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Abstract
A fundamental graph problem asks to compute the number of induced copies of a k-node pattern
graph H in an n-node graph G. The fastest algorithm to date is still the 35-years-old algorithm
by Nešetřil and Poljak [28], with running time f(k) · O(nωb k3 c+2) where ω ≤ 2.373 is the matrix
multiplication exponent. In this work we show that, if one takes into account the degeneracy d of G,
then the picture becomes substantially richer and leads to faster algorithms when G is sufficiently
sparse. More precisely, after introducing a novel notion of graph width, the DAG-treewidth, we prove
what follows. If H has DAG-treewidth τ(H) and G has degeneracy d, then the induced copies of H
in G can be counted in time f(d, k) · Õ(nτ(H)); and, under the Exponential Time Hypothesis, no
algorithm can solve the problem in time f(d, k) · no(τ(H)/ ln τ(H)) for all H. This result characterises
the complexity of counting subgraphs in a d-degenerate graph. Developing bounds on τ(H), then, we
obtain natural generalisations of classic results and faster algorithms for sparse graphs. For example,
when d = O(poly log(n)) we can count the induced copies of any H in time f(k) · Õ(nb k4 c+2), beating
the Nešetřil-Poljak algorithm by essentially a cubic factor in n.
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1 Introduction

Given a host graph G on n nodes and a pattern graph H on k nodes, we want to count
the number of induced copies of H in G. This problem is at the heart of many algorithmic
applications but, unfortunately, is largely intractable. The fastest algorithm known has
running time O(nωb k3 c+2) where ω is the matrix multiplication exponent [28]; and the margin
to improve the dependence on k is limited, since under the Exponential Time Hypothesis [21]
nΩ(k) operations are required even just to detect a clique [8, 9]. The picture changes, however,
if we make additional assumptions on G. A natural assumption is that G be sparse, as
is often the case in practice. Under certain notions of sparsity, indeed, it is known that
subgraph counting becomes tractable: for example, any H can be counted in time f(k) ·O(n)
if G has bounded maximum degree ∆(G) = O(1) [29]. Alternatively, any H can be counted
in time f(k) ·O(n) if G has bounded treewidth t(G) = O(1), as a consequence of Courcelle’s
theorem [27]. Similar bounds can be proved when G is planar [14]. These assumptions are
much stronger than just having O(1) average degree, and often do not hold in practice. For
example, in social networks t(G) is typically large [26].

In this work we adopt a different measure of sparsity: the degeneracy of G, denoted by
d = d(G). The degeneracy can be defined as the minimum, over all acyclic orientations of
G, of the maximum outdegree of a node; it is a notion strictly stronger than the average
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6:2 Faster Subgraph Counting in Sparse Graphs

degree (which it bounds from above), but strictly weaker than the maximum degree or
the treewidth. Unlike ∆(G) or t(G), in social networks d is typically small [16]. Moreover,
low-outdegree orientations of G, like the one that defines d, seem to help subgraph counting
in practice [35, 22, 30]. Therefore, d seems a good candidate for a parameterization. Yet,
no good bounds in terms of d exist, save for specific patterns such as cliques or complete
bipartite graphs. This work aims at filling this gap. We develop techniques for counting
subgraphs that exploit the low-outdegree orientation of G. This leads to a rich picture, and
to faster algorithms to count subgraphs in sparse graphs.

1.1 Results
We present algorithms for counting homomorphisms, non-induced copies, and induced copies
of a k-node pattern graph H in an n-node graph G, parameterized by n, k and the degeneracy
d of G. Our contributions are of two kinds: bounds and techniques. For simplicity we assume
k = O(1) (see Subsection 1.2 for more details).

1.1.1 Bounds
Let hom(H,G), sub(H,G), and ind(H,G) denote respectively the number of homomorphisms,
copies, and induced copies of H in G. Our first result is a general-purpose bound, that is,
one holding for all H (including disconnected ones):

I Theorem 1. For any k-node pattern H one can compute hom(H,G), sub(H,G), and
ind(H,G) in time f(d, k) · Õ(nb k4 c+2).

This bound improves to 0.25k + O(1) the exponent of n, which is 0.791k + O(1) in the
state-of-the-art algorithm of [28]. As an immediate consequence, we have:

I Theorem 2. Suppose G has degeneracy d = O(polylog(n)). Then for any k-node pattern
H one can compute hom(H,G), sub(H,G), and ind(H,G) in time f(k) · Õ(n0.25k+2).

Hence, when d = O(polylog(n)), for all sufficiently large k our algorithm beats [28] by a
cubic factor. In fact, our algorithm is faster than [28] already for d < n0.721 assuming
ω ≈ 2.373 [25], and in any case for d < n

5
9 ≈ n0.556 since ω ≥ 2. A second consequence of

Theorem 1 comes from the well-known fact that |E(G)| ≥
(
d
2
)
. Indeed, this implies:

I Theorem 3. Suppose G has average degree O(polylog(n)). Then for any k-node pattern
H one can compute hom(H,G), sub(H,G), and ind(H,G) in time f(k) · Õ(n0.625k+1).

Again, this holds for all patterns H, even disconnected ones. To the best of our knowledge,
this is the first general-purpose algorithm faster than [28] for graphs with small average
degree – the weakest possible notion of sparsity.

We give bounds for special classes of patterns, too. First, we consider quasi-cliques, a
typical pattern in social graph mining [33, 32, 31]. We prove:

I Theorem 4. If H is the clique minus ε edges, then one can compute hom(H,G), sub(H,G),
and ind(H,G) in time f(d, k) · Õ(nd

1
2 +
√

ε
2 e).

This generalizes the classic O(ndk−1) bound for counting cliques [10], at the price of a
polylogarithmic factor. Next, we look at complete quasi-multipartite graphs. We prove:

I Theorem 5. If H is a complete multipartite graph, then one can compute hom(H,G) and
sub(H,G) in time f(d, k) · Õ(n). If H is a complete multipartite graph plus ε edges, then
one can compute sub(H,G) in time f(d, k) · Õ(nb ε4 c+2).
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This generalizes a classic f(d, k) · O(n) bound to count non-induced complete bi-partite
graphs [13], again at the price of an additional factor.

