
Result-Sensitive Binary Search with Noisy
Information
Narthana S. Epa
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
nepa@student.unimelb.edu.au

Junhao Gan
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
junhao.gan@unimelb.edu.au

Anthony Wirth
School of Computing and Information Systems, The University of Melbourne, Victoria, Australia
awirth@unimelb.edu.au

Abstract
We describe new algorithms for the predecessor problem in the Noisy Comparison Model. In this
problem, given a sorted list L of n (distinct) elements and a query q, we seek the predecessor of q

in L: denoted by u, the largest element less than or equal to q. In the Noisy Comparison Model, the
result of a comparison between two elements is non-deterministic. Moreover, multiple comparisons of
the same pair of elements might have different results: each is generated independently, and is correct
with probability p > 1/2. Given an overall error tolerance Q, the cost of an algorithm is measured
by the total number of noisy comparisons; these must guarantee the predecessor is returned with
probability at least 1−Q. Feige et al. showed that predecessor queries can be answered by a modified
binary search with Θ(log n

Q
) noisy comparisons.

We design result-sensitive algorithms for answering predecessor queries. The query cost is related
to the index, k, of the predecessor u in L. Our first algorithm answers predecessor queries with
O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons, for an arbitrarily large constant c. The function log∗(c) n

iterates c times the iterated-logarithm function, log∗ n. Our second algorithm is a genuinely result-
sensitive algorithm whose expected query cost is bounded by O(log k

Q
), and is guaranteed to terminate

after at most O(log log n
Q

) noisy comparisons.
Our results strictly improve the state-of-the-art bounds when k ∈ ω(1) ∩ o(nε

), where ε > 0 is
some constant. Moreover, we show that our result-sensitive algorithms immediately improve not only
predecessor-query algorithms, but also binary-search-like algorithms for solving key applications.

2012 ACM Subject Classification Theory of computation → Sorting and searching; Theory of
computation → Predecessor queries

Keywords and phrases Fault-tolerant search, random walks, noisy comparisons, predecessor queries

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.60

Funding Anthony Wirth: Funded by the Melbourne School of Engineering.

Acknowledgements We thank our anonymous reviewer for directing us to the work of Karp and
Kleinberg [8].

1 Introduction

Let U be a totally ordered universe of elements. Consider a sorted (abstract) list L of n
(distinct) elements from U , in ascending order, and indexed starting from 1. Denote by L[j]
the jth element in L for j = 1, 2, . . . , n. Given a query element q, the predecessor problem on L
is to return the index k = max{j ∣ L[j] ≤ q}; if the set {j ∣ L[j] ≤ q} is empty, return 0. As
the 0 case can be identified easily, without loss of generality, we assume that the predecessor
always exists in L. The predecessor query is one of the most fundamental and important

© Narthana S. Epa, Junhao Gan, and Anthony Wirth;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 60; pp. 60:1–60:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nepa@student.unimelb.edu.au
https://orcid.org/0000-0001-9101-1503
mailto:junhao.gan@unimelb.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:awirth@unimelb.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2019.60
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Result-Sensitive Binary Search with Noisy Information

primitives in computer science; it is a crucial building block for a large number of data
structures and algorithms. Any improvements (even a small constant) in the efficiency of
answering predecessor queries would immediately benefit all these algorithms, improving
practicality. In fact, the predecessor query has been widely studied in various computation
models. For example, it is well known that a predecessor query can be answered with
Θ(logn) comparisons by binary search in the (usual, non-noisy) Comparison Model.

In this paper, we focus on the Noisy Comparison Model, which was proposed by Feige et
al. [7]. It has two parameters: (i) the probability of a correct comparison, p > 1/2, and (ii)
the overall error tolerance Q ∈ (0,1/2]. In this model, each comparison between a pair of
elements is “noisy”, in the sense that the comparison result is not deterministic. Instead, each
comparison is answered correctly by a comparison oracle independently with probability p.
In other words, for two different comparisons queries between the same pair of elements, the
oracle may return different results, completely independently. The correct answer is returned
with probability p, the incorrect answer with probability 1 − p.

In this paper, we seek algorithms that minimize the number of calls to the comparison
oracle. The cost of an algorithm is measured by the total number of noisy comparisons.
We require that the algorithm solves the predecessor problem correctly with probability at
least 1 −Q.

1.1 Applications

The Noisy Comparison Model is particularly useful for modelling application scenarios where
comparisons between elements are difficult and costly. For example, in a crowd-sourcing
scenario, a human worker may make mistakes when comparing two given objects such as
images, and each such comparison incurs some cost, e.g., a dollar. As a result, an efficient
algorithm in the Noisy Comparison Model nicely trades off budget with accuracy. Another
example is in employee recruitment, where the comparison result between two applicants
may be noisy (“incorrect”) due to lack of familiarity with or even bias in relation to certain
applicants. Potentially, a noisy comparison algorithm could help guide a process to improve
fairness with limited resources.

1.2 Previous Innovation

To answer a predecessor query under the Noisy Comparison Model, we must return the
correct answer with probability 1 −Q. To achieve this, a naive approach is to replace each
deterministic comparison in an algorithm (in the usual model) with a sequence of repeated
comparisons between the same two elements in the Noisy Comparison Model. If we want the
probability of each such comparison being correct to be 1 − δ, each such sequence comprises
O(logp(1/δ)) repeated noisy comparisons and returns the majority answer. Moreover, to
account for the O(logn) comparisons in traditional binary search, by setting δ = O(Q

logn),
we solve the predecessor problem with probability at least 1−Q, making O(logn ⋅ log(logn

Q
))

noisy comparisons.
While the traditional binary search is optimal under the (deterministic) Comparison

Model, this naive adaptation of binary search is actually far from optimal under the Noisy
Comparison Model. As Feige et al. show [7], the worst-case lower bound on answering a
predecessor query under the Noisy Comparison Model is only Ω(log(n/Q)). Indeed, Feige
et al. introduce a binary-search based algorithm whose noisy comparison cost matches this
lower bound. Some of our methods build on this algorithm, which we hence refer to as Feige.

