
Accurate MapReduce Algorithms for k-Median
and k-Means in General Metric Spaces
Alessio Mazzetto1

Department of Computer Science, Brown University, Providence, USA
alessio_mazzetto@brown.edu

Andrea Pietracaprina
Department of Information Engineering, University of Padova, Padova, Italy
andrea.pietracaprina@unipd.it

Geppino Pucci
Department of Information Engineering, University of Padova, Padova, Italy
geppino.pucci@unipd.it

Abstract
Center-based clustering is a fundamental primitive for data analysis and becomes very challenging
for large datasets. In this paper, we focus on the popular k-median and k-means variants which,
given a set P of points from a metric space and a parameter k < |P |, require to identify a set S of k
centers minimizing, respectively, the sum of the distances and of the squared distances of all points in
P from their closest centers. Our specific focus is on general metric spaces, for which it is reasonable
to require that the centers belong to the input set (i.e., S ⊆ P). We present coreset-based 3-round
distributed approximation algorithms for the above problems using the MapReduce computational
model. The algorithms are rather simple and obliviously adapt to the intrinsic complexity of the
dataset, captured by the doubling dimension D of the metric space. Remarkably, the algorithms
attain approximation ratios that can be made arbitrarily close to those achievable by the best
known polynomial-time sequential approximations, and they are very space efficient for small D,
requiring local memory sizes substantially sublinear in the input size. To the best of our knowledge,
no previous distributed approaches were able to attain similar quality-performance guarantees in
general metric spaces.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → MapReduce
algorithms

Keywords and phrases Clustering, k-median, k-means, MapReduce, Coreset

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.34

Funding This work was supported, in part, by the University of Padova under grant SID2017 and
by MIUR, the Italian Ministry of Education, University and Research, under grant PRIN AHeAD:
efficient Algorithms for HArnessing networked Data and grant L. 232 “Dipartimenti di Eccellenza”.

1 Introduction

Clustering is a fundamental primitive in the realms of data management and machine learning,
with applications in a large spectrum of domains such as database search, bioinformatics,
pattern recognition, networking, operations research, and many more [15]. A prominent
clustering subspecies is center-based clustering whose goal is to partition a set of data items
into k groups, where k is an input parameter, according to a notion of similarity, captured
by a given measure of closeness to suitably chosen representatives, called centers. There is

1 This work was done while the author was a graduate student at University of Padova.

© Alessio Mazzetto, Andrea Pietracaprina, and Geppino Pucci;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alessio_mazzetto@brown.edu
mailto:andrea.pietracaprina@unipd.it
mailto:geppino.pucci@unipd.it
https://doi.org/10.4230/LIPIcs.ISAAC.2019.34
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

a vast and well-established literature on sequential strategies for different instantiations of
center-based clustering [3]. However, the explosive growth of data that needs to be processed
often rules out the use of these sequential strategies, which are often impractical on large
data sets, due to their time and space requirements. Therefore, it is of paramount importance
to devise efficient distributed clustering strategies tailored to the typical computational
frameworks for big data processing, such as MapReduce [20].

In this paper, we focus on the k-median and k-means clustering problems. Given a set
P of points in a general metric space and a positive integer k ≤ |P |, the k-median (resp.,
k-means) problem requires to find a subset S ⊆ P of k points, called centers, so that the sum
of all distances (resp., square distances) between the points of P to their closest center is
minimized. Once S is determined, the association of each point to its closest center naturally
defines a clustering of P . While scarcely meaningful for general metric spaces, for Euclidean
spaces, the widely studied continuous variant of these two problems removes the constraint
that S is a subset of P , hence allowing a much richer choice of centers from the entire space.
Along with k-center, which requires to minimize the maximum distance of a point to its
closest center, k-median and k-means are the most popular instantiations of center-based
clustering, whose efficient solution in the realm of big data has attracted vast attention in
the recent literature [10, 5, 6, 24, 7]. One of the reference models for big data computing,
also adopted in most of the aforementioned works, is MapReduce [9, 22, 20], where a set of
processors with limited-size local memories process data in a sequence of parallel rounds.
Efficient MapReduce algorithms should aim at minimizing the number of rounds while using
substantially sublinear local memory.

A natural approach to solving large instances of combinatorial optimization problems
relies on the extraction of a much smaller “summary” of the input instance, often dubbed
coreset in the literature [14], which embodies sufficient information to enable the extraction
of a good approximate solution of the whole input. This approach is profitable whenever
the (time and space) resources needed to compute the coreset are considerably lower than
those required to compute a solution by working directly on the input instance. Coresets
with different properties have been studied in the literature to solve different variants of the
aforementioned clustering problems [21].

The main contributions of this paper are novel coreset-based space/round-efficient MapRe-
duce algorithms for k-median and k-means.

1.1 Related work
The k-median and k-means clustering problems in general metric spaces have been extensively
studied, and constant approximation algorithms are known for both problems [3]. In recent
years, there has been growing interest in the development of distributed algorithms to attack
these problems in the big data scenario (see [24] and references therein). While straightforward
parallelizations of known iterative sequential strategies tend to be inefficient due to high
round complexity, the most relevant efforts to date rely on distributed constructions of
coresets of size much smaller than the input, upon which a sequential algorithm is then run
to obtain the final solution. Ene et al. [10] present a randomized MapReduce algorithm which
computes a coreset for k-median of size O(k2|P |δ) in O(1/δ) rounds, for any δ ∈ (0, 1). By
using an α-approximation algorithm on this coreset, a weak (10α+ 3)-approximate solution
is obtained. In the paper, the authors claim that their approach extends also to the k-means
problem, but do not provide the analysis. For this latter problem, in [5] a parallelization
of the popular k-means++ algorithm by [1] is presented, which builds an O(k log |P |)-size
coreset for k-means in O(log |P |) rounds. By running an α-approximation algorithm on

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:3

the coreset, the returned solution features an O(α) approximation ratio. A randomized
MapReduce algorithm for k-median has been recently presented in [24], where the well known
local-search PAM algorithm [19] is employed to extract a small family of possible solutions
from random samples of the input. A suitable refinement of the best solution in the family is
then returned. While extensive experiments support the effectiveness of this approach in
practice, no tight theoretical analysis of the resulting approximation quality is provided.

In the continuous setting, Balcan et al. [6] present randomized 2-round algorithms to build
coresets in Rd of size O

(
kd
ε2 + Lk

)
for k-median, and O

(
kd
ε4 + Lk log(Lk)

)
for k-means, for

any choice of ε ∈ (0, 1), where the computation is distributed among L processing elements.
By using an α-approximation algorithm on the coresets, the overall approximation factor
is α+O(ε). For k-means, a recent improved construction yields a coreset which is a factor
O(ε2) smaller and features very fast distributed implementation [4]. It is not difficult to
show that a straightforward adaptation of these algorithms to general spaces (hence in a
non-continuous setting) would yield (c·α+O(ε))-approximations, with c ≥ 2, thus introducing
a non-negligible gap with respect to the quality of the best sequential approximations.

