈ P∗; we say that α is ∆-reachable if there exists X ∈ P such that X →−→ α. If ∆ is
in AIGNF, then it can be shown that all ∆-reachable sequences are acceptance irredundant.
Hence, for recursive specifications in AIGNF we now get the three properties needed for the
proof that there exists a finite bisimulation base.
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I Proposition 21. If ∆ is in AIGNF, then for all acceptance irredundant sequences α, β, γ:
1. if α is unnormed, then αβ ↔ α;
2. |α| ≤ n(α); and
3. if α, β and γ are normed, then αγ ↔ βγ implies α ↔ β.

Proof. See Appendix B. J

4.2 The existence of a finite bisimulation base
By the first item of Proposition 21, we can, without loss of generality, assume that all
sequences of variables appearing in the right-hand sides of the defining equations in our
presupposed recursive specification ∆ in AIGNF are elements of P∗n ∪ P∗nPu. Then all ∆-
reachable sequences will not only be acceptance irredundant, but also elements of P∗n ∪P∗nPu.

The definition of the finite bisimulation base relies on decomposing sequences.

I Definition 22. A pair (Xα, Y β) satisfying Xα ↔ Y β is decomposable if X and Y are
normed, and there exists γ such that

X →−→ γ, X ↔ Y γ and γα ↔ β; or
Y →−→ γ, Y ↔ Xγ and γβ ↔ α.

Two pairs (Xα, Y β) and (Xα′, Y β′) are distinct if α 6↔ α′ or β 6↔ β′. A crucial step towards
a finite bisimulation base consists of establishing that a relation containing all indecomposable
pairs (Xα, Y β), where Xα, Y βP∗n ∪ P∗nPu are acceptance irredundant sequences such that
Xα↔ Y β is necessarily finite.

For the definition of a finite bisimulation base we now need just one more definition,
which allows us to choose appropriate candidates among non-distinct indecomposable pairs.

I Definition 23. The finite prefix norm nf (α) of α is defined as follows:

nf (α) = max({n(β) | n(β) <∞ and α = βγ for some γ}).

The pre-order � on pairs is defined as:
(α1, α2) � (β1, β2) iff max(nf (α1), nf (α2)) ≤ max(nf (β1), nf (β2)).

In the following two lemmas, adapted from [12, Lemmas 28 and 29], a relaxed form of
cancellation is established for ∆-reachable sequences of process identifiers.

I Lemma 24. If α ↔ γα and β ↔ γβ for some γ 6↔ 1 and acceptance irredundant γα and
γβ, then α ↔ β.

Using this result, we will show a form of cancellation for (potentially unnormed) acceptance
irredundant sequences, if αγ ↔ βγ for infinitely many non-bisimilar γ.

I Lemma 25. Let α, β ∈ P∗. If for infinitely many non-bisimilar γ ∈ P∗ such that αγ and
βγ are acceptance irredundant it holds that αγ ↔ βγ, then α ↔ β.

The following lemma is an adaptation of [12, Lemma 32] to our setting.

I Lemma 26. For all X,Y ∈ P, every set R of the form

{(Xα, Y β) | Xα, Y β ∈ P∗n ∪ P∗nPu acceptance irredundant sequences,
Xα ↔ Y β, and (Xα, Y β) indecomposable}

and contains only distinct pairs must be finite.
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We now have everything in place to prove the main result of this section.

I Theorem 27. Let R1 = {(X,α) | X ∈ Pn, α ∈ Pn such that X ↔ α}, and let R2 be the
largest relation of the form

{(Xα, Y β) | Xα, Y β ∈ P∗n ∪ P∗nPu are acceptance irredundant,
Xα ↔ Y β, and (Xα, Y β) indecomposable}

containing only distinct pairs and minimal elements with respect to �. Then the symmetric
closure R of R1 ∪ R2 is finite and satisfies α R≡ β if and only if α ↔ β for all acceptance
irredundant sequences α, β ∈ P∗n ∪ P∗nPu.