N. S. Epa, J. Gan, and A. Wirth 60:3

1.3 The Open Question
In general, Feige is worst-case optimal. However, when the index k of the predecessor
is O(1), the brute-force algorithm which compares q naively with elements of L one-by-one,
in ascending order, performs better. The total number of noisy comparisons is bounded
by O(log(1/Q)). Hence the state-of-the-art result is O(log 1

Q
) when k = O(1), and O(log n

Q
)

when k = ω(1). The subtle, but crucial, question is: Can we bridge these two bounds
smoothly over the entire spectrum k ∈ {1, . . . , n}?

With this motivation, in this paper, we design result-sensitive algorithms for answering
predecessor queries, and solving related problems, in the Noisy Comparison Model. That is,
the costs of the algorithms should depend on the result index, k.

1.4 Our Contributions
We develop result-sensitive algorithms for the predecessor problem under noisy comparisons,
then apply these to Range Count, Stabbing Count, and Shortlisting problems. We start
with a function definition. The function log∗(c) n iterates the iterated-logarithmic function c
times. That is, log∗(1) n = log∗ n and log∗(c) n = log∗(log∗(c−1) n).

I Theorem 1. Let c ≥ 1 be an arbitrarily large integer constant. There exists an algorithm
that, on every predecessor query, answers correctly with probability at least 1 −Q, and makes
O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons.

Of course, log∗ n grows very slowly, e.g., log∗ n = 6 for n = 2232
. However, log∗(c) n, the

bound in Theorem 1, is unfortunately not genuinely result sensitive as it depends on n,
not k. Nonetheless, the analysis of this algorithm, supporting Theorem 1, is relatively simple,
building on the Feige algorithm [7]. With a more careful algorithm design and analysis, we
show that:

I Theorem 2. There exists an algorithm that, on every predecessor query, answers correctly
with probability at least 1 −Q, and makes O(log k

Q
) noisy comparisons in expectation.

As a result, our algorithm in Theorem 2 has bridged the noisy-comparison bounds, of
O(log 1

Q
) for k = O(1), and of O(log n

Q
) for k = ω(1), over the whole spectrum of k. Moreover,

we highlight that for k ∈ ω(1)∩o(nε), with ε being an arbitrarily small constant, our algorithm
strictly improves both of the two state-of-the-art bounds; for the O(1) and Ω(nε) ranges
of k, our algorithm matches the better of the two bounds.

Our Contribution to Applications

Our result-sensitive algorithm also immediately improves two types of noisy-comparison
algorithms for solving certain problems:

Type-I. algorithms that include predecessor search as a black box; and
Type-II. algorithms that generalise the comparison oracle in predecessor search

Type-I algorithms. We consider the following two example problems:

I Problem 1 (Range Count Query). Given a sorted list L of n elements from U , and a query
range (a, b], a range count query returns the number of elements in L falling into (a, b].

I Problem 2 (Stabbing Count Query). Consider a set S of n closed intervals, each of which
appears in two sorted lists. One list comprises S sorted by left endpoints; the other list
comprises S sorted by right endpoints. Given a query value q, a stabbing count query returns
the number of intervals of S that contain q.

ISAAC 2019

60:4 Result-Sensitive Binary Search with Noisy Information

In addition, by Theorem 2, we have:

I Corollary 3. There exists an algorithm that, on every range count query, answers correctly
with probability at least 1 − Q, and makes O(log ka+1

Q
+ log count+1

Q
) noisy comparisons in

expectation. The value ka is the index of the predecessor of a in L, while count is the number
of elements in L falling in (a, b].

I Corollary 4. There exists an algorithm that, on every stabbing count query, answers
correctly with probability at least 1−Q, and makes O(log kr+1

Q
+ log count+1

Q
) noisy comparisons

in expectation. The value kr is the number of right endpoints no larger than q, while count
is the number of intervals in S stabbed by q.

When ka, kr, count ∈ ω(1) ∩ o(nε), the algorithms in these two corollaries strictly improve
the results implied by the state-of-the-art Feige algorithm.

Type-II algorithms. We consider this problem:

I Problem 3 (Shortlisting). Given two sorted lists, A and B, with nA and nB elements,
respectively, that are disjoint, and a value m, 1 ≤m ≤ nA+nB, return the m smallest elements
(i.e., a shortlist of size m) from the conceptual merged sorted list of A and B.

By generalising the comparisons in a predecessor search, we prove:

I Theorem 5. There exists an algorithm for the Shortlisting problem that, on every input,
with probability at least 1−Q, returns a set of the m smallest elements, not necessarily sorted,
and makes O(log min{k,m−k}+1

Q
) noisy comparisons in expectation, where k is the number of

elements from A being in the shortlist.

2 Related Work

An early model for computing with errors was the Rényi-Ulam game, where the player must
identify an element of a finite set of integers by asking questions from an adversary who may
lie a bounded number of times [15, 18]. Variants have been considered where the errors were
bounded, either globally or as a running total. Binary-search style algorithms to play this
game under such models where put forward by Rivest et al. [16], Saks and Wigderson [17],
and Borgstrom and Kosaraju [4].

