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Abstract
We introduce and study two new pricing problems in networks: Suppose we are given a directed graph
G = (V,E) with non-negative edge costs (ce)e∈E , k commodities (si, ti, wi)i∈[k] and a designated
node u ∈ V . Each commodity i ∈ [k] is represented by a source-target pair (si, ti) ∈ V × V and a
demand wi > 0, specifying that wi units of flow are sent from si to ti along shortest si, ti-paths
(with respect to (ce)e∈E). The demand of each commodity is split evenly over all shortest paths.
Assume we can change the edge costs of some of the outgoing edges of u, while the costs of all other
edges remain fixed; we also say that we price (or tax) the edges of u.

We study the problem of pricing the edges of u with respect to the following two natural
objectives: (i) max-flow: maximize the total flow passing through u, and (ii) max-revenue: maximize
the total revenue (flow times tax) through u. Both variants have various applications in practice.
For example, the max flow objective is equivalent to maximizing the betweenness centrality of u,
which is one of the most popular measures for the influence of a node in a (social) network. We
prove that (except for some special cases) both problems are NP-hard and inapproximable in general
and therefore resort to approximation algorithms. We derive approximation algorithms for both
variants and show that the derived approximation guarantees are best possible.
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1 Introduction

Background and motivation. Nowadays, complex networks are used to model many differ-
ent real-world scenarios and the analysis of these networks has become an extremely active
research area. One of the main issues in complex network analysis is to identify the most
“important” nodes in a network. To this aim, researchers have defined several centrality
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13:2 Approximate Pricing in Networks

measures to capture different notions of importance. One of the most popular measures is
betweenness centrality, which ranks the nodes according to their frequency of occurrence on
shortest paths between all possible pairs of nodes.

In several scenarios, having a high centrality can have a positive impact on the node itself.
For example, in the context of social networks, Mahmoody et al. [22] show experimentally
that nodes with high betweenness are also nodes that are highly influential when spreading
information to other nodes in a social network. Valente and Fujimoto [33] claim that users with
a high betweenness centrality (also called “brokers” or “bridging individuals”) “may be more
effective at changing others, more open to change themselves, and intrinsically interesting
to identify”. Moreover, in the field of transportation network analysis Malighetti et al. [23]
analyze a network of 57 European airports and find that the betweenness centrality seems to
be positively correlated to the efficiency of an airport. Also, increasing the betweenness of an
airport would mean more traffic flowing through it and possibly attracting more customers
for its shops.

The betweenness centrality notion can also be used to investigate problems arising in
economics. For example, in the Netherlands it is an active debate whether the country is
a tax haven for multinational enterprises. News articles headlined “The Netherlands is a
tax haven for many multinationals” [14], “The Netherlands is an attractive tax country” [1],
“Dutch masters of tax avoidance” [32] seem to lend support to the claim that this is indeed the
case. To further investigate this question, the CPB (Netherlands Bureau for Economic Policy
Analysis) has recently conducted some network analysis to identify important countries
(using betweenness centrality) in the international tax treaty network [35, 36]; see also [30].
Among others, they conclude that companies mainly use the Netherlands as an intermediary
country to send money through on a route from one country to another one. In this sense,
the Netherlands is not a tax haven, i.e., a destination country where the money is stored
(like the Bahamas or Bermuda), but a conduit country, i.e., an intermediary country on a
route via which companies send their money.

In light of the above insight, a natural question that arises is how a country could
maximize the amount of money that is sent through it. As a result, this would attract more
jobs in the financial sector, or incentivize foreign companies to establish their businesses in
the country (if only in the form of a letterbox). Another conceivable objective of a country
might be to maximize the total amount of taxes that it obtains from the money transfers
through it. These two questions constitute the main motivation for the network pricing
problems studied in this paper.

Our contributions. In this paper, we introduce and study the following Network Pricing
Problem (NPP): We are given a directed graph G = (V,E) with non-negative edge costs
(ce)e∈E , k commodities (si, ti, wi)i∈[k], a designated node u ∈ V and a number κ ≥ 1. Each
commodity i ∈ [k] is represented by a source-target pair (si, ti) ∈ V × V and a demand
wi > 0, specifying that wi units of flow are sent from si to ti along shortest si, ti-paths
(with respect to (ce)e∈E). The demand of each commodity i is split evenly over all shortest
si, ti-paths. Suppose we can change the costs of κ ≤ ∆(u) outgoing edges of u, where ∆(u)
is the outdegree of u, while the costs of all other edges remain fixed; we also say that we
price (or tax) the edges of u. Our goal is to optimally price at most κ edges of u such that
(i) the total flow passing through u is maximized (FLOW-NPP), or (ii) the total revenue
(i.e., flow times tax) through u is maximized (REV-NPP).

As it turns out, the problems behave rather differently in terms of hardness and ap-
proximability, depending on the objective under consideration and the parameter κ. More
specifically, our main findings in this paper are as follows:
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1. We show that FLOW-NPP can be solved in polynomial time when a constant number of
edges or almost all edges of u can be priced.

