Dual-Mode Greedy Algorithms Can Save Energy

Barbara Geissmann
Department of Computer Science, ETH Ziirich, Switzerland
barbara.geissmann@inf.ethz.ch

Stefano Leucci
Department of Algorithms and Complexity, Max Planck Institute for Informatics, Germany™
stefano.leucci@Qmpi-inf.mpg.de

Chih-Hung Liu
Department of Computer Science, ETH Ziirich, Switzerland
chih-hung.liu@inf.ethz.ch

Paolo Penna
Department of Computer Science, ETH Ziirich, Switzerland
paolo.penna@inf.ethz.ch

Guido Proietti

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Universita dell’Aquila, Italy
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Roma, Italy
guido.proietti@Qunivaq.it

—— Abstract

In real world applications, important resources like energy are saved by deliberately using so-called
low-cost operations that are less reliable. Some of these approaches are based on a dual mode
technology where it is possible to choose between high-energy operations (always correct) and
low-energy operations (prone to errors), and thus enable to trade energy for correctness.

In this work we initiate the study of algorithms for solving optimization problems that in their
computation are allowed to choose between two types of operations: high-energy comparisons (always
correct but expensive) and low-energy comparisons (cheaper but prone to errors). For the errors
in low-energy comparisons, we assume the persistent setting, which usually makes it impossible
to achieve optimal solutions without high-energy comparisons. We propose to study a natural
complexity measure which accounts for the number of operations of either type separately.

We provide a new family of algorithms which, for a fairly large class of maximization problems,
return a constant approrimation using only polylogarithmic many high-energy comparisons and only
O(nlogn) low-energy comparisons. This result applies to the class of p-extendible systems [24],
which includes several NP-hard problems and matroids as a special case (p = 1).

These algorithmic solutions relate to some fundamental aspects studied earlier in different contexts:
(i) the approximation guarantee when only ordinal information is available to the algorithm; (ii) the
fact that even such ordinal information may be erroneous because of low-energy comparisons and
(iii) the ability to approximately sort a sequence of elements when comparisons are subject to
persistent errors. Finally, our main result is quite general and can be parametrized and adapted to
other error models.
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1 Introduction

Classical computational problems have been studied under two (somewhat extreme) settings:
the one in which every operation is always correct and the one in which operations are
prone to errors (see, e.g., [10, 28, 11, 20]). The latter scenario represents not only faults in
hardware, but also measurement errors, or even errors that are deliberately introduced in
the system in order to save important resources. For instance, several approaches to save
energy in computation consists in designing systems which are in part inaccurate but use
substantially less energy [22, 1, 21].

Here we consider the scenario in which these two types of operations coexist and they
may be combined in a clever way in order to save resources and still achieve a certain goal.
Interestingly, this is already done in some practical applications. At a hardware level, the
dual mode logic [21] allows each single gate to switch between a static mode, which uses low
energy but suffers from some performance degradation, and a dynamic mode which uses
a higher energy but reaches the better performance of standard CMOS gates. Similarly,
in probabilistic CMOS [1] one can reduce the energy spent by a single gate at the price of
increasing the probability of error in the corresponding output. In [7], the authors propose
a probabilistic adder for image processing purposes where high energy is used in the most
significant bits and lower energy in the less significant bits. In computational geometry,
[12] suggests a model in which the algorithm uses either cheap operations (floating-point
arithmetic), whose result may be erroneous in some circumstances, and ezpensive operations
(exact arithmetic) whose result is always correct.

In all these examples, a good solution is obtained by combining both high-energy and
low-energy (expensive and cheap) operations in a suitable way. This suggests the following
algorithmic question regarding the trade-offs between high-energy and low-energy operations:

Suppose an algorithm can use both high-energy and low-energy operations, the latter
being erroneous, according to some error model. How many such high-energy and
low-energy operations are needed to obtain a good solution for a given problem?

1.1 OQOur contribution

We propose to evaluate algorithms according to a simple and natural measure that we call
high-low energy complexity. In this model, algorithms can operate at low energy or at high
energy. The former mode is cheap, but introduces some errors in the result of the operation,
while the latter is more expensive but always correct. We evaluate the performance of the
algorithm by essentially distinguishing between the two types of operations on inputs of
size n:

Total number h(n) of high-energy operations;

Total number I(n) of low-energy operations.
In this case, we say that the algorithm has (h(n),l(n))-high-low energy complexity. Because
high-energy operations are more expensive, the classical notion of time complexity does
not fully capture the possible trade-offs that may result in a lower total energy. Indeed,
it may be possible to have algorithms which use significantly fewer high-energy opera-
tions, and essentially the same number of low-energy operations, and still obtain (nearly)
optimal solutions.
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In this work, we show that such trade-offs are indeed possible for a large class of problems.

Specifically, we consider the setting in which the basic operations are comparisons between
the input weights, which is the part of the input necessary to determine if a solution is optimal
or not. For the errors in the comparisons at low energy, we assume the classical model of
persistent errors [6, 18, 15]: comparisons between distinct pairs of elements are independent
and return the wrong answer with some (small) constant probability independently across
the pairs; however, comparing the same pair of elements multiple times will always give the
same result. We consider the following setting:
The input elements that can be part of feasible solutions have a weight, but the algorithm
can only work with ordinal information meaning that it can only compare the weight of
two elements, but does not know the actual weights. The computed solution is however
evaluated with respect to the weights and it is compared with the optimum.
The ordinal information is accessible to the algorithm via two types of (comparison)
operations: low-energy operations which are cheap but may contain errors, or high-energy
operations which are always correct, though more expensive.

