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Abstract
We study dynamic planar point location in the External Memory Model or Disk Access Model
(DAM). Previous work in this model achieves polylog query and polylog amortized update time. We
present a data structure with O(log2

B N) query time and O( 1
B1−ε logB N) amortized update time,

where N is the number of segments, B the block size and ε is a small positive constant, under the
assumption that all faces have constant size. This is a B1−ε factor faster for updates than the fastest
previous structure, and brings the cost of insertion and deletion down to subconstant amortized
time for reasonable choices of N and B. Our structure solves the problem of vertical ray-shooting
queries among a dynamic set of interior-disjoint line segments; this is well-known to solve dynamic
planar point location for a connected subdivision of the plane with faces of constant size.
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1 Introduction

The dynamic planar point location problem is one of the most fundamental and extensively
studied problems in geometric data structures, and is defined as follows: We are given a
connected planar polygonal subdivision Π with N edges. For any given query point p, the
goal is to find the face of Π that contains p, subject to insertions and deletions of edges. Here
we focus on subdivisions Π such that each face has constant number of edges. An equivalent
formulation, which we use here is as follows: given a set S of N interior-disjoint line segments
in the plane, for any given query point p, report the first line segment in S that a vertical
upwards-facing ray from p intersects, subject to insertions and deletions of segments.

Dynamic planar point location has many applications in spatial databases, geographic
information systems (GIS), computer graphics, etc. Moreover it is a natural generalization
of the dynamic dictionary problem with predecessor queries; this problem can be seen as the
one dimensional variant of planar point location.
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In this paper we focus on the External Memory model, also known as the Disk Access
Model (DAM) [2]. The DAM is the standard method of designing algorithms that efficiently
execute on large datasets stored in secondary storage. This model assumes a two-level
memory hierarchy, called disk and internal memory and it is parameterized by values M and
B; the disk is partitioned into blocks of size B, of whichM/B can be stored in memory at any
given moment. The cost of an algorithm in the DAM is the number of block transfers between
memory and disk, called Input-Output operations (I/Os). The quintessential DAM-model
data structure is the B-Tree [11]. See [25, 26] for surveys. Many applications of dynamic
planar point location, such as GIS problems, must efficiently process datasets that are too
massive to fit in internal memory, thus it is of great relevance and interest to consider the
problem in the DAM and to devise I/O efficient algorithms.

1.1 Previous Work
RAM Model. In the RAM model (the leading model for applications where all data fit
in the internal memory) the dynamic planar point location problem has been extensively
studied [4, 10,15,18,19,21]. It is a major and long-standing open problem in computational
geometry to design a data structure that supports queries and updates in O(logN) time [16,
17,24], i.e., to achieve the same bounds as for the dynamic dictionary problem. In a recent
breakthrough, Chan and Nekrich in FOCS’15 [15] presented a data structure supporting
queries in O(logN(log logN)2) time and updates in O(logN(log logN)) time. They also
showed the tradeoff of supporting queries in O(logN) time and updates in O((logN)1+ε)
time or vice-versa for ε > 0.

Recently Oh and Ahn [23] presented the first data structure for a more general set-
ting where the polygonal subdivision Π is not necessarily connected; their data structure
supports queries in O(logN(log logN)2) time and updates in O(

√
N logN(log logN)3/2)

amortized time.

External Memory model. (See Table 1). Several data structures have been presented over
the years which support queries and updates in polylog(N) I/Os [1, 5, 7]. Table 1 contains a
list of results of prior work. The best update bound known is by Arge, Brodal and Rao [5]
and achieves O(logB N) amortized I/Os. The query time of their data structure is O(log2

B N).
Very recently, the first data structure that supports queries in o(log2

B N) I/Os was announced
by Munro and Nekrich [22]. In particular they support queries in O(logB N(log logB N)3)
I/Os. However their update time is slightly worse than logarithmic, O(logB N(log logB N)2).
In all those works the bounds are obtained by solving the problem of vertical ray-shooting.

Fast Updates in External Memory. One of the most intriguing and practically relevant
features of the external memory model is that it allows fast updates. For the dynamic
dictionary problem with predecessor queries, the optimal update bound in the RAM model is
O(logN). In external memory, however, B-trees achieve the optimal query time of O(logB N)
and typical update time of O(logB N), although substantially faster update times are possible.
Brodal and Fagerberg [14] showed that O( 1

B1−ε logB N) amortized I/Os per update can be
supported, for small positive constant, ε, while retaining O(logB N)-time queries; they further
showed that this is an asymptotically optimal tradeoff between updates and queries. Observe
that this update bound is a huge speedup from O(logB N) and that for reasonable choices of
parameters, e.g. B ≥ 1000, N < 1093, ε = 1

2 , this yields a subconstant amortized number of
I/Os per update. A similar update bound was later achieved for other dynamic problems
like three-sided range reporting and top-k queries [13].
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Table 1 Overview of results on dynamic planar point location in external memory. Results
marked with M are for monotone subdivisions and G for general ray-shooting among non-intersecting
segments. Query bounds are worst-case and update bounds are amortized. Space usage is measured
in words. Here ε is a constant such that 0 < ε ≤ 1/2.

Reference Space Query Time Insertion Time Deletion Time

Agarwal et al. [1] O(N) O(log2
B N) O(log2

B N) O(log2
B N) M

Arge and Vahrenhold [7] O(N) O(log2
B N) O(log2

B N) O(logB N) G

Arge et al. [5] O(N) O(log2
B N) O(logB N) O(logB N) G

Munro and Nekrich [22] O(N) O(logB N log3 logB N) O(logB N log2 logB N) O(logB N log2 logB N) G

This paper O(N) O(log2
B N) O((logB N)/B1−ε) O((logB N)/B1−ε) G

Given this progress and the fact that in the RAM model the bounds achieved for planar
point location and the dictionary problem are believed to coincide, it is natural to conjecture
that a similar update bound can be achieved for the dynamic planar point location problem.
However, to date no result has been presented that achieves sublogarithmic insertion or
deletion time.

1.2 Our Results
We consider the dynamic planar point location problem in the external memory model and
present the first data structure with sublogarithmic amortized update time of O( 1

B1−ε logB N)
I/Os. Prior to our work, the best update bound for both insertions and deletions was
O(logB N), achieved by Arge et al. [5]. Our main result is:

I Theorem 1 (Main result). For any constant 0 < ε ≤ 1/2, there exists a data structure which
uses O(N) space, answers planar point location queries in O((1/ε)2 · log2

B N) = O(log2
B N)

I/Os and supports insertions and deletions in O(logB N/(ε · B1−ε)) = O((logB N)/B1−ε)
amortized I/Os. The data structure can be constructed in O((N/B) logB N) I/Os.

