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Abstract
As the prevalence of E-commerce continues to grow, the efficient operation of warehouses and
fulfillment centers is becoming increasingly important. To this end, many such warehouses are
adding automation in order to help streamline operations, drive down costs, and increase overall
efficiency. The introduction of automation comes with the opportunity for new theoretical models
and computational problems with which to better understand and optimize such systems.

These systems often maintain a warehouse of standardized portable storage units, which are
stored and retrieved by robotic workers. In general, there are two principal issues in optimizing
such a system: where in the warehouse each storage unit should be located and how best to retrieve
them. These two concerns naturally go hand-in-hand, but are further complicated by the unknown
request frequencies of stored products. Analogous to virtual-memory systems, the more popular
and oft-requested an item is, the more efficient its retrieval should be. In this paper, we propose a
theoretical model for organizing portable storage units in a warehouse subject to an online sequence
of access requests. We consider two formulations, depending on whether there is a single access
point or multiple access points. We present algorithms that are O(1)-competitive with respect to an
optimal algorithm. In the case of a single access point, our solution is also asymptotically optimal
with respect to density.
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1 Introduction

Online shopping has grown rapidly in recent years and, as such, the efficiency of the
warehouses and fulfillment centers that support it plays an increasingly important role.
Several companies have developed automated systems to help streamline operations in these
warehouses, drive down the costs of order fulfillment, and increase overall efficiency. The
introduction of automation comes with the opportunity for new theoretical models and
computational problems with which to better understand and optimize such systems.

These systems often maintain a warehouse of standardized portable storage units, which
are stored and retrieved by robots [12, 14]. For example, Amazon’s Kiva robots and Alibaba’s
Quicktron robots help to streamline the order-fulfillment process. The Amazon robots are 16
inches tall, weigh almost 145 kilograms, can travel at 5 mph, and carry a payload weighing
up to 317 kilograms. These robots maneuver themselves under standardized shelving units,
lift them from below, and carry them to a location in the warehouse where a human waits to
complete an order with items from the shelf.

The frequency with which each storage unit is accessed varies, and so, intuitively, units
that are accessed more often should be placed closer to the access points than those that are
less frequently accessed. As access probabilities vary over time, there is a natural question of
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how to dynamically organize the warehouse’s placement of storage units in order to guarantee
efficient access at any time. In this paper we will develop a simple computational model
for a “self-organizing warehouse,” and we present online algorithms for solving them. We
demonstrate that our algorithms are competitive with optimal algorithms in our model. Our
work can be viewed as a geometric variant of online algorithms for self-organizing lists and
virtual memory management systems [1, 19].

From a practical perspective there are many ways in which to model objects residing in
a warehouse. In order to obtain meaningful theoretical results without imposing irrelevant
technical details, we propose a very simple and general model, which encapsulates the most
salient aspects of efficient self-organizing behavior. We model storage units, or boxes, as
movable unit squares on a grid in the plane. In addition to the boxes, there are designated
fixed points, called access points, where boxes are brought on demand. The input consists of
a sequence of access requests, each specifying that a particular box in the system be moved
to a given access point.

There are two natural ways in which to move boxes in a planar setting, picking them
up (like cargo containers by an overhead crane) and sliding them along the ground (like the
aforementioned robotic systems). The former is simpler to describe and analyze. The latter
is more realistic and is consistent with other motion-planning models [11, 10]. Another issue
is the geometrical configuration of the warehouse and the locations of the access points. We
present clean and simple models based on infinite and semi-infinite grids and show how to
generalize our solutions to rectangular warehouses.

We consider two versions of the problem: the attic problem, where there is a single access
point and the warehouse problem, where there are multiple access points. In each version
and for each motion type, we present an online algorithm that is competitive with respect to
an optimal solution that has knowledge of the entire access sequence. Details of the problem
formulations and results are given in the next section.

1.1 Model and Results
We model a warehouse as a rectangular subset Ω of Z2, the square grid in the plane.
Throughout, distances are measured in the `1 metric (the sum of absolute differences in x
and y coordinates). We are given a finite set A = {a1, . . . , am} ⊆ Ω of stationary access
points and a (significantly larger) finite set B = {b1, . . . , bn} of portable storage units, called
boxes. Each box is a unit square. At any time, its lower left corner coincides with a grid
point in Ω, called its location. A point of Ω that contains a box is said to be occupied, and
otherwise it is unoccupied. No two boxes may occupy the same location at the same time.

The initial layout of the boxes is specified in the input. This is followed by a sequence of
access requests, each being a pair (b, a), which involves moving box b ∈ B from its current
location to access point a ∈ A. Access requests are processed sequentially, meaning that
each request is completed before the next one is started. Since the access point may already
be occupied, it will be necessary to reorganize box locations. This reorganization should be
performed with care, keeping frequently accessed boxes near the access point and moving less
frequently accessed boxes to the periphery. The challenge is that we do not know the future
access sequence, and yet we wish to be competitive with an optimal algorithm that does.

In general, the reorganization following each access request will involve a sequence of
box movements. The box at the access point is displaced to a nearby location, the box at
this location is then displaced to a new location, and so on. This chain of box movements
continues until the last box in the chain arrives at an unoccupied square of the grid, possibly
the original location of the requested box. More formally, let p0 denote the original location
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of b, and let p1 denote the location of a. If a is not occupied, b is simply moved here, and
we are done. Otherwise, the algorithm determines a chain p2, . . . , pk of locations, where
p2, . . . , pk−1 are occupied and pk is unoccupied (see Fig. 1(a)). (Note that p0 is considered
to be unoccupied, because its box has been moved to the access point.) We call this a
reorganization chain. If pk 6= p0, this is an open chain (see Fig. 1(b)), and otherwise it is a
closed chain (see Fig. 1(c)).

(a) (c)

Request

(b)

Open chain

b p0

p1

p2
p3

p4

p5

a

Closed chain

p0

p1

p2
p3

p4

Figure 1 Processing a request.

For the sake of presenting our algorithms, it will be useful to describe the relocation
process in terms of a sequence of motion primitives. In the case where boxes can be picked up
(as by an overhead crane), the primitive operation is a swap, which exchanges the contents of
two grid squares. The cost of the operation is the `1 distance between the two locations. The
aforementioned reorganization involving a chain 〈p0, . . . , pk〉 (whether open or closed) can be
executed by swapping boxes in reverse order along the chain, that is, pk ↔ pk−1 ↔ · · · ↔ p0
(see Fig. 2(a)).
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Figure 2 Motion primitives.

Alternatively, when boxes are moved along the ground the associated primitive operation
is called sliding. As with swapping, the contents of two grid locations are swapped, but the
boxes are moved along a rectilinear path of unoccupied grid locations (see Fig. 2(b)). The
cost of the operation is the `1 length of the path, which may generally be much higher than
the `1 distance between the two locations.

