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Abstract
The minimum k-path partition (Min-k-PP for short) problem targets to partition an input graph
into the smallest number of paths, each of which has order at most k. We focus on the special case
when k = 3. Existing literature mainly concentrates on the exact algorithms for special graphs, such
as trees. Because of the challenge of NP-hardness on general graphs, the approximability of the
Min-3-PP problem attracts researchers’ attention. The first approximation algorithm dates back
about 10 years and achieves an approximation ratio of 3

2 , which was recently improved to 13
9 and

further to 4
3 . We investigate the 3

2 -approximation algorithm for the Min-3-PP problem and discover
several interesting structural properties. Instead of studying the unweighted Min-3-PP problem
directly, we design a novel weight schema for `-paths, ` ∈ {1, 2, 3}, and investigate the weighted
version. A greedy local search algorithm is proposed to generate a heavy path partition. We show
the achieved path partition has the least 1-paths, which is also the key ingredient for the algorithms
with ratios 13

9 and 4
3 . When switching back to the unweighted objective function, we prove the

approximation ratio 21
16 via amortized analysis.
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1 Introduction

In the minimum k-path partition (abbreviated as Min-k-PP) problem, a simple graph
G = (V,E) is partitioned into the smallest number of paths such that each path has at most
k vertices for a given positive integer k. We can observe that when k = 2 the Min-k-PP
problem is closely related to the maximum matching problem in an unweighted graph and
that when k = n the Min-k-PP problem has an optimal value 1 if and only if the input
graph contains a Hamiltonian path. Besides, the Min-k-PP problem can be treated as a
special case of the minimum k-set exact cover problem by associating each path (of order
at most k) with a set of size at most k. The decision version of the minimum exact cover
problem is one of Karp’s 21 NP-complete problems [5]. To the best of our knowledge, there
are no non-trivial approximation algorithms for the minimum k-set exact cover problem.
The Min-k-PP problem also has a close relation to the classic minimum k-set cover problem,
which does not require the mutual disjointness for the resultant cover. Though the Min-k-PP
and minimum k-set cover problems share some similarities, none contains the other as a
special case. A detailed discussion of the relationship between them can be found in [1].

It is not hard to see the Min-k-PP problem is NP-hard on general graphs [4]. It remains
intractable on cographs [8] and chordal bipartite graphs [9] when k is an input. Moreover,
the Min-k-PP problem remains to be NP-hard in comparability graphs even for k = 3 [9].
Recently, Korpelainen [6] further investigated and depicted the NP-hardness of the Min-k-PP
problem in some special graph classes.

On the positive side, the Min-k-PP problem is polynomial-time solvable in several special
cases. Motivated by the application in network broadcasting, which finds the minimum
number of message originators necessary to broadcast a message to all vertices in a tree
network in one or two time units, Yan et al. [10] presented a linear-time algorithm for the
Min-k-PP problem on trees. A polynomial-time algorithm on cographs when k is fixed was
designed by Steiner [8], who later proposed a polynomial-time solution for the Min-k-PP
problem, with any k, on bipartite permutation graphs [9].

Monnot and Toulouse [7] are the pioneer to investigate the approximability for the
Min-k-PP problem. In particular, they studied the special case, Min-3-PP, and designed a
neat 3/2-approximation algorithm with a running time O(nm+ n2 logn) for general graphs,
where n and m are the numbers of vertices and edges in the graph. Recently, Chen et
al. [2] presented an improved approximation algorithm with a ratio 13/9 by first computing
a k-path partition with the least 1-paths for any k ≥ 3 and then greedily merging three
2-paths into two 3-paths whenever possible. Their greedy algorithm takes O(nm) and O(n3)
time respectively in these two steps. Based on the first step of the 13/9-approximation
algorithm, Chen et al. [1] designed a novel local search scheme to improve the approximation
ratio to 4/3. Specifically, their local search algorithm repeatedly searches for an expected
collection of 2- and 3-paths and replaces it by a strictly smaller replacement collection of
new 2- and 3-paths. It is worth noting that the ratio 4/3 matches the best approximation
ratio for the minimum 3-set cover problem [3]. Due to the similarity between the Min-3-PP
problem and the minimum 3-set cover problem, it seems difficult to improve this ratio a step
further and Chen et al. [1] left an open question for a better approximation algorithm for
the Min-3-PP problem.

Our paper addresses this open question proposed by Chen et al. [1]. Our main con-
tributions are as follows. 1) We propose a novel weight function for `-paths, ` ∈ {1, 2, 3},
which forces any heavy path partition prefer specific combinations of `-paths. In particular,
the number of 1-paths in a heavy path partition cannot be too large. 2) We design a
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greedy local search strategy (named as Greedy) to generate a path partition that contains
2-paths “sparsely” compared with the 3-paths. Moreover, we are able to show there exits an
optimal solution whose number of 1-paths is upper bounded by our greedy solution. 3) We
design another well-designed wide-range tree-like search strategy (named as TreeSearch)
to further reduce the number of 1-paths. More specifically, the resultant path partition
contains the least amount of 1-paths. 4) We conduct an delicate amortized analysis to
show the “sparseness” of 2-paths quantitatively, leading to a better approximation ratio 21

16
(= 1.3125 < 1.3333 ≈ 4

3 ) for the Min-3-PP problem.
In the following, Section 2 introduces basic concepts and notations; Section 3 restates

the classic 3
2 -algorithm by Monnot and Toulouse [7]; Section 4 shows our 21

16 -approximation
algorithm based on non-trivial discoveries of the structural properties of the Min-3-PP
problem; Section 5 concludes the paper and proposes open questions.

2 Preliminaries

We begin with definitions and notations which hold throughout this paper. Let G = (V,E)
be a simple undirected graph, defined by a set of vertices V = {v1, v2, . . . vn} and a set of
undirected edges E = {e1, e2, . . . , em}, where each edge e = {u, v} connects two vertices
u, v ∈ V . Let U ⊂ V be any subset of vertices of G. Then the (vertex) induced subgraph
G[U ] is the subgraph whose vertex set is U and whose edge set consists of edges in E with
both endpoints in U . For any subgraph S of G, let VG(S) and EG(S) denote the vertex set
and edge set of S, respectively. The order of S is defined as the cardinality of VG(S). For
each vertex v ∈ V , define its neighbor set as NG(v) = {u | {u, v} ∈ E(G)} and its degree
as dG(v) = |NG(v)|. If the underlying graph G is clear, we may omit the subscript G in all
notations for the sake of simplicity. In sequel, we use ∪ and ] to denote the set union and
multiset union respectively. For any graph (even multigraph) S with V (S) ⊆ VG, we abuse
the notation G[S] to denote the induced graph (VG(S), E(S)).

A path P inG is a sequence of distinct vertices 〈v1, v2, . . . , v`〉, ` ≥ 1, such that {vi, vi+1} ∈
E, for i = 1, 2, . . . , ` − 1. We say a path is an `-path if its order is `, i.e., |V (P )| = `. A
path partition of G is a collection of vertex disjoint paths P such that V (G) =

⋃
P∈P V (P ).

A k-path partition is a path partition P with each path having at most k vertices for a
given positive integer k, and the minimum k-path partition problem aims at minimizing the
cardinality of P. Our paper considers the special case when k = 3. In the following context,
a path partition is a 3-path partition by default.

Consider an optimal path partition P∗ = {P∗1 ,P∗2 ,P∗3}, where P∗` , ` ∈ {1, 2, 3} denotes
the set of `-paths. Suppose P = {P1,P2,P3} is any feasible path partition on G. Let
OPT = |P∗| and SOL = |P|. Denote the cardinality of P∗` (P`, respectively) as p∗` (p`,
respectively), ` ∈ {1, 2, 3}. Then we have

n = p∗1 + 2p∗2 + 3p∗3 = p1 + 2p2 + 3p3, (1)
OPT = p∗1 + p∗2 + p∗3, (2)
SOL = p1 + p2 + p3, (3)

which implies

SOL ≥ OPT ≥ n

3 . (4)

Let Q`, ` ∈ {1, 2, 3} denote the collection of all possible `-paths in the given graph G

and define Q = Q1 ∪ Q2 ∪ Q3. We introduce two important concept: conflict graph and
intersection graph.

