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Abstract
Packing is a classical problem where one is given a set of subsets of Euclidean space called objects,
and the goal is to find a maximum size subset of objects that are pairwise non-intersecting. The
problem is also known as the Independent Set problem on the intersection graph defined by the
objects. Although the problem is NP-complete, there are several subexponential algorithms in the
literature. One of the key assumptions of such algorithms has been that the objects are fat, with a
few exceptions in two dimensions; for example, the packing problem of a set of polygons in the plane
surprisingly admits a subexponential algorithm. In this paper we give tight running time bounds for
packing similarly-sized non-fat objects in higher dimensions.

We propose an alternative and very weak measure of fatness called the stabbing number, and
show that the packing problem in Euclidean space of constant dimension d > 3 for a family of
similarly sized objects with stabbing number α can be solved in 2O(n1−1/dα) time. We prove that
even in the case of axis-parallel boxes of fixed shape, there is no 2o(n1−1/dα) algorithm under ETH.
This result smoothly bridges the whole range of having constant-fat objects on one extreme (α = 1)
and a subexponential algorithm of the usual running time, and having very “skinny” objects on the
other extreme (α = n1/d), where we cannot hope to improve upon the brute force running time
of 2O(n), and thereby characterizes the impact of fatness on the complexity of packing in case of
similarly sized objects. We also study the same problem when parameterized by the solution size k,
and give a nO(k1−1/dα) algorithm, with an almost matching lower bound: there is no algorithm with
running time of the form f(k)no(k1−1/dα/ log k) under ETH. One of our main tools in these reductions
is a new wiring theorem that may be of independent interest.
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1 Introduction

Many well-known NP-hard problems (e.g. Independent Set, Hamilton Cycle, Dom-
inating Set) can be solved in time 2O(

√
n) when restricted to planar graphs, while only

2O(n) algorithms are known for general graphs [11–16,18, 24, 28, 30]. This beneficial effect of
planarity is known as the “square root phenomenon,” and can be exploited also in the context
of 2-dimensional geometric problems where the problem is defined on various intersection
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36:2 How Does Object Fatness Impact Packing?

graphs in R2 [3,4,17,25]. In particular, consider the geometric packing problem where, given
a set of polygons in R2, the task is to find a subset of k pairwise disjoint polygons. This
problem can be solved in time nO(

√
k) [25], which – when expressed only a as a function of the

input – gives an nO(
√
n) = 2O(

√
n logn) algorithm for finding a maximum size disjoint subset.

Can these 2-dimensional subexponential algorithms be generalized to higher dimensions?
It seems that the natural generalization is to aim for 2O(n1−1/d) , or in case of parameterized
problems, either 2O(k1−1/d) ·nO(1) or nO(k1−1/d) time algorithms in d-dimensions: the literature
contains upper and lower bounds of this form (although sometimes with extra logarithmic
factors in the exponent) [9, 26, 29]. However, all of these algorithms have various restrictions
on the object family on which the intersection graph is based: there is no known analogue of
the nO(

√
k) time algorithm of Marx and Pilipczuk [25] in higher dimensions with the same

generality of objects. There is a good reason for this: it is easy to see that any n-vertex
graph can be expressed as the intersection graph of 3-dimensional simple polyhedra. Thus a
subexponential algorithm for 3-dimensional objects without any severe restriction would give
a subexponential algorithm for Independent Set on general graphs, violating standard
complexity-theoretic assumptions.

What could be reasonable restrictions on the objects that allow running times of the form,
e.g., 2O(n1−1/d)? One of the most common restrictions is to study a set F ⊂ 2Rd of fat objects,
where for each object o ∈ F the ratio radius(Bin(o))/ radius(Bout(o)) is at least some fixed
positive constant. (We denote by radius(Bin) and radius(Bout) the radius of the inscribed
and circumscribed ball respectively.) Another common restriction is to have similarly sized
objects, that is, a family F where the ratio of the largest and smallest object diameter is at
most some absolute constant. Many results concern only unit disk graphs, where F consists
of unit disks in the plane: unit disks are both fat and similarly sized. The focus of our
paper is to explore the role of fatness in the context of packing problems and to understand
when and to what extent fatness decreases the complexity of the problem. We observe that
fatness is a crucial requirement for subexponential algorithms in higher dimensions, and this
prompts us to explore in a quantitave way how fatness influences the running time. For this
purpose, we introduce a parameter α describing the fatness of the objects and give upper
and lower bounds taking into account this parameter as well.

More precisely, we introduce the notion of the stabbing number, which can be regarded
as an alternative measure of fatness. This slightly extends a similar definition by Chan [6].
We say that an object o is stabbed by a point p if p ∈ o. A family of objects F ⊆ 2Rd is
α-stabbed if for any r ∈ R, the subset of F -objects o of diameter diam(o) ∈ [r/2, r) contained
in any ball of radius r can be stabbed by αd points. The stabbing number of F is defined
as infα∈[1,∞){F is α-stabbed}. Note that a set of n objects in d-dimensions has stabbing
number at most n1/d. The stabbing number is closely related to the inverse of a common
measure of fatness. This relationship is explored in Section 2.

By adapting a separator theorem from [9], we can give an algorithm where the running
time smoothly goes from 2O(n1−1/d) to 2O(n) as the stabbing number goes from O(1) to the
maximum possible n1/d.

I Theorem 1. Let α ∈ [1,∞) and 2 6 d ∈ N be fixed constants. There is an algorithm that
solves Independent Set for intersection graphs of similarly sized α-stabbed objects in Rd
running in time 2O(n1−1/dα).

As mentioned, the stabbing number is at most n1/d, and this algorithm runs in subexpo-
nential time whenever the stabbing number is better than this trivial upper bound, that is,
whenever α = o(n1/d) holds.
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In order to have definite answers to the best running times achievable, we also need a
lower bound framework. A popular starting point in the past decades is the Exponential
Time Hypothesis (ETH) [21], which posits that there exists a constant γ > 0 such that there
is no 2γn algorithm for the 3-SAT problem. Classical NP-hardness reductions automatically
yield quantitative lower bounds on the running time under ETH. If enough care is taken to
ensure that the constructed instance is sufficiently small, then one can find lower bounds
that match the best known algorithms [8]. For the Independent Set problem, a lower
bound of 2Ω(n) is a consequence of classical reductions under ETH.