We study the high-low energy complexity of a wide class of optimization problems for
which greedy algorithms are guaranteed to return optimal or nearly optimal solutions: Using
only high-energy operations it is possible to find such solution, but this would require
already ®(nlogn) high-energy operations. On the other hand, with no high-energy
operations, errors during this sorting phase are likely to produce some dislocation, which in
turn may cause the greedy algorithm to have an unbounded approximation ratio. This
is true also for those problems where greedy computes the optimum like, e.g., the minimum
spanning tree (as we will further discuss in Section 2). Perhaps it may be surprising if, for
some problem, one could devise an algorithm with the following performance:

Compute a constant approxrimation using only O(polylog n) high-energy op-
erations and O(nlogn) low-energy operations.

We show that this is indeed the case for the rich class of maximization problems in so
called p-extendible systems, a generalization of matroids introduced in [24], and recently
reconsidered in [8] (see Section 2 for a formal definition). We consider the case of additive
optimization functions, where the goal is to optimize (maximize or minimize) the sum of the
weights in the solution (basis). This class includes, among others, mazimum profit scheduling
(p = 1 or 2 depending on the version), mazimum weight b-matching (p = 2), mazimum
asymmetric travelling salesman problem (p = 3), weighted A-independent set (p = A =
maximum degree) [24, 8]. Interestingly, greedy (without errors) is only a constant factor
away from the actual optimum: in any p-extendible system greedy is p-approzimate [24], and
it even returns the optimum if the input instance is p-stable [8], that is, if the p-extendible
system admits an unique optimal solution which remains unique even when the elements’
weights are perturbed by a factor between 1 and p. The special case of p-extendible systems
with p = 1 are matroids [24], where greedy also computes the optimum (the minimum
spanning tree is a classical example).

Our results show a direct connection between the number of high-energy operations
required to obtain a provably good solution and the ability to approzimately sort a sequence
of n elements at low energy. For a given error model, suppose we can compute a sequence
of the input elements so that the mazimum dislocation is at most d = d(n): each element
appears at most d positions away from its position in the sorted sequence (depending on
the weights). The results of this work are summarized in Table 1 (upper part) where for
the moment we do not account for the number of operations used to approximately sort

64:3

ISAAC 2019



64:4

Dual-Mode Greedy Algorithms Can Save Energy

Table 1 A summary of the results for a generic input with initial dislocation at most d (upper
part), and their instantiation for the case of persistent comparison errors (lower part). In the
latter case, an additional O(nlogn) low-energy operations are needed to produce the sequence with
dislocation d = ©(logn) w.h.p. [15]. The approximation guarantee of the lower part holds w.h.p.

Problem High-Energy Low-Energy Approximation
Matroids (min/max) O(dlog? d) O(n) 2 (Thm 4)
Matroids (min/max) O(d?/¢) O(n) 1+ ¢ (Thm 4)
p-Ext. Sys. (max, p > 2) o(d+ %2) O(n) p times greedy < p* (Thm 15)
Matroids (min/max) O(logn - (loglogn)?) O(nlogn) 2
Matroids (min/max) O(@) O(nlogn) 1+e
p-Ext. Sys. (max, p > 2) O(logn + %) O(nlogn) p times greedy < p?

the sequence (i.e., assume that such a sequence is provided in input). If such a sequence
can be constructed in time t,-+(n) using only unreliable (low-energy) comparisons, then
the low-energy operations of the whole algorithm (first approximately sort and then run
our algorithms) is O(n + tsort(n)). For the case of persistent comparison errors, [15] showed
that it is possible to approximately sort a sequence in tsor:(n) = O(nlogn) time so that the
maximum dislocation is d = O(logn) with high probability [15].1 This immediately yields the
bounds in Table 1 (lower part) showing that polylogarithmic high-energy operations suffice
to compute w.h.p. an approximate solution, where the approximation guarantee depends on
the problem version as shown in Table 1 (lower part).

Interestingly, since the greedy algorithm has approximation guarantee p for maximization
problems restricted to p-extendible systems [24], our results for p > 2 yield a constant
approximation for any p = O(1), including the aforementioned NP-hard optimization
problems. Moreover, for the special case of matroids (p = 1) where greedy returns the
actual optimum, we show that O(@) high-energy operations suffice to compute a (1 + €)-
approximation, and extend this result in two ways: we consider minimization problems
as well and algorithms which use even fewer high energy operations and still achieve an
approximation factor of 2.

Regarding problems where greedy is guaranteed to return the optimum solution, we recall
that this is also the case on p-stable instances of p-extendible systems [8]. There we show that
our algorithm will in some cases return a solution which is a factor p worse than the optimal
(greedy) solution, thus showing that the analysis in Theorem 15 is tight (see Theorem 19).

Due to space limitations, the analysis of our result concerning maximization in matroids
is omitted and will appear in the full version of the paper.

1.2 Related work

The standard greedy algorithm performs optimally or nearly optimally in several interesting
classes of problems.

Maximization of submodular optimization functions under cardinality constraint. In this

=7 [27, 29]. An even better guarantee

for greedy holds for modular functions and for functions that are “close” to being modular

case, greedy has an approximation guarantee of

L Technically this requires a comparisons error probability per» < 1/16 for which the O(nlogn)-time
algorithm in [15] applies. Alternatively, if low-energy operations account only for comparisons, the
same high-low energy complexity can be achieved for larger perr < 1/2 using [6] which uses O(nlogn)
comparisons.
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[9, 30]. Finally, constant approximations also hold for functions that are close to be
submodular [5].

Maximization in problems with more complex constraints has been also considered. For

p-extendible systems, greedy has an approximation of p 4+ 1 for submodular functions and

p for additive ones (our case). For the additive case, a small constant approximation can

be achieved using only ordinal information, i.e., without knowing the actual weights and

solely based on comparisons [3, 4]. Another line of research deals with stable instances of

p-extendible systems where greedy recovers the optimal solution [8].