Finally, it is worth mentioning that there is a rich literature on sequential coreset
constructions for k-median and k-means, which mostly focus on the continuous case in
Euclidean spaces [11, 14, 13, 23, 8]. We do not review the results in these works since our
focus is on distributed algorithms in general metric spaces. We also note that the recent
work of [16] addresses the construction of coresets for k-median and k-means in general
metric spaces, where the coreset sizes are expressed as a function of the doubling dimension.
However, their construction strategy is rather complex and it is not clear how to adapt it to
the distributed setting.

1.2 Our contribution
We devise new distributed coreset constructions and show how to employ them to yield
accurate space-efficient 3-round MapReduce algorithms for k-median and k-means. Our
coresets are built in a composable fashion [17] in the sense that they are obtained as the union
of small local coresets computed in parallel (in 2 MapReduce rounds) on distinct subsets of a
partition of the input. The final solution is obtained by running a sequential approximation
algorithm on the coreset in the third MapReduce round. The memory requirements of our
algorithms are analyzed in terms of the desired approximation guarantee, and of the doubling
dimension D of the underlying metric space, a parameter which generalizes the dimensionality
of Euclidean spaces to general metric spaces and is thus related to the increasing difficulty of
spotting good clusterings as the parameter D grows.

Let α denote the best approximation ratio attainable by a sequential algorithm for
either k-median or k-means on general metric spaces. Our main results are 3-round
(α + O(ε))-approximation MapReduce algorithms for k-median and k-means, which re-
quire O

(
|P |2/3k1/3(c/ε)2D log2 |P |

)
local memory, where c > 0 is a suitable constant that

will be specified in the analysis, and ε ∈ (0, 1) is a user-defined precision parameter. To
the best of our knowledge, these are the first MapReduce algorithms for k-median and
k-means in general metric spaces which feature approximation guarantees that can be made
arbitrarily close to those of the best sequential algorithms, and run in few rounds using local
space substantially sublinear for low-dimensional spaces. In fact, prior to our work existing
MapReduce algorithms for k-median and k-means in general metric spaces either exhibited
approximation factors much larger than α [10, 5], or missed a tight theoretical analysis of
the approximation factor [24].

ISAAC 2019

34:4 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Our algorithms revolve around novel coreset constructions somehow inspired by those
proposed in [14] for Euclidean spaces. As a fundamental tool, the constructions make use of a
procedure that, starting from a set of points P and a set of centers C, produces a (not much)
larger set C ′ such that for any point x ∈ P its distance from C ′ is significantly smaller than
its distance from C. Simpler versions of our constructions can also be employed to attain
2-round MapReduce algorithms for the continuous versions of the two problems, featuring
α+O(ε) approximation ratios. While similar approximation guarantees have already been
achieved in the literature using more space-efficient but randomized coreset constructions
[6, 4], this result provides evidence of the general applicability of our novel approach.

Finally, we want to point out that a very desirable feature of our MapReduce algorithms
is that they do not require a priori knowledge of the doubling dimension D and, in fact, it is
easily shown that they adapt to the dimensionality of the dataset which, in principle, can be
much lower than the one of the underlying space.

Organization of the paper. The rest of the paper is organized as follows. Section 2 contains
a number of preliminary concepts, including various properties of coresets that are needed
to achieve our results. Section 3 presents our novel coreset constructions for k-median
(Subsection 3.2) and k-means (Subsection 3.3). Based on these constructions, Subsection 3.4
derives the MapReduce algorithms for the two problems. Finally, Section 4 offers some
concluding remarks.

2 Preliminaries

LetM be a metric space with distance function d(·, ·). We define the ball of radius r centered
at x as the set of points at distance at most r from x. The doubling dimension ofM is the
smallest integer D such that for any r and x ∈M, the ball of radius r centered at x can be
covered by at most 2D balls of radius r/2 centered at points ofM. Let x ∈M and Y ⊆M.
We define d(x, Y) = miny∈Y d(x, y) and xY = arg miny∈Y d(x, y). A set of points P ⊆M can
be weighted by assigning a positive integer w(p) to each p ∈ P . In this case, we will use the
notation Pw (note that an unweighted set of points can be considered weighted with unitary
weights). Let Xw and Y be two subsets of M. We define νXw (Y) =

∑
x∈Xw

w(x)d(x, Y)
and µXw

(Y) =
∑
x∈Xw

w(x)d(x, Y)2. The values νXw
(Y) and µXw

(Y) are also referred to
as costs.

In the k-median problem (resp., k-means problem), we are given in input an instance
I = (P, k), with P ⊆M and k a positive integer. A set S ⊆ P is a solution of I if |S| ≤ k.
The objective is to find the solution S with minimum cost νP (S) (resp., µP (S)). Given an
instance I of one of these two problems, we denote with optI its optimal solution. Moreover,
for α ≥ 1, we say that S is an α-approximate solution for I if its cost is within a factor
α from the cost of optI . In this case, the value α is also called approximation factor. An
α-approximation algorithm computes an α-approximate solution for any input instance. The
two problems are immediately generalized to the case of weighted instances (Pw, k). In fact,
all known approximations algorithms can be straightforwardly adapted to handle weighted
instances keeping the same approximation quality.

Observe that the squared distance does not satisfy the triangle inequality. During the
analysis, we will use the following weaker bound.

I Proposition 2.1. Let x, y, z ∈ M. For every c > 0 we have that d(x, y)2 ≤ (1 +
1/c)d(x, z)2 + (1 + c)d(z, y)2.

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:5

Proof. Let a, b be two real numbers. Since (a/
√
c − b ·

√
c)2 ≥ 0, we obtain that 2ab ≤

a2/c+ c · b2. Hence, (a+ b)2 ≤ (1 + 1/c)a2 + (1 + c)b2. The proof follows since d(x, y)2 ≤
[d(x, z) + d(z, y)]2 by triangle inequality. J

A coreset is a small (weighted) subset of the input which summarizes the whole data. The
concept of summarization can be captured with the following definition, which is commonly
adopted to describe coresets for k-means and k-median (e.g., [14, 11, 16]).

I Definition 2.2. A weighted set of points Cw is an ε-approximate coreset of an instance
I = (P, k) of k-median (resp., k-means) if for any solution S of I it holds that |νP (S) −
νCw

(S)| ≤ ε · νP (S) (resp., |µP (S)− µCw
(S)| ≤ ε · µP (S)).

Informally, the cost of any solution is approximately the same if computed from the ε-
approximate coreset rather than from the full set of points. In the paper we will also make
use of the following different notion of coreset (already used in [14, 10]), which upper bounds
the aggregate “proximity” of the input points from the coreset as a function of the optimal
cost.

