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Abstract
We introduce nominal string diagrams as string diagrams internal in the category of nominal sets.
This requires us to take nominal sets as a monoidal category, not with the cartesian product, but with
the separated product. To this end, we develop the beginnings of a theory of monoidal categories
internal in a symmetric monoidal category. As an instance, we obtain a notion of a nominal PROP
as a PROP internal in nominal sets. A 2-dimensional calculus of simultaneous substitutions is an
application.
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1 Introduction

One reason for the success of string diagrams, see [19] for an overview, can be formulated by
the slogan “only connectivity matters” [4, Sec.10.1]. Technically, this is usually achieved by
ordering input and output wires and using their ordinal numbers as implicit names. We write
n = {1, . . . n} to denote the set of n numbered wires and f : n→ m for diagrams f with n
inputs and m outputs. The approach of using order to implicitly name wires is particularly
convenient for the generalisations of Lawvere theories known as PROPs [16]. In particular,
the paper on composing PROPs [13] has been influential [2, 3].

On the other hand, if only connectivity matters, it is natural to consider a formalisation
of PROPs in which wires are not ordered. Thus, instead of ordering wires, we fix a countably
infinite set N of “names” a, b, . . ., on which the only supported operation or relation is
equality. Mathematically, this means that we work internally in the category of nominal sets
introduced by Gabbay and Pitts [8, 18]. In the remainder of the introduction, we highlight
some of the features of this approach.

Partial commutative vs total symmetric tensor. One reason why ordered names are
convenient is that the tensor ⊕ is given by the categorical coproduct (addition) in the
skeleton F of the category of finite sets. Even though n⊕m = m⊕ n on objects, the tensor
is not commutative but only symmetric, since the canonical arrow n⊕m→ m⊕ n is not the
identity.
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18:2 Nominal String Diagrams

On the other hand, in the category nF of finite subsets of N (which is equivalent to F as
an ordinary category), there is a commutative tensor A ]B given by union of disjoint sets.
The feature that makes commutativity possible is that ] is partial with A]B defined if and
only if A ∩B = ∅.

While it would be interesting to develop a general theory of partially monoidal categories,
our approach in this paper is based on the observation that the partial operation ] : nF×nF→
nF is a total operation ] : nF ∗ nF→ nF where ∗ is the separated product of nominal sets
[18].

Symmetries disappear in 3 dimensions. From a graphical point of view, the move from
ordered wires to named wires corresponds to moving from planar graphs to graphs in 3
dimensions. Instead of having a one dimensional line of inputs or outputs, wires are now
sticking out of a plane [12]. As a benefit there are no wire-crossings, or, more technically,
there are no symmetries to take care of. This simplifies the rewrite rules of calculi formulated
in the named setting. For example, rules such as

=

are not needed anymore. For more on this compare Figs 3 and 4.

Example: Simultaneous Substitutions. Substitutions [a 7→b] can be composed sequentially
and in parallel as in

[a7→b] ; [b 7→c] = [a7→c] [a7→b] ] [c7→d] = [a7→b, c7→d].

We call ] the tensor, or the monoidal or vertical or parallel composition. Semantically,
the simultaneous substitution on the right-hand side above, will correspond to the function
f : {a, c} → {b, d} satisfying f(a) = b and f(c) = d. Importantly, parallel composition of
simultaneous substitutions is partial. For example, [a7→b] ] [a 7→c] is undefined, since there is
no function {a} → {b, c} that maps a simultaneously to both b and c.

The advantages of a 2-dimensional calculus for simultaneous substitutions over a 1-
dimensional calculus are the following. A calculus of substitutions is an algebraic repres-
entation, up to isomorphism, of the category nF of finite subsets of N . In a 1-dimensional
calculus, operations [a7→b] have to be indexed by finite sets S

[a7→b]S : S ∪ {a} → S ∪ {b}

for sets S with a, b /∈ S. On the other hand, in a 2-dimensional calculus with an explicit
operation ] for set union, indexing with subsets S is unnecessary. Moreover, while the
swapping

{a, b} → {a, b}
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in the 1-dimensional calculus needs an auxiliary name such as c in [a7→c]{b} ; [b7→a]{c} ; [c 7→a]{b}
it is represented in the 2-dimensional calculus directly by

[a7→b] ] [b 7→a]

Finally, while it is possible to write down the equations and rewrite rules for the 1-dimensional
calculus, it does not appear as particularly natural. In particular, only in the 2-dimensional
calculus, will the swapping have a simple normal form such as [a7→b] ] [b 7→a] (unique up to
commutativity of ]).

Overview. In order to account for partial tensors, Section 3 develops the notion of a
monoidal category internal in a monoidal category. Section 4 is devoted to examples, while
Section 5 introduces the notion of a nominal PROP and Section 6 shows that the categories
of ordinary and of nominal PROPs are equivalent.

2 Setting the Scene: String Diagrams and Nominal Sets

We review some of the terminology but need to refer to the literature for details.

2.1 String Diagrams and PROPs
String diagrams are a 2-(or higher)-dimensional notation for monoidal categories [12]. Their
algebraic theory can be formalised by PROPs as defined by MacLane [15]. There is also the
weaker notion by Lack [13], see Remark 2.9 of Zanasi [22] for a discussion.