Sliding motion is more relevant in contexts where the boxes are being moved by robots,
but it is complicated by the need to create empty space in which to move boxes. Our solutions
will be based on first presenting a simple swapping-based solution and then showing how to
adapt this to sliding motion without significantly increasing the cost. These two primitives
provide a conceptually clear and simple model of motion costs. Of course, in practice, many
other realistic issues would need to be considered.
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Our problem formulations involve a problem instance, which consists of a specification
of the domain Ω and the locations of the m access points A. An input to a given instance
consists of the initial locations of the n boxes followed by a sequence S of access requests.
For each access request, the output consists of the sequence 〈p0, . . . , pk〉 along which motion
primitives are applied (either swapping or sliding, depending on the model). Since our focus
is on reorganization strategies, we ignore a number of issues needed for a complete model,
such as how to coordinate the movement of multiple robots. We focus on two versions of the
problem depending on the number of access points (see Fig. 3):

Attic Problem: Ω is an axis-aligned rectangle containing a single access point.

Warehouse Problem: Ω is an axis-aligned rectangle with access points on its bottom side.

boxes

a1 a2 a3 a4 a5 access points

access point

Attic Problem Warehouse Problem
Ω

Ω

Figure 3 Problem versions.

We consider the above problems in an online setting, which means that each access request
is processed without knowledge of future requests. In contrast, in an offline setting the entire
access sequence is known in advance. An online algorithm is said to be c-competitive for a
constant c ≥ 1, called the competitive ratio, if for all sufficiently long access sequences S, the
total cost of this algorithm is at most a factor c larger than the cost of an optimal offline
solution for the same sequence. We say that an algorithm is competitive if it is c-competitive
for some constant c, independent of m, n, the size of the domain, and the length of the
access sequence. (The competitive ratios that result from our analyses are relatively high,
and we suspect that they are far from tight. Reducing them will involve establishing better
lower bounds on the optimum algorithm, and this seems to be quite challenging.) The notion
of “sufficiently long access sequence” allows us to ignore start-up issues, such as the initial
locations of the boxes.

Our main results are competitive online algorithms for these two problems in both
the swapping- and sliding-motion models (presented in Theorems 1, 9, 10, and 12). Our
result for the attic problem has the additional feature of being asymptotically optimal
with respect to box density. (The precise definition will be given in Section 2.3.) These
online algorithms exploit an intriguing connection between these problems and the task of
maintaining hierarchical memory systems [1]. Hierarchical memory systems are linear in
nature, and the geometric context of the our problems introduces novel challenges, since the
reorganization must take into account the 2-dimensional locations of the boxes. Also, when
sliding is involved, it is necessary to manage the set of unoccupied squares to guarantee short
access paths.
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1.2 Prior Work
There have been a number of papers devoted to the problem of organizing storage units
in warehouses. Much of the prior work has focused on solving the various engineering
challenges involved.

For example, Amato et al. [2] study control algorithms for the warehouse robots, assuming
a continuous distribution of item locations throughout the warehouse and ignoring the
benefits of intelligent item placement. In a similar vein, Chang et al. [5] attempt to minimize
unnecessary task repetition using genetic algorithms, thus shortening robot travel times, but
assume a fixed storage scheme regardless of differing access frequencies. Sarrafzadeh and
Maddila [17] use a discrete grid-based model, as we will, but their focus is still an engineering
one, concerned primarily with robot path-finding and constructing clearings through which
to move. Closer to our work, Pang and Chan [16] address the question of where certain
items should be stored in the warehouse, proposing a data-mining approach to determine
the relationships between products and co-locating those that are often purchased together.
Experimental analysis shows that their methodology outperforms a simple greedy policy, but
they do not present any proofs on the performance of their approach.

The word “warehouse” has been used for various optimization problems. In the context
of operations research, the warehouse problem was proposed by Cahn [3] and later refined
and extended by Charnes and Cooper [6] and Wolsey and Yaman [20]. This work may sound
related to ours, but its focus is on the logistics of managing a warehouse’s stock in the face of
changing demand. The word is also used in the context of coordinated motion planning under
the name of the warehouseman’s problem. This is a multi-agent motion planning problem
amidst obstacles. It has been shown to be PSPACE-hard [11, 10], but efficient solutions exist
for restricted versions (see, e.g., [18]).

While our approach is theoretical in nature, we avoid the high complexity of the ware-
houseman’s problem by restricting shapes of boxes (to unit squares) and the allowed layout of
boxes (by introducing additional empty working space throughout to facilitate easy motion).
The problems we study are less focused on motion planning and more on how to organize
the warehouse’s contents to ensure efficient processing of a series of access requests.

More closely related to our work is the dial-a-ride problem [7]. In this problem, a set
of users must be conveyed from source locations to specified destinations in a metric space.
The goal is to plan a route (or routes, in the case of multiple vehicles or the more general
k-server problem [13]) that satisfies all transportation requests while minimizing total distance
traveled. One key difference is that the source locations are fully specified by the problem
input, whereas in the warehouse problem the location of requested boxes can be adjusted
according to need, and how best to do so is central to the problem.

As mentioned earlier, our work is similar in spirit to online algorithms for self-organizing
memory structures [1, 19]. Another example is the work of Fekete and Hoffmann [8], who
consider the online problem of packing variously sized squares into a dynamically sized
square container.

2 Online Solution to the Attic Problem

In this section we present an online algorithm for the attic problem (single access point).
We will show that the resulting scheme is competitive with respect to an optimal algorithm.
As mentioned above, we exploit ideas from hierarchical memory systems. In such systems,
memory consists of objects called pages, which are organized into blocks, called caches.
Successive caches have higher storage capacity but higher access times. A common method

ISAAC 2019
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for organizing such memory structures involves a block-based version of the least-recently
used (LRU) policy, called Block-LRU of Aggarwal et al. [1]. In this policy, whenever a page
is accessed it is brought to the lowest level cache, and the page that has resided in this
cache for the longest time is evicted to the next higher level cache. The process is repeated
until reaching the lowest cache that has space to hold this page, possibly the cache that
contained the originally requested page. We next describe how the Block-LRU algorithm
can be adapted to our geometric setting.

2.1 Hierarchical Model
In hierarchical memory systems, the cost of accessing an object is purely a function of
each cache’s speed. In our geometric context, the cost depends on the total cost of the
motion primitives, which depends on the `1 distances between the locations of the boxes in
the reorganization chain. The principal challenge is adapting the cache-based cost to the
geometric setting. Our approach to the attic problem is based on surrounding the access point
by collection of nested regions, called containers. Analogous to caches in the hierarchical
memory systems, containers that are closer to the access point provide faster access but have
lower storage capacity compared with those farther out.