The Noisy Comparison Model used in this paper is different, but related to the Rényi-
Ulam game [11, 7]. In this model, errors are random, independent and transient, meaning
that repeated comparisons can be used to bound the correctness probability for the result.
Feige et al. [7] consider the problems of binary search, sorting, merging, and ranked selection
under this model. Their algorithm for binary search is a basic result that we rely on for much
of this paper. Algorithms for the problems of sorting, merging and ranked selection with
related error models have been more recently considered by Ravikumar for merge sorting
with bounded errors [14], Luecci and Liu for minimum selection with noisy errors [10], and
Chen et al. for ranked selection with noisy errors [5]. For a more complete history and
summary of the various error models for fault tolerant searching, refer to the survey paper
by Pelc [12] or the book of Cicalese [6].

Karp and Kleinberg [8] pursued an alternative comparison model. There, the oracle’s
probability of reporting “less than” is an increasing function of the index in the list L. In that
the probability p is fixed, the model presented here is a special case of that model. Unlike
Karp and Kleinberg [8], however, we succeed only if we find the exact predecessor; they
permit an approximately close answer. Applying the algorithm of Karp and Kleinberg [8] to
our scenario would find an approximate predecessor with probability at least 3/4.

N. S. Epa, J. Gan, and A. Wirth 60:5

The predecessor problem may be solved with an unbounded search algorithm to achieve
a result-sensitive comparison bound. It is straightforward to apply an unbounded search
algorithm to solve the predecessor problem with an output-sensitive running time of O(log k),
where k is the index of the predecessor. The unbounded search problem was established,
for the deterministic case, by Bentley and Yao [3]. Further lower and upper bounds have
been established due to the work of Raoult and Vuilleman [13], Knuth [9], and Beigel [2].
Pelc [11] also addresses the problem of unbounded search in the Noisy Comparison Model
that is used in this paper. However, if we treat the tolerance, Q, as a constant, letting k
be the index of the result, when the probability of an correct individual comparison, p, is
in [1

3 ,
1
2), these algorithms make O(log2 k) comparisons [11]. However, in a survey article [12],

Pelc notes that for the case of linearly bounded errors, Aslam and Dhagat [1] improved the
comparison bound to O(log k) for all p < 1

2 . Furthermore, Pelc observed that this implies the
existence of an unbounded search algorithm in the Noisy Comparison Model that performs
O(log k) for every p < 1

2 . However this asymptotic result on the number of comparisons is
due to varying the tolerance, Q. In our algorithms, we add a log(1/Q) term to the number
of comparisons; the algorithms Pelc refers to have a 1/(1 −

√
1 −Q) term, which grows much

faster than log(1/Q) as Q→ 0.

3 Almost Result-Sensitive Algorithms

The predecessor index of a query element q is k: we denote the actual predecessor, L[k],
by u. Moreover, we assume that k ≠ 0. For simplicity, we also assume that n is a tower-of-two
number, namely, n = 22⋰

2

. Otherwise, we could pad L with dummy elements of value ∞,
increasing n to be a tower-of-two. As a result, for every integer i with 1 ≤ i ≤ log∗ n, log(i) n
is an integer, where log(1) n = logn and log(i) n = log(log(i−1) n).

In this section, we prove Theorem 1, showing an almost result-sensitive predecessor
algorithm, with

O(log log∗(c) n
Q

+ log k

Q
)

noisy comparisons. The basic idea is to incorporate Feige as a black box. As the first step, in
Section 3.1 we describe an algorithm with a slightly worse asymptotic bound on the number
of noisy comparisons.

3.1 An O(log log∗ n

Q
+ log k

Q
)-Algorithm

Denote by L[a, b) the sub-list of L of a contiguous index range {a, . . . , b−1} with 1 ≤ a ≤ b ≤ n.
Suppose we identify a sub-list L[a, b) that contains the predecessor u and whose length, b−a,
is bounded by O(kc′), for some constant c′. By applying Feige, we can answer the query
on L[a, b) with O(log k

Q
) noisy comparisons. The basic idea of the algorithm proposed in this

subsection is to use binary search with noisy comparisons to identify such a sub-list L[a, b)
with length bounded by O(k).

To ease the presentation, setting L0 ≡ L, we let Li[j] denote the item in location j of
list Li, while Ii[u] is the dual, the index of item u in list Li. Meanwhile, Predi[q] is the
index of the predecessor of q in list Li. For this purpose, we define two conceptual lists:

ISAAC 2019

60:6 Result-Sensitive Binary Search with Noisy Information

L2

L1[p1, p2)

L[p3, p4)

q

k2

k1

k0

k2 + 1

k1 + 1

p1 p2

p3 p4

Figure 1 Our three-level binary search with noisy comparisons. Searching for q in L2 first, we
then “zoom in” to a sub-list of L1, i.e., L1[p1, p2). Then, via the predecessor of q in L1[p1, p2), we
further “zoom in” to a sub-list of L, i.e., L[p3, p4), in which we can find the predecessor of q in L.

Power-of-two List L1: This is the sorted sub-list of L comprising the elements at indexes
that are powers of 2. It has 1 + logn elements:

L[1], L[2], L[4], L[8], . . . , L[n] = L[2logn] .

Iterated-log List L2: This is the sorted sub-list of L comprising the elements at the iterated-
logarithmic indexes. It has 1 + log∗ n elements:

L[1] = L[log(log∗ n) n], L[log(log∗ n−1) n], L[log(log∗ n−2) n], . . . ,
L[log(2) n], L[logn], L[n] = L[log(0) n] .

Our algorithm adopts a three-level binary search with noisy comparisons, in which the search
range is narrowed, by searching at finer and finer granularities. Figure 1 illustrates this
principle: while L2 has O(log∗ n) elements, both the lengths of L1[p1, p2) and L[p3, p4)
are bounded by O(k). As a result, the total number of noisy comparisons is bounded by
O(log log∗ n

Q
+log k

Q
), as claimed. At each level, the noisy binary search has error tolerance Q/3;

by the union bound, the overall error tolerance is Q.
The details of the algorithm are as follows. Observe that the indexes p1, p2, p3, p4, and k2

are in some sense absolute, whereas the indexes k0 and k1 are relative to the sublist in which
they are defined.