ISAAC 2019
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I Definition 1 (Conflict graph). In a conflict graph, denoted by CG, each vertex represents
an element of Q, i.e., some `-path in G, ` ∈ {1, 2, 3}; and each edge {P,Q} with P,Q ∈ Q
exists only if VG(P ) ∩ VG(Q) 6= ∅. In addition, we add i parallel edges between two vertices
in CG if and only if two corresponding paths in G have i vertices in common.

I Definition 2 (Intersection graph). Considering the optimal partition P∗ and any feasible
partition P, the intersection graph induced P and P∗, denoted by IG, is a bipartite graph,
where each vertex represents an element of P and P∗, and two vertices in IG are adjacent if
and only if the vertex sets of the corresponding paths in G intersect. Similar to the conflict
graph, parallel edges are allowed in IG.

According to the above definitions, parallel edges are allowed in both CG and IG. Next,
we partition the edges of IG into sets Eij , i, j ∈ {1, 2, 3} such that Eij = {{P, P ∗} | P ∩P ∗ 6=
∅, P ∈ Pi, P ∗ ∈ P∗j }. Let mij denote the cardinality of Eij . We have

pi = 1
i

3∑
j=1

mij , p∗j = 1
j

3∑
i=1

mij , n =
∑
i,j

mij . (5)

Then the relation between any feasible solution and the optimal solution can be represented
as follows.

SOL = p1 + p2 + p3 =
3∑

i=1

(
1
i

3∑
j=1

mij

)
= (m11/1 + m12/1 + m13/1) + (m21/2 + m22/2 + m23/2) + (m31/3 + m32/3 + m33/3)
= (m31/3 + m21/2 + m11/1) + (m32/3 + m22/2 + m12/1) + (m33/3 + m23/2 + m13/1)

=

(
3∑

i=1

mi1 −
2
3 m31 −

1
2 m21

)
+

(
1
2

3∑
i=1

mi2 −
1
6 m32 + 1

2 m12

)
+

(
1
3

3∑
i=1

mi3 + 1
6 m23 + 2

3 m13

)
= p∗

1 + p∗
2 + p∗

3 +
(2

3 m13 + 1
2 m12 + 1

6 m23 −
2
3 m31 −

1
2 m21 −

1
6 m32

)
= OPT +

(2
3 m13 + 1

2 m12 + 1
6 m23 −

2
3 m31 −

1
2 m21 −

1
6 m32

)
. (6)

3 A brief review of the classic 3/2-approximation algorithm

For the algorithm designed by Monnot and Toulouse [7], the main idea is to first compute a
maximum matching M1 in the input graph G and then find another maximum matching M2
to connect M1 with the vertices left from the calculation of M1. Since each time an edge is
added to the solution, the number of connected components decreases by 1 and therefore
SOL = n − |M1| − |M2|. Let’s consider the vertex set left over after the first maximum
matching M∗1 is found, i.e., V \V (M∗1 ). For any vertex v ∈ (V \V (M∗1 )) \{

⋃
P∈P∗

1
V (P )}, v

must be contained in some `-path with ` ≥ 2 in the optimal partition, which implies v is
adjacent to some edge in M∗1 . Each vertex in V (M∗1 ) can be adjacent to at most two such
vertices and from the maximality each edge {u, v} in M∗1 can be adjacent to at most two
such vertices. Also from the maximality, we have |M2| ≥ 1

2 (n− 2|M1| − p∗1), which implies
SOL ≤ 1

2 (n+ p∗1). Therefore, OPT = p∗3 + p∗2 + p∗1 = 1
3 (n+ p∗2 + 2p∗1) ≥ 1

3 (n+ p∗1) ≥ 2
3SOL,

which shows an approximation ratio of 3/2.
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4 The 21/16-Approximation Algorithm

Based on the observation and analysis of the equation (6), our main idea is to find a partition
P to minimize m13, m12 and m23. Note that the analysis of our algorithm only depends on
the existence of an optimal partition and we do not need to find an optimal partition.

Due to the definitions of the conflict graph and intersection graph, we may abuse an
`-path to denote a vertex in CG and IG, vice versa. Recall that Q is the collection of all
`-paths, ` ∈ {1, 2, 3}, in G. We define a weight function w(·) mapping each path to a real
value. Specifically, let

w(P ) =


1, if P ∈ Q1;
5, if P ∈ Q2;
8, if P ∈ Q3.

(7)

For any subset Q′ ⊂ Q, let w(Q′) denote the total weight of paths in Q′.

I Definition 3 (Improving set). For any I ⊂ Q\P, NCG(I,P) = NCG(I) ∩ P is the set
of neighbors of I restricted in P. I is an improving set if w(I) > w(NCG(I,P)) and
(P\NCG(I,P)) ∪ I is a partition of G.

Our algorithm, named as Greedy-TreeSearch, is a local search algorithm, which
invokes two local search strategies, Greedy and TreeSearch, as subroutines iteratively
until the total weight of the partition cannot be increased.

The intuition behind the design of our weight function is that we prefer partitioning a
4-path into two 2-paths over partitioning into one 1-path and one 3-path and partitioning
a 6-path into two 3-paths over three 2-paths. When analyzing the algorithm Greedy-
TreeSearch, an optimal solution is compared. Without loss of generality, we choose the
optimal path partition P∗ with the maximum weight with respect to our weight function.

Considering two vertex disjoint paths X,Y ∈ P, we say X and Y are friends if there is
an edge {u, v} incident to both X and Y in the original graph G. Refer to Figure 1 for more
details. If u (v, respectively) is the ending vertex of X (Y , respectively), connecting X and
Y in G via {u, v} forms a path in G and we say X and Y are close friends with respect to
{u, v}. We also say X is a close friend to Y via {u, v} or via u or via v. Otherwise, assuming
u is the middle vertex of X, we say X is an ordinary friend to Y via {u, v}. Or we just say
X and Y are ordinary friends via {u, v}. According to the definitions of different types of
friends, we have the following observation.

x2

y1

z1

x1 x3

y2 y3

z2

Figure 1 An illustration of friends. The solid and dashed edges denote the edges in E(P) and
E(G)\E(P), respectively. The paths in P are indicated in ellipses. The {〈z1, z2〉, 〈y1, y2, y3〉} and
{〈y1, y2, y3〉, 〈x1, x2, x3〉} are two pairs of friends. The first pair are close friends while the second
pair are ordinary friends.

I Observation 4. For any two paths X and Y in a path partition P, X and Y are ordinary
friends only if at least one of them is a 3-path and the friendship is built through the middle
vertex of the 3-path.

ISAAC 2019
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4.1 The Greedy Algorithm
The algorithm Greedy starts with an arbitrary path partition for G and then increases
the partition’s weight by iteratively updating the current partition with an improving set of
size at most 6 until there are no improving sets. The value 6 is determined in the proof for
Lemma 14, where at most 6 paths are involved for the detection of an improving set. We
abuse the notation P to denote the resultant partition when Greedy terminates.

I Lemma 5. For any two friends X and Y in P, if X is a 1-path, Y can only be a 3-path
and the friendship is built through the middle vertex on Y .

Proof. Recall that the weight of a 1-, 2-, 3-path is 1, 5, 8, respectively. We prove the lemma
by contradiction. If Y is an `-path with ` ≤ 2, connecting X and Y forms an (`+ 1)-path,
which is an improving set. Refer to the left two subfigures of Figure 2. If Y is a 3-path and
Y is a close friend of X, connecting X and Y produces a 4-path, which can be partitioned
into two 2-paths 〈x1, y1〉 and 〈y2, y3〉. It is easy to check these two paths form an improving
set. Refer to the third subfigure of Figure 2. The Greedy algorithm will not terminate if
there is an improving set. This implies the correctness of the lemma. J

x1

y1

x1

y1 y2

x1

y1 y2 y3

x1

y2y1 y3

Figure 2 Four subgraphs of G show the different cases of the friendship involving a 1-path. The
solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively. The paths in P are
indicated in ellipses.

x1 x2

y12 y11 y21 y22

x1 x2 x3

y12 y11

y21 y22

y31 y32

Figure 3 The left and right subgraphs show the friendship of a 2-path and 3-path, respectively.
The solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively. The paths in
P are indicated in ellipses.