To obtain this result, several techniques are used. Our primary data structure is an
augmented interval tree [20]. We combine both the primary interval tree and two auxiliary
structures described below with the buffering technique [3, 14] to improve insertion and
deletion bounds. In Section 2 we prove Theorem 1 using our auxiliary structures as black
boxes and omit some technical details relating to rebuilding; these details are deferred to
Appendix 5.

Similarly to previous work, we focus on solving the problem of vertical ray-shooting
queries. Our first auxiliary structure answers vertical ray-shooting queries among non-
intersecting segments whose right (left) endpoints lie on the same vertical line. This is called
the left (right) structure (in Section 2 it will be clear why we choose this terminology and not
vice-versa). Left/Right structures of Agarwal et al. [1], which support queries and updates
in O(logBK) I/Os, are used by several prior works [1, 5, 7]. Our structure improves on their
result by reducing the update bound by a factor of B1−ε. We obtain the following result,
the proof of which is the topic of Section 3:

I Theorem 2 (Left/right structure). For a set of K non-intersecting segments whose right
(left) endpoints lie in the same vertical line and any constant 0 < ε ≤ 1/2, we can create a
data structure which supports vertical ray-shooting queries in O((1/ε) · logBK) = O(logBK)

ISAAC 2019
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I/Os and insertions and deletions in O((logBK)/(ε ·B1−ε)) = O((logBK)/B1−ε) amortized
I/Os. This data structure uses O(K) space and it can be constructed in O((K/B) logBK)
I/Os. If the segments are already sorted, it can be constructed in O(K/B) I/Os.

Our second auxiliary structure answers vertical ray-shooting queries among non-inter-
secting segments whose endpoints lie in a set of Bε/2 + 1 vertical lines. These vertical lines
define Bε/2 vertical slabs, hence the structure is called a multislab structure. We obtain the
following result, the proof of which is the topic of Section 4:

I Theorem 3 (Multislab structure). For any constant 0 < ε ≤ 1/2 and set of K non-
intersecting segments whose endpoints lie in Bε/2 + 1 vertical lines, we can create a data
structure which supports vertical ray-shooting queries in O((1/ε) · logBK) = O(logBK) I/Os
and insertions and deletions in O((logBK)/(ε ·B1−ε)) = O((logBK)/B1−ε) amortized I/Os.
This data structure uses O(K) space and it can be constructed in O((K/B) logBK) I/Os. If
the segments are already sorted according to a total order, it can be constructed in O(K/B)
I/Os.

A major challenge faced by previous multislab structures is how to efficiently support
insertions. At a high-level, it is hard to deal with insertions in cases where a total order is
maintained: each time a new segment gets inserted we need to determine its position in the
total order, which cannot be done quickly. Arge and Vitter [7] developed a deletion-only
multislab data structure and then used the so-called logarithmic method [12] which allowed
them to handle insertions in O(log2

BK) I/Os. Later Arge, Brodal and Rao [5] developed a
more complicated multislab structure supporting insertions in amortized O(logBK) I/Os by
performing separate case analysis depending on the value of B.

Here, we support insertions in a much simpler way by breaking each inserted segment
into smaller unit segments whose endpoints lie on two consecutive vertical lines and can be
compared easily to the segments already stored. This way, we are able to support insertions
easily in O(logBK) I/Os. Finally, we add buffering and obtain sublogarithmic update
bounds.

1.3 Notation and Preliminaries
External Memory Model. Throughout this paper we focus on the external memory model
of computation. N denotes the number of segments in the planar subdivision, B the block
size and M the number of elements that fit in internal memory. We assume that M � N and
2 ≤ B ≤

√
M (the tall cache assumption). It is well-known that sorting K elements requires

Θ((K/B) logM/B(K/B)) I/Os [2]. Given that B ≤
√
M , this bound is O((K/B) logBK).

We use this bound for sorting in many places without further explanation.

Ray-shooting Queries. In the rest of this paper, we focus on answering vertical ray-shooting
queries in a dynamic set of non-intersecting line segments. Let S be the set of segments of
the polygonal subdivision Π. Given a query point p, the answer to a vertical ray-shooting
query is the the first segment of S hit by a vertical ray emanating from a query point in
the (+y) direction. Based on standard techniques (see e.g. [7]), for connected polygonal
subdivisions Π with faces of size O(1), a planar point location query for a point p can be
answered in O(logB N) I/Os after answering a vertical ray-shooting query for p.

Bε-Trees. All tree structures that we will use are variants of the Bε-Trees [14] which are
B-trees except that the internal nodes have at most Bε (and not B) children; the leaves still
store Θ(B) data items. For constant ε, this does not change the asymptotic height of the
tree or the search cost, both remain O((1/ε) · logB N) = O(logB N).
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s1 s2 s3 s4 s5 s6

σ

v1 v2 v3 v5v4 v6

v

Figure 1 The slab of node v of the interval tree I is divided into slabs s1, . . . , s6 corresponding
to its children v1, . . . , v6. Segment σ is assigned to node v, with left subsegment in slab s2, right
subsegment in s5 and the middle subsegment crosses slabs s3, s4.

2 Overall Structure

In this Section we prove Theorem 1, using the data structures of Theorems 2 and 3 (detailed
in Sections 3 and 4, respectively). Given N non-intersecting segments in the plane and a
constant 0 < ε ≤ 1/2, we construct a O(N)-space data structure which answers vertical
ray-shooting queries in O((1/ε)2 · log2

B N) = O(log2
B N) I/Os and supports updates in

O((logB N)/(ε · B1−ε)) = O((logB N)/B1−ε) amortized I/Os. Throughout this section we
let ε′ = ε/2.

The Data Structure. As in the previous works on planar point location, our primary data
structure is based on the interval tree (the external interval tree defined in [9]). Our interval
tree I is a Bε′-tree which stores the x-coordinates of segment endpoints in its leaves. Here
we assume for clarity of presentation that the interval tree is static, i.e. all new segments
inserted share x-coordinates with already stored segments; in Appendix 5 we remove this
assumption and extend our data structure to accommodate new x-coordinates and achieve
the bounds of Theorem 1.

