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Abstract
X3SAT is the problem of whether one can satisfy a given set of clauses with up to three literals
such that in every clause, exactly one literal is true and the others are false. A related question
is to determine the maximal Hamming distance between two solutions of the instance. Dahllöf
provided an algorithm for Maximum Hamming Distance XSAT, which is more complicated than the
same problem for X3SAT, with a runtime of O(1.8348n); Fu, Zhou and Yin considered Maximum
Hamming Distance for X3SAT and found for this problem an algorithm with runtime O(1.6760n).
In this paper, we propose an algorithm in O(1.3298n) time to solve the Max Hamming Distance
X3SAT problem; the algorithm actually counts for each k the number of pairs of solutions which
have Hamming Distance k.
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1 Introduction

Given a Boolean formula φ in conjunctive normal form, the satisfiability (SAT) problem
seeks to know if there are possible truth assignments to the variables such that φ evaluates
to the value “True”. One naïve way to solve this problem is to brute-force all possible truth
assignments and see if there exist any assignment that will evaluate φ to “True”. Suppose
that there are n variables and m clauses, we will take up to O(mn) time to check if every
clause is satisfiable. However, since there are 2n different truth assignments, we will take
a total of O(2nnm) time [4]. Classical algorithms were improving on this by exploiting
structural properties of the satisfiability problem and in particular its variants. The basic type
algorithms are called DPLL algorithms – by the initials of the authors of the corresponding
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17:2 A Fast Algorithm for Max Hamming Distance X3SAT

papers [12, 11] – and the main idea is to branch the algorithm over variables where one
can, from the formula, in each of the branchings deduce consequences which allow to derive
values of some further variables as well, so that the overall amount of the run time can be
brought down. For the analysis of the runtime of such algorithms, we also refer to the work
of Eppstein [2, 3], Fomin and Kratsch [4] and Kullmann [14].

A variant of SAT is the Exact Satisfiability problem (XSAT), where we require that the
satisfying assignment has exactly 1 of the literals to be true in each clause, while the other
literals in the same clause are assigned false. If we have at most 3 literals per clause with the
aim of only having exactly 1 literal to be true, then the whole problem is known as Exact
3-Satisfiability (X3SAT) and this is the problem which we wish to study. Wahlström [10]
provided an X3SAT solver which runs in time O∗(1.0984n) and subsequently there were only
slight improvements; here n is, as also always below, the number of variables of the given
instance and O∗(g(n)) is the class of all functions f bounded by some polynomial p(·) (in
the size of the input) times g(n). The problems mentioned before, SAT, 3SAT and X3SAT
are all known to be NP-complete. More background information to the above bounds can be
found in the PhD theses and books of Dahllöf [19], Gaspers [5] and Wahlström [10].

The runtimes of the problems SAT, 3SAT, XSAT and X3SAT have been well-explored.
Sometimes, instead of just finding a solution instance to a problem, we are interested in
finding many “diverse” solutions to a problem instance. Generating “diverse” solutions is of
much importance in the real world and can be seen in areas such as Automated Planning,
Path Planning and Constraint Programming [17]. How does one then measure the “diversity”
of solutions? This combinatorial aspect can be investigated naturally with the notion of the
Hamming Distance [16]. Given any two satisfying assignments to a satisfiability problem, the
Hamming Distance problem seeks to find the number of variables that differ between them.
The Max Hamming Distance problem therefore seeks to compute the maximum number of
variables that will defer between any two satisfying assignments. If we are interested in the
“diversity” of exact satisfying assignments, then the problem is defined as Max Hamming
Distance XSAT (X3SAT) accordingly. The algorithm given in this paper actually provides
information about the number of pairs of solutions which have Hamming distance k, for
k = 0, 1, . . . , n, which could potentially have uses in other fields such as error correction.

A number of authors have worked in these area previously as well. Crescenzi and Rossi
[15] as well as Angelsmark and Thapper [13] studied the question to determine the maximum
Hamming distance of solutions of instances of certain problems. Dahllöf [18, 19] gave two
algorithms for Max Hamming Distance XSAT problem in O∗(2n) and an improved version
in O∗(1.8348n). The first algorithm enumerates all possible subset of all sizes while checking
that they meet certain conditions. The second algorithm uses techniques found in DPLL
algorithms. Fu, Zhou and Yin [9] specialised on the X3SAT problem and provided an
algorithm to determine the Max Hamming Distance of two solutions of an X3SAT instance
in time O∗(1.676n). Recently, Hoi and Stephan [7] gave an algorithm to solve the Max
Hamming Distance XSAT problem in O(1.4983n).