Minimization problems are generally harder, with the exception of matroids, including

minimum spanning tree. Other examples are those problems where the minimum spanning

tree itself is a good approximation of the optimum, and thus greedy automatically provides
the same guarantee (see for example, the 2-approximation for the metric travelling sales-
man problem, and [17, 2] for connectivity problems in wireless networks). Bicriteria results
for supermodular functions with cardinality constraints are given in [23], which considers
extending a given solution in a greedy fashion. Finally, also for the metric travelling

salesman problem, greedy recovers the optimum in the case of stable instances [26].
Theoretical models for algorithms that use two-level operations are not completely new,
though they have been studied with different objectives. In particular, [12] distinguishes
between cheap and expensive comparisons, and errors occur only in the cheap comparisons
according to a threshold error model: a cheap comparison between two elements whose position
in the sorted sequence differ by at most 7 is prone to errors, and all other comparisons
are correct. They suggested to use a suitable “concatenation” of two algorithms to sort
perfectly in this error model. In our terminology, their approach has (O(rn), O(nlogn))-
high-low energy complexity (see also [16] for further results on this setting). Note that the
techniques and the results in [12, 16] are not applicable to our setting as their error model is
different (see next paragraph) and because our primary objective is not to sort. Indeed, our
results say that sorting exactly is not energy-optimal for many optimization problems (while
our algorithms use O(log” n) high-energy operations, sorting exactly w.h.p. requires Q(n)
high-energy complexity).

The error model with persistent errors is different from the threshold error model [12, 16],
and somewhat more difficult. In the model with persistent errors, there is no bound on 7, and
thus every comparison result is wrong with some probability pe., > 0, independently of the
other results. In this case, the best bound on the maximum dislocation which is possible to
guarantee (with high probability) is d = ©(log n) and, among the various known algorithms
that achieve this performance [6, 18, 13, 14, 15], the fastest has running time O(nlogn) [15].

2 Preliminaries

Independence systems and matroids

An independence system is a pair M = (E,Z) where F is a collection of n elements called
ground set; T C P(E) is a family of independent sets® which is downward closed (also known
as the hereditary property): if B €Z and A C B, then A € Z; and § € Z. A maximal (w.r.t.
inclusion) independent set is called a base or feasible solution.

2 Where P(E) denotes the power-set of E, i.e., the set of all subsets of E.
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We consider maximization and minimization problems involving independence systems
where each element e € F has a non-negative weight w(e) > 0. In maximization problems
(resp., minimization problems) the goal is to compute a base B maximizing (resp., minimizing)
the total weight w(B) = 3, . p w(b), the so called additive case. We shall restrict our attention
to the following two important classes of independence systems, for which the simple greedy
algorithm (see below) returns either a constant approximation or even the optimum.
Matroids: A matroid is an independence system (E,Z) that satisfies the augmentation

property: If A, B € T and |A| < |B|, then 3z € B\ A such that AU {z} € .
p-extendible systems : A p-extendible system is an independence system (E,Z) such that if

ACBeZand AU{e} €Z, then (B\ R)U{e} € T for some R C B\ A of cardinality

[R| <p.

It follows from the above definitions that the cardinalities of any two bases of a p-extendible
system are at most a factor p apart. Since any matroid M is a l-extendible system [25],
it follows that all bases of M have the same cardinality, denoted by rank(M). Finally, a
circuit C of an independence system is a minimal (w.r.t. inclusion) non-independent set, i.e.,

CeP(B)\T.

Greedy algorithm

A well-known algorithm is the greedy algorithm. Starting from the empty set, it iteratively
extends the current solution A € Z with the “best” element « € E \ A such that AU {z}
is still independent; For maximization problems, greedy considers the elements from the
largest weight to the smallest one, while in minimization it follows the opposite order. The
algorithm stops and returns the current set A when no such x element can be added. In
the following we denote by greedy(M) the set returned by (an unspecified implementation
of) the greedy algorithm on M, and by greedy(M, §) the set returned by the variant of the
greedy algorithm that considers the elements of M as they appear in a (non necessarily
sorted) sequence S.

Our setting (high and low energy operations)

The greedy algorithm needs access to the ground set of M, to the function w, and to an
independence oracle O that reports whether a subset of elements of E' is independent. Notice,
however, that only ordinal information about w are needed, i.e., we can replace w with a
comparison oracle Cy : E x E — {<,>}: a query Cy(z,y) to Cy reports whether x is
smaller than or equal to y.

In this paper we consider the scenario in which algorithms have access to an additional
comparison oracle C', that can sometimes return incorrect answers. More precisely, there is a
(small) constant probability pe,- < 1/16 that C, returns the wrong answer to a query. Errors
between comparisons that involve different pairs of elements are independent. However the
answers of C'f, are persistent, i.e., they do not change if the pair of elements is queried multiple
times. Notice that the algorithm is still allowed to query Cp in order to determine with
certainty the correct order relation between two elements (even if a query to Cy, involving
the same pair of elements has already been performed).

» Definition 1. We say that an algorithm has high-low energy complexity (h(n),£(n)) if it
performs at most h(n) queries to Cg, and at most £(n) other operations (including queries
to OL)
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Figure 1 The graph G along with (a) its minimum spanning tree, and (b) the spanning tree
returned by greedy(M, S).

» Example 2. The greedy algorithm has high-low energy complexity (O(nlogn), O(nlogn))

as it performs O(nlogn) queries to C'y in order to sort the elements of E according to w.3

Greedy on nonsorted sequences

As already mentioned, the standard greedy algorithm first orders the elements in E according
to their weights, i.e., it constructs a sorted sequence

S =(e1,ea,...,€n) where w(ey) > w(eg) > -+ > wley) (1)

for mazimization problems (the opposite order is considered for minimization problems).

The greedy algorithm then considers the elements of S in order and iteratively maintains an
independent set. Because sorting exactly the elements requires Q(n) high-energy operations
(see Example 2 above), we consider running greedy with respect to a different almost-sorted
sequence S = (é1,€2,...,€n). The sequence Sisa permutation of the elements which has
some bound d on the dislocation: we say that S has dislocation at most d if there exists a
sorted sequence S as in (1) such that* |t(e, S) — t(e, S)| < d, where t(e, S) and t(e, S) denote
the positions of e in S and in S , respectively.

