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Abstract
We consider the virtual circuit routing problem in the stochastic model with uniformly random
arrival requests. In the problem, a graph is given and requests arrive in a uniform random order.
Each request is specified by its connectivity demand and the load of a request on an edge is a random
variable with known distribution. The objective is to satisfy the connectivity request demands while
maintaining the expected congestion (the maximum edge load) of the underlying network as small
as possible.

Despite a large literature on congestion minimization in the deterministic model, not much
is known in the stochastic model even in the offline setting. In this paper, we present an
O(logn/ log logn)-competitive algorithm when optimal routing is sufficiently congested. This ratio
matches to the lower bound Ω(logn/ log logn) (assuming some reasonable complexity assumption)
in the offline setting. Additionally, we show that, restricting on the offline setting with deterministic
loads, our algorithm yields the tight approximation ratio of Θ(logn/ log logn). The algorithm is
essentially greedy (without solving LP/rounding) and the simplicity makes it practically appealing.
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1 Introduction

Congestion minimization is a fundamental problem for network operations/communication.
In the former, there are connectivity requests and serving requests induces loads on network
links. The load vector of each request is deterministically given. The objective is to satisfy the
connectivity demands while maintaining the congestion of the underlying network as small
as possible. The problem has been widely studied and several algorithms with performance
guarantee have been designed.

In real-world scenarios, given the presence of uncertainty, request loads are rarely determ-
inistic but vary as random variables. Uncertainty may come from different sources due to
unexpected events, noise, etc. The uncertainty in the loads represents the main difficulty in
designing performant algorithms in such scenarios. In this paper, we take one step closer to
real-world situations by considering the congestion minimization in the stochastic model.

Stochastic Virtual Circuit Routing Problem (SVCR). Given a directed graph G(V,E)
where |V | = n, |E| = m and a set of k requests. A request i (for 1 ≤ i ≤ k) is specified by a
origin/destination pair (oi, di) and a random variable Xi,e whose distribution is known that
represents the load of request i on an edge e. Assume that Xi,e’s are bounded and without
loss of generality, Xi,e’s take values in [0, 1]. For each request i, one needs to choose a routing
path connecting oi to di. The expected congestion of a routing (connecting all requests’ pairs)
is E

[
maxe

∑
i∈Te Xi,e

]
where Te is the set of requests whose routing path passes through e.

The objective is to minimize the expected congestion.
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39:2 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

In this paper, we consider the SVCR problem in the random-order setting. In the latter,
requests are released over time in an uniformly random order and at the arrival of a request,
one needs to make an irrevocable decision to satisfy the request. The random-order setting is
similar to the online one; however, in the former the adversary can choose request parameters
but has no influence on the request arrival order (which is uniformly random).

The congestion objective belongs to the class of `p-norm functions on load vectors.
Specifically, the former corresponds to the `∞-norm and it is well-known that the `∞-norm
of a m-vector can be approximated up to a constant factor by the `p-norm where p = logm.
In the SVCR problem, we also consider `p-norm objective functions on load vectors. Note
that when we mention the SVCR problem without stating explicitly the objective, it means
that the congestion objective is considered.

Stochastic algorithmic problems are common in real-world situations and have been
extensively studied in different domains, including approximation algorithms. There are
two classes of algorithms for stochastic problems: non-adaptive and adaptive. In the former,
the decisions have been made up-front and then the realization of the randomness will be
revealed. In the latter, the randomness is revealed instantaneously after each decision (so an
algorithm can adapt its strategy due to the outcome of random variables observed so far).
In virtual circuit routing, non-adaptive solutions are preferable and more suitable than the
adaptive ones since the former is usually simpler and easier to implement. In this paper, we
are interested in designing non-adaptive solutions for the SVCR problem.