A standard way to explore the impact of a parameter such as fatness is to give an
algorithm where the parameter appears in the running time, together with a matching lower
bound. However, the notion of “matching lower bound” needs to be defined precisely if we
are expressing the running time as a function of two parameters, the size n of the instance
and the stabbing number α of the objects.

A recent example of such an algorithm and lower bound involving two parameters is the
paper by Biró et al. [5], where it is shown that the coloring problem of unit disk graphs
with ` = nλ colors can be solved in 2O(

√
n` logn) time, where λ ∈ [0, 1] is a fixed constant,

and they also exclude algorithms of running time 2o(
√
n`) under ETH. This is interesting

since this smoothly bridges the gap between a standard “square root phenomenon” algorithm
(` = O(1))) on one extreme and the brute force 2O(n) on the other (` = n1−o(1)). Our results
show a similar behavior in the context of fatness and the packing problem: the running time
of Theorem 1 is optimal, with the running time smoothly going from 2O(n1−1/d) time in the
case of α = O(1) to the trivial 2O(n) time of brute force when α = n1/d.

Let G(d, L) denote the set of intersection graphs in Rd where each object is an axis-parallel
box whose side lengths form the multiset {1, . . . , 1, L}. Let us call such an axis-parallel box
canonical. As usual, n denotes the number of objects (the number of vertices in the graph).

For example, it is easy to see that 1× 1× L boxes have stabbing number O(L2/3). Any
collection of 1× 1× L boxes of the same orientation can be stabbed by the lattice generated
by the vertices of such a box, which has O(L2) points in a ball of radius O(L). By taking the
same lattice for the two other orientations, we obtain a complete stabbing set of size O(L2)
inside a ball of radius O(L) for all axis-parallel boxes of this shape. In general for d > 3, the
stabbing number for canonical boxes is α = O(L1−1/d), so in particular, for L = 1 we have
α = O(1), and for L > n1/(d−1) we have α = O(n1/d). In our main contribution, we show
that this very restricted set of non-fat objects is sufficient to prove the desired lower bound.

I Theorem 2. Let d > 3 be fixed. Then there is a constant γ > 0 such that for all α ∈ [1, n1/d]
it holds that Independent Set on intersection graphs of d-dimensional canonical axis-
parallel boxes of stabbing number α has no algorithm running in time 2γn1−1/dα, unless
ETH fails.

An immediate corollary is that the 2O(n) time brute-force algorithm cannot be improved,
even for the intersection graph of axis-parallel boxes. This Corollary 3 can also be derived
from a simpler construction by Chlebík and Chlebíková [7].

I Corollary 3. Let 3 6 d ∈ N be fixed. Then Independent Set on intersection graphs of
axis-parallel boxes in d-dimensions has no algorithm running in time 2o(n), unless ETH fails.

In unit ball graphs, there is a lower bound of 2Ω(n1−1/d) under ETH, which of course carries
over to intersection graphs of fat objects [9]. This latter reduction is based on establishing
efficient routing constructions (called the “Cube Wiring theorem”) in the d-dimensional
Euclidean grid. The crucial insight of the present paper is that tight lower bounds for nonfat
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objects can be obtained via Independent Set on induced subgraphs of the d-dimensional
blown-up grid cube, where each vertex is replaced by a clique of t vertices, fully connected to
the adjacent cliques in all d directions. First we establish a lower bound for Independent
Set on subgraphs of such cubes (even for subgraphs of maximum degree 3), using and
extending the Cube Wiring theorem [9]. Unlike for unit balls, it now seems difficult to realize
every such subgraph G as intersection graph of appropriate boxes. Instead, we realize a
graph G′ that is obtained from G by some number of double subdivisions (subdividing some
edge twice). As every double subdivision is known to increase the size of the maximum
independent set by exactly 1, switching to G′ does not cause a problem in the reduction.

The key insight of the reduction (in 3-dimensions) is that if t = L2, then t vertices can be
represented with 1×1×L size boxes arranged in an L×L grid, occupying O(L)×O(L)×O(L)
space. Each t-clique of the blown-up cube is represented by such arrangements of boxes. The
main challenge that we have to overcome is that the subgraph G may contain an arbitrary
matching between two adjacent t-cliques. Given two sets of 1× 1× L size boxes arranged
in two L × L grids, it seems unclear whether such arbitrary connections can be realized
while staying in an O(L) × O(L) × O(L) region of space. However, we show that this is
possible, as the L × L grid arrangement allows easy reordering within the rows or within
the columns, and it is known that any permutation of a grid can be obtained as doing a
permutation first within the rows, then within the columns, and finally one more time within
the rows. Thus with some effort, it is possible to build gadgets representing L×L vertices in
an O(L)×O(L)×O(L) region of space that allows arbitrary matchings to be realized with
the adjacent gadgets.

The idea is similar in higher dimensions d > 3. We reduce from the Independent Set
problem on a subgraph of the blow-up of a d-dimensional grid where each vertex is blown-up
into a clique of Ld−1 vertices. Each gadget now contains Ld−1 boxes of size 1×1×· · ·×1×L
arranged in a grid. In order to implement arbitrary matchings between adjacent gadgets, we
decompose every permutation of the (d− 1)-dimensional grid into O(d) simpler permutations
that are easy to realize in d-dimensional space.

We also study the complexity of packing in the context of parameterized algorithms:
the question is how much one can improve the brute force nO(k) algorithm for finding k
independent objects. We present a counterpart of Theorem 1 in this setting.