A PROP (products and permutation category) is a symmetric strict monoidal category,
with natural numbers as objects, where the monoidal tensor ⊕ is addition. Moreover,
PROPs, along with strict symmetric monoidal functors, that are identities on objects, form
the category PROP. A PROP contains all bijections between numbers as they can be be
generated from the symmetry (twist) σ : 1⊕ 1→ 1⊕ 1 and from the parallel composition ⊕
and sequential composition ; (which we write in diagrammatic order). We denote by σn,m
the canonical symmetry n⊕m→ m⊕ n. Functors between PROPs preserve bijections.

PROPs can be presented in algebraic form by operations and equations as symmetric monoidal
theories (SMTs) [22].

An SMT (Σ, E) has a set Σ of generators, where each generator γ ∈ Σ is given an arity
m and co-arity n, usually written as γ : m→ n and a set E of equations, which are pairs of
Σ-terms. Σ-terms can be obtained by composing generators in Σ with the unit id : 1→ 1
and symmetry σ : 2 → 2, using either the parallel or sequential composition (see Fig 1).
Equations E are pairs of Σ-terms with the same arity and co-arity.
Given an SMT 〈Σ, E〉, we can freely generate a PROP, by taking Σ-terms as arrows, modulo

the equations stating that, together with id, the compositions ; and ⊕ form monoids
the equations of Fig 2
the equations E

PROPs have a nice 2-dimensional notation, where sequential composition is horizontal
composition of diagrams, and parallel/tensor composition is vertical stacking of diagrams
(see Fig 1). We now present the SMTs of bijections B , injections I , surjections S ,
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γ

γ : m→ n ∈ Σ id : 1→ 1 σ : 2→ 2

t’

t’

t

t ;t s st

t : m→ n t′ : o→ p

t⊕ t′ : m+ o→ n+ p

t : m→ n s : n→ o

t ; s : m→ o

Figure 1 SMT Terms.

σ1,1 ;σ1,1 = id2 (SMT-sym)
(s ; t)⊕ (u ; v) = (s⊕ u) ; (t⊕ v) (SMT-ch)
(t⊕ idz) ;σn,z = σm,z ; (idz ⊕ t) (SMT-nat)

Figure 2 Equations of symmetric monoidal categories.

functions F , partial functions P , relations R and monotone maps M .1 The diagram
in Fig 3 shows the generators and the equations that need to be added to the empty SMT, to
get a presentation of the given theory. To ease comparison with the corresponding nominal
monoidal theories in Fig 4 later we also added on a striped background the equations for
wire-crossings that are already implied by the naturality of symmetries (SMT-nat). These
are equations that are part of the definition of a PROP in the sense of MacLane [15] but not
in the sense of Lack [13]. The right-hand equation for bijections B is (SMT-sym) and holds
in all symmetric monoidal theories. We list it here to emphasise the difference with Fig 4.

2.2 Nominal Sets

Let N be a countably infinite set of “names” or “atoms”. Let S be the group of finite2
permutations N → N . An element x ∈ X of a group action S × X → X is supported
by S ⊆ N if π · x = x for all π ∈ S such that π restricted to S is the identity. A group
action S×X → X such that all elements of X have finite support is called a nominal set.
We write supp(x) for the minimal support of x and say that a is fresh for x if a /∈ supp(x).
Nom for the category of nominal sets, which has as maps the equivariant functions, that is,
those functions that respect the permutation action. Our main example is the category of
simultaneous substitutions:

1 The theory of monotone maps M does not include equations involving the symmetry σ and is in fact
presented by a so-called PRO rather than a PROP. However, in this paper we will only be dealing with
theories presented by PROPs (the reason why this is the case is illustrated in the proof of Proposition 20).

2 A permutation is called finite if it is generated by finitely many transpositions.
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Figure 3 Symmetric monoidal theories (compiled from [14]).

I Example 1 (nF). We denote by nF the category of finite subsets of N with all functions.
While nF is a category, it also carries additional nominal structure. In particular, both the
set of objects and the set of arrows are nominal sets with supp(A) = A and supp(f) = A ∪B
for f : A → B. The categories of injections, surjections, bijections, partial functions and
relations are further examples along the same lines.

3 Internal monoidal categories

We introduce the notion of an internal monoidal category. Given a symmetric monoidal
category (V, I,⊗) with finite limits, we are interested in categories C, internal in V, that
carry a monoidal structure not of type C×C→ C but of type C⊗C→ C. This will allow us
to account for the partiality of ] discussed in the introduction. We present our motivating
example before we give Definition 11.

I Example 2.
The symmetric monoidal (closed) category (Nom, 1, ∗) of nominal sets with the separated
product ∗ is defined as follows [18]. 1 is the terminal object, i.e. a singleton with empty
support. The separated product of two nominal sets is defined as A ∗ B = {(a, b) ∈
A×B | supp(a) ∩ supp(b) = ∅}.
The category nF of Example 1 is an internal monoidal category with monoidal operation
given by A ] B = A ∪ B if A,B are disjoint and f ] f ′ = f ∪ f ′ if A,A′ and B,B′ are
disjoint where f : A→ B and f ′ : A′ → B′.

(nF, ∅,]) as defined in the previous example is not a monoidal category, since ], being
partial, is not an operation of type nF× nF→ nF . The purpose of this section is to define
the notion of internal monoidal category and to show that (nF, ∅,]) is an internal monoidal
category in (Nom, 1, ∗) with ] of type

CALCO 2019



18:6 Nominal String Diagrams

] : nF ∗ nF→ nF.