I Definition 2.3. Let I = (P, k) be an instance of k-median (resp., k-means). A set of points
Cw is an ε-bounded coreset of I if it exists a map τ : P → Cw such that

∑
x∈P d(x, τ(x)) ≤

ε · νP (optI) (resp.,
∑
x∈P d(x, τ(x))2 ≤ ε · µP (optI)) and for any x ∈ Cw, w(x) = |{y ∈ P :

τ(y) = x}|. We say that Cw is weighted according to τ .

The above two kind of coresets are related, as shown in the following two lemmas.

I Lemma 2.4. Let Cw be an ε-bounded coreset of a k-median instance I = (P, k). Then Cw
is also a ε-approximate coreset of I.

Proof. Let τ be the map of the definition of ε-bounded coreset. Let S be a solution of
I. Using triangle inequality, we can easily see that d(x, S) − d(x, τ(x)) ≤ d(τ(x), S) and
d(τ(x), S) ≤ d(τ(x), x) + d(x, S) for any x ∈ P . Summing over all points in P , we obtain
that

νP (S)−
∑
x∈P

d(x, τ(x)) ≤ νCw
(S) ≤

∑
x∈P

d(x, τ(x)) + νP (S)

To conclude the proof, we observe that
∑
x∈P d(x, τ(x)) ≤ ε · νP (optI) ≤ ε · νP (S). J

I Lemma 2.5. Let Cw be an ε-bounded coreset of a k-means instance I = (P, k). Then Cw
is also a (ε+ 2

√
ε)-approximate coreset of I.

Proof. Let τ be the map of the definition of ε-bounded coreset. Let S be a solution of I. We
want to bound the quantity |µP (S)− µCw (S)| =

∑
x∈P |d(x, S)2 − d(τ(x), S)2|. We rewrite

|d(x, S)2−d(τ(x), S)2| as [d(x, S) + d(τ(x), S)] · |d(x, S)−d(τ(x), S)|. By triangle inequality,
we have that d(x, S) ≤ d(x, τ(x)) + d(τ(x), S) and d(τ(x), S) ≤ d(τ(x), x) + d(x, S). By
combining these two inequalities, it results that |d(x, S)− d(τ(x), S)| ≤ d(x, τ(x)). Moreover,
d(x, S) + d(τ(x), S) ≤ 2d(x, S) + d(x, τ(x)). Hence

|µP (S)− µCw (S)| ≤
∑
x∈P

d(x, τ(x)) [2d(x, S) + d(x, τ(x))]

≤ ε · µP (S) + 2
∑
x∈P

d(x, τ(x))d(x, S)

ISAAC 2019

34:6 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

where we used the fact that
∑
x∈P d(x, τ(x))2 ≤ ε · µP (optI) ≤ ε · µP (S). We now want

to bound the sum over the products of the two distances. Arguing as in the proof of
Proposition 2.1, we can write:

2
∑
x∈P

d(x, τ(x))d(x, S) ≤
√
ε ·
∑
x∈P

d(x, S)2 + 1√
ε

∑
x∈P

d(x, τ(x))2 ≤ 2
√
ε · µP (S)

To wrap it up, it results that |µP (S)− µCw
(S)| ≤ (ε+ 2

√
ε) · µP (S). J

In our work, we will build coresets by working in parallel over a partition of the input
instance. The next lemma provides known results on the relations between the optimal
solution of the whole input points and the optimal solution of a subset of the input points.

I Lemma 2.6. Let Cw ⊆ P . Let I = (P, k) and I ′ = (Cw, k). Then: (a) νCw
(optI′) ≤

2νCw
(optI); and (b) µCw

(optI′) ≤ 4µCw
(optI).

Proof. We first prove point (b). Let X = {xCw : x ∈ optI}. The set X is a solution
of I ′. By optimality of optI′ , we have that µCw (optI′) ≤ µCw (X). Also, by triangle
inequality, it holds that µCw

(X) ≤
∑
x∈Cw

w(x) [d(x, optI) + d(xoptI , X)]2. We observe that
d(xoptI , X) ≤ d(x, optI) by definition of X. Thus, we obtain that µCw

(optI′) ≤ 4µCw
(optI).

The proof of (a) follows the same lines with a factor 2 less since we do not square. J

Bounded coresets have the nice property to be composable. That is, we can partition
the input points into different subsets and compute a bounded coreset separately in each
subset: the union of those coresets is a bounded coreset of the input instance. This property,
which is formally stated in the following lemma, is crucial to develop efficient MapReduce
algorithms for the clustering problems.

I Lemma 2.7. Let I = (P, k) be an instance of k-median (resp., k-means). Let P1, . . . , PL
be a partition of P . For ` = 1, . . . , L, let Cw,` be an ε-bounded coreset of I` = (P`, k). Then
Cw = ∪`Cw,` is a 2ε-bounded coreset (resp., a 4ε-bounded coreset) of I.

Proof. We prove the lemma for k-median. The proof for k-means is similar. For ` = 1, . . . , L,
let τ` be the map from P` to Cw,` of Definition 2.3. Now, for any x ∈ P , let ` be the integer
such that x ∈ P`; we define τ(x) = τ`(x).

∑
x∈P

d(x, τ(x)) ≤
L∑
`=1

∑
x∈P`

d(x, τ`(x)) ≤ ε
L∑
`=1

νP`
(optI`

) ≤ 2ε · νP (optI)

In the last inequality, we used the fact that νP`
(optI`

) ≤ 2νP`
(optI) from Lemma 2.6. J

In the paper, we will need the following additional characterization of a representative
subset of the input, originally introduced in [14].

I Definition 2.8. Let I = (P, k) be an instance of k-median (resp., k-means). A set C
is said to be an ε-centroid set of I if there exists a subset X ⊆ C, |X| ≤ k, such that
νP (X) ≤ (1 + ε)νP (optI) (resp., µP (X) ≤ (1 + ε)µP (optI)).

Our algorithms are designed for the MapReduce model of computation which has become a de
facto standard for big data algorithmics in recent years. A MapReduce algorithm [9, 22, 20]
executes in a sequence of parallel rounds. In a round, a multiset X of key-value pairs
is first transformed into a new multiset X ′ of key-value pairs by applying a given map
function (simply called mapper) to each individual pair, and then into a final multiset Y

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:7

of pairs by applying a given reduce function (simply called reducer) independently to each
subset of pairs of X ′ having the same key. The model features two parameters, ML, the
local memory available to each mapper/reducer, and MA, the aggregate memory across all
mappers/reducers.