I Theorem 4. Let α ∈ [1,∞) and 2 6 d ∈ N. There is a parameterized algorithm that solves
independent set for intersection graphs of similarly sized α-stabbed objects in Rd running in
time nO(k1−1/dα), where the parameter k is the size of the maximum independent set.

If one regards the parameterized algorithm’s running time in terms of the instance size
only, the result would be a 2O(n1−1/d(logn)α) algorithm, which is slower than the running time
2O(n1−1/dα) provided by the latter algorithm. The parameterized algorithm is based on a
separator theorem by Miller et al. [27].

Finally, we sketch how the lower bound construction of Theorem 2 can be adapted to a
parameterized setting, and obtain the following theorem:

I Theorem 5. Let 3 6 d ∈ N be fixed. Then there is a constant γ > 0 such that for all
α ∈ [1, n1/d] it holds that deciding if there is an independent set of size k in intersection graphs
of d-dimensional canonical axis-parallel boxes of stabbing number α has no f(k)nγk1−1/dα/ log k

algorithm for any computable function f , unless ETH fails.

The crucial difference is that we are reducing from the Partitioned Subgraph Iso-
morphism problem instead of Independent Set, which means that instead of choosing or
not choosing a box (representing choosing or not choosing a vertex in the Independent
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Set problem), the solution needs to choose one of n very similar boxes (representing the
choice of one of n vertices in a class of the partition). The overall structure of the reduction
(e.g., routing in the blown-up d-dimensional grid) is similar to the proof of Theorem 2, and
it can be found in the full version [23] along with other missing proofs.

2 The relationship between the stabbing number and fatness

In the usual definition of fatness, an object o ⊂ Rd is α-fat if there exists a ball of radius
ρin contained in o and a ball of radius ρout that contains o, where ρin/ρout = α. For a fixed
constant α this is a useful definition and unifies many other similar notions in case of convex
objects, i.e., it holds that a set of convex objects that is constant-fat for this notion of fatness
are constant-fat for more restrictive definitions and vice versa. For our purposes however
this definition is not fine-grained enough in the following sense. The fatness of a 1× 1× n
box in three dimensions would be Θ(n), just as the fatness of a 1× n× n box. As it will be
apparent in what follows, we need a fatness definition according to which 1×n×n boxes are
much more fat than 1× 1× n boxes. For this purpose, we use the following weaker definition
of fatness, that tracks the volume compared to a circumscribed ball more closely. (Note that
constant-fat objects are also weakly constant-fat.)

I Definition 6 (Weakly α-fat). A measurable object o ⊆ Rd is α-fat for some α ∈ [1,∞) if
V ol(o)/V ol(B) 6 αd, where V ol(o) and V ol(B) denotes the volume of o and the volume of
its circumscribed ball B respectively.

An object o is strongly α-fat if for any ball B centered inside o we have V ol(B ∩
o)/V ol(B) > αd. In case of convex objects, weak fatness coincides with strong fatness up to
constant factors, see [31].

The next theorem shows that the inverse of the weak fatness of an object family is
related to the stabbing number. In a sense, this means that the stabbing number is a further
weakening of weak fatness. Note that in our setting, the stabbing number will be polynomial
in n (i.e., α = nλ for some constant λ), so the logn term is insignificant.

I Theorem 7. Let d be a fixed constant. Then the stabbing number of any family of n weakly
(1/α)-fat (measurable) objects in Rd is O(α log1/d n).

Proof. Consider a family F of weakly 1/α-fat objects. Let B be a ball of radius δ, and let
FB be the set of objects contained in B of diameter at least δ/2. It is sufficient to show
that we can stab FB with O(αd logn) points. Pick k =

⌊
(4α)d(logn+ 1)

⌋
points p1, . . . pk

independently uniformly at random in B. For any given object o, its volume is at least
Vol(B)/(4α)d, so the probability that a given pi is not in o is at most 1− 1/(4α)d. Since the
k points are chosen independently, the probability that a given object o is unstabbed is at
most

(
1− 1

(4α)d

)k
. By the union bound, the probability that there is an unstabbed object

is at most

n

(
1− 1

(4α)d

)k

= n

(
1− 1

(4α)d

)b(4α)d(logn+1)c
< n(1/e)logn+1 < 1.

Consequently, there exists an outcome where all objects are stabbed. J

We conclude this section with the following theorem, which shows an even stronger
connection between fatness and stabbing in case of convex objects. The theorem uses the
existence of the John ellipsoid [22] and the ε-net theorem [20].
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I Theorem 8. Let d be a fixed constant. Then the stabbing number of any family of n weakly
(1/α)-fat convex objects in Rd is O(α log1/d α).

Proof. Consider a family F of weakly 1/α-fat convex objects. Let B be a ball of ra-
dius δ, and let FB be the set of objects contained in B of diameter at least δ/2. It is
sufficient to show that we can stab FB with O(αd logα) points. For any given object o,
its volume is at least Vol(B)/(4α)d. Every convex object o ∈ FB contains an ellipsoid
`(o) ⊆ o such that Vol(o)/Vol(`(o)) 6 dd [22]. Since the VC-dimension of ellipsoids in Rd is
O(d2) [2], the ε-net theorem [20] implies that the ellipsoids `(o) (o ∈ FB) can be stabbed
by O( d2

1/(4α)d log d2

1/(4α)d ) = O(αd logα) points. Since the ellipsoids are contained in their
respective objects, this point set also stabs all objects in FB . J

3 Algorithms

We require very little from the objects that we use in our algorithms. It is necessary that
we can decide in polynomial time whether a point is contained in an object, whether two
objects intersect, and whether an object intersects some given sphere, ball, and empty or
dense hypercube. Let us assume that such operations are possible from now on.

To prove Theorem 4, we use the following separator theorem, due to Miller et al. [27].
The ply of a set of objects in Rd is the largest number p such that there exists a point x ∈ Rd
which is contained in p objects.