The virtual circuit routing problem has been well understood in the deterministic model.
Specifically, in offline setting Raghavan and Thompson [23] gave an O(logn/ log logn)-
approximation algorithm and in online setting Aspnes et al. [3] provided an O(logn)-
competitive algorithm. The bounds are optimal up to a constant factor. However, not much
in term of approximation is known in the stochastic model. A closely related problem to
SVCR, the stochastic load balancing problem, has been studied in the offline setting. In the
problem, given a set of jobs and machines, one needs to assign jobs to machines such that
the (expected) maximum load of the assignment is minimized. Kleinberg et al. [17] first
considered this problem and gave a constant approximation for identical machines, i.e., for
each job j, the random loads of a job on all machines are identical. Goel and Indyk [11]
provided better approximations when the job loads follow some specific distributions, for
example Poisson distributions, Exponential distributions. Very recently, Gupta et al. [12]
gave a constant approximation for unrelated machines. They also considered the objective of
minimizing the `p-norm of machine loads and showed an O(p/ log p)-approximation algorithm.
Their technique is based on a linear program which guarantees a strong lower bound for the
stochastic load balancing problem. In their paper, Gupta et al. [12] raised an open question
of designing algorithms for the SVCR problem. The main difficulty, which resists to current
approaches, is to deal with the correlation of edges loads where different paths may share
common edges.

1.1 Our Contribution and Approach
We give a competitive algorithm for the SVCR problem in the random-order setting. Specific-
ally, our algorithm is O(logn/ log logn)-competitive if the congestion of the optimal solution
is at least 1, i.e., informally, optimal routing is sufficiently congested. Note that even in the
offline setting with deterministic loads, the problem is known to be hard to approximate
within factor Ω(logn/ log logn) unless all problems in NP have randomized algorithms with
running time npoly logn [2, 8]. The result shows that in terms of approximation, one can
guarantee the quality of the algorithmic solutions for the virtual circuit routing problem
even with uncertainty in the request loads. Moreover, our algorithm is essentially greedy
which makes it practically appealing and is easy to implement.
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In order to design algorithms for the SVCR problem, we study the more general objective
of minimizing the `p-norm of edge loads. We consider the primal-dual technique with
configuration LPs [25]. This approach provides a clean way to deal with non-linear objective
functions and intuitive constructions of dual variables. Our algorithm is a generalized version
of Greedy Restart algorithms introduced by Molinaro [22] in the context of machine load
balancing (which can be seen as a special case of the SVCR problem where the network
consists of two nodes and parallel edges connecting these two nodes). Informally, for every
request the algorithm selects a routing path greedily with respect to some function ψκ,p
(defined later) which depends on the current load vector. However, when half of the requests
have been considered, the algorithm restarts the procedure: it still chooses a routing path
greedily with respect to the function ψκ,p but now the function ψκ,p depends on the load
vector induced only by the second half of the requests. Building on the primal-dual technique
with configuration LPs [25] and useful probability inequalities together with insightful
observations by Molinaro [22], we prove the competitiveness of the algorithm in the online
random-order setting.

Besides, we revisit the classic virtual circuit routing problem in offline setting with
deterministic loads (where Xi,e’s are deterministic values wi for every e). We show that our
algorithm achieves the tight approximation ratio of Θ(logn/ log logn). Remark that our
greedy algorithm is simpler than the algorithms by Raghavan and Thompson [23], Srinivasan
[24] which are based on LP-rounding techniques or the recent algorithm by Chekuri and
Idleman [6] which relies on the notion of multiroute flows [16].