To this end we need to extend ∗ : Nom× Nom→ Nom to

∗ : Cat(Nom)× Cat(Nom)→ Cat(Nom)

where we denote by Cat(Nom), the category of (small) internal categories in Nom. The
necessary (and standard) notation from internal categories is reviewed in Appendix A.
I Remark 3. Let C be an internal category in a symmetric monoidal category (V, I,⊗)
with finite limits. Since ⊗ need not preserve finite limits, we cannot expect that defining
(C⊗ C)0 = C0 ⊗ C0 and (C⊗ C)1 = C1 ⊗ C1 results in C⊗ C being an internal category.

Consequently, putting (C⊗ C)1 = C1 ⊗ C1 does not extend ⊗ to an operation Cat(V)×
Cat(V) → Cat(V). To show what goes wrong in a concrete instance is the purpose of the
next example.

I Example 4. Define a binary operation nF ∗ nF as (nF ∗ nF)0 = nF0 ∗ nF0 and (nF ∗ nF)1 =
nF1 ∗ nF1. Then nF ∗ nF cannot be equipped with the structure of an internal category.
Indeed, assume for a contradiction that there was an appropriate pullback (nF ∗ nF)2 and
arrow comp such that the two diagrams commute:

(nF ∗ nF)2 comp //

π1 π2

��

nF1 ∗ nF1

dom cod

��
nF1 ∗ nF1

dom
cod

// nF0 ∗ nF0

Let δxy : {x} → {y} be the unique function in nF of type {x} → {y}. Then ((δac, δbd), (δcb,
δda)), which can be depicted as

{a} δac // {c} δcb // {b}

{b}
δbd

// {d}
δda

// {a}

is in the pullback (nF ∗ nF)2, but there is no comp such that the two squares above commute,
since comp((δac, δbd), (δcb, δda)) would have to be (δab, δba), which do not have disjoint support
and therefore are not in nF1 ∗ nF1. J

The solution to the problem consists in assuming that the given symmetric monoidal
category with finite limits (V, 1,⊗) is semi-cartesian (aka affine), that is, the unit 1 is the
terminal object. In such a category there are canonical arrows natural in A and B

j : A⊗B → A×B

and we can use them to define arrows j1 : (C⊗ C)1 → C1 × C1 that give us the right notion
of tensor on arrows. From our example nF above, we know that we want arrows (f, g) to
be in (C ⊗ C)1 if dom(f) ∩ dom(g) = ∅ and cod(f) ∩ cod(g) = ∅. We now turn this into
a category theoretic definition, which, in fact, is an instace of the general and well-known
construction of pulling back an internal category C along an arrow j : X → C0 to yield
an internal category X with X0 = X and X1 the pullback of 〈domC, codC〉 along j × j, or,
equivalently, the limit in the following diagram
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X1 C1

X0 C0

X0 C0

j1

codX
domX

j

j

codC
domC

which we abbreviate to

X1
j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(1)

Next we define i : X0 → X1 as the arrow into the limit X1 given by

X0 iC◦j

%%
id

''

id

''

iX

$$
X1 j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(2)

from which one reads off

domX ◦ iX = idX0 = codX ◦ iX

Next, X2 is the pullback

X2
πX1

~~

πX2

  
X1

codX   

X1

domX~~
X0

Recalling the definition of j1 from (1), there is also a corresponding j2 : X2 → C2 due to the
fact that the product of pullbacks is a pullback of products.

X2

πX1

}}

πX2

!!

j2 // C2

πX1

}}

πC2

!!
X1

codX !!

j1
))

X1

domX}}

j1

55C1

codC !!

C1

domC}}
X0

j // C0

(3)

CALCO 2019



18:8 Nominal String Diagrams

Recall the definition of the limit X1 from (1). Then compX : X2 → X1 is the arrow into X1

X2 compC◦j2

**
codX◦πX2

,,

domX◦πX1

,,

compX

&&
X1 j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(4)

from which one reads off

domX ◦ compX = domX ◦ πX1 codX ◦ compX = codX ◦ πX2 j1 ◦ compX = compC ◦ j2

and the remaining equations compX ◦ 〈iX ◦ domX, idX1〉 = idX1 = compX ◦ 〈idX1 , iX ◦ codX〉
are also not difficult to prove.

We have seen that the pullback of an internal category C along an arrow j with codomain
C0 is an internal category:

I Proposition 5. Given an internal category C and an arrow j : X → C0 there is an internal
category X and an internal functor j : X→ C such that X0 = X and j0 = j.

Moreover, this internal category X, or rather j : X→ C, has a universal property known
as a cartesian lifting. To make this precise, we recall the notion of a fibred category, or
fibration.

I Definition 6 (Fibration [11, 20]). If P :W → V is a functor, then j : X→ C is a cartesian
lifting of j : X → PC if for all k : W → C and all h : PW → X with Pk = j ◦ h there
is a unique h : W → X such that j ◦ h = k and Ph = h. Moreover, P : W → V is called
a (Grothendieck) fibration if all j : X → PC have a cartesian lifting for all C in W. If
P :W → V is a fibration, the subcategory of W that has as arrows the arrows f such that
P f = idC is called the fibre over C.

The next lemma is a strengthening of Proposition 5.

I Lemma 7. Let V be a category with finite limits. The forgetful functor Cat(V)→ V is a
fibration.

