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—— Abstract

We define a theory of parameterized algebraic complexity classes in analogy to parameterized
Boolean counting classes. We define the classes VFPT and VW/[¢], which mirror the Boolean counting
classes #FPT and #W][t], and define appropriate reductions and completeness notions. Our main
contribution is the VW/[1]-completeness proof of the parameterized clique family. This proof is
far more complicated than in the Boolean world. It requires some new concepts like composition
theorems for bounded exponential sums and Boolean-arithmetic formulas. In addition, we also look
at two polynomials linked to the permanent with vastly different parameterized complexity.
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1 Introduction

When Valiant invented the theory of computational counting and #P-completeness, he also
defined an algebraic model for computing families of polynomials [24]. This was very natural,
since many (Boolean) counting problems are evaluations of polynomials: Counting perfect
matchings in bipartite graphs is the same as evaluating the permanent at the adjacency matrix,
counting Hamiltonian tours in directed graphs is the same as evaluating the Hamiltonian
cycle polynomial at the adjacency matrix, etc. There is a fruitful interplay between the
Boolean and the algebraic world: algebraic methods like interpolation can be used to design
counting algorithms as well as for proving hardness results. Proving lower bounds might be
easier in the algebraic world and then we can use transfer theorems from the algebraic world
to the Boolean world [3].

Parameterized counting complexity has been very successful in the recent years, see for
instance [1, 8, 6, 7, 16, 23]. Parameterized complexity provides a more fine-grained view
on #P-complete problems. There are problems like counting vertex covers of size k, which
are fixed-parameter tractable, and others, which are presumably harder, like the problem
of counting cliques of size k. Beside the classes VP and VNP (and subclasses of them),
which correspond to time bounded computation in the Boolean world, there have also been
definitions of algebraic classes that correspond to space bounded Boolean computation,
see [18, 17, 20]. However, we are not aware of any parameterized classes in the algebraic
world despite some algorithmic upper bounds being known, see for instance [4, 10].
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Parameterized Valiant’s Classes

1.1 Qur Contribution

In this paper, we define a theory of parameterized algebraic complexity classes. While some
of the definitions are rather obvious modifications of the Boolean ones and some of the basic
theorems easily transfer from the Boolean world to the algebraic world, some concepts have
to be modified. For instance, we cannot use projections to define hardness in general in the
parameterized world, since they can only decrease the degree. On the one hand, one could
choose the degree as a parameter, for instance, when computing the vertex cover polynomial.
On the other hand, one could have parameterized families where the degree is always n, like
the permanent on bounded (orientable!) genus graphs. One cannot compare these families
with projections, although both of them turn out to be fixed parameter tractable. We could
use c-reductions instead (which are the analogue of Turing reductions). However, these
seem too powerful. We propose some intermediate concept, namely fpt-substitutions: We
may replace the variables of a polynomial by other polynomials that are computed by small
circuits (and not simply constants and variables like in the case of projections). This mirrors
what is done in parsimonious reductions: the input is transformed by a polynomial time
computable function but no post-processing is allowed.

Our main technical contribution is the VW[1]-completeness proof of the parameterized
clique polynomial. This proof turns out to be far more complicated than in the Boolean world,
since we are not counting satisfying assignments to Boolean circuits but we are computing
sums over algebraic circuits. First we prove that one can combine two exponential sums into
one sum. While this is very easy in the case of VNP, it turns out to be quite complicated in
the case of VWI[1]. Then we prove a normal form for so-called weft 1 circuits, the defining
circuits for VW[1]. We go on with proving that the components consisting of all monomials
that depend on a given number of variables of a polynomial computed by a weft 1 formula
can be written as a bounded exponential sum over so-called Boolean-arithmetic expressions.
We then show how to reduce such a sum to the clique problem.

In our final section, we study two polynomials based on cycle covers. In the first one,
the covers consist of one cycle of length k and all other cycles being self loops. The second
polynomial is similar, but allows all other cycles to be of constant length. We prove that the
first problem is VW[1] complete while the second problem is hard for VW[¢] for all ¢.