Feige on L2: Let k2 = Pred2[q]. If k2 = 1 + log∗ n, then return n as the answer, as the
largest element of L2 is in fact L[n]. Otherwise, let u2 = L2[Pred2[q]] and let p′1 = I0[u2].
Then p′1 = log(α+1) n, where α = log∗ n − k2. Let p′2 = log(α) n. Furthermore, define
p1 = ⌈log p′1⌉ + 1 and p2 = ⌊log p′2⌋ + 1. It can be verified that the elements in the sub-list
L1[p1, p2) consists of all the elements in L1 whose indices in L are in [p′1, p′2).

Feige on L1[p1, p2): Denote by k1 the (relative) index of the predecessor u1 of q in sublist
L1[p1, p2). Let p3 = I0[u1], so we have p3 = 2k1+p1−2, and also let p4 = 2 ⋅ p3.

Feige on L[p3, p4): Let k0 be the (relative) index of the predecessor u of q in sublist L[p3, p4).
Finally, return k = p3 + k0 − 1 as the index of u in L.

N. S. Epa, J. Gan, and A. Wirth 60:7

Number of Noisy Comparisons

The first search, in L2, makes O(log log∗ n
Q

) noisy comparisons, as the length of L2 is bounded
by O(log∗ n). In the second search, L1[p1, p2) contains at most O(log p′2

p′1
) elements. Since p′1 =

log p′2, the length of L1[p1, p2) is bounded by O(log p′2) = O(p′1) = O(k). Hence the second
search makes O(log k

Q
) noisy comparisons. Finally, as L[p3, p4) has length at most p4 − p3 =

p3 ≤ k, the number of noisy comparisons in the third search is bounded by O(log k
Q
).

Therefore, the overall number of comparisons is O(log log∗ n
Q

+ log k
Q
).

3.2 An O(log log∗(c) n

Q
+ log k

Q
)-Algorithm

Observe that when k ∈ Ω(log∗ n), the comparison cost of the three-level algorithm be-
comes O(log k

Q
); but when k ∈ o(log∗ n), the most expensive part, asymptotically, is Feige

on L2. To improve the log∗ n term in the bound, we bootstrap our algorithm, replacing
Feige on L2 with our three-level binary search algorithm itself, setting the tolerance Q/6 for
each run of Feige. That is, we treat L2 as an input to a new predecessor query of q, and
solve it with O(log log∗ ∣L2∣

Q
+ log k2

Q
) noisy comparisons. Combining with the search costs on

sub-lists L1 and L, the overall bound is improved to O(log log∗ log∗ n
Q

+ log k
Q
).

In fact, we can repeat this process, bootstrapping c times. By setting the tolerance of
each run of Feige to Q/(3c), by the union bound, the tolerance of the overall algorithm is still
at most Q. The total number of noisy comparisons is bounded by O(log log∗(c) n

Q
+ c ⋅ log c⋅k

Q
).

As long as c is a constant, the bound is O(log log∗(c) n
Q

+ log k
Q
), proving Theorem 1.

4 Genuinely Result-Sensitive Algorithms

Incorporating Feige as a black box, as we did in Section 3, admits clean analysis. Unfortunately,
the bound on the number of noisy comparisons is not quite result sensitive. In this section, we
introduce truly result-sensitive asymptotic behavior, by describing an algorithm comprising
two phases:

Phase 1: Find u1 = L1[Pred1[q]], with tolerance Q′ = Q/2.
Phase 2: Let p1 = I0[u1]. Find the predecessor of q in the sub-list L[p1,2 ⋅ p1) with

tolerance Q/2. Let k0 be the (relative) index, and return k = p1 + k0 − 1.

By the union bound, the overall tolerance of this two-phase algorithm is at most Q. Moreover,
since k ≥ p1, the length of L[p1,2 ⋅ p1) is at most k. Hence the cost of Feige in Phase 2
is O(log k

Q
) noisy comparisons. Therefore, in the rest of this section, we focus on designing

an algorithm which completes Phase 1 with O(log k
Q
) noisy comparisons in expectation.

As the first step, we propose a Phase-1 method that can, with probability at least 1 −Q,
find the correct predecessor of q in L1, with O(log k

Q
) noisy comparisons (for convenience,

we write Q, rather than Q′, locally). Unfortunately, there is no guarantee that this method
terminates, and hence there is no worst-case bound on the number of noisy comparisons.
Nonetheless, in Section 4.2 we refine the method so that it always halts, has error toler-
ance Q, and in expectation makes at most O(log k

Q
) noisy comparisons. For convenience, we

assume (logn)/Q is an integer.

ISAAC 2019

60:8 Result-Sensitive Binary Search with Noisy Information

e1 e2 ei ei+1 elog n+1

depth− 1

depth− 2

depth− logn
Q

Figure 2 Comparison tree T , including directed edges displayed for oriented comparison tree T o
q ,

with item ei = L1[Pred1[q]].

(−∞, ei) [ei+1,∞)

ei

[ei, ei+1)

Figure 3 The horizontal node of ei: its
three edges partition the search space.

[ei, ei+1)

(−∞, ei) ∪ [ei+1,∞)

Figure 4 Non-leaf vertical node of ei:
its two edges partition the search space.

4.1 A Random-Walk Phase-1 Algorithm

The algorithm proposed in this subsection is based on random walks on a conceptual
comparison tree, denoted by T , which is defined as follows and shown in Figure 2 (ignoring
the edge directions).