Each node of I is associated with several secondary structures, as we explain later, and
each segment is stored in the secondary structures of exactly one node of I. Each node v
of I is associated with a vertical slab sv. The slab of the root is the whole plane. For an
internal node v, the slab sv is divided into Bε′ vertical slabs s1, . . . , sBε′ corresponding to
the children of v, separated by vertical lines called slab boundaries, such that each slab si
contains the same number of vertices of Π from slab sv.

Let S be the set of segments that compose Π. Each segment σ ∈ S is assigned to a node
v of I. This is the highest node v of I such that σ is completely contained in slab sv and
intersects at least one slab boundary partitioning sv; if such an internal node v does not exist,
then σ is assigned to a leaf v such that σ is completely contained in its slab sv. Segments
assigned to internal nodes are stored in the secondary structures of those nodes, whereas
segments assigned to leaves are stored explicitly in the corresponding leaf. By construction
of the slab boundaries, each leaf stores O(B) segments in O(1) blocks.

Consider a segment σ assigned to a node v of I. Let s` and sr be the children slabs of sv
where the left and right endpoints of σ lie. We call the segment σ ∩ s` the left subsegment of
σ, the segment σ ∩ sr the right subsegment of σ and the rest of σ (which spans children slabs
s`+1, . . . , sr−1) is its middle subsegment. See Figure 1 for an illustration. In this example,
the left subsegment is σ ∩ s5, the right subsegment is σ ∩ s2, and the portion of σ in s3 and
s4 is the middle subsegment.

ISAAC 2019
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Let Sv be the set of segments assigned to a node v of I. To store segments of Sv, node v
of I contains the following secondary structures:

1. A multislab structureM which stores the set of middle segments.

2. Bε′ left structures Li, for 1 ≤ i ≤ Bε′ , storing the left (sub)segments of slab si.

3. Bε′ right structures Ri, for 1 ≤ i ≤ Bε′ , storing the right (sub)segments of slab si.

In addition, each internal node v contains an insertion buffer Iv and deletion buffer Dv,
each storing up to B segments.

Construction and Space Usage. For every node v, the buffers Iv and Dv fit in O(1) blocks,
since they store at most B segments. By Theorems 2 and 3, a secondary structure storing
K segments uses O(K) space. Since each segment of Sv is stored in at most 3 secondary
structures, overall secondary structures of v use O(|Sv|) space. Thus each node v uses
O(|Sv|) space. We get that our data structure uses overall O(

∑
v∈I |Sv|) = O(N) space.

The interval tree can be constructed in O((N/B) logB N) I/Os. This can be done by sorting
the segments by their endpoints’ x-coordinates and then determining all slab boundaries to
create a balanced interval tree. By Theorems 2 and 3, all secondary structures of a node v of
I can be constructed in O((|Sv|/B) logB |Sv|) I/Os . Thus, all secondary structures of the
tree can be constructed in O((

∑
v∈I |Sv|/B) · logB N) = O((N/B) logB N) I/Os.

Queries. To answer a vertical ray-shooting query for a point p, we traverse the root-to-leaf
path of I based on the x-coordinate of p, while maintaining a segment σ (initialized to null)
which is the answer to the query among segments assigned to nodes we have traversed so far.
At each node v visited along this path, we first update buffers Iv and Dv by removing from
both of them all segments (if any) of Iv ∩Dv. Then, we perform a vertical ray-shooting on
the secondary structures of v; in particular we ray-shoot on the multislab structure and the
left and right structures Li and Ri, for i such that the query point p is in slab si1. After
checking the secondary structures, we update σ if a closer segment above p is found as a
result. Next, we ray-shoot among segments stored in Iv and update σ if necessary. Finally,
we determine which child vi of v to visit, and flush any segments of Dv that are contained
in the slab of vi to Dvi ; this way we make sure that information about deleted segments is
updated throughout the root-to-leaf path and no deleted segment can be considered as an
answer to the query. We then continue the process at vi. Once a leaf node is reached, we
simply compare the B segments it contains with p and return the closest segment above p
among them and σ.
Bounding the query cost: Since any root-to-leaf path of I has length O((1/ε′) · logB N),
each secondary data structure supports ray-shooting queries in O((1/ε′) · logB N) I/Os (due
to Theorems 2 and 3) and we check O(1) secondary structures per node, we get that a
query is answered in O((1/ε′)2 · log2

B N) = O(log2
B N) I/Os. Note that in each node v of the

root-to-leaf path visited, the operations involving Iv and Dv require O(1) I/Os, thus they
increase the total cost by at most a O(1) factor.

1 Minor detail: For each secondary structure considered, we first perform insertions/deletions of the
corresponding segments from buffers Iv and Dv.
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Insertions. To handle insertions, we use the insertion buffers stored in nodes of I. When a
new segment σ is inserted, we insert it in the insertion buffer of the root. Let v be an internal
node with children v1, . . . , vBε′ . Whenever Iv becomes full, it is flushed. Segments of Iv that
cross at least one slab boundary partitioning sv are inserted in the secondary structures of
v; segments that are contained in the slab si of vi are inserted in Ivi , for 1 ≤ i ≤ Bε

′ . In
case Iv becomes full for some node v whose children are leaves, we insert those segments
explicitly at the corresponding leaves. When a leaf becomes full, we restructure the tree
using split operations on full nodes.

Bounding the insertion cost: We compute the amortized cost of an insertion by considering
three components:

(i) The cost for moving segments between insertion buffers. Whenever an insertion buffer Iv
gets full, it forwards segments to the buffers of its Bε′ children performing O(Bε′) I/Os.
Since a flushing occurs every B insertions in Iv, the amortized cost of such operations
is O(Bε′/B) = O(1/(B1−ε′)). Each segment will move in at most O((1/ε′) logB N)
insertion buffers before it is inserted in the secondary structures of a node (or in a leaf).
Thus the amortized cost for moving between buffers is O((logB N)/(ε′ ·B1−ε′)).

(ii) The insertion cost in the secondary structures. By Theorems 2 and 3 we get that
insertions in secondary structures require O((logB N)/(ε ·B1−2ε′)) I/Os.

(iii) The cost of restructuring the tree after insertions when a leaf becomes full. We show
in Section 5 that the restructuring requires O( logB N

ε′·B1−ε′ ) amortized I/Os, by slightly
modifying our primary interval tree data structure.

We conclude that our data structure supports insertions in amortizedO(logB N/(ε′·B1−2ε′)) =
O(logB N/B1−ε) I/Os.