It will simplify matters to describe the solution first for the infinite grid. We define a
hierarchical model, which is based on an infinite sequence of nested containers, C0, C1, . . .,
where C0 consists only of the origin (the access point), and for k ≥ 1, Ck consists of the
points of Z2 that whose `1 distance from the origin varies from 2k−1 + 1 to 2k (see Fig. 4
below). Whenever a box b is requested, it is first moved to the access point, and then a
series of evictions takes place, where, for k = 0, 1, . . . a box from container Ck is moved to
container Ck+1. The precise manner in which this is done for swapping and sliding motions
is explained in Sections 2.2 and 2.3, respectively.

2.2 Online Algorithm for Swapping Motion
In this section we present an online algorithm solving the attic problem in the case of
swapping motion, called Block-LRUA. Consider a request for a box b. If the access point
is unoccupied, we simply move the box there. Otherwise, in order to make space for b, we
evict the least-recently accessed box from C0, C1, and so on until we encounter the first
container Ck that has at least one unoccupied location (including possibly b’s location at
the time of the request). More formally, let pb denote b’s location, let p0 denote the access
point (origin), and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of
containers C1 through Ck−1, respectively. Finally, let pk ∈ Ck denote the final unoccupied
location (possibly the former location of b). As described in Section 1.1, we achieve this by
performing swaps in reverse order pk ↔ pk−1 ↔ · · · ↔ p0 ↔ pb (see Fig. 4(a)). The cost is
the sum of the `1 distances between consecutive pairs.

In order to apply this for a rectangular domain Ω, we simply clip the boundary of the
containers at the limits of Ω (see Fig. 4(b)). We show next that this is competitive.

I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence
R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming swapping motion.

Due to space limitations, the full proof and competitive analysis appear in Appendix A.1.
In essence, the containers are treated as the caches of a memory hierarchy and then the
standard LRU analysis of [19] and the Block-LRU analysis of [1] are adapted to our case.
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Figure 4 (a) Nested containers for the attic problem and (b) restriction to a rectangular domain.

2.3 Online Algorithm for Sliding Motion
In order to accommodate the added constraints involved in sliding boxes around the space,
we constrain the manner in which boxes are arranged throughout the domain in order to
retrieve them efficiently. An obvious solution would be to arrange the boxes in rows connected
by empty corridors, as in typical warehouses. However, this is not efficient asymptotically,
because it implies that the number of unoccupied squares in any region of space is at least
a constant fraction of the available space. We will adopt a more space-efficient approach
by packing distant boxes more densely. While these distant boxes will require more cost
to access, this cost can be amortized against the cost incurred by their distance from the
access point.

To make this formal, we define a layout scheme to be a subset of the integer grid Z2,
which we will think of as a subset of the unit squares. For each integer s, define n(s) to be
the number of squares of the layout that lie within an s× s square that is centered about
origin. Define the asymptotic density to be the limiting ratio of the fraction of squares in the
layout lying within such origin-centered squares, that is, lims→∞ n(s)/s2. For example, the
layout that places boxes at every point of the grid has an optimal asymptotic density of 1,
and a layout that places boxes only on the white squares of an infinite chessboard has an
asymptotic density of 1/2.

In this section, we describe a layout that achieves the optimal asymptotic density of 1
and show how to convert our swapping-based Block-LRUA algorithm to the sliding context
at the expense of an additional constant factor in cost.

2.3.1 The Nicomachus Layout
Out layout scheme inspired by a well-known visual proof of Nicomachus’s Theorem [15],
which is shown in Fig. 5(a).1 The grid is partitioned into expanding concentric rings of
square regions, denoted r1, r2, . . .. The innermost ring, r1, consists of 4 unit squares. Ring
r2 consists of eight copies of a 2× 2 square region surrounding r1. In general, rk consists of
4k copies of a k × k square region surrounding rk−1.

1 Nicomachus’s Theorem states that
∑n

k=1 k3 =
(∑n

k=1 k
)2. If both sides of the equation are multiplied

by 4, the layout of Fig. 5(a) provides a proof, where the left side arises by summing the number of
blocks ring-by-ring (the kth ring has 4k blocks, each with k2 squares) and the right side comes from the
overall area (since the side length of the nth ring is n(n + 1) = 2

∑n

k=1 k).

ISAAC 2019
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(a) (b) (c)

Figure 5 (a) A geometric tiling based on Nicomachus’s Theorem, (b) the associated layout
scheme, and (c) restricted to a rectangular domain.

Our layout for the warehouse problem, called the Nicomachus layout, is constructed as
follows. For each ring rk of the aforementioned structure and for each k × k square region
of this ring, we include the (k − 1) × (k − 1) unit squares in the upper left corner in the
layout (shaded in Fig. 5(b).) Each of these is called a block. We designate the upper-left
cell of ring r1 to be the access point. Finally, to accommodate a rectangular domain Ω, we
clip the layout to the boundary of the rectangle and remove the layout squares touching the
domain’s boundary, thus creating corridors along the domain walls (see Fig. 5(c)). Observe
that each block is surrounded by corridors that are one square wide. We show next that this
layout achieves an optimal asymptotic density.

I Lemma 2. The Nicomachus layout achieves an asymptotic density of 1.

Proof. It suffices to show that the asymptotic wastage, that is, the asymptotic density of the
complement of the Nicomachus layout is equal to zero. To see this, consider the first ` ≥ 1
rings of the layout. Each ring rk, 1 ≤ k ≤ `, consists of 4k blocks, each of size (k−1)×(k−1).
The unused space per block is k2− (k− 1)2 = 2k− 1. Thus, the total wasted space for ring k
is 4k(2k− 1). Summing over all rings, the total wastage is

∑`
k=1 4k(2k− 1) = 8`3/3 +O(`2).

The first ` rings fill an origin-centered square of side length `(` + 1), which yields a total
area of at least `4. Therefore, ignoring lower-order terms, the wastage for these rings is at
most (8`3/3)/`4 = 8/3`. Clearly, this tends to zero in the limit. (Expressed as a function of
n, the asymptotic density is the limit of 1− 8/(3n1/4).) J

2.3.2 Accessing a Box
In order to access a box in the warehouse a robot must first travel to the block in which that
box resides, retrieve it from the block, and then return it to the access point. The depth d of
a box is defined to be the minimum number of boxes between it and the boundary of the
block that contains it. So, a box on the perimeter of a block has depth d = 0, while one at
the center of a block in ring ri has depth d =

⌊
i−2

2
⌋
. (When the domain Ω is bounded, this

is an upper bound since peripheral blocks may be clipped.)
In the Nicomachus layout, the cost of reaching a box in the arrangement and retrieving

it from a block are both a function of the ring in which it resides. Let M(ri) denote the
maximum cost of moving the robot from the access point to any cell adjacent to a block of
ring ri, and let C(ri) be the maximum cost of retrieving a box from a block in ring ri. First,
let us consider the travel cost of reaching a cell on the perimeter of a block of boxes.
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I Lemma 3. Travelling from the access point to any cell adjacent to a block in ring ri

requires at most i2 + i steps.