I Theorem 9 (Miller et al. [27]). Let Γ = {B1, . . . , Bn} be a collection of n closed balls in
Rd with ply at most p. Then there exists a sphere S whose boundary intersects at most
O(p1/dn1−1/d) balls, and the number of balls in Γ disjoint from S that fall inside and outside
S are both at most d+1

d+2n.

Proof sketch. Consider the set of balls B made up by the circumscribed balls of the objects
in a maximum independent set. We claim that the ply of this set is O(αd). To prove the
claim, let S be a subset of the independent set whose circumscribed balls overlap at a point
x ∈ Rd. Since the objects are similarly sized, S must lie within a ball centered at x whose
radius is at most a constant times the diameter of the largest object. Thus, S can be stabbed
by O(αd) points. However, as S forms an independent set, each point can only stab at most
one object from S. Therefore, |S| = O(αd). By Theorem 9 the ball set B has a sphere
separator intersecting O((αd)1/dk1−1/d) = O(k1−1/dα) balls. We proceed by guessing such
a sphere: a discretization argument shows that there are poly(n) distinct guesses for this
sphere spearator. We also guess the set of objects in the independent set that intersect the
sphere, and remove all other objects intersecting the sphere or the guessed objects, and
recurse on the remaining objects inside S and on the remaining objects outside S. The
resulting running time is nO(k1−1/dα). J

For arbitrary size objects that are O(1)-fat in some stronger sense (or just O(1)-stabbed),
we can apply the above scheme of guessing a separating sphere or hypercube, and use one of
the many separator theorems designed for objects of small ply. See [6, 19,29]. One can also
apply [9] since in case of ply 1, the weights are constants; although the theorem is stated
for the usual notion of fatness, the proof itself uses only the stabbing number. We get the
following theorem.

I Theorem 10. Let 2 6 d ∈ N. There is a parameterized algorithm that solves Independent
Set for intersection graphs of O(1)-stabbed objects in Rd running in time nO(k1−1/d), where
the parameter k is the size of the maximum independent set.



S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:7

The algorithm for Theorem 1 is an adaptation of the Independent Set algorithm for fat
objects from [9], based on weighted cliques, and its proof is deferred to the full version [23].

4 Wiring in a blowup of the Euclidean Cube

Our wiring theorem relies on the folklore observation that can be informally stated the
following way: an n×m matrix can be sorted by first permuting the elements within each
row, then permuting the elements within each column, and then permuting the elements in
each row again. Note that the permutations are independent of each other, and they are not
sorting steps; the permutations required are quite specialized. We state the lemma in a more
group-theoretic setting. Let Sym(X) denote the symmetric group on the set X.

I Lemma 11 (Lemma 4 of [1]). Let A and B be two finite sets. Then Sym(A × B) =
GAGBGA, where GA is the subgroup of Sym(A × B) consisting of permutations π where
π(a, b) ∈ A× {b} for all (a, b) ∈ A×B, and GB is the subgroup of Sym(A×B) consisting
of permutations π where π(a, b) ∈ {a} ×B for all (a, b) ∈ A×B.

I Corollary 12. Let 2 ≤ d ∈ N and let A1, A2, . . . , Ad be finite sets. Then Γ def= Sym(A1 ×
A2×· · ·×Ad) is of the form Γ = G1G2 . . . Gd−1GdGd−1Gd−2 . . . G1, where Gi is the subgroup
of Γ consisting of permutations π where π(a1, . . . , ai, . . . , ad) ∈ {a1} × · · · × {ai−1} × Ai ×
{ai+1} × · · · × {ad} for all (a1, . . . , ad) ∈ Γ.

Proof. We use induction on d; for d = 2, the statement is equivalent to Lemma 11. Let
d ≥ 3. We can write Γ as Sym

(
(A1 × · · · × Ad−1) × Ad

)
, so by induction (for d = 2),

we have that Γ = G1 × GA2×···×Ad
× G1. By induction, we also have that GA2×···×Ad

=
G2 . . . Gd−1GdGd−1Gd−2 . . . G2, therefore Γ = G1G2 . . . Gd−1GdGd−1Gd−2 . . . G1. J

For an integer n, let [n] = {1, . . . , n}. Let ECd(n) be the d-dimensional Euclidean grid
graph whose vertices are [n]d, and x, y ∈ V (G) are connected if and only if they are at
distance 1 in Rd. For x ∈ Zd and S ⊂ Zd, we use the shorthand x+S

def= {x+ y | y ∈ S}. Let
BECd(n, t) denote the t-fold blowup of ECd(n), where all vertices of ECd(n) are exchanged
with a clique of size t, and vertices in neighboring cliques are connected. More precisely,

V (BECd(n, t)) = [n]d × [t]
E(BECd(n, t)) =

{
(x, i)(y, j)

∣∣ x = y ∨ (x, y) ∈ E(ECd(n))
}
.

Our second key ingredient is the Euclidean Cube Wiring theorem.

I Theorem 13 (Theorem 21 in [9]). Let 3 ≤ d ∈ Z. There exists a constant c dependent only
on the dimension such that any matching M between P = [n]d−1×{1} and Q def= [n]d−1×{cn}
can be embedded in ECd(cn), that is, there is a set of vertex disjoint paths connecting p and q
in ECd(cn) for all pq ∈M .

I Theorem 14 (Blown-up Cube Wiring). Let 3 ≤ d ∈ Z, and let n, t be positive integers. We
consider two opposing facets of the blown-up cube C def= BECd(cn, t) (where c ∈ Z+ depends
only on d):

P
def=

(
[n]d−1 × {1}

)
× [t]

Q
def=

(
[n]d−1 × {cn}

)
× [t]

Any matching M between P and Q can be embedded in C, that is, there is a constant integer
c dependent only on the dimension d such that for any matching M there is a set of vertex
disjoint paths connecting p and q in BECd(cn, t) for all pq ∈M .

ISAAC 2019
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Proof. Without loss of generality, suppose that M is a perfect matching between P and Q
(this can be ensured by adding dummy edges to M if necessary). Let c = c′ + 2 where c′ is a
constant such that cube wiring can be done in height h = c′n. Let A = [n]d−1 and let B = [t].
The matching M can be regarded as a permutation π of A× B, where π(a, b) = (a′, b′) if(
(a, b)(a′, b′)

)
∈M .