One might wonder whether running greedy on the almost-sorted sequence S already
results in good approximation guarantees. Unfortunately, this turns out not to be the
case: the solution computed by the greedy algorithm on input a sequence with very small
dislocation can be arbitrarily far from the optimum, as the following example for the minimum
spanning tree problem shows.

» Example 3 (minimum spanning tree). Let € € (0, %) and consider the graph G shown in
Figure 1 (a) along with its corresponding graphic matroid M .5 The edges of G are weighted
as follows: w(e;) =ide for i =1,...,8 and w(eg) = 1, so that the sorted version of the ground
set of M w.r.t. wis S = (e1,ea,...,e9). The minimum-weight base of M has weight 27¢ and
consists of the edges in the (unique) minimum spanning tree of G (in bold). For a sequence
S of dislocation 1, in which we swap the order between e; and e3, e5 and eg, and eg and
ey, i.e., S = (e1, €3, €9, €4, €6, €5, €7, €9, ), greedy(M, §) would select the suboptimal tree
shown in Figure 1 (b). The cost of the resulting tree can be significantly higher than cost of
a MST (i.e., more than 1 = wy as opposed to 27¢) and, for tiny ¢, there is no approximation
guarantee.

Even if greedy(M,S) returns the optimal solution for a minimization/maximization
problems in matroids, the above example above shows that greedy(M, S) cannot approximate

3 Here, the bound on the low-energy complexity accounts for up to O(n logn) non-comparison operations.

4 For distinct elements (weights) the sorted sequence is unique. In general, we consider S and S to agree
on the relative order between elements with identical weight.

5 The ground-set of M is the set of edges of G, while a subset of edges is independent in M if it induces a
forest in G.
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the greedy solution within any factor (to apply the previous example to the problem of
computing a maximum-weight base of M it suffices to exchange the roles of S and S).

3 The general scheme for matroids

In this section we describe a general scheme which leads to different approximation algorithms
for computing a minimum- or maximum-weight base in a matroid. In particular, we will
then be able to prove the following theorem.

» Theorem 4. Consider any mazimization/minimization problem in a matroid, where
the input elements are given as a sequence with dislocation at most d. There exists an
algorithm which returns a 2-approximate solution and that has <O(dlog2 d), O(n))-high-low
energy complexity. Moreover, for every e € (0,1), there exists an algorithm which returns a
(1 + €)-approzimate solution and that has (O(d?/e), O(n))-high-low energy complezity.

Our algorithm and analysis are based on standard notions of “submatroid”. If M = (F,T)
is a matroid and X C F, the restriction M|X of M to X is the matroid having X as its
ground set and {Y € Z:Y C X} as its independent sets. If X € Z, the contraction M/X of
M by X is the matroid having E'\ X as its ground set and {Y e P(E\ X): Y UX € T} as
its independent sets. A minor of M is matroid that can be obtained from M by a sequence
of restrictions and contractions. We denote by Opt(M) = w(greedy(M)) the weight of a
base of M having minimum (resp. maximum) weight in the case of minimization (resp.
maximization) problems.

The algorithm

The inputs of our algorithm are a matroid M, given in the form of a set F of n elements and
an independence oracle, and an approximately-sorted sequence S of the elements in E having
dislocation at most d.5 If such a sequence is not readily available, one with d = O(logn) can
be computed in a pre-processing step using O(nlogn) low-energy operations [15].

Our algorithm, whose pseudocode is shown in Algorithm 1, performs the following steps:

1. First, we run the greedy algorithm by considering the elements as they appear in S. Let
A = {a1,a9,...,a;} = greedy(M, 5) be the resulting (now possibly suboptimal) base,
where a; represents the i-th element added during the execution of the algorithm and
k = rank(M).

2. Next, select a suitable subset F' of elements of A that will be part of our final solution.
The exact details of this step will be specified later.

3. Let E’ be the set of all elements = € E \ F such that |t(z,S) — t(y, S)| < 2d for some
y € A\ F. We define M’ as the matroid having E’ as its ground set, and all the sets
X € P(E’) such that X U F is independent in M as its independent sets. Notice that M’
is a minor of M as it can be obtained by first contracting M by F', and then restricting
the resulting matroid M/F to E’, ie., M' = (M/F)|E".

4. Finally, we compute a minimum-weight base A’ of M’ using the greedy algorithm and
high-energy queries to Cy. We return F'U A'.

When minimization (resp. maximization) problems are concerned, the high level intuition
is that the initial greedy solution A, which can be far from optimal, contains a “large” subset

6 Elements are (approximately) sorted in non-decreasing or non-increasing order of weights depending on
whether we are interested in a minimum-weight or maximum-weight base of M, respectively.
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Algorithm 1 Dual-Mode Greedy Scheme(M, S, d).

1 A« greedy(M, S);

2 F < Select a suitable subset of A;

s B+ {z€E\F:3yeA\F [tz,3) -ty S)| < 2d};

a4 A" + greedy((M/F)|E"); // high energy part

5 return FU A’;

F of elements whose weight is comparable to the optimum. We fix these elements and isolate
a “small” set E’ of candidates to complete the solution. As this set is “small” we can run
greedy at high energy, and hope that it will only contribute a small (resp. large enough)
additional weight to the final solution, which is the union of the solutions of the two parts.

Some properties

For the sake of the analysis, we define S to be the (correctly) sorted sequence containing
the elements in E. Whenever ties between two elements arise they are broken by preserving
their relative order in S. Let B = {b1,ba,...,b;} = greedy(M,S) be an optimal base of M
as computed by the greedy algorithm that considers the elements in the same order as S.

» Lemma 5. For alli=1,...,k we have [t(b;, S) — t(a;, )| < d.