3 Coresets construction in MapReduce

Our coreset constructions are based on a suitable point selection algorithm called
CoverWithBalls, somewhat inspired by the exponential grid construction used in [14]
to build ε-approximate coresets in Rd for the continuous case. Suppose that we want to build
an ε-bounded coreset of a k-median instance I = (P, k) and that a β-approximate solution T
for I is available. A simple approach would be to find a set Cw such that for any x in P there
exists a point τ(x) ∈ C for which d(x, τ(x)) ≤ (ε/2β) · d(x, T). Indeed, if Cw is weighted
according to τ , it can be seen that Cw is an ε-bounded coreset of I. The set Cw can be
constructed greedily by iteratively selecting an arbitrary point p ∈ P , adding it to Cw, and
discarding all points q ∈ P (including p) for which the aforementioned property holds with
τ(q) = p. The construction ends when all points of P are discarded. However, note that the
points of P which are already very close to T , say at a distance ≤ R for a suitable tolerance
threshold R, do not contribute much to νP (T), and so to the sum

∑
x∈P d(x, τ(x)). For these

points, we can relax the constraint and discard them from P as soon their distance to Cw
becomes at most (ε/2β) ·R. This relaxation is crucial to bound the size of the returned set
as a function of the doubling dimension of the space. Algorithm CoverWithBalls is formally

Algorithm 1 CoverWithBalls(P, T,R, ε, β).

1 Cw ← ∅
2 while P 6= ∅ do
3 p←− arbitrarily selected point in P
4 Cw ←− Cw ∪ {p}, w(p)←− 0
5 foreach q ∈ P do
6 if d(p, q) ≤ ε/(2β) max{R, d(q, T)} then
7 remove q from P

8 w(p)←− w(p) + 1 /* (i.e. τ(q) = p, see Lemma 3.1) */
9 end

10 end
11 end
12 return Cw

described in the pseudocode below. It receives in input two sets of points, P and T , and
three positive real parameters R, ε, and β, with ε < 1 and β ≥ 1 and outputs a weighted set
Cw ⊆ P which satisfies the property stated in the following lemma.

I Lemma 3.1. Let Cw be the output of CoverWithBalls(P, T,R, ε, β). Cw is weighted ac-
cording to a map τ : P → Cw such that, for any x ∈ P , d(x, τ(x)) ≤ ε/(2β) max{R, d(x, T)}.

Proof. For any x ∈ P , we define τ(x) as the point in Cw which caused the removal of x from
P during the execution of the algorithm. The statement immediately follows. J

ISAAC 2019

34:8 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

While in principle the size of Cw can be arbitrarily close to |P |, the next theorem shows that
this is not the case for low dimensional spaces, as a consequence of the fact that there cannot
be too many points which are all far from one another. We first need a technical lemma. A
set of points X is said to be an r-clique if for any x, y ∈ X, x 6= y, it holds that d(x, y) > r.
We have:

I Lemma 3.2. Let 0 < ε < 1. Let M be a metric space with doubling dimension D. Let
X ⊆M be an ε · r-clique and assume that X can be covered by a ball of radius r centered at
a point ofM. Then, |X| ≤ (4/ε)D.

Proof. By recursively applying the definition of doubling dimension, we observe that the
ball of radius r which covers X can be covered by 2j·D balls of radius 2−j · r, where j is any
non negative integer. Let i be the least integer for which 2−i · r ≤ ε/2 · r holds. Any of the
2i·D balls with radius 2−i · r can contain at most one point of X, since X is a ε · r-clique.
Thus |X| ≤ 2i·D. As i = 1 + dlog2 (1/ε)e, we finally obtain that |X| ≤ (4/ε)D. J

I Theorem 3.3. Let Cw be the set returned by the execution of CoverWithBalls(P, T,R, ε, β).
Suppose that the points in P and T belong to a metric space with doubling dimension D. Let
c be a real value such that, for any x ∈ P , c ·R ≥ d(x, T). Then,

|Cw| ≤ |T | · (16β/ε)D · (log2 c+ 2)

Proof. Let T = {t1, . . . , t|T |} be the set in input to the algorithm. For any i, 1 ≤ i ≤ |T |, let
Pi = {x ∈ P : xT = ti} and Bi = {x ∈ Pi : d(x, T) ≤ R}. In addition, for any integer value
j ≥ 0 and for any feasible value of i, we define Di,j = {x ∈ Pi : 2j ·R < d(x, T) ≤ 2j+1 ·R}.
We observe that for any j ≥ dlog2 ce, the sets Di,j are empty, since d(x, T) ≤ c ·R. Together,
the sets Bi and Di,j are a partition of Pi.

For any i, let Ci = Cw ∩Bi. We now want to show that the set Ci is a ε/(2β) ·R-clique.
Let c1, c2 be any two different points in Ci and suppose, without loss of generality, that
c1 was added first to Cw. Since c2 was not removed from P , this means that d(c1, c2) >
ε/(2β) · max{d(c2, T), R} ≥ ε/(2β)R, where we used the fact that d(c2, T) ≤ R since c2
belongs to Bi. Also, the set Ci ⊆ Bi is contained in a ball of radius R centered in ti, thus
we can apply Lemma 3.2 and bound its size, obtaining that |Ci| ≤ (8β/ε)D.

For any i and j, let Ci,j = Cw ∩Di,j . We can use a similar strategy to bound the size of
those sets. We first show that the sets Ci,j are ε

4β ·2
j+1R-cliques. Let c1, c2 be any two different

points in Ci,j and suppose, without loss of generality, that c1 was added first to Cw. Since c2
was not removed from P , this means that d(c1, c2) > ε/(2β)·max{d(c2, T), R} ≥ ε/(4β)2j+1R,
where we used the fact that d(c2, T) > 2j ·R since c2 belongs to Di,j . Also, the set Ci,j ⊆ Di,j

is contained in a ball of radius 2j+1R centered in ti, thus we can apply Lemma 3.2 and
obtain that |Ci,j | ≤ (16β/ε)D. Since the sets Ci and Ci,j partition Cw, we can bound the
size of Cw as the sum of the bounds of the size of those sets. Hence:

|Cw| ≤
|T |∑
i=1
|Ci|+

|T |∑
i=1

dlog2 ce−1∑
j=0

|Ci,j | ≤ |T | · (16β/ε)D · (log2 c+ 2). J

3.1 A first approach to coreset construction for k-median
In this subsection we present a 1-round MapReduce algorithm that builds a weighted coreset
Cw ⊆ P of a k-median instance I = (P, k). The algorithm is parametrized by a value
ε ∈ (0, 1), which represents a tradeoff between coreset size and accuracy. The returned
coreset has the following property. Let I ′ = (Cw, k). If we run an α-approximation algorithm

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:9

on I ′, then the returned solution is a (2α + O(ε))-approximate solution of I. Building
on this construction, in the next subsection we will obtain a better coreset which allows
us to reduce the final approximation factor to the desired α + O(ε) value. The coreset
construction algorithm operates as follows. The set P is partitioned into L equally-sized
subsets P1, . . . , PL. In parallel, on each k-median instance I` = (P`, k), with ` = 1, . . . , L,
the following operations are performed:
1. Compute a set T` of m ≥ k points such that νP`

(T`) ≤ β · νP`
(optI`

).
2. R` ←− νP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`, ε, β).
The set Cw = ∪L`=1Cw,` is the output of the algorithm.