2. In contrast, we prove that FLOW-NPP is NP-hard and (1− 1/e)-inapproximable (even
for the special case of unit demands) if κ is part of the input. Further, we show that a
natural greedy algorithm achieves an approximation guarantee of (1− 1/e) (which is best
possible).

3. We show that REV-NPP can be solved in polynomial time when only one edge can be
priced. On the other hand, REV-NPP becomes NP-hard and (1− 1/e)-inapproximable if
κ is part of the input. We also show that the greedy algorithm might perform arbitrarily
bad in this case.

4. We prove that REV-NPP is highly (meaning 1/∆(u)ε) inapproximable if all outgoing
edges of u can be priced. We therefore focus on special cases of this problem.

First, we show that the single-commodity case is polynomial time solvable. This result
also constitutes an important building block for our uniform pricing algorithms (i.e.,
all edges are priced the same).
Then, we focus on the unit demand setting and derive a (tight) Hk-approximate
uniform pricing algorithm. We complement this result by showing that this problem is
1/ logε(k)-inapproximable.

5. Finally, we show that our uniform pricing algorithm extends to the general setting and
provides a max{1/k, 1/∆(u)}-approximation algorithm for REV-NPP (which is essentially
best possible).

Our results for FLOW-NPP mostly follow by using standard arguments for submodular
function maximization. In contrast, we need to establish several new ideas and exploit
structural insights to derive our results for REV-NPP (which constitutes the main technical
contributions of this work).

We conclude with some (preliminary) experimental findings on an international tax
treaty network based on real data. Our experiments indicate that our uniform pricing
algorithm computes tax rates that would significantly increase the current tax revenue of
the Netherlands (by a factor 68) and is at least within 51% of the optimal revenue (which is
much better than the worst-case approximation guarantee suggests).

Related work. The problem of increasing the centrality of a node in a network has been
widely investigated for different centrality measures. For example, boosting the popularity of
web pages by increasing their page rank has been studied intensively [2, 26] with a particular
focus on “fooling” search engines (e.g., through link farming [37]). The problem has also been
considered for other centrality measures such as closeness centrality [11, 12], betweenness
centrality [4], coverage centrality [13], eccentricity [15, 29], average distance [24] and some
measures related to the number of paths passing through a given node [20]. Below, we give a
few representative references only; most of these works focus on edge additions to increase
the centrality.

Meyerson and Tegiku [24] give a constant factor approximation algorithm for the problem
of minimizing the average shortest-path distance between all pairs of nodes by adding shortcut
edges. Several algorithms are proposed in [27, 28] and experimentally shown to perform well
in practice. Bauer et al. [3] study the problem of minimizing the average number of hops in
shortest paths. They prove that the problem cannot be approximated within a logarithmic
factor and provide respective approximation algorithms. Bilò et al. [5] and Demaine and
Zadimoghaddam [15] consider the problem of minimizing the diameter of a graph and provide
constant factor approximation algorithms.

ISAAC 2019



13:4 Approximate Pricing in Networks

The problem of maximizing revenue by pricing the edges of a graph has been studied
in several works. These problems are known under different names such as the network (or
highway) pricing problem [21, 9], but also as Stackelberg network pricing games [31, 8].

Labbe et al. [21] use a bilevel optimization model for taxing a given subset of the edges in
a network to maximize the revenue that the leader receives from the followers. Among other
results, they prove that the problem is NP-hard for single-commodity instances, exploiting
negative edge costs and lower bound restrictions on the taxes. In a subsequent work, Roch
et al. [31] improve upon this result and show NP-hardness for non-negative edge costs and
without lower bound restrictions. They also provide an approximation algorithm for the
single-commodity case.

Briest et al. [8] consider the following Stackelberg setting: There are several buyers who
are interested in buying certain (pre-determined) subgraphs of the network and a seller
(network owner) who can price a given subset of the edges. Once the seller fixes the prices,
the buyers purchase the cheapest subgraph they are interested in. The goal is to maximize
the total revenue obtained from the buyers. The authors show that a uniform price for all
edges guarantees the seller a revenue within logarithmic factor of the optimal revenue. A
more specific problem was considered by Briest et al. [7], where each buyer i is interested
in purchasing a subgraph that contains a shortest si, ti-path. Other special cases were
considered in [18, 17, 19].

In general, there is a vast literature on the problem of pricing multiple items so as to
maximize the revenue obtained from (possibly budget-constrained) buyers. There is a close
connection between our problem and the problem of determining envy-free prices [19], because
envy-freeness naturally corresponds to choosing the cheapest available option. Especially, we
exploit known hardness results for the special cases of the unit-demand pricing problem and
the single-minded pricing problem (see [19, 6, 10]) to establish the inapproximability results
of our (more restrictive) network pricing problem.

We emphasize that our problem differs from the ones mentioned above because (i) the
seller corresponds to a given node u who can set the prices of its outgoing edges only, and
(ii) the revenue that u obtains depends on the proportion of the demand of each commodity
routed along shortest paths through u.