2 Valiant’s Classes

We give a brief introduction to Valiant’s classes, for further information we refer the reader
to [2, 19]. Throughout the whole paper, K will denote the underlying ground field. An
arithmetic circuit C is an acyclic directed graph such that every node has either indegree 0 or
indegree 2. Nodes with indegree 0 are called input nodes and they are either labeled with a
constant from K or with some variable. The other nodes are called computation gates, they
are either labeled with + (addition gate) or x (multiplication gate). Every gate computes a
polynomial in the obvious way. There is exactly one gate of outdegree 0, the polynomial
computed there is the output of C'. The size of a circuit is the number of edges in it. The
depth of a circuit is length of a longest path from an input node to the output node. Later,
we will also look at circuits in which the computation gates can have arbitrary fan-in.

The objects that we study will be polynomials over K in variables X7, Xs,... (Occasion-
ally, we will rename these variables to make the presentation more readable.) We will denote

1 We restrict ourselves to study orientable genus in this paper.
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{X1,Xs,...} by X. The circuit complexity C(f) of a polynomial f is the size of a smallest
circuit computing f. We call a function 7: N — N p-bounded if there is a polynomial p such
that 7(n) < p(n) for all n.

» Definition 2.1. A sequence of polynomials (f,,) € K[X] is called a p-family if for all n,
1. fn € K[X1,..., Xy for some p-bounded function p and
2. deg f, is p-bounded.

» Definition 2.2. The class VP consists of all p-families (f,,) such that C(f,) is p-bounded.

Let f € K[X] be a polynomial and s: X — K[X] be a mapping that maps indeterminates
to polynomials. Now, s can be extended in a unique way to an algebra endomorphism K[X]| —
K[X]. We call s a substitution. (Think of the variables being replaced by polynomials.)

» Definition 2.3. 1. Let f,g € K[X]. f is called a projection of g if there is a substitution
r: X — XUK such that f =r(g). We write f <, g in this case. (Since g is a polynomial,
it only depends on a finite number of indeterminates. Therefore, we only need to specify
a finite part of r.)

2. Let (fn) and (gn) be p-families. (fn) is a p-projection of (g,) if there is a p-bounded
function q: N — N such that fr, <, gqn). We write (fn) <p (gn)-

Projections are very simple reductions. Therefore, we can also use them to define hardness
for “small” complexity classes like VP. More powerful are so-called c-reductions, which are an
analogue of Turing reductions. c-reductions are strictly more powerful than p-projections [15].
Let g be a polynomial in s variables. A g-oracle gate is a gate of arity s that on input
t1,...,ts outputs g(ty,...,ts). The size of such a gate is s. C9(f) denotes the minimum size
of a circuit with g-oracle gates that computes f. If G is a set of polynomials, then C%(f) is
the minimum size of an arithmetic circuit that can use any g-oracle gates for any g € G.

» Definition 2.4. Let (f,,) and (gn) be p-families. (f,) is a c-reduction of (g.,) if there is a p-
bounded function q: N — N such that C%at (f,) is p-bounded, where Gy =19i |1 < q(n)}.
We write (fn) <c (gn)-

» Definition 2.5. A p-family (f,) s in VNP, if there are p-bounded functions p and q and a
sequence (gn) € VP of polynomials g, € K[X1,..., Xpm), Y1,. .., Y| such that

fn: Z gn(X17~-~aXp(n)aela-~-7eq(n))-
ec{0,1}a(n)

VP and VNP are algebraic analogues of the classes P and #P in the Boolean world. The
permanent family (per,,) is complete for VNP under p-projections (over fields of characteristic
distinct from two) and the problem of computing the permanent of a given {0, 1}-matrix is
complete for #P under parsimonious reductions.

3 Parameterized (Counting) Complexity

Parameterized counting complexity was introduced by Flum and Grohe [11]. We give a
short introduction to fixed parameterized counting complexity. For more information on
parameterized complexity, we refer the reader to [12, 9].

» Definition 3.1. A parameterized counting problem is a function F: ¥* x N — N.