In Step 1, the set T` can be computed through a sequential (possibly bi-criteria) approxi-
mation algorithm for m-median, with a suitable m ≥ k, to yield a small value of β. If we
assume that such an algorithm requires space linear in P`, the entire coreset costruction can
be implemented in a single MapReduce round, using O(|P |/L) local memory and O(|P |)
aggregate memory. For example, using one of the known linear-space, constant-approximation
algorithms (e.g., [2]), we can get β = O(1) with m = k.

I Lemma 3.4. For ` = 1, . . . , L, Cw,` is an ε-bounded coreset of the k-median instance I`.

Proof. Fix a value of `. Let τ` be the map between the points in Cw,` and the points in P`
of Lemma 3.1. The set Cw,` is weighted according to τ`. Also, it holds that:∑

x∈P`

d(x, τ`(x)) ≤ ε

2β
∑
x∈P`

(R` + d(x, T`)) ≤
ε

2β (R` · |P`|+ νP`
(T`)) ≤ ε · νP`

(optI`
) J

By combining Lemma 3.4 and Lemma 2.7, the next lemma immediately follows.

I Lemma 3.5. Let I = (P, k) be a k-median instance. The set Cw returned by the above
MapReduce algorithm is a 2ε-bounded coreset of I.

It is possible to bound the size of Cw as a function of the doubling dimension D. For any
` = 1, . . . , L and x ∈ P`, it holds that R` · |P`| = νP`

(T`) ≥ d(x, T`), thus we can bound the
size of Cw,` by using Theorem 3.3. Since Cw is the union of those sets, this argument proves
the following lemma.

I Lemma 3.6. Let I = (P, k) be a k-median instance. Suppose that the points in P belong
to a metric space with doubling dimension D. Let Cw be the set returned by the above
MapReduce algorithm with input I and m ≥ k. Then, |Cw| = O

(
L ·m · (16β/ε)D log |P |

)
Let S be an α-approximate solution of I ′ = (Cw, k), with constant α. We will now show

that νP (S)/νP (optI) = 2α+O(ε). Let τ be the map of from P to Cw (see Lemma 3.1). By
triangle inequality, νP (S) ≤

∑
x∈P d(x, τ(x)) + νCw

(S). We have that
∑
x∈P d(x, τ(x)) ≤

2ε · νP (optI) since, by Lemma 3.5, Cw is a 2ε-bounded coreset. By the fact that S is an
α-approximate solution of I ′ and by Lemma 2.6, we have that νCw

(S) ≤ α · νCw
(optI′) ≤

2α · νCw
(optI). By Lemma 2.4, Cw is also a 2ε-approximate coreset of I, thus νCw

(optI) ≤
(1 + 2ε)νP (optI). Putting it all together, we have that νP (S)/νP (optI) ≤ 2α(1 + 2ε) + 2ε =
2α + O(ε). We observe that the factor 2 is due to the inequality which relates optI and
optI′ , namely νCw (optI′) ≤ 2νCw (optI). In the next subsection, we will show how to get rid
of this factor.

ISAAC 2019

34:10 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Application to the continuous case

The same algorithm of this subsection can also be used to build a O(ε)-approximate coreset
in the continuous scenario where centers are not required to belong to P . It is easy to verify
that the construction presented in this subsection also works in the continuous case, with
the final approximation factor improving to (α + O(ε)). Indeed, we can use the stronger
inequality νCw

(optI′) ≤ νCw
(optI), as optI is also a solution of I ′, which allows us to avoid

the factor 2 in front of α. While the same approximation guarantee has already been achieved
in the literature using more space-efficient but randomized coreset constructions [6, 4], as
mentioned in the introduction, this result provides evidence of the general applicability of
our approach.

3.2 Coreset construction for k-median

In this subsection, we present a 2-round MapReduce algorithm which computes a weighted
subset which is both an O(ε)-bounded coreset and an O(ε)-centroid set of an input instance
I = (P, k) of k-median. The algorithm is similar to the one of the previous subsection, but
applies CoverWithBalls twice in every subset of the partition. This idea is inspired by the
strategy presented in [14] for Rd, where a double exponential grid construction is used to
ensure that the returned subset is a centroid set.

First Round. P is partitioned into L equally-sized subsets P1, . . . , PL. Then in parallel, on
each k-median instance I` = (P`, k), with ` = 1, . . . , L, the following steps are performed:
1. Compute a set T` of m ≥ k points such that νP`

(T`) ≤ β · νP`
(optI`

).
2. R` ←− νP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`, ε, β).

Second Round. Let Cw = ∪L`=1Cw,`. The same partition of P of the first round is used.
Together with P`, the `-th reducer receives a copy of Cw, and all values Ri computed in the
previous round, for i = 1, . . . , L. On each k-median instance I` = (P`, k), with ` = 1, . . . , L,
the following steps are performed:
1. R←−

∑L
i=1 |Pi| ·Ri/|P |

2. Ew,` ←− CoverWithBalls(P`, Cw, R, ε, β).

The set Ew = ∪L`=1Ew,` is the output of the algorithm. The computation of T` in the
first round is accomplished as described in the previous section.

The following lemma characterizes the properties of Ew.

I Lemma 3.7. Let I = (P, k) be a k-median instance. Then, the set Ew returned by the
above MapReduce algorithm is both a 2ε-bounded coreset and a 7ε-centroid set of I.

Proof. The first three steps of the algorithm are in common with the algorithm of Subsec-
tion 3.2. By Lemma 3.4, for ` = 1, ..., L, the sets Cw,` are ε-bounded coresets of I`. Let
Cw = ∪L`=1Cw,`. By Lemma 2.7, the set Cw is a 2ε-bounded coreset of I, and also, by
Lemma 2.4, a 2ε-approximate coreset. Let τ(x) be the map from P to Cw as specified in
Definition 2.3. It holds that νP (Cw) ≤

∑
x∈P d(x, τ(x)) ≤ 2ε · νP (optI). Let φ` be the map

of Lemma 3.1 from the points in P` to the points in Ew,`. By reasoning as in the proof of
Lemma 3.4, we obtain that

∑
x∈P`

d(x, φ`(x)) ≤ ε/(2β) [|P`| ·R+ νP`
(Cw)]. For any x ∈ P ,

let ˆ̀ be the index for which x ∈ Pˆ̀, we define φ(x) = φˆ̀(x). We have that

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:11

∑
x∈P

d(x, φ(x)) ≤ ε

2β

L∑
`=1

[R · |P`|+ νP`
(Cw)] = ε

2β

((
L∑
`=1
|P`| ·R`

)
+ νP (Cw)

)

where in the last equality we applied the definition of R. Since |P`| · R` = νP`
(T`) ≤