Proof. Let S; (resp. S;) be the sequence consisting of the first ¢ elements of S (resp. S).
Similarly, let A; = greedy(M, S;) (resp. B, = greedy(M, Sy)) be the set of elements included
in the independent set maintained by greedy(M, §) (resp. greedy(M,S)) at time t, i.e.,
immediately after the ¢-th element of S (resp. S) is considered.

Notice that, for every ¢t = 0, ..., n, each element in S; must also be contained in §min{t+d7”}
due to the bound on the dislocation of S. This implies that |Bt| < |Amin{t+d,n}|- By choosing
t = t(b;, S) we obtain i = |Bys, 5)| < |Amin{t(b:,5)+d,n}| and therefore the i-th element
a; of A must have been added at a time (i.e., position in S) of at most t(b;,S) + d, i.e.,

t(a;, S) < t(b;, S) + d, or equivalently ¢(b;, S) > t(a;, S) —d.
Similarly, for t = 0,...,n, S; is a superset of Siax{o,t—a}, IMPLying |Bt| > [Amaxfo,t—d} |-
By choosing t = t(b;, S) we obtain i = [By,,5)| > |Amax{0,¢(s;,5)—d}|, implying that the i-th

element a; in A has been added at a time of at least t(b;, S) — d, i.e., t(a;, S) > t(b;, S) — d,

or equivalently ¢(b;, S) < t(a;, S) + d. <
The above lemma, together with the bound on the dislocation of S , immediately implies:
» Corollary 6. [t(b;, S) — t(a;, S)| < 2d and |t(b;, S) — t(a:, S)| < 2d.

Next, we show that, regardless of the choice of F', Algorithm 1 returns a base of M.

» Lemma 7. The set A’ U F returned by Algorithm 1 is a base of M.

Proof. We start by defining M" as the matroid having E as its ground set and such that
X € P(E\ F) is an independent set of M" iff X U F is independent in M. Notice how M”
is closely related to the contraction of M by F (which is an independent set of M since
F C A): the only difference is that the ground set of M" still contains the elements in F,
even though they do not belong to any independent set.

Since F' and B are, respectively, an independent set and a base of M, we can iteratively
invoke the augmentation property of matroids to select a set B” C B\ F of k — |F| elements
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Figure 2 Top: an example of a (7, \)-min-mapping with 7 = 4 and A = 3. The elements in the set
X are depicted as dots and the horizontal axis represents the function ¢. Filled (resp. hollow) dots
correspond to mapped (resp. unmapped) elements. Three intervals of size 7 whose union contains

Y

the values ¢(z) of all unmapped elements x are shown in red. The mapping has been obtained by

greedily assigning each element of X to the first suitable element, in increasing order of ¢(-). Bottom:

A (4,2)-min-mapping for the same set of elements X and values of ¢(-).

such that F'U B” is an independent set of M. This implies that B” is also an independent
set in M"”. In particular, since all the independent sets X of M" are such that X N F' = ()
and X U F' is independent in M, it follows that | X| < k — |F| = |B"| therefore that B” is
maximal w.r.t. inclusion in M” and hence it is a base.

Notice that M is exactly the restriction of M” to the set E’, and that the set greedy(M”, S)
coincides with A\ F. By Corollary 6, the position in S of each element in B’ = greedy(M”, S)
differs by at most 2d from the position of a suitable element in A\ F', implying that B’ C E’. To
summarize, we have: (i) B’ = greedy(M",S) = greedy(M’, S) = A’, (ii) B'UF is independent
in M, (iii) |B'UF| = |B'|+ |F| =rank(M') + |F| = |B"|+ |F| = (k- |F|) +|F| =k. <

4  Minimization in Matroids

In this section, we instantiate our general scheme in order to prove Theorem 4 in the case of
minimization in matroids (the maximization counterpart will appear in the full version of
the paper). Recall that S has dislocation d w.r.t. a sequence S in which elements are sorted
in non-decreasing order of weight.

We start by proving the following lemma, which will hold for all our choices of F'

» Lemma 8. w(A’) < Zf:\FHl w(b;) < Opt(M).

Proof. Let M"”, and B” be defined as in Lemma 7. We have that |A’ U F| = k and hence
|A'| =k —|F|as ANF ={. Since A" = greedy(M’, S) is a minimum-weight base of M’ and
M" while B” C B is a base of M", we have w(A’) = Opt(M") < w(B").

By definition, B” is a subset of B and, since |B”| = rank(M") = |A’| = k — | F|, we can
upper bound the total weight of the k& — |F| elements in B” with that of the k — |F| elements
of B of largest weight, i.e., w(B") < Zf:\FHl w(b;). Combining all the previous inequalities,
we can write: w(A") < w(B") < Zf:\Fl—H w(b;) < w(B) = Opt(M). <

4.1 A 2-Approximation (for Minimization in Matroids)

To instantiate the general scheme of Algorithm 1, we need to specify how the subset F' of
elements of Step 2 is selected. To this aim we map some of the elements of the initially
computed solution A into some other elements of A. The set of mapped elements will be our
set F', while the mapping shall satisfy the following definition.
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Figure 3 A graphical representation of the local transformation that allows us to assume that
| X;| > | Xi+1|. Function p’ (whose domain does not include the elements in X;) is shown on the
left, while function p is shown on the right. Recall that Y C X1 is chosen arbitrarily such that
|Y| = |X;|. The differences between p’ and p are highlighted in bold. The newly-added mappings
wu(zx) for x € X; are shown in red.

» Definition 9 ((7, A\}-min-mapping). A (7, \)-min-mapping of a set of elements X w.r.t. an
injective function t : X — N is an injective partial function w: X — X such that:

For every element x in the domain D(p) of p it holds t(u(x)) > t(z) + 7;

The integers in {t(z) : x € X \D(u)} are all contained in the union of at most X intervals
of contiguous integers, each of size at most T.