1.2 Further Related Works
In the offline setting, the virtual circuit routing problem is also known under the name of
the congestion minimization problem. The latter is a relaxation of the classsic edge-disjoint
paths problem: given a graph and a collection of source-sink pairs, can the pairs be connected
via edge-disjoint paths. For the variant of the congestion minimization problem where
di = 1 and wi ≡ 1 for every 1 ≤ i ≤ k, Raghavan and Thompson gave an O(logn/ log logn)-
approximation algorithm via their influential randomized rounding technique [23]. This ratio
is subsequently proved by Chuzhoy et al. [8] to be tight assuming some complexity hypothesis.
Srinivasan [24] considered the multipath congestion minimization problem corresponding
to the setting where di ≥ 1 and wi ≡ 1 for every 1 ≤ i ≤ k. Srinivasan presented an
O(logn/ log logn)-approximation algorithm by developing a dependent rounding technique
for cardinality constraints [24] . The technique is extended in subsequent works for handling
more general constraints [10, 9, 7]. Recently, Chekuri and Idleman [6] gave a simple algorithm
for the multipath congestion minimization problem. They showed the O(logn/ log logn)
approximation ratio via the notion of multiroute flows which were originally introduced
by Kishimoto and Takeuchi [16]. That enables a simple solution without using dependent
rounding and also allows them to improve the results in some particular cases.

The congestion minimization problem has been also studied in online setting where
requests arrive online. Aspnes et al. [3] gave an O(logn)-competitive algorithm and proved
that this bound is optimal up to a constant factor. For the more general objective of
`p-norm, Awerbuch et al. [4] considered the load balancing problem and proved that greedy
algorithm achieved the bound of O(p), also optimal up to a constant factor. Caragiannis [5]
strengthened and significantly simplified the analysis of the greedy algorithm and showed
the optimal bound of 1

21/p−1 .
Stochastic combinatorial optimization problems such as shortest paths, minimum spanning

trees, knapsack, bin-packing etc have been considered by Li and Deshpande [18] and Li and
Yuan [19] and Kleinberg et al. [17]. In these problems, parameters (length, weights, etc)
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are given as random variables with known distributions and the objective is to optimize the
expected value of some cost/utility functions. In this paper, we are interested in the class of
non-adaptive algorithms. Several works [21, 20, 15, 14] have considered adaptive algorithms
where the decisions of algorithms depend on the current state of the solutions.

2 Preliminaries

In this section, we give some definitions and technical lemmas which are useful in our analysis.
This part is drawn significantly from Molinaro [22]. Recall that in the random-order model,
the cost of a routing is the expected `p-norm of the load vector where the expectation is
taken over the random order and the random vectors Xi,e’s.

Given p > 1, its Hölder conjugate q is the number that satisfies 1
p + 1

q = 1. The dual of the
`p-norm is the `q-norm. Let `+

q be the set of non-negative vectors in Rm with `q-norm at most

1. Given a constant κ and p, define function ψκ,p : Rm → R as ψκ,p(u) = p
κ

(∥∥∥1 + κ
pu
∥∥∥
p
− 1
)
.

The function ψκ,p can be equivalently written as

ψκ,p(u) = f−1
κ,p

( m∑
h=1

fκ,p(uh)
)

where fκ,p(uh) =
(

1 + κ

p
uh

)p

Recall that ‖u‖p = g−1
(∑m

h=1 g(uh)
)

where g(uh) = (uh)p. Informally, ψκ,p(·) is a smooth

approximation of ‖·‖p as shown later in Lemma 1. In the paper, we are interested in the
congestion which is the `∞-norm of the load vectors. It is well-known that the `∞-norm
of any vector can be approximated by `p-norm of that vector where m is the number of
coordinates and p = logm. Molinaro [22] introduced the function ψκ,p as a smoother version
of `p-norm and showed that using function ψκ,p, one can obtain tighter bound then using
directly the `p-norm function for the scheduling problem of minimizing the `p-norm of the
load vectors in the random-order model.

First, observe that

∇ψκ,p(u) = p

κ
· ∇
∥∥∥∥1 + κ

p
u

∥∥∥∥
p

∈ `+
q (1)

where q = p/(p− 1) since

p

κ
· ∂

∂uh

∥∥∥∥1 + κ

p
u

∥∥∥∥
p

=
(
1 + κ

puh
)p−1(∑m

h=1
(
1 + κ

puh
)p)1−1/p ∀1 ≤ h ≤ m

⇒ ‖∇ψκ,p(u)‖q = 1.

The following lemma shows useful properties of functions ψκ,p’s and relates them to the
`p-norm function.