Proof. Since ∆ is in AIGNF, we have |α| ≤ n(α). Hence, since X is normed and n(X) = n(α)
we have |α| ≤ n(X), and thus α has a finite maximum length. Hence, there can only be
finitely many such α as P is finite. If follows that R1 is finite. Furthermore, by Lemma 26,
R2 is finite. So R is finite. Hence, since ↔ is a congruence for TSP;(A), we have R≡ ⊆ ↔.
It remains to show is that R≡ ⊇ ↔. We prove by induction on � that Xα ↔ Y β implies
Xα

R≡ Y β, for all acceptance irredundant sequences Xα, Y β ∈ P∗n ∪ P∗nPu.
Suppose that (Xα, Y β) is decomposable, then X,Y ∈ Pn and, without loss of generality,
assume that X →−→ γ such that X ↔ Y γ and γα↔ β. Then, nf (γα) < nf (Y γα) = nf (Xα)
and nf (β) < nf (Y β), so (γα, β) ≺ (Xα, Y β). Furthermore, since X →−→ γ, Xα →−→ γα and
thus γα ∈ P∗n ∪ P∗nPu and γα is acceptance irredundant. Moreover, since Y β ∈ P∗n ∪ P∗nPu,
Y β is acceptance irredundant and Y ∈ Pn, it follows that β ∈ P∗n∪P∗nPu and β is acceptance
irredundant, and hence by induction γα R≡ β. Finally, since γα is acceptance irredundant, γ
is acceptance irredundant, and therefore Y γ is acceptance irredundant. Hence, (X,Y γ) ∈ R1

and thus Xα R≡ Y γα R≡ Y β.
Now, suppose that (Xα, Y β) is not decomposable. Then (Xα′, Y β′) ∈ R2 for some

α′ ↔ α and β′ ↔ β with (α′, β′) � (α, β). We distinguish three cases.
If X,Y ∈ Vn, then (α, β), (α′, β′) ≺ (Xα, Y β), so (α, α′), (β, β′) ≺ (Xα, Y β). Hence, by
induction α R≡ α′ and β R≡ β′, so Xα R≡ Xα′RY β′ R≡ Y β.
If X ∈ Vn and Y ∈ Vu, then since β ≡ X1 . . . Xn for some n ≥ 0 and Y Xi

R≡ Y

for each 0 ≤ i ≤ n, we find Y β
R≡ Y . Furthermore, nf (α′) ≤ nf (α) < nf (Xα), so

(α, α′) ≺ (Xα, Y ). Hence, by induction α
R≡ α′, and since (Xα′, Y ) ∈ R2 we find

Xα
R≡ Xα′

R≡ Y
R≡ Y β. A symmetric argument applies for the case when X ∈ Vu and

Y ∈ Vn.
If X,Y ∈ Vu, then since α ≡ X1 . . . Xn for some n ≥ 0 and XXi

R≡ X for each 0 ≤ i ≤ n,
we find Xα

R≡ X. Similarly, we find Y β
R≡ Y and thus since (X,Y ) ∈ R2, we derive

Xα
R≡ X R≡ Y R≡ Y β. J

It follows from Theorem 27 that bisimilarity is semi-decidable, and since also non-bisimilarity
is semi-decidable, we obtain the following corollary.

I Corollary 28. Bisimilarity is decidable for all processes definable by means of a finite
guarded recursive specification over TSP;(A,P).

5 Conclusion

We have considered a variant of the Theory of Sequential Processes proposed in [7] in which
sequential composition is replaced by sequencing. The distinguishing feature of the resulting
process theory is that it includes the notion of intermediate acceptance relevant for the
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theory of automata and formal languages, without also including the complications that
arise from transparency. (We should mention here that the variant of successful termination
considered by Aceto and Hennessy in [1] also does not lead to transparency, but in their
theory a non-deterministic choice successfully terminates only if both arguments successfully
terminate, and hence it does not have intermediate acceptance.)

We have presented a finite axiomatisation of the ground equational theory of the recursion-
free fragment of the Theory of Sequential Processes using the auxiliary operator NT and
proved that a finite axiomatisation without auxiliary operators does not exist.