Proof. To reach a box on the perimeter of a block in ring ri from the access point a robot
must traverse each ring k ≤ i by circumnavigating one of its blocks. It is easy to see that a
robot can move between any two cells adjacent to a (k − 1)× (k − 1) block of ring rk in 2k
steps, from which we conclude that the total travel time is

M(ri) ≤
i∑

k=1
2k = i(i+ 1) ≤ i2 + i. J

An equivalent distance is traveled to return the requested box to the access point.
Next, let us define a primitive Replace(d) that allows for the swapping of a box bi placed

in the aisle adjacent to a block B with a box bj ∈ B at depth d. For now we will use this
primitive to establish an upper bound on the cost of accessing a box, while the need for
actually swapping boxes will not become apparent until later. Conceptually, the Replace
primitive must unbury the target box by moving the d boxes in the way. It does so by moving
them each d+ 1 spaces away, retrieving the target box, and then replacing them for a total
cost O(d2). A more careful analysis yields the following.

Agent box movement agent movement

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

2

1

2 2

1 1 2 1

2

2 1 2 1 2 1 1

2

1

2 1

Figure 6 Swapping a pair of boxes, where the original box is at depth d = 2 within a 7× 7 block
in ring r8.

I Lemma 4. The cost of Replace(d) is at most 4d2 + 8d+ 6, where d is the depth of box bj .

Proof. First, number the boxes inward from box bj ’s nearest boundary from 1 to d. We
assume that the robot begins adjacent to box 1 and that box bi is adjacent to the robot.
Next, we iteratively move each of the d+ 1 boxes (the d labeled boxes plus bj) to a location
that is d + 2 units away along the side of the block (see Fig. 6). Accounting for the time
to reach each box, pick it up, move it, put it down, and return to a position adjacent
to the next box to be moved, each iteration has a total cost of 2d + 3, except the last
which does not require moving to the next box and so only costs d + 2. In total, moving
these boxes costs d(2d+ 3) + (d+ 2) = 2d2 + 4d+ 2. Next, we reverse the process at the
same cost, replacing box bj with box bi and restoring boxes 1 through d to their original
positions. This process is briefly interrupted to move box bj out of the way, adding a cost of
2 (Fig. 6(h)). Thus, in total, swapping a new box with an interior box comes at a cost of
2(2d2 + 4d+ 2) + 2 = 4d2 + 8d+ 6. J

ISAAC 2019
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The depth of a box is bounded by the radius of the block in which it resides. Specifically,
a box in ring ri has a depth d ≤ i−2

2 and so, along with Lemma 4, we have the following
corollary:

I Corollary 5. Retrieving a box from a block in ring ri has a cost of C(ri) ≤ i2 + 2.

Combining this corollary and Lemma 3, the total cost to move to a box in ring ri, retrieve
it, and return to the access point is at most

(i2 + i) + (i2 + 2) + (i2 + i) = 3i2 + 2i+ 2 (1)

Next, let us consider retrieval cost as a function of distance from the access point.

I Lemma 6. If a box is at `1 distance δ from the access point then it lies in a ring ri, such
that i ≤

√
3δ.

Proof. To reach the highest ring level possible at a distance δ, travel orthogonally in a
straight line, traversing each ring’s width in turn. As ring ri has width i, the farthest ring
that can be reached is the first ring ri such that

δ ≤
i∑

j=0
j = i2 + i

2
(2)

Solving for i yields i ≥
√

2δ + 1
4 −

1
2 .

It is easily seen that for all δ ≥ 1,
√

3δ ≥
√

2δ + 1
4 −

1
2 , thus i =

√
3δ suffices as an upper

bound for the greatest ring index at a distance no more than δ. J

By combining Eq. (1) and Lemma 6, we obtain the following.

I Lemma 7. In the Nicomachus layout, retrieving a box at `1 distance δ from the access
point is O(δ).

Proof. Eq. (1) shows that retrieving a box in ring ri has a maximum total cost of 3i2 + 2i+ 2
and Lemma 6 shows that a box at distance δ will be in some ring ri, where i ≤

√
3δ. So,

retrieving a box at distance δ incurs at most a cost of 3(
√

3δ)2 + 2
√

3δ + 2 = 9δ + 2
√

3δ + 2,
which is O(δ). J

From this we find that trading the positions of two boxes can be done at a cost proportional
to the sum of their `1 distances from the access point. A simple, naive algorithm could use
the access point as an intermediary, accessing both boxes at cost O(δ), and returning them
to their opposing rather than original positions. Thus, we have the following:

I Corollary 8. If two boxes bi and bj are at `1 distances δi and δj from the access point,
respectively, then the cost of swapping them is no more than c(δi + δj), for some constant c.

Given this corollary, we can now show that Block-LRUA is competitive in the sliding
model. From the proof of Theorem 1 and the structure of Block-LRUA, it suffices to bound
the cost of evictions from each of the containers. For any k ≥ 0, consider an eviction from
container Ck to Ck+1. The contribution of this eviction to Wlru(S) is 2k. By Corollary 8,
the cost of sliding one to the other is at most c(2k−1 + 2k) < 2c2k, implying that the sliding
cost is within a constant factor of the eviction cost (roughly 4). From the proof of Theorem 1
the eviction cost can be used as a proxy for its actual cost, and therefore the sliding cost is
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at most a constant factor more than the actual cost of Block-LRUA in the case of swapping
motion. This implies that the cost of Block-LRUA in the sliding motion model is competitive
with the optimum solution in the swapping motion model. The actual cost of the optimum
algorithm in the sliding model cannot be lower than the actual cost of the optimum algorithm
in the swapping model. With a roughly factor-4 cost ratio between the sliding and swapping
models, the overall ratio is roughly 128. While this competitive ratio may be rather high, the
analysis thus far has assumed worst case scenarios across multiple factors and the focus has
been to prove the general competitiveness rather than finding the best competitive ratio. We
are confident that an empirical experiment would likely show that the average case scenario
has a much more favorable competitive ratio. Regardless, as a consequence of the above
discussion, we have:

I Theorem 9. For any instance of the attic problem and any sufficiently long access sequence
S, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming sliding motion.

3 Online Solution to the Warehouse Problem

In this section we present an online algorithm for the warehouse problem. As before, we will
present the algorithm for swapping motion and then generalize to sliding motion. Recall
that the warehouse problem differs from the attic problem in that there are multiple access
points, all of which lie on the bottom side of the rectangular domain Ω, which we may assume
lies on the x-axis. Our algorithm, which we call Block-LRUW , will be similar in spirit to
online algorithms for hierarchical memory systems, but the combination of spatial locations
and multiple access points adds considerable complexity. As with the attic problem, it will
simplify matters to describe the algorithm first in an infinite context, where boxes may be
placed anywhere above the x-axis, and then adjust the solution to the case of a rectangular
domain. Our approach will be to define containers based on a quadtree-like structure above
the x-axis, and to evict boxes up the quadtree from child to parent. We will treat each
quadtree cell as if it were a cache in the memory hierarchy, with the least-recently used box
evicted whenever more space is needed.

