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—— Abstract

Deciding feasibility of large systems of linear equations and inequalities is one of the most fundamental
algorithmic tasks. However, due to inaccuracies of the data or modeling errors, in practical
applications one often faces linear systems that are infeasible.

Extensive theoretical and practical methods have been proposed for post-infeasibility analysis of
linear systems. This generally amounts to detecting a feasibility blocker of small size k, which is
a set of equations and inequalities whose removal or perturbation from the large system of size m
yields a feasible system. This motivates a parameterized approach towards post-infeasibility analysis,
where we aim to find a feasibility blocker of size at most k in fixed-parameter time f(k) - m©®).

On the one hand, we establish parameterized intractability (W[1]-hardness) results even in
very restricted settings. On the other hand, we develop fixed-parameter algorithms parameterized
by the number of perturbed inequalities and the number of positive/negative right-hand sides.
Our algorithms capture the case of DIRECTED FEEDBACK ARC SET, a fundamental parameterized
problem whose fixed-parameter tractability was shown by Chen et al. (STOC 2008).
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1 Introduction

Solving systems of linear equations and inequalities constitutes an algorithmic task of
fundamental importance. The data that is used in these systems though may be subject
to inaccuracies and uncertainties, and therefore may lead to systems which are infeasible.
Another source of infeasibility may be modeling errors, or simply incompatibility of constraints.
Infeasibility itself allows for little conclusions; for a large system of millions of inequalities,
infeasibility may stem from a very small subset of data. A natural question is therefore to
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detect the smallest number of changes which must be made to a given system in order to
make it feasible. The analysis of infeasible linear systems has been extensively investigated [1,
2,4, 11, 12, 13, 28, 31]; we refer to the book by Chinneck [13] for an overview.

Formally, the MINIMUM FEASIBILITY BLOCKER (MINFB) problem takes as input a
system S of linear inequalities Az < b and asks for a smallest subset Z such that S\ Z
is feasible. As I “blocks” the feasibility of S, we refer to Z as a feasibility blocker; we
avoid calling Z a “solution”, to avoid confusion with the solution of the linear system S\ Z.
Further note that instead of removing the set Z of inequalities, we can equivalently perturb
the right-hand sides bz of the inequalities in Z; that is, we can increase the b-values of
inequalities in Z to a value such that the perturbed system becomes feasible. Of course,
when talking about feasibility, we have to specify over which field, and our choice here is
the field Q. Over this field, MINFB is NP-hard [33]; as the feasibility of a linear system
can be tested in polynomial time (e.g., by the ellipsoid method [24]) the MINFB problem
is NP-complete. Thus, there is a simple XP-algorithm testing every possible feasibility
blocker of size at most k. Due to its importance, the MINFB problem has been thoroughly
investigated from several different viewpoints, including approximation algorithms [1, 28],
polyhedral combinatorics [31], heuristics [11], mixed-integer programming [15], and hardness
of approximation [2].

Here we take a new perspective on the MINFB problem, based on parameterized com-
plexity. In parameterized complexity, the problem input of size n is additionally equipped
with one or more integer parameters k£ and one measures the problem complexity in terms of
both n and k. The goal is to solve such instances by fized-parameter algorithms, which run
in time f(k) - n®® for some computable function f. The motivation is that fixed-parameter
algorithms can be practical for small parameter values k even for inputs of large size n,
provided that the function f exhibits moderate growth. This contrasts them with algorithms
that require time n/(*), which cannot presumed to be practical for large input sizes n. To
show that such impractical run times are best possible, a common approach is to show the
problem to be W[1]-hard; a standard hypothesis in parameterized complexity is that no
W(1]-hard problem admits a fixed-parameter algorithm. For background on parameterized
complexity, we refer to the book by Cygan et al. [18].

For the MINFB problem, arguably the most natural parameter is the minimum size k of
a feasibility blocker Z. The motivation for this choice of parameter is that in applications,
we are interested in small feasibility blockers Z; e.g., Chakravarti [9] argues that a feasibility
blocker “with too large a cardinality may be hard to comprehend and may not be very useful
for post-infeasibility analysis.” Guillemot [25] explicitly posed the question of resolving the
parameterized complexity of MINFB; he conjectured that the problem is fixed-parameter
tractable parameterized by the size of a minimum feasibility blocker for matrices with at
most 2 non-zero entries per row.

Another motivation for our approach comes from the fact that MINFB captures one of the
most important problems in parameterized complexity, namely DIRECTED FEEDBACK ARC
SET (DFAS): given a digraph G, decide if G admits a directed feedback arc set of size at
most k, which is a set F' such that G — F' is an acyclic digraph (DAG). It was a long-standing
open question whether DFAS admits a fixed-parameter algorithm parameterized by the size k
of the smallest directed feedback arc set, until Chen et al. [10] gave an algorithm with run
time 4*k!In®M) . The currently fastest algorithm for DFAS runs in time 4¥k!k - O(n+m), and
is due to Lokshtanov et al. [29]. It is not difficult to give a parameter-preserving reduction
from DFAS to MINFB: for every arc (u, v) of the digraph G that serves as input to DFAS we
add the inequality x, — z, < —1 to the linear system Ax < b. Directed feedback arc sets F’
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of G are then mapped to feasibility blockers of the same size by removing the constraints
corresponding to arcs in F', and vice-versa. Note that the constraint matrix A arising this

way is totally unimodular, and each row has exactly two non-zero entries, one +1 and one —1.

Totally unimodular matrices A whose every row has at most two non-zero entries, one +1
and one —1, are known as difference constraints; testing feasibility of systems of difference
constraints has been investigated extensively [32, 35] due to their practical relevance most
notably in temporal reasoning. It is therefore interesting to know whether the more general
MINFB problem also admits a fixed-parameter algorithm for parameter k, even for special
cases like totally unimodular matrices A (where testing feasibility is easy).