The idea is that an input has two components (z,k), € X* is the instance and the
parameter k measures the “complexity” of the input.

3:3
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» Definition 3.2. A parameterized counting problem is fixed parameter tractable if there is
an algorithm computing F(x, k) in time f(k)|z|¢ for some computable function f: N — N
and some constant c. The class of all fixed parameter tractable counting problems is denoted
by #FPT.

A parameterized counting problem is fixed-parameter tractable if the running time is
polynomial in the instance size. The “combinatorial explosion” is only in the parameter
k. In particular, the exponent of n does not depend on k. The classical example for a
parameterized counting problem in #FPT is the vertex cover problem: Given a graph G and
a natural number k, count all vertex covers of G of size k.

Fixed parameter tractable problems represent the “easy” problems in parameterized
complexity. An indication that a problem is not fixed parameter tractable is that it is
hard for the class #W/[1]. Reductions that are used to define hardness are parsimonious
fot-reductions: Such a reduction maps an instance (x,k) to an instance (2/,k’) such that
the value of the two instances is the same, the running time of the reduction is f(k)|z|®
for some computable function f and a constant ¢, and there is a computable function g
such that k¥’ < g(k). Tt is quite easy to see that the composition of two parsimonious fpt-
reductions is again a parsimonious fpt-reduction and that #FPT is closed under parsimonious
fpt-reductions.

We now define weft ¢ formulas inductively.?

» Definition 3.3. A weft 0 formula is a layered Boolean formula and the gates have fan-in
two (over the basis A\, V, and —). A weft t formula is a layered Boolean formula where the
gates have fan-in two, except one layer of gates that has unbounded fan-in. This formula has
as inputs weft t — 1 formulas.

Weft ¢t formulas have ¢ layers of unbounded fan-in gates, and all other gate have bounded
fan-in. Weft ¢ formulas are the defining machine model of the #W/[t] classes:

» Definition 3.4. The class #W([t] are all parameterized counting problems that are reducible
by parsimonious fpt-reductions to the following problem: Given a weft t formula C' of constant
depth and a parameter k, count all satisfying assignments of C' that have exactly k 1s.

A classical example of a counting problem, that is #W/[1]-complete, is counting cliques
of size k in a graph. Clique is used as a major complete problem for #W/[1] by Flum and
Grohe [11]. Tt is known that P = #P implies #FPT = #W/[1]. Curticapean [5] proves that
counting k-matchings, the parameterized analogue to the permanent, is #W[1]-hard (under
Turing fptreductions).

4 Parameterized Valiant’s Classes

We now define fixed-parameter variants of Valiant’s classes. Our families of polynomials
will now have two indices. They will be of the form (p, ). Here, n is the number of
indeterminates and k is the parameter.

» Definition 4.1. A parameterized p-family is a family (pn.i) of polynomials such that
1. pnr € K[X1,..., Xy for some p-bounded function q, and
2. the degree of pn. i is p-bounded (as a function of n+ k).

2 The term “weft” originates from textile fabrication and has been used in Boolean parameterized
complexity from its very beginning.
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The most natural parameterization is by the degree: Let (p,) be any p-family then
we get a parameterized family (p, ) by setting p, r = Hi(p,). Here Hy(f) denotes the
homogeneous part of degree k of some polynomial f.2 Since deg(p,,) is polynomially bounded,
Pn,.k is zero when k is large enough. (This will usually be the case for any parameterization.)
More generally, we will also allow that p, ; = Ht(k)(pn) for some function ¢ that solely
depends on k.

Recall that a vertex cover C of a graph G = (V, E) is a subset of V such that for every
edge e € F at least one endpoint is in C.

» Example 4.2. Let G = (G,,) be a family of graphs such that G,, has n nodes. We will
assume that the nodes of G,, are {1,...,n}.
1. The vertex cover family (VCY) with respect to G is defined as

ver = > [x

CC{1,...n} ieC

where the sum is taken over all vertex covers C of G,,.
2. The parameterized vertex cover family (VC% ) With respect to G, is defined as

where we now sum over all vertex covers of size k of G,,. This is a homogeneous polynomial
of degree k. (We will call both families VCY. There is no danger of confusion, since we
mainly deal with the parameterized family.)