Instantiating Lemma 7 with C × D for C and j : C0 ⊗ D0 → C0 × D0 for j : X0 → C0,
gives us the desired result that internal categories can be pulled back along arbitrary arrows
between objects-of-objects:

I Corollary 8. The arrow j : C0 ⊗ D0 → C0 × D0 lifts to a morphism of internal categories
j : C⊗ D→ C× D. Moreover, j is the cartesian lifting of j.

To show that this construction is functorial we need to use that ⊗ : V × V → V is
functorial and that j : C0⊗D0 → C0×D0 is natural in C and D. In order to lift such natural
transformations, which are arrows in the functor category VCat(V)×Cat(V), we use

I Lemma 9. If P : E → B is a fibration and A is a category, then PA : EA → BA is a
fibration.
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Instantiating the lemma with P = (−)0 : Cat(V) → V and A = Cat(V) × Cat(V), we
obtain as a corollary that lifting the tensor ⊗ : V ×V → V to ⊗ : Cat(V)×Cat(V)→ Cat(V)
is functorial:

I Theorem 10. Let (V, 1,⊗) be a (symmetric) monoidal category with finite limits in which
the monoidal unit is the terminal object. Let (−) : Cat(V) → V be the forgetful functor
from categories internal in V. Then the canonical arrow j : C0 ⊗ D0 → C0 × D0 lifts to a
natural transformation j : C⊗ D→ C× D. Moreover, (Cat(V), I,⊗) inherits from (V, 1,⊗)
the structure of a (symmetric) monoidal category with finite limits in which the monoidal
unit is the terminal object.

In this paper we only need internal monoidal categories that are strict. In the same way
as a strict monoidal category is a monoid in (Cat,1,×), an internal strict monoidal category
is a monoid in (Cat(V), I,⊗):

I Definition 11 (Internal monoidal category). Let (V, 1,⊗) be a symmetric monoidal category
with finite limits in which the monoidal unit is the terminal object and let (Cat(V), I,⊗)
be the induced symmetric monoidal category of internal categories in V. A strict internal
monoidal category C is a monoid (C,∅,�) in (Cat(V), I,⊗).

More explicitly, a strict internal monoidal category C has operations

∅ : I→ C � : C⊗ C→ C

satisfying the laws of a monoid. For example, in the category nF of finite sets of names, ∅
is the empty set and ] = � is, on objects, union of disjoint sets and, on arrows, union of
functions with both disjoint domains and disjoint codomains. It follows from Remark 34
that an internal monoidal category satisfies the interchange law

(C⊗ C)2 comp×comp //

�2

��

(C⊗ C)1

�1

��
C2 comp // C1

which can also be written as

(f � f ′) ; (g � g′) = (f ; g)� (f ′; g′)

The move from × to ⊗ means that it is now possible that the right-hand side of the equation
is defined while the left-hand side is not. But, as we will see, in nominal sets, the right-hand
is always α-equivalent to one for which a left-hand side exists.

4 Examples

Before we give a formal definition of nominal PROPs and nominal monoidal theories (NMTs)
in the next section, we present as examples those NMTs that correspond to the SMTs of
Fig 3. The significant differences between Fig 3 and 4 are that wires now carry labels and
that there is a new generator ai ib which allows us to change the label of a wire.
Moreover, in the nominal setting rules for wire crossings are not needed.
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bijections nB , injections nI , surjections nS , functions nF , partial functions nP and

relations nR

Figure 4 Nominal monoidal theories.

I Theorem 12. The calculi of Fig 4 are sound and complete, that is, the categories presented
by these calculi are isomorphic the categories of finite sets of names with the respective maps.

The proof follows the same general lines as the well-known proofs for SMTs (see eg
Lafont [14]) and proceed by showing that each diagram f : A→ B can be rewritten to one
in normal form, with the normal form being a direct syntactic representation of the semantic
function/relation represented by f . The proofs for NMTs seem easier than the corresponding
proofs for SMTs due to the absence of wire crossings. For example, in the case of bijections, it
is immediate that, using the grey rules of Fig.4, every nominal diagram rewrites to a normal
form which is just a parallel composition of diagrams of the form ai ib .

5 Nominal monoidal theories and nominal PROPs

In this section, we introduce nominal PROPs as internal monoidal categories in nominal sets.
We first spell out the details of what that means in elementary terms and then discuss the
notion of diagrammatic alpha-equivalence.

5.1 Nominal monoidal theories

A nominal monoidal theory (Σ, E) is given by a nominal set Σ of generators and a nominal
set E of equations. The set of nominal generators is itself generated by a set Σo of “ordinary”
generators γ : n → m, each γ giving rise to a set of nominal generators [a〉γ〈b] : A → B

where a, b are unique lists of size n,m and whose underlying sets are A,B respecitvely. The
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nominal generators Σ are closed under permutations

π · [a〉γ〈b] : π ·A→ π ·B = [π(a)〉γ〈π(b)]. (π-def)

The set of terms is given by closing under the operations of Fig 5, which should be compared
with Fig 1.

γ : m→ n ∈ Σo
[a〉γ〈b] : A→ B ida : {a} → {a} δab : {a} → {b}

t : A→ B t′ : A′ → B′

t ] t′ : A ]A′ → B ]B′
t : A→ B s : B → C

t ; s : A→ C

t : A→ B

(a b) t : (a b) ·A→ (a b) ·B

Figure 5 NMT Terms.