By Lemma 11, there exists a permutation πA ∈ GA and πB , π
′
B ∈ GB such that π =

π′BπAπB , where GA and GB are defined as in Lemma 11. We can think of both πB and π′B
as the union of nd−1 distinct permutations of [t]. We can realize πB using one matching:
for all (x, i) ∈ A × B, we add the edge ((x, 1), i)((x, 2), j) to MB, where πB(x, i) = (x, j).
As a result, MB is a perfect matching between P and the next layer of the blown-up
cube, P ′ def=

(
[n]d−1 × {2}

)
× [t]. Similarly, for all (x, i) ∈ A × B, let M ′B contain the edge

((x, cn− 1), i)((x, cn), j), where π′B(x, i) = (x, j); this matches Q′ def=
(
[n]d−1 ×{cn− 1}

)
× [t]

to Q. Finally, by the Cube Wiring Theorem (Theorem 13), for each i ∈ [t], there are vertex
disjoint paths from P ′i

def=
(
[n]d−1×{2}

)
×{i} to Q′i

def=
(
[n]d−1×{cn− 1}

)
×{i} that realizes

the matching

M i
A

def= {(x, i)(y, i) | x ∈ [n]d−1 and πA(x, i) = (y, i)}.

For each i ∈ [t], these wirings are vertex disjoint since they are contained in vertex disjoint
Euclidean grid hypercubes. The matchings M i

A for i ∈ [t] together with the matchings MB

and M ′B realize the matching M . J

5 Lower bounds for packing isometric axis-parallel boxes

Our first lower bound shows that the running time of the algorithm in Theorem 1 is tight
under ETH.

Overview of the proof of Theorem 2. Our proof is a reduction from (3, 3)-SAT, the
satisfiability problem of CNF formulas where clauses have size at most three and each
variable occurs at most three times. Such formulas have the property that if they have n
variables, then they have O(n) clauses. The problem has no 2o(n) algorithm under ETH [10].

The proof has two steps; the first step is a reduction form (3, 3)-SAT to Independent
Set in certain subgraphs of the blown-up Euclidean cube, and the second step is to show
that these subgraphs can essentially be realized with axis-parallel boxes. Throughout the
proof, we consider the dimension d to be a constant.

The incidence graph of a (3, 3)-CNF formula φ is a graph where vertices correspond to
clauses and variables of φ, and a variable and clause vertex are connected if and only if the
variable occurs in the clause.

5.1 Independent Set in subgraphs of the blown-up Euclidean cube
A simple and generic lower bound construction for Independent Set

We give a generic reduction from (3, 3)-SAT to Independent Set, which serves as a skeleton
for the more geometric type of reduction we will do later.

Consider the incidence graph of φ. Replace each variable vertex v with a cycle of length 6,
consisting of vertices v1, . . . , v6, where the edges formerly incident to v are now connected to
distinct cycle vertices v2, v4 or v6 for positive literals and to v1, v3 or v5 for negative literals
(see Figure 1). We replace each clause vertex w that corresponds to a clause of exactly 3
literals with a cycle of length three, and connect the formerly incident edges to distinct
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v1 v2 v3

(v1 ∨ ¬v2 ∨ v3)

Figure 1 The graph Gφ for φ = (v1 ∨ ¬v2 ∨ v3).

vertices of the triangle. For clauses that have exactly two literals, the gadget is a single
edge, and we connect the formerly incident edges to distinct endpoints of the edge. We can
eliminate clauses of size 1 in a preprocessing step. Let G′φ be the resulting graph.

An independent set can contain at most 3 vertices of a variable cycle of length 6, and at
most 1 vertex per clause gadget. Observe that a formula with ν variables and γ clauses has
an independent set of size 3ν + γ if and only if the original formula is satisfiable.

Let G be a graph and let uv be an edge of G. A double subdivision of uv is replacing uv
with a path of length 3, i.e., we add the new vertices w and w′, remove the edge uv and add
the edges uw,ww′, w′v. A graph that can be obtained from G by some sequence of double
subdivisions is called an even subdivision of G. Observe that a double subdivision increases
the size of the maximum independent set by one, so G has an independent set of size k if
and only if its even subdivision G′ has an independent set of size k + |V (G′)|−|V (G)|

2 .

Embedding G′
φ into a blown-up cube

In a blown-up cube BECd(n, t), we call a clique corresponding to x ∈ [n]d the cell of x or
simply a cell, that is, the cell of x is defined as the set of vertices {x} × [t] ⊂ V (BECd(n, t)).

The following is a tight lower bound for Independent Set inside the blown-up Euclidean
cube.

I Theorem 15. For any fixed constant d > 3, there exists a γ > 0 such that for any t > 2
there is no 2γn1−1/dt1/d algorithm for Independent Set for subgraphs of the blown-up
cube C def= BECd((n/t)1/d, t) under ETH. The lower bound holds even if the subgraph G has
maximum degree three, and the neighbors of each vertex in G lie in distinct cells.

Proof sketch. Given a (3, 3)-SAT formula φ, we show that we construct a subgraph of a
blown-up cube with the required properties that is also an even subdivision of G′φ. If φ
has n̄ literals, then we create a subgraph G that has n = c · n̄

d
d−1 /t

1
d−1 vertices; a simple

computation shows that this is sufficient. The variable cycles become cycles of length 6,
and they are placed densely within cells that lie in some facet of C. Similarly, for clauses of
size two and three, we associate an edge or a triangle in the cells of the opposing facet of C.
Using Theorem 14, we can construct wires that for each literal connect the relevant vertex of
the variable cycle to the relevant vertex of the clause cycle. If the resulting wire has even
length, then we add an extra edge to its end that connects to the clause cycle. The resulting
embedding has the desired properties. J

5.2 Detailed construction and gadgetry
Having established our lower bound for blown-up Euclidean cubes, we now need to construct
a set of canonical boxes whose intersection graph is an even subdivision of a given subgraph
with maximum degree three where the neighbors of each vertex lie in distinct cells.
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Figure 2 A basic brick.