Every node has a label X; and for every vertex cover we enumerate (or more precisely,
sum up) its weight, which is the product of the labels of the nodes in it. Above, every graph
family defines a particular vertex cover family. We can also define a unifying vertex cover
family.

» Example 4.3. Let E; ;, X;, 1 <i < j <n, be variables over some field K. The parameter-
1zed vertex cover polynomial of size n is defined by

VCoe= Y J[a-E)]]x

CC{1,...n},j¢C ieC
Cl=k  i<j

The parameterized vertex cover family is defined as (VC,, ).

If we set the variables F; ; to values e; ; € {0, 1} we get the vertex cover polynomial of
the graph given by the adjacency matrix (e; ;). The first product is 0 if there is an uncovered
edge. More generally, if we take a family of graphs G = (G,,) such that G,, has n nodes and
if we plug in the adjacency matrix of G,, into in each VC, ; then we get the family (VCg’k).
(VCY ,) is parameterized by the degree since we have VC% w = He(VCY). (VC,.1), however,
is not parameterized by the degree as VC,, ,, contains monomials of degree polynomial in n
(independent of k).

Recall that a clique C of a graph is a subset of the vertices such that for every pair of
nodes in C' there is an edge between them.

3 Le., the sum of all monomials of degree k with their coefficients.
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» Example 4.4. 1. Let E; ;,X;, 1 <4,5 <n, i < j, be variables over some field K. The
clique polynomial of size n is defined by

Cliquen = Z H EiJ H Xl

CC{l,...,n} i,jEC ieC
1<)
The clique family is defined as (Clique,,).
2. The parameterized clique family (Clique,, ;) is defined by

Clique,, ,, = Z H E;; H Xi.

CC{l,..,n} i,jeC  ieC
|Cl=k ~ 1<i

(Again, we will call both families Clique.)

If we set the variables E; ; to values e; ; € {0,1}, we get the clique polynomial of the
graph given by the adjacency matrix (e; ;), since the first product checks whether C' is a
clique. For each clique, we enumerate a monomial [, X;. X; is the label of the node i.
Clique is a polynomial defined on edges and nodes. This seems to be necessary, since the
polynomial 3>ccy .y [Licc Xi = (1+X1) -+ (14 X,), which is the “node-only” version
of clique polynomial of the complete graph, is easy to compute. Therefore, we cannot expect
that the “node-only” version of the clique family is hard for some class.

Notice, that the parameterized clique family (Cliquen,k) has variables standing in for
vertices. These vertices seem to be necessary, as in the counting world, counting the number
of k cliques and counting the number of k-independent sets are tightly related. Namely, the
number of cliques is the number of independent sets on the complement graph. We want
to keep this relationship as the problem is an important member of #W[1] and hence we
incorporate the vertices.

(Clique,, ;) is parameterized by the degree, since Clique,, ,, = H, (%) +x(Clique,,). Here is
another example, beside the general vertex cover family, of a family that is parameterized by
a different parameter:

» Example 4.5. Let G = (G, ) be a family of bipartite graphs such that G,, ; has n nodes
on both sides and genus k, k < [(n — 2)?/4].% Let A, x be the n x n-matrix that has a
variable X; ; in position (¢, j) if there is an edge between ¢ and j in Gy, and a 0 otherwise.
The G-parameterized permanent family perd = (per%k) is defined as pergyk = per(4, ;).

There is another natural way to parameterize the permanent:

» Example 4.6. Given a k x n-matrix X = (X, ;) with variables as entries, the rectangular
permanent is defined as

k
rper,, ,(X) = > 1T %:s6-

f:A{1,...,k}—={1,....n}i=1
f is injective

When k& = n then this is the usual permanent. The rectangular permanent family is defined

as rper = (rper,, ;).

4 This is the genus of the Ky, [22].
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We will give some more parameterizations of the permanent in Section 8 where we also prove
some hardness results.
We now define fixed parameter variants of Valiant’s classes.