Every NMT freely generates a monoidal category internal in nominal sets by quotienting the
generated terms by:

the equations that state that id and ; obey the laws of a category
the equations stating that id∅ and ] are a monoid
the equations of an internal monoidal category of Fig 6 3

the equations of permutation actions of Fig 7
the equations on the interaction of generators with bijections δ of Fig 8
the equations E

t ] s = s ] t (NMT-comm)
(s ; t) ] (u ; v) = (s ] u) ; (t ] v) (NMT-ch)

Figure 6 NMT Equations of ].

(a b)idx = id(a b)·x (a b)δxy = δ(a b)·x (a b)·y (a b)γ = (a b) · γ

(a b)(x ] y) = (a b)x ] (a b)y (a b)(x ; y) = (a b)x ; (a b)y

Figure 7 NMT Equations of the permutation actions.

For terms to form a nominal set, we need equations between permutations (not listed
here) to hold, as well as the equations of Fig 7 that specify how permutations act on terms.
All the equations presented in the figures above are routine, with the possible exception of
those of Fig 8, specifying the interaction of renamings δ with the generators [a〉γ〈b] ∈ Σ,
which we also depict in diagrammatic form:

3 The main difference with the equations in Fig 2 is that the interchange law for ] is required to hold only
if both sides are defined and that the two laws involving symmetries are replaced by the commutativity
of ].

CALCO 2019



18:12 Nominal String Diagrams

δab ; δbc = δac

[a〉γ〈b1, . . . , bi, . . . , bn] : A→ B ] {bi}
[a〉γ〈b1, . . . , bi, . . . , bn] ; (idB ] δbix) = [a〉γ〈b1, . . . , x, . . . , bn] (NMT-right)

[a1, . . . , ai, . . . , am〉γ〈b] : {ai} ]A→ B

(δxai
] idA) ; [a1, . . . , ai, . . . , am〉γ〈b] = [a1, . . . , x, . . . , am〉γ〈b] (NMT-left)

Figure 8 NMT Equations of renamings.

bi x = xγ γ x γ =ai x γ

Instances of these rules can be seen in Fig 4, where they are distinguished by a striped
background.

5.2 Diagrammatic alpha-equivalence
The equations of Fig 7 and Fig 8 introduce a notion of diagrammatic alpha-equivalence, which
allows us to rename “internal” names and to contract renamings.

I Definition 13. Two terms of a nominal monoidal theory are alpha-equivalent if their
equality follows from the equations in Fig 7 and Fig 8.

Every permutation π of names gives rise to bijective functions πA : A→ π[A] = {π(a) |
a ∈ A} = π · A. Any such πA, as well as the inverse π−1

A , are parallel compositions of δab
for suitable a, b ∈ N . In fact, we have πA =

⊎
a∈A δaπ(a). We may therefore use the πA as

abbreviations in terms.

I Proposition 14. Let t : A→ B be a term of a nominal monoidal theory. The equations in
Fig 7 and Fig 8 entail that π · t = (πA)−1 ; t ;πB .

A
t //

πA

��

B

πB

��
π[A]

π·t
// π[B]

The next two corollaries show that internal names can be renamed. We call this diagram-
matic α-equivalence.

I Corollary 15. Let t : A] {c} → B ] {c} be a term of a nominal monoidal theory and d be
fresh for t. Then t = (δcd ] idA) ; (c d) · t ; (δdc ] idB).

I Corollary 16. Let t : A → B be a term of a nominal monoidal theory. Modulo the
equations of Fig 7 and Fig 8, the support of t is A ∪B.

The last corollary shows that internal names are bound by sequential composition. Indeed,
in a composition A t→ C

s→ B, the names in C \ (A∪B) do not appear in the support of t ; s.
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5.3 Nominal PROPs

From the point of view of Section 3, a nominal PROP is an internal strict monoidal category
in (Nom, 1, ∗) that has finite sets of names as objects and at least all bijections as arrows. A
functor between nominal PROPs is an internal functor that preserves objects and bijections.
We spell this out in detail.

I Remark 17. A nominal PROP C is a small category, with a set C0 of “objects” and a
set C1 of “arrows”, defined as follows. We write ; for the sequential composition (in the
diagrammatic order) and ] for the monoidal composition.

C0 is the set of finite subsets of a countably infinite set N . The permutation action is
given by π ·A = π[A] = {π(a) | a ∈ A} for all finite permutations π : N → N .
C1 contains all bijections (“renamings”) πA : A → π · A, πA(a) = π(a), for all finite
permutations π : N → N and is closed under the operation mapping an arrow f : A→ B

to π · f : π ·A→ π ·B defined as π · f = (πA)−1;f ;πB .
A ] B is the union of A and B and defined whenever A and B are disjoint. This
makes (C0, ∅,]) a commutative partial monoid. On arrows, we require (C1, ∅,]) to be
a commutative partial monoid, with f ] g defined whenever domf ∩ domg = ∅ and
codf ∩ codg = ∅.
The interchange law (f ] f ′) ; (g ] g′) = (f ; g)] (f ′ ; g′) holds whenever the left-hand side
is defined.

From this definition on can deduce the following.

I Remark 18.
A nominal PROP has a nominal set of objects and a nominal set of arrows.
The support of an object A is A and the support of an arrow f : A → B is A ∪ B.
In particular, supp(f ;g) = dom(f) ∪ cod(g). In other words, nominal PROPs have
diagrammatic alpha equivalence.
There is a category nPROP that consists of nominal PROPs together with functors that
are the identity on objects and bijections and are strict monoidal and equivariant.
Every NMT presents a nPROP. Conversely, every nPROP is presented by at least one
NMT given by all terms as generators and all equations.