2 Preliminaries

We formally define the Network Pricing Problems considered in this paper: Suppose we
are given a directed graph G = (V,E) with non-negative edge costs (ce)e∈E , k commodities
(si, ti, wi)i∈[k]

1, and a designated node u ∈ V . Each commodity i ∈ [k] is specified by a
source-target pair (si, ti) ∈ V × V with si 6= ti and a non-negative demand (or weight)
wi > 0. The interpretation here is that each commodity i ∈ [k] sends a total of wi units of
flow from the source node si to the target node ti. The demand wi is split evenly along all
(simple2) shortest si, ti-paths with respect to the edge costs (ce)e∈E (formal definitions are
given below). We assume that for each commodity i ∈ [k], si, ti 6= u and there is at least one
si, ti-path that passes through u. This assumption is without loss of generality as otherwise
the commodity is irrelevant (as will become clear below) and can be removed.

1 Given an integer k ≥ 1, we define [k] = {1, . . . , k}.
2 Recall that a path is said to be simple if it does not contain any cycles. Throughout the paper, whenever
we refer to a shortest path we implicitly mean a simple shortest path.
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We introduce some more notation. Let n and m be the the number of nodes and edges of
G, respectively. We use the standard notation δ+(u) to refer to the set of all outgoing edges
of u, i.e., δ+(u) = {(u, v) ∈ E}, and define ∆(u) = |δ+(u)| as the outdegree of u. Given
a pair of nodes (x, y) ∈ V × V with x 6= y, we denote by π(x, y) the number of shortest
x, y-paths with respect to (ce)e∈E . Similarly, we use d(x, y) to refer to the total cost of a
shortest x, y-path; we also say that d(x, y) is the distance between x and y. For a set A ⊆ E,
we denote by dE\A(x, y) the distance between x and y in the graph G = (V,E \A), where
the edges in A are removed. Below, we often omit the explicit reference to the respective
edge costs if they are clear from the context.

For ease of notation, for every commodity i ∈ [k], we use πi = π(si, ti) to refer to the
number of shortest si, ti-paths. Further, we define πiu as the number of shortest si, ti-paths
that pass through node u ∈ V , where si, ti 6= u. Given an outgoing edge e = (u, v) ∈ E of
u, we denote by πie the number of shortest si, ti-paths that pass through e. Observe that
πiu =

∑
e∈δ+(u) π

i
e.

We can now define the flow that passes through the outgoing edges of u: Recall that
the demand wi of each commodity i ∈ [k] is assumed to be split evenly over all shortest
si, ti-paths. Formally, the flow f ie of an outgoing edge e = (u, v) of commodity i is defined as
f ie = wi · πie/πi. The total flow passing through node u with respect to commodity i is then

f iu =
∑

e∈δ+(u)

f ie =
∑

e∈δ+(u)

wi ·
πie
πi

= wi ·
πiu
πi
.

Further, we define fe =
∑
i∈[k] f

i
e as the total flow on edge e. The total flow of node u is

then defined as

fu =
∑

e∈δ+(u)

fe =
∑
i∈[k]

∑
e∈δ+(u)

f ie =
∑
i∈[k]

wi ·
πiu
πi

=
∑
i∈[k]

f iu.

Another notion that is of interest in this paper is the following one: The total revenue of
node u is defined as

ru =
∑

e∈δ+(u)

fe · ce =
∑
i∈[k]

∑
e∈δ+(u)

f ie · ce =
∑
i∈[k]

∑
e∈δ+(u)

wi ·
πie
πi
· ce.

Suppose we can change the costs of κ ∈ [∆(u)] outgoing edges of u. How would we set
the edge costs such that the total flow (or revenue, respectively) of u is maximized? More
precisely, our goal is to determine a set S ⊆ δ+(u) with |S| ≤ κ and non-negative costs
c̄S = (c̄e)e∈S for the edges in S such that fu (or ru, respectively) with respect to the combined
edge costs (c̄S , c−S) is maximized, where we use c−S = (ce)e∈E\S to refer to the (original)
costs of the edges in E \ S that remain unchanged. For convenience, we write c̄e = c̄{e}, we
also write pS when we set the cost of all edges in S to p ∈ R ∪ {∞}. We use fu(c̄S) and
ru(c̄S) to refer to the total flow and revenue of u, respectively, with respect to (c̄S , c−S).

This gives rise to the following two optimization problems:

NETWORK PRICING PROBLEM (NPP)
Given: A directed graph G = (V,E) with non-negative edge costs (ce)e∈E , k commodities

(si, ti, wi)i∈[k], a designated node u ∈ V and a number κ ∈ [∆(u)].
Goal: Determine a set S ⊆ δ+(u) with |S| ≤ κ and edge costs c̄S = (c̄e)e∈S such that fu(c̄S)

is maximized (FLOW-NPP), or ru(c̄S) is maximized (REV-NPP)

ISAAC 2019



13:6 Approximate Pricing in Networks

Note that if the commodities correspond to all possible node pairs of the graph (not
involving u as a source or target node), then the flow through u is precisely the betweenness
centrality of u (as introduced above). In particular, in this case FLOW-NPP can be
interpreted as the problem of maximizing the betweenness centrality of u.