Another case of interest for MINFB is when the constraint matrix A has bounded
treewidth, where the treewidth of A is defined as the treewidth of the bipartite graph that
originates from assigning one vertex to every row and every column of A and connecting
any two vertices by an edge whose corresponding entry in A is non-zero. Fomin et al. [21]
gave a fast algorithm for MINFB with constraint matrices of bounded treewidth for the
setting k = 0, i.e. checking for feasibility without deleting any constraints. At the same time,
Bonamy et al. [8] showed that DFAS — a special case of MINFB — is fixed-parameter tractable

parameterized by the treewidth of the underlying undirected graph of the input digraph®.

So the questions arise whether Fomin et al’s algorithm can be extended to arbitrary values
of k, or whether Bonamy et al’s algorithm can be extended from DFAS to MINFB.

One of the main currently unresolved questions around DFAS is whether it admits a
polynomial compression. That is, one seeks an algorithm that, given any directed graph G
and integer k, in polynomial time computes an instance I of a decision problem II whose
size is bounded by some polynomial p(k), such that G admits a feedback arc set of size at
most k if and only if I is a “yes”-instance of II. The question for a polynomial compression
has been stated numerous times as an open problem [5, 19, 17, 30]; from the algorithms by

Chen et al. [10] and Lokshtanov et al. [29] only an exponential bound on the size of I follows.

On the other hand, parameterized complexity provides tools such as cross-composition to
rule out the existence of such polynomials p(k) modulo the non-collapse of the polynomial
hierarchy; we refer to Bodlaender et al. [6] for background. Given the elusiveness of this
problem, we approach the (non-)existence of polynomial compression for DFAS from the
angle of the more general MINFB problem.

1.1 Our results

We first show that the MINF'B problem is strictly more general than DFAS, even for totally
unimodular matrices, assuming that FPT # W[1].

» Theorem 1. The MINFB problem is W[1]-hard parameterized by the minimum size k of a
feasibility blocker, even for difference constraints and right-hand sides b € {£1}™.

Theorem 1 therefore disproves (assuming FPT # WI[1]) the conjecture of Guillemot [25]
that finding the minimum number of unsatisfied equations or inequalities is fixed-parameter
tractable for linear systems with at most two variables per equation or inequality.

Given this strong parameterized intractability result, we resort to identifying tractable
fragments (or classes of instances) of MINFB. In particular, we look for algorithms which

L The algorithm of Bonamy et al. [8] is stated for the vertex deletion problem, but it can be modified to
work for DFAS as well. Note that the standard reduction from DFAS to the vertex deletion problem
which preserves the solution size does not necessarily result in a digraph whose underlying undirected
graph has bounded treewidth even if the DFAS instance has this property.
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solve fragments of MINFB which capture the fundamental DFAS problem. As relevant
parameters, we identify the number b, of positive entries in the right-hand side vector b, as
well as the number b_ of negative entries in b. This choice comes from the fact that the case
of by = 0 generalizes the DFAS problem, whereas the case of b_ = 0 is always feasible as the
all-0 vector is a trivial solution for a system of the form Ax <b.

Our positive algorithmic results for these parameters are as follows:

» Theorem 2. There is an algorithm that solves MINFB for systems S of m difference
constraints over n variables and right-hand sides b € {£1}™ in time 20k +biFklogbs) . pO(1)

» Theorem 3. There is an algorithm that solves MINFB for systems S of m difference
constraints over n variables and right-hand sides b € {£1}™ in time (k + 1)(b_)*T1O(nm).

Armed with these fixed-parameter algorithms for parameters k 4+ by and k + b_, it is
time to consider the question of polynomial compressions for those tractable fragments of
MiINFB. Such polynomial compression would be particularly interesting, as it could be a
step towards obtaining a polynomial compression for DFAS (where by = 0); so a polynomial
compression for MINFB for parameter k or k + by, even for node-arc incidence matrices,
would imply a polynomial compression for DFAS (as the reduction from DFAS to MINFB
does not increase the parameter).

Interestingly, we can actually rule out a polynomial compression for MINF' B parameterized
by k+b_:

» Theorem 4. Assuming NP € coNP /poly, MINFB does not admit a polynomial compression
when parameterized by k + b_ even for systems A of difference constraints and right-hand
sides b € {£1}™.

The most intriguing open question arising from this result is whether our hardness result can
be strengthened to rule out a polynomial compression for MINFB parameterized by k + b..

As mentioned, Fomin et al. [21] give an algorithm that solves MINFB for constraint
matrices of bounded treewidth for K = 0. And Bonamy et al. [8] give an algorithm that solves
the special case of MINFB known as DFAS for constraint matrices of bounded treewidth.
Here we show that, somewhat surprisingly, MINF'B is NP-hard even for constraint matrices
of constant pathwidth (which are a subclass of matrices with constant treewidth).

» Theorem 5. The MINFB problem is NP-hard even for constraint matrices of pathwidth 6.

Due to space constraints, proofs of statements marked by (%) are deferred to the full
version of this paper.

1.2 Related work

In fundamental work, Arora, Babai, Stern and Sweedyk [2] considered the problem of
removing a smallest set of equations to make a given system of linear equations feasible
over Q. They gave strong inapproximability results, showing that finding any constant-
factor approximation is NP-hard. Berman and Karpinski [4] gave the first (randomized)
polynomial-time algorithm with sublinear approximation ratio for this problem.

Giannopolous, Knauer and Rote [22] considered the “dual” of MINFB from a parameter-
ized point of view: namely, in MAXFS we ask for a largest subsystem of an n-dimensional
linear system S which is feasible over Q. They showed that deciding whether a feasible
subsystem of at least ¢ inequalities in S exists is W[1]-hard parameterized by n + £, even
when S consists of equations only.
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For systems of equations over finite fields, finding minimum feasibility blockers has been
considered from a parameterized perspective. In particular, over the binary field Fy, Crowston
et al. [16] prove W[1]-hardness even if each equation has exactly three variables and every
variable appears in exactly three equations; they further give a fixed-parameter algorithm
for the case where each equation has at most two variables.