I Lemma 1 ([22]). For arbitrary κ > 0, it holds that
For all u ∈ Rm+ ,

‖u‖p ≤ ψκ,p(u) ≤ ‖u‖p + p(m1/p − 1)
κ

(2)

For all u ∈ Rm+ and v ∈ [0, 1]m, for every coordinate 1 ≤ h ≤ m,

e−κ (∇ψκ,p(u))h ≤ (∇ψκ,p(u + v))h ≤ e
κ (∇ψκ,p(u))h (3)
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The following key inequality is proved in [22, Lemma 3.1].

I Lemma 2 ([22]). Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be
sample without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+

q that
depends only on V1, . . . , Vt−1. Then, for all κ > 0,

E
[〈
V t, U

〉]
≤ eκ ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ

The following corollary is a direct consequence by replacing κ by κ · 1
4 log logn.

I Corollary 3. Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be sample
without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+

q that depends
only on V1, . . . , Vt−1. Then, for all κ > 0,

E
[〈
V t, U

〉]
≤ eκ(log1/4 n) ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ

1
1
4 log logn

I Remark. We emphasize that Lemma 2 and Corollary 3 hold with arbitrary κ > 0 (not
necessarily 0 < κ < 1). Molinaro [22] proved Lemma 2 using the regret-minimization
technique from online learning. It has been observed that there is an interesting connection
between regret minimization and the random-order model: regret minimization techniques
can be used to prove probability inequalities. This direction has been recently explored in
[1, 13, 22]. In particular, employing Lemma 2 and other powerful inequalities, Molinaro [22]
proved competitive algorithms for the load balancing problem in the random-order model.

3 An O(log n/ log log n)-Competitive Algorithm in Random-Order
Setting

We consider the SVCR problem in the random-order setting with the objective of minimizing
the `p-norm of edge loads. The algorithm for the congestion objective will be deduced by
choosing appropriate parameters.

Formulation. We say that C is a configuration if C is a partial feasible solution of the
problem. In other words, a configuration C is a set {(i, Pij) : 1 ≤ i ≤ k, Pij ∈ Pi} where the
couple (i, Pij) represents request i and the selected oi − di path Pij in configuration C to
satisfy request i. Given an arrival order (a permutation) π, denote π(t) the request which is
released at step t in the order π. For any permutation π, let xππ(t),j be a variable indicating
whether the selected path for request π(t) is Pπ(t),j . For a configuration C and a permutation
π, let zπC be a variable such that zπC = 1 if and only if for every (π(t), Pπ(t),j) ∈ C, xππ(t),j = 1.
In other words, zπC = 1 iff the selected solution is C when the request arrival order is π.

Let `(i, Pij) ∈ Rm be the load random vector of path Pij , i.e., `(i, Pij)e = Xi,e for every
e ∈ Pij and equals 0 otherwise (e /∈ Pij). Moreover, let `(C) be the load random vector of
configuration C, i.e., `(C) =

∑
(i,Pij)∈C `(i, Pij). The expected cost (`p-norm objective) of

configuration C is EX
[
‖`(C)‖p

]
where the expectation is taken over the random vectors

Xi,e’s. We consider the following formulation (left-hand side) and the dual of its relaxation.

ISAAC 2019
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minEπ
[∑
C

EX
[
‖`(C)‖p

]
zπC

]
∑

j:Pπ(t),j∈Pπ(t)

xππ(t),j = 1 ∀π, t

∑
C:(π(t),Pπ(t),j)∈C

zπC = xππ(t),j ∀π, t, j

∑
C

zπC = 1 ∀π

xππ(t),j , z
π
C ∈ {0, 1} ∀π, t, j, C

max
∑
π

(∑
t

απt + γπ
)

απt ≤ βπt,j ∀π, t, j (4)

γπ+
∑

(π(t),Pπ(t),j)∈C

βπt,j ≤

≤ P[π] · EX
[
‖`(C)‖p

]
∀π,C (5)

In the primal, the first constraint guarantees that for any arrival order π, request π(t) has
to be satisfied by some path Pπ(t),j ∈ Pπ(t). The second constraint ensures that if request
π(t) selects path Pπ(t),j then the couple (π(t), Pπ(t),j) must be in the solution. The third
constraint says that one always has to output a solution for the problem.