In our discussion below, we distinguish the following three cases:
(C1) κ = 1: We are allowed to change the cost of only one outgoing edge of u.
(C2) 1 < κ < ∆(u): We are allowed to change the cost of κ outgoing edges of u.
(C3) κ = ∆(u): We are allowed to change the cost of all the outgoing edges of u.

We continue with some basic observations. A pathological case we want to avoid in
REV-NPP is that we can charge arbitrarily high costs.

I Assumption 2.1. For every commodity i ∈ [k] there is at least one si, ti-path that does
not pass through u.

s u t
1

2

?

Figure 1 Example graph.

Throughout the paper, we assume that the edge costs are non-negative integers (as they
may correspond to monetary units, percentages of a fixed precision, etc.).3 The following
example shows that this assumption is needed if one wants to be able to determine edge costs
that realize the optimal revenue. Consider the instance depicted in Figure 1 and assume
that there is a unit demand to be sent from s to t. Suppose we can impose an arbitrary
non-negative rational cost ce ∈ Q≥0 on the edge e = (u, t). If we set ce = 1, then the revenue
of u becomes 1

2 . Otherwise, if we set ce = 1− ε for a small rational ε > 0, then the revenue
of u is 1− ε. It follows that REV-NPP does not admit an optimal solution.

Finally, we need to be able to efficiently compute how the flow splits. If there are zero
cost cycles this may become infeasible [34]. We thus make the following assumption:

I Assumption 2.2. The edge costs (ce)e∈E are non-negative integers and the graph does
not contain any zero cost cycles, even if all outgoing edges of u are set to zero.

Using Assumption 2.2, it is possible to compute all relevant flows (as defined above) in
polynomial time.4 Throughout the paper we use this fact without stating it explicitly.

Due to space restrictions, some proofs are omitted from this extended abstract and can
be found in the full version of the paper.

3 Flow Maximization Problem

In this section, we consider the problem FLOW-NPP. We first prove the following intuitive
monotonicity property for the flow fu through u: If the cost of a single outgoing edge of u
decreases, then the flow through u does not decrease.

3 All our results continue to hold if the edge costs are of the form p · Z≥0 for some real number p > 0.
In particular, this covers most practically relevant scenarios where one is bound to a finite number of
decimals.

4 This can be done by running for every commodity i ∈ [k] an adapted version of Dijkstra’s shortest path
algorithm [16] which also counts the number of shortest paths passing through the edges.



R. Brokkelkamp, S. Polak, G. Schäfer, and Y. Velaj 13:7

I Lemma 1. Consider an edge e = (u, v) ∈ δ+(u) and assume that the edge cost ce is
decreased to c̄e < ce. Then fu(c̄e) ≥ fu(ce).

Using Lemma 1, it is clear what we should do if we can price a subset S ⊆ δ+(u) of edges:
Simply set the cost of each edge e ∈ S to zero to maximize the flow through u.

I Corollary 2. Suppose we can change the costs of the edges in S ⊆ δ+(u). Then setting
c̄e = 0 for every e ∈ S maximizes the flow fu of u.

Note that this takes away the difficulty of determining optimal costs for the edges in
S. What remains is how to find the right subset of edges S to be priced. This is easy
in cases (C1) and (C3): It is not hard to see that by using complete enumeration over
all possible subsets and Corollary 2, FLOW-NPP can be solved efficiently if κ = O(1) or
κ = ∆(u)−O(1).

I Theorem 3. FLOW-NPP can be solved optimally in polynomial time for κ = O(1) and
κ = ∆(u)−O(1).

We consider the cases of (C2) which are not captured by Theorem 3. Then the approach
above fails. In fact, we show that FLOW-NPP is NP-hard to approximate within a factor
1− 1/e, even in the unit demand setting (i.e., wi = 1 for all i ∈ [k]).

I Theorem 4. Assuming P 6= NP, there is no α-approximation algorithm with α > 1− 1/e
for FLOW-NPP with O(1) < κ < ∆(u)−O(1), even in the unit demand setting.

We derive a (1− 1/e)-approximation algorithm for FLOW-NPP, which is best possible
by Theorem 4. We use a well-known result due to Nemhauser et al. [25] for the following
submodular function maximization problem: Given a finite set N , a function z : 2N → R
and an integer k′, find a set S ⊆ N such that |S| ≤ k′ and z(S) is maximum. If z is
non-negative, monotone and submodular5, then the following natural greedy algorithm
exhibits an approximation ratio of 1− 1/e [25]: Start with the empty set and repeatedly add
an element that gives the maximal marginal gain, i.e., if S is a partial solution, choose the
element j ∈ N \ S that maximizes z(S ∪ {j})− z(S).

We show that fu(c̄S) (if considered as a set function) is non-negative, monotone and
submodular.