1.1.2 Techniques
The bounds above are instantiations of a more general result, stated in terms of a novel
notion of width, that we call dag treewidth τ(H) of H. Formally, we prove:

I Theorem 6. For any k-node pattern H one can compute hom(H,G), sub(H,G), and
ind(H,G) in time f(d, k) · Õ(nτ(H)).

This bound, and the width measure τ(H), arise as follows. As a first step, we orient G
acyclically so that it has maximum outdegree d (see below). The problem then becomes
counting the copies of all acyclic orientations P of H in G. By inclusion-exclusion arguments,
we reduce the problem to counting homomorphisms between a dag P and the dag G. At this
point we introduce our technical tool, the dag tree decomposition of P . This decomposition
allows one to count homomorphisms naturally via dynamic programming, exactly like the
standard tree decomposition of a graph; and the running time of the dynamic program is
f(d, k) · Õ(nτ(H)), where the dag treewidth τ(H) is, simplifying a little, the width of the
decomposition. The crucial fact is that for τ(H) we can provide bounds better than just k
or ωbk3 c+ 2 (for example, we prove τ(H) ≤ bk4 c+ 2).

We complement Theorem 6 with a conditional lower bound, showing how τ(H) charac-
terises the complexity of counting subgraphs in d-degenerate graphs:

I Theorem 7. Under the Exponential Time Hypothesis [21], no algorithm can compute
sub(H,G) or ind(H,G) in time f(d, k) · no(τ(H)/ ln τ(H)) for all H.

I Remark 8. Our algorithms work for the colored versions of the problem (count only copies
of H with prescribed vertex and/or edge colors) as well as the weighted versions of the
problem (compute the total weight of copies of H in G where G has weights on nodes or
edges). This follows immediately by adapting our homomorphism counting algorithms.

1.2 Preliminaries and notation
The host graph G = (V,E) and the pattern graph H = (VH , EH) are simple, arbitrary graphs.
For any subset V ′ ⊆ V we denote by G[V ′] the subgraph of G induced by V ′; the same
notation applies to any graph. A homomorphism from H to G is a map φ : VH → V such
that {u, u′} ∈ EH implies {φ(u), φ(u′)} ∈ E. We write φ : H → G to highlight the edges that
φ preserves. When H and G are oriented, φ must preserve the direction of the arcs. If φ is
injective then we have an injective homomorphism. We denote by hom(H,G) and inj(H,G)
the number of homomorphisms and injective homomorphisms from H to G. We denote by
ψ a map that is not necessarily a homomorphism. The symbol ' denotes isomorphism. A
copy of H in G is a subgraph F ⊆ G such that F ' H. If moreover F ' G[VF ] then F is
an induced copy. We denote by sub(H,G) and ind(H,G) the number of copies and induced
copies of H in G; we may omit G if clear from the context. We denote by P a generic dag
obtained by orienting H acyclically. All the notation described above applies to directed
graphs in the natural way.

We denote by ∆ the maximum degree of G. The degeneracy of G is the smallest d such
that there is an acyclic orientation of G with maximum outdegree bounded by d. Such an
orientation can be found in time O(|E|) by repeatedly removing from G a minimum-degree
node [27]. From now on, we assume G has this orientation. We also assume G is encoded
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6:4 Faster Subgraph Counting in Sparse Graphs

via sorted adjacency lists (every node keeps a sorted list of its out-neighbors). Checking for
an arc in G thus takes time O(log(d)), but to lighten the notation we assume it is O(1). We
always assume k = O(1). Nonetheless, most of our bounds hold in their current form for
k = O(lnn) or k = O(

√
lnn). All asymptotic notations hide poly(k) factors, and the Õ(·)

notation hides polylog(ndk) factors.
Finally, we recall the definitions of tree decomposition and treewidth of a graph. For any

two nodes X,Y in a tree T , we denote by T (X,Y ) the unique path between X and Y in T .

I Definition 9 (see [12], Ch. 12.3). Given a graph G = (V,E), a tree decomposition of G is
a tree D = (VD, ED) such that each node X ∈ VD is a subset X ⊆ V , and that 1:
1. ∪X∈VDX = V

2. for every edge e = {u, v} ∈ G there exists X ∈ D such that u, v ∈ X
3. ∀X,X ′, X ′′ ∈ VT , if X ∈ D(X ′, X ′′) then X ′ ∩X ′′ ⊆ X
The width of a tree decomposition T is t(T ) = maxX∈VT |X| − 1. The treewidth t(G) of a
graph G is the minimum of t(T ) over all tree decompositions T of G.

1.3 Related work
The fastest algorithms known for computing ind(H,G) are based on matrix multiplication
and have running time O(nωb k3 c+(k mod 3)) [28] or O(nω(bk/3c,d(k−1)/3e,dk/3e)) [17], where
ω(p, q, r) is the cost of multiplying an np×nq matrix by an nq×nr matrix and ω = ω(n, n, n).
With the current matrix multiplication algorithms, these bounds are essentially O(n0.791k+2).
These algorithms ignore the sparsity of G, and do not run faster if d = O(1). In contrast, our
goal is to reduce the running time when G is sparse. We mention that alternative techniques
exist for probabilistic approximate counting. Notably, the color coding technique of Alon et
al. [2] can be used to sample pattern copies uniformly at random from G in time O(ck|G|)
for some constant c > 0 [5, 6, 7].