In other words, if we think of ¢() as a function that associates a time to each element
of X, the above definition guarantees that an element z of X is either mapped to some
other element y € X that appears sufficiently later in time, or it belongs to a small set
of at most A time intervals, each of size 7. Figure 2 shows an example of a (4,3)- and a
(4,2)-min-mapping.

Finding a (7,4 log T + 4)-min-mapping

We now show how a (7, A\)-min-mapping with A = O(log 7) can be found, which will turn out
to be the best asymptotic trade-off between 7 and A one can hope to obtain. In particular,
we will set A\ =4logT + 4.

To this aim, it is useful to consider a relaxed variant of the problem. Intuitively, we

get rid of #() by grouping the elements of X into a collection of sets (X7, Xo,..., X,,).

Instead of requiring #(u(x)) > t(z) + 7, it will be enough for z € X; to be mapped to some
element p(x) € X; with j > 4. Moreover, we allow up to 2log7 + 2 sets X; to contain
unmapped elements.

Formally, we are given a sequence of m pairwise-disjoint sets (X1, Xs,...,X,,) each
containing at most 7 elements, as we want to find:

A subset N of {X;,Xs,..., X} of size at most 2log T + 2.

An injective function p : Uy, oy Xi — U; X such that x € X; = p(x) € X fora j > i.

W.l.o.g. we can restrict ourselves to the case in which the cardinalities of the sets X; are
monotonically decreasing and |X,,| > 0. Indeed, if ¢ is an index such that | X;| < [X;41],
we can consider the modified instance consisting of the sets {X1,..., X;—1, Xs41,-.., Xin }
instead. Any solution (N, ') to this modified instance yields a solution (N, i) for the original
instance. Indeed, if X; = {x1, o, ...}, it suffices to pick N = N’, select an arbitrary subset
Y ={y1,v2,...} of | X;| elements from X, and define y as follows (see also Figure 3):

Yj if x € X;, where j is such that z = z;,
wu(z) = < x; if ¢ X; and p/(z) € Y, where j is such that p/(x) = y;,

' (x) otherwise.
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Figure 4 Decomposition of a set X into the families of sets X1, Xa,... and X1, Xo,... used
in the relaxed version of our mapping problem for 7 = 4. The elements in the set X are depicted
as dots and the horizontal axis represents the function ¢. Filled (resp. hollow) dots correspond
to elements that belong to (resp. do not belong to) D(p). The solution (Ni, 1) is shown with
solid lines, while the solution (N2, u2) is shown with dashed lines. Their combination yields the
(7, A)-min-mapping pu with A = 4log7 + 4. The (at most \) red intervals span all the elements in
N1 UN2 = X\D(/j,)

We henceforth assume that |X;| > |X;41| for all 4 = 1,...,m — 1. Our algorithm starts
by letting 7« = 1 and N = (), then it iteratively looks for the largest index j > ¢ such that
| X;| > |X;|/2 and performs one of the following two steps, depending on the value of j:

If j =4, then X; is added to N.

If j > i, we assign consecutive indices 1,2, ..., to the elements in X;, ..., X; (in order). Let
xj, be the element with index h. We define pu(xp) = 24 x, forall h =1,..., ;;f | Xe.
Notice that, for every z; € U;;? Xy, we have that p(xy) € Ui:iﬂ Xy, that p(zy) is
necessarily in a successive set, and that the mapping is injective. Finally, we add X; and
Xj,1 to N.

If j < m we set i = j + 1 and continue with the next iteration, otherwise we return the pair
(N, ).

Observe that, in every iteration, the cardinality of N increases by at most 2. Moreover, if
j < m, the set X; has cardinality least twice the one of the set X;,1, i.e., the set considered
at the next iteration. This means that there will be at most log|X;| + 1 iterations, thus
IN| < 2log|X:|+2 < 2logT+ 2.

We now argue that a (r,4log 7 + 4)-min-mapping of a set X w.r.t. £ : X — N can be
found by solving two instances of the relaxed problem. Namely, for i = 1,2,..., we define
X;={zeX:2ti—1)7<t(z)<(2i—1)r}and X; = {z € X : (20 — 1)1 < #(x) < 2iT}. Let
(N1, p1) and (Na, ug) be two solutions to the instances of the above problem consisting of
the sets X; and X, respectively. Then, the mapping u defined as u(z) = py(z) if z € D(uy)
and p(x) = po(x) if x € D(pz) is a (1,41log 7 + 4)-min-mapping. Notice indeed that each
element in X \ D(u) is contained in one of the at most 4log 7 + 4 sets in N3 U Ny, and — by
our definition of X; and X; — all the elements in a set Y € N; U N, are such that all ?(x)
for x € Y belong to a single interval of size 7. Moreover, since each element in z € X; € Ny

is mapped to an element p(x) in some X; with j > ¢ + 1, we know that t(z) < (2¢ — 1)7

while t(u(x)) > 2iT, i.e., t(u(z)) — t(x) > 7, as desired (a symmetrical arguments holds for
x € X; € Ny). See Figure 4 for an example.

It is not hard to see that such a mapping can be computed in O(|X|) time if a sorted

version of X w.r.t. t(-) is known, as it will be the case in the sequel.
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There is no (7, o(log 7))-min-mapping

We point out that the above construction of a (, A)-min-mapping essentially achieves the
best attainable trade-off between 7 and A,

» Lemma 10. In general, there exists no (t,o(log T))-min-mapping.

Proof. Let h = [log7]| and consider a set X of 2! — 1 elements which is partitioned
into h + 1 sets X, ..., X} where X; = {xgi),mgi), ...} contains 2"~% elements. We define
#zl) =20 +j +ir — 1.

Let p be any (7, h)-min-mapping of X w.r.t. t. We say that a set X; is covered by
wif X; € D(u). We claim that, in p, no set can be covered. Indeed, assume towards a
contradiction that at least one set X; is covered. Since the value of ¢ for any two elements
in X; differs by at most |X;| —1 < 2h=i _1 < 2h — 1 < 7 —1, we have that, for every
xy) € X, ,u(x;i)) € X, for some ¢ > i. However, |UZ:¢+1 Xl = Z;gil 2¢ = 2= 1 and,
since | X;| = 2"~ this contradicts the fact that u is an injective function.