3.1 Quadtree Model
As mentioned above, our online solution to the warehouse problem employs a quadtree
subdivision over the positive-y halfspace. The leaves of the quadtree, or level 0, consist of
the unit squares whose lower left corners are the grid points on the x-axis, that is, (x, 0) for
x ∈ Z. Level 1 consists of the 2× 2 squares lying immediately above whose lower left corners
are located at (2x, 1) for x ∈ Z. In general, for k ≥ 0, level-k consists of the 2k × 2k squares
whose lower left corners lie on (2kx, 2k − 1), for x ∈ Z. Each level-k node u has a parent
p(u) of twice the side length lying immediately above on level k + 1 (see Fig. 7(a)), and two
children each of half the side length lying immediately below on level k − 1. The set of unit
squares associated with each node of the quadtree is called its cell. This structure covers
the infinite grid lying above the x-axis. Given a rectangular domain Ω whose lower side lies
along the x-axis, we clip the above structure to this rectangle (see Fig. 7(b)).

To simplify the analysis of our solution, we first define a variant of the warehouse problem
with an alternate cost function based on this quadtree structure, which we call the quadtree
model. Of course, an optimal solution does not need to follow this model, and later, we will
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Figure 7 Quadtree layout.

relate the cost of the standard solution to this variant. The processing of requests in this
model differs from the standard model (described in Section 1.1) in that, after moving the
box to the desired access point, the reorganization chain is allowed to move a box within its
current quadtree cell, or it may move the box to the quadtree cell of an ancestor, but no
other movements are allowed (see Fig. 7(c)).

More formally, consider a request for a box b to access point a. Let Q0(a) denote the
quadtree cell containing a, and let Q1(a), Q2(a), . . . denote the successive quadtree ancestor
cells of Q0(a). If a is unoccupied, we simply move the box there. Otherwise, in order to make
space for bi, we perform a chain of swaps along some locations p0, p1, . . . , pk such that p0 = a,
pk is either unoccupied (possibly the former location of b), and if pi ∈ Qj(a), then pi+1 is
the same cell or an ancestor, that is, pi+1 ∈ Qj′(a) for j′ ≥ j. As described in Section 1.1,
we perform swaps (in reverse order) along the resulting chain. Each swap that moves a box
out of its current quadtree cell is called eviction.

Costs are defined as follows in this model. A box may be moved within its quadtree cell
free of charge, but when it is moved to an ancestor cell, it is charged 2k, where k is the level
of the quadtree cell into which the box is moved. (The analogy with hierarchical memory
systems should be evident, where we think of each quadtree cell as a cache, and eviction to
an ancestor is analogous to moving a page to a larger cache in slower memory.)

3.2 Online Algorithm for Swapping Motion
Let us now present our algorithm for the warehouse problem, which we call Block-LRUW .
Consider a request (b, a) to bring box b to access point a. If this access point is unoccupied,
we simply move the box there. Otherwise, in order to make space for b, we will perform a
sequence of evictions from Q0(a), Q1(a), and so on until we encounter the first quadtree
ancestor Qk(a) that has at least one unoccupied location (possibly b’s location at the time of
the request). More formally, let pb denote b’s location, let p0 = a denote the access point,
and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of quadtree cells
Q0(a) through Qk−1(a), respectively. Finally, let pk ∈ Qk(a) denote the final unoccupied
location (or former location of b). As described in Section 1.1, we perform swaps (in reverse
order) along the chain 〈pb, p0, . . . , pk〉. The main result of this section is showing that this
algorithm is competitive.

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming swapping motion.
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Due to space limitations, the full proof and competitive analysis appear in Appendix A.2.
It is a nontrivial extension of the single-container structure from the attic problem to a
hierarchical container structure based on the quadtree, and showing how a general solution
in the standard model can be transformed competitively into the quadtree model.

3.3 Online Algorithm for Sliding Motion
In this section, we show that the competitiveness of Block-LRUW in the case of swapping
motion can be used to prove that the sliding version of the same algorithm is competitive.
As in the attic problem, our approach will be to describe a layout of boxes that is amenable
to efficient sliding motion.

We make use of a Nicomachus-like box layout. Rather than rings centered about the
access point, we flatten these rings into layers stacked above the x-axis. As before, we begin
with a layer of 1× 1 cell regions. Above this is a row of 2× 2 regions, then 3× 3, and so on,
with each i× i region containing a block of (i− 1)× (i− 1) boxes (see Fig. 8). We call this
the flattened Nicomachus layout.

δ

yi yjx

Figure 8 A flattened version of the Nicomachus layout for the warehouse problem, with a
conceptual example of swapping two boxes. Pathfinding is ignored in this illustration, but accounted
for in the supporting lemma.

Once again, we make use of a simple naive algorithm that can efficiently trade the
positions of two boxes in the sliding model. More formally, we prove the following:

I Lemma 11. If two boxes bi and bj are at `1 distances δ from each other and at vertical
distances yi and yj from the x-axis, respectively, then the cost of swapping them in the
flattened Nicomachus layout is no more than c(δ + yi + yj), for some constant c.

Proof. A naive algorithm can swap the two boxes bi and bj by: (1) bringing them to the
x-axis, (2) swapping their positions along the x-axis, and (3) returning them to their new
vertical positions. Notice that the cost of retrieving/replacing a box and bringing it to the
x-axis is equivalent to the retrieval cost of a box positioned directly above the access point in
the Attic Problem with Sliding Motion. As per Lemma 7, this access cost in both contexts is
O(y), where y is the distance to the x-axis or singular access point, respectively. Given this,
both steps (1) and (3) of the algorithm occur at a constant factor of (yi + yj). Clearly the
horizontal distance traveled along the x-axis x ≤ δ, therefore, the total cost of swapping the
two boxes must be no greater than c(δ + yi + yj), for some constant c. J

We can use this lemma to related the cost of swapping two elements in the swapping and
sliding models. The following summarizes our main result.
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I Theorem 12. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming sliding motion.