» Definition 4.7. 1. A parameterized p-family (pn.i) s in the class VFPT if C(pn) is
bounded by f(k)p(n) for some p-bounded function p and some arbitrary function f: N —
N.5

2. The subclass of VFPT of all parameterized p-families that are parameterized by the degree
is denoted by VFPT ge4.

We will also say above that C(py, 1) is fpt-bounded. We will see in one of the next sections
that the vertex cover family and the bounded genus permanent are in VFPT. We will say
that a family of circuits (Cy, k) has fpt size if the size is bounded by f(k)p(n) for some
function f: N — N and p-bounded function p.

» Definition 4.8. A parameterized p-family f = (fnr) is an fpt-projection of another
parameterized p-family g = (gnk) if there are functions r,s,t: N — N such that r is p-
bounded and fy, 1 is a projection of gr(n)sk)k for some k' < t(k).5 We write f S{}’t g.

» Lemma 4.9. If f € VFPT (or VFPT4,) and g §{)pt f, then g € VFPT (or VFPT g,
respectively).

» Lemma 4.10. Sépt is transitive.

One can define a notion of completeness. In the case of fpt-projections, the degree of
the polynomial is the only meaningful parameter to consider: The permanent family on
bounded genus graphs per? is in VFPT and so is (a variant of) the vertex cover family
VC. However, every polynomial in the permanent family has degree equal to the number
of nodes in the graph (independent of the genus) whereas the degree of the vertex cover
polynomial depends on the degree. If a polynomial p is a projection of ¢, then degp < deggq.
Therefore, perY cannot be an fpt-projection of VC. Now we can call a parameterized family
f VFPT geg-complete (under fpt-projections), if it is in VFPT 4., and for all g € VFPT g,
g <Pty

For other parameters, we need a stronger notion of reduction. There are the so-called
c-reductions, see [2], which are the analogue of Turing reductions in Valiant’s world. This
is the strongest kind of reduction one could use. However, the p-projections in Valiant’s

world seem to be weaker than parsimonious polynomial-time reductions in the Boolean world.

Therefore, we propose an intermediate concept, which models parsimonious reductions in
the algebraic world. In parsimonious reductions, the input instance is transformed by a
polynomial time or fpt computable reduction, then the function we reduce to is evaluated,
and the result that we get shall be the value of our given function evaluated at the original
instance.

In the algebraic world, this is modeled as follows: We call a p-family f = (f,) with
fn € K[X1,...,Xpn)] a p-substitution of a p-family g = (g,) with g, € K[X1,..., Xy
if there is a p-bounded function r, and for all n, there are hi, ..., hy(,(n)) such that f,, =

9rn) (1, hy(e(ny)) and deg(h;)" as well as C(h;) is p-bounded for all i. We write f <, g.

5 f need not be computable, since Valiant’s model is nonuniform.

6 k' might depend on n, but its size is bounded by a function in k. There are examples in the Boolean
world, where this dependence on n is used.

7 Note that a polynomial size circuit can construct superpolynomial degree polynomials by repeated
squaring
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Compared to a projection, we are now allowed to substitute polynomials of p-bounded
complexity. We have that <, is transitive and that p <, ¢ and ¢ € VP implies p € VP.
The parameterized analogue is defined as follows.

» Definition 4.11. A parameterized p-family f = (fnr) with fnr € K[X1,..., Xpm)] s an
fpt-substitution of another parameterized p-family g = (gnr) with gnr € K[X1,..., Xq@m)]
if there are functions r,s,t: N = N such that for all n, k, r is p-bounded and there exist
polynomials hy,. .. hgemysty) € K[X1,..., Xpm)] such that

Tk = Grenysti) e (has o Pg(r(n)s(k)))

for some k' < t(k) and deg(h;) as well as C(h;) are fpt-bounded (with respect to n and k)
for all i. We write f </P! g.

The proof of the following two lemmas is almost identical to the proofs of Lemmas 4.9
and 4.10. The only difference is that fpt-substitutions do not preserve the degree.