I Lemma 6. Consider an `-path X = 〈x1, . . . , x`〉 in P. Let Fi denote the set of 2-path
friends in P via xi, i ∈ {1, . . . , `} in the multigraph induced by the union of paths in P and
P∗, that is, G[E(P∗)

⊎
E(P)].

In G[E(P∗)
⊎
E(P)], X has at most 2` distinct friends in P.

There are at most `− 1 distinct 2-paths Yi such that Yi ∈ Fi.

Proof. By Lemma 5, we only need to consider ` ∈ {2, 3}. Since each path in P∗ has an order
at most 3, X can be adjacent to at most 2 other paths in P via one vertex and therefore
X has at most 2` distinct friends in P. Suppose there are ` distinct 2-paths Yi such that
Yi ∈ Fi. Assume Yi = 〈yi1, yi2〉 are the 2-path friends via the ending vertex xi. Refer to
Figure 3. Then the ` 3-paths 〈xi, yi1, yi2〉, i ≤ `, form an improving set, which indicates a
contradiction. J
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Recall that the chosen optimal path partition P∗ has the maximum weight with respect
to our weight function. In addition, we require that |EG(P∗) ∩ EG(P)| is maximized over
all the heaviest optimal path partitions. In other words, we consider the heaviest optimal
path partition that overlaps our solution as many edges as possible. Then we have the
following lemma.

I Lemma 7. Let P∗ be the heaviest optimal path partition that maximizes |EG(P∗)∩EG(P)|.
We have P∗1 ⊆ P1 and thus p∗1 ≤ p1.

Proof. Suppose X = 〈x〉 ∈ P∗1\P1. x must be on some `-path P in P2 ∪ P3. Since P∗ has
the maximum weight, any 1-path in P∗ can only have an ordinary friend in P∗ by a similar
argument in the proof for Lemma 5. Without loss of generality, we assume y is a neighbor of x
on P . Then y has to be the middle vertex of a 3-path in P∗, denoted by Y = 〈y1, y, y3〉. Since
{x, y} ∈ E(P), at least one of {y, y1} and {y, y3} is not in E(P). Assume {y, y1} 6∈ E(P), we
modify the paths X and Y to 〈x, y, y3〉 and 〈y1〉. This modification does not change the weight
of P∗ and |EG(P∗) ∩ EG(P)| is increased by 1, which contradicts to the maximality. J

4.2 The TreeSearch Algorithm
The algorithm TreeSearch aims at reducing the number of 1-paths in the partition P
returned by the Greedy algorithm. Though the TreeSearch algorithm also targets to
find an improving set, the size of an improving set may be fairly large.

Fix any 1-path 〈r〉 in P. We modify the depth first search (DFS for short) to explore G
with the root r. Recall that the DFS grows a tree node by node as deep as possible to expand
the whole connected graph. We modify the DFS as follows: if the currently exploring vertex
u is connected with its parent via an edge in E(G)\E(P) in the current tree, instead of
expanding the vertex as the normal DFS, we expand the current tree simply with the `-path
in P containing u, and then the normal DFS is applied on the ending vertex (or vertices) of
this `-path. Abbreviate the modified DFS as MDFS. Note that the MDFS produces a forest
instead of a spanning tree as the MDFS does not fully expand every node in the graph.

We say an `-path is involved in a tree path PT starting at r, if the intersection of PT
and this `-path is not empty. In Figure 4, the tree path 〈r, x22, x23, x32, x42, x43〉 involves
paths X1, X2, X3, X4. Once the MDFS finds an improving set for the `-paths involved
along a path starting at r, the TreeSearch algorithm refines the current partition. Our
TreeSearch algorithm invokes the MDFS on the 1-paths iteratively until no more improving
sets can be identified.

Let’s consider the multigraph induced by the union of paths in P and P∗, i.e.,
G[E(P∗)

⊎
E(P)]. Let F be the resultant forest returned by the TreeSearch algorithm

on this multigraph. For any 3-path in P involved in F , its endpoints are expanded by the
MDFS but its middle vertex is ignored during the MDFS search. It is possible that this
middle vertex is connected to at most two friends in P. In particular, if the friends is a
1-path, we call it as a free 1-path, which forms a tree of size 1 in the forest F . Refer to Figure
4 for an example of a free 1-path.

I Lemma 8. Consider any tree T in the forest F . For any path connecting the root r and a
leaf in T , suppose the `-paths in P involved in the path are 〈X1, X2, . . . , Xt〉 in order with
X1 = {r}. We claim that

X2, . . . , Xt are all 3-paths and moreover Xi and Xi+1 are ordinary friends, i ∈ {1, . . . , t−
1};
any two involved 3-paths say, X and Y , cannot be connected via the ending vertices in
G[E(P∗)

⊎
E(P)];

the two ending vertices of Xi are not connected in G[E(P∗)
⊎
E(P)].

ISAAC 2019
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r

x21 x22 x23

x31 x32 x33

x41 x42 x43

x51 x52 x53

x61 x62 x63

x71 x72 x73

r′X1

X2

X3

X4

free 1-path X ′1

1-path in P∗

x22

x21 x23

x31 x33

x41 x43

x51 x53

x61 x63

x71 x73

Figure 4 The left subfigure is an MDFS tree, which is highlighted in bold. The solid and dashed
edges denote the edges in E(P) and E(P∗), respectively. The paths in P are indicated in ellipses.
The 1-paths in P∗ are indicated in squares. The right subfigure is the contracted tree T̃ .

Proof. We prove the first claim in the lemma by contradiction. Assume Xj , j ≥ 2 is the
first `-path such that ` < 3 or it is a close friend to Xj−1. Suppose Xi = 〈xi,1, xi,2, xi,3〉, i ∈
{2, . . . , j−1}. If j = 2, the proof reduces to the proof of Lemma 5. We assume j ≥ 3 without
loss of generality.

Xj is an `-path with ` ≤ 2. The 3-paths 〈r, x2,2, x2,1〉, 〈x2,3, x3,2, x3,1〉, . . ., 〈xj−2,3, xj−1,2,

xj−1,1〉 together with the (`+ 1)-path connecting xj−1,3 and Xj form an improving set.
Xj is a 3-path and Xj is a close friend of Xj−1. Connecting Xj and Xj−1,3 produces a
4-path, which can be partitioned into two 2-paths. Together with the 3-paths 〈r, x2,2, x2,1〉,
〈x2,3, x3,2, x3,1〉, . . ., 〈xj−2,3, xj−1,2, xj−1,1〉, we find an improving set.

The TreeSearch algorithm will not terminate if there is an improving set, which implies
the correctness of the claim.

By the first claim, each tree in the forest produced by the TreeSearch algorithm on
G[E(P∗)

⊎
E(P)] can only involve 3-paths if its root is a 1-path in P . Suppose there are two

involved 3-paths X and Y such that they are connected via the ending vertices. Consider
X if 1) X and Y are involved in the same root-to-leaf path and X is the ancestor; 2) X
and Y are involved in different root-to-leaf paths. An improving set can be found similarly
following the argument for the first claim.

The third claim states the edge {xi,3, xi,1} does not exist in G[E(P∗)
⊎
E(P)]. Otherwise,

we can find a 4-path 〈xi−1,3, xi,2, xi,3, xi,1〉 if i ≥ 3 or 〈r, xi,2, xi,3, xi,1〉 if i = 2. Then an
improving set can be identified similar to the proof for the first claim. J

Let’s consider any tree T in the forest F returned by the TreeSearch algorithm. If
we contract the edges in P∗, T become a tree where each internal node has a degree 2 or 4.
Denote the contracted tree as T̃ . Refer to Figure 4 for details.