Processes definable by means of a finite guarded recursive specification over TSP;(A)
may rightfully be referred to as context-free processes. Indeed, the language of a process
definable by means of a finite guarded recursive specification is context-free, and for every
context-free language there is a process definable by a finite guarded recursive specification
over TSP;(A) with that language. In [7] it was already proved that every context-free process
is bisimilar to a pushdown process. Here we have proved that bisimilarity is decidable for all
context-free processes, extending the seminal result of Christensen, Hüttel and Stirling [13]
with intermediate acceptance.

It follows from the work of Moller [19] that not every pushdown process is context-free.
We conjecture that extending TSP;(A) with propositional signals suffices to facilitate the
definability of all pushdown processes. This will be the topic of a forthcoming paper.

Another interesting remaining open problem is whether bisimilarity is also decidable for
the variant of the Theory of Sequential Processes discussed in [2]. In [8] it is argued that
properties 2 and 3 of Proposition 21 do not hold in this case, and it seems considerably more
difficult to deal with the ensuing complications.
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A Proofs of Lemmas 9 and 10

In this appendix we shall provide proofs for Lemmas 9 and 10, restated below as Lemmas 35
and 40. For the formulation of our arguments, it is convenient to associate behaviour to
TSP;(A)-terms with variables. We assume an extended syntax in which a constant x̄ added
for every variable x and include the following operational rule to the operational semantics
presented in Figure 1:

x
x−→ x̄

.
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The resulting collection of operational rules is used to derive transitions of TSP;(A)-terms
(with variables). A transition of a TSP;(A)-term t may then either result in another TSP;(A)-
term, or, if it is due to the transition of a variable, it may result in a term in a syntax extended
with the constant x̄: For every variable x, we inductively define the set of TSP;(A, x̄)-terms
as follows:
1. the constant x̄ is a TSP;(A, x̄)-term; and
2. if t1 is a TSP;(A, x̄)-term and t2 is a TSP;(A)-term, then t1 ; t2 is a TSP;(A, x̄)-term.
If t is a TSP;(A, x̄)-term and p is a closed TSP;(A)-term, then by t[x̄ := p] we denote the
TSP;(A)-term obtained by replacing x̄ by p. While every variable can now “take a step”, we
do not let this contribute to the width of a term, so width(x) = 0 for every variable x.

I Lemma 29. Let t be a TSP;(A)-term.
1. If t a−→ t′ for some action a, then t′ is a TSP;(A)-term.
2. If t x−→ t′ for some variable x, then t′ is a TSP;(A, x̄)-term.

We would like to establish a relationship between transitions from t and transitions from
σ(t), where σ is a closed substitution. However, we cannot yet fully express that a transition
originates from a substitution in a variable. For example, consider the TSP;(A)-term t ≡ x ;y
and the closed substitution σ, where σ(x) = 1 and σ(y) = a.1. Clearly, σ(t) = 1 ; a.1 and
hence σ(t) a−→ 1. However, we cannot express that this a-transition originates from the
substitution in y, as t y9. To be able to express this, we define the following substitution.

I Definition 30. Given a substitution σ and variable x, the substitution µσx is defined as:

µσx(y) =
{
y if y = x

σ(y) otherwise.

Referring to the example preceding Definition 30, note that µσy(t) y−→ ȳ and σ(y) a−→ 1.
We can establish several useful relationships between σ(t) and µσx(t).

I Lemma 31. Let t be a TSP;(A)-term, σ a closed substitution, x a variable, p a closed
TSP;(A)-term and a an action such that σ(x) a−→ p. Then:
1. if σ(t) 6↓, then µσx(t) 6↓ ;
2. if σ(t) 9, then µσx(t) 9 ;
3. if σ(t) 9 and σ(t) ↓, then µσx(t) ↓.

In the following lemma it is proven that if t contains a subterm t2 such that width(σ(t2)) >
width(t2), then one of the actions that can be executed by σ(t2) must come from a substitution
in some variable x.

I Lemma 32. Let t be a TSP;(A)-term and σ a closed substitution. If width(σ(t)) > width(t),
then there must exist an action a, closed TSP;(A)-terms p and p′, a TSP;(A, x̄)-term t′, and
a variable x such that σ(t) a−→ p, µσx(t) x−→ t′, σ(x) a−→ p′ and p ≡ σ(t′[x̄ := p′]).