It is known that several notions of sparsity lead to bounds linear in n. If G has bounded
maximum degree ∆ = O(1), then we can compute ind(H,G) in time f(k) · O(n) via
multivariate graph polynomials [29]. If instead G has bounded treewidth t(G) = O(1), and
we are given a tree decomposition of G of width O(1), then by an extension of Courcelle’s
theorem we can compute ind(H,G) in time f(k) ·O(n) [27]. Similarly, if G is planar, then it
can be partitioned into pieces of small treewidth, leading again to an f(k) ·O(n) bound [14].
All these conditions are strictly stronger than (and they imply) bounded degeneracy, d = O(1).
The techniques used for these bounds are radically different from ours.

For d-degenerate graphs, bounds are known only for special classes of patterns. Chiba
and Nishizeki [10] show how to count k-cliques in time O(dk−1n), which can be improved
to O(dωd(k−1)/3en) via matrix multiplication [1]. Eppstein shows how to list all complete
bipartite subgraphs in time O(d322dn) [13] and all maximal cliques in O(d3d/3n) [15]. All
these algorithms exploit the degeneracy orientation of G. We exploit such orientation as well,
but in a more systematic way and without listing explicitly all occurrences of the pattern;
we exploit the structure of H, too, which results in richer bounds.

Concerning the structure of H, hom(H,G) can be computed in time f(k) ·O(nt(H)+1) [18],
and sub(H,G) can be computed in time f(k) · nc(H)+O(1) where c(H) is the vertex-cover
number of H [24, 34, 3]. Our bounds are instead parameterized by a novel notion of width,
τ(H), that is within constant factors of the independence number but gives tighter bounds.

1 Formally, we should define a tree together with a mapping between its nodes and the subsets of V . To
lighten the notation, we opt for a less formal definition where the nodes are themselves subsets of V .
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Similarly, although several notions of tree decomposition for directed graphs exist [19], our
dag tree decomposition is novel and different from all of them.

No lower bound in terms of d and of the structure of H, such as those we give, was known
before. The existing lower bounds, based on the Exponential Time Hypothesis (ETH) [21],
adopt the parameterizations mentioned above in terms of t(H) or c(H); see [11] and [8, 9].

Manuscript organisation. Section 2 is a gentle and intuitive introduction to our approach.
Section 3 introduces our dag tree decomposition, the dynamic programming for counting
homomorphisms, and the corresponding running time bounds. Section 4 bounds the dag
treewidth for several classes of patterns, leading to our faster algorithms. Finally, Section 5
proves our lower bounds. All proofs omitted due to space limitations can be found in [4].

2 Exploiting degeneracy orientations

We build the intuition behind our approach, starting from the classic algorithm for counting
cliques of [10]. The algorithm begins by orienting G acyclically so that maxv∈G dout(v) ≤ d,
which requires linear time. With G oriented acyclically, we take each v ∈ G in turn and
enumerate every subset of (k − 1) out-neighbors of v. In this way we can explicitly find all
k-cliques of G in time f(k) ·O(ndk−1) = f(d, k) ·O(n). What makes the algorithm tick is
the fact that an acyclically oriented clique has exactly one source, that is, a node with no
incoming arcs. We would like to extend this approach to an arbitrary pattern H. Since
every copy of H in G appears with some acyclic orientation, we can just take every possible
acyclic orientation P of H, count the copies of P in G, and sum all the counts. Thus, we
can reduce the problem to the following one: given a k-node dag P , and an n-node dag G
with maximum outdegree d, count the copies of P in G.

Let us try a first approach. If P has s = s(P ) sources, we enumerate all the
(
n
s

)
= O(ns)

ordered s-uples of V to which those sources can be mapped. For each such s-uple, we list
the possible mappings of the remaining k − s nodes, which can be done in time O(dk−s) by
listing the mappings of a fixed spanning forest of P . Finally, we check if the k nodes induce
P in G. The total running time is f(k) ·O(nsdk−s). Unfortunately, if P is an independent
set then s = k and the running time is O(nk). The situation does not improve even if P is
connected, as we can have s = k − 1 (for the inward-oriented star).

Here our approach comes into play. We use the pattern P in Figure 1 as a toy example.
Instead of listing all occurrences of P in G, we decompose P into two pieces, P (1) and P (2, 3),
where P (u) denotes the subgraph of P reachable from u (that is, the transitive closure of u
in P ), and P (u1, . . . , ur) = ∪ri=1P (ui). The idea is to compute the count of P by combining
the counts of the two pieces, P (1) and P (2, 3).

To simplify the task, we focus on counting the homomorphisms between P and G; we
can then recover the number of induced copies by inclusion-exclusion arguments. In fact,
we solve a slightly more complex problem: for each pair of nodes x, y ∈ G, we count the
homomorphisms from P to G that map nodes 2 and 4 (see Figure 1) to x and y respectively.
To recover hom(P,G) we then just sum over all pairs x, y. Formally, for a given pair x, y
let φ : {2, 4} 7→ V be the map given by φ(2) = x and φ(4) = y, and let hom(P,G, φ) be the
number of homomorphisms from P to G whose restriction to {2, 4} is φ. In the same way
define hom(P (1), G, φ) and hom(P (2, 3), G, φ). It is easy to see that:

hom(P,G, φ) = hom(P (1), G, φ) · hom(P (2, 3), G, φ) (1)

To compute hom(P,G, φ) we then just need hom(P (1), G, φ) and hom(P (2, 3), G, φ). But
we can compute hom(P (1), G, φ) simultaneously for all φ in time f(d, k) · Õ(n), using our

IPEC 2019



6:6 Faster Subgraph Counting in Sparse Graphs

listing technique to build a dictionary mapping each φ to its count. (The Õ(·) factor comes
from the cost of accessing the dictionary, which has size poly(n)). Similarly, we can compute
hom(P (2, 3), G, φ) in time f(d, k) · Õ(n2). The total running time is f(d, k) · Õ(n2), whereas
our first approach would take time f(d, k) ·O(n3).

1

5

6

Figure 1 Toy example: an acyclic orientation P of H = C6, decomposed into two pieces.