I Lemma 9. m13 +m12 ≤ m31.

Proof. Since the P∗ contains paths of order at most 3, each edge in EG(T ) ∩ EG(P∗) can
be connected at most once to some leaf in T . In the left subfigure in Figure 4, the edge
{x23, x32} is connected with the leaf x43 in a 3-path in P∗. Each leaf in T is also a vertex in
G thus must be included in some `-path in P∗. According to Lemma 8, different leaves can
only be connected to different edges in E(T ) ∩E(P∗), i.e., different internal nodes in T̃ . If a
leaf is not connected to the other vertex, it must be a 1-path in P∗, which contributes 1 to
the value of m31. Suppose the number of leaves is L. Also assume the number of leaves that
are connected to edges in E(T ) ∩ E(P∗) is L1. Denote the number of remaining leaves as
L2 = L− L1.

In the contracted tree T̃ , each internal node representing edge(s) in E(P∗) has at least
2 children. Thus, the number of leaves in T̃ is at least 1 plus the number of the internal
vertices. Since the P∗ contains paths of order at most 3, each internal node in T̃ can be
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connected to at most one leaf or one free path. Assume without loss of generality that the
number of these two types of internal nodes are I1 and I2 respectively. Each node of the
second type contributes 1 to m13 if the free path is a 1-path. Denote the number of internal
nodes to be I. Then I1 + I2 ≤ I.

According to the definitions of I1, I2, L1, L2, and L, we have

I1 + I2 + 1 ≤ I + 1 ≤ L = L1 + L2;L1 = I1;m13 +m12 = I2 + 1;m31

= L2;m13 ≤ I2 + 1;m12 ≤ 1,

where the last inequality is because of the root contributing 1 to m12 or m13. Using the
above equations and summarizing over all trees in the forest F , we have

m13 +m12 = I2 + 1 ≤ L− L1 = L2 = m31. J

I Corollary 10. Comparing the resultant partition P and any optimal partition P∗, P has
less amount of 1-paths than P∗.

Proof. p1 = m13 +m12 +m11 ≤ m31 +m11 ≤ m31 +m21 +m11 = p∗1. J

Corollary 10 is coincident with an intermediate result in [2, 1]. Combining with Lemma
7, we have the following theorem.

I Theorem 11. For the path partition obtained by our Greedy-TreeSearch algorithm,
there exists an optimal path partition P∗ such that P∗1 = P1 and m13 = m12 = m31 = m21 = 0.

4.3 Algorithm Analysis
Recall that

SOL = OPT +
(

2
3m13 + 1

2m12 + 1
6m23 −

2
3m31 −

1
2m21 −

1
6m32

)
.

By Theorem 11, we have m13 = m12 = m31 = m21 = 0 and thus

SOL ≤ OPT + 1
6 (m23 −m32) . (8)

m23 ≤ n holds trivially as there are at most n
2 2-paths in P and each 2-path contributes

at most 2 to m23. Thus, we have

SOL ≤ OPT + n

6 ≤ OPT + 1
2OPT = 3

2OPT,

which matches the ratio obtained by Monnot and Toulouse [7]. Next, we present an amortized
analysis to show the value of the second term in (8), 1

6m23 in particular, is actually much
less than n

6 . The idea behind is to lower bound the number of 3-paths in P by the number of
effective 2-paths in P , where an effective 2-path means a 2-path that contributes to the value
of the second term in (8). The relation between 2-paths and 3-paths is in turn used to upper
bound the number of 2-paths. Assume α · p2 ≤ p3 for some α > 0. Since 2p2 + 3p3 ≤ n, we
have p2 ≤ n

2+3α . Each 2-path contributes at most 2 to the value of m23. Then we have

SOL ≤ OPT + 1
6 ·m23 ≤ OPT + 1

6 ·
2n

2 + 3α ≤
(

1
2 + 3α + 1

)
OPT, (9)

where the last inequality follows from the fact OPT ≥ n
3 .
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In the following, we consider a connect component in G[E(P∗)
⊎
E(P)], which is induced

by the 2-paths in P and the neighbors in IG from P∗ and thus may contain parallel edges.
Besides, we only consider the 2-path that shares at least one vertex with some 3-path in
P∗, as otherwise a 2-path contributes 0 to m23 and thus a non-positive value to the second
term in (8).

I Lemma 12. For any 2-path X = 〈x1, x2〉 in P, either X has at least one 3-path friend(s),
or X has only one 2-path friend in P which has at least one 3-path friend in P.

Proof. Let Fi denote the set of 2-path friends via xi, i ∈ {1, 2}. Define the cardinality of Fi
as fi. Let ~f = (f1, f2). It is possible that F1

⋂
F2 6= ∅. We introduce F =

⋃
i Fi to denote

the set of distinct 2-path friends of X. Let f = |F|. Suppose X does not have a 3-path
friend in P.

According to Theorem 11, X does not share a vertex with a 1-path in P∗. If X is
contained in a 3-path in P∗, X has only one friend via one ending vertex; otherwise, X
has friend(s) via both ending vertices. By Lemma 6, f ≤ 2. When f = 2, either ~f = (2, 0)
or ~f = (1, 1), both of which are impossible due to Theorem 11 and Lemma 6, respectively.
Thus, we have f = 1. Let F = {Y } and Y = 〈y1, y2〉.
1. ~f = (1, 0): The symmetric case ~f = (0, 1) can be discussed similarly. X must be contained

in a 3-path in P∗, say 〈x1, x2, y1〉. y2 cannot form a 1-path in P∗ by Theorem 11, which
implies Y has another friend via y2, denoted by Z. If Z is a 2-path as shown in the first
subfigure of Figure 5, an improving set 〈x1, x2, y1〉 and 〈y2, z1, z2〉 can be identified. This
is a contradiction

2. ~f = (1, 1): We have F1 = F2 = {Y }. At least one of the 〈x1, y1〉 and 〈x2, y2〉 is a part of
a 3-path in P∗ as otherwise X contributes 0 to m23 and thus can be ignored. Without
loss of generality, assume Y has another friend via y2, denoted by Z. If Z is a 2-path as
shown in the second subfigure of Figure 5, an improving set 〈x2, x1, y1〉 and 〈y2, z1, z2〉
can be identified. This is a contradiction.

y1 y2

x1 x2 z1 z2

y1 y2

x1 x2

z1 z2

Figure 5 The solid and dashed edges denote the edges in E(P) and E(G)\E(P), respectively.
The paths in P are indicated in ellipses. The thick paths form an improving set. J

I Definition 13. We say a 2-path X in P is the special 1-hop-away friend of a 3-path Z in
P, if they satisfy the relation in Figure 5.

In the resultant partition P, suppose each 3-path owns one token. We distribute each
token to 2-paths in P evenly if these 2-paths are the friends or special 1-hop-away friends of
this 3-path in the induced graph G[E(P∗)

⊎
E(P)]. We say such 2-paths are associated with

this 3-path. Assume each 2-path can receive at least γ token in average and the value of γ
will be estimated in Lemma 14.

I Lemma 14. γ = min
{ 2

5 ,
2+γ

6 , 2+3γ
7
}
.

Proof. Consider any 3-path X = 〈x1, x2, x3〉 in P . Let Fi denote the set of 2-path friends via
xi, i ∈ {1, 2, 3}. Define the cardinality of Fi as fi. Let ~f = (f1, f2, f3). Suppose F =

⋃
i Fi

and f = |F|. Assume F = {Y1, Y2, . . . , Yf} and Yi = {yi1, yi2}.
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We claim f ≤ 4. Otherwise, there are five different 2-path friends and we are able to find
three distinct 2-paths Yi such that Yi ∈ Fi, i ∈ {1, 2, 3}, which is contradictory to Lemma
6. Next, we discuss how to distribute the token case by case with respect to the value of
f ≤ 4 and ~f . Due the page limit, we only discuss Case 1: f ≤ 1 and Case 2: f = 2. The
discussions for Case 3: f = 3 and Case 4: f = 4 will delayed to Appendix A.