I Theorem 16. Let d > 3 and L > 16 be fixed, and let G be a subgraph of the blown-up cube
C = BECd(s, (L/8)d−1) of maximum degree three, where the neighbors of each vertex lie in
distinct cells. Then G has an even subdivision G′ that can be realized using boxes of size
1× · · · × 1× L. Moreover, given G, the boxes of G′ can be constructed in O(|V (C)|) time,
and |V (G′)| = O(|V (G)|).

We consider d = 3 first; later on, we show how the construction can be generalized to
higher dimensions. We need to define a set of boxes whose intersection graph is an even
subdivision of G. The idea is to create a generic module that is able to represent a subgraph
of G induced by any cell; these modules will take up O(L)×O(L)×O(L) space. The modules
are arranged into a larger cube of side length O(sL) to make up the final construction.

Due to space constraints, we concentrate on giving a picture of the overall construction
for d = 3, and on presenting our most intricate gadget that is capable of realizing so-called
parallel matchings. The rest of the gadgetry and other details are deferred to Appendix A.

Modules and bricks

We index the vertices in a cell by a pair from [L/8]2. The starting object in our reduction is
a set of (L/8)2 disjoint boxes parallel to the same axis, arranged loosely in an L/8 × L/8
grid structure called a brick. See Figure 2 for an example. Loosely speaking, each box of
each brick within the cell’s module can be associated with a vertex of the cell; for a brick B,
we can refer to a box corresponding to vertex (i, j) of the cell as B(i, j).

Let X be the set of cells within C: X def=
{
{x} × [L/8]2

∣∣ x ∈ [cn]d
}
. The wiring within

each cell x ∈ X will be represented by O(1) bricks, and these bricks will fit in an O(L) side
length module.

The position of a brick can be specified by defining its axis (along which the side length
of the boxes is L), and for each box (i, j) within the brick, defining the coordinates of its
lexicographically smallest corner (or lexmin corner for short). For example, consider the
brick B with axis x3 where box B(i, j) has coordinates (3i, 3j, 0). (See Figure 2.) This brick
and all bricks isometric to this are called basic bricks. Most bricks can be thought of as a
perturbation of a basic brick, where we apply shifts to each box. The eventual module that
we create will consist of several bricks, which together will represent an even subdivision
of the sparse graph G restricted to a given cell. Note that no single brick can be said to
represent the set of vertices in a cell. When defining our gadgetry, it is convenient to talk
about these bricks, even though in the final construction we only need a certain subset of the
boxes within each brick. We can remove the unwanted boxes from each brick at a later stage.
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Figure 3 Left: First column of a parallel matching gadget for the permutation π1(1) = 1, π1(2) =
4, π1(3) = 2, π1(4) = 3. Boxes of each color induce paths; boxes of different color are disjoint. Right:
A full parallel matching gadget.

The parallel matching gadget

A parallel matching gadget is capable of realizing a matching between two cells where the
endpoints of each matching edge differ only on a fixed coordinate, so for d = 3, all edges are
of the type

(
(x, (i, j)), (x′, (i′, j))

)
or all edges are of the type

(
(x, (i, j)), (x′, (i, j′))

)
for some

cells x and x′.We call a matching with this property a parallel matching. Parallel matchings
can be decomposed into matchings on disjoint cliques, where each clique contains vertices
that share all of their coordinates except one. In the remainder of this gadget’s description,
we will omit the cells x and x′ from the coordinate lists.

Suppose that each matching edge is of the form
(
(i, j), (i′, j)

)
. Let πj(i) denote the first co-

ordinate of the pair of (i, j), that is, suppose that the matching edges are
(
(i, j), (πj(i), j)

)
, i ∈

Ij for some sets Ij ⊆ [L/8]. Instead of realizing these matchings, we first extend them to
permutations πj on each clique [L/8]× {j}. A permutation can be thought of as a perfect
matching between two copies of a set; by removing the unwanted vertices (removing the
unwanted boxes) we can get to a representation of the matching, i.e., a set of vertex disjoint
paths that connect box (i, j) in the starting brick to box (πj(i), j) in the target brick.

In every brick, each box is translated individually, where the translation vector’s compon-
ent along the brick’s axis must be an integer k ∈ 3 · {−L/8, . . . , L/8}, and along the other
axes it must be of the form k/L for some k ∈ {−L/8, . . . , L/8}. For a brick B, its box of
index (i, j) is denoted by B(i, j), and recall that the position of a box is defined by its lexmin
corner and the axis of the brick.

We give the coordinates of each box in each brick of the parallel matching gadget below.
Let us take the matching edges where j = 1 first. We start with the first column of
the brick (j = 1), where the coordinates of B(1)(i, 1) are (3i, 3 + i/L,−3i). See the left
hand side of Figure 3 that illustrates the idea behind the gadget. The coordinates for
B(1)(i, j) are (3i, 3j + i/L,−3i). The first column of the next brick B(2) has axis x1 and the
coordinates of B(2)(i, 1) are (0, 4 + i/L, L− 1− 3i), that is, these boxes touch the previously
defined boxes of B(1) from “behind” in Figure 3. In general, B(2)(i, j) has coordinates
(0, 3j + 1 + i/L, L − 3i). The next brick B(3) also has axis x1, and the coordinates for
B(3)(i, j) are (L/2+3πj(i), 3j+1+πj(i)/L,L−3i), that is, we change the box perturbations
along the first and second coordinate. Finally, the last brick B(4) has axis x3 and the
coordinates are (3L/2 + 3πj(i), 3j − πj(i)/L,L − 3i), i.e., they are placed “in front of”

ISAAC 2019



36:12 How Does Object Fatness Impact Packing?

the bricks of B(3) in Figure 3. This can be rewritten as B(4)(i′, j) having coordinates
(3L/2 + 3i′, 3j− i′/L,L−3π−1

j (i′)). Notice that in the final brick, we indeed have the desired
ordering, i.e., the ordering of the boxes along the x1 axis is as required. It is routine to check
that the intersection graph induced each column of this parallel matching gadget consists of
vertex disjoint paths of length four. Different columns are also disjoint since projecting the
boxes of column j onto the x2 axis results in a subset of the open interval (3j − 0.5, 3j + 2.5).