Proof. From Theorem 10 and the structure of Block-LRUW , it suffices to bound the cost
of evictions from one quadtree node to its parent. Assuming that the node is at quadtree
level k − 1, and its parent is at level k, this swap incurs a cost of 2k in the quadtree
model. Letting y1 and y2 denote the vertical distances of these locations from the x-
axis, we have y1 ≤ 2k and y2 ≤ 2k+1. Also, they are separated from each other by an
`1 distance of δ ≤ 2k+2. By Lemma 11, the cost of sliding one to the other is at most
c(δ + yi + yj) ≤ c(2k+2 + 2k + 2k+1) = 7c2k, implying that sliding cost is within a constant
factor of the quadtree cost. From the proof of Theorem 10 and the structure of Block-LRUW ,
the quadtree cost of Block-LRUW can be used as a proxy for its actual cost, and therefore the
sliding cost is at most a constant factor more than the actual cost of Block-LRUW assuming
swapping motion. This implies that the cost of Block-LRUW in the sliding motion model
is competitive with the optimum solution in the swapping motion model. The actual cost
of the optimum algorithm in the sliding model cannot be lower than the actual cost of the
optimum algorithm in the swapping model. With a roughly factor-7 cost ratio between the
sliding and swapping models, the overall ratio is roughly 112. As before, this is based on
many worst-case assumptions and can likely be improved upon. J

4 Concluding Remarks

In this paper we have presented a model for an automated warehouse management system
containing a set of standardized portable storage units or boxes, a robot that moves these
boxes around the warehouse in one of two ways (swapping or sliding), and a set of access
points where requested boxes must be delivered. We then presented online algorithms for
two natural instances of the warehouse problem, one involving a single access point within a
rectangular domain and the other involving a sequence of access points along the bottom
side of a rectangular domain. We prove that our algorithms are competitive with respect to
an optimal (offline) algorithm with full knowledge of the access sequence. Our competitive
ratios are relatively high, and we suspect that they are far from tight, but tightening these
bounds will involve either significantly more complex algorithms or better lower bounds.

We leave for future work some interesting open problems. Recall that our model assumes
that access requests are processed sequentially. This simplifying assumption allowed us to
ignore the extremely difficult issue of motion coordination, which arises when multiple robots
are present [11, 10, 18]. Clearly, any realistic solution should consider an environment with
multiple robots where requests are processed concurrently. Because we control the layout
of boxes in the domain, it may be possible insert additional slack space into the layout to
facilitate efficient motion coordination. Another interesting question in this vein is how
to handle the insertion/deletion of boxes from the collection. Perhaps we could further
leverage memory management schemes such as [9], which efficiently handle the reallocation
of 2D memory.

Also, how does the competitiveness of our schemes change, if at all, when the model
becomes less uniform. In our current model, all actions taken by the robot are of unit cost,
regardless of factors like whether or not the robot is laden or what sort of path a robot
takes to retrieve a box. Çelik and Süral [4], for example, show that the number of turns a
robot makes in a parallel-aisle warehouse can have a significant impact on retrieval efficiency.
Fekete and Hoffmann [8] look at the online problem of packing differently sized squares into
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a dynamically sized square container, and applying this work to a warehouse which does
not use standardized containers would be a natural continuation of the work presented here.
Further generalizing our model to account for differing action costs and box dimensions
would increase its real-world applicability and may lead to some interesting insights.
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A Full Proofs

A.1 Competitiveness of Block-LRUA (Attic Problem) with Swapping
I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence
R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,
assuming swapping motion.

Proof. Consider an input S consisting of the initial box placement and a sequence of access
requests. Let Topt(S) and Tlru(S) denote the total cost of the optimum and Block-LRUA

solutions, respectively, on this input. We will show that there exists a constant c and
quantity f(S) that does not grow with the length of the access sequence, such that Tlru(S) ≤
cTopt(S) + f(S). Since f(S) does not grow with the length of the access sequence, for all
sufficiently long access sequences its impact on the total cost will be negligible compared to
Topt(S).

Our analysis will be based on an auxiliary statistic. Given any container Ck, define an
eviction to be an event in which a box lying within this container is moved to a location
in an enclosing container Ck′ , for k′ > k. For the given access request sequence S, define
Elru(S, k) to be the total number of evictions from container Ck performed by Block-LRUA.
Let Wlru(S) =

∑
k≥0 2kElru(S, k) denote the weighted cost of these evictions. We will show

that there exist constants c1 and c2 and quantities f1(S) and f2(S) that do not grow with
the length of the access sequence, such that the following two inequalities hold:

(1) Tlru(S) ≤ c1Wlru(S) + f1(S) and (2) Wlru(S) ≤ c2Topt(S) + f2(S).

We first prove inequality (1). Observe that the cost of processing a request involving a
box b in Block-LRUA consists of two parts, the cost of moving b to the access point (that is,
the `1 distance of b to access point) plus the cost of performing the evictions caused by this
move. We assert that it suffices to bound only the latter quantity. To see why, consider two
consecutive requests to b. Just after the first request, b is located at the access point. When
the second request occurs, if b is not at the access point, it has been moved away due to
various evictions involving b that have occurred due to intervening access requests. By the
triangle inequality, the sum of the costs of these evictions involving b is at least as large as
the `1 distance of b from the access point at the time of the second request. Thus, the cost
of moving b to the access point for the second request is not greater than cost of evictions
involving b due to intervening requests. This allows us to account for all the requests for b
except the first. Define f1(S) to be the sum of the `1 of every box’s initial location to the
access point. Clearly, f1(S) depends only on the initial box placements.

It remains to bound the cost needed to process the evictions. Each time Block-LRUA evicts
a box from some container Ck to the enclosing container Ck+1, the cost is bounded above by
the maximum distance between any point of Ck to any point in Ck+1. Clearly, this is not
greater than the diameter of Ck+1, which is 2k+2. Summing over all accesses and all containers,
it follows that the total cost of Block-LRUA evictions is at most

∑
k≥0 2k+2Elru(S, k) =

4Wlru(S). By our earlier observation that the cost of bringing boxes back to the access
point is bounded above by the sum of f1(S) and the total eviction cost, it follows that
Tlru(S) ≤ c1Wlru(S) + f1(S), where c1 = 2 · 4 = 8, thus establishing (1).

https://doi.org/10.1145/2786.2793
https://doi.org/10.1016/j.disopt.2018.06.002
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To prove inequality (2), we will apply a technique similar to one given by Sleator and
Tarjan [19] and Aggarwal et al. [1] for hierarchical memory systems. For any k ≥ 0, define
Ck =

⋃
j≤k Cj (that is, the set of points within distance 2k of the origin). Also define

mk = |Ck| and mk = |Ck| denote the total capacities of these sets. For each k ≥ 2, we will
relate the weighted eviction cost of Block-LRUA on container Ck with respect to the cost
of box movements by the optimal solution within container Ck. The overall analysis comes
about by summing over all container levels.