Algorithm. The algorithm is primarily a form of Greedy Restart introduced by Molinaro
[22] in the context of machine load balancing. We consider a generalized version for the
SVCR problem in the angle of a primal-dual method with configuration LPs. Informally, for
every request the algorithm selects a routing path greedily with respect to the function ψκ,p
which depends on the current load vector. However, when half of the requests have been
considered, the algorithm restarts the procedure: it still chooses a routing path greedily with
respect to a function ψκ,p but now the function ψκ,p depends on the load vector induced
only by the second half of the requests. The intuition is the following. In the worst-case
lower bound construction [3, 4, 5], at every time given the current routing the adversary
traps every algorithm to accumulate the loads on links which become congested later. The
restart step in the algorithm avoids accumulating the loads on potentially-congested links.
The formal description of the algorithm is the following.

Let κ > 0 be a fixed parameter to be determined later. Let At be the configuration
(partial solution) of the algorithm before the arrival of the tth request. Initially, A0 = B0 = ∅.
At the arrival of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution of

min
Pij∈Pi

{
ψκ′,p

(
`(Bt) + `(i, Pij)

)
− ψκ′,p

(
`(Bt)

)}
where ` is the load function (defined in the formulation) and κ′ = κ · 1

4 log logn. Update
At+1 = At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.

In the above description of the algorithm, we need the knowledge of k – the number of
requests – in order to reset Bt at t = k/2 + 1. In fact, one can implement the algorithm
without the knowledge of k as the following. Initially, A0 = Bodd = Beven = ∅. At the arrival
of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution of{

minPij∈Pi
{
ψκ′,p

(
`(Bodd) + `(i, Pij)

)
− ψκ′,p

(
`(Bodd)

)}
if t is odd

minPij∈Pi
{
ψκ′,p

(
`(Beven) + `(i, Pij)

)
− ψκ′,p

(
`(Beven)

)}
if t is even

where ` is the load function (defined in the formulation) and κ′ = κ · 1
4 log logn. Update

At+1 = At ∪ (i, Pi,j∗) and update Bodd or Beven depending on whether t is odd or even.
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Analysis

For the sake of simplicity, we will analyze the algorithm using its first description. In the
sequel, we will define the dual variables, prove the feasibility and show the competitive ratio.
As κ (so κ′) and p are fixed, for simplicity, we drop the indices κ′ and p in ψκ′,p.

Dual variables. For any permutation σ, denote Aσt and Bσt as the configurations At and Bt
(respectively) in the execution of algorithm (before the arrival of the tth) request assuming
that the request arrival order is σ. Define the dual variables as follows.

βπt,j := P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
,

απt := P[π]
e2κ(log1/4 n)

EXEσ
[
min
j

{
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)}]
= P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt )

)]
,

γπ := − P[π]
2e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
.

Informally, βπt,j is proportional (up to a factor P[π] = 1/n!) to the expected marginal increase
(over random order σ) of the objective at the arrival of request σ(t) assuming that the
selected strategy to serve σ(t) is Pσ(t),j . Variable απt is also proportional (up to a factor
P[π] = 1/n!) to the expected marginal increase of the objective at the arrival of request σ(t)
due to the algorithm.

I Lemma 4. For any permutation σ, denote Aσ as the final configuration of the al-
gorithm in case that the request arrival order is σ. Suppose that the cost of the algorithm
EXEσ

[
‖`(Aσ)‖p

]
≥ 4eκp(m1/p−1)

κ· 14 log logn . Then the variables defined above constitute a dual feasible
solution.