2 Preliminaries

Throughout, we work with finite and loop-less directed graphs GG, whose vertex set we denote
by V(G) and arc set by A(G). For a vertex v € V(G), denote by 6~ (v) the incoming arcs of v,
i.e., arcs of the form (w,v) for some w € V(G). Likewise, denote by 67 (v) the outgoing arcs
of v. A walk W in G is a sequence of vertices W = (vg, vy, . .., v¢) such that (v;,v;11) € A(G)
fori =0,...,£—1. We call £ the length of the walk. A walk is closed if vg = vy. If all vertices
are distinct we call the walk a path, if all except vy and v, are distinct we call it a cycle. For
two walks W, R where the last vertex of W equals the first vertex of R, let W o R be the
concatenation of W and R, which is the sequence of all vertices in W followed by all vertices
in R except the first. Our directed graphs G often come with arc weights w : A(G) — Q; the
weight of a cycle C in G is then equal to the sum of its arc weights. In that spirit, we call a
cycle negative (non-negative, positive) if its weight is negative (non-negative, positive). A
shortest path or cycle is a path or cycle of minimum length. Note that “shortest” does not
refer to the weight of a cycle.

For our hardness results we will use two different kinds of hardness. The first one is
W([1]-hardness which under the standard assumption W[1] # FPT implies that there is no
fixed-parameter tractable algorithm for problems of this type. The other hardness considers
compression: A polynomial compression of a language L into a language @ is a polynomial-
time computable mapping @ : ¥* x N — ¥*, &((x,k)) — y such that ((z,k) € L & y € Q)
and |y| < k9D for all (z,k) € ¥* x N. Many natural parameterized problems do not admit
polynomial compressions, under the hypothesis that NP C coNP /poly.

Both types of hardness can be transferred to other problems by “polynomial parameter
transformations”, which were first proposed by Bodlaender et al. [7].

» Definition 6. Let 3 be an alphabet. A polynomial parameter transformation (PPT) from a
parameterized problem II C ¥* X N to a parameterized problem II' C ¥* x N is a polynomial-
time computable mapping ® : £* x N — ¥* x N, (z,k) — (2/, k'), such that k' = E°0),
and (x,k) € Il & (2/, k') € II' for all (x,k) € ¥* x N. Two parameterized problems are
parameter-equivalent if there are PPTs in both directions and the transformations additionally
fulfil that k' = k.

Note that polynomial parameter transformations are transitive. Further, a PPT from II
to IT’ together with a polynomial compression for II’ yields a polynomial compression for II.
This can be used to rule out polynomial compressions:

» Proposition 7 ([27]). Let ILII' be parameterized problems. If there is a polynomial
parameter transformation from II to II' and II admits no polynomial compression, then
neither does IT'.

Next, we formally define the MINFB problem. Here and throughout the rest of the paper,
we denote by a; . the i*® row of the matrix A.
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MINIMUM FEASIBILITY BLOCKER (MINFB) Parameter: k
Input: A coefficient matrix A € Q™*™ a right-hand side vector b € Q™ and an integer k.
Task: Find a set Z C {1,...,m} of size at most k such that (a; e -z < b;)

is feasible for some x € Q™.

i€{l,....mN\T

By multiplying rows of A and the corresponding entries of b with (—1) the MINFB
problem also covers in a parameter equivalent way the case where some inequalities are of
the type a; ¢z > b; if there is no sign restriction on the entries of A and b.

Furthermore, equations of the form a; . - © = b; can be written as the two inequalities
Gie-T <b; and —a; - < —b; (equivalent to a; - > b;). In a feasible solution z* ignoring
such an equation, at most one of the above inequalities is violated. Thus, the MINFB
problem with equations can be reduced to the formulation of the MINFB as formulated above
without changing the parameter. Conversely though, MINF B as presented above in general
cannot be expressed by the MINFB problem having only equations. However, if we allow
additionally inequalities with only one variable or require all variables to be non-negative,
those are representable by adding slack variables and (if necessary) splitting variables into
two non-negative parts xj and z; .

For a graph H, a tree decomposition (path decompostion) is a pair (T, B) where T is a
tree (path) and B a collection of bags B, C V(H), each bag corresponding to some node
v € V(T). The bags have the property that for any edge of H both its endpoints appear in
some common bag in B, and for each vertex v € V(H) the bags containing v form a subtree
of T. The width of (T, B) is defined as the largest bag size of B minus one. The treewidth
(pathwidth) of H is the minimum width over all tree (path) decompositions of H.

3 Parameterized Intractability of Minimum Feasibility Blocker

In this section we show W[1]-hardness of the MINFB problem by giving a reduction from the
BoUNDED EDGE DIRECTED (s,t)-CuT problem. This problem takes as input a digraph G,
vertices s,t, and integers k, £ € N, and asks for a set X C F(G) of size at most k such that
G — X contains no s-t-paths of length at most ¢. Golovach and Thilikos [23] proved its
parameterized intractability for parameter k:

» Proposition 8 ([23]). BOUNDED EDGE DIRECTED (s,t)-CuUT is W[1]-hard when paramet-
erized in k even for the special case where G is a DAG.

The BOUNDED EDGE DIRECTED (s,t)-CUT was also considered by Fluschnik et al. [20].
They showed that BOUNDED EDGE DIRECTED (s,t)-CUT does not admit a kernel of size
polynomial in k and ¢, assuming NP Z coNP /poly, even for acyclic input digraphs. In fact,
their construction allows for a stronger result, ruling out a polynomial compression:

» Proposition 9 ([20]). Assuming NP Z coNP/poly, BOUNDED EDGE DIRECTED (s, t)-CUT
does not admit a polynomial compression in k + £ even when G is a DAG.