Abstracting from our toy example, we want to decompose P into a set of pieces P1, . . . , Pκ
with the following properties: (i) each piece Pi has a small number of sources s(Pi), and
(ii) we can obtain hom(P,G, φ) by combining the homomorphism counts of the Pi. This is
achieved precisely by the dag tree decomposition, which we introduce in Section 3. Like the
tree decomposition of an undirected graph, the dag tree decomposition leads to a dynamic
program to compute hom(P,G). The running time is Õ(nmaxi s(Pi)), hence to make the
algorithm useful we must show that a decomposition with “small” maxi s(Pi) always exists,
which we do in Section 4.

3 DAG tree decompositions

Let P = (VP , AP ) be a directed acyclic graph. We denote by SP , or simply S, the set of nodes
of P having no incoming arc. These are the sources of P . We denote by VP (u) the transitive
closure of u in P , i.e. the set of nodes of P reachable from u, and we let P (u) = P [VP (u)]
be the corresponding subgraph of P . More generally, for a subset of sources B ⊆ S we let
VP (B) = ∪u∈BVP (u) and P (B) = P [VP (B)]. Thus, P (B) is the subgraph of P induced by
all nodes reachable from any source in B. We call B a bag of sources. We can now formally
introduce our decomposition.

I Definition 10 (Dag tree decomposition). Let P = (VP , AP ) be a dag. A dag tree decompos-
ition (d.t.d.) of P is a rooted tree T = (B, E) with the following properties:
1. each node B ∈ B is a bag of sources B ⊆ SP
2.
⋃
B∈B B = SP

3. for all B,B1, B2 ∈ T , if B ∈ T (B1, B2) then VP (B1) ∩ VP (B2) ⊆ VP (B)
One can see immediately the resemblance to the standard tree decomposition of a graph
(Definition 9). However, our dag tree decomposition differs crucially in two aspects. First, the
bags of the tree are subsets of S rather than subsets of VP . This is because the time needed
to list the homomorphisms between P (Bi) and G is driven by |Bi|, which is the number of
sources in P (Bi). Second, the path-intersection property concerns not the bags themselves,
but the pieces reachable from the bags themselves. The reason is that, to combine the counts
of two pieces together, their intersection must form a separator in G (similarly to what
happens with the standard tree decomposition).

The dag tree decomposition induces immediately the following notions of width, that we
use throughout the rest of the article.
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I Definition 11. The width of T is τ(T ) = maxB∈B |B|. The dag treewidth τ(P ) of P is
the minimum of τ(T ) over all dag tree decompositions T of P .

Figure 2 shows a pattern P , together with a d.t.d. T of width 1. Note that 1 ≤ τ(P ) ≤ k

for any P . Note also that τ(P ) has no relationship with the treewidth t(H) of H: they can
both be Θ(k), or we can have τ(P ) = 1 but t(H) = k (when H is a clique). In fact, τ(P ) is
within constant factors of the independence number α(H) of H (see Section 4.3), and thus
decreases as H becomes denser. The intuition is that adding arcs increases the number of
nodes reachable from the sources, hence we need smaller bags to cover all of P . When H is
a clique, P is reachable from just one source and τ(P ) = 1.

44

4

5

3
2

1

Figure 2 A dag P with one possible decomposition into five pieces (left), and one possible dag tree
decomposition T for P (right). Since τ(T ) = 1, we can compute hom(P,G) in time f(d, k) ·O(n).

3.1 Counting homomorphisms via dag tree decompositions

For any B ∈ B let T (B) be the subtree of T rooted at B. We let Γ[B] be the down-closure of
B in T , that is, the union of all bags in T (B). Consider P (Γ[B]), the subgraph of P induced
by the nodes reachable from any u ∈ Γ[B] (note the difference with P (B), which contains
only the nodes reachable from any u ∈ B). We compute hom(P (Γ[B]), G) in a bottom-up
fashion over all B, starting with the leaves of T and moving towards the root. This is, in
essence, the dynamic program given by the standard tree decomposition (see [18])2.

As anticipated, we actually compute a refined count: hom(P (Γ[B]), φ), the number of
homomorphisms that extend a fixed mapping φ. Formally:

I Definition 12. Let P1 = (VP1 , AP1), P2 = (VP2 , AP2) be two subgraphs of P , and let
φ1 : P1 → G and φ2 : P2 → G be two homomorphisms. We say φ1 and φ2 respect each other
if φ1(u) = φ2(u) for all u ∈ VP1 ∩ VP2 . We denote by hom(P1, G, φ2) or simply hom(P1, φ2)
the number of homomorphisms from P1 to G that respect φ2.

We can now present our main algorithmic result.

I Lemma 13. Let P be any k-node dag, and T = (B, E) be a d.t.d. for P . Fix any B ∈ B
as the root of T . There exists a dynamic programming algorithm HomCount(P, T,B) that
computes hom(P (Γ[B]), φB) for all φB : P (B)→ G in time f(d, k) · Õ(nτ(T )).

2 The correctness of our dynamic program does not follow automatically from the dynamic program over
standard tree decompositions. A proof of correctness is given in the full version of the manuscript.
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6:8 Faster Subgraph Counting in Sparse Graphs

Note that hom(P,G) is simply the sum of all the counts hom(P (Γ[B]), φB) returned by the
algorithm. Therefore, we can compute hom(P,G) in time f(d, k) · Õ(nτ(T )). Now, a d.t.d.
that minimises τ(T ) can obviously be found in time f(k) = O(f(d, k)). Therefore:

I Theorem 14. We can compute hom(P,G) in time f(d, k) · Õ(nτ(P )).

Equipped with Theorem 14, we can turn to the original problem of counting the copies of H.

3.2 Inclusion-exclusion arguments
We turn to computing hom(H,G), sub(H,G) and ind(H,G). We do so via standard inclusion-
exclusion arguments, using our algorithm for computing hom(P,G) as a primitive. To this
end, we shall define appropriate notions of width for undirected pattern graphs. Let Σ(H)
be the set of all dags P that can be obtained by orienting H acyclically. Let Θ(H) be the set
of all equivalence relationships on VH , and for θ ∈ Θ let H/θ be the pattern obtained from
H by identifying equivalent nodes according to θ and removing loops and multiple edges.
Let D(H) be the set of all supergraphs of H (including H) on the same node set VH .