β · νP`
(optI`

) ≤ 2β · νP`
(optI), where the last inequality follows from Lemma 2.6, we have

that
∑L
`=1 |P`|·R` ≤ 2β ·νP (optI). Additionally, νP (Cw) ≤ 2ε·νP (optI) as argued previously

in the proof. Therefore Ew is a 2ε-bounded coreset.
We now show that Ew is a 7ε-centroid set of I. Let X = {xEw : x ∈ optI}. We will

prove that νP (X) ≤ (1 + 7ε)νP (optI). By triangle inequality, we obtain that:

νP (X) =
∑
x∈P

d(x,X) ≤
∑
x∈P

d(x, τ(x)) +
∑
x∈P

d(τ(x), X)

The first term of the above sum can be bounded as
∑
x∈P d(x, τ(x)) ≤ 2ε ·νP (optI), since Cw

is a 2ε-bounded coreset. Also, we notice that the second term of the sum can be rewritten as∑
x∈P d(τ(x), X) =

∑
x∈Cw

w(x)d(x,X), due to the relation between τ and w. By triangle
inequality, we obtain that:∑

x∈Cw

w(x)d(x,X) ≤
∑
x∈Cw

w(x)d(x, xoptI) +
∑
x∈Cw

w(x)d(xoptI , X)

Since Cw is a 2ε-approximate coreset, we can use the bound
∑
x∈Cw

w(x)d(x, xoptI) =
νCw

(optI) ≤ (1 + 2ε)νP (optI). Also, by using the definition of X, we observe that∑
x∈Cw

w(x)d(xoptI , X) =
∑
x∈Cw

w(x)d(xoptI , Ew) ≤
∑
x∈Cw

w(x)d(xoptI , φ(xoptI))

≤ ε

2β
∑
x∈Cw

w(x) ·
(
R+ d(xoptI , Cw)

)
≤ ε

2β

((
L∑
`=1
|P`| ·R`

)
+ νCw (optI)

)

In the last inequality, we used the definition of R, and the simple observation that for any
x ∈ Cw, d(xoptI , Cw) ≤ d(x, xoptI) = d(x, optI). As argued previously in the proof, we
have that

∑
` |P`| · R` ≤ 2β · νP (optI). Also, νCw (optI) ≤ (1 + 2ε)νP (optI) as Cw is a

2ε-approximate coreset of I. Since we assume that β ≥ 1, we finally obtain:∑
x∈Cw

w(x)d(xoptI , X) ≤ ε

2β (2β + 1 + 2ε)νP (optI) ≤ 3ε · νP (optI)

We conclude that νP (X) ≤ (2ε+ 1 + 2ε+ 3ε)νP (optI) = (1 + 7ε) · νP (optI) J

The next lemma establishes an upper bound on the size of Ew.

I Lemma 3.8. Let I = (P, k) be a k-median instance. Suppose that the points in P belong
to a metric space with doubling dimension D. Let Ew be the set returned by the above
MapReduce algorithm with input I and m ≥ k. Then |Ew| = O

(
L2 ·m · (16β/ε)2D log2 |P |

)
.

Proof. From the previous subsection, we know that |Cw| = O
(
L ·m · (16β/ε)D log |P |

)
.

Also, by Lemma 3.4, we have that νP`
(Cw,`) ≤ ε · νP`

(optI`
) for any ` = 1, . . . , L. For

every x ∈ P we have that ε|P | · R = ε
∑
` |P`| · R` = ε

∑
` νP`

(T`) ≥
∑
` ε · νP`

(optI`
) ≥∑

` νP`
(Cw,`) ≥ νP (Cw) ≥ d(x,Cw). The lemma follows by applying Theorem 3.3 to bound

the sizes of the sets Ew,`. J

ISAAC 2019

34:12 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

We are now ready to state the main result of this subsection.

I Theorem 3.9. Let I = (P, k) be a k-median instance and let Ew be the set returned by
the above MapReduce algorithm for a fixed ε ∈ (0, 1). Let A be an α-approximation algorithm
for the k-median problem, with constant α. If S is the solution returned by A with input
I ′ = (Ew, k), then νP (S)/νP (optI) ≤ α+O(ε).

Proof. Let τ be the map from P to Ew of Definition 2.3. By triangle inequality, it results
that νP (S) ≤

∑
x∈P d(x, τ(x))+νEw

(S). The set Ew is a 2ε-bounded coreset of I, so we have
that

∑
x∈P d(x, τ(x)) ≤ 2ε · νP (optI). Since A is an α-approximation algorithm, we have

that νEw
(S) ≤ α ·νEw

(optI′). As Ew is also a 7ε-centroid set, there exists a solution X ⊆ Ew
such that νP (X) ≤ (1 + 7ε)νP (optI). We obtain that νEw (optI′) ≤ νEw (X) ≤ (1 + 2ε)(1 +
7ε)νP (optI). In the last inequality, we used the fact that Ew is a 2ε-approximate coreset of I
due to Lemma 2.4. To wrap it up, νP (X)/νP (optI) ≤ α(1 + 7ε)(1 + 2ε) + 2ε = α+O(ε). J

3.3 Coreset construction for k-means
In this subsection, we present a 2-round MapReduce algorithm to compute a weighted subset
Ew which is both an O(ε2)-approximate coreset and a O(ε)-centroid set of an instance I of
k-means and then show that an α-approximate solution of I ′ = (Ew, k) is an (α + O(ε))-
approximate solution of I. The algorithm is an adaptation of the one devised in the previous
subsection for k-median, with suitable tailoring of the parameters involved to account for
the presence of squared distances in the objective function of k-means.

First Round. P is partitioned into L equally-sized subsets P1, . . . , PL. Then in parallel, on
each k-means instance I` = (P`, k), with ` = 1, . . . , L, the following steps are performed:
1. Compute a set T` of m ≥ k points such that µP`

(T`) ≤ β · µP`
(optI`

).
2. R` ←−

√
µP`

(T`)/|P`|.
3. Cw,` ←− CoverWithBalls(P`, T`, R`,

√
2ε,
√
β).

Second Round. Let Cw = ∪L`=1Cw,`. The same partition of P of the first round is used.
Together with P`, the `-th reducer receives a copy of Cw, and all values Ri computed in the
previous round, for i = 1, . . . , L. On each k-means instance I` = (P`, k), with ` = 1, . . . , L,
the following steps are performed:
1. R←−

√∑L
i=1 |Pi| ·R2

i /|P |
2. Ew,` ←− CoverWithBalls(P`, Cw, R,

√
2ε,
√
β).

The set Ew = ∪L`=1Ew,` is the output of the algorithm. The computation of T` in the first
round can be accomplished using the the linear-space constant approximation algorithms of
[12, 18].

The analysis follows the lines of the one carried out for the k-median coreset construction.
The following lemma establishes the properties of each Cw,`.