To get to the MINFB problem, we first consider as an intermediate step the DIRECTED
SMALL CYCLE TRANSVERSAL problem: given a directed graph G and integers k, ¢, the task
is to find a set X C E(G) of size at most k such that G — X contains no cycles of length at
most £. Fluschnik et al. [20] showed that DIRECTED SMALL CYCLE TRANSVERSAL does not
admit a kernel of size polynomial in k& and ¢, unless NP C coNP/poly. Again their result can
be strengthened to not admitting a polynomial compression. They further observed that
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DIRECTED SMALL CYCLE TRANVERSAL admits a simple branching algorithm that runs in
time O(* -n - (n +m)). Here we argue that a dependence on both parameters k and / is
necessary for fixed-parameter tractability:

» Lemma 10. There is a polynomial parameter transformation from BOUNDED EDGE
DIRECTED (s, t)-CUT in DAGs with parameter k (parameter £, parameter k+£) to DIRECTED
SMALL CYCLE TRANSVERSAL with parameter k (resp. ¢, resp. k +£).

This even holds if DIRECTED SMALL CYCLE TRANSVERSAL is restricted to instances
where there are vertices s,t € V(G) such that all cycles of G consist of an s-t-path and an
arc of the form (t,s).

Proof. Let (G, s,t,k,¢) be a BOUNDED EDGE DIRECTED (s,t)-CUT instance where G is a
DAG. As G is a DAG, it admits a topological ordering vy, ..., vy (q) of its vertices, so that
there are no arcs (v, v;) for j < i. Without loss of generality, let v = s and vy (q) = t, as
vertices before s or after ¢ in a topological ordering are never part of any s-t-path.

We now create a digraph G’ from G by adding k + 1 parallel arcs a,...,agy1 from ¢
to s. Then every cycle in G’ consists of an s-i-path and an arc a;, as G was acyclic. Set
¢ =0+ 1. Then (G', k,?') is an instance of DIRECTED SMALL CYCLE TRANSVERSAL. The
above transformation can be done in polynomial time and the parameter increases by at
most one (depending on whether ¢ is part of the parameter).

It remains to show that (G',k,¢') is a “yes”-instance of DIRECTED SMALL CYCLE
TRANSVERSAL if and only if (G, s,t,k, £) is a “yes”-instance of BOUNDED EDGE DIRECTED

(s,t)-CuT.
For the forward direction, let X’ be a solution to (G',k,¢'). Consider X = X'\
{a1,...,ax41}. For sake of contradiction, suppose that G — X contains an s-t-path P

of length at most £. As |X'| <k, it can not contain all arcs a;. Without loss of generality,
a1 € X’'. Then P followed by aj is a cycle in G’ — X’ of length at most £ +1 = ¢ — a
contradiction to X’ being a solution to (G', k, ).

For the reverse direction, let X be a solution to (G, s, t, k,¢). Then X is also a solution to
(G, k,?") by the following argument. Suppose, for sake of contradiction, that G’ — X contains
a cycle C of length at most £'. By the structure of G’, C' consists of an s-t-path P in G — X
and an arc a;. Then |P| = |C| — 1 < ¢, contradicting that X is a solution to (G,k,?). <«

Now we introduce another cycle deletion problem, this time on arc-weighted digraphs.

NEGATIVE DIRECTED FEEDBACK ARC SET (NEGATIVE DFAS) Parameter: k
Input: A digraph G, a weight function w : A(G) — Q and an integer k.
Task: Find a set X C A(G) of size at most k such that G — X has no negative cycles.

» Lemma 11. There is a PPT from DIRECTED SMALL CYCLE TRANSVERSAL on instances
where every cycle uses an arc of type (t,s) when parameterized by k (by k + ¢) to NEGATIVE
DFAS parameterized by k (resp. k + w_, where w_ is the number of arcs with negative
weight); this even holds in the case where w : A(G) — {£1}.

Proof. We start with a DIRECTED SMALL CYCLE TRANSVERSAL instance (G,k,f) as
described in the lemma. Let aq,...,a, be the arcs of the form (¢,s). For any p > k + 1

there is always an arc which survives the deletion of some arc set of at most k elements.

So we can assume p < k + 1 as deleting superfluous arcs does not change the solution. Set
Ay = A(G)\ {a1,...,ap}. Now replace the a;, by mutually disjoint (except for s and )

17:7
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paths P; of length ¢. Call the resulting directed graph G and let A_; = UY_,; A(P;). Finally,
define w(a) = 1 for a € A4q and w(a) = =1 for a € A_;. As A(G') = A_1 W A4, the
function w : A(G') — {—1,41} is well defined.

The instance (G’,w, k) has the required form. Also the transformation can be made in
polynomial time. As k remains unchanged and w_ =|A_1| =¢-p < {-(k+ 1) is bounded
by a polynomial in k + ¢, the parameter restrictions of PPTs are fulfilled. It remains to
prove that (G',w,k) is a “yes”-instance of NEGATIVE DFAS if and only if (G,k,¥) is a
“yes”-instance of DIRECTED SMALL CYCLE TRANSVERSAL.

For the forward direction, let X’ be a solution of (G',w, k). Let X be the set where every
arc of X’ which is part of some P; is replaced by a; (and duplicates are removed). Clearly,
|X| < |X'| < k. Suppose there is a cycle C of length at most ¢ in G — X. Then C contains a
unique arc a;. Let C’ be the cycle in G’ resulting from the replacement of a; by P; in C.
Then C” is also in G’ — X’ by choice of X and contains at most ¢ — 1 arcs in A4 and ¢ arcs
in A_;. This yields the contradiction w(C’) = |A(C")NA41|—|A(C)NA_;| < l—1-0=—1.