» Lemma 4.12. If f € VFPT and g </P* f, then g € VFPT.
» Lemma 4.13. <! s transitive.

To define an algebraic analogue of #W/[t], we study unbounded fan-in arithmetic circuits.
These circuits have multiplication and addition gates of arbitrary fan-in. A gate with fan-in 2
will be called a gate of bounded fan-in, any other gate is a gate of unbounded fan-in. (Instead
of 2, we can fix any other bound b.)

» Definition 4.14. Let C be an arithmetic circuit. The weft of C is the mazimum number
of unbounded fan-in gates on any path from a leaf to the root.

For s,k € N, <f€> denotes the set of all {0, 1}-vectors of length s having exactly k 1s.

» Definition 4.15. 1. A parameterized p-family (fn 1) is in VWIt], if there is a p-family
(gn) of polynomials g, € K[X1,..., Xpm), Y1,..., Y] with p-bounded p and q such that
gn s computed by a constant depth unbounded fan-in circuit of weft <t and polynomial
sized and

(fn,k:) Sépt ( Z gn (X1, ... ,Xp(n)7 €1y, eq(n)) ) (1)
e€<q(k7_l)>

2. VW [t] is the subset of all families in VW(t|, that have the degree as the parameter.

In essence, we emulate the Boolean #W/[t] definition. Instead of Boolean circuits of weft
t we take an arithmetic circuit and instead of counting the number of assignments, we sum
over all assignments. In addition, we only count the assignments that have weight k by
adjusting the vectors we sum over, namely to {0, 1}-vectors with exactly k ones. While in
the Boolean setting the closure is taken with respect to parsimonious fpt-reductions, in the
arithmetic setting, we take fpt-substitutions. Hence, our definition seems to be the most
appropriate analogue.

The clique family is in VW[1], since we can write it as

Clique,, , = Z ﬁ (E; jviv; + 1 — vv;) ﬁ(XZ-vZ- +1—v).

vefi) ) -

8 Note, that we do not need to require fpt-size, as we use an fpt sized reduction.
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This formula has weft 1, since there are two unbounded product gates and none is a predecessor
of the other. We replace the product over all C' by a product over all vertices and use the
v-vectors to switch variables on and off.

Like in the Boolean case, we will show that the parameterized clique family is complete for
the class VW(1] (albeit for a stronger notion of reductions, namely fpt-c-reductions). It turns
out that this proof is far more complicated than in the Boolean setting, since our circuits can
compute arbitrary polynomials and not only Boolean values. Furthermore, multiplication
and addition cannot be reduced to each other since there is no analog of de Morgan’s law.

» Definition 4.16. Let f = (fox) and g = (gnx) be parameterized p-families. f fpt-c-
reduces to g if there is a p-bounded function q: N — N and functions s,t: N — N such that
CYatmatre (f, 1) is fpt-bounded, where Gyaysey ey = {9i.5 | 1 < q(n)s(k), j < t(k)}. We
write f <IPt g.

The following two lemmas are proved like for <. and VP. We replace oracle gates by
circuits and use the fact that fpt-bounded functions are closed under composition.

» Lemma 4.17. If f € VFPT and g </P* f, then g € VFPT.
» Lemma 4.18. </P! is transitive.

So we have two different notions to define #W/[t]-hardness. Presumably, they are different,
see [15].

5 VFPT

» Theorem 5.1. For every family of graphs G = (G,,), where G,, has n nodes, VCg’k is in
VFPT geg.

» Remark 5.2. It is unlikely that the general family VC,, j is in VFPT. Take any graph
G = (V,E) on n nodes and m edges and compute VC,, . on this graph, i.e., set all edge
variables to zero that do not occur in E.. Now, for i < j, we set

B, = {1—5 if {i,j} € E,

0 otherwise,

and X; = T for all i. Then we get a bivariate polynomial. This polynomial contains a
monomial S*T7 iff there is a vertex cover of size j in G not covering i edges, or, equivalently,
covering m — 4 edges. Note that since the polynomial is now bivariate, we can easily compute
its coefficients using interpolation. While the (Boolean decision version of) vertex cover is
in FPT, it turns out [14] that the more general question whether there is a set of nodes of
size k covering at least t edges is W[1]-hard (with parameter k). Therefore, it seems to be
unlikely that VC,,  has circuits of fpt size.