Deletions. To support deletions, we use the deletion buffers stored in all nodes of I. To
delete a segment σ, we first check whether σ is in the insertion buffer Ir of the root r and
in that case we delete it; otherwise we store it in Dr. Similar to insertions, whenever Dv

gets full for some internal node v with children v1, . . . , vBε′ , we flush Dv. The segments of
Dv crossing at least one slab boundary partitioning sv are deleted from the corresponding
secondary structures associated with v; the other segments of Dv are moved to buffers Dvi ;
in case a segment σ inserted in Dvi ∩ Ivi , we delete it from both buffers. In case Dv becomes
full for some v parent of leaves, we delete those segments explicitly from the corresponding
leaves.

Bounding the deletion cost: The deletion cost has three components:

(i) Moving segments between the deletion buffers. Using the same argument as for
insertions, we get that this requiresO(logB N/(ε′ ·B1−ε′)) I/Os, amortized.

(ii) The cost of deletion in the secondary structures. By Theorems 2 and 3 we get that
deletions in secondary structures require amortized O(logB N/(ε′ ·B1−2ε′)) I/Os.

(iii) The cost of restructuring the tree. Every N/2 deletions, we rebuild the structure using
O((N/B) logB N) I/Os, to get and amortized restructuring cost of O((logB N)/B)
I/Os.

Overall deletions are supported in amortized O(logB N/(ε′ · B1−2ε′)) = O(logB N/(B1−ε))
I/Os.

ISAAC 2019
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3 Left and Right Structures

In this section we prove Theorem 2. Given K points all of whose right (left) endpoints lie
on a single vertical line, we construct a data structure which answers vertical ray-shooting
queries on those segments in O(logBK) I/Os and supports insertions and deletions in
O((logBK)/B1−ε) amortized I/Os for a constant 0 < ε ≤ 1/2.

We describe the structure for the case where we are given a set L ofK segments whose right
endpoints have the same x-coordinate (left structure)2. The case where the left endpoints of
the segments have the same x-coordinate (right structure) is completely symmetric. For a
segment σ, we will refer to the y-coordinate of its right endpoint as the y-coordinate of σ.
Conversely we define the x-coordinate of σ to be the x-coordinate of its left endpoint.

Total Order. We assume that the segments in L are ordered according to their y-coordinates.
We can always order the segments according to this total order in O((K/B) logBK) I/Os.

The Data Structure. We store all segments of L in an augmented Bε-tree T which supports
vertical ray-shooting queries, insertions and deletions. The degree of each node is between
Bε/2 and Bε, except the root which might have degree in the range [2, Bε], and leaves
store Θ(B) elements. For a node v ∈ T , let Tv be the subtree rooted at v. Since the
segments are sorted according to their y-coordinates, each subtree Tv corresponds to a range
of y-coordinates, which we call the y-range of node v. Let v be an internal node of T with
children v1, . . . , vBε . Node v stores the following information:

1. A buffer of segments Sv of capacity B which contains segments in the y-range of v whose
left endpoints have the smallest x-coordinates (i.e., segments that extend the farthest
from the vertical line) and are not stored in any buffer Sw for an ancestor w of v. In
other words, T together with segments of buffers Sv form an external memory priority
search tree [6].

2. An insertion buffer Iv and a deletion buffer Dv, each storing up to B segments.

3. A listMv that contains, for each child vi, the segment with minimum x-coordinate stored
in Svi . We call this the minimal segment for child vi.

The data structure satisfies the following invariants: For each node v ∈ T , either
|Sv| ≥ B/2 or if |Sv| < B/2, then Iv and Dv are empty and all buffers stored in descendants
v are empty. Also, for each node v, buffers Sv, Iv and Dv are disjoint. Finally, for a leaf v,
Iv and Dv are empty.

Construction and Space Usage. Overall buffers and lists of each node contain O(B)
segments, i.e. they can be stored in O(1) blocks. Thus T can be stored in O(K/B) blocks,
i.e. it requires O(K) space. Construction of T requires O(KB logBK) I/Os, since we need
to sort all K segments according to their y-coordinates. If the segments are already sorted
according to their y-coordinate, then T can be created in O(K/B) I/Os.

2 Recall from Section 2 that we call left structures the ones storing the left subsegment of a segment σ,
thus all subsegments stored in a left structure have the same x-coordinate of right endpoints.
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range(v)
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p
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range(u)

range(w) Sr
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Figure 2 Example of the query algorithm in the left structure: Left column shows the segments
stored in T , the query point p and the vertical ray ρ emanating from p. Right column shows buffers
S of the nodes of T . Red segments are stored in the root. For nodes u, v, w, the green segment is
their minimal segment, i.e., the one stored in listMr. By ray-shooting on ρ among green segments,
the first segment hit upwards is σ5, which is stored in Sw, thus we set v+ = w. Note that σ2 (the
correct answer for the query) is not stored in Sw, i.e., maintaining only v+ produces an incorrect
answer. Thus, our algorithm ray-shoots downwards as well, hitting σ1, which is stored in u, and
setting v− = u. Then, by ray-shooting on ρ among Su and Sw, the first segment we hit upwards
of p is σ2.

Queries in the static structure. To get a feel for how our structure supports queries, we
first show how to perform queries in the static case, i.e., assuming there are no insertions
and deletions and all buffers Iv and Dv are empty. Later we will give a precise description of
performing queries in the fully dynamic structure.

Let ρ+ be the ray emanating from p in the (+y) direction and ρ− the ray emanating from
p in the (−y) direction. We query the structure by finding the first segment hit by both ρ+

and ρ−. We keep two pointers, v+ and v−, initialized at the root. We also keep the closest
segments σ+ and σ− seen so far in the (+y) and (−y) direction respectively (initialized to
+∞ and −∞). At each step, we update both v+ and v− to move from a node of depth i to a
node of depth i+ 1. While at level i, v− and v+ might coincide, or one of them might be
undefined (set to null).

We now describe the query algorithm. We start at the root of T and advance down, while
updating v+, v−, and σ+,σ−. When at depth i, we find the first segment σi hit by ρ+ among
Sv− and Sv+ and update σ+ if necessary (i.e. if σi is the first segment hit by ρ+ among all
segments seen so far). Similarly, we ray-shoot on ρ− among Sv− and Sv+ and update σ− if
necessary. To determine in which nodes of depth i+ 1 to continue the search, we ray-shoot on
ρ+ amongMv− andMv+ and also ray-shoot on ρ− amongMv− andMv+ (i.e., all minimal
segments of children of v− and v+). Let σm+ be the first segment in Mv+ ∪Mv− hit by ρ+

(if such a segment exists) and vs be the node containing σm+ (if σm+ exists). If the y-range
of vs is higher than the y-coordinate of σ+ or if σm+ does not exist, we leave v+ undefined
for level i + 1. Otherwise, we set v+ = vs. Similarly, call σm− the first minimal segment
of Mv+ ∪Mv− hit by ρ− and vp be the node containing σm− (if such a segment exists). If
the y-range of vp is lower than the y-coordinate of σ− or if σm− does not exist, we leave v−
undefined for level i+ 1. Otherwise we set v− = vp.