For the reverse direction, let X be a solution of (G, k,¢). Let X’ the set X where every
arc a; is replaced by the first arc of P;. By definition of G'; X’ C A(G’) and | X'| = |X| <k
holds. Now suppose there is a cycle C' in G/ — X’ with w(C’) < 0. As the paths P; are
mutually disjoint (except the end vertices) every inner vertex of each P; has in-degree and
out-degree one. Thus, if there is an arc of some P; inside C’ the whole path P; is. Replace
each such P; by a; to obtain a cycle C. By construction of G’ and X, this cycle C'isin G— X.
Each cycle in G and therefore also C' contains exactly one arc of type a;. Therefore, C’
contains exactly one path P; and from 0 > w(C’) = |JA(C") N A| — |JA(C)) N A_4| =
|A(C") N Aqq] — £ we get that |A(C') N Aypq| < €. As |A(C') N Aiq] is integral we can
sharpen the bound to |[A(C")N A4q] <€ —1. By A(C) = (A(C")N A4q) W{a;}, we get that
|A(C)| = |A(C") N A4q] + 1 < £ — a contradiction. <

» Theorem 12. The NEGATIVE DFAS problem and the MINFB problem for difference
constraints are parameter-equivalent. Additionally, the equivalence can be constructed such
that there is a one-to-one correspondence between constraints and arc weights with b, = w(a).

Proof. Let (G,w, k) be a NEGATIVE DFAS problem instance, and let n = |V(G)| and

m = |A(G)|. Fix an arbitrary order vy, ..., v, of the vertices of G and ay,...,a,, of the
arcs of G. As matrix A we take the incidence matrix of G which is defined as matrix
A = (a;;) € R™*™ with entries a; ; = +1 for o; € 6~ (v), a;; = —1 for a; € 6% (v;), and

a; ; = 0 otherwise. Furthermore, let b; = w(c;). The resulting tuple (A, b, k) is an instance
of the MINFB problem with A being a matrix of difference constraints.

The construction is bijective by the following reverse construction: Define a directed
graph on n vertices v1,...,v,, then for every constraint a; o - * < b; add an arc as follows:
Let j~ be the unique index with a; j- = —1, and let j* be the unique index with a; j+ = +1.
Add an arc o = (v;+,v;-) with weight w(a) = b; to the current digraph. Let G' be the
resulting digraph after all arcs are added. Then (G,w, k) is the constructed NEGATIVE
DFAS instance. It is easy to verify that this indeed reverses the first construction.

Now we want to compare solutions of both problems. Intuitively, deleted constraints and
arcs have an one to one correspondence, but we will formally prove the equivalence here.

For this we need the notion of “feasible potentials”. A feasible potential (with respect
to G and w) is a function 7 : V(G) — Q such that, for every arc a = (z,y) € A(G), the
following inequality holds: w(a) — w(z) + 7(y) > 0. It is well-known that a weighted digraph
has a feasible potential if and only if it has no cycle of negative weight (see, for example, the
book of Schrijver [34, Theorem 8.2]).



A. Goke, L. M. Mendoza Cadena, and M. Mnich

In the following, for each X C A(G) denote by X7 the corresponding indices of the
constraints and vice-versa. Then the following equivalences hold:
(G — X, w) contains no negative cycles with respect to w.
(G — X, w) has a feasible potential 7 : V(G) — Q.
There is some 7 : V(G) — Q such that 7(u) < w(v) + w(e) for all @ = (u,v) € A(G) \ X.
There is some = € QV(%) such that z, — z, < w(a) for all a = (u,v) € A(G)\ X.
There is some « € Q" such that a; e -z <b; foralli e {1,...,m} \ Xz
Furthermore, as X and X7 have the same cardinality, the last statement is equivalent to the
statement that X is a solution to (G, w, k) if and only if X7 is a solution to (A4, b, k). <

=
54
54
54

Concatenating all reductions above, we obtain the following corollary:

» Corollary 13. There is a PPT from BOUNDED EDGE DIRECTED (s,t)-CUT parameterized
by k (in k4 £) to MINFB parameterized by k (in k+b_). This even holds for instances of
MINFB where A is a system of difference constraints and b € {+1}"™.

This corollary yields our two hardness results:

Proof of Theorem 1. With Proposition 7 we can use the W[1]-hardness of BOUNDED EDGE
DIRECTED (s,t)-CUT from Proposition 8 and the PPT from Corollary 13 to get the W[1]-
hardness of MINFB. Also the structure of the instance follows from this. |

Proof of Theorem 4. This follows by combining Proposition 9 and Corollary 13 with the
help of Proposition 7. The structure of the MINFB instance follows as in Theorem 1. <

4 Fixed-parameter Algorithms for Systems of Difference Constraints

In this section we develop fixed-parameter algorithm for MINFB for constraint matrices A
of difference constraints and right-hand sides b € {£1}™. Our first algorithm takes as
parameters the number k of constraints that must be deleted from A to make the system
feasible and the number w_ of negative entries in the b-vector; our second algorithm takes as
parameters k and the number w4 of positive entries in b. The naming convention for w.y, w_
stems from Theorem 12 and the 1-to-1 correspondence between b and w.

Recall that the DFAS problem corresponds to the case when w; = 0, as in this case
all arcs have negative weight. In fact, our algorithm makes oracle calls to an algorithm for
the more general problem SUBSET DFAS, in which we are given a digraph G, an arc set
U C A(G) and an integer k, and seek a set X C A(G) of at most k arcs that intersects each
cycle containing some arc of U. The SUBSET DFAS problem was shown to be fixed-parameter
tractable for parameter k£ by Chitnis et al. [14].

» Proposition 14 ([14]). SUBSET DFAS is solvable in time 20¢+°) . nO1),

For both algorithms we need a subroutine finding a shortest negative cycle C' in a given
digraph. Recall that shortest is defined in terms of number of arcs. Negative cycles can be
found with the Moore-Bellman-Ford algorithm (cf. Bang-Jensen and Gutin [3, Sect. 2.3.4]),
which runs in time O(nm). That algorithm can be modified to find a shortest negative cycle
of length at most ¢ in time O(¢nm); such modification is well-known or at least an easy
exercise.