To conclude the proof it suffices to notice that h 4+ 1 = [log7| + 1 > log7 intervals of
length at most 7 are necessary for their union to include all the integers in X \ D(u). |

Analysis for the 2-Approximation

In order to obtain a 2-approximate minimum-weight base of M, we compute a (2d, 4log d+8)-
min-mapping y of A w.r.t. {(z) = t(x, S) and we choose F as the domain D(y) of zu. Intuitively,
for 7 = 2d, the first condition of Definition 9 gives an implicit partial injective mapping into
elements of B of non smaller weight, thus yielding w(F) < Opt(M). The second condition
can be used to show that the set F' can be extended in an optimal way by looking at a “small”
subset of elements (Steps 3 and 4 of Algorithm 1), and thus the number of high-energy
operations is not too large. As this part of the solution also contributes at most another factor
Opt(M), we get a 2-approximation. We formalize this intuition in the following lemmas:

» Lemma 11. The set returned by Algorithm 1 with F' = D(u) has weight at most 2 Opt(M).

Proof. We associate each a; € AN D(p) = D(p) to an element b; € B, where j is the
index such that a; = u(a;). By definition of (2d, 4 logd + 8)-min-mapping we know that

t(a;) > t(a;) + 2d and, by Lemma 5, t(a;) = t(a;, S) < t(bj, S) + d. Combining the previous
inequalities we have t(b;, S) > t(a;) — d > t(a;) + d = t(a;, S) +d > t(a;, S), thus implying
that w(b;) > w(a;), as b; appears no earlier than a; in S (which is sorted in nondecreasing
order of weights). Moreover, since p is injective, our mapping between D(u) and B is also
injective. Therefore: w(D(u)) < w(B) = Opt(M). We can now use the above inequality

together with Lemma 8 to conclude that w(F U A’) = w(D(u)) + w(A’) <20pt(M). <

» Lemma 12. The high-low energy complexity of Algorithm 1 when F = D(u) and the
elements of E are given in a almost-sorted sequence S having dislocation at most d is

(O(d - log® d), O(n)).

Proof. Once the base A of M is found using O(n) low-energy operations, both the function
w and the set F' = D(u) can be computed in linear time w.r.t. |A| without requiring access
to the oracle Cp, as we discussed in Section 4.1. This, in turn, allows to construct E’ using
O(n) additional low-energy operations.

Finally, finding the set A’ = greedy(M’) requires O(d - log® d) high- and low-energy
operations. Indeed, since p is a (2d,41og d + 8)-min-mapping, the set F’ will contain at most
6d+1 elements for each of the 41og d+8 unmapped intervals, i.e., |E’| < (4logd+8)-(2d+1) =
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O(dlogd) implying that E’ can be sorted using O(dlogd - log(dlogd)) = O(d - log® d) high-
energy queries to Cp. <

4.2 A (1 + e)-Approximation (for Minimization in Matroids)

In order to improve the approximation guarantee from 2 to 1 + ¢, for any € € (0,1), we shall
define the set F' in Step 2 of Algorithm 1 as the first k& — cd elements of the initially computed
solution A, for ¢ = [2/€]. The approximation guarantee and the high-low energy complexity
are given by the next two lemmas, respectively. Recall that a; (resp. b;) is the i-th element
added to the independent set maintained by greedy (M, S) (resp. greedy(M, S)).

» Lemma 13. The set returned by Algorithm 1 with F = {aq,...,ax—cq} has weight at most
(1+ €) Opt(M).

Proof. By Corollary 6, t(a;,S) < t(b;, S) + 2d < t(b;124,.5), which implies w(a;) < w(bit2q)
(notice that ¢ > 2, therefore i + 2d < k — (¢ — 2)d < k and b;424 always exists). We thus get
the following bound: w(F) = Z;:fd w(a;) < Zf;l(i;?d w(b;).

From Lemma 8 we also have w(A") < Zf: k—cds1 W(bi) and, combining the above inequal-
ities, we obtain:

k—(c—2)d k k k—(c—2)d
wFUA)< > wb)+ > wb)= > wb)+ Y, wb)
i=142d i=k—cd+1 i=142d i=k—cd+1
k
2
< Opt(M) + =~ > w(bs) < (14 €) Opt(M). <
1=k—cd+1

» Lemma 14. For any € > 0, the high-low energy complexity of Algorithm 1 when F =
{a1,...,ap—ca} and the elements of E are given in a almost-sorted sequence S having
dislocation at most d is (O(e~1d?),0(n)).

Proof. Similarly to the proof of Lemma 12, A can be computed using at most O(n) low-
energy operations. Notice that F' can trivially be found in linear time in |A| and that the set
E’ contains at most |A\ F|-d = O(1d?) elements.

We now simulate the greedy algorithm in order to compute an optimal base A" of M’
as follows: We start with A’ = () and we consider the elements z in A \ F in increasing
order of t(z,S) until we find an element 2’ such that A’ U {2’} is independent. We then
perform a linear search for the minimum-weight element z* among the ones in {y € E :
A" U {y} is independent in M’ and t(z’, S) < t(y,S) < t(z/,S) + d} using O(d) high-energy
queries to Cp, we add z* to A" and we resume considering the elements x in A\ D(u) such
that t(z,S) > t(z/,5).7

S;ince rank(M’') = k — |F| = cd, the total number of high-energy operations is O(cd?) =
(L), a

To conclude this section, we remark that Lemmas 7, 11, 12, 13, and 14 together prove
Theorem 4 when minimization problems are concerned.

7 Notice how the next element to be considered will again be z’.
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Algorithm 2 Dual-Mode p-Extendible-System Maximization(M, p, g, d).