I Lemma 3.10. For ` = 1, . . . , L, Cw,` is a ε2-bounded coreset of the k-means instance I`.

Proof. Fix a value of `. Let τ` be the map between the points in Cw,` and the points in P`
of Lemma 3.1. The set Cw,` is weighted according to τ`. Also, it holds that:

∑
x∈P`

d(x, τ`(x))2 ≤ ε2

2β
∑
x∈P`

[
R2
` + d(x, T`)2] ≤ ε2

2β
[
R2
` · |P`|+ µP`

(T`)
]

≤ ε2 · µP`
(optI`

). J

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:13

Next, in the following two lemmas, we characterize the properties and the size of Ew.

I Lemma 3.11. Let I = (P, k) be a k-means instance and assume that ε is a positive value
such that ε+ ε2 ≤ 1/8. Then, the set Ew returned by the above MapReduce algorithm is both
a 4ε2-bounded coreset and a 27ε-centroid set of I.

Proof. Let φ` be the map of Lemma 3.1 from the points in P` to the points in Ew,`. We
have that

∑
x∈P`

d(x, φ`(x))2 ≤ ε2/(2β)
(
|P`| ·R2

` + µP`
(Cw)

)
. For any x ∈ P , let ˆ̀ be the

index for which x ∈ Pˆ̀, we define φ(x) = φˆ̀(x). We have that:

∑
x∈P

d(x, φ(x))2 ≤ ε2

2β

L∑
`=1

[
R2|P`|+ µP`

(Cw)
]

= ε2

2β

((
L∑
`=1
|P`| ·R2

`

)
+ µP (Cw)

)

Using the fact that |P`| · R2
` = µP`

(T`) ≤ β · µP`
(optI`

) ≤ 4β · µP`
(optI), where the last

inequality is due to Lemma 2.6, we have that
∑
`R

2
` |P`| ≤

∑
` 4β ·µP`

(optI) ≤ 4β ·µP (optI).
Also, by Lemma 3.10 and Lemma 2.7, Cw is an 4ε2-bounded coreset of P , thus µP (Cw) ≤
4ε2 · µP (optI). Therefore, Ew is an 4ε2-bounded coreset of I.

We now show that Ew is a centroid set of I. Let X = {xEw : x ∈ optI}. By Lemma 2.5,
Cw is a γ-approximate coreset of I, with γ = 4(ε+ ε2) ≤ 1/2. Hence, µP (X) ≤ 1/(1− γ) ·
µCw

(X). By Proposition 2.1, we have:

µCw (X) =
∑
x∈Cw

w(x)d(x,X)2 ≤ (1 + ε)µCw (optI) + (1 + 1/ε)
∑
x∈Cw

w(x)d(xoptI , X)2

Since Cw is a γ-approximate coreset, it holds that µCw (optI) ≤ (1 + γ)µP (optI). By
reasoning as in the proof of Lemma 3.7, we have that

∑
x∈Cw

w(x)d(xoptI , X)2 ≤ (5ε2/2 +
γε2/2)µP (optI). Putting it all together, we conclude:

µP (X)/µP (optI) ≤
(
1 + γ + 5ε2/2 + γε2/2 + 7ε/2 + 3γε/2

)
/(1− γ).

Since γ ≤ 1/2, we have that 1/(1 − γ) ≤ 1 + 2γ. By using the constraint on ε and the
definition of γ, after some tedious computations, we obtain µP (X)/µP (optI) ≤ 1 + 27ε. J

I Lemma 3.12. Let I = (P, k) be a k-means instance. Suppose that the points in P belong to
a metric space with doubling dimension D. Let Ew be the set returned by the above MapReduce
algorithm with input I and m ≥ k. Then, |Ew| = O

(
L2 ·m · (8

√
2β/ε)2D log2 |P |

)
Proof. For any ` = 1, . . . , L and x ∈ P`, it holds that R` ·

√
|P`| =

√
µP`

(T`) ≥ d(x, T`). By
using Theorem 3.3, we obtain that |Cw,`| = O

(
m · (8

√
2β/ε)D log |P |

)
, and we can bound

the size of Cw with an union bound. By Lemma 3.10, Cw,` is a ε2-bounded coreset of I`,
hence µP`

(Cw,`) ≤ ε2µP`
(optI`

). For any x ∈ P we have that ε
√
|P | ·R =

√
ε2
∑
` |P`|R2

` =√
ε2
∑
` µP`

(T`) ≥
√
ε2
∑
` µP`

(optI`
) ≥

√∑
` µP`

(Cw,`) ≥
√
µP (Cw) ≥ d(x,Cw). Thus,

the lemma follows by applying Theorem 3.3 to bound the sizes of the sets Ew,`. J

We are now ready to state the main result of this subsection.

I Theorem 3.13. Let I = (P, k) be a k-means instance and let Ew be the set returned by
the above MapReduce algorithm for a fixed positive ε such that ε + ε2 ≤ 1/8. Let A be an
α-approximation algorithm for the k-means problem, with constant α. If S is the solution
returned by A with input I ′ = (Ew, k), then µP (S)/µP (optI) ≤ α+O(ε).

ISAAC 2019

34:14 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

Proof. By Lemma 3.11 and Lemma 2.5, Ew is a (4ε2 + 4ε)-approximate coreset of I.
Therefore, µP (S) ≤ (1/(1− 4ε− 4ε2)) · µEw

(S). Since A is an α-approximation algorithm,
µEw

(S) ≤ α · µEw
(optI′). Also, Ew is a 27ε-centroid set, thus there exists a solution

X ⊆ Ew such that µP (X) ≤ (1 + 27ε) · µP (optI). We have that µEw (optI′) ≤ µEw (X) ≤
(1 + 4ε + 4ε2) · µP (X) ≤ (1 + 4ε + 4ε2)(1 + 27ε) · µP (optI), where the second inequality
follows again from the fact that Ew is a (4ε2 + 4ε)-approximate coreset of I. Because of the
constraints on ε, we have that 1/(1− 4ε− 4ε2) ≤ 1 + 8ε+ 8ε2. Therefore, it finally results
that µP (S)/µP (optI) ≤ α · (1 + 8ε+ 8ε2)(1 + 4ε+ 4ε2)(1 + 27ε) = α+O(ε). J

As noted in Subsection 3.1, a simpler version of this algorithm can be employed if we
restrict our attention to the continuous case. Indeed, if we limit the algorithm to the first
round and output the set Cw = ∪`Cw,`, it is easy to show that an α-approximate algorithm
executed on the coreset Cw returns a (α+O(ε))-approximate solution.