I Lemma 5. Define z(S) = fu(0S) for every S ⊆ δ+(u). The function z is non-negative,
monotone and submodular.

Algorithm 1 Greedy algorithm for FLOW-NPP.

1 S = ∅
2 for i = 1, . . . , κ do
3 emax = arg max{fu(0S∪{e}) : e ∈ δ+(u) \ S}
4 S = S ∪ {emax}
5 return S

Applied to our setting, the greedy algorithm proceeds as described in Algorithm 1.

I Theorem 6. The greedy algorithm provides a (1− 1/e)-approximation for FLOW-NPP.

5 Let N be a finite set and let z : 2N → R be a function. Then z is (i) non-negative if z(S) ≥ 0 for
every S ⊆ N , (ii) monotone if z(S) ≤ z(T ) for every S ⊆ T ⊆ N , and (iii) submodular if for all sets
S ⊆ T ⊆ N and every element e ∈ N \ T , z(S ∪ {e})− z(S) ≥ z(T ∪ {e})− z(T ).

ISAAC 2019



13:8 Approximate Pricing in Networks

4 Revenue Maximization Problem

We turn to the problem REV-NPP. As it turns out, this problem is much more challenging
than FLOW-NPP. In fact, even if we can change the costs of all outgoing edges of u it
remains non-trivial to find good approximation algorithms (see Section 4.3).

4.1 Changing the cost of one edge
We consider case (C1) of REV-NPP, i.e., we can change the cost of one outgoing edge. We
first show that we can efficiently compute the optimal cost if the edge is given.

I Lemma 7. Fix an outgoing edge e = (u, v) of u. We can then determine the cost c̄e of e
maximizing the revenue ru(c̄e) of u in polynomial time.

Proof. Let c̄∗e be some optimal cost which maximizes ru(c̄∗e). We first claim that there exists
some optimal cost c̄e with c̄e ∈ T , where

T =

 ⋃
i∈[k]

{Ti − 1, Ti}

 ∪ {∞} and Ti := dE\{e}(si, ti)− d(si, u)− d(v, ti) ∀i ∈ [k].

If c̄∗e > max{Ti : i ∈ [k]} there is no flow passing through e. We obtain the same by setting
c̄e = ∞ ∈ T and thus ru(c̄e) = ru(c̄∗e), which is optimal. Suppose now that c̄∗e ≤ max{Ti :
i ∈ [k]} and c̄∗e /∈ T . Let L = {i ∈ [k] : Ti < c̄∗e} and U = {i ∈ [k] : Ti − 1 > c̄∗e}. For the
commodities in L there is no flow passing through e, while for the commodities in U the
entire flow passes through e. By setting c̄e = min{Ti − 1 : i ∈ U} the flows do not change
while c̄e > c̄∗e. Because U 6= ∅ we have ru(c̄e) > ru(c̄∗e), contradicting the optimality of c̄∗e.
Hence there is an optimal cost c̄e in T .

Determining T takes at most 3k shortest path calculations. If all costs are fixed, we can
compute the revenue by k shortest path calculations. Exploiting that |T | ≤ 2k + 1, we can
thus simply try all values in T and choose c̄e as the cost that gives the largest revenue. J

By iterating over all edges e = (u, v) of u and using Lemma 7 to determine the maximum
revenue ru(c̄e), we can determine the optimal cost among all these edges. We obtain:

I Theorem 8. REV-NPP(C1) can be solved optimally in polynomial time.

4.2 Changing the costs of κ edges
We turn to case (C2) of REV-NPP. As we show, this problem is hard to approximate:

I Theorem 9. Assuming P 6= NP, there is no α-approximation algorithm with α > 1− 1/e
for REV-NPP(C2) with 1 < κ < ∆(u), even in the unit demand setting.

One could hope that a greedy approach similar to the one used for FLOW-NPP(C2)
would work here as well. Unfortunately, this is not the case. In fact, the greedy algorithm
can perform arbitrarily bad. Further, the objective function is not submodular (even if the
original costs are assumed to be cδ+(u) =∞δ+(u)).

4.3 Changing the costs of all edges
We come to case (C3) of REV-NPP, where we are allowed to change the costs of all outgoing
edges of u, i.e., κ = ∆(u). We start by proving some inapproximability results, both for the
general and the unit demand setting, and then turn to our approximation algorithms.
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s u

e1

e2

eκ

S1

S2
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0

2 ·B1 + 1 0

0

Figure 2 Illustration of the instance used in the proof of Theorem 10.

Inapproximability. Under reasonable hardness assumptions, case REV-NPP(C3) is hard
to approximate within a factor of Ω(1/ logε(k)) when considering unit demands and of
Ω(1/∆(u)ε) when considering arbitrary demands.

I Theorem 10. REV-NPP(C3) is Ω(1/logε(k))-inapproximable for some ε > 0 in the unit
demand setting, assuming that no polynomial-time algorithm can approximate constant-
degree Balanced Bipartite Independent Set6 to within arbitrarily small constant factors.
REV-NPP(C3) is Ω(1/∆(u)ε)-inapproximable for some ε > 0 for arbitrary demands, assum-
ing NP ( ∩δ>0BPTIME(2O(nδ)).