If both v+ and v− are undefined for the next level i+ 1, we stop the procedure and output
σ+ as the result to the vertical ray-shooting query. Otherwise we repeat the same procedure
in the next level. When we reach a leaf level, we find the first segment hit by ρ+ among Sv−
and Sv+ , update σ+ if necessary, and output σ+ as the result of the query.
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Remark: The reader might wonder why we answer vertical ray-shooting queries in both
directions and keep two pointers v− and v+. Isn’t it sufficient to answer queries in one
direction and keep one pointer at each step? Figure 2 shows an example where this is not
true and maintaining only the v+ pointer would result in an incorrect answer.

The formal proof of correctness of this query algorithm is deferred to Appendix A.
Bounding the query cost: To count the cost, observe that in each step we move down the

tree by one level and perform operations that require O(1) I/Os, as we check O(B) segments
stored in the current nodes v− and v+. Since the height of the tree is O((1/ε) logBK), a
query is answered in O((1/ε) logBK)) = O(logBK) I/Os.

Insertions. Assume we want to insert a segment σ into the left structure L. If the x-value
of σ is smaller than the maximum x-value of a segment stored in the buffer of the root Sr,
we insert σ into Sr. Otherwise we store σ in the insertion buffer of the root Ir. Note that
insertion of σ in Sr might cause Sr to overflow (i.e., |Sr| = B + 1); in that case we move the
segment of Sr with the maximum x-value into the insertion buffer of the root Ir.

Let v be an internal node with children v1, . . . , vBε . Whenever the insertion buffer Iv
becomes full, we flush it, moving the segments to buffers of the corresponding children. For
a segment σ that should be stored in child vi, we repeat the same procedure as in the root:
Check whether σ has smaller x-value than the maximum x-value of a segment stored in Svi
and if yes, store σ in Svi , otherwise store it in Ivi . If Svi overflows, we move its last segment
(i.e. the one with maximum x-value) into Ivi . Also, if σ gets stored in Svi and its x-value is
smaller than all previous segments of Svi , we update the minimal segment of vi,Mv.

When Sv overflows for some leaf v, we split v into two leaves v1 and v2, as in standard
B-trees. Note that this might cause recursive splits of nodes at greater height.
Bounding the insertion cost: To flush a buffer Iv and forward segments to buffers Svi and Ivi ,
for 1 ≤ i ≤ Bε we perform O(Bε) I/Os. Since Iv becomes full after at least B insertions, the
amortized cost of moving a segment from Iv to buffers of a child of v is O(Bε/B) = O(1/B1−ε).
Each inserted segment moves between buffers in a root-to-leaf path of length O((1/ε) logBK),
thus the total amortized cost for moves between buffers is O(logBK/(ε ·B1−ε)) I/Os. The
restructuring of T due to splitting nodes requires amortized O(1/B) I/Os, as in standard
B-trees. Thus, insertions are supported in O(logBK/(ε ·B1−ε)) amortized I/Os.

Deletions. To delete a segment σ, we first check whether it is stored in the buffers of the
root Sr or Ir; in this case we delete it. Otherwise, we insert σ in the deletion buffer of
the root Dr.

Let v be an internal node with children v1, . . . , vBε . Whenever Dv becomes full we flush
it and move the segments to the corresponding children and repeat the same procedure: For
a segment σ which moves to child vi, we check whether it is stored in Svi or Ivi : if yes, we
delete it and update the minimal segment of vi inMv if necessary. Otherwise, we store σ
in the deletion buffer Dvi . If segment buffer Sv underflows (i.e., |Sv| < B/2), we refill it
using segments stored in buffers Svi ; the segments moved to Sv are deleted from Svi and all
necessary updates inMv are performed. This might cause underflowing segment buffers Svi
for children of vi; we handle those in the same way. In case all buffers Svi become empty
and |Sv| < B , we move the segments from Iv to Sv until either |Sv| = B or |Iv| = 0.
Bounding the deletion cost: Deletion cost consists of three components:

(i) Cost for moving segments between buffers: Using the same analysis as for insertions we
get that this requires O(logBK/(ε ·B1−ε)) amortized I/Os.



J. Iacono, B. Karsin, and G. Koumoutsos 58:11

(ii) Cost due to refilling of buffers Sv: For a node v with children vi, while refilling buffer
Sv from Svi we perform O(Bε) I/Os and we move Θ(B) segments one level higher.
Thus the amortized cost of moving a segment up by one level is O(1/B1−ε). Since the
tree has height O((1/ε) · logBK), over a sequence of K deletions the total number of
moves of segments by one level is O((1/ε) ·K · logBK). Thus the total cost due to
refilling is at most O((1/εB1−ε)K · logBK), which implies that the amortized cost is
O(logBK/(ε ·B1−ε)).
A corner case that we did not take into account above is when the total number of
segments stored in buffers Svi are less than B/2. In this case it is not valid that the
amortized cost of updating Sv is O(Bε/B). To take care of this, we use a simple
amortization trick: we double charge all I/Os performed relating to insertions. This
way, for each buffer Svi there is a saved I/O from the time when segments move from Iv
to node vi. We use this additional saved I/O when Svi gets emptied due to the refilling
of Sv.

(iii) Restructuring requires O( logB K
B ) amortized I/Os, by rebuilding the structure after K/2

deletions.

Overall, the amortized deletion cost is O(logBK/(ε ·B1−ε)) = O(logBK/B1−ε) I/Os.

Queries in the dynamic structure. We now describe how to extend our query algorithm
to the dynamic case. In order to ensure that all nodes visited are up-to-date and we do not
miss any updates in the insertion/deletion buffers, when moving a pointer from a node u to
its child vi, we flush any deletes in Du to vi, i.e. delete segments of Du that are stored in Svi ,
store the other segments in Dvi and updateMu if necessary. We then delete any segments
found in both Ivi and Dvi . Finally, we compare segments in Ivi with σ+ (recall this is the
first segment hit by ρ+ among segments considered so far) and, if any segment in Ivi would
be hit by ρ+ before σ+ we replace σ+ with it. Clearly this increases the total cost by at
most a O(1) factor compared to the static case, thus the query cost is O((1/ε) logBK) I/Os.