I Definition 15. The dag treewidth of H is τ(H) = τ3(H), where:

τ1(H) = max{τ(P ) : P ∈ Σ} (2)
τ2(H) = max{τ1(H/θ) : θ ∈ Θ} (3)
τ3(H) = max{τ2(H ′) : H ′ ∈ D(H)} (4)

We can then state:

I Theorem 16. One can compute:
hom(H,G) in time f(d, k) · Õ(nτ1(H)),
sub(H,G) in time f(d, k) · Õ(nτ2(H)),
ind(H,G) in time f(d, k) · Õ(nτ(H)).

The algorithmic part of our work is complete. We shall now focus on bounding τ1(H),
τ2(H), and τ(H), so to instantiate Theorem 16 and prove the upper bounds of Section 1.1.

4 Bounds on the dag treewidth

In this section we develop upper bounds on τ1(H), τ2(H), τ(H) as a function of H. First, we
bound τ(H) for cliques minus ε edges, obtaining a generalization of the classic clique counting
bound of [10]. Then, we bound τ2(H) for complete multipartite graphs plus ε edges, obtaining
a generalization of a result by Eppstein [13]. Next, we show that Ω(α(H)) ≤ τ(H) ≤ α(H).
Finally, we show that τ(H) ≤ bk4 c+ 2 for every pattern H, including disconnected ones. This
requires a nontrivial proof.

Before proceeding, we need some definitions. We say a node v ∈ P is a joint if it is
reachable from two or more sources, i.e. if v ∈ VP (u)∩ VP (u′) for some u, u′ ∈ S with u 6= u′.
We write JP or simply J for the set of all joints of P . We write J(u) for the set of joints
reachable from u, and for any X ⊆ VP we let J(X) = ∪u∈XJ(u).

4.1 Quasi-cliques
I Lemma 17. If H has

(
k
2
)
− ε edges then τ(H) ≤ d 1

2 +
√

ε
2 e.
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Proof. The source set |S| of P is an independent set, hence |EH | ≤
(
k
2
)
−
(|S|

2
)
. Therefore

ε ≥
(|S|

2
)
, which implies |S| ≤ 1 +

√
2ε. A d.t.d. for P is the tree on two bags B1, B2 that

satisfy B1 ∪B2 = S, |B1| = b|S|/2c, and |B2| = d|S|/2e. Hence τ(P ) ≤ d|S|/2e ≤ d1
2 +

√
ε
2 e.

Now consider any H ′ obtained from H by adding edges or identifying nodes. Obviously
|EH′ | ≥

(
k′

2
)
− ε where k′ = |VH′ |, and the argument above implies τ(P ′) ≤ d 1

2 +
√

ε
2 e for

any orientation P ′ of H ′. By Definition 15, then, τ(H) ≤ d 1
2 +

√
ε
2 e. J

By Theorem 16 and since τ1(H) ≤ τ2(H) ≤ τ(H) it follows that we can compute hom(H,G),
sub(H,G) and ind(H,G) in time f(d, k) · Õ(nd

1
2 +
√

ε
2 e), proving Theorem 4.

4.2 Quasi-multipartite graphs (non-induced)
I Lemma 18. If H is a complete multipartite graph, then τ2(H) = 1. If H is a complete
multipartite graph plus ε edges, then τ2(H) ≤ b ε4c+ 2.

Proof. Suppose H = (VH , EH) is a complete multipartite graph. Let VH = V 1
H ∪ . . . ∪ V κH

where each H[V jH ] is a maximal independent set. Note that, in any orientation P of H, all
sources are contained in exactly one V jH . Moreover, VP (u) = VP (u′) for any two sources u, u′.
A d.t.d. T of width τ(T ) = 1 is the trivial one with one source per bag.

Suppose then we add ε edges to H. Again, in any orientation P of H, all sources are
contained in exactly one V jH , but we might have VP (u) 6= VP (u′) for two distinct sources
u, u′. Note however that all nodes in VH \ V jH are reachable from all sources and are thus
irrelevant to a d.t.d.. More precisely, any d.t.d. for P [V jH ] is a d.t.d. for P . But P [V jH ] has at
most ε edges and by Theorem 20 (see below) it has a d.t.d. of width at most b ε4c+ 2.

This arguments apply also to any pattern H ′ obtained by identifying nodes of H: if
there is a source node u in H ′ that in H is in V jH , then every node of H ′ that in H is in
VH \ V jH is reachable from u. In addition, if a node in VH \ V jH has been identified with a
node in V jH then all nodes are reachable from all sources and there is a trivial d.t.d. of width
1. Otherwise, in H ′ the nodes of V jH have been identified with a subset of V jH itself and we
just need a d.t.d. of width at most b ε4c+ 2 as above. J

By Theorem 16, if H is complete multipartite then we can compute hom(H,G) and sub(H,G)
in time f(d, k) ·Õ(n). If instead H is complete multipartite plus ε edges, then we can compute
hom(H,G) and sub(H,G) in time f(d, k) · Õ(nb ε4 c+2). This proves Theorem 5.

4.3 Independence number and dag treewidth
I Lemma 19. Any k-node graph H satisfies Ω(α(H)) ≤ τ(H) ≤ α(H).

Proof. Let H be any pattern graph on k nodes. For the upper bound, note that in any
acyclic orientation P of H the sources form an independent set, and that α(H ′) ≤ α(H) for
any H ′ obtained by adding edges or identifying nodes of H.