Proof. The first dual constraint (4) follows immediately the definitions of απt and βπt,j . In
the remaining of the proof, we prove the second dual constraint (5). Fix a configuration C
and a permutation π. Let Pi,c(i) be the path of request i in configuration C. In other words,
configuration C consists of couples (i, Pi,c(i)) for all requests i.

By the definition of dual variables, the second constraint reads: for any given permutation
π and any given configuration C,

−1
2P[π] · EXEσ

[
‖`(Aσ)‖p

]
+

k∑
t=1

P[π] · EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
≤ e2κ(log1/4 n) · P[π] · EX

[
‖`(C)‖p

]
where for any permutation σ, the path Pσ(t),c(σ(t)) of request σ(t) is completely determined
in configuration C, i.e., (σ(t), Pσ(t),c(σ(t))) ∈ C. This is equivalent to

k∑
t=1

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
≤ e2κ(log1/4 n) · EX

[
‖`(C)‖p

]
+ 1

2 · EXEσ
[
‖`(Aσ)‖p

]
. (6)

ISAAC 2019
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We prove Inequality (6). First we bound the sum in the left-hand side for all 1 ≤ t ≤ k/2.

EX
k/2∑
t=1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt ))

]

≤ EX
k/2∑
t=1

Eσ
[〈
∇ψ

(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ
k/2∑
t=1

EXEσ
[〈
∇ψ

(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ ·
k/2∑
t=1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ [`(σ(t), Pσ(t),c(σ(t))

)]∥∥∥∥
p

+ 1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn

)

= e2κ(log1/4 n) · k2 · EX
∥∥∥∥`(C)

k

∥∥∥∥
p

+ eκ
k/2∑
t=1

1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (7)

Recall that `
(
σ(t), Pσ(t),c(σ(t))

)
∈ [0, 1]m. The first and second inequalities follow the

convexity of ψ and Lemma 1 (Inequality (3)), respectively. The third inequality holds by
Corollary 3 and note that ∇ψ

(
`
(
Bσt
))
∈ `+

q by observation (1). The next equality is due to
the fact that σ is an uniform random order. The last inequality follows the assumption of
the algorithm cost.

Now we bound the sum of the left-hand side of Inequality (6) for k/2 < t ≤ k. That can
be done similarly with a subtle observation. For completeness, we show all steps.

EX
k∑

t=k/2+1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt ))

]

≤ EX
k∑

t=k/2+1

Eσ
[〈
∇ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ
k∑

t=k/2+1

EXEσ
[〈
∇ψ
(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]

≤ eκ ·
k∑

t=k/2+1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ[`
(
σ(t), Pσ(t),c(σ(t))

)]∥∥∥∥
p

+ 1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn

)
= e2κ(log1/4 n) · k2 · EX

∥∥∥∥`(C)
k

∥∥∥∥
p

+ eκ
k∑

t=k/2+1

1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (8)
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All the above equalities and inequalities follow by the same arguments as before except the
third inequality. In the latter, we apply Corollary 3 with the observation that ∇ψ

(
`
(
Bσt
))

depends only on (t − k/2 − 1) random load variables due to the fact that the algorithm
restarts at t = k/2. This interesting idea has been observed by Molinaro [22]. Note that this
is the only place we use the restart property of the algorithm.

Hence, summing Inequalities (7) and (8), Inequality (6) follows. J

I Theorem 5. For any arbitrary κ > 0, the algorithm has expected cost at most 2e2κ(log1/4 n)
times the optimal value plus an additive constant 4eκp(m1/p−1)

κ· 14 log logn for the SVCR problem with
`p-norm objective in the random-order setting.

Proof. Consider first the case where the (expected) cost of the algorithm EXEσ
[
‖`(Aσ)‖p

]
≥

4eκp(m1/p−1)
κ· 14 log logn . Then, by the algorithm and the definition of dual variables, the dual objective

equals∑
π

(∑
t

απt + γπ
)

= P[π]
e2κ(log1/4 n)

∑
π,t

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt )

)]
− P[π]

2e2κ(log1/4 n)

∑
π

EXEσ
[
‖`(Aσ)‖p

]
= 1
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσn/2)

)
+ ψ

(
`(Bσn)

)]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2)

∥∥∥
p

+ ‖`(Bσn)‖p
]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2) + `(Bσn)

∥∥∥
p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
= 1
e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
= 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
.