I Lemma 33. Let t be a TSP;(A)-term, x a variable and σ a closed substitution. Then:
1. if t ↓, then σ(t) ↓;
2. if σ(t) ↓, then ϑ(σ,x)(t) ↓;
3. if ϑ(σ,x)(µσx(t)) ↓, then ϑ(σ,x)(t)↓.

Using these properties we show that given a term t, variable x and substitution σ as
described above, ϑ(σ,x)(t)↓ indeed holds.
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I Lemma 34. Let t be a TSP;(A)-term, let x be a variable, and let σ be a substitution. If
there exist a TSP;(A, x̄)-term t′ and a closed TSP;(A)-term p such that t x−→ t′, σ(x) a−→ p

and σ(t′[x̄ := p]) ↓, then ϑ(σ,x)(t)↓.

By utilizing the results from Lemma 32 and Lemma 34, we show that given a TSP;(A)-
term t and substitution σ, if Ψn(σ(t)) holds, then t must contain some variable x such that
ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

I Lemma 35. Let t be a TSP;(A)-term and let n be a natural number such that width(t′) < n

for every subterm t′ of t. If Ψn(σ(t)) for some closed substitution σ, then there is a variable
x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

Proof. We proceed with induction on the structure of t.

If t ≡ 0, t ≡ 1 or t ≡ a.t′ for some action a and TSP;(A)-term t′, then σ(t) cannot have
a summand of the form t1 ; t2, so Ψn(σ(t)) does not hold for any substitution σ. Hence
the implication vacuously holds.
Let t ≡ y for some variable y, and suppose that Ψn(σ(t)) holds for some closed substitution
σ. Then clearly from Ψn(σ(t)) it follows that Ψn(σ(y)). Furthermore, since t y−→ ȳ and
since σ(ȳ[ȳ := 1]) ≡ 1, we have that σ(ȳ[ȳ := 1]) ↓. Hence, by Lemma 34, we have that
ϑ(σ,y)(t)↓ and thus x = y.
Let t ≡ t1 + t2 for some TSP;(A)-terms t1 and t2. If Ψn(σ(t)), then either σ(t1) or
σ(t2) must contain a summand p such that one of the three cases of the definition of
Ψn applies. We proceed to consider the case that p is a summand of σ(t1); the proof
in the case that p is a summand of σ(t2) proceeds analogously. Note that, since p ↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), we find that σ(t1) ã−→ p′ with p′ ↔

∑n
i=1(b̃.1 ; (b̃.1 + 1)i).

Moreover, since σ(t1) is a summand of σ(t) and also σ(t)↔ (ã.1+1);
∑n
i=1(b̃.1;(b̃.1+1)i),

we find that σ(t1)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and hence Ψn(σ(t1)). Since every

subterm of t1 is a subterm of t, we also have that width(t′) < n for every subterm t′ of t1.
Therefore, we may now apply the induction hypothesis to conclude that either Ψn(σ(x))
or σ(x) b−→, and ϑ(σ,x)(t1)↓; clearly, from the latter it follows that ϑ(σ,x)(t)↓.
Let t ≡ t1 ; t2 for some TSP;(A)-terms t1 and t2, and suppose that Ψn(σ(t)). Then,
considering the definition of Ψn, one of the following three cases must apply:
1. If Φn(σ(t1) ; σ(t2)), then σ(t1) ↔ ã.+1 and σ(t2) ↔

∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Then

σ(t2) b̃−→ (b̃.1 + 1)i for all 1 ≤ i ≤ n. Clearly, if i 6= j, then (b̃.1 + 1)i 6↔ (b̃.1 + 1)j ,
so width(σ(t2)) ≥ n > width(t2). It follows by Lemma 32 that there exist an action
a, closed TSP;(A)-terms p and p′, a TSP;(A, x̄)-term t′ and a variable x such that
σ(t2) a−→ p, µσx(t2) x−→ t′, σ(x) a−→ p′ and p ≡ σ(t′[x̄ := p′]). Clearly, we must
have a = b̃ and p ↔ (b̃.1 + 1)i for some 1 ≤ i ≤ n. To see that ϑ(σ,x)(t)↓, note that,
since σ(t1) ↔ ã.1 + 1, we have that σ(t1) ↓ and hence ϑ(σ,x)(t1)↓. Moreover, since
σ(t′[x̄ := p′])↔ (b̃.1 + 1)i, we find that σ(t′[x̄ := p′]) ↓, and hence, by Lemma 34, we
get that ϑ(σ,x)(µσx(t2))↓. Finally, by Lemma 33(3), we conclude that ϑ(σ,x)(t2)↓ and
thus ϑ(σ,x)(t)↓

2. If σ(t1)↔ 1 and Ψn(σ(t2)), then since every subterm of t2 is a subterm of t we find
that width(t′2) < n for all subterms t′2 of t2. Hence, by the induction hypothesis, for
some variable x we have that either Ψn(σ(x)) or σ(x) b̃−→ and, moreover, ϑ(σ,x)(t2)↓.
From σ(t1) ↔ 1 it follows that σ(t1) ↓, so, by Lemma 33(2), ϑ(σ,x)(t1)↓, and hence
ϑ(σ,x)(t)↓.
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3. If Ψn(σ(t1)) and σ(t2)↔ 1, then the proof that ϑ(σ,x)(t)↓ is analogous to the previous
case. J

We have established that if Ψn(σ(t)) holds for some substitution σ and TSP;(A)-term t

such that width(t′) < n for each subterm t′ of t, then t must confirm to certain properties.
Now, for any term u such that t ↔ u, these properties must be valid as well. Hence, it
remains to show is that if u contains these properties, then Ψn(σ(u)) must hold as well. This
is shown in Lemma 40. In order to prove this result, some useful properties are established
in Lemma 36 to Lemma 39.

I Lemma 36. Let p and q be closed TSP;(A)-terms and suppose that p ↔ q. Then
depth(p) = depth(q).

Proof. Assume that p↔ q and, for the sake of contradiction, suppose that depth(p) = n and
depth(q) = m, for some n > m. Then, by definition, p −→n p′ and since p ↔ q, q −→n q′,
such that p′ ↔ q′. Clearly, since n > m, this contradicts depth(q) = m. Hence, we conclude
depth(p) = depth(q). J

I Lemma 37. For all closed TSP;(A)-terms p1 and p2, if p1 ; p2 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i,

then one of the following cases must hold:
1. p1 ↔ 1 and p2 ↔ ã.1 ;

∑n
i=1 b̃.(b̃.1 + 1)i; or

2. p1 ↔ ã.1 and p2 ↔
∑n
i=1 b̃.(b̃.1 + 1)i; or

3. p1 ↔ ã.1 + 1 and p2 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i; or

4. p1 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i and p2 ↔ 1.

I Lemma 38. For any TSP;(A)-term t, variable x and closed substitution σ, if σ(t) 6↓ and
ϑ(σ,x)(t)↓, then t contains x.

Proof. Let t be a TSP;(A)-term, x a variable and σ a closed substitution such that σ(t) 6↓
and ϑ(σ,x)(t)↓. Now suppose t does not contain x. Then, by the definition of ϑ(σ,x),
ϑ(σ,x)(t) ≡ σ(t), which means that if σ(t) 6↓ we should also have ϑ(σ,x)(t) 6↓. Since this
contradicts ϑ(σ,x)(t)↓, we conclude t must contain x. J

I Lemma 39. For any TSP;(A)-term t, variable x and closed substitution σ, if t contains x
and σ(x) a1...an−→ p for some sequence of actions a1...an and closed TSP;(A)-term p, then
1. either σ(t) −→∗ p′ a1...an−→ p′′, for some p′ and p′′,
2. or σ(t) −→∗ p′, for some p′ such that p′ ↔ 0.