Fix any k ≥ 2. Partition the access request sequence into contiguous segments, such
that within any segment (except possibly the last), Block-LRUA performs mk evictions from
container Ck. (The last segment will not be analyzed, but since there is only one such
segment for each k from which an eviction was performed, it follows that for all sufficiently
long access segments, the impact on the overall cost of these segments be negligible. See
[19] for more details.) Consider any complete segment. The contribution of the evictions of
this segment from Ck to the weighted eviction cost Wlru(S) is 2kmk. In Block-LRUA every
container Cj for j ≤ k evicts the least recently accessed box, and this implies that any box
evicted from container Ck is the least recently accessed box not only from Ck, but from Ck

as well. We assert that during this segment, the number of distinct boxes accessed must be
at least mk. To see why, observe that either all of the boxes evicted during this segment
are distinct, or some box was evicted twice during the sequence. If there are mk distinct
evictions, then there are at least least mk distinct boxes requested. On the other hand, if a
box is evicted twice, then by the nature of Block-LRUA, between these two evictions, every
one of the mk boxes in Ck must have been accessed in order for this box to transition from
the most recent to the least recent.

Now, let us consider how the optimum algorithm deals with the mk distinct box requests
that have occurred during this segment. Intuitively, because of the exponential increase in
container sizes, most of the mk distinct accessed boxes cannot fit within Ck−1, and hence
they must spill out into the surrounding region. We will charge for the work needed for the
spillover but limited to Ck (to avoid double counting).

It will simplify matters to ignore boundary issues for now and consider the unbounded
case where Ω = Z2. Define Ĉk to be the set of points of the infinite grid that lie within
`1 distance (3/4)2k of the access point. Since k ≥ 2, we have Ck−1 ⊂ Ĉk ⊂ Ck. Let
m̂k = |Ĉk|. We have m̂k ≤ c′mk, where c′ ≈ (3/4)2 ≤ 2/3. Thus, a fraction of 1 − c′ or
roughly one-third of the mk distinct boxes accessed during this sequence must spill out from
Ck−1 to an `1 distance of at least (3/4)2k − 2k−1 = (1/2)2k−1 = 2k−2 beyond Ck−1’s outer
boundary. It follows that the contribution of to the cost of Topt(S) of these boxes is at least
(mk/3)2k−2 = 2kmk/12. Because all of these box motions are contained within Ck, there is
no double counting of this cost between containers.

The generalization to the case of a bounded rectangular domain Ω is straightforward but
tedious. The key difference is that, due to the bounded nature of Ω, the sizes of consecutive
containers may grow only linearly, not quadratically with the `1 radius of the container.
(This happens, for example, if the domain is a long, thin strip.) Further, the size of the last
container may even be smaller than its predecessor as we approach the outer edges of the
domain. However, the key is that, since the radius value grows exponentially, consecutive
container sizes differ by a constant factor for all but a constant number containers, and this
is all that the above analysis requires.

Let sk denote the number of complete segments for level k. Summing all the segments
and all the levels of the hierarchy, we obtain

Topt(S) ≥
∑
k≥2

sk2k−2mk.

ISAAC 2019
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Adding in a term f2(S) to account for the final (incomplete) segments, noting that m0 and
m1 are both constants, and combining with our earlier bound on Wlru(S), we obtain the
following, for a suitable constant c3.

Wlru(S) ≤
∑
k≥0

sk2kmk + f2(S) = s0m0 + s12m1 +
∑
k≥2

sk2kmk + f2(S)

≤ c3(s0 + s1) + 4Topt(S) + f2(S).

The term c3(s0 + s1) is just a constant times the total number of access requests and is
not dominant. It follows that there is a constant c2 such that Wlru(S) ≤ c2Topt(S) + f2(S),
which establishes inequality (2). Note that f2(S) does not grow with the length of the access
sequence.

Finally, by combining inequalities (1) and (2), we obtain

Tlru(S) ≤ c1Wlru(S) + f1(S) ≤ c1(c2Topt(S) + f2(S)) + f1(S)
≤ c1c2Topt(S) + (c1f2(S) + f1(S)) ≤ cTopt(S) + f(S),

for some constant c ≥ c1c2 ≥ 32 and quantity f(S) that does not grow with the length of the
access sequence. For all sufficiently long access sequences, this final term will be negligible.
This completes the proof. J

A.2 Competitiveness of Block-LRUW (Warehouse) with Swapping

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access
sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal
solution, assuming swapping motion.

Observe that Block-LRUW satisfies the requirements in quadtree model. For the sake
of the above theorem, its cost is computed in the standard manner, as the sum of the `1
distances of all swaps performed. Later, we will show that this is proportional to its cost in
the quadtree model.

The remainder of this section is devoted to proving this theorem. First, let us consider
how we can simulate the behavior of a general solution to the warehouse problem in the
quadtree model. Rather than focusing on individual access requests, we will do this on a
box-by-box basis. Consider input sequence S and any box b. Let S′ denote a contiguous
segment of S, which starts and ends at two consecutive access requests involving b. Let us
denote these access points by a1 and a2, respectively. (For the segment prior to b’s first
access, set a1 the closest access point to b’s initial location, and for the segment following b’s
last access, a2 can be set arbitrarily to any access point.)

When the standard solution completes the processing of the first access request, b will
reside at a1. As a result of subsequent access requests in S′, b may be moved to new locations
in the domain as a result of swap operations. Let 〈p0, . . . , pk〉 denote the sequence of locations
through which b moves during S′, so that p0 = a1, and pk is the location of b just prior to
the upcoming access request at a2. Since this is in the standard model, the points of this
sequence are arbitrary. To perform the simulation, we will define a function π that maps the
location of b at any time to the cell of some quadtree ancestor of a1 in a manner such that,
under this function, b will move in accordance with the quadtree model. We present this
mapping in the next section.
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A.2.1 Container Structure for the Warehouse Problem
Before giving the details of the aforementioned mapping, let us start with an intuitive
explanation. For each access point a let Qk(a) denote the quadtree cell associated with
a’s ancestor at level k. We define a collection of nested regions of exponentially increasing
sizes called containers surrounding a, denoted C0(a) ⊂ C1(a) ⊂ · · · (see Fig. 9(a)). (Note
that, unlike the containers of Section 2.1, which were pairwise disjoint, here each container
includes all the squares of its predecessors.)

a

(a)

a

(b)

Containers

C2(a)
Q3(a)

Q2(a)

Q4(a)

C1(a)

C0(a)

π2

π1

π0

Figure 9 Intuitive structure of containers for the warehouse quadtree model.

For each container Ck(a) we will define a 1–1 function πk that maps each of point in
Ck(A) to a point within the cell of some quadtree ancestor of a. (For example, in Fig. 9(a),
πk maps boxes from Ck(a) to Qk+2(a).) In order to simulate the movement of a box that
has been accessed most recently by a, we will track its movement through these containers.
On first entering a container Ck(a) at some point p, we map the box to the associated point
πk(p) in the quadtree cell. When the box moves to a new point p′ within the same container,
we move the box to πk(p′). Observe that because the containers are nested, even if the box
moves into a location in a smaller container, it will still be considered as lying within Ck

and so will remain in the same quadtree cell in the simulation. Recall that in the quadtree
model, movements within the same quadtree cell are free of charge, and hence there is no
need to account for movements within a given container. Whenever the box is first moved
into a new larger container Ck′ , it will be charged the eviction cost of 2k′′ , where Qk′′(a) is
the associated quadtree cell.