Case 1: f ≤ 1. There is at most one 2-path friend and possibly one special 1-hop-away
2-path friend. Thus, each 2-path associated with X receives at least 1/2 token.

Case 2: f = 2. There are two distinct 2-path friends. If f1 + f2 + f3 ≥ 4, there exist two
pairs of i and j with i 6= j ∈ {1, 2, 3} such that Fi ∩ Fj 6= ∅, which indicates that X has
no special 1-hop-away 2-path friends. If X has no special 1-hop-away 2-path friends, only
two 2-paths are associated with X and each receives 1

2 token. In the following discussion
under the Case 2, we assume X has at least one special 1-hop-away 2-path friend(s) and
thus we suppose f1 + f2 + f3 ≤ 3.

Case 2.1: f = 2 and f1 + f2 + f3 = 2, i.e., Fi ∩ Fj = ∅, ∀ i 6= j ∈ {1, 2, 3}.
Case 2.1.1: ~f = (2, 0, 0). The symmetric case ~f = (0, 0, 2) can be discussed similarly.

Suppose F1 = {Y1, Y2}. By Theorem 11, Yi must have a friend via yi2, i ∈ {1, 2}.
We claim X has at most one special 1-hop 2-path friend either via Y1 or Y2. Suppose
Yi has a 2-path friend Zi via yi2, i ∈ {1, 2}. As shown in Figure 6, there exists an
improving set {〈z12, z11, y12〉, 〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x2, x3〉}. Moreover, at
least one of Y1 and Y2 has a 3-path friend in P , which cannot be X as ~f = (2, 0, 0).
There are at most three 2-paths associated with X and each receives at least 1+γ

3
token in average.

x1 x2 x3

y11 y12

y21 y22

z11 z12

z21 z22

Figure 6 Case 2.1.1 f = 2 and ~f = (2, 0, 0). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 2.1.2: ~f = (0, 2, 0). Suppose F2 = {Y1, Y2}. By Theorem 11, Yi has another
friend via yi2, denoted as Zi, i ∈ {1, 2}. If at least one of the Z1 and Z2 is a 3-path,
each 2-path (special 1-hop-away) friend receives at least 1+γ

3 token in average.
Suppose both Z1 and Z2 are the special 1-hop-away 2-path friends of X. In the
following discussion, we focus on Z1 Without loss of generality.
By Theorem 11, X have friends in P via both x1 and x3. More specifically, these
friends are 3-paths as we are discussing the case ~f = (0, 2, 0). Let’s focus on the
3-path friend via x3, denoted as Y3 = 〈y31, y32, y33〉. For Y3, we define F ′i , f ′i , F ′,
f ′, and ~f ′ similarly.
Case 2.1.2.1: Y3 is connected with X via y32. We claim f ′1 = f ′3 = 0 and f ′2 ≤

1. Suppose Y3 has a 2-path friend via y33, denoted as Z3 = 〈z31, z32〉. It is
possible that Z3 = Y2. As shown in the first subfigure in Figure 7, there is an
improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y32, y31〉 〈y33, z31, z32〉 }, which
is a contradiction. f ′2 ≤ 1 is because X is a friend of Y3 via y32 and Y3 has at
most one more friend via y32. Thus, there are at most five 2-paths associated
with X and Y3 and each receives at least 2

5 token in average.
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x1 x2 x3

y11 y12

y21 y22

z11 z12 y31

y32

y33 z31

z32 x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32 w31 w32

x1 x2 x3

y11 y12

y21 y22

z11 z12

y31 y32 y33

z31 z32 w31 w32

Figure 7 Case 2.1.2 f = 2 and ~f = (0, 2, 0). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 2.1.2.2: Y3 is connected with X via y31. We claim f ′3 = 0 and f ′1 ≤ 1. The
proof is similar to the Case 2.1.2.1. An analogical example is shown in the second
subfigure of Figure 7.
If f ′1 = 1, denote this friend via y31 as Z3 = 〈z31, z32〉. We claim Z3 has
another 3-path in P, except for X and Y3. It is possible that Z3 is coin-
cident with Y2. By Theorem 11, Z3 has another friend via z32. W3 cannot
be X as we are discussing under the case ~f = (0, 2, 0). If W3 = Y3, de-
pending on whether the friendship is via y32 or y33 there exits an improving
set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y31, z31〉 〈z32, y32, y33〉 } or { 〈z12, z11, y12〉,
〈y11, x2, x1〉, 〈x3, y31, z31〉 〈z32, y33, y32〉 }, respectively, as shown in the fourth
subfigure of Figure 7. This is a contradiction. We claim W3 is a 3-path except for
X and Y3. Otherwise, suppose W3 is a 2-path. As shown in the fifth subfigure
of Figure 7, there is an improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉, 〈x3, y31, z31〉
〈y32, y33〉 〈z32, w31, w32〉 }, which is a contradiction.
If Y3 has a 2-path friend Z3 via y32 and Z3 has another friend in P, except
for X and Y3, we claim Z3 is a 3-path. Otherwise, suppose W3 = 〈z31, z32〉 is
a 2-path. It is possible that Z3 is coincident with Y2. As shown in the sixth
subfigure of Figure 7, there is an improving set { 〈z12, z11, y12〉, 〈y11, x2, x1〉,
〈x3, y31〉 〈z31, y32, y33〉 〈z32, w31, w32〉 }, which is a contradiction.
Due to the previous discussion, we have f ′ ≤ 3 and Y3 has no special 1-hop-away
2-path friends.
1. f ′ = 0: there are at most four 2-paths associated with X and Y3, and each

receives at least 1
2 token in average.

2. f ′ = 1: There is only one 2-path friend associated with Y3. ~f ′ = (1, 1, 0) cannot
happen as we discussed above. If ~f ′ = (1, 0, 0), Y3’ 2-path friend receives
extra γ token from another 3-path. If ~f ′ = (0, 1, 0), Y3’ 2-path friend may
not receive extra tokens from other 3-paths. There are at most five 2-paths
associated with X and Y3. Thus each 2-path receives at least min{ 2+γ

5 , 2
5}

token in average.
3. f ′ = 2: There are two 2-paths associated with Y3. ~f ′ = (1, 2, 0) cannot happen

as we discussed above (also refer to the fourth subfigure of Figure 7). If
~f ′ = (1, 1, 0), Y3’ 2-path friend via y31 receives extra γ token from another
3-path, but Y3’ 2-path friend via y32 may not receive extra token from other
3-paths. If ~f ′ = (0, 2, 0), both Y3’ 2-path friends via y32 have another friends
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except for Y3 and X, and each receives extra γ token from other 3-paths.
There are at most six 2-paths associated with X and Y3. Thus each 2-path
receives at least min{ 2+γ

6 , 2+2γ
6 } token in average.

4. f ′ = 3: There are three 2-paths associated with Y3. If ~f ′ = (1, 2, 0), every Y3’
2-path friend receives extra γ token from another 3-path except for Y3 and X.
There are at most seven 2-paths associated with X and Y3. Thus each 2-path
receives at least 2+3γ

7 token in average.
To summarize, each 2-path receives at least min{ 2

5 ,
2+γ

6 , 2+3γ
7 } token in average.