4 Multislab Structure

In this section we prove Theorem 3. Assume that we are given a set of K non-intersecting
segments with endpoints on at most Bε/2 + 1 vertical lines l1, . . . , lBε/2+1, for some constant
O < ε ≤ 1/2. We show that those segments can be stored in a data structure which uses
O(K) space, supports vertical ray-shooting queries in O(logBK) I/Os, and updates in
O(logBK/B1−ε) amortized I/Os, for 0 < ε ≤ 1/2. This data structure can be constructed in
O((K/B) logBK) I/Os. We call this data structure a multislab structure.

For notational convenience we set ε′ = ε/2. This way endpoints of the segments lie on
at most Bε′ + 1 vertical lines l1, . . . , lBε′+1. For 1 ≤ i ≤ Bε′ , let si denote the vertical slab
defined by vertical lines li and li+1. We will show that queries are supported in O(logBK)
I/Os and updates in O((logBK)/B1−2ε′) I/Os. Theorem 3 then follows.

Total Order. In order to implement the multislab structure we need to maintain an ordering
of the segments based on their y-coordinates. Using standard approaches (see e.g. [5, 7]) we
can define a partial order for segments that can be intersected by a vertical line. Arge et.
al. [8] showed how to extend a partial order into a total order on K segments (not necessarily
all intersecting the same vertical line) in O((K/B) logM/B

K
B ) = O((K/B) logBK) I/Os. We

use this total order to create our multislab structure.
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The Data Structure. We store the ordered segments in an augmented B-tree T which
supports queries, insertions and deletions. The degree of each node is between Bε′/2 and Bε′ ,
except the root which might have degree in the range [2, Bε′ ]. Leaves store Θ(B) elements.
For a node v ∈ T , let Tv be the subtree rooted at v. Let v1, . . . , vBε′ be the children of an
internal node v. Node v stores the following information:

1. A buffer Sv of capacity B which contains the highest (according to the total order)
segments stored in Tv which are not stored in any buffer Sw for an ancestor w of v. In
other words, T together with segments of buffers Sv form an external memory priority
search tree [6].

2. An insertion buffer Iv and a deletion buffer Dv, both storing up to B segments.
3. A list Lv which contains, for each slab si, 1 ≤ i ≤ Bε

′ , and each child vj , 1 ≤ j ≤ Bε
′ ,

the highest segment (according to the total order) ti,j crossing slab si stored in Tvj .

The data structure satisfies the following invariants: i) for each node v ∈ T , either
|Sv| ≥ B/2 or if |Sv| < B/2, then Iv and Dv are empty and all buffers of descendants w of v
are empty, ii) for each node v, buffers Sv, Iv and Dv are disjoint, and iii) for every leaf v, Iv
and Dv are empty.

Construction and Space Usage. Overall buffers of each node contain O(B) segments and
list Lv contains at most B2ε′ = O(B) segments, i.e., they can be stored in O(1) blocks.
Thus T can be stored in O(K/B) blocks, i.e. it requires O(K) space. The structure can be
constructed in O(KB logBK) I/Os. If segments are already sorted according to a total order,
construction requires O(K/B) I/Os.

Insertions. To insert a new segment σ we need to determine its position in the total
order. Clearly, we can not afford to produce a new total order from scratch, as this costs
O((K/B) logBK) I/Os. Thus, we break σ into at most Bε′ unit segments, where each
segment crosses exactly one slab. In particular, if σ crosses slabs s`, . . . , sr, we break it into
unit segments σ`, . . . , σr, where segment σi crosses slab si. We call all such unit segments
stored in T new segments. The rest of the segments stored in T are called the old segments
of T . Now we can easily update the total order: segment σi needs to be compared only with
segments crossing slab si; if σp and σs are the predecessor and successor of σi within slab si,
we locate σi in an arbitrary position between σp and σs in the total order. This way a valid
total order is always maintained.

We now describe the insertion algorithm. When segment σ needs to be inserted, we
first break it into unit segments σ`, . . . , σr. For each segment σj , ` ≤ j ≤ r, we first check
whether it should be inserted in the buffer Sr of the root: if this is the case we store it
there; otherwise we store it in the insertion buffer of the root Ir. In case Sr overflows (i.e.
|Sr| = B + 1) we move its last segment (according to the total order) to Ir. Let v be an
internal node with children v1, . . . , vBε′ . Each time Iv becomes full, we flush it and move
the segments to its children vi, for 1 ≤ i ≤ Bε′ . For a segment moving from v to vi, we first
check whether it is greater (according to the total order) than the minimum segment stored
in Svi and if so we store it in Svi ; otherwise we store it in buffer Ivi . In case Svi overflows
(i.e. |Svi | = B + 1) we move its last segment to Ivi . Also we update information in list Lv if
necessary. In case Ivi becomes full, we repeat the same procedure recursively.

When Sv overflows for some leaf v, we split v into two leaves v1 and v2, as in standard
B-trees. Note that this might cause recursive splits of nodes at greater height.
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Bounding the insertion cost: To flush a buffer Iv and move segments to buffers of child
nodes Svi and Ivi , we need to perform O(Bε′) I/Os. Since each segment breaks into at most
Bε
′ unit segments, a buffer of size B becomes full after at least B/Bε′ = B1−ε′ insertions.

Thus the amortized cost of moving a segment from a buffer of depth i to depth i + 1 is
O(Bε′/B1−ε′) = O(1/B1−2ε′). Since each segment will be eventually stored in a node of
depth O((1/ε′) · logBK), the amortized cost until it gets inserted is O(logBK/(ε′ ·B1−2ε′)).
The restructuring of T due to splitting full nodes requires amortized O(1) I/Os, as in
standard B-trees. Overall insertions require O(logBK/(ε · B1−2ε′)) = O((logBK)/B1−ε)
amortized I/Os.
Linear space usage: To avoid increases in space usage due to unit segments, whenever
there are K/Bε′ new segments, we rebuild the structure. This way the space used is
O(K + (K/Bε′) · Bε′) = O(K). This rebuilding requires O((K/B) logBK) I/Os, i.e.,
O(logBK/B1−ε′) amortized I/Os, thus it does not violate the insertion time bound.