For the lower bound, we exhibit a pattern H ′ obtained by adding edges to H such that
τ(P ) = Ω(α(H)) for all its acyclic orientations P . Let I ⊆ VH be an independent set
of H with |I| = Ω(α(H)) and |I| mod 5 ≡ 0. Partition I in I1, I2 where |I1| = 2

5 |I| and
|I2| = 3

5 |I|. On top of I1 we virtually build a 3-regular expander E = (I1, EE) of linear
treewidth t(E) = Ω(|I1|). It is well known that such expanders exist (see e.g. Proposition 1
and Theorem 5 of [20]). For each edge uv ∈ EE we choose a distinct node euv ∈ I2 and add
to H[I] the edges euvu and euvv. In words, H[I] is the 1-subdivision of E . Let H ′ be the
resulting pattern. Note that t(E) = Ω(|I1|) = Ω(|I|) = Ω(α(H)).
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Let now P = (VP , AP ) be any acyclic orientation of H ′ having I2 as source set, and let T
be any d.t.d. of P . We show that τ(T ) ≥ 1

2 (t(E) + 1). To this end, we build a tree D by
replacing each bag B ∈ T with the bag J(B). We can show that D is a tree decomposition
of E (see Definition 9). First, by point (2) of Definition 10 we have ∪B∈TB = SP . It follows
that ∪J(B)∈DJ(B) = I1. This proves property (1). Second, by construction for every e ∈ EE
we have a node u = ue ∈ VP . Then, again by point (2) of Definition 10, there is B ∈ T such
that u ∈ B; and by construction of D it holds e = {v, w} ⊆ J(B). This proves property (2).
Third, fix any J(B1), J(B2), J(B3) ∈ D such that J(B1) is on the path from J(B2) to J(B3)
in D, and consider any v ∈ J(B2)∩ J(B3). There is u ∈ B2 such that v ∈ J(u), and u′ ∈ B3
such that z ∈ J(u′). Thus v ∈ J(u) ∩ J(u′) ⊆ J(B2) ∩ J(B3); but since B1 is on the path
from B2 to B3 in T , point (3) of Definition 9 implies v ⊆ J(B1). This proves property (3).
Hence D is a tree decomposition of E . Finally, by construction |I2| ≤ 2|J(I2)|. Then by
Definition 9 and Definition 11 we have t(E) ≤ 2τ(P )− 1, that is, τ(P ) ≥ 1

2 (t(E) + 1). But
t(E) = Ω(α(H)), thus τ(P ) = Ω(α(H)). J

4.4 All patterns
This subsection is devoted entirely to prove:

I Theorem 20. For any dag P = (VP , AP ), in time O(1.7549k) we can compute a dag tree
decomposition T = (B, E) with τ(T ) ≤ min(b e4c, b

k
4 c) + 2, where k = |VP | and e = |AP |.

Combined with Definition 15, this gives:

I Corollary 21. Any k-node graph H satisfies τ(H) ≤ bk4 c+ 2.

The proof of Theorem 20 proceeds as follows. First, we greedily find a subset B∗ ⊆ S such
that |VP (B∗)| ≥ 4|B∗|. If this subset coincides with S, we are done. Otherwise we delete
B∗ and VP (B∗) from P , partitioning P itself in ` ≥ 1 connected components. We can easily
show that the d.t.d.’s of the individual components can be combined into a d.t.d. for P , if
we add B∗ to every bag. The crux, then, is bounding the dag treewidth of the individual
components. We show that, if the i-th component has ki nodes, then it admits a d.t.d. of
width ki

4 + 2. This requires to first “peel” the component, getting rid of the tree-like parts,
and then decomposing its core using tree decompositions.

The proof makes heavy use of the skeleton of P , defined as follows.

I Definition 22. The skeleton of a dag P = (VP , AP ) is the directed bipartite graph Λ(P ) =
(S ∪ J,EΛ) where EΛ ⊆ S × J and (u, v) ∈ EΛ if and only if v ∈ J(u).

Figure 3 gives an example. Note that Λ(P ) does not contain nodes that are neither sources
nor joints; the reason is that those nodes are irrelevant to the construction of a d.t.d.. Note
also that building Λ(P ) takes time O(poly(k)).

1 2 3 4

5 6 7 8 9

1 2 3 4

6 7 8 9

Figure 3 Left: a dag P . Right: its skeleton Λ(P ) (sources S above, joints J below).

Let us now delve into the proof. For any node x, we denote by dx the current degree of x
in the skeleton.
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1. Shattering the skeleton. Set B(0) = ∅ and let Λ(0) = (S(0) ∪ J (0), E
(0)
Λ ) be a copy of

Λ. Set j = 0 and proceed iteratively as follows. If there is a source u ∈ S(j) with du ≥ 3,
let B(j+1) = B(j) ∪ {u}, and let Λ(j+1) = (S(j+1) ∪ J (j+1), E

(j+1)
Λ ) be obtained from Λ(j) by

removing u and J (j)(u); otherwise stop. Suppose the procedure stops at j = j∗, producing
the subset B∗ = B(j∗) and the sub-skeleton Λ∗ = Λ(j∗) = (S∗ ∪ J∗, E∗Λ). We prove:

I Lemma 23. |B∗| ≤ min
(k−|Λ∗|

4 ,
e−|E∗Λ|

4
)
, where k = |VP | and e = |AP |.

Proof. Since each step removes at least 4 nodes from Λ(j), then 4|B∗| ≤ |Λ\Λ∗| ≤ (k−|Λ∗|),
and |B∗| ≤ k−|Λ∗|

4 . Now consider the nodes {u} ∪ J (j)(u) removed at step j. Note that Λ(j)

is just the skeleton of P (j) = P \ P (B(j)), and that J (j)(u) ⊆ P (j)(u). This implies P (j)(u)
contains at least 3 arcs. Moreover, there must be at least one arc from P (j) \ P (j)(u) to
P (j)(u), otherwise P (j)(u) would not contain joints of P (j). We have therefore at least 4
arcs pointing to nodes of P (j)(u). These arcs are counted only once, since P (j)(u) is then
removed from P (j). Hence e ≥ 4|B∗|+ |E∗Λ|, and |B∗| ≤

e−|E∗Λ|
4 . J

Now, if B∗ = S, then obviously T = ({B∗}, ∅) is a d.t.d. of P . Moreover in this case Λ∗
is empty, so Lemma 23 gives τ(T ) = |B∗| ≤ min(k4 ,

e
4 ), proving Theorem 20.