Case 2.1.3: ~f = (1, 1, 0). The symmetric case ~f = (0, 1, 1) can be discussed similarly.
Suppose F1 = {Y1} and F2 = {Y2}. We claim that X cannot have a special
1-hop-away 2-path friend via Y2. Otherwise, denote this friend as Z2 = 〈z21, z22〉.
As shown in the first subfigure of Figure 8, there is an improving set { 〈x1, y11, y12〉,
〈y21, x2, x3〉, 〈y22, z21, z22〉 }, which is a contradiction.
Suppose X has a special 1-hop-away 2-path friend via Y1, denoted as Z1.
1. If Y2 has a friend via y22, denoted as Z2, Z2 is another 3-path except for X,

following the previous argument. Each of three associated 2-paths receives 1+γ
3

token from X.
2. If Y2 has no other friends via y22, it is contained in a 3-path in P∗ as shown

in in the second subfigure of Figure 8, X have a 3-path friend in P via x3,
denoted as Y3 = 〈y31, y32, y33〉. There are three (special 1-hop-away) 2-path
friends associated with X. By a similar discussion in the Case 2.1.2 “f = 2 and
~f = (0, 2, 0)”, each 2-path receives at least min{ 1

2 ,
2+γ

5 , 2+3γ
6 } token from X and

Y3 token in average.

x1 x2 x3

y11 y12

y21 y22

z11 z12

z21 z22

x1 x2 x3

y11 y12

y21 y22

z11 z12

x1 x2 x3

y11 y12

y21y22

z11 z12

Figure 8 Case 2.1.3 f = 2 and ~f = (1, 1, 0) (left two subfigures) and Case 2.1.4 f = 2 and
~f = (1, 0, 1) (rightmost subfigure). The solid and dashed edges denote the edges in E(P) and E(P∗),
respectively. The thick paths form an improving set.

Case 2.1.4: ~f = (1, 0, 1). Suppose F1 = {Y1} and F3 = {Y2}. Without loss of
generality, assume X has a special 1-hop-away 2-path friend via Y1, denoted as Z1.
By the definition of the special 1-hop-away 2-path friend, Z1 6= Y2. As shown in the
third subfigure of Figure 8, there is an improving set { 〈y12, z11, z12〉, 〈y11, x1, x2〉,
〈x3, y21, y22〉 }, which implies this case is impossible. That is, X has no a special
1-hop-away 2-path friends via Yi, i ∈ {1, 2}.

Case 2.2: f = 2 and f1 + f2 + f3 = 3. There exist some i 6= j ∈ {1, 2, 3} such that
Fi ∩ Fj 6= ∅.

Case 2.2.1: f = 2 and ~f = (1, 1, 1).
Suppose F1 = {Y1}, F2 = {Y1}, and F3 = {Y2}. The symmetric case can be
discussed similarly. We claim X has no a special 1-hop-away 2-path friends via
Yi, i ∈ {1, 2}. Otherwise, if X has a special 1-hop-away 2-path friend via Y1, this
special 1-hop-away 2-path friend can only in the format shown in the first subfigure
of Figure 9, where an improving set {〈z11, y11, x1〉, 〈z12, y12, x2〉, 〈x3, y21, y22〉} can
be identified; if X has a special 1-hop-away 2-path friend via Y2, as shown in the
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x1 x2 x3

y11 y12

y21y22

z11 z12

x1 x2 x3

y11 y12

y21y22z21z22

x1 x2 x3

y11 y12

y21y22

z11 z12

x1 x2 x3

y11 y12

y21y22z21z22

Figure 9 Case 2.2.1 f = 2 and ~f = (1, 1, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

second subfigure of Figure 9, there is an improving set {〈z22, z21, y22〉, 〈y12, y11, x1〉,
〈x2, x3, y21〉}, which is a contradiction.
The case where F1 = {Y1}, F2 = {Y2}, and F3 = {Y1} can be discussed similarly by
following the third and fourth subfigures of Figure 9. To summarize, this case cannot
happen. That is, X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2}.

x1 x2 x3

y11 y12

y21 y22 z21 z22

x1 x2 x3

y11 y12

y21 y22 z21 z22

x1 x2 x3

y11 y12

y21y22z21z22

Figure 10 Cases 2.2.2 – 2.2.4 from left to right. (~f = (1, 2, 0), ~f = (2, 1, 0), ~f = (1, 0, 2)). The
solid and dashed edges denote the edges in E(P) and E(P∗), respectively. The thick paths form an
improving set.

Case 2.2.2: f = 2 and ~f = (1, 2, 0). The symmetric case ~f = (0, 2, 1) can be discussed
similarly. Suppose F1 = {Y1} and F2 = {Y1, Y2}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the first subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y12, y11, x1〉, 〈x3, x2, y21〉},
which is a contradiction.

Case 2.2.3: f = 2 and ~f = (2, 1, 0). The symmetric case ~f = (0, 1, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F2 = {Y1}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the second subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x3, x2, y12〉},
which is a contradiction.

Case 2.2.4: f = 2 and ~f = (1, 0, 2). The symmetric case ~f = (0, 1, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F2 = {Y1}. By the definition of the special
1-hop-away 2-path friend, X has no special 1-hop-away 2-path friends via Y1. We
also claim X has no special 1-hop-away 2-path friends via Y2. Otherwise, denote this
special 1-hop-away 2-path friend as Z2 = 〈z21, z22〉. As shown in the second subfigure
of Figure 10, there is an improving set {〈z22, z21, y22〉, 〈y11, x1, y21〉, 〈x2, x3, y12〉},
which is a contradiction. J

The minimum average number of token a 2-path can receive is γ = 2
5 by solving the

equation in Lemma 14. The total number of token is p3 and thus we have

2
5 · p2 ≤ p3. (10)
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Combining inequalities (10) and (9), we have

SOL ≤ 21
16 ·OPT. (11)

I Theorem 15. Our algorithm Greedy-TreeSearch is a 21
16 -approximation algorithm.

Proof. The approximation ratio is shown in (11). Next we argue the running time of the
Greedy-TreeSearch algorithm is polynomial.

According to the definition of our weight function, the upper bound for the weight of a
path partition is 5× dn2 e. Each iteration of Greedy-TreeSearch identifies an improving
set and the weight of the partition increases by at least 1. Therefore, our local search
algorithm terminates within O(n) iterations. In the worst case, finding an improving set
needs to invoke both Greedy and TreeSearch. The subroutine Greedy searches for
the improving set of size at most 6 by exhausting all possible path set of size 6. Note that
Greedy does not need to recheck all examined path sets. Since the collection of all `-path,
` ∈ {1, 2, 3}, in G has a size O(n3), the total time of invoking Greedy is O(n18). The
subroutine TreeSearch applies the modified depth first search algorithm to G and has a
time complexity O(n+m). To summarize, the time complexity for Greedy-TreeSearch
is O(n18 + n · (n+m)) = O(n18), which is a polynomial. J

5 Conclusion

We study the approximability of the minimum 3-path partition (Min-3-PP) problem, which
has wide applications in the communication network. Several intrinsic structural properties
on the feasible and optimal solutions are discovered. In particular, a quantitative relation
between any feasible solution and the optimal solution to an arbitrary Min-3-PP instance is
described. A further exploration of the optimal solution’s structure distills the quantitative
relation to estimate the number of a special type of 2-paths, named as effective 2-paths.
Then we show that the number of effective 2-paths is upper bounded by a ratio of the
3-paths, which implies the number of effective 2-paths cannot be too large. Inspired by the
discovered properties, a novel weighted local search algorithm is designed to obtain a better
approximation ratio 21

16 for the Min-3-PP problem.
As we discussed in the introduction section, the Min-3-PP problem is closely related

to the minimum 3-set cover problem, for which it is widely believed difficult to break the
approximation barrier of 4/3. However, we break this barrier for the Min-3-PP problem.
It will be interesting to further investigate the differences and similarities between these
two problems. Since the inapproximability of the Min-3-PP problem is still open, it is
interesting to investigate whether there exists a better approximation algorithm or there is
an approximation barrier.

For the general minimum k-path partition problem, its approximability is open in the
literature. We think it should be also interesting to design non-trivial approximation
algorithms even for some fixed k ≥ 4.
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A Further Proof for Lemma 14

Recall that Lemma 14 states each 2-path receives at least γ = min
{ 2

5 ,
2+γ

6 , 2+3γ
7
}
token in

average. We have already discussed Case 1: f ≤ 1 and Case 2: f = 2. Now we continue to
discuss Case 3: f = 3 and Case 4: f = 4.