Deletions. The process of deleting a segment, σ, is similar to insertion: we break σ into
at most Bε′ unit segments σ`, . . . , σr where s` and sr are the leftmost and rightmost slabs
spanned by σ and apply the deletion procedure for each of those unit segments separately.

The deletion algorithm for a unit segment σi is analogous to the one of the left (right)
structure of Section 3. For completeness we describe it here. To delete a unit segment σi, we
first check whether it is stored in the buffers of the root Sr or Ir; in this case we delete it.
Otherwise, we insert σi in the deletion buffer of the root Dr. Let v be an internal node with
children v1, . . . , vBε′ . Whenever Dv becomes full we flush it and forward the segments to
the corresponding children and repeat the same procedure: For a segment σ which moves to
child vi, we check whether it is stored in Svi or Ivi and if this is the case, we delete it and
update list Lv if necessary. Otherwise, we store σi in the deletion buffer Dvi .

In case segment buffer Sv underflows (i.e., |Sv| < B/2), we refill it using segments from
buffers Svi ; segments moved to Sv are deleted from Svi and Lv gets updated (if needed).
This might cause underflowing segment buffers Svi ; we handle those in the same way. In
case all buffers Svi become empty and |Sv| < B , we move to Sv the segments from Iv until
either |Sv| = B or |Iv| = 0. After K/Bε′ deletions we rebuild our data structure.

Remark: Note that here we split all segments σ into unit segments σ`, . . . , σr. However,
the old segments σ are not unit segments and are stored manually in the data structure.
However this does not affect our algorithm: whenever the first unit segment σi which is a
part of σ reaches the node v such that σ ∈ Sv, we delete σ from Sv and remove σi from
deletion buffers. The remaining segments σj will eventually reach node v and realize that σ
is already deleted from Sv; at this point σj gets deleted.
Bounding the deletion cost: The analysis of the deletion cost is identical to the analysis of
deletions in the structure of Section 3. Since each segment breaks into at most Bε′ unit
segments, we get an amortized deletion cost of O(logBK/B1−2ε′) = O(logBK/B1−ε).
Linear space usage: Similar to insertions, we need to make sure that the total space used is
not increasing asymptotically due to the use of at most Bε′ unit segments in deletion buffers
for each deleted segment σ. The total capacity of deletion buffers is O(K). Since we rebuild
the structure after K/Bε′ deletions, there are at most O(K) segments stored in deletion
buffers, i.e., deletion buffers never get totally full and total space used is O(K)

Queries. Let p be the query point and ρ+ be the the vertical ray emanating from p in the
(+y) direction. Let also sp be the slab containing p. We can find sp in O(1) I/Os by storing
all slab boundaries in a block. We perform a root-to-leaf search and we keep the first segment
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p
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Figure 3 Vertical ray-shooting queries in the multislab structure: Query point p is in slab sp.
ρ is the vertical ray emanating from p. While being at node v of T , to decide in which child to
continue our search we examine all minimal segments tp,1, . . . , tp,Bε′ stored in list Lv. Among them,
the first one hit by ρ is tp,j . Thus the search continues at child vj of v.

σ hit by ρ+ among segments seen so far. While visiting a node v we do the following: (i)
perform a vertical ray-shooting query from p among segments stored in buffers Sv and Iv,
and update σ if necessary (ii) move to the child vi which contains the successor segment tp,j
of p in list Lv (see Figure 3) and (iii) find in Iv (resp. Dv) the segments crossing slab sp and
should be stored (according to the total order) in Tvi and move them to Svi or Ivi (resp.
delete them from Svi or store it in Dvi). If a segment inserted in Dvi is also stored in Ivi ,
we delete it from both buffers. Once we reach a leaf v, we first delete from Sv the segments
that are in the deletion buffer of its parent and then we perform ray-shooting query among
the segments stored in Sv and update σ if necessary.

Bounding the query cost: Since we follow a root-to-leaf path, and at each level we need
to perform O(1) I/Os, a ray-shooting query is answered in O((1/ε′) · logBK) I/Os.

5 Counting the Restructuring Cost

In Section 2 we proved the Theorem 1 (query and update bounds of the overall structure)
without taking into account the cost of restructuring the interval tree I due to insertions
that cause leaves to become full. In this section we show that Theorem 1 holds while taking
into account the restructuring of I as well.

When a leaf becomes full we need to split it. This split in turn might cause the split of
the parent and possibly continue up the tree, thus causing some part of the tree I to need
rebalancing. While rebalancing, we need to perform updates in the secondary structures so
that they are adjusted with the updated nodes of the interval tree I. In this section, we show
that we can slightly modify our data structure such that all updates in secondary structures
can be performed in O( logB N

B1−ε ) amortized I/Os. This implies that Theorem 1 holds.

Our Approach. We use a variant of the weight-balanced Bε-tree of [9]. Each leaf stores at
most B segment endpoints. Let v be a node at height h − 1 with parent p(v). Node p(v)
stores wv = Θ(B ·Bεh) elements in its subtree Ip(v). We will show that if node v splits, then
we can perform all updates needed in the secondary structures in O(wv/B1−ε) I/Os. This
implies that a split requires amortized O(1/B1−ε) I/Os, since after a restructuring, there
should be at least Ω(wv) insertions in Ip(v) until the next split is needed. Since each insertion
can cause O(logB N) splits, we get an amortized restructuring cost of O( logB N

B1−ε ) I/Os for
insertion.
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Figure 4 Splitting a node v into v1 and v2: slab sv is divided into slabs sv1 and sv2 with
boundary b.

Splitting a node. Node v splits into two new nodes v1 and v2. The slab sv of v is divided
into two slabs sv1 , sv2 with slab boundary b; see Figure 4. To capture this change and
update our data structure, we need to perform updates in the secondary structures of p(v)
and construct the secondary structures for v1, v2. We describe these updates in detail and
show that they can be performed in O(wv/B1−ε) I/Os. In our analysis we use the fact that
all secondary structures (multislab and left/right) storing K segments can be scanned in
O(K/B) I/Os.