Using several parallel matching gadgets, by Lemma 11 we are capable of representing
arbitrary matchings between two neighboring cells or within a single cell in O(L)×O(L)×O(L)
space. Further detailed gadgetry describing how branching gadgets are made (capable of
representing a collection of degree 3 vertices), and how everything can be fit into modules
of side length O(L) are described in Appendix A. Using Theorem 16, it is easy to prove
Theorem 2.

Proof of Theorem 2. Set L def= max(16, α
d

d−1 ). This choice of L implies that any family
of canonical boxes of size 1 × 1 × L are O(α)-stabbed. Furthermore, set t = (L/8)d−1.
The proof is by reduction from Independent Set on subgraphs of the blown-up cube
C def= BECd((n̄/t)1/d, t), where the subgraph G has maximum degree three, and the neighbors
of each vertex in G lie in distinct cells. By Theorem 15, there is no γ > 0 for which a
2γn1−1/dt1/d algorithm exists for this problem under ETH.

Let G be a subgraph of C as described above. By Theorem 16, we can realize an odd
subdivision G′ of G using boxes of size 1× · · · × 1× L, with O(n̄) vertices in poly(n̄) time.
If for any γ > 0 there is an algorithm for Independent Set on α-stabbed canonical boxes
with running time 2γn1−1/dα, then this translates into 2γn1−1/dL1−1/d algorithms for all γ > 0.
This can be composed with our construction to get 2γn̄(1−1/d)t1/d algorithms for all γ > 0 for
Independent Set on the described subgraphs of C, which contradicts ETH according to
Theorem 15. J

6 Conclusion

We have explored the impact of the stabbing number on the complexity of packing. We have
seen that subexponential packing algorithms are possible for similarly sized objects if the
stabbing number is o(n1/d). The subexponential algorithms could be derived from powerful
separator theorems, while the lower bounds required custom wiring results and non-trivial
geometric gadgetry. We propose two open problems for future research.

What is the precise impact of the stabbing number on the complexity of packing if objects
are not similarly sized? One can get a subexponential algorithm by an adaptation of the
separator in [9], but it yields an algorithm whose dependence on α is much weaker: it
has αd in the exponent instead of α. Is this algorithm optimal?
Is there a subexponential algorithm for the Dominating Set problem in intersection
graphs of α-stabbed similarly sized objects? Or even for n axis-parallel 1× nε and nε × 1
boxes in two dimensions?
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Figure 4 An elbow.

Figure 5 The first “column” of a branching gadget.

Next, we introduce a way to change brick axis using an “elbow”. Consider a brick B that
is a perturbation of the basic brick, where box (i, j) has coordinates (3i, 3j,−3i). The brick
B′ has axis x1 and the coordinates for B′(i, j) are (3i, 3j, L− 3i) (see Figure 4). Notice that
using these elbow gadgets and adjustment gadgets together, one can route from any brick to
any other brick at distance Θ(L) in O(1) steps.

Realizing an arbitrary matching of a biclique or clique

We can regard a general matching M induced by two neighboring cells as a permutation of
[L/8]2, which can be written as the product of three special permutations by Corollary 12
that correspond to parallel matchings; i.e., the matching M is realizable as the succession of
three parallel matchings. This means that each edge of M becomes a path of length three, so
by using three parallel matching gadgets in succession we can represent M . We add a parity
fix gadget to each box at the beginning of each wire, which will be useful later to ensure
that each edge has been subdivided an even number of times. As a result, we have realized
M using O(1) bricks and O(L) × O(L) × O(L) space. This collection of boxes is called a
general matching gadget. A general matching gadget has a first and a last brick where it
connects to the rest of the construction, we call these bricks endbricks.
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interface

core

spikes

Figure 6 A module with general matching gadgets of the interface and the core, with the simplified
image of a brick-tree (in red).

If the goal is to realize a matching within a cell with vertex set Vx, then we can just
create two copies of Vx (denoted by V ′x and V ′′x ), with a complete bipartite graph between
them. For a matching edge vivj ∈

(
Vx

2
)
, we identify it with the edge v′iv′′j . Then we realize

the matching of this biclique using a general matching gadget.

The branching gadget

The branching gadget creates for all indices in [L/8]2 a disjoint copy of a star on 4 vertices
(that is, a vertex of degree 3 with its neighborhood of 3 isolated vertices). This gadget
contains four bricks, and realizes (L/8)2 disjoint stars. We use the first two bricks (B(1) and
B(2)) of the parallel matching gadget. The third brick B′ is a translate of the first brick B(1)

with the vector (3, 2, L−1), i.e., the coordinates of B′(i, j) are (3i+3, 3j+2+ i/L, L−1−3i).
The final brick B′′ is the translate of B(2) by the vector (L, 0, 0). See Figure 5 for a rendering
of the first “column” of the four bricks. Vertices corresponding to B(2) have degree three,
and their neighbors are the boxes of the same index in B(1), B′ and B′′.

Constructing a module

Our goal is to define modules of side length O(L) that are capable of representing the role
played by cells. The modules together must be able to represent a subgraph of C of maximum
degree three, where the neighbors of any vertex lie in distinct cells.