6 Equivalence of nominal and ordinary string diagrams

We show that the categories nPROP and PROP are equivalent. To define translations between
ordinary and nominal monoidal theories we introduce some auxiliary notation. We denote
lists that contain each letter at most once by bold letters. If a = [a1, . . . an] is a list, then
a = {a1, . . . an}. Given lists a and a′ with a = a′ we abbreviate bijections in PROP (also
called symmetries) mapping i 7→ ai = a′j 7→ j as 〈a|a′〉. Given lists a and b of the same
length we write [a|b] =

⊎
δaibi

for the bijection ai 7→ bi in an nPROP.

I Proposition 19. For any PROP S, there is an nPROP

NOM (S)

that has for all arrows f : n→ m of S, and for all lists a = [a1, . . . an] and b = [b1, . . . bm]
arrows [a〉f〈b] ∈ NOM (S). These arrows are subject to equations
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[a〉f ; g〈c] = [a〉f〈b] ; [b〉g〈c] (NOM-1)
[a ++ c〉f ⊕ g〈b ++ d] = [a〉f〈b] ] [c〉g〈d] (NOM-2)

[a〉id〈b] = [a|b] (NOM-3)
[a〉 〈b|b′〉 ; f 〈c] = [a|b] ; [b′〉f〈c] (NOM-4)
[a〉 f ; 〈b|b′〉 〈c] = [a〉f〈b] ; [b′|c] (NOM-5)

Proof. To show that NOM (S) is well-defined, we need to check that the equations of S are
respected. We only have space here for the most interesting case which is the naturality of
symmetries given by the last equation in Fig 2. We write am for a list of a’s of length m.

[am ++ az〉 (t⊕ idz) ;σn,z 〈bz ++ bn]
= ([am〉 t 〈xn] ] [az〉 idz 〈xz]) ; [xn ++ xz〉σn,z 〈bz ++ bn] (NOM-1,2)
= ([az〉 idz 〈xz] ] [am〉 t 〈xn]) ; [xn ++ xz〉σn,z 〈bz ++ bn] (NMT-comm)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz〉σn,z 〈bz ++ bn] (NOM-2)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz〉 〈xn ++ xz|xz ++ xn〉 〈bz ++ bn] (σ-def)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz|xn ++ xz] ; [xz ++ xn|bz ++ bn]
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xz ++ xn|bz ++ bn] (δaa = ida)
= [az ++ am〉 idz ⊕ t 〈bz ++ bn] (NOM-5)
= [am ++ az|am ++ az] ; [az ++ am〉 idz ⊕ t 〈bz ++ bn] (δaa = ida)
= [am ++ az〉 〈am ++ az|az ++ am〉 ; (idz ⊕ t) 〈bz ++ bn] (NOM-4)
= [am ++ az〉σm,z ; (idz ⊕ t) 〈bz ++ bn] (σ-def)

Note how commutativity of ] is used to show that naturality of symmetries is respected. J

I Proposition 20. For any nPROP T there is a PROP

ORD(T )

that has for all arrows f : A→ B of T , and for all lists a = [a1, . . . an] and b = [b1, . . . bm]
arrows 〈a]f [b〉. These arrows are subject to equations

〈a] f ; g [c〉 = 〈a] f [b〉 ; 〈b] g [c〉 (ORD-1)
〈af ++ ag] f ] g [bf ++ bg〉 = 〈af ] f [bf 〉 ⊕ 〈ag] g [bg〉 (ORD-2)

〈a] id [a〉 = id (ORD-3)
〈a] [a′|b] ; f [c〉 = 〈a|a′〉 ; 〈b] f [c〉 (ORD-4)
〈a] f ; [b|c] [c′〉 = 〈a] f [b〉 ; 〈c|c′〉 (ORD-5)

Proof. To show that ORD is well-defined we need to show that the equations of an NMT
are respected. The most interesting case here is the commutativity of ] since the ⊕ of SMTs
is not commutative.
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〈at ++ as] t ] s [bt ++ bs〉
= 〈at] t [bt〉 ⊕ 〈as] s [bs〉 (ORD-2)
= (〈at] t [bt〉 ; id|bt|)⊕ (id|as| ; 〈as] s [bs〉) (id ; a = a = a ; id)
= (〈at] t [bt〉 ⊕ id|as|) ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-ch)
= (〈at] t [bt〉 ⊕ id|as|) ; σ|bt|,|as| ; σ|as|,|bt| ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-sym)
= σ|at|,|as| ; (id|as| ⊕ 〈at] t [bt〉) ; σ|as|,|bt| ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-nat)
= σ|at|,|as| ; (id|as| ⊕ 〈at] t [bt〉) ; (〈as] s [bs〉 ⊕ id|bt|) ; σ|bs|,|bt| (SMT-nat)
= σ|at|,|as| ; ((id|as| ; 〈as] s [bs〉)⊕ (〈at] t [bt〉 ; id|bt|)) ; σ|bs|,|bt| (SMT-ch)
= σ|at|,|as| ; 〈as ++ at] s ] t [bs ++ bt〉 ; σ|bs|,|bt| (id ; a = a,ORD-2)
= 〈at ++ as|as ++ at〉 ; 〈as ++ at] s ] t [bs ++ bt〉 ; 〈bs ++ bt|bt ++ bs〉 (σ-def)
= 〈at ++ as] [as ++ at|as ++ at] ; s ] t ; [bs ++ bt|bs ++ bt] [bt ++ bs〉 (ORD-4,5)
= 〈at ++ as] s ] t [bt ++ bs〉 (δaa = ida)

Note how naturality of symmetries is used to show that the definition of ORD respects
commutativity of ]. J

Having described the maps NOM and ORD and shown they are homomorphisms, we
now describe functors NOM (F ) and ORD(F ).