Suppose instead B∗ ⊂ S. Let P ∗ = P \ P (B∗), and let Λi = (Si ∪ Ji, Ei) : i = 1, . . . , ` be
the connected components of Λ∗. One can check that Λi is precisely the skeleton of P ∗(Si),
the i-th connected component of P ∗. As the next lemma says, we can obtain a d.t.d. for P
by simply combining the d.t.d.’s of the P ∗(Si) in a tree and adding B∗ to all the bags. For
simplicity, we say “a d.t.d of Λi” for “a d.t.d. of P ∗(Si)”.

I Lemma 24. For i = 1, . . . , ` let Ti = (Bi, Ei) be a d.t.d. of Λi. Consider the tree T
obtained as follows. The root of T is the bag B∗, and the subtrees below B∗ are T1, . . . , T`,
where each bag B ∈ Ti has been replaced by B ∪B∗. Then T = (B, E) is a d.t.d. of P with
τ(T ) ≤ |B∗|+ maxi=1,...,` τ(Ti) and |B| = 1 +

∑`
i=1 |Bi|.

Proof. The claims on τ(T ) and |B| are trivial. Let us check via Definition 10 that T is a d.t.d.
of P . Point (1) is immediate. For point (2), note that ∪B∈Bi = Si because Ti is by hypothesis
a d.t.d. of Λi; by construction, then, ∪B∈B = B∗ ∪`i=1 Si = SP . Now point (3). Choose any
two bags B′ ∪B∗ and B′′ ∪B∗ of T , where B′ ∈ Ti and B′′ ∈ Tj for some i, j ∈ {1, . . . , `},
and any bag B ∪ B∗ ∈ T (B′ ∪ B∗, B′′ ∪ B∗). Suppose first i = j; thus by construction
B ∈ T (B′, B′′). Since Ti is a d.t.d., then Ji(B′) ∩ Ji(B′′) ⊆ Ji(B), and in T this implies
VP (B′ ∪B∗)∩VP (B′′ ∪B∗) ⊆ VP (B ∪B∗). Suppose instead i 6= j. Thus Ji(Si)∩ Jj(Sj) = ∅
and this means that J(Si) ∩ J(Sj) ⊆ J(B∗). But VP (Bi) ∩ VP (Bj) ⊆ J(Si) ∩ J(Sj) and
J(B∗) ⊆ VP (B∗), thus VP (Bi) ∩ VP (Bj) ⊆ VP (B∗). It follows that for every bag B ∪B∗ of
T we have VP (Bi ∪B∗) ∩ VP (Bj ∪B∗) ⊆ VP (B ∪B∗). J

2. Peeling Λi. We now remove the tree-like parts of Λi = (Si∪Ji, Ei); for instance, sources
that point to only a single joint. The intuition is that those parts do not increase the dag
treewidth. As a base case, if |Si| = 1 then Ti = ({Si}, ∅) is a d.t.d. for Λi of width 1. Suppose
instead |Si| > 1. Note that every u ∈ Si satisfies du = |Ji(u)| ≤ 2, for otherwise u would
have been removed in the previous phase. Consider the following conditions:
1. ∃u ∈ Si : du = 1. Then fix any such u, and fix any u′ ∈ Si \ {u} with Ji(u) ∩ Ji(u′) 6= ∅.
2. Ji(u) = Ji(u′) for some u, u′ ∈ Si with u 6= u′. Then, fix u and u′ as above.
3. ∃v ∈ Ji : dv = 1 (this is initially false). Then fix any such v, let u be the unique source

such that v ∈ Ji(u), and let u′ 6= u be any source with Ji(u) ∩ Ji(u′) 6= ∅.

IPEC 2019



6:12 Faster Subgraph Counting in Sparse Graphs

Note that, in any case, u′ must exist since |Si| > 1 and Λi is always connected. We then
“peel” Λi by defining Ti recursively, as follows. Let Λ′i = Λi \ {u}, and assume we have a
d.t.d. T ′i of Λ′i. Since u′ 6= u then u′ ∈ Si \ {u}, and thus for some B′ ∈ T ′i we have u′ ∈ B′.
Create the bag Bu = {u} and set it as a child of B′. We obtain a tree Ti where Bu is a leaf;
and note that, by construction, for any u′′ ∈ Si \ {u, u′} we have Ji(u) ∩ Ji(u′′) ⊆ Ji(u′).
This implies that Ti is a d.t.d. for Λi. Then remove u from Λi, as well as any v : dv = 0.

We repeat this peeling process until we meet the base case, or until |Si| > 1 and all three
conditions above fail. In the latter case, we move to the next phase.

u1u0 u2 u3 u4 u5 u6 u7 u8 u9 u10

1 2 3 4 5 6

u1 u2 u3

1 2 3

1

2

3

u1

u2

u3

Figure 4 Above: example of a skeleton component Λi. Below: the core Λ•i obtained from Λi
after peeling (left), and its encoding as Ci (right).

3. Decomposing the core. We denote by Λ•i = (S•i ∪ J•i , E•i ) the subgraph of Λi left after
the peeling. We say Λ•i is the core of Λi; intuitively, it is the part determining the dag
treewidth of Λi. Now, since Λ•i violates all three conditions of the peeling step, certainly
du = 2 for every source u and dv ≥ 2 for every joint v. This means that the joints and
sources of Λ•i can be represented as nodes and edges of a simple graph. Formally, we encode
Λ•i as Ci = (VCi , ECi) where VCi = J•i and ECi = {eu : u ∈ S•i }, as Figure 4 shows.