Mahajan and Saurabh [21] define another variant of the vertex cover polynomial. We
multiply each cover by a product over the uncovered edges. They multiply by a product
over the covered edges. Both polynomials are essentially equivalently, one can turn one into
the other by dividing through the product over all edges, doing a variables transform, and
removing divisions.

The sun graph S, = (V, E) on n nodes is defined as follows: The first k£ nodes form a
clique. And every other node is connected to the nodes 1,..., k&, but to no other nodes, that
is, the nodes k + 1,...,n form an independent set. (Note that there are other definitions
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of sun graphs in the literature, but all of them look like a sun when drawn appropriately.)
Every graph G with n nodes that contains a vertex cover of size k is a subgraph of S, .
To see this, we map the nodes of the vertex cover of G to the nodes of the clique and the
remaining nodes of G to the other n — k nodes. Note that there are cannot be any edges in
G between the nodes outside of the vertex cover.

We define VC;, ;. like VC,, ;, but on the graph S, ; instead of K, i.e., all edge variables
not in S, ; are set to zero. The difference to VC is, that we now have some idea where the
vertex cover is located (like it is in the Boolean case where we can find a potential set for
instance by computing a maximum matching). Therefore, we can obtain:

» Theorem 5.3. VC° € VFPT.
Both parameterized permanent families turn out to be fixed parameter tractable.

» Theorem 5.4 ([13]). For every family of bipartite graphs G = (G, ;) such that G, hasn
nodes and genus k, perY is in VFPT.

» Theorem 5.5 ([25]). rper € VFPT.

Kernelization is an important concept in parameterized complexity. In the algebraic
setting, VFPT can also be characterized by kernels with size only bounded by k.
We also develop a notion of kernelization. We refer the reader to the full version.

6 The VW-hierarchy

We start with proving some basic facts about the VW[t] classes, in analogy to the Boolean
world.

» Lemma 6.1. VFPT = VW[0] and VFPT 4, = VW 45, [0).

Proof. The proof is obvious, since VW[0] and VW ,[0] are defined as the closure under
fpt-substitutions, so we can compute problems in VFPT simply by using the reduction. <«

The following lemma, is obvious.
» Lemma 6.2. For every t, VW[t] C VW[t + 1] and VW geg[t] C VW geo[t + 1].

We call a parameterized p-family f VWI]t]-hard (under {pt-substitutions), if for all
g € VWIt], g <Pt f. f is called VW[t]-complete (under fpt-substitutions) if in addition,
f € VWI]t]. If the same way, we can also define hardness and completeness under fpt-c-
reductions.

For the classes VW g4[t], it is reasonable to study hardness and completeness under
fpt-projections. We call a parameterized p-family f VW ge,[t]-hard (under fpt-projections),
if for all g € VW]t], g Sgpt f. f is called VW g [t]-complete (under fpt-projections) if in
addition, f € VWI]t].

» Lemma 6.3. If f is VW]t + 1]-complete under fpt-substitutions and f € VWI[t], then
VW(t] = VW[t + 1]. In the same way, if f is VW geg[t + 1]-complete under fpt-substitutions
or fpt-projections and f € VW ge4(t], then VW geg[t] = VW ggq[t + 1.

It is open in the Boolean case whether W[t] = W[t + 1] or #W[t] = #W][t + 1] implies
a collapse of the corresponding hierarchy. Maybe the algebraic setting can provide more
insights.
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» Theorem 6.4. If VFPT # VW/1] then VP # VNP.

If one takes the defining problems for VW([t] (sums over {0,1} vectors with & 1s of weft ¢
circuits) instead of clique, one can prove the same theorem for arbitrary classes VW[t] in
place of VW/[1]. The proof only gets technically a little more complicated.

7 Hardness of Clique

Our main technical result is the VW[1]-hardness of Clique. The proof is technically much
more intricate than in the Boolean setting. We will first give a short outline.