For all pairs of neighboring modules, we introduce a general matching gadget to represent
the matching required by G between the two neighboring cells. These gadgets form the
interface. Moreover, in the middle of each module, we add another general matching gadget
to represent the matching within the cell; this gadget is the core of the module. See Figure 6.
Finally, within each module, we tie the endbricks of the core and the endbricks of the interface
falling inside the module together with a brick-tree. The brick-tree is a collection of (L/8)2

isomorphic and disjoint trees, realized as a collection of branching, elbow, adjustment and
bridge gadgets. Each tree (i, j) has maximum degree three, and its leaves are the boxes of
index (i, j) in the interface and in the core.



S. Kisfaludi-Bak, D. Marx, and T. C. van der Zanden 36:17

First, we show that such a construction is sufficient to represent an even subdivision of
an arbitrary subgraph G, and later we show how the brick-tree can be constructed. Let G
be a subgraph with the desired properties, and let x be a particular cell. For each edge uv
induced by x, we fix an arbitrary orientation, and realize the acquired matching so that the
source vertex of the arcs are in one end of the core and the targets are in the other. Since the
neighbors of any vertex lie in different cells, all indices of [L/8]2 appear at most once, either
as a source of an arc, as a target of an arc, or not at all. Then we realize the arcs using the
core’s general matching gadget of the module. For each index i ∈ [L/8]2, the edges incident
to vertex i of x can be assigned to a subtree T of the tree corresponding to index i, where T
has at most three leaves, at most one of which is adjacent to a box of the core, and other
leaves are adjacent to boxes in distinct endbricks of the interface. There is a unique minimal
subtree T that induces the desired (at most three) leaves; we can map a vertex v ∈ V (G)
of degree three to the degree three vertex of T . If V has a smaller degree, then it can be
mapped to an arbitrary non-leaf vertex of T .

To construct a brick-tree in R3, consider first a Euclidean grid cube of size O(1). We can
use this small cube as a model of our module: in general, an edge of this cube represents a
brick. We have some edges already occupied by the general matching gadgets corresponding
to the interface and the core. By choosing a cube large enough, we can ensure that these
vertices are distant in the `1 norm. It is easy to see that if the cube is large enough (we
allow its size to depend only on d), then there is a subtree of the grid of maximum degree
three, where the leaves are some distant prescribed vertices. Such a tree can be constructed
for example by mimicking a Hamiltonian path of the inscribed octahedron of the module,
and adding to it small “spikes” that go to the endbrick of the interfaces. At the end of the
path, we extend it towards the center of the cube, where we add another branching for the
two endbricks of the core. The branching points in the brick-tree are branching gadgets, the
turns are elbow gadgets, and straight segments are bridges and adjustments.

Finalizing the construction in R3

By packing the modules in a side length O(sL) Euclidean cube, and removing unused boxes
from each module according to the given subgraph, we get our final construction for three
dimensions. For each edge, we have it represented by a sequence of O(1) boxes passing
through a single general matching gadget. Using the parity fix gadget inside the general
matching gadget, we can ensure that the path representing the edge has an odd number of
internal vertices. Therefore, the final construction has O(|V (G)|) boxes, and each edge of G
is represented with a path of odd length, that is, the graph induced by the boxes is an even
subdivision of G.

The construction in higher dimensions

It is surprisingly easy to adapt our three-dimensional construction to the d-dimensional case.
This time, we need to realize a subgraph of C = BECd(s, (L/8)d−1).

The basic brick in d dimensions contains (L/8)d−1 boxes, indexed by [L/8]d−1, where the
lexicographically minimal corner of box i is (0, 3i). For normal bricks, we allow perturbations
of the form 3k (|k| ∈ [L/8]) along the axis of the brick, and k/L (|k| ∈ [L/8]) in all other
directions. The parity fix, adjustment, and elbow gadgets can be defined analogously. The
parallel matching gadget is also straightforward: the task here is to represent a parallel
matching, where each edge is of the form (i, i′) ∈ [L/8]d−1× [L/8]d−1, where i, i′ differ only on
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the t-th coordinate for some fixed t ∈ [d− 1]. As previously, we can extend this to (L/8)d−2

permutations, where for each ι ∈ [L/8]d−2, we have a permutation πι over the “column” ι,
i.e., over the set

{(i1, . . . , id−1)
∣∣ it ∈ [L/8] and (i1, . . . , it−1, it+1, . . . , id−1) = ι}.

Such a permutation can be represented as described before: we replace the role played by
the x1 axis with xt, the role of x2 with xt+1 mod (d−1) and x3 with xd. Along all other axes,
we introduce no perturbations to the boxes. The column gadget corresponding to column
ι = (i1, . . . , it−1, it+1, . . . , id−1) can be covered by1

[3i1, 3i1 + 1]× · · · × [3it−1, 3it−1 + 1]
× [−L/2, 3L/2]× (3it+1 − 0.5, 3it+1 + 2.5)]

× [3it+2, 3it+2 + 1]× · · · × [3id−1, 3id−1 + 1]× [0, 3
2L].

These sets are clearly disjoint for distinct values of ι.
A general matching M is regarded as a permutation of [L/8]d−1, which can be written as

the product of 2(d− 1)− 1 special permutations by Corollary 12 that correspond to parallel
matchings; therefore, M is realizable as the succession of 2d− 3 parallel matchings. As a
result, we can realize M with O(d) = O(1) bricks and O(L)× · · · ×O(L) space. As before,
we add parity fix gadgets to each box of one of the endbricks.

To realize a brick-tree, we can again trace a Hamiltonian path of the graph given by the
dimension 1 faces of the cross-polytope inside the module, and add spikes to it to reach
the endbricks of the interface and extend it to the two endbricks of the core. Note that the
cross-polytope does have a Hamiltonian path, we can use e.g.

(1, 0, . . . , 0); (0, 1, 0, . . . , 0) . . . (0, . . . , 0, 1); (−1, 0, . . . , 0); (0,−1, 0, . . . , 0) . . . (0, . . . , 0,−1).

The finalizing steps are again analogous to the 3-dimensional case. This concludes the proof
of Theorem 16.

1 The formula is only accurate for the case t 6 d − 2. If t = d − 1, the role of xt+1 and x1 should be
switched.
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