We use a reduction from the Unit-Demand Min-Buying Pricing Problem (UDPmin) [6]:
We are given a set of N items I = {e1, . . . , eN} and a set of k consumers C = {c1, . . . , ck}.
Every consumer ci ∈ C has some budget Bi ∈ Z≥0 and a set Si ⊆ I of items she is interested
in. Given prices p : I → Z≥0 for the items, consumer ci will buy an item e ∈ Si with
p(e) minimum, but only if p(e) ≤ Bi. The goal is to find prices that maximize the total
revenue, i.e.,∑

ci∈C
min{p(e) : e ∈ Si ∧ p(e) ≤ Bi},

where we define the minimum of an empty set to be zero. In the so-called economist’s
version of UDPmin (EUDPmin) we are additionally given a (discrete) probability distribution
P : C → [0, 1] over the consumers which is then incorporated in the objective function by
multiplying the revenue gained from a consumer with her probability. Note that we can
think of this probability distribution as having weights on the consumers.

Proof of Theorem 10. We give a reduction from EUDPmin to REV-NPP with arbitrary
demands. The same reduction also provides the hardness result for uniform demands because
we can see UDPmin as a special case of EUDPmin, where all consumers have equal probabilities,
and in what follows UDPmin is then reduced to REV-NPP with uniform demands.

We reduce an instance I of EUDPmin to an instance I ′ of REV-NPP such that any solution
of I ′ can be converted into a solution of I losing at most a factor 2 in objective value. As a con-
sequence, an α-approximation algorithm for REV-NPP with α = Ω(1/∆(u)ε) (respectively,

6 In this problem, we are given a bipartite graph G = (V,W,E) and we want to find maximum cardinality
subsets of vertices V ′ ⊂ V,W ′ ⊂W with |V ′| = |W ′|, such that {v, w} /∈ E for all v ∈ V ′, w ∈W ′; see
[6] for more details.
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α = Ω(1/logε(k))) provides an α/2-approximation algorithm for EUDPmin(respectively,
UDPmin). Briest [6] showed that the latter is not possible (under the assumptions stated
in Theorem 10).7

Let (I, C, (Sc)c∈C , (Bc)c∈C ,P) be an instance of EUDPmin. We construct an instance
I ′ = (G, (ce)e∈E , (si, ti, wi)i∈[k], u, κ) of REV-NPP as follows: Let the set of vertices of G
be V = {s, u, S1, . . . , Sk, e1, . . . , eN}, where each Si, i ∈ [k], and ej ∈ I correspond to their
counterpart in I. The set of edges E and the respective edge costs (ce)e∈E are defined as
follows (see Figure 2 for an illustration): There is an edge (s, u) of cost 0. For every Sj ,
j ∈ [k], there is an edge which needs to be priced. For every ei ∈ I and Sj , j ∈ [k], such
that ei ∈ Sj there is an edge (ei, Sj) of cost 0. For every Sj , j ∈ [k], there is an edge (s, Sj)
of cost 2 · Bj + 1. Finally, we have k commodities (s, Sj , wj) with demand wj = P(cj) for
every j ∈ [k]. Note that ∆(u) = N . Clearly, this reduction can be done in polynomial time.

First note that OPT(I ′) ≥ 2OPT(I) since taking the optimal prices p in I and using the
prices c̄(u,ei) = 2p(ei) for all i ∈ [N ] in I ′ will give a revenue of 2OPT(I) for I ′.

Consider a solution c̄ for I ′ with some revenue Z ′. We will convert this into a solution
Z for I with value at least Z ′/4. Note that we may assume that Bj ≥ 1 for all j ∈ [k] and
therefore that Z ′ ≥

∑
i∈[k] wi ·2 minj∈[k]{Bj} ≥ 2

∑
i∈[k] wi which is the revenue we would get

by setting all prices to 2 minj∈[k]{Bj}. Now, modify c̄ by subtracting 1 from c̄e for all e ∈ E
if c̄e is odd. This will cost us at most

∑
i∈[k] wi revenue. Thus we have Z ′−

∑
i∈[k] wi ≥ Z ′/2

revenue remaining. Observe that all prices are even and that f iu/wi ∈ {0, 1} for all i ∈ [k].
Using prices p(ei) = c̄(u,ei)/2 for i ∈ [k] in I yields a revenue of at least Z ′/4.

To conclude, if Z ′ ≥ αOPT(I ′) then 4Z ≥ Z ′ ≥ αOPT(I ′) ≥ 2αOPT(I) implying
Z ≥ α/2OPT(I) which proves the theorem. J

Special case: single commodity. We next consider the problem of REV-NPP(C3) for a
single commodity only, i.e., k = 1. In this case, we can assume without loss of generality
that w1 = 1. Our goal is thus to determine c̄δ+(u) = (c̄e)e∈δ+(u) to maximize the revenue

ru(c̄δ+(u)) =
∑

e∈δ+(u)

f1
e · c̄e = w1

∑
e∈δ+(u)

π1
e

π1
· c̄e =

∑
e∈δ+(u)

π1
e

π1
· c̄e.