3.4 MapReduce algorithms for k-median and k-means
Let I = (P, k) be a k-median (resp., k-means) instance. We can compute an approximate
solution of I in three MapReduce rounds: in the first two rounds, a weighted coreset Ew
is computed using the algorithm described in Subsection 3.2 (resp., Subsection 3.3), while
in the third round the final solution is computed by running a sequential approximation
algorithm for the weighted variant of the problem on Ew. Suppose that in the first of the
two rounds of coreset construction we use a linear-space algorithm to compute the sets T` of
size m = O(k), and cost at most a factor β times the optimal cost, and that in the third
round we run a linear-space α-approximation algorithm on Ew, with constant α. Setting
L = 3

√
|P |/k we obtain the following theorem as an immediate consequence of Lemmas 3.8

and 3.12, and Theorems 3.9 and 3.13.

I Theorem 3.14. Let I = (P, k) be an instance of k-median (resp., k-means). Suppose
that the points in P belong to a metric space with doubling dimension D. For any ε ∈ (0, 1)
(with ε+ ε2 ≤ 1/8 for k-means) the 3-round MapReduce algorithm described above computes
an (α+O(ε))-approximate solution of I using local space O

(
|P |2/3k1/3(16β/ε)2D log2 |P |

)
(resp., O

(
|P |2/3k1/3(8

√
2β/ε)2D log2 |P |

)
).

Note that for a wide range of the relevant parameters, the local space of the MapReduce
algorithms is substantially sublinear in the input size, and it is easy to show that the
aggregate space is linear in |P |. As concrete instantiations of the above result, both the
T`’s and the final solution may be obtained through the sequential algorithms in [2] for
k-median, and in [12] for k-means. Both algorithms are based on local search and feature
approximations α = 3+2/t for k-median, and α = 5+4/t for k-means, where t is the number
of simultaneous swaps allowed. With this choice, the result of the above theorem holds
with β = α = O(1). Alternatively, for the T`’s we could use k-means++ [5] as a bi-criteria
approximation algorithm (e.g, see [25]), which yields a smaller β, at the expense of a slight,
yet constant, increase in the size m of the T`’s. For larger D, this might be a better choice
as the coreset size (hence the local memory) is linear in m and β2D (resp., βD). Moreover,
bi-criteria approximations are usually faster to compute than actual solutions.

4 Conclusions

We presented distributed coreset constructions that can be used in conjunction with sequential
approximation algorithms for k-median and k-means in general metric spaces to obtain the
first space-efficient, 3-round MapReduce algorithms for the two problems, which are almost as

A. Mazzetto, A. Pietracaprina, and G. Pucci 34:15

accurate as their sequential counterparts. The constructions for the two problems are based
on a uniform strategy, and crucially leverage the properties of spaces of bounded doubling
dimension, specifically those related to ball coverings of sets of points. One attractive
feature of our constructions is their simplicity, which makes them amenable to fast practical
implementations.

References
1 D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Proc. 18th

ACM-SIAM SODA, pages 1027–1035, 2007.
2 V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local Search

Heuristics for k-Median and Facility Location Problems. SIAM J. Comput., 33(3):544–562,
2004.

3 P. Awasthi and M.F. Balcan. Center based clustering: A foundational perspective. In Handbook
of cluster analysis. CRC Press, 2015.

4 O. Bachem, M. Lucic, and A. Krause. Scalable k -Means Clustering via Lightweight Coresets.
In Proc. 24th ACM KDD, pages 1119–1127, 2018.

5 B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable K-Means++.
PVLDB, 5(7):622–633, 2012.

6 M.F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on
general communication topologies. In Proc. 27th NIPS, pages 1995–2003, 2013.

7 M. Ceccarello, A. Pietracaprina, and G. Pucci. Solving k-center Clustering (with Outliers) in
MapReduce and Streaming, almost as Accurately as Sequentially. PVLDB, 12(7), 2019.

8 E. Cohen, S. Chechik, and H. Kaplan. Clustering Small Samples With Quality Guarantees:
Adaptivity With One2all PPS. In Proc. 32nd AAAI, pages 2884–2891, 2018.

9 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, 51(1):107–113, 2008.

10 A. Ene, S. Im, and B. Moseley. Fast Clustering Using MapReduce. In Proc. 17th ACM KDD,
pages 681–689, 2011.

11 D. Feldman and M. Langberg. A Unified Framework for Approximating and Clustering Data.
In Proc. 43rd ACM STOC, pages 569–578, 2011.

12 A. Gupta and K. Tangwongsan. Simpler Analyses of Local Search Algorithms for Facility
Location. CoRR, abs/0809.2554, 2008. arXiv:0809.2554.

13 S. Har-Peled and A. Kushal. Smaller Coresets for K-median and K-means Clustering. In Proc.
21st SCG, pages 126–134, 2005.

14 S. Har-Peled and S. Mazumdar. On Coresets for K-means and K-median Clustering. In Proc.
36th ACM STOC, pages 291–300, 2004.

15 C. Hennig, M. Meila, F. Murtagh, and R. Rocci. Handbook of cluster analysis. CRC Press,
2015.

16 L. Huang, S. Jiang, J. Li, and X. Wu. Epsilon-Coresets for Clustering (with Outliers) in
Doubling Metrics. In Proc. 59th IEEE FOCS, pages 814–825, 2018.

17 P. Indyk, S. Mahabadi, M. Mahdian, and V.S. Mirrokni. Composable Core-sets for Diversity
and Coverage Maximization. In Proc. 33rd ACM PODS, pages 100–108, 2014.

18 T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A
Local Search Approximation Algorithm for K-means Clustering. In Proc. 18th SCG, pages
10–18, 2002.

19 L. Kaufmann and P. Rousseeuw. Clustering by Means of Medoids. Data Analysis based on the
L1-Norm and Related Methods, pages 405–416, 1987.

20 J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets, 2nd Ed. Cambridge
University Press, 2014.

21 J. M. Phillips. Coresets and Sketches. Handbook of Discrete and Computational Geometry,
3rd Ed, 2016.

ISAAC 2019

http://arxiv.org/abs/0809.2554

34:16 Accurate MapReduce Algorithms for k-Median/k-Means in General Metric Spaces

22 A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and E. Upfal. Space-Round Tradeoffs
for MapReduce Computations. In Proc. 26th ACM ICS, pages 235–244, 2012.

23 C. Sohler and D. P. Woodruff. Strong Coresets for k-Median and Subspace Approximation:
Goodbye Dimension. In Proc. 59th IEEE FOCS, pages 802–813, 2018.

24 H. Song, J.G. Lee, and W.S. Han. PAMAE: parallel k-medoids clustering with high accuracy
and efficiency. In Proc. 23rd ACM KDD, pages 1087–1096, 2017.

25 D. Wei. A Constant-Factor Bi-Criteria Approximation Guarantee for k-means++. In Proc.
30th NIPS, pages 604–612, 2016.

	Introduction
	Related work
	Our contribution

	Preliminaries
	Coresets construction in MapReduce
	A first approach to coreset construction for k-median
	Coreset construction for k-median
	Coreset construction for k-means
	MapReduce algorithms for k-median and k-means

	Conclusions