» Lemma 15 (%). There is an algorithm that, given a digraph G, arc weights w: A(G) — Q
and an integer £ € N, in time O(¢nm) either finds a shortest negative cycle C of length at
most £ in G, or decides that none exists.
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Algorithm 1 SimpleNegativeCycleDeletion.

Input :A digraph G, arc weights w : A(G) — Q and k € N.
Output: A set S C A(G) of at most k arcs such that G — S has no negative cycles
or false if no such set exists.

1 for every k_,ky € Z>o with k_ +ky =k do

2 for every subset S_ of w™1(—1) C A(G) with |S_| = k_ do

3 S() =5_.

4 while G — Sy contains a negative cycle C and |Sp| < k do
5 ‘ Branch on adding an arc a € A(C) with w(a) =1 to Sp.
6 if |.Sy| < k then

7 ‘ return Sp.

8 return false.

4.1 Few negative right-hand sides

We are now ready to give our fixed-parameter algorithm for MINFB for constraint matrices A
of difference constraints and right-hand sides b € {£1}"™, parameterized by the size k of the
deletion set and the number b_ of negative entries in b. For the rest of this subsection we will
use Theorem 12 and only work on the NEGATIVE DFAS problem with w : A(G) — {£1}.
We give a simple algorithm for the NEGATIVE DFAS problem with w : A(G) — {1},
parameterized by k and b_. Pseudocode of the algorithm can be found in Algorithm 1. The
algorithm first guesses the negative arcs in the solution and then recursively branches on the
positive arcs of a negative cycle (as long as such a cycle exists). The algorithm keeps track
of the already deleted arcs in the set Sp.

» Lemma 16. Algorithm 1 is correct and runs in time (k + 1)w" ™ O(nm).

Proof. The algorithm works in three steps: The first for loop guesses how many of the
deleted arcs have weight —1 with the variable k_. The second for loop then iterates over
every (k_)-element subset of these arcs. The last procedure then tries to fix the negative
cycle by only deleting arcs of weight +1.

As we enumerate all choices of k_ and the subsets of negative arcs we only need to argue
correctness for the last procedure. The procedure only returns a value other than “false” if
this value is a solution. So we only need to argue that if there is a solution we will find it.
So let S be a solution and Sy contain all k_ arcs of weight —1 in S. We get Sy by correct
guessing of the for loops. If Sy = 5, then |Sy| < k and the graph G — Sy will contain no
negative cycle, so we correctly return Sy. Otherwise, there is a negative cycle C' in G — Sj.
By choice of Sy there must be an arc a € A(C) NS with weight +1. Branching on all possible
choices in line 5, one of the branches must have found the right arc and added it to Sy. Thus,
in each recursive call we find an additional element of S until Sop = S.

For the runtime, the first main observation to be made is that any negative cycle C
has length at most 2w_ — 1. Furthermore, at most w_ — 1 arcs of it can have weight +1.
Therefore, we can check by Lemma 15 for the existence of a negative cycle in time O(w_nm)
and iterate over all arcs with weight +1 in a cycle in time O(w_). As Sy’s size increases by
one with each branching and we stop (correctly) if |Sg| > k at most k — k_ recursive calls
are made by the branching. Thus, the runtime of the inner branching procedure for fixed S_
is at most (w_)*"*-+1O(nm). The inner for loop enumerates, for a fixed value of k_, at
most w"~ sets S_. This for loop is executed k + 1 many times by the outer for loop. So the
algorithm runs in time (k + 1)w"™ - (w_)*=*=+10(nm) = (k + 1)(w_) 10 (nm). <
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Proof of Theorem 3. By Theorem 12 we can construct, in polynomial time, an instance of
NEGATIVE DFAS that has the same parameters k 4+ w_, and such that the original instances
is a “yes”-instance if and only if the constructed instance is. Lemma 16 then allows us to
solve this instance in the claimed time. <

4.2 Few positive right-hand sides

In the second part of this section we will study NEGATIVE DFAS with weight functions
w: A(G) — {£1} when parameterized by k and w,. The main observation for our algorithm
is made in the following lemma:

» Lemma 17 (). Let G be a digraph with arc weights w : A(G) — {£1}. Then either G
has a negative cycle of length at most 2(w4)? + 2w, , or every negative cycle C' has some arc
a € A(C) that lies only on negative cycles of G.

This lemma forms the basis of our algorithm, Algorithm 2. First, the algorithm checks
for negative cycles with up to 2(w,)? + 2wy arcs. It then guesses the arc contained in a
solution like in our first algorithm, Algorithm 1. Afterwards, we are left with a digraph
without small cycles. We now identify the set U of arcs which are not part of a non-negative
cycle. Then, for any solution S to NEGATIVE DFAS, G — S may not contain a cycle on
which an arc of U lies, as such a cycle would be negative by definition of U. Likewise, any
negative cycle in G has some arc in U by the previous lemma. Thus, it remains to solve an
instance of SUBSET DFAS for input (G, U, k).

Algorithm 2 NegativeCycleDeletion.

Input :A digraph G with arc weights w : A(G) — Q and k € N.
Output: A set S C A(G) of at most k arcs such that G — S has no negative cycle, or
false if no such set exists.
1 if £ <0 then
2 ‘ return false.
3 if there is some negative cycle C of length at most 2(w,)? + 2w, in G then
4 ‘ Branch on deleting an arc of C' and try to solve with k — 1.
5 else
6 Identify the set U of all arcs which do not lie on a non-negative cycle.
7 return SubsetDirectedFeedbackArcSet (G, U, k).