The main objective of this paper is to propose an algorithm in O(1.3298n) time to solve
the Max Hamming Distance X3SAT problem. The output of the algorithm is a polynomial p
which gives information about the number ak of pairs of solutions of Hamming distance k,
for k = 0, 1, . . . , n. The algorithm does so by simplifying in parallel two versions φ1, φ2 of
the input instance and the main novelty of this algorithm is to maintain the same structure
of φ1 and φ2 and to also hold information about the Hamming distance of the current and
resolved variables while carrying out an DPLL style branching algorithm.
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2 Basic Approach

Suppose a X3SAT formula φ over the set of n variables X is given. The aim is to find the
largest Hamming distance possible between two possible value assignments β1, β2 to the
variables which are solutions of φ, that is, make true exactly one literal in each clause of φ.

To this end, the algorithm presented in this paper computes a polynomial (called HD-
polynomial) in u, with degree at most n, such that the coefficient ck of uk gives the number
of solution pairs (β1, β2) such that the Hamming distance between β1 and β2 is k. The
degree of this polynomial will then provide the largest Hamming distance between any pair
of solutions.

I Example 1. We consider the formula φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4 ∨ x5)∧ (x1 ∨ x6 ∨ x7)∧
(x2 ∨ x4 ∨¬x6). Exhaustive search gives for this X3SAT formula the following four solutions:

x1 x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 0
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1

So there are 16 pairs of solutions among which four pairs have Hamming distance 0 and
twelve pairs of Hamming distance 4. The intended output of the algorithm is the polynomial
12u4 + 4u0 which indicates that there are four pairs of Hamming distance 0 and twelve pairs
of Hamming distance 4.

The reason for choosing this representation is that our algorithm often needs to add/multiply
possible partial solutions, which can be done easily using these polynomials whenever needed.

The brute force approach would be to consider a search tree, with four branches at the
internal nodes – (0, 0), (0, 1), (1, 0), (1, 1) based on values assigned to some variable x for the
two possible solutions being compared. If at a leaf the candidate value assignments (β1, β2)
formed by using the values chosen along the path from the root are indeed both solutions
for φ and their Hamming distance is k, then the polynomial calculated at the leaf would be
uk; if any of (β1, β2) are not solutions then the polynomial calculated at the leaf would be 0.
Then, one adds up all the polynomials at the leaves to get the result. This exhaustive search
has time complexity (number of leaves)× poly(n, |φ|) = 4n × poly(n, |φ|) for n variables.

For x ∈ X and i, j ∈ {0, 1}, let qx,i,j be u if i 6= j and 1 otherwise. The above brute force
approach for computing the HD-polynomial would be equivalent to computing∑

(β1,β2)

∏
x∈X

qx,β1(x),β2(x),

where (β1, β2) in the summation ranges over the pair of solutions for the X3SAT problem φ.
However, we may not always need to do the full search as above. We will be using

a DPLL type algorithm, where we use branching as above, and simplifications at various
points to reduce the number of leaves in the search tree. Note that the complexity of such
algorithms is proportional to the number of leaves, modulo a polynomial factor: that is,
complexity is O(poly(n, |φ|)× (number of leaves in the search tree)) = O∗(number of leaves
in the search tree).

As an illustration we consider some examples where the problems can be simplified. If
there is a clause (x, y), then x = ¬y for any solution which satisfies the clause. Thus, x and
y’s values are linked to each other, and we only need to explore the possibilities for y and
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can drop the branching for x (in addition one needs to do some book-keeping to make sure
the difference in the values of y in two solutions also takes care of the difference in the values
of x in the two solutions; this book-keeping will be explained below). As another example,
if there is a clause (x, x, z), then value of x must be 0 in any solution which satisfies the
clause. Our algorithm would use several such simplifications to bring down the complexity of
finding the largest Hamming distance. In the simplification process, we will either fix values
of some of the variables, or link some variables as above, or branch on a variable x to restrict
possibilities of other variables in clauses involving x and so on (more details below).

In the process, we need to maintain that the HD-polynomial generated is as required.
Intuitively, if we consider a polynomial calculated at any node as the sum of the values of
the polynomials in the leaves which are its descendant, then the value of the polynomial
calculated at the root of the search tree gives the HD-polynomial we want. For this purpose,
we will keep track of polynomials named pmain and px,i,j , which start with pmain being
1, and polynomials px,i,j = qx,i,j , for x ∈ X, i, j ∈ {0, 1} (here qx,i,j is u for i 6= j, and 1
otherwise). If there is no simplification done, then at the leaves, the polynomial pmain will
become the product of px,i,j , x ∈ X, for the values (i, j) taken by x for the two solutions in
that branch. When doing simplification via linking of variables, or assigning truth value to
some variables, etc. we will update these polynomials, so as to maintain that the polynomial
calculated at the root using above method is the HD-polynomial we need. More details on
this updating would be given in the following section.