I Theorem 11. REV-NPP(C3) with a single commodity only (i.e., k = 1) can be solved
optimally in polynomial time.

Proof. For every edge (u, v) ∈ δ+(u), we compute the value h(v) := dE\δ+(u)(s1, t1) −
d(s1, u)− d(v, t1). Let T = max(u,v)∈δ+(u) h(v). If T ≤ 0, then no revenue can be obtained
and we stop. If T > 0, we compute the revenue obtained by setting all costs uniformly to
either T − 1 or T :

ru((T − 1)δ+(u)) = T − 1
ru(Tδ+(u)) = T ·

(∑
e=(u,v)∈δ+(u):h(v)=T π

1
e

)
/π1.

7 In fact, Briest [6] established the corresponding inapproximability results, where the prices and budgets
are assumed to be reals. However, it is not hard to see that multiplying all budgets in the proof of
Theorem 2 in [6] by a factor 2k results in integer budgets. Then we can still assume that the prices are
powers of 2, but now these powers are positive making also the prices integer. That is, the results in [6]
also go through for integer values and budgets. We use this for our reduction here. Based on different
assumptions, Chalermsook et al. [10] provide a stronger inapproximability result for the unit demand
setting. If the same trick can be applied to the reduction presented in [10], our proof shows that the
unit demand setting is log1−ε(k)-inapproximable for every ε > 0.
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Algorithm 2 Uniform Price Algorithm.

1 C = ∅
2 foreach commodity i ∈ [k] do
3 Compute prices Ti − 1 and Ti as in Theorem 11 (considering only commodity i)
4 Let T ∗i ∈ {Ti − 1, Ti} be the price achieving higher revenue
5 C = C ∪ {T ∗i }
6 return arg max{ru(pδ+(u)) : p ∈ C}

We argue that the maximum of the two is the optimal revenue. When c̄e > T for some
e ∈ δ+(u) it holds that fe = 0, so we can assume that there is an optimum where c̄e ≤ T

for all e ∈ δ+(u). If there is an optimum for which c̄e ≤ T − 1 for all e ∈ δ+(u) then the
maximum revenue we can get is T − 1 which is actually attained by setting all c̄e to T − 1.
Suppose the optimum is larger than T − 1 then there must be some e′ ∈ δ+(u) with c̄e′ = T

and strictly positive flow. If there is some other edge for which c̄e < T which gets flow then
this contradicts c̄e′ getting flow, thus it cannot have flow in which case we could also set it
to T . Thus then there must also be an optimum where c̄e = T for all e ∈ δ+(u). So, the
maximum of ru(Tδ+(u)) and ru((T − 1)δ+(u)) is indeed the optimum. The values of h(v) and
ru(Tδ+(u)) and ru((T − 1)δ+(u)) can all be computed in polynomial time. J

Uniform pricing. We exploit the fact that for a single commodity we are able to find
optimal uniform costs in polynomial time. Consider the uniform price algorithm described
in Algorithm 2. First, we consider the case where all demands are uniform.

I Theorem 12. Algorithm 2 is a 1/Hk-approximation algorithm for REV-NPP(C3) when
all demands are uniform and this is tight.

Proof. We can assume without loss of generality that all demands are 1. Let T ∗i be the
optimal price for commodity i ∈ [k] as determined in the proof of Theorem 11 and let f i∗u be
the flow of commodity i going through u when using prices c̄δ+(u) = (T ∗i )δ+(u).

Assume that the commodities are ordered such that T ∗1 ≥ T ∗2 ≥ . . . ≥ T ∗k and if i < j

and T ∗i = T ∗j then f i∗u ≥ f j∗u . So, first we order on T ∗i and if the T ∗i are equal then we order
on f i∗u . Let s be the number of unique values among the T ∗i . Let i1 = 1 and define ij for
2 ≤ j ≤ s recursively as the first entry that is strictly smaller than T ∗ij−1

. For convenience let
is+1 = k + 1.

Let P be the output of Algorithm 2. The algorithm tries prices T ∗i and because we have
unit demands and by the ordering of the commodities we know that for i ∈ {ij , . . . , ij+1− 1},
it holds that

P ≥ T ∗i ·
(

(ij − 1) +
ij+1−1∑
`=ij

f `∗u

)
, which implies T ∗i ≤

P

(ij − 1) +
∑ij+1−1
`=ij f `∗u

. (1)

Let OPT be the maximum attainable revenue. If we single out the income from one commodity
we cannot expect to do better than when we just consider that commodity. Hence,
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OPT ≤
k∑
i=1

T ∗i f
i∗
u =

s∑
j=1

ij+1−1∑
i=ij

T ∗i f
i∗
u ≤

s∑
j=1

ij+1−1∑
i=ij

P · f i∗u
(ij − 1) +

∑ij+1−1
`=ij f `∗u

(2)