Let us now define the containers and the associated functions more formally. One
complication that arises is that the functions πk associated with two nearby access points
may map locations to the same quadtree cell. When this happens, we must guarantee that
two distinct locations in their containers are not mapped to the same location in this quadtree
cell. To handle this, we will design our container structure carefully so that access points that
map to the same quadtree cell will share the same container and the same mapping function.

To make this precise, consider any access point a and any quadtree ancestor of a at level
k. The function πk for a will map points from a’s container Ck(a) to Qk+2(a). This implies
that the four grandchildren of Qk+2(a) at level k will do the same. So, we will give them all
a common container and a common function. (In Fig. 10(a), the container C2(a) is shared
by four 4× 4 quadtree cells drawn in heavy black lines.) The associated container is defined
as follows. First, imagine a square grid of side length 2k covering the plane that is aligned
with the quadtree cells. The container consists of the 16 grid cells that are `1 neighbors
of the four grandchildren. (In Fig. 10(a), this container C2(a) is shaded in dark gray and
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includes the squares of C0(a) and C1(a). Note that the lowest tier of these grid squares falls
one unit below the x-axis, but we simply ignore these nonexistent squares in our mapping.)
The number of squares is at most 16 · 2k = 2k+2, and so there is sufficient space to map
the squares of the container into Qk+2(a) (see Fig. 10(b)). We define πk for this container
to be any such function. (We do not require that this function preserve distances because,
according to the quadtree model, movements within a quadtree cell are free.)

Q4(a)

Q3(a)

Q2(a)

C2(a)

C1(a)C0(a)

(a) (b)

a a

π2

π1

π0

Figure 10 Actual structure of containers for the warehouse quadtree model.

A.2.2 Proving Competitiveness
In this section, we present a proof of Theorem 10. Given a access sequence S, define Topt(S),
Tlru(S) to be the (standard) costs for Opt and Block-LRUW , respectively. Define Wlru(S) to
be the cost of Block-LRUW in the quadtree cost model, and define Wopt(S) to be the cost of
the quadtree-simulated version of Opt in the quadtree cost model.

The analysis follows a similar structure to the one given in Theorem 1, and so we will
focus on just the major differences. The analysis is based on three inequalities, where c1, c2,
and c3 are constants and f2(S) and f3(S) are quantities that do not grow with the length of
the access sequence:

(1)Tlru(S) ≤ c1Wlru(S) (2)Wlru(S) ≤ c2Wopt(S)+f2(S) (3)Wopt(S) ≤ c3Topt(S)+f3(S)

Tlru(S) ≤ c1Wlru(S): Block-LRUW is running in the quadtree model, but it uses the
standard (`1) costs, not the eviction costs. Also, it evicts from child to parent, never
skipping ancestors. When moving a box from quadtree cell Qk−1 to Qk the actual cost is
at most the worst-case `1 distance between these cells, which is at most 2 · 2k = 2k+1, and
the quadtree model assesses a charge of 2k. Thus, setting c1 = 2 yields the desired bound.
Wlru(S) ≤ c2Wopt(S) + f2(S): Let mk = 22k denote the number of boxes in a quadtree
cell Qk at level k. Let mk the sum of mj for a quadtree cell and all its descendants (which
is roughly 2mk). Let us focus on a single quadtree cell at level k, call it Qk. Consider
the two child cells at level k − 1, Q′k−1 and Q′′k−1. Let A′ and A′′ denote the subsets of
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access points descended from these two quadtree nodes, respectively. Now, break up the
access sequence into contiguous segments, such that Qk witnesses mk evictions in the
running of Block-LRUW . Let us consider a single segment S′. Observe that, with respect
to access points A′ ∪A′′, Block-LRUW is effectively running an LRU algorithm on the
union of Qk and the cells of all its children. (To see why, observe that the least-recently
used boxes of each descendent are evicted to their parents and eventually up to to Qk,
and the least-recently used box within Qk is evicted.)
We assert that over segment S′, at least mk distinct box accesses have been processed by
the access points A′ ∪A′′ combined. Now, let us consider how Wopt(S) handles the same
requests, but from the perspective of Q′k−1 and Q′′k−1. These two together (and their
descendant cells) have a total capacity of mk−1 +mk−1 ≈ mk/2. Thus, the remaining
roughly mk/2 boxes must be evicted from these children by Opt. They may be evicted
up one level to Qk or up multiple levels. For the sake of simplicity, let us consider the
case where they are evicted up just one level to Qk. (The other case involves splitting the
charge among the nodes along the path according to a geometric series.) Each evicted
box is assessed a charge of 2k, for a total of roughly 2kmk/2 = 2k−1mk. Therefore,
the total charge assessed to Wopt(S) during this segment is at least 2k−1mk, while the
total charge assessed to Qk in Wlru(S) is 2k+1mk. Summing over all the levels (and
letting f2(S) account for the charges in the partial segment at the end of S) we have
Wlru(S) ≤ c2Wopt(S) + f2(S), where c2 is roughly 4.
Wopt(S) ≤ c3Topt(S) + f3(S): We focus on the activity involving a single box b between
two consecutive accesses to a and a′, say. (The additional f3(S) term handles the cost
prior to the initial request for b and after the final request.) Observe that Wopt(S) does
not charge for movements within a quadtree cell, and (since we are in the quadtree model)
it never demotes a box to a lower level of the quadtree. It charges an eviction cost of
2k whenever the box enters a quadtree cell at level k. This event corresponds to an
event in standard Opt when this box enters Ck(a) \ Ck−1(a) for the first time. Let k∗
denote the highest container index into which Opt moves this box (formally, the highest
k such that the box enters Ck(a) \ Ck−1(a)). Since this box might be evicted into all
the containers from level 1 up to k∗, this box contributes at most

∑k∗

k=1 2k ≤ 2k∗+1 to
Wopt(S). On the other hand, Opt has to move this box from the access point to some
point in Ck∗(a) \ Ck∗−1(a). It is easy to see that this involves a distance of at least
2k∗ + 1. It follows that this box contributes more than 2k∗ to Topt(S) and at most 2k∗+1

to Wopt(S). Therefore, setting c3 = 2 yields the desired result.

Together, the three inequalities imply that

Tlru(S) ≤ c1Wlru(S) ≤ c1(c2Wopt(S) + f2(S))
≤ c1(c2(c3Topt(S) + f3(S)) + f2(S)) ≤ cTopt(S) + f(S),

where c = c1c2c3 = 16 and f(S) = c1c2f3(S) + c1f2(S). This completes the proof of
Theorem 10.
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