First, we prove as a technical tool that two bounded exponential sums over a weft ¢
circuit can be expressed by one exponential sum over a (different) weft ¢ circuit. In the
case of VNP, a similar proof is easy: Instead of summing over bit vectors of length p
and then of length ¢, we can sum over bit vectors of length p + ¢ instead. If the number
of ones is however bounded, this does not work easily anymore. It turns out that for
the most interesting class VW[1] of the VW-hierarchy, the construction is astonishingly
complicated.

Next, we prove a normal form for weft 1 circuits. Every weft 1 circuit can be replaced by
an equivalent weft 1 circuit that has five layers: The first layer is a bounded summation
gate, the second layer consist of bounded multiplication gates, the third layer is the only
layer of unbounded gates, the fourth layer again consists of bounded addition gates and
the fifth layer of bounded multiplication gates.

Then we introduce Boolean-arithmetic formulas: A Boolean-arithmetic formula is a
formula of the form

B(X1,...,X HRX +1-X))
1=1

where B is an arithmetization of some Boolean formula and the R; some polynomial or even
rational function (over a different set of variables). For each satisfying {0, 1}-assignment
e to B, that is, B(e) = 1, the right hand side produces one product and the e; (assigned
to the X; variables) switch the factors R; on or off. For a polynomial f, the monomials of
support size k are all monomials that depend on exactly k variables. The sum of all these
monomials is denoted by Sk(f). A central result for the hardness proof is that when f is
computed by a circuit of weft 1, then we can write Si(f) as a bounded sum over a weft 1
Boolean arithmetic expression, that is, Sk(f) =", e (P B(e) - Hp(n ) (Rie; +1—¢;).

Finally, we prove that Clique is VW/[1]-complete under fpt-c-reductions (or under fpt-
substitutions that allow rational expressions). Given some bounded sum over a polynomial
gn(X1, ..., Xp, Y1...,Y,) computed by a weft 1 circuit, we view g,, as a polynomial over
the Y-variables, the coefficients of which are polynomials in the X-variables. Then
So(g),--.,Sk(g) are the parts of g, that contribute to the sum when summing over all
bit vectors with k£ ones. We can write this as a bounded sum over a Boolean-arithmetic
formula. The concept of Boolean-arithmetic formulas allows us to reuse parts of the
Boolean hardness proof.

Note that once we have the VW/[1]-hardness of Clique, we get further hardness results for
free.
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8 Hardness of the Permanent and Cycle Covers

In this section we will highlight the vast difference between the provable complexity of the
following two problems. Having cycle covers where one cycle is of length &k and all other
cycles are self loops and the complexity of all cycle covers where one cycle is length & and all
other cycle covers are of length some fixed constant c. As always in this paper, we will look
at corresponding polynomials to this problem.

8.1 Hardness of the k-permanent

We are adapting the proof from Curticapean and Marx [8] to show the hardness of the
following parameterization of the permanent. Notice that the theorem from [8] is not enough
for us. It is in general unclear how and in which way the cycles transfer in the theorem while
we need an explicit fpt-projection.

We define the k-permanent polynomial as follows. Let S/, be the set of all permutations
on n elements that map n — k elements to itself. Then

perk = Z H xiyg(i).

o€S! ieln]

Notice, we do not include the selected vertices, as all vertices are in the cycle cover and hence
the two problems are equivalent.

» Corollary 8.1. (per;,) is VWI[1] hard under fpt-c-reductions.

8.2 Bounded length Cycle Covers

» Definition 8.2. We define per<. ;,, the bounded length k-permanent, to be the following
polynomial over all cycle covers where one cycle has length k and all other cycles have length
bounded by some constant ¢ > 3.

perc.y = Y [ wiww

o€Sl ie[n]

where SI! is the set of permutations o on n elements such that o has one cycle of length k
and all other cycles have length < c.

With this, we can prove the following theorem.
» Theorem 8.3. For allt, there exists a constant ¢ such that per < ¢,k is hard for VW|[t]

under fpt-c-reductions.
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