There is a horizontal path with 1 + logn nodes in T , where the ith node, i ∈ [1, logn + 1],
corresponds to ei = L1[i], i.e., L0[2i−1]. Each node in this path is called a horizontal
node.
For each ei, linked to its horizontal node, there is a vertical extended path with (logn)/Q
nodes. The jth node of this vertical extended path (j ∈ [1, logn

Q
]) is at depth-j. Each node

in this extended path is called a vertical node of ei.
For each ei, its horizontal node has three edges which correspond to a partition of the
search space, as shown in Figure 3. Specifically, (i) the left edge (in fact, a self loop
for e1) corresponds to (−∞, ei); (ii) the right edge corresponds to [ei+1,∞); and (iii) the
downward edge corresponds to [ei, ei+1) (in fact, for e1+logn, the right and downward
edges are the same). When a walk (with respect to query q) is at the horizontal node ei,
if the noisy comparisons indicate that q falls in one of the three partitions, then the walk
should move along the corresponding edge.
A vertical node at depth-(logn)/Q has only an upward edge. Every other vertical node has
two edges, corresponding to a partition of the solution space, as shown in Figure 4. The
upward edge corresponds to (−∞, ei) ∪ [ei+1,∞), while the downward edge corresponds
to [ei, ei+1). As with the horizontal nodes, when a walk for a query q is at the current
vertical node, it should move along the edge corresponding to the range where q falls, as
indicated by the comparisons.

N. S. Epa, J. Gan, and A. Wirth 60:9

Consider the query q in the Deterministic Comparison Model. Each edge in T can be
conceptually oriented according to the result of a deterministic comparison on query q. We
call this the oriented comparison tree with respect to q, denoted by T oq , as shown in Figure 2.
We emphasize that both T and T oq are conceptual: neither is materialized.

Analysis

Referring to Figure 2, starting at an arbitrary node s in T oq , the walk that follows the edge
directions, reaches the deepest vertical node t, the leaf at depth-(logn)/Q, of the predecessor
of q in L1. Moreover, such a walk is the shortest path (in terms of the number of moves)
from s to t in T oq .

Our first Phase-1 method, Algorithm 4.1, performs a random walk on T oq , starting at
the horizontal node of e1. It comprises a sequence of moves, each of which the result of the
appropriate number of repeated noisy comparisons so that with probability, 2/3, the move
follows the direction of the edge in T oq . Such a move is called forward, whereas a move in the
oppositve direction is backward. (Given p > 1/2, we can boost the probability of a forward
move to at least 2/3 with a constant-factor blowup in noisy comparisons [7].)

Algorithm 4.1 A Random-Walk Phase-1 Algorithm.

Let c be some constant to be fixed.
r ← 1 ▷ r is the number of rounds
Perform c ⋅ log3

1
Q

moves, starting from the horizontal node of e1
while true do

5: for j ← 1; j ≤ c; j ← j + 1 do
move
if The walk is at a vertical node of ei at depth-(r + log3

1
Q
) then

Return I1[ei]
r ← r + 1 ▷ Increase the round number

I Lemma 6. For every r, the probability of Algorithm 4.1 returning a wrong answer in
round r is at most Q/3r. Overall, the algorithm returns a wrong answer with probability at
most Q/2.

Proof. Observe that Algorithm 4.1 stops only when the random walk reaches a vertical
node at depth-(r + log3

1
Q
). If the answer is wrong in round r, the walk must have made at

least r + log3
1
Q

backward moves in some vertical path. The probability of this, in round r, is
at most (1/3)r+log3(1/Q) ≤ Q/3r. Summing over all rounds and applying a union bound, the
overall failure probability at most ∑∞r=1Q/3r ≤ Q/2. J

I Theorem 7. With probability at least 1 −Q, Algorithm 4.1 halts, having made O(log k
Q
)

noisy comparisons, and returns Pred1[q].

Proof. Let ei∗ be L1[Pred1[q]]. By Lemma 6, the probability of Algorithm 4.1 returning a
wrong answer is at most Q/2. Next, we show the algorithm returns a correct answer with
probability at least 1 −Q/2 and makes O(log k

Q
) noisy comparisons. Then by the union

bound, the theorem holds.
Consider the round r = i∗, where the random walk has made c ⋅(i∗+log3

1
Q
) moves. Among

these, let mf and mb be the numbers of forward moves and backward moves, respectively. In
order to return a correct answer in this round, the random walk must satisfy

mf −mb ≥ i∗ + i∗ + log3
1
Q
. (1)

ISAAC 2019

60:10 Result-Sensitive Binary Search with Noisy Information

Here, the first i∗ arises from horizontal forward moves to the horizontal node of ei∗ , while
the i∗ + log3

1
Q

component is the condition of returning an answer in round r = i∗. By the
Chernoff-Bound argument of Feige et al. [7], c′ ⋅ (2 ⋅ i∗ + log3

1
Q
) moves suffice to satisfy

inequality (1) with probability at least 1 −Q/2. Therefore, by setting c = 2 ⋅ c′, we have
c ⋅ (i∗ + log3

1
Q
) ≥ c′ ⋅ (2 ⋅ i∗ + log3

1
Q
) and thus, the algorithm returns the correct answer in

round i∗ with probability at least 1 −Q/2. Moreover, the total number of noisy comparisons
is O(i∗ + log 1

Q
) = O(log 2i∗

Q
) = O(log k

Q
), from the definition of ei∗ . J

Although Theorem 7 shows that Algorithm 4.1 is result sensitive with error tolerance at
most Q/2, it is a Las Vegas algorithm. That is, for every integer K, there is a non-zero (albeit
negatively exponential in K), probability that the query cost of Algorithm 4.1 exceeds K.
Nonetheless, we show in the next subsection that Algorithm 4.1 can be refined such that it
always terminates with at most O(log logn

Q
) noisy comparisons, while the expected number

of noisy comparisons is O(log k
Q
).