Before we can prove correctness and runtime we have to show how we can detect the set U
of all arcs which lie only on negative cycles. We first argue that this problem is NP-hard even
for weights w : A(G) — {£1}. To this end, we provide a reduction from the HAMILTONIAN
s-t-PATH problem, which for a digraph H and vertices s,t € V(H) asks for an s-t-path
in H visiting each vertex of H exactly once. Its NP-hardness was shown by Karp [26]. The
reduction works as follows: Take the original digraph H and two vertices s,t € V(H) which
we want to test for the existence of an Hamiltonian path starting in s and ending in ¢. Add
a path P of length n — 1 from t to s to the graph. Assign weight 4+1 to each arc of H, and
weight —1 to each arc of P. Then an arc of P lies on a cycle of non-negative length if and
only if there is an Hamiltonian s-t-path in H.

However, for this construction of weights w we have w, € Q(n). We will now show that
the task is indeed fixed-parameter tractable when parameterized by w,. For that, the main
observation is that every non-negative cycle has length at most 2w,;. We now consider the
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WEIGHTED ¢-PATH problem: given a digraph G with arc weights w : A(G) — Q and numbers
W € Q,¢ € N, the task is to find a path of length exactly ¢ and weight at least W in G.
Zehavi [36] gave a fast algorithm for WEIGHTED ¢-PATH, based on color-coding techniques.

» Proposition 18 ([36]). WEIGHTED (-PATH can be solved in time 2°) - O(mlogn) on
digraphs with n vertices and m arcs.

So given an arc a = (s,t) one can enumerate all path sizes ¢ from 1 to 2wy — 1 and ask
whether there is a t-s-path of length ¢ of weight at least —w(a). This way one can detect a
non-negative cycle containing a.

» Corollary 19. Let G be a digraph, let w : A(G) — {£1} and (s,t) € A(G). Then one can
detect in time 2°“+) . mlogn if a = (s,t) is part of some non-negative cycle C.

Finally, to argue the correctness and runtime of Algorithm 2, we prove the following:
» Lemma 20 (). Algorithm 2 is correct and runs in time 20 Tw++klogws)  ,O(1),

Proof of Theorem 2. By Theorem 12 we can construct, in polynomial time, an instance
of NEGATIVE DFAS that has the same parameters k + w_, and such that the original
instances is a “yes”-instance if and only if the constructed instance is. Lemma 20 then
allows us to solve this instance in the claimed time. Regarding the run time, note that
m< (k+1)n? e 90(logk) . ,O(1) <

5 NP-Hardness for Incidence Matrices of Constant Pathwidth

In this section we show that MINFB is NP-hard even for constraint matrices A whose
pathwidth is bounded by 6. By this we mean that the non-parameterized variant of MINFB
(where k is part of the input) is NP-hard. To this end, we reduce PARTITION to NEGATIVE
DFAS in digraphs whose underlying undirected graph has pathwidth at most 6. Recall
that PARTITION is the problem of finding, in a set A = {a4,...,a,} of positive integers, a
subset A’ so that >, c 4 ai =3, ¢4\ 4 @i or decide that no such set exists. Equivalently,
let A=3"" a; and reformulate the PARTITION problem as that of finding a subset A’ such
that A" and A \ A’ each sum up to 4. Karp [26] showed that PARTITION is NP-complete.
Starting from an instance A = {al, ...yant € N™ of PARTITION, we now construct a
NEGATIVE DFAS instance consisting of a digraph G with arc weights w : A(G) — Z and
some k € N. Afterwards, we argue why (G, w, k) has a solution if and only if A has one.
For every number a; € A construct a gadget G; as follows (see Fig. 1): Let v =

{sz(-j), (j) (j), z ,tz(»j) | 7 = 0,1} be the vertex set of G;. We have three different kinds of
(9 (J)) |

’L

arcs formmg the arc set: the first arc set Agi) ={(z @) yl(])) (y

i j =0,1} contains

the arcs we will consider for deletion later. The arc weight of all arcs a € Agi) is 0.
The second arc set Ag) = {(z( 2 (])) (yl( D 1= ])),( (J),yz(l D )) | 4 =0,1} enforces the

deletion of arcs form the first arc set by inducing negative cycles. Also, these arcs are the
only arcs between vertices with different superscripts. The weight of each arc a € Ag) is —1.
Finally, the arcs Ag) = {(sgj),xgj)) (s (J),yz(j)) ( z(]),tz(»])),(zlm,tz(-])) | = 0,1} connect

()

the vertices s;”’ and tz(-j ) to the rest of the graph. The arc weights are as follows:

w ((,27) =0, w (P y7) = A+ 1+a
w ((Z§j)7t§j))) —0, w ((ylm’tlgj))) A4l
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Figure 1 The gadget graph G; (left) and paths through G; after removal of a solution Si(p)
(right).

The whole gadget G is then defined as (V) Agi) U Ag) U Agi)). The proof of soundness
of the reduction and the path decomposition of G of width 6 is omitted from this version of
the paper due to space constraints.

Overall, we get that NEGATIVE DFAS is NP-hard in graphs of pathwidth 6. Applying
Theorem 12 to this result completes the proof of Theorem 5.

6 Discussion

We considered the fundamental MINFB problem from the perspective of parameterized
complexity. Our results include a general parameterized intractability result (W[1]-hardness)
even for totally unimodular matrices and parameter solution size, as well as fixed-parameter
algorithms for totally unimodular matrices when the additional parameter of number of
positive/negative right-hand sides is taken into account. It would be interesting to know
whether the run times of our algorithms can be improved to 20%) . p@(1)

We also ruled out the existence of a polynomial compression for combined parameter
k + w4, assuming that coNP & NP/poly. It remains a challenging open problem whether
DFAS admits a polynomial compression for parameter k, and whether our perspective from
the more general MINFB problem can help with that.

—— References

1 Edoardo Amaldi and Viggo Kann. On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoret. Comput. Sci., 209(1-2):237-260, 1998.