I Proposition 21. NOM : PROP → nPROP is a functor mapping an arrow of PROPs
F : S → S to an arrow of nPROPs NOM (F ) : NOM (S)→ NOM (S) defined by

NOM (F )([a〉 g 〈b]) = [a〉Fg 〈b]. (NOM-F)

I Proposition 22. ORD is a functor mapping an arrow of nPROPs F : T → T to an arrow
of PROPs ORD(F ) : ORD(T )→ ORD(T ) defined by

ORD(F )(〈a] f [b〉) = 〈a]Ff [b〉 (ORD-F)

The next proposition has a variation in which we take PROPs in the weaker sense of
Lack [13]. Then the unit S → ORD(NOM (S)) is not an iso. To see where we need to be
careful, the next example illustrates how the commutativity of ] in an nPROP translates
into the naturality of the symmetries in a PROP.

I Example 23 (Commutativity of ] translates to naturality of symmetries). If S is a PROP
in the sense of Lack [13] generated by a “lollipop” λ : 0→ 1 then we can show that λ⊕ id
and (id ⊕ λ) ;σ1,1 in S are sent to the same arrow in ORD(NOM (S)), namely we can show
〈a][a〉λ⊕ id〈b, c][b, c〉 = 〈a][a〉(id ⊕ λ) ;σ1,1〈b, c][b, c〉:

〈a][a〉λ⊕ id〈b, c][b, c〉 = 〈a][〉λ〈b] ] [a〉id〈c][b, c〉 (NOM-2)
= 〈a][a〉id〈c] ] [〉λ〈b][b, c〉 (NMT-comm)
= 〈a][a〉id ⊕ λ〈c, b][b, c〉 (NOM-2)
= 〈a][a〉id ⊕ λ〈c, b] ; [b, c|b, c][b, c〉 (a = a ; id, δaa = ida)
= 〈a][a〉(id ⊕ λ) ; 〈c, b|b, c〉〈b, c][b, c〉 (NOM-5)
= 〈a][a〉(id ⊕ λ) ;σ1,1〈b, c][b, c〉 (σ-def)

which is an instance of (SMT-nat) and does not hold in S.
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As we can see from the example, the naturality of symmetries in a PROP is necessary in
order to obtain that S → ORD(NOM (S)) is an iso in the next proposition.

I Proposition 24. For each PROP S, there is an isomorphism of PROPs, natural in S,

∆ : S → ORD(NOM (S))

mapping f ∈ S to 〈a][a〉 f 〈b][b〉 for some choice of a, b.

I Proposition 25. For each nPROP T , there is an isomorphism of nPROPs, natural in T ,

NOM (ORD(T ))→ T

mapping the [c〉〈a] f [b〉〈d] generated by an f : a→ b in T to [c|a] ; f ; [b|d] .

Since the last two propositions provide an isomorphic unit and counit of an adjunction,
we obtain

I Theorem 26. The categories PROP and nPROP are equivalent.

I Remark 27. If we generalise the notion of PROP from MacLane [15] to Lack [13], in other
words, if we drop equation (SMT-nat) of Fig 2 expressing the naturality of symmetries, we
still obtain an adjunction, in which NOM is left-adjoint to ORD. Nominal PROPs then are
a full reflective subcategory of ordinary PROPs. In other words, the (generalised) PROPs
that satisfy naturality of symmetries are exactly those which are nominal PROPs.

7 Conclusion

The equivalence of nominal and ordinary PROPs (Theorem 26) has a satisfactory graphical
interpretation. Indeed, comparing Figs 3 and 4 we see that both share, modulo different
labellings of wires mediated by the functors ORD and NOM , the same core of generators
and equations while the main difference lies in the equations expressing, on the one hand,
that ⊕ has natural symmetries and, on the other hand, that generators are a nominal set and
] is commutative. In fact, this can be taken as a justification of the importance of naturality,
which, informally speaking, compensates for the irrelevant detail induced by ordering names.

There are several directions for future research. First, the notion of an internal monoidal
category has been developed because it is easier to prove the basic results in general rather
than only in the special case of nominal sets. Nevertheless, it would be interesting to explore
whether there are other interesting instances of internal monoidal categories.

Second, internal monoidal categories are a principled way to build monoidal categories
with a partial tensor. For example, by working internally in the category of nominal sets with
the separated product we can capture in a natural way constraints such as the tensor f ⊕ g
for two partial maps f, g : N → V being defined only if the domains of f and g are disjoint.
This reminds us of the work initiated by O’Hearn and Pym on categorical and algebraic
models for separation logic and other resource logics, see eg [17, 9, 6]. It seems promising to
investigate how to build categorical models for resource logics based on internal monoidal
theories. In one direction, one could extend the work of Curien and Mimram [5] to partial
monoidal categories. Another question is whether there is a more general strictification result
characterising when a symmetric tensor can be replaced by a partial but commutative one.

Third, there has been substantial progress in exploiting Lack’s work on composing PROPs
[13] in order to develop novel string diagrammatic calculi for a wide range of applications,
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see eg [1, 2, 3, 22]. It will be interesting to explore how much of this technology can be
transferred from PROPs to nominal PROPs.