3 Algorithm for Computing HD-polynomial

In this section we describe the algorithm for finding the HD-polynomial for any X3SAT
formula φ. Note that we consider clause (x, y, z) to be same as (y, x, z), that is order of the
literals in the clause does not matter. We start with some definitions.

Notation: For a formula φ with variable x, we use the notation φ[x = i] to denote the
formula obtained by replacing all occurence of x in φ by i. Similarly, for a set P containing
values/definitions of some parameters, including p1, p2, we use P [p1 = f, p2 = g] to denote
the modification of p1 to f , p2 to g (and rest of the parameters remaining the same).

I Definition 2. Fix a formula φ:
(a) For a literal / variable x, x′ and x′′ and other primed versions are either x or ¬x, i.e.,

they use the same variable x, which may or may not be negated.
(b) Two clauses c, c′ are called neighbours if they share a common variable. For example,

(x, y, z) and (¬x,w, r) are neighbours.
(c) Two clauses are called similar if one of them can be obtained from the other just by

negating some of the literals. They are called dissimilar if they are not similar. For
example, (x, y) is similar to (x,¬y), (1, x, y) is similar to (0,¬x, y), (x, z) is dissimilar
to (x, y) and (x,¬x, z) is dissimilar to (x, z,¬z).

(d) Two X3SAT formulas have the same structure if they have the same number of clauses
and there is a 1–1 mapping between these clauses such that the mapping maps a clause
to a similar clause.

(e) A set of clauses C is called isolated (in φ), if none of the clauses in C is a neighbour of
any clause in φ which is not in C.

(f) A set I of variables is semisolated in φ by J if all the clauses in φ either contain only
variables from I ∪ J , or do not contain any variable from I. We will be using such I and
J for |I| ≤ 10 and |J | ≤ 3 only to simplify some cases.
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(g) We say that x is linked to y, if we can derive that x = y (respectively, x = ¬y) in any
possible solution using constantly many clauses of the X3SAT formula φ as considered in
our case analysis (a constant bound of 20 is enough). In this case we say that value i of
x is linked to value i of y (value i of x is linked to value 1− i of y respectively).

I Definition 3 (see Monien and Preis [1]). Suppose G = (V,E) is a simple undirected graph.
A balanced bisection is a mapping π : V → {0, 1} such that, for Vi = {v : π(v) = i}, |V0|
and |V1| differ by at most one. Let cut(π) = |{(v, w) : v ∈ V0, w ∈ V1}|. The bisection width
of G is the smallest cut(·) that can be obtained for a balanced bisection.

Suppose φ is the original X3SAT formula given over n variable set X. Our main (recursive)
algorithm is MHD(φ1, φ2, s1, s2, V, P ), where φ1, φ2 are formulas with the same structure
over variable set V ⊆ X, s1, s2 are some value assignments to variables from X and P is a
collection of polynomials (over u) for pmain and px,i,j , x ∈ X, i, j ∈ {0, 1}. Intuitively, pmain
represents the portion of the polynomial which is formed using variables which have already
been fixed (or implied) based on earlier branching decisions.

Initially, algorithm starts with MHD(φ1 = φ, φ2 = φ, V = X, s1 = ∅, s2 = ∅, P ), where φ
is the original formula given for which we want to find the Hamming distance, X is the set
of variables for φ, s1, s2 are empty value assignments, pmain = 1, px,i,j = qx,i,j .

Intuitively, the function MHD(φ1, φ2, s1, s2, V, P ) returns the polynomial pmain×
∑

(β1,β2)∏
x∈V [px,β1(x),β2(x)], where β1, β2 range over value assignments to variables in V which are

satisfying for the formula φ1 and φ2 respectively, and which are consistent with the value
assignment in s1, s2, if any, respectively. Thus, if we consider the search tree, then the node
representing MHD(φ1, φ2, s1, s2, V, P ) basically represents the polynomial formed∑

(β1,β2)

∏
x∈X

qx,β1(x),β2(x),

where (β1, β2) in the summation ranges over the pair of solutions for the X3SAT problem φ,
consistent with the choices taken for the branching variables in the path from the root to the
node. Over the course of the algorithm, the following steps will be done:

(a) using polynomial amount of work (in size of φ) branch over some variable or group
of variables. That is, if we branch over variable x, we consider all possible values for
x in {0, 1} for φ1, φ2 (consistent with s1(x), s2(x) respectively), and then evaluate the
corresponding subproblems: note that MHD(φ1, φ2, s1, s2, V, P ) would be the sum of the
answers returned by (upto) four subproblems created as above: where in the subproblem
for x being fixed to (i, j) in (φ1, φ2) respectively, pmain gets multiplied by px,i,j and x is
dropped from V .