2 Sanjeev Arora, Laszlé Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. System Sci., 54(2, part
2):317-331, 1997.

3 Jorgen Bang-Jensen and Gregory Z. Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

4  Piotr Berman and Marek Karpinski. Approximating Minimum Unsatisfiability of Linear
Equations. In Proc. SODA 2002, pages 514-516, 2002.

5 Hans L. Bodlaender, Fedor V. Fomin, and Saket Saurabh. Open problems from 2010
Workshop on Kernels, 2010. URL: http://fpt.wdfiles.com/local--files/open-problems/
open-problems.pdf.

17:13

IPEC 2019


http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf
http://fpt.wdfiles.com/local--files/open-problems/open-problems.pdf

17:14

Resolving Infeasibility of Linear Systems

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization Lower Bounds by
Cross-Composition. STAM J. Discrete Math., 28(1):277-305, 2014.

Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theoret. Comput. Sci., 412(35):4570-4578, 2011.

Marthe Bonamy, f.ukasz Kowalik, Jesper Nederlof, Michatl Pilipczuk, Arkadiusz Socala, and
Marcin Wrochna. On Directed Feedback Vertex Set Parameterized by Treewidth. In Proc.
WG 2018, pages 65-78, 2018.

Nilotpal Chakravarti. Some results concerning post-infeasibility analysis. Furopean J. Oper.
Res., 73(1):139-143, 1994.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):Art. 21, 19, 2008.
John W. Chinneck. An effective polynomial-time heuristic for the minimum-cardinality IIS
set-covering problem. Ann. Math. Artif. Intell., 17(1):127-144, 1996.

John W. Chinneck. Finding a Useful Subset of Constraints for Analysis in an Infeasible Linear
Program. INFORMS J. Comput., 9(2):164-174, 1997.

John W. Chinneck. Feasibility and infeasibility in optimization: algorithms and computational
methods, volume 118 of International Series in Operations Research & Management Science.
Springer, New York, 2008.

Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Daniel Marx. Directed subset
feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms, 11(4):Art. 28, 28,
2015.

Gianni Codato and Matteo Fischetti. Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res., 54(4):756-766, 2006.

Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. Parameterized complexity of
satisfying almost all linear equations over Fo. Theory Comput. Syst., 52(4):719-728, 2013.
Marek Cygan, Fedor Fomin, Bart M.P. Jansen, f.ukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, Michatl Pilipczuk, and Saket Saurabh. Open Problems collected
for the 2014 School on Parameterized Complexity in Bedlewo, Poland, 2014. URL: http:
//fptschool .mimuw.edu.pl/opl.pdf.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.
Marek Cygan, Lukasz Kowalik, and Marcin Pilipczuk. Open problems from 2013 Workshop
on Kernels, 2013. URL: http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf.

Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for
Kernelization Lower Bounds, With an Application to Length-Bounded Cut Problems. In Proc.
ICALP 2016, volume 55 of Leibniz Int. Proc. Informatics, pages 25:1-25:14, 2016.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michak.Pilipczuk, and Marcin Wrochna.
Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low
Treewidth. ACM Trans. Algorithms, 14(3):34:1-34:45, 2018.

Panos Giannopoulos, Christian Knauer, and Giinter Rote. The parameterized complexity of
some geometric problems in unbounded dimension. In Proc. IWPEC 2009, volume 5917 of
Lecture Notes Comput. Sci., pages 198-209. 2009.

Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optim., 8(1):72-86, 2011.

Martin Groétschel, Laszlé Lovész, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993.

Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optim., 8(1):61-71, 2011.

Richard M. Karp. Reducibility among combinatorial problems. In Complezity of computer
computations (Proc. Sympos., IBM, Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 85-103. Plenum, New York, 1972.


http://fptschool.mimuw.edu.pl/opl.pdf
http://fptschool.mimuw.edu.pl/opl.pdf
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf

A. Goke, L. M. Mendoza Cadena, and M. Mnich

27

28

29

30

31

32

33

34

35

36

Stefan Kratsch and Magnus Wahlstrom. Two edge modification problems without polynomial
kernels. Discrete Optim., 10(3):193-199, 2013.

Neele Leithduser, Sven O. Krumke, and Maximilian Merkert. Approximating infeasible 2VPI-
systems. In Proc. WG 2012, volume 7551 of Lecture Notes Comput. Sci., pages 225-236.
2012.

Daniel Lokshtanov, M. S. Ramanuajn, and Saket Saurabh. When Recursion is Better Than
Iteration: A Linear-time Algorithm for Acyclicity with Few Error Vertices. In Proc. SODA
2018, pages 1916-1933, 2018.

Matthias Mnich and Erik Jan van Leeuwen. Polynomial kernels for deletion to classes of
acyclic digraphs. Discrete Optim., 25:48-76, 2017.

Marc E. Pfetsch. Branch-and-cut for the maximum feasible subsystem problem. STAM J.
Optim., 19(1):21-38, 2008.

G. Ramalingam, J. Song, L. Joskowicz, and R. E. Miller. Solving Systems of Difference
Constraints Incrementally. Algorithmica, 23(3):261-275, 1999.

Jayaram K. Sankaran. A note on resolving infeasibility in linear programs by constraint
relaxation. Oper. Res. Lett., 13(1):19-20, 1993.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

K. Subramani and Piotr Wojciechowski. A Combinatorial Certifying Algorithm for Linear
Feasibility in UTVPI Constraints. Algorithmica, 78(1):166-208, 2017.

Meirav Zehavi. Mixing color coding-related techniques. In Proc. ESA 2015, volume 9294 of
Lecture Notes Comput. Sci., pages 1037-1049. 2015.

17:15

IPEC 2019



	Introduction
	Our results
	Related work

	Preliminaries
	Parameterized Intractability of Minimum Feasibility Blocker
	Fixed-parameter Algorithms for Systems of Difference Constraints
	Few negative right-hand sides
	Few positive right-hand sides

	NP-Hardness for Incidence Matrices of Constant Pathwidth
	Discussion