The first inequality follows the properties of ψ (Lemma 1, Inequality (2)). The second
inequality is due to the norm inequality ‖a‖p + ‖b‖p ≥ ‖a + b‖p. The subsequent equality
holds since Bσn/2 ]B

σ
n = Aσ (note that Bσn/2+1 was re-initialized as an empty set).

Besides, the primal is EXEσ
[
‖`(Aσ)‖p

]
. Therefore, by weak duality, EXEσ

[
‖`(Aσ)‖p

]
≤

2e2κ(log1/4 n)OPT where OPT is the value of an optimal solution.
Now consider the case that the expected cost of the algorithm EXEσ

[
‖`(Aσ)‖p

]
is at most

4eκp(m1/p−1)
κ· 14 log logn . Obviously, EXEσ

[
‖`(Aσ)‖p

]
< OPT + 4eκp(m1/p−1)

κ· 14 log logn . Therefore, combining the
cases we deduce that

EXEσ
[
‖`(Aσ)‖p

]
≤ 2e2κ(log1/4 n)OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

. J

I Corollary 6. Assume that the optimum solution is at least 1 (i.e., the optimal routing
is sufficiently congested). Then the algorithm with parameters p = O(logn) and κ = 1 is
O(logn/ log logn)-approximation for the SVCR problem.

ISAAC 2019
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Proof. Recall that the congestion (`∞-norms over edge loads) can be approximated up to
a constant factor by the `p-norm function for p = logm = O(logn). Applying Theorem 5
for p = O(logn) and κ = 1, we have the following upper-bound on the congestion of the
algorithm:

O
(
e2κ(log1/4 n)

)
OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

≤ O
(
e2κ(log1/4 n) + eκ logn

κ · 1
4 log logn

)
OPT

= O

(
log1/4 n+ logn

log logn

)
OPT = O

(
logn

log logn

)
OPT (9)

where OPT is the value of an optimal solution. As the optimum solution is at least 1, the
corollary follows. J

4 A Simple Θ(log n/ log log n)-Approximation Algorithm for Virtual
Circuit Routing

In this section, we revisit the classic virtual circuit routing problem and provide a simple
algorithm with tight approximation guarantee (assuming some complexity hypothesis).

Virtual Circuit Routing. In the problem, there is a directed graph G(V,E) where |V | = n

and a collection of k requests. A request i for 1 ≤ i ≤ k is specified by a origin-destination
pairs oi, di ∈ V , and a positive weight wi representing the (deterministic) load of request
i on an edge e if it is used by request i. The goal is to choose for each request i a routing
path connecting oi and di so that the congestion induced by the collection of all paths is
minimized. The load of an edge e is equal to the total weight of requests routing through
e, i.e.,

∑
i wi where the sum is taken over all requests i whose some path contains e. The

congestion of a collection of paths is the maximum load over all edges.

Approximation algorithm.
1. Normalize all request weights by dividing every weight by maxi′ wi′ . The new normalized

weights w̃i = wi
maxi′ wi′

satisfy w̃i ∈ [0, 1].
2. Define the parameters p = O(logn), κ = 1 and κ′ = 1

4 log logn.
3. Sample an uniform random order of the requests and consider requests in this order.
4. Let At be the configuration (partial solution) of the algorithm before the arrival of the

tth request. Initially, A0 = B0 = ∅. At the arrival of the tth request, denoted as i, select
a path Pi,j∗ that is an optimal solution of

min
Pij∈Pi

ψκ′,p
( ˜̀(Bt) + ˜̀(i, Pij)

)
− ψκ′,p

( ˜̀(Bt)
)

where ˜̀ is the load function with respect to the normalized weights. Update At+1 =
At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.