Case 3: f = 3. There are three distinct 2-path friends. If f1 + f2 + f3 ≥ 5, we have
~f = (1, 2, 2) or (2, 2, 1) or (2, 1, 2) or (2, 2, 2), which is impossible by Lemma 6. Thus,
f1 + f2 + f3 ≤ 4.

Case 3.1: f = 3 and f1 + f2 + f3 = 3, i.e., Fi ∩ Fj = ∅, ∀ i 6= j ∈ {1, 2, 3}.
Case 3.1.1: f = 3 and ~f = (0, 2, 1). The symmetric case ~f = (1, 2, 0) can be discussed

similarly. Suppose F2 = {Y1, Y2} and F3 = {Y3}. Using a similar argument in the
Case 2.1.3 “f = 2 and ~f = (1, 1, 0)”, X cannot have a special 1-hop-away 2-path
friend via Y1 and Y2, which can also be observed from the first subfigure of Figure
11. By Theorem 11, Yi has friends via yi2, i ∈ {1, 2}

x1 x2 x3

y11 y12

y21 y22 y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

z31 z32

Figure 11 Case 3.1.1 f = 3 and ~f = (0, 2, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

We discuss the following cases.
Case 3.1.1.1: X has a special 1-hop-away 2-path friend via Y3. We claim both Y1

and Y2 have 3-path friends except for X, denoted as Z1 and Z2. It is possible
that Z1 = Z2. Assume without loss of generality, let’s focus on Z1. Suppose
Z1 = {z11, z12}. Z1 = Y3 is impossible in this case.
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1. Z1 6∈ {Y2, Y3}. We can find an improving set {〈x1, x2, y11〉, 〈y12, z11, z12〉,
〈x3, y31, y32〉} for P. Refer to the first subfigure in Figure 11.

2. Z1 = Y2. The friendship between Y1 and Y2 can only be built via the
edge {y12, y22}. We can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉,
〈x3, y31, y32〉} for P. Refer to the second subfigure of Figure 11.

There are at most four 2-paths associated with X. Y1 and Y2 both receive γ
token from other 3-paths in P . Thus each 2-path receives at least 1+2γ

4 token in
average.

Case 3.1.1.2: X does not a special 1-hop-away 2-path friend via Y3. We claim at
least one of Yi, i ∈ {1, 2, 3} have 3-path friends except for X. Suppose Z1 = Y3
and Z2 = Y3.
1. The friendship between Y1 and Z is built via the edge {y12, y31}. The friendship

between Y2 and Z can only be built via the edge {y22, y32}. We can find an
improving set {〈x1, x2, y11〉, 〈y21, y22, y32〉, 〈y12, y31, x3〉} for P. Refer to the
third subfigure of Figure 11.

2. The friendship between Y1 and Z is built via the edge {y12, y32}. The friendship
between Y2 and Z can only be built via the edge {y22, y31}. It is symmetric
to the previous case.

3. The friendship between Y1 and Z is built via the edge {y12, y32}. The friendship
between Y2 and Z is built via the edge {y22, y32}. If the edge {x3, y31} is a
2-path in P∗, it contributes 1 to m32. Contracting the vertices x3, y31, y32 does
not affect the value of the second term in (8). It reduces to Case 2 “f = 2”,
where X has two distinct 2-path friends. If the edge {x3, y31} is a part of
3-path in P∗ and x3 is the middle vertex, then f3 = 2, which is a contradiction.
If the edge {x3, y31} is a part of 3-path in P∗ and y31 is the middle vertex, Y3
has another friend in P, denoted as Z3 = 〈z31, z32〉. We claim Z ′ is a 3-path.
Otherwise, We can find an improving set {〈y11, y12, y32〉, 〈y31, z31, z32〉} for P .
Refer to the fourth subfigure in Figure 11.

There are three 2-path associated with X. At least one Yi receive γ token from
other 3-path friends in P. Thus each 2-path receives at least 1+γ

3 token in
average.

To summarize, each 2-path receives at least min{ 1+2γ
4 , 1+γ

3 , 1
2} token in average.

Case 3.1.2: f = 3 and ~f = (0, 1, 2). The symmetric case ~f = (2, 1, 0). can be discussed
similarly. Suppose F2 = {Y1} and F3 = {Y2, Y3}. By Theorem 11, Y1 has another
friend via y12, denoted as Z1. We claim Z1 is a 3-path in P , which implies X has no
special 1-hop-away 2-path friend via Y1. Otherwise, let Z = 〈z1, z2〉. If Z 6∈ {Y2, Y3},
Z must be a 3-path with a similar argument in Case 3.1.1.1; if Z ∈ {Y2, Y3}, say
Z = Y2, the friendship between Y1 and Y2 can only be built via the edge {y12, y22}
and we can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉, 〈x3, y31, y32〉} for P.
Refer to Figure 12. On the other hand, following from a similar argument in Case
2.1.1 “f = 2 and ~f = (2, 0, 0)”, X has at most one special 1-hop-away 2-path friend
either via Y2 or Y3, say Y2 without loss of generality, and Y3 has a another 3-path
friend in P.
To summarize, there are at most one special 1-hop away 2-path friend associated
with X and each 2-path receives at least min{ 1+γ

3 , 1+2γ
4 } token from X.

Case 3.1.3: f = 3 and ~f = (2, 0, 1). The symmetric case ~f = (1, 0, 2) can be discussed
similarly. Suppose F1 = {Y1, Y2} and F3 = {Y3}. Using a similar argument in the
Case 2.1.4 “f = 2 and ~f = (1, 0, 1)”, X cannot have special 1-hop-away 2-path
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x1 x2 x3

y11 y12 y21 y22

y31 y32

Figure 12 Case 3.1.2 f = 3 and ~f = (0, 1, 2). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

friends via Y1 and Y2, which can also be observed from the first subfigure of Figure
13. The Case 3.1.1 “f = 3 and ~f = (0, 2, 1)” is a “semi-symmetric” to this case. Since
the edge {x2, x3} is not used to construct an improving set during the discussion for
the Case 3.1.1, the same argument still holds correctly. Subfigures for corresponding
different subcases are shown in Figure 13. To summarize, each 2-path receives at
least min{ 1+2γ

4 , 1+γ
3 } token in average.

x1 x2 x3

y11 y12

y21 y22

y31y32

z11 z12

x1 x2 x3

y11 y12

y21 y22

y31y32

x1 x2 x3

y11 y12

y21 y22

y31y32

x1 x2 x3

y11 y12

y21 y22

y31y32

z′1z′2

Figure 13 Case 3.1.3 f = 3 and ~f = (2, 0, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 3.1.4: f = 3 and ~f = (1, 1, 1). That is, F1 = Y1, F2 = Y2, F3 = Y3, which is
impossible by Lemma 6.

Case 3.2: f = 3 and f1 + f2 + f3 = 4. There exist some i 6= j ∈ {1, 2, 3} such that
Fi ∩ Fj 6= ∅.
Case 3.2.1: ~f = (0, 2, 2). The symmetric case ~f = (2, 2, 0) can be discussed similarly.