Updates in secondary structures of p(v). We begin with the construction of left/right
structures for v1 and v2 using the previous left/right structures for v. We describe the
creation of left structures Lv1 and Lv2 for v1 and v2, respectively, and the right structures are
symmetric. Segments that were stored in Lv and do not cross b (like segment σ1 in Figure 5)
are stored in Lv2 ; segments of Lv that cross b (see segment σ2 in Figure 5) are stored in
Lv1 . To identify if a segment is stored in Lv1 or Lv2 we just need to scan Lv, which takes
O(wv/B) I/Os. Moreover, there are some additional segments that need to be stored in
left/right structures of p(v): the segments that are strictly inside the slab of v (i.e. they were
stored in secondary structures of v) and cross b; see e.g. segment σ3 in Figure 5. For those
segments, their left subsegments are stored in Lv1 and their right subsegments in Rv2 . To
find such segments we need to scan all secondary structures stored at v. Since each secondary
structure can be scanned in O(wv/B) I/Os and there are O(Bε) structures stored in each
node, all this takes O((wv/B) ·Bε) = O(wv/B1−ε) I/Os.

We now proceed to the updates of the multislab structure of p(v). Here, we just need to
add some segments to the previous multislab structure. The new segments are the segments
of Lv that cross b which are not already stored in the multislab (and symmetrically, the
segments of Rv that cross b and are not yet in the multislab). For an example, see segment σ2
in Figure 5; before it was not stored in the multislab and now we store its middle subsegment.
Note that the middle subsegment is a unit segment (i.e. crosses exactly one slab) thus we
don’t need to compute a new total order; we can find its position in the total order by
comparing it only with segments that cross slab sv2 . All those segments that need to be
added can be found by scanning Lv and Rv in O(wv/B) I/Os. Insertions in the multislab
of p(v) require O((logB wv)/B1−ε) = O(wv/B) I/Os. Also, all information stored in nodes
of the multislab structure can be updated in O(wv/B) I/Os. Overall, all updates in the
multislab structure of v are performed in O(wv/B) I/Os.
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su sv sw su sv1
b
sv2 sw

σ3 σ3

σ1 σ1

σ2σ2

Figure 5 Example of segments that get stored in different secondary structures after a split.
Segment σ1 was stored in Lv and, after the split, gets stored in Lv2 . Segment σ2 was stored in Lv;
following the split its left subsegment is stored in Lv1 and its middle subsegment in the multislab
structure of p(v). Segment σ3 was previously stored in secondary structures of v, and after the split
it should be stored in structures Lv1 and Rv2 of p(v).

Construct secondary structures for v1 and v2. The left and right structures for each child
slab of v1 and v2 will be based on the left/right structure of the same slab in v just by
removing the segments that cross b (which are assigned to p(v) as we explained above).
Similarly, segments that cross b are excluded from the multislab structure.

We start with the construction of left/right structures of v1 and v2. We describe the
left and the right is symmetric. For each slab sk of v, 1 ≤ k ≤ Bε we scan the left list Lk;
the segments that do not cross b remain in Lk and the others are deleted. All this takes
O((wv/B) ·Bε) = O(wv/B1−ε) I/Os.

Finally we create the multislab structures for v1 and v2. Again, we need to scan the
multislab of v and delete the segments that cross b, which takes O(wv/B) I/Os. Then we
need to build the multislabs of v1 and v2 out of the remaining segments. Since all segments
are already sorted according to a total order, this can be done in O(wv/B) I/Os.
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A Queries in the Left and Right Structures

In this Section we give further details on the left (right) structure which were omitted
from Section 3.

Queries. We begin with the queries and we show the correctness of the query algorithm of
the static left (right) structure.

Correctness: The correctness of the query algorithm follows from the next lemma. For a
node v ∈ T let Sv be the set of segments stored in buffers S in Tv .

I Lemma 4. Assume that at the end of the ith step of the query algorithm, either v+ or v−
is defined. Then σ+ is the first segment hit by ρ+ among the segments of L − (Sv− ∪ Sv+).

Proof. We prove the lemma by induction.
Induction Base: At the end of the first step, v+ and v− are children of the root r and σ+

is the first segment hit by ρ+ among all segments stored at the root (in Sr andMr). By
definition of vs = v+, for any child of the root v with higher y-range than v+, σ+ is below
all segments of Sv. Similarly, for any child of the root v′ with smaller y-range than v− (if
v− exists), there is no segment in Sv′ hit by ρ+ (since there exists a segment in Sv− hit by
ρ−). Finally, for any child v′′ of the root whose y-range is between the range of v− and v+,
by definition of v+, there is no segment in Sv′′ hit by ρ+. We conclude that σ+ is the first
segment hit by ρ+ among the segments in L − (Sv− ∪ Sv+).

Inductive Step: Assume the lemma holds at the end of step i, i.e. we have at least
one of v+ and v− at level i and σ+ is the first segment hit by ρ+ among all segments in
L − (Sv+ ∪ Sv+).

During (i+ 1)th step we ray-shoot on ρ+ among segments stored in Sv+ ,Sv− ,Mv+ and
Mv− , and update σ+ if necessary. Let vs be the node containing the first segment hit by ρ+

amongMv+ andMv− (if such a segment exists). Let also vp be the node containing the
first segment hit by ρ− amongMv+ andMv− (if such a segment exists).

By definition of vs, for any node v which is a child of v− or v+ with higher y-range than
vs, σ+ is below all segments of Sv. Similarly, for a node v′ which is a child of v− or v+ with
smaller y-range than vp (if vp exists), there is no segment of Sv′ hit by ρ+ (since there exists
a segment in Svp hit by ρ−). Finally, for any child v′′ of v− or v+ whose y-range is between
the range of v− and v+, by definition of v+, there is no segment in Sv′′ hit by ρ+.

Recall that by the induction hypothesis σ+ at the end of the previous step was the first
segment hit by ρ+ among segments of L− (Sv+ ∪Sv+). Now we updated σ+ and showed that
there is no segment hit by ρ+ before σ+ in any subtree other than Tvs or Tvp . We conclude
that σ is the first segment hit by ρ+ among the segments in L − (Svs ∪ Svp). Since at the
end of the (i+ 1)th step we set v− = vp and v+ = vs, the lemma follows. J

We now explain how Lemma 4 implies the correctness of the query algorithm. To see
that, let i be the last level where either v+ or v− is defined; at the beginning of the query
algorithm at level i, σ+ is the first segment hit by ρ+ among segments of L − (Sv− ∪ Sv+).
Moreover at the end of this step, both vs and vp are not defined, i.e., for each child v of v− or
v+ there is no segment in Sv hit by ρ+ before σ+. Since Sv− ∪Sv+ = Sv− ∪Sv+ ∪ (∪vSv), we
get that σ+ is the first segment hit by ρ+ among segments of L − (Sv− ∪ Sv+). By checking
all segments of Sv− ∪ Sv+ and updating σ+ if necessary, we make sure that σ+ is the first
segment hit by ρ+ among segments of L.
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