≤
s∑
j=1

ij+1−1∑
i=ij

P

(ij − 1) + (i− (ij − 1)) =
s∑
j=1

ij+1−1∑
i=ij

P

i
=

k∑
i=1

P

i
= Hk · P

The second inequality follows from (1). For the third inequality we make use of the fact that
f i∗u ≤ 1 and that we sorted the commodities in such a way that if i < j and T ∗i = T ∗j we
have f i∗u ≥ f j∗u . Thus there are at least i− (ij − 1) terms for which the T ∗-value is equal but
the f -value is at least as large. J

We turn to the general demand case. We modify Algorithm 2 by replacing line 5 with
C = C ∪ {Ti − 1, Ti}.

I Theorem 13. The modified version of Algorithm 2 is a max{1/k, 1/∆(u)}-approximation
algorithm for REV-NPP(C3) and this is tight.

Proof. To show that it is a 1/k-approximation algorithm we only need to consider the prices
used in the original version of Algorithm 2. We follow the same reasoning as in Theorem 12.
Let T ∗i and f i∗u , i ∈ [k], be as in the proof of Theorem 12. We note that P ≥ T ∗i

∑i
`=1 f

`∗
u ,

which implies that T ∗i ≤ P/
∑i
`=1 f

`∗
u . Thus,

OPT ≤
k∑
i=1

T ∗i · f i∗u ≤
k∑
i=1

P · f i∗u∑i
`=1 f

`∗
u

≤
k∑
i=1

P = k · P. (3)

Next we show that the modified version of Algorithm 2 is also a 1/∆(u)-approximation
algorithm. Let c̄∗ be the optimal prices giving a revenue of OPT. If we consider the revenue
that is contributed by each e ∈ δ+(u), there is at least one e∗ ∈ δ+(u) which contributed
at least OPT/∆(u), i.e., fe∗ · c̄∗e∗ ≥ OPT/∆(u). Consider c̄e = c̄∗e∗ for all e ∈ δ+(u). The
flow fe∗ will not go down because of e ∈ δ+(u) such that c̄∗e < c̄∗e∗ . Some of fe∗ may go to
e ∈ δ+(u) such that c̄∗e ≥ c̄∗e∗ but if this happens we will still earn at least c̄∗e∗ on it. Hence
the revenue for c̄e is at least fe∗ · c̄∗e∗ ≥ OPT/∆(u).

Fix c̄e = c̄∗e∗ for all e ∈ δ+(u). Let F = {i ∈ [k] : f iu > 0}, i.e., all commodities that
have some positive flow going through u and so we earn some revenue on them. Let Ti be
the T corresponding to commodity i as in Theorem 11. Note that c̄∗e ≤ min{Ti : i ∈ F}.
If c̄∗e ≥ min{Ti − 1 : i ∈ F} then we are done because then the approximation algorithm
will try a price which yields at least OPT/∆(u) revenue. Suppose c̄∗e < min{Ti − 1 : i ∈ F}.
Then f iu/wi = 1 for all i ∈ F and when raising c̄e to min{Ti − 1 : i ∈ F} for all e ∈ ∆(u)
the flows for commodities i ∈ F will not change while the revenue increases. Hence the
approximation algorithm tries a price which yields a revenue of at least OPT/∆(u). We
conclude that Algorithm 2 is a 1/∆(u)-approximation algorithm. J

5 Conclusion

A motivating scenario for this research was figuring out how a country should change its tax
rates in order to maximize its revenue. Computing the optimum is an intractable problem,
but we can use our results to compute an optimal uniform tax. We used tax data from [35, 36],
which also provides estimates of the volumes that are sent from one country to another (based
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(a) Worldmap

Revenue
Original 0.0246140

Uniform Pricing 1.6748451
Optimum (UB) 3.2994390

Optimal Uniform Tax 6.70%

×68
×0.51

(b) Results

Figure 3 Outcome of experiments.

on the sizes of their economies). The data contains 108 countries (nodes), 8777 tax treaties
(edges) and 11342 commodities. In this scenario, we need to find “money-transfer” paths such
that the total tax paid by the companies is as low as possible. We run our experiments with
“The Netherlands” as node u. The results are summarized in Figure 3. If the Netherlands
would change its outgoing tax rate to 6.7% for all treaties, it would potentially increase its
revenue by a factor 68. Further, the optimal uniform tax revenue is even within 51% of the
optimum (upper bound as in (3)) and thus much better as suggested by Theorem 13.

We settle most cases of FLOW-NPP and REV-NPP in this paper but a case which is not
completely settled is REV-NPP(C2). Although we show that it is inapproximable within a
factor 1− 1/e, case (C3) seems to suggest that it may even be harder.

An interesting way to look at our problem is from a game theory perspective. Now that
we know what one node will do (approximately), what will happen if the nodes correspond
to strategic players? Will they settle in a stable scenario where everybody gets some revenue,
or will it end in a “price war” where the revenue of each player becomes zero?
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