Without loss of generality, suppose F2 = {Y1, Y2} and F3 = {Y1, Y3}. By Theorem
11, Yi has another friend via yi2, denoted as Zi, i ∈ {2, 3}. By a similar argument
in Case 2.2.2 “f = 2 and ~f = (1, 2, 0)” and Case 2.2.3 “f = 2 and ~f = (2, 1, 0)”, we
claim X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2, 3}.
We claim Z2 is a 3-path. Otherwise, let Z2 = {z21, z22}. If Z2 = Y3, the friendship
between Y2 and Y3 can only be built via the edge {y22, y32}, we can find an improving
set {〈x1, x2, y21〉, 〈y22, y32, y31〉, 〈y11, y12, x3〉} for P , as shown in the first subfigure
of Figure 14. If Z2 6= Y3, there is an improving set {〈x1, x2, y21〉, 〈y22, z1, z2〉,
〈x3, y31, y32〉} for P, as shown in the second subfigure of Figure 14.
Similarly, we can also prove Z3 is a 3-path. To summarize, there are three 2-paths
associated with X. Each of Y2 and Y3 receives γ token from other 3-path friends in
P. Thus each 2-path receives at least 1+2γ

3 token in average.
Case 3.2.2: ~f = (2, 0, 2). Without loss of generality, suppose F1 = {Y1, Y2} and
F3 = {Y1, Y3}. By a similar argument in Case 2.2.4 “f = 2 and ~f = (1, 0, 2)”, we
claim X has no special 1-hop-away 2-path friends via Yi, i ∈ {1, 2, 3}. The Case
3.2.1 “f = 3 and ~f = (2, 0, 2)” is a “semi-symmetric” to this case. Since the edge
{x2, x3} is not used to construct an improving set during the discussion for the
Case 3.2.1, the same argument still holds correctly. A set of subfigures for different
subcases is shown in Figure 14. Each associated 2-path receives at least 1+2γ

3 tokens
in average.
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x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

z21 z22

x2x1 x3

y11 y12

y21 y22 y31 y32

x2x1 x3

y11 y12

y21 y22 y31 y32

z21 z22

Figure 14 Case 3.2.1 f = 3, ~f = (0, 2, 2) (left two subfigures) and Case 3.2.2 f = 3, ~f = (2, 0, 2)
(right two subfigures). The solid and dashed edges denote the edges in E(P) and E(P∗), respectively.
The thick paths form an improving set.

Case 3.2.3: ~f = (2, 1, 1). The symmetric case ~f = (1, 1, 2) can be discussed similarly.
Suppose F1 = {Y1, Y2}, F2 = F3 = {Y3}. We claim X cannot have a special
1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3}. The correctness proof follows from
a similar argument in Case 2.2.1 “f = 2 and ~f = (1, 1, 1)”. By Theorem 11, Yi
has another friend via yi2, denoted as Zi, i ∈ {1, 2}. We claim Zi is a 3-path in P,
i ∈ {1, 2}. Otherwise, let Z1 = {z11, z12}.

If Z 6∈ {Y2, Y3}, we can find an improving set {〈y11, x1, x2〉, 〈y12, z11, z12〉,
〈x3, y32, y31〉} for P. Refer to the first subfigure in Figure 15.
If Z = Y2, the friendship between Y1 and Z can only be built via the edge
{y12, y22} and we can find an improving set {〈y11, x1, x2〉, 〈y12, y22, y21〉,
〈x3, y32, y31〉} for P. Refer to the second subfigure in Figure 15.
If Z = Y3 and the friendship between Y1 and Z is built via the edge {y12, y31},
we can find an improving set {〈x1, y21, y22〉, 〈x2, x3, y32〉, 〈y11, y12, y31〉} for P.
Refer to the third subfigure in Figure 15.
If Z = Y3 and the friendship between Y1 and Z is built via the edge {y12, y32},
we can find an improving set {〈x1, y21, y22〉, 〈x3, x2, y31〉, 〈y11, y12, y32〉} for P.
Refer to the fourth subfigure in Figure 15.

To summarize, each 2-path receives at least 1+2γ
3 token in average.

x1 x2 x3

y11 y12

y21 y22 y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

x1 x2 x3

y11 y12

y21 y22 y31 y32

Figure 15 Case 3.2.3 f = 3 and ~f = (2, 1, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 3.2.4: ~f = (1, 2, 1). Suppose F1 = {Y1}, F2 = {Y2}, F3 = {Y3}. We claim X

cannot have a special 1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3}. The correctness
proof follows from a similar argument in Case 2.2.1 “f = 2 and ~f = (1, 1, 1)”. By
Theorem 11, Yi has another friend via yi2, denoted as Zi, i ∈ {1, 2}. We claim Zi is
a 3-path in P, i ∈ {1, 2}. Otherwise, let Z1 = {z11, z12}.

If Z 6∈ {Y2, Y3}, we can find an improving set {〈x1, x2, y11〉, 〈y12, z11, z12〉,
〈x3, y32, y31〉} for P. Refer to the first subfigure in Figure 16.
If Z = Y2, the friendship between Y1 and Z can only be built via the edge
{y12, y22} and we can find an improving set {〈x1, x2, y11〉, 〈y12, y22, y21〉,
〈x3, y32, y31〉} for P. Refer to the second subfigure in Figure 16.
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If Z = Y3, the friendship between Y1 and Z is built via the edge {y12, y32} or
{y12, y31}. We consider the first case without loss of generality. By Theorem 11,
Y2 has another friend via y22, denoted as Z ′. We claim Z ′ 6= Z. Otherwise, the
friendship between Y2 and Z can only be built via the edge {y22, y31}. Refer to
the third subfigure in Figure 16. We can find an improving set {〈y21, y22, y31〉,
〈y11, y12, y32〉} for P.

To summarize, each 2-path receives at least 1+2γ
3 token in average.

x1 x2 x3

y11 y12

y21 y22

y31 y32

z11 z12

x1 x2 x3

y11 y12

y21 y22

y31 y32

x1 x2 x3

y11 y12

y21 y22

y31 y32

Figure 16 Case 3.2.4 f = 3 and ~f = (1, 2, 1). The solid and dashed edges denote the edges in
E(P) and E(P∗), respectively. The thick paths form an improving set.

Case 4: f = 4.
By Lemma 6, we cannot find three distinct 2-paths Yi such that Yi ∈ Fi, i ∈ {1, 2, 3},
which implies f1 + f2 + f3 < 5, that is f1 + f2 + f3 = 4. Moreover, there exits one
i ∈ {1, 2, 3} such that fi = 0. Otherwise, each Fi contains distinct 2-path friends,
which is a contradiction.
Case 4.1: f = 4 and ~f = (0, 2, 2). The symmetric case ~f = (2, 2, 0) can be discussed

similarly. Suppose F2 = {Y1, Y2} and F3 = {Y3, Y4}. Using a similar argument in
the Case 2.1.3 “f = 2 and ~f = (1, 1, 0)”, X cannot have a special 1-hop-away 2-path
friend via Y1 and Y2. Besides, using a similar argument in the Case 2.1.1 “f = 2
and ~f = (2, 0, 0)”, X has at most one special 1-hop-away 2-path friend either via Y3
or Y4, and at least one of Y3 and Y4 has a another 3-path friend in P. We discuss
the following cases.
Case 4.1.1: X has a special 1-hop-away 2-path friend via Y4 without loss of gen-

erality. Following in the argument in Case 3.1.1.1, both Y1 and Y2 have 3-path
friends except for X. There are five 2-paths associated with X. Yi, i ∈ {1, 2, 3},
receives γ token from other 2-paths in P . Therefore, each 2-path receives at least
1+3γ

5 token in average.
Case 4.1.2: X has no special 1-hop-away 2-path friends. There are four 2-paths

associated with X. For at least two paths in {Yi, i ∈ {1, 2, 3, 4}}, each receives
γ token from other 2-paths in P. Therefore, each 2-path receives at least 1+2γ

4
token in average.

To summarize, each 2-path associated with X receives at least min{ 1+3γ
5 , 1+2γ

4 }
token in average.

Case 4.2: f = 4 and ~f = (2, 0, 2). Suppose F1 = {Y1, Y2} and F3 = {Y3, Y4}. Using
a similar argument in the Case 2.1.4 “f = 2 and ~f = (1, 0, 1)”, X cannot have a
special 1-hop-away 2-path friend via Yi, i ∈ {1, 2, 3, 4}. Besides, using a similar
argument in the Case 2.1.1 “f = 2 and ~f = (2, 0, 0)”, at least one of Y1 and Y2 (Y3
and Y4) has a another 3-path friend in P. There are four 2-paths associated with
X For at least two paths in {Yi, i ∈ {1, 2, 3, 4}}, each receives γ token from other
2-paths in P . Therefore, each 2-path associated with X receives at least 1+2γ

4 token
in average.
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