I Theorem 7 ( [23, 24, 6]). The algorithm has approximation ratio O(logn/ log logn).
Proof. By Corollary 6, specifically Inequality (9), we have the bound on the congestion of
the algorithm (after normalizing the weights):

E[ÃLG] ≤ O
(

logn
log logn

)
ÕPT

where ÃLG and ÕPT are the congestions of the algorithm and the optimal solution with
normalized weights, respectively. Multiplying both sides by the normalizing factor, the
theorem follows. J



T. Nguyễn Kim 39:11

5 Conclusion

In the paper, we have provided a competitive algorithm for the SCVR problem and prove
that the quality of approximation solutions to the problem can be preserved even with the
presence of uncertainty. Through the paper, we also show that primal-dual approaches are
robust in the stochastic model and the random-order model can be used to design/simplify
randomized approximation algorithms. A direction is to design randomized algorithms for
other (stochastic) problems using primal-dual techniques and random-order request sequences.

References
1 Shipra Agrawal and Nikhil R Devanur. Fast algorithms for online stochastic convex pro-

gramming. In Proc. 26th ACM-SIAM symposium on Discrete algorithms, pages 1405–1424,
2014.

2 Matthew Andrews and Lisa Zhang. Logarithmic hardness of the directed congestion minimiza-
tion problem. In Proc. 38th Symposium on Theory of Computing, pages 517–526, 2006.

3 James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line routing of
virtual circuits with applications to load balancing and machine scheduling. Journal of the
ACM (JACM), 44(3):486–504, 1997.

4 Baruch Awerbuch, Yossi Azar, Edward F Grove, Ming-Yang Kao, P Krishnan, and Jeffrey Scott
Vitter. Load balancing in the `p-norm. In Proc. 36th Foundations of Computer Science, pages
383–391, 1995.

5 Ioannis Caragiannis. Better bounds for online load balancing on unrelated machines. In Proc.
19th Symposium on Discrete Algorithms, pages 972–981, 2008.

6 Chandra Chekuri and Mark Idleman. Congestion minimization for multipath routing via
multiroute flows. In Proc. 1st Symposium on Simplicity in Algorithms, 2018.

7 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In Proc. 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 575–584, 2010.

8 Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness of
routing with congestion in directed graphs. In Proc. 39th ACM Symposium on Theory of
Computing, pages 165–178, 2007.

9 Benjamin Doerr. Randomly rounding rationals with cardinality constraints and derandomiza-
tions. In Symposium on Theoretical Aspects of Computer Science, pages 441–452, 2007.

10 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM, 53(3):324–360,
2006.

11 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In Proc. 40th
Symposium on Foundations of Computer Science, pages 579–586, 1999.

12 Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic load
balancing on unrelated machines. In Proc. 29th Symposium on Discrete Algorithms, pages
1274–1285, 2018.

13 Anupam Gupta and Marco Molinaro. How the experts algorithm can help solve LPs online.
Mathematics of Operations Research, 41(4):1404–1431, 2016.

14 Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Stochastic online scheduling on
unrelated machines. In Conference on Integer Programming and Combinatorial Optimization,
pages 228–240, 2017.

15 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Stochastic scheduling of heavy-tailed jobs. In
Proc. 32nd Symposium on Theoretical Aspects of Computer Science, pages 474–486, 2015.

16 Wataru Kishimoto and Masashi Takeuchi. m-route flows in a network. Electronics and
Communications in Japan (Part III: Fundamental Electronic Science), 77(5):1–18, 1994.

ISAAC 2019



39:12 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

17 Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191–217, 2000.

18 Jian Li and Amol Deshpande. Maximizing expected utility for stochastic combinatorial
optimization problems. Mathematics of Operations Research, 2018.

19 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation. In
Proc. 45th Symposium on Theory of Computing, pages 971–980, 2013.

20 Nicole Megow, Marc Uetz, and Tjark Vredeveld. Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research, 31(3):513–525, 2006.
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