1y 14 Lf—jﬂ;

2 B* + First v elements included in the independent set maintained by greedy(M);
3 A« greedy(M/B*,S);

4 return AU B*;

5 Maximization in p-Extendible Systems

In this section we show the following theorem which yields a p2-approximation for the
general problem of computing a maximum-weight base of a p-extendible system M, and a
p-approximation if M is p-stable.

» Theorem 15. Consider any maximization problem in p-extendible systems, with p > 2,
where the input elements are given as a sequence with maximum dislocation at most d.

There exists an algorithm which returns a p-approximation of the base returned by the greedy
2
algorithm and that has <O(d+ %), O(n)>—high—low energy complexity.

Similarly to matroids, we define the contraction M/X of M = (E,Z) by X € T as
the independence system having E \ X as its ground set and all Y € P(E \ X) such that
Y U X € 7 as its independent sets. It is easy to check that M/X is a p-extendible system.

Our Algorithm, whose pseudocode is shown in Algorithm 2, computes an independent
set B* consisting of the first v =1+ [ 7 | elements that greedy(M) would select, and then
completes the solution with the base A of M' = M/B* obtained by greedily adding the
elements in S. We start our analysis by proving a generalization of Lemma 5 to p-extendible
systems.

> Lemma 16. Let M be a p-extendible system and k = |greedy(M,S)|. Let Sy (resp.

gt) be the sequence containing the first t elements of S (resp. S), Ay = {a1,aq,...} =
greedy(M, St), and By = {b1,ba,...} = greedy(M,S;). For alli = 1,...,|k/p| it holds
t(ai, S) S t(bi.‘m S) + d.

Proof. For any time ¢t = 0,...,n we have S; C gmin{n’Hd}. This implies that |Amin{t4a,n}| >
|Bt|/p. By choosing t = t(b;.p, S) we obtain ‘Amin{t(bi,,,,5)+d,n}| > |Byw,.,,s)|/p = ip/p = 1,
meaning that greedy (M, S ) must have already considered a; by the time it finished considering
the (£(bi.p, S) 4 d)-th element of S, i.e., t(a;,S) < t(b;.p, S) + d. <

We can now lower bound the weight of the base returned by Algorithm 2. Since if p =1
the results of the previous sections apply, we henceforth assume p > 2.

» Lemma 17. Algorithm 2 returns a base AU B* of M of weight at least %w(greedy(M)).

Proof. Let B = greedy(M, S), M’ = M/B*, and B’ = {l,...,b},} = greedy(M’, S). Since
a contraction of a p-extendible system is again a p-extendible system and |A| > k/p, we can
invoke Lemma 16 on M’ to write:

Lk,72dJ Lk’*ZdJ k
z 1
’I,U(A) = Z ’I,U(Cli) 2 Z > ’U) zp+2d Z w(b:)
a; €A =1 =1 p i=p+2d

64:15

ISAAC 2019



64:16

Dual-Mode Greedy Algorithms Can Save Energy

Notice that B = B* U B’ and that all the elements in B* weigh at least w(b}), therefore:

p+2d—1
> w) < (2010 () < (p+2-1)Tu(B) <

i=1

p+2d—1

w(B*) = (p—1)w(B").
T e = (el

Combining the above inequalities:

k
WAUB") = w(A) +w(B) > = 3 w(t) +w(B)
p i=p+2d
1o 17! 1 p—
SIY -1 Y w)+ (B 2 tulB) - (s + u(B)

- oL
= ((B) +w(B) = u(B).

To conclude the proof we need to show that AU B* is a base of M. Since AU B* is an
independent set of M by construction, we only need to show that it is maximal. In order
to do so suppose towards a contradiction that there exists an element x € E \ (A U B*)
such that AU B* U {xz} is independent. If we let A’ be the independent set maintained by
greedy(M/B*, §) immediately before z is considered, then we have that A’U{z} C AU{z} C
AU B* U {z} must also be independent, contradicting = # A. <

We now bound the high-low energy complexity of Algorithm 2 which, when combined
with Lemma 17, immediately yields Theorem 15.

» Lemma 18. The high-low energy complexity of Algorithm 2 when the elements of E are
~ 2
given in a almost-sorted sequence S having dislocation at most d is (O(d + %), O(n)).

Proof. Since the overall number of the low-energy operations is O(n) we only need to bound
the number of high-energy operations, i.e., the ones needed to select B*. By using a technique
similar to the one described in the proof of Lemma 14, we can select the first v = O(1 + %)
elements of greedy(M, S) by performing O(d) high-energy queries to C'y per element. The
overall high-energy complexity is therefore O(d + dg). <

Since in any p-extendible system, the greedy algorithm recovers the optimum whenever
the instance is p-stable, Lemma 17 implies that Algorithm 2 computes a p-approximation.
The next result, whose proof will appear in the full version of this paper, shows that our
analysis is actually tight whenever d > p (we recall that the best dislocation that sorting
algorithms can achieve with high probability is Q(logn)).

» Theorem 19. For every d > p > 2, there exists a p-stable instance of a p-extendible system
for which Algorithm 2 is no better than p-approximate.

One might wonder whether our techniques can be extended to larger classes of independ-
ence system, e.g., to p-systems [19] (i.e., independence system such that the ratio between
the cardinality of any two maximal independent sets is at most p). Unfortunately, the answer
is negative: our analysis uses the fact that p-extendible systems are closed under restrictions
and contractions. This is no longer true when p-systems are considered, as the following
counterexample shows: Fix any n > 2 and let A = {a3,...,a,} and B = {b1,...,b,} be
two disjoint sets. We define the independence system M = (£,7) where £ = AU B and
Z =P(A)UP(B). Notice that M is a 1-system as the only two maximal independent sets
of M are A and B. Consider now M’ = M|(AU{b1}). The only two maximal independent
sets of M’ are A and {b; }, showing that M’ is a n-system but not a (n — 1)-system.
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