4.2 The Ultimate Phase-1 Algorithm
The refined algorithm, which we call our Ultimate Phase-1 Algorithm, is as simple as this:

Algorithm 4.2 The Ultimate Algorithm.

Run Algorithm 4.1 for at most R = log logn rounds
if Algorithm 4.1 has not yet returned an answer then

Run Feige on L1, with tolerance Q

Since Feige algorithm always terminates, Algorithm 4.2 always terminates. Observe that
after R rounds of Algorithm 4.1, O(log logn + log 1

Q
) = O(log logn

Q
) comparisons are made.

Running Feige on L1, the cost is bounded by O(log logn
Q

). As a result, in the worst case,
Algorithm 4.2 makes O(log logn

Q
) noisy comparisons. For those queries whose correct result k

satisfies k = Ω(logn), this bound is within O(log k
Q
). We next show that for k = o(logn), the

expected number of noisy comparisons is bounded by O(log k
Q
).

We state explicitly the Chernoff-Hoeffding bound that is the backbone of our proof.

I Fact 1 (Chernoff-Hoeffding Bound). Let X1,X2, . . . ,XN be random variables such that α ≤
Xi ≤ β for all i ∈ [1,N]. Let X = ∑Ni=1Xi and set µ = E(X). Then for all δ > 0, we have:

Pr[X ≤ (1 − δ) ⋅ µ] ≤ exp(− δ2µ2

N(β − α)2) .

In our application of the bound, Xi is a random variable ∈ {+1,−1} indicating the ith
move is forward (Xi = 1) or backward (Xi = −1), so that X = mf −mb. As a result, we
have α = −1, β = 1, µ = N/3, and by setting δ = 1−τ/µ, with τ being the threshold for mf −mb

signifying termination, we have:

Pr[X ≤ τ] ≤ exp(−(µ − τ)2

4N
) .

Consider a query q with ei∗ = L1[Pred1[q]]. Let M = i∗ + log 1
Q

and τ = 2 ⋅ i∗ + log 1
Q
. As

shown in the proof of Theorem 7 and by this Chernoff-Hoeffding Bound, for some sufficiently
large constant c, when N = c ⋅M ,

N. S. Epa, J. Gan, and A. Wirth 60:11

Pr[X ≤ τ] ≤ exp(−(µ − τ)2

4N
) ≤ Q,

and so Algorithm 4.1 stops in the (r∗ = i∗)th round with probability at least 1 −Q.
Next, we show the expectation of the cost of running all R = log logn rounds in Al-

gorithm 4.1, plus the cost for Feige is bounded by O(N) = O(M) = O(log k
Q
).

I Lemma 8. Let τ (0) = τ , µ(0) = µ and N (0) = N be the parameters in the r∗th round. In
the (r∗ + i)th round for i ∈ [1,R − r∗], the probability of Algorithm 4.1 not terminating is at
most Q1+i⋅ε, where ε = 1/M .

Proof. In round r∗ + i, we denote the correct-stop threshold by τ (i), the number of moves
by N (i), and the expected value of X by µ(i). According to Algorithm 4.1, in each round,
the “correct-stop” threshold, τ , gets increased by 1 and N gets increased by c. Therefore, we
have:

τ (i) = τ (0) + i = τ (0) + i

M
⋅M ≤ (1 + i

M
) ⋅ τ (0) = (1 + i ⋅ ε) ⋅ τ (0) ,

N (i) = N (0) + i ⋅ c = N (0) + i

M
⋅ c ⋅M = (1 + i

M
) ⋅N (0) = (1 + i ⋅ ε) ⋅N (0) ,

µ(i) = (1/3)N (i) = (1 + i ⋅ ε) ⋅ (1/3)N (0) = (1 + i ⋅ ε) ⋅ µ(0) .

Substituting into the Chernoff-Hoeffding Bound, we have the probability of not stopping
and returning the correct value being

Pr[X ≤ τ (i)] ≤ exp(−(µ(i) − τ (i))2

4N (i)
)

≤ exp(−(1 + i ⋅ ε) ⋅ (µ
(0) − τ (0))2

4N (0)
)

≤ Q1+i⋅ε . J

Denote by E[Cost] the expectation of the cost of Algorithm 4.2: that is, running all R rounds
of Algorithm 4.1, plus the cost of Feige on L1.

I Lemma 9. If the predecessor of a query q in L is at index k = o(logn), the expected query
cost of Algorithm 4.2, i.e., E[Cost], is O(log k

Q
).

Proof. We partition E[Cost] into three parts, and bound each:
CostA: the expected cost of the first r∗ rounds of Algorithm 4.1,
CostB : the expected cost of the rounds from r∗ + 1 to R of Algorithm 4.1,
CostC : the expected cost of Feige on L1.

As the comparisons in the first r∗ rounds are mandatory, CostA = N , where N is the number
of comparisons in the first r∗ rounds. In order to bound CostB , let us consider the following
conceptual process, which starts after r∗ rounds:

Algorithm 4.3 A Conceptual Batch Process.

r ← r∗

while r < R = log logn do
run the next M rounds as a batch, without stopping
if the depth-based stopping condition has been met in one of these M rounds then

5: return the answer corresponding to when the stopping condition was first met
r ← r +M

ISAAC 2019

60:12 Result-Sensitive Binary Search with Noisy Information

Clearly, the cost of this conceptual batch process, Algorithm 4.3, is no less than Al-
gorithm 4.1. The latter executes each round separately and terminates immediately when
the stopping condition is met. By Lemma 8, for the `th batch of M rounds, the probability
of the algorithm not stopping during that batch is at most Q1+`, for ` = 1, 2, . . . , z = ⌈R−r∗+1

M
⌉.