Fourth, various applications of nominal string diagrams could be of interest. The original
motivation for our work was to obtain a convenient calculus for simultaneous substitutions
that can be integrated with multi-type display calculi [7] and, in particular, with the multi-
type display calculus for first-order logic of Tzimoulis [21]. Another direction for applications
comes from the work of Ghica and Lopez [10] on a nominal syntax for string diagrams. In
particular, it would be of interest to add various binding operations to nominal PROPs.
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A Some internal category theory

See eg Borceux, Handbook of Categorical Algebra, Volume 1, Chapter 8 and the nlab.

I Definition 28 (internal category). In a category with finite limits an internal category is a
diagram

A3

right //
compr //
compl //

left //
A2

π2 //
comp //
π1 //

A1
dom //

cod //
A0ioo (5)

such that

1. the “pairs of arrows”-object A2

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

is a pullback,

2. the “triple of arrows”-object A3 is a pullback

A3
right //

left
��

A2

π1

��
A2

π2 // A1

where, intuitively, left “projects out the left two arrows” and right “projects out the right
two arrows”

3. dom ◦ comp = dom ◦ π1 and cod ◦ comp = cod ◦ π2,
4. dom ◦ i = idA0 = cod ◦ i,
5. comp ◦ 〈i ◦ dom, idA1〉 = idA1 = comp ◦ 〈idA1 , i ◦ cod〉
6. comp ◦ compl = comp ◦ compr
where we use the auxiliary notation
〈i ◦ dom, idA1〉 : A1 → A2 and 〈idA1 , i ◦ cod〉 : A1 → A2 are the arrows into the pullback
A2 pairing i ◦ dom, idA1 : A1 → A1 and idA1 , i ◦ cod : A1 → A1, respectively,
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compl is the arrow composing the “left two arrows”

A3
π2 ◦ right

''
compl

%%

comp ◦ left

!!

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

compr is the arrow composing the “right two arrows”

A3
comp ◦ right

''

compr

%%

π1 ◦ left

!!

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

I Remark 29. 1. and 3. define A2 as the “object of composable pairs of arrows” while
4. and 5. express that the “object of arrows” A1 has identities. 2. and 5. formalise asso-
ciativity of composition. Since A2 and A3 are pullbacks, the structure is determined by
(A0, A1, dom, cod, i, comp) alone. We includedA2, A3 as well as compr , compl, right, left, π2, π1
to improve readability of the equations.

I Definition 30. A morphism f : A→ B between internal categories, an internal functor, is
a pair (f0, f1) of arrows such that the six squares (one for each of π2, comp, π1, dom, cod,
i)

A2
π2 //

comp //
π1 //

f2

��

A1
dom //

cod //

f1

��

A0ioo

f0

��
B2

π2 //
comp //
π1 //

B1
dom //

cod //
B0ioo

(6)

commute.

I Remark 31. Because B2 is a pullback f2 is uniquely determined by f1. In more detail,
if Γ→ B2 is any arrow then, because B2 is a pullback, it can be written as a pair

〈l, r〉 : Γ→ B2 (7)

of arrows l, r : Γ→ B1 and f2 is determined by f1 via

f2 ◦ 〈l, r〉 = 〈f1 ◦ l, f1 ◦ r〉 (8)

Even if f2 is not needed as part of the structure in the above definition, including f2
makes it easier to state that f1 preserves composition.
Similarly, B3 is a pullback, and there is a unique arrow f3 such that (f0, f1, f2, f3) together
make further 4 squares commute, one for each of right, compr , compl, left, see (5). We
may include f3 in the structure whenever convenient.

CALCO 2019



18:20 Nominal String Diagrams

I Definition 32. A natural transformation α : f → g between internal functors f, g : A→ B,
an internal natural transformation, is an arrow α : A0 → B1 such that, recalling (7),

dom ◦ α = f0 cod ◦ α = g0 comp ◦ 〈f1, α ◦ cod〉 = comp ◦ 〈α ◦ dom, g1〉

I Remark 33. Internal categories with functors and natural transformations form a 2-category.
We denote by Cat(V) the category or 2-category of categories internal in V. The forgetful
functor Cat(V)→ C mapping an internal category A to its object of objects A0 has both left
and right adjoints and, therefore, preserves limits and colimits. Moreover, a limit of internal
categories is computed component-wise as (limD)j = lim(Dj) for j = 0, 1, 2.
I Remark 34. A strict monoidal category can be thought of both as a monoid in the category
of categories and as a category internal in the category of monoids. To understand this in
more detail, note that both cases give rise to the diagram

A2 ×A2 comp×comp //

m2

��

A1 ×A1

dom×dom //

cod×cod
//

m1

��

A0 ×A0

m0

��
A2 comp // A1

dom //

cod
// A0

where
in the case of a monoid A in the category of internal categories, m = (m0,m1,m2) is an
internal functor A×A→ A and, using that products of internal categories are computed
component-wise, we have comp◦m2 = m1 ◦(comp×comp), which gives us the interchange
law

(f ; g) · (f ′; g′) = (f · f ′) ; (g · g′)

by using (8) with m for f and writing ; for comp and · for m1;
in the case of a category internal in monoids we have monoids A0, A1, A2 and monoid
homomorphisms i, dom, cod, comp which, if spelled out, leads to the same commuting
diagrams as the previous item.
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