Proof. Let t be a TSP;(A)-term, x a variable and σ a closed substitution such that t contains
x and σ(x) a1...an−→ p for some sequence of actions a1...an and closed TSP;(A)-term p. It can
then be proved with induction on the structure of t that one of the two cases of the lemma
must hold. J

I Lemma 40. For any TSP;(A)-term t, variable x and closed substitution σ, if σ(t) ↔

(ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→, then Ψn(σ(t)).

Proof. Let t be a TSP;(A)-term, x a variable and let σ be closed substitution such that
σ(t) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b−→. We

prove by induction on the structure of t that Ψn(σ(t)) must hold.
If t ≡ 0 or t ≡ 1, then σ(t) 6↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), hence, the implication

vacuously holds.
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If t ≡ a.t′, then ϑ(σ,x)(t)6↓ which contradicts ϑ(σ,x)(t)↓, hence, the implication vacuously
holds.
If t ≡ y for some variable y, then since σ(t)↔ (ã.1+1);

∑n
i=1(b̃.1;(b̃.1+1)i), we must have

σ(t) 6↓. Moreover, since ϑ(σ,x)(t)↓, by Lemma 38, σ(t) contains x, thus we must have y ≡ x.

Now suppose σ(x) b̃−→, then σ(t) b̃−→, contradicting σ(t)↔ (ã.1+1);
∑n
i=1(b̃.1;(b̃.1+1)i).

Hence, it must be the case that Ψn(σ(x)) holds and thus also Ψn(σ(t)) holds.
Suppose t ≡ t1 + t2 and suppose that the lemma holds for t1 and t2 (IH). Since σ(t)↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), we have σ(t) 6↓ and thus both σ(t1) 6↓ and σ(t2) 6↓.

Moreover, since ϑ(σ,x)(t)↓ either ϑ(σ,x)(t1)↓ or ϑ(σ,x)(t2)↓. Without loss of generality

assume ϑ(σ,x)(t1)↓. Then, by Lemma 38, t1 must contain x. Since either σ(x) b̃−→ or
Ψn(σ(x)) and thus σ(x) ã−→, by Lemma 39, either σ(t1) −→∗ q1

a−→ for some action a
and closed TSP;(A)-term q1, or σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that
q2 ↔ 0. The second case clearly contradicts σ(t)↔ (ã.1+1);

∑n
i=1(b̃.1;(b̃.1+1)i). Hence,

it must be the case that σ(t1) −→∗ q1
ã−→. Since σ(t1) is able to execute an action and

σ(t1) is a summand of σ(t), we must have σ(t1) a−→ p such that p↔
∑n
i=1(b̃.1 ; (b̃.1+1)i).

Hence, we must have σ(t1)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and thus by the induction

hypothesis we conclude Ψn(σ(t1)), and since σ(t1) is a summand of σ(t) also Ψn(σ(t)).
Suppose t ≡ t1 ; t2 and suppose that the lemma holds for t1 and t2 (IH). Since σ(t) =
σ(t1 ; t2) = σ(t1) ; σ(t2), we have σ(t1) ; σ(t2)↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and thus

by Lemma 37, one of the following cases must hold:

1. If σ(t1) ↔ 1 and σ(t2) ↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then, by the induction

hypothesis, Ψn(σ(t2)). Moreover, since σ(t1) ↔ 1, by case 2 of Ψn we conclude
Ψn(σ(t)).

2. If σ(t1) ↔ ã.1 and σ(t2) ↔
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then σ(t1) 6↓. Moreover, since

ϑ(σ,x)(t)↓ we must have ϑ(σ,x)(t1)↓, and thus by by Lemma 38, t1 must contain x. We
distinguish two cases.
If Ψn(σ(x)), then σ(x) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and, by Lemma 39,

either σ(t1) −→∗ q1
ã−→ q′1

b̃−→ q′′1 for some closed TSP;(A)-terms q1, q′1 and q′′1 , or
σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that q2 ↔ 0. Both cases clearly
contradict σ(t1)↔ ã.1.
If σ(x) b−→, then, by Lemma 39, either σ(t1) −→∗ q1

b̃−→ for some closed TSP;(A)-
term q1, or σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that q2 ↔ 0. Again,
both cases contradict σ(t1) ↔ ã.1, hence the case where σ(t1) ↔ ã.1 and σ(t2) ↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) can never occur.