That is, the probability of the `th batch running is Q`.
Since the cost of each batch of M rounds is c ⋅M = N , the expected cost of the whole

conceptual batch process, which is an upper bound on CostB, is (because Q ≤ 1/2 and
E[Y] = ∑∞i=1 Pr[Y ≥ i]):

CostB ≤
z

∑
`=1

Q` ⋅N ≤ N ⋅
z

∑
l=1

1
2l

< N .

Finally, the probability that Algorithm 4.2 has not stopped in the first R = log logn
rounds is at most Q1+z. So we have: CostC ≤ Q1+z ⋅ γ ⋅ log logn

Q
, for some constant γ.

In total, the expected cost of the first R = log logn rounds is at most 2N . Moreover, the
probability of Feige on L1 occurring is at most Q1+z, which is at most the probability of each
noisy comparison made in the first R = log logn rounds. Therefore the expected value of CostC
is at most the expected value of CostA +CostB , up to a constant factor. Putting everything
together, we have E[Cost] = CostA +CostB +CostC ≤ O(N) = O(M) = O(log k

Q
). J

Proof of Theorem 2. Since the correctness of Algorithm 4.2 is easy to verify, combining
with Lemma 9, Theorem 2 holds. J

5 Conclusion

In this paper, we have designed result-sensitive algorithms under the Noisy Comparison
Model for answering predecessor queries. Specifically, our algorithm in Section 3 correctly
answers with probability at least 1 −Q, and makes O(log log∗(c) n

Q
+ log k

Q
) noisy comparisons

in the worst case, where k is the index of the predecessor in the sorted list. Incorporating
Feige as a black box leads to a clean analysis of this algorithm.

In Section 4, we present a genuinely result-sensitive algorithm such that for the queries
with k = Ω(logn), the cost is O(log k

Q
) in the worst case, and for those queries with

k = o(logn), its expected query cost is bounded by O(log k
Q
). Our algorithm nicely bridges

the state-of-the-art known bounds – O(log 1
Q
) for k = O(1) and O(log n

Q
) for k = ω(1) – over

the whole spectrum of k = 1, . . . , n. In particular, for k ∈ ω(1) ∩ o(nε), our algorithm strictly
improves the better of the two bounds.

Finally, by solving some key range-query and shortlisting problems, we illustrate how the
benefit of our result-sensitive algorithm.

References
1 Javed A Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors. In

STOC, pages 486–93, 1991.
2 R. Beigel. Unbounded Searching Algorithms. SIAM Journal on Computing, 19(3):522–537,

1990.
3 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded

searching. Information Processing Letters, 5(3):82–7, 1976.
4 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based Search in the Presence of Errors.

In STOC, pages 130–6, 1993.
5 Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the top-K

ranking problem. In SODA, pages 1245–64, 2017.

N. S. Epa, J. Gan, and A. Wirth 60:13

6 Ferdinando Cicalese. Fault-Tolerant Search Algorithms. Springer, 2016.
7 U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with Noisy Information. SIAM

Journal on Computing, 23(5):1001–1018, 1994.
8 Richard M. Karp and Robert Kleinberg. Noisy Binary Search and Its Applications. In Pro-

ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07,
pages 881–890, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

9 Donald E. Knuth. Supernatural Numbers. In David A. Klarner, editor, The Mathematical
Gardner, pages 310–25. Springer US, 1981.

10 Stefano Leucci and Chih-Hung Liu. A Nearly Optimal Algorithm for Approximate Minimum
Selection with Unreliable Comparisons. arXiv, 2018. arXiv:1805.02033.

11 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989.

12 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002.

13 J. C. Raoult and J. Vuillemin. Optimal unbounded search strategies. In Jaco de Bakker and
Jan van Leeuwen, editors, ICALP, pages 512–530, 1980.

14 B. Ravikumar. A Fault-Tolerant Merge Sorting Algorithm. In Oscar H. Ibarra and Louxin
Zhang, editors, Computing and Combinatorics, pages 440–447, 2002.

15 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl. B, 6:505–516,
1961.

16 R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winklmann, and J. Spencer. Coping with errors
in binary search procedures. Journal of Computer and System Sciences, 20(3):396–404, 1980.

17 M. Saks and A. Wigderson. Probabilistic Boolean decision trees and the complexity of
evaluating game trees. In FOCS, pages 29–38, 1986.

18 Stanisław M Ulam. Adventures of a Mathematician. Univ of California Press, 1991.

A Appendix: Applications

As mentioned in the Introduction, our result-sensitive algorithm for predecessor queries
immediately improves two types of algorithms for related problems. We provide details here,
proving Corollaries 3 and 4 and Theorem 5.

A.1 Direct Applications of Predecessor Search
Predecessor search appears as a black box in this type of application. We discuss two example
problems: (i) Range Count Query, and (ii) Stabbing Count Query. Specifically, we prove
Corollaries 3 and 4.