Using Ci, we can find a good bound on τ(Λ•i ) via tree decompositions. The key fact is
that any tree decomposition for Ci of width t can be turned in time poly(k) into a d.t.d.
for Λ•i of width t+ 1 (intuitively, the tree decomposition covers the edges of Ci, which are
the sources of Λ•i ). By a bound of [23], Ci admits a tree decomposition of width at most
|ECi |

5 + 2, and this can be computed in time O(1.7549k) [18]. In the end, this yields:

I Lemma 25. Let ki = |S•i ∪J•i |. In time O(1.7549ki) we can compute a d.t.d. T •i = (B•i , E•i )
of Λ•i such that τ(T •i ) ≤ bki4 c+ 2.

With Lemma 25 we have essentially finished. It remains to wrap all our bounds together.

4. Assembling the tree. Let Ti be the d.t.d. for Λi, as returned by the recursive peeling
followed by the core decomposition. Note that τ(Ti) ≤ τ(T •i ), since the peeling phase only
add bags of width 1. Therefore, by Lemma 25, τ(Ti) ≤ bki4 c+ 2 where ki = |S•i ∪ J•i |.

Let now T = (B, E) be the d.t.d. for P obtained by composing T1, . . . , T` (Lemma 24).
By Lemma 24 itself, τ(T ) ≤ |B∗|+ maxi=1,...,` τ(Ti), thus:

τ(T ) ≤ |B∗|+ max
i=1,...,`

⌊ki
4
⌋

+ 2 (5)

Now, from Lemma 23 we know that P (B∗) has at least 4|B∗| nodes and 4|B∗| arcs. Similarly,
since each Λi has at least ki nodes and ki arcs, then P \ P (B∗) has at least

∑
i=1,...,` ki
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nodes and
∑
i=1,...,` ki arcs. By a simple summation, then, we have τ(T ) ≤ bk4 c + 2 and

τ(T ) ≤ b e4c+ 2, hence τ(T ) ≤ min(bk4 c, b
e
4c) + 2. Finally, by Lemma 25 the time to build Ti

is O(1.7549ki), since the peeling phase clearly takes time poly(ki). The total time to build T
is therefore O(1.7549k), which concludes the proof of Theorem 20.

5 Lower bounds

We prove the lower bound of Theorem 7. Note that, since τ(H) = Θ(α(H)) by Lemma 19,
the bound still holds if one replaces s(H) by α(H) in the statement.

I Theorem 26. For any function a : [k]→ [1, k] there exists an infinite family of patterns
H such that (1) s(H) = Θ(a(k)) for each H ∈ H, and (2) if there exists an algorithm that
computes ind(H,G) or sub(H,G) in time f(d, k) · no(a(k)/ ln a(k)) for all H ∈ H where d is
the degeneracy of G, then ETH fails.

Proof. We reduce counting cycles in an arbitrary graph to counting a gadget pattern on k
nodes and dag treewidth O(τ(k)), where τ(k) = a(k), in a d-degenerate graph.

The gadget is the following. Consider a simple cycle on k0 ≥ 3 nodes. Choose an integer
d = d(k) ≥ 2 with d(k) ∈ Ω( k

τ(k) ). For each edge e = uv of the cycle create a clique Ce
on d − 1 nodes; delete e and connect both u and v to every node of Ce. The resulting
pattern H has dk0 = k nodes. Let us prove τ(H) ≤ k0. This implies τ(H) = O(τ(k)) since
k0 = k

d ∈ O(τ(k)). Consider again the generic edge e = uv. Since Ce ∪ u is itself a clique, it
has independent set size 1; and thus in any orientation Hσ of H, Ce ∪ u contains at most
one source. Applying the argument to all e shows S(Hσ) ≤ k0, and since τ(Hσ) ≤ |S(Hσ)|,
we have τ(Hσ) ≤ k0. Note any H ′σ obtained from Hσ by adding edges or identifying nodes
has at most k0 roots, too. Hence τ(H) ≤ k0.

Now consider the task of counting the cycles of length k0 ≥ 3 in a simple graph G0 on n0
nodes and m0 edges. We replace each edge of G0 as described above. The resulting graph
G has n = m0(d− 1) + n0 = O(dn2

0) nodes, has degeneracy d, and can be built in poly(n0)
time. Note that every k0-cycle of G0 is univocally associated to a(n induced) copy of H in
G. Suppose then there exists an algorithm that computes ind(H,G) or sub(H,G) in time
f(d, k) · no(τ(H)/ ln τ(H)). Since τ(H) ≤ k0, k = f(d, k0), n = O(dn2

0), and d = f(k0), the
running is time f(d, k0) · no(k0/ ln k0). This implies one can count the number of k0-cycles in
G in time f(k0) · no(k0/ ln k0). The proof is completed by invoking:

I Theorem 27 ([11], Theorem I.2). The following problems are #W [1]-hard and, assuming
ETH, cannot be solved in time f(k) · no(k/ log k) for any computable function f : counting
(directed) paths or cycles of length k, and counting edge-colorful or uncolored k-matchings in
bipartite graphs. J

6 Conclusions

We have shown how one can exploit the sparsity of a graph to count subgraphs faster than
with state-of-the-art algorithms. Our main technical ingredient, the dag tree decomposition,
not only yields better algorithms, but sheds light on the algorithmic role of degeneracy in
subgraph counting, too. It would be interesting to know if our decomposition can be applied
to problems other than subgraph counting.

An obvious line of future research is to tighten the bounds. For all patterns, one could
improve the upper bound by reducing the exponent by constant or logarithmic factors; larger
improvements seem unlikely, due to the lower bounds. For special classes of patterns, instead,
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6:14 Faster Subgraph Counting in Sparse Graphs

the situation is different: our lower bounds hold for some infinite family of patterns, not
for any infinite family. This leaves open the question of finding special classes of patterns
that can be counted even faster, or of tightening the lower bounds. In the second case, the
dag treewidth would completely characterise the complexity of subgraph counting when
parameterized by the degeneracy of the host graph.
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