3. If σ(t1) ↔ ã.1 + 1 and σ(t2) ↔
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then clearly Φn(σ(t1) ; σ(t2))

and thus, by case 1 of Ψn we conclude Ψn(σ(t)).
4. If σ(t1) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and σ(t2) ↔ 1, then, by the induction

hypothesis, Ψn(σ(t1)). Moreover, since σ(t2) ↔ 1, by case 3 of Ψn we conclude
Ψn(σ(t)). J

B Proof of Proposition 21

The three properties of Proposition 21 are proved below as Lemmas 45, 46 and 47. Throughout
this appendix it will be assumed that ∆ is in AIGNF.

Let us first establish that then all ∆-reachable sequences are acceptance irredundant.
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I Lemma 41. For every sequence α ∈ P∗6↓, if α
a−→ α′, then α′ ∈ P∗6↓.

I Lemma 42. For every acceptance irredundant sequence αβ, we have that either α ∈ P∗6↓
and β ∈ P∗6↓P 6↓P∗↓ , or α ∈ P

∗
6↓P6↓P↓

∗ ∪ P↓∗ and β ∈ P∗↓ .

Using the previous lemma, we show that acceptance irredundant sequences maintain their
shape when executing an action.

I Lemma 43. If α is acceptance irredundant and α a−→ α′, then α′ is acceptance irredundant.

I Corollary 44. If ∆ is in AIGNF, then all ∆-reachable sequences are acceptance irredundant.

I Lemma 45. Suppose that ∆ is in AIGNF and let α, β ∈ P∗. If αβ is acceptance irredundant
and α is unnormed, then αβ ↔ α.

Proof. We prove that the relation

R = {(α, αβ) | αβ is acceptance irredundant and α is unnormed}

is a bisimulation relation.
If α a−→ α′, then αβ

a−→ α′β and since α is unnormed, so is α′. Moreover, since αβ
is acceptance irredundant, we have by Lemma 43 that α′β is acceptance irredundant and
hence (α′, α′β) ∈ R. Furthermore, if α↓, then α ∈ P↓∗, hence, since αβ is acceptance
irredundant, we have β ∈ P↓∗ and thus αβ↓. A symmetric argument applies for the cases
where αβ a−→ α′β and αβ↓. J

I Lemma 46. Suppose that ∆ is in AIGNF. Then for all acceptance irredundant sequences
α we have |α| ≤ n(α).

Proof. If α contains an unnormed process identifier, then clearly α is unnormed hand hence
|α| ≤ n(α) =∞. So, suppose that α is normed. Then all process identifiers in α are normed
and must have a defining equation of the shape

∑n
i=1 ai.αi(+1) for some n ∈ N+ with αi

acceptance irredundant. Since every variable must be able to execute at least one action, the
norm of each variable must be greater or equal than 1. Hence, in this case also |α| ≤ n(α). J

I Lemma 47. Suppose that ∆ is in AIGNF and let αγ, βγ ∈ P∗ be acceptance irredundant.
If α, β and γ are normed, then αγ ↔ βγ implies α ↔ β.

Proof. It suffices to prove that

R = {(α, β) | ∃γ. αγ ↔ βγ and αγ, βγ are acceptance irredundant}

is a bisimulation relation.
Suppose α a−→ α′, then βγ a−→ δ such that δ ↔ α′γ. We distinguish two cases.

If β a−→ β′ and δ = β′γ, then since αγ and βγ are acceptance irredundant, by Lemma
43, α′γ and β′γ are acceptance irredundant and therefore (α′, β′) ∈ R.
If β↓, β 9 , γ a−→ γ′ and δ = γ′, then n(βγ) = n(γ) < n(αγ), contradicting αγ ↔ βγ.
Hence, in this case the implication vacuously holds.

Moreover, if α↓, then α ∈ P↓∗ and since αγ is acceptance irredundant also γ ∈ P↓∗. Hence,
we have αγ↓ and thus βγ↓ and β↓. A symmetric argument applies for the cases where
β

a−→ β′ and β↓. J
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