Proof of Corollary 3 for Range Count Query. For the given query range (a, b], we can first
apply our Algorithm 4.2 to find the index ka of the predecessor of a in L, with error
tolerance Q/2. Then apply Algorithm 4.2 again on the sub-list L(ka, n] to find the (relative)
index of kb of the predecessor of b, with error tolerance Q/2. Since all the elements in L[1, ka]
must not be in the range (a, b], it can be verified that kb is exactly the number count of
elements of L falling in (a, b]. The correctness of the algorithm is obvious and, allowing
for count = 0, the cost is bounded by O(log ka+1

Q
+ log count+1

Q
) in expectation. J

Proof of Corollary 4 for Stabbing Count Query. Denote by L` (respectively, Lr) the list of
the intervals of S sorted by their left (respectively, right) endpoints. Let k` and kr be the
indexes of the predecessors of the query value q in L` and Lr, respectively. Observe that
the number of intervals stabbed by q can be computed as count = k` − kr. Thus, we can first
apply Algorithm 4.2 on Lr to find the index kr of Predr[q], and then apply the algorithm

ISAAC 2019

http://arxiv.org/abs/1805.02033

60:14 Result-Sensitive Binary Search with Noisy Information

on the sub-list L`[kr + 1, n] to find the index k′` of Pred`[q]. Thus, k′` = k` − kr = count.
By setting the error tolerances of each search to Q/2, the correctness of the algorithm is
straightforward, and the cost is bounded by O(log kr+1

Q
+ log count+1

Q
) in expectation. J

A.2 Predecessor Search with Generalised Comparison Oracle
In this subsection, we illustrate how our result-sensitive algorithm can be applied to improve
Type-II algorithms by generalising the comparison oracle. As an example, we solve the
Shorlisting Problem.

Recall that in the Shortlisting Problem, there are two disjoint sorted lists LA and LB , the
goal is to return the set of m smallest elements (the “shortlist”) in the conceptual merged
sorted list of LA and LB . Obviously, actually merging A and B Feige– making O(N log N

Q
)

noisy comparisons (where N = nA+nB) – immediately solves the problem. However, our goal
is to solve the problem with significantly fewer comparisons (in expectation) than this merge
sledgehammer. Instead, we aim for O(log k

Q
) noisy comparisons, where k is the number of

elements from LA in the shortlist.
The crucial observation is that if we can determine the number k, then we can output the

whole shortlist without further comparisons. As we illustrate below, we can compute k with
a binary-search-like algorithm. Without loss of generality, we assume nA = nB =m since all
the elements with indices greater than m in either of the lists can be safely pruned.

The Comparison Oracle for Shortlisting

I Observation 1. For 1 ≤ i ≤m, LA[i] is in the shortlist if and only if LA[i] < LB[m− i+1].

Proof. First, suppose that LA[i] is in the shortlist; then there are at most m − i elements
from LB in the shortlist. Thus, LB[m − i + 1] cannot be in the shortlist and therefore,
LA[i] < LB[m − i + 1].

Conversely, suppose that LA[i] < LB[m − i + 1]. As a result, if LB[m − i + 1] is in the
shortlist, then LA[i] must be in the shortlist. However, this forces the shortlist to have size
at least m + 1. Therefore, there are no more than m − i elements from LB in the shortlist,
implying that there are at least i elements from LA in the shortlist. Hence, LA[i] is in the
shortlist. J

By Observation 1, we can decide whether LA[⌊m/2⌋] is in the shortlist by comparing it
with LB[m − ⌊m/2⌋ + 1]. We thus determine which half of the list LA should be further
considered, which is a binary-search-like algorithm. Since checking the condition in Observa-
tion 1 only takes one (deterministic) comparison, by the same analysis of Feige [7], we know
that we can identify the largest element LA[k] from LA in the shortlist with O(log m

Q
) noisy

comparisons, with an error tolerance Q.

The Comparison Oracle for Our Result-Sensitive Algorithm

We adapt the two-phase algorithm proposed in Section 4 to obtain a result-sensitive algorithm
for the Shortlisting Problem. Again, the second phase can be solved by binary search, which
we just designed efficiently. We focus on Phase 1, where our goal is to identify the largest
element in the power-of-two list of LA, denoted by LA1, which should be in the shortlist.
We simply design the search-space partitions for both the horizontal nodes and the vertical
nodes, as shown in Figures 3 and 4. The subsequent analysis follows immediately.

N. S. Epa, J. Gan, and A. Wirth 60:15

For a horizontal node ei = LA1[i] = LA[2i−1], the space partition for its edges is as follows:
the left edge corresponds to the case that ei is not in the shortlist: ei > LB[m − 2i−1 + 1];
the right edge corresponds to the case that ei+1 is in the shortlist: ei+1 < LB[m − 2i + 1];
the downward edge corresponds to the case that ei is in the shortlist, but ei+1 is not.

For a vertical node of ei, the space partition for its two edges is as follows:
the downward edge corresponds to the case that ei is in the shortlist, but ei+1 is not;
the upward edge corresponds to the other case.

By plugging the above comparison oracle to Algorithm 4.2, we have a result-sensitive Phase-1
algorithm for the Shortlisting Problem.

Proof of Theorem 5. By the above analysis, and allowing for k = 0, we obtain an algorithm
to find k in LA with O(log k+1

Q
) noisy comparisons in expectation. By symmetry, we can

find the dual index, m − k, for LB with an expected cost O(log m−k+1
Q

). Therefore, by
running both of the algorithms for LA and LB simultaneously and stopping as soon as
either terminates, the Shortlisting Problem can be solved with O(log min{k,m−k}+1

Q
) noisy

comparisons in expectation. The answer is correct with probability at least 1 −Q. J

ISAAC 2019

	Introduction
	Applications
	Previous Innovation
	The Open Question
	Our Contributions

	Related Work
	Almost Result-Sensitive Algorithms
	An O(log log* n/Q + log k/Q)-Algorithm
	An O(log log*(c) n + log k/Q)-Algorithm

	Genuinely Result-Sensitive Algorithms
	A Random-Walk Phase-1 Algorithm
	The Ultimate Phase-1 Algorithm

	Conclusion
	Appendix: Applications
	Direct Applications of Predecessor Search
	Predecessor Search with Generalised Comparison Oracle