(b) simplify the problem, using polynomial (in size of φ) amount of work, to MHD(φ′1, φ′2, s′1,
s′2, V

′, P ′), where we reduce the number of variables in V or the number of clauses in
φ′1, φ

′
2.

Note that all our branching/simplication rules will maintain the correctness of calculation of
MHD(. . .) as described above.

Thus, the overall complexity of the algorithm is O(poly(n, |φ|) × [number of leaves in
search tree]). In the analysis below thus, whenever branching occurs, reducing the number of
variables from n to n−r1, n−r2, . . . , n−rk in various branches, then we give a corresponding
α0 such that for all α ≥ α0, αn ≥ αn−r1 + αn−r2 + . . . αn−rk . Having these α0’s for each of
the cases below would thus give us that the overall complexity of the algorithm is at most
O(poly(n, |φ|) ∗ αn1 ), for any α1 larger than any of the α0’s used in the cases.
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17:6 A Fast Algorithm for Max Hamming Distance X3SAT

All of our modifications done via case analysis below would convert similar clauses to
similar clauses. Thus, if one starts with φ1 = φ2, then as we proceed with the modifications
below, the corresponding clauses in the modified φ1, φ2 would remain similar (or both dropped)
in the new (sub)problems created. Thus, φ1, φ2 will always have the same structure.

Our algorithm/analysis is based on two main cases. Initially, first case is applied until it
can no longer be applied. Then, Case 2 applies, repeatedly to solve the problem (Case 2 will
use simplifications as in Case 1.(i) to (iv), but no branching from Case 1). The basic outline
of the algorithm is given below, followed by the detailed case analysis.

Algorithm 1 Algorithm Max Hamming Distance X3SAT: MHD(φ1, φ2, V, s1, s2, P ).

Output: The polynomial pmain×
∑

(β1,β2)
∏
x∈V [px,β1(x),β2(x)], where β1, β2 range over

value assignments to variables in V which are satisfying for the formula φ1 and φ2
respectively, and which are consistent with the value assignment in s1, s2, if any, respectively.
Note: As φ1, φ2 have the same structure, the statements below about two clauses being
neighbours, or involving k-variables (and other similar questions) have the same answer
for both φ1, φ2.
if (some clause cannot be satisfied (for example (0, 0, 0) or (1, x,¬x)) in φ1 or φ2) then
return 0. This is Case 1.(i).

else if (for some variable x ∈ V , s1(x) and s2(x) are both defined) or (x does not appear
in any of the clauses) then

return MHD(φ1, φ2, s1, s2, V −{x}, P [pmain = pmain × (
∑
i,j px,i,j)]), where summation

is over pairs of (i, j) which are consistent with (s1(x), s2(x)) (if defined). This is Case
1.(ii).

else if (some clause contains at most two different variables in its literals) then
simplify (φ1, φ2) according to Case 1.(iii) and return the answer from the updated MHD
problem.

else if (there are two clauses sharing exactly 2 common variables) then
simplify (φ1, φ2) according to Case 1.(iv) and return the answer from the updated MHD
problem.

else if (there is a variable appearing in at least 4 dissimilar clauses) then
branch on this variable and do follow-up linking of the variables according to Case 1.(v),
return the sum of the answers obtained from the subproblems.

else if (there is a clause with at least four dissimilar neighbours and there is a small set I
of variables which are semiisolated by a small set J of variables and conditions prescribed
in Case 1.(vi) below hold; we use this only if |I| ≤ 10, |J | ≤ 3) then

branch on all variables except one in J and simplify according to Case 1.(vi) and return
the sum of the answers obtained from the subproblems.

else if (there is a clause with at least 4 dissimilar neighbouring clauses) then
branch on upto three variables and do follow-up linking according to Case 1.(vii) and
return the sum of the answers from the subproblems.

else
In this case all the clauses have at most three dissimilar neighbours, no variable appears
in more than 3 dissimilar clauses and each clause has exactly three variables and no two
dissimilar clauses share two or more variables.
As described in Case 2 below, one can branch on some variables and after simplification,
have two sets of clauses in φ1 (φ2) which have no common variables. Furthermore, as
the clauses do not satisfy the preconditions for Case 1, they again fall in Case 2, and
we can repeatedly branch/simplify the formulas until the number of variables/clauses
become small enough to use brute force.

end if
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3.1 Case 1

This case applies when either some clause is not satisfiable irrespective of the values of the
variables (case (i)) or some variable in V ’s value has already been determined for both φ1, φ2
(case (ii)) or some clauses in φ1 (and thus φ2) use only one or two variables (case (iii)), or
two dissimilar clauses have two common variables (case (iv)), or some variable appears in
four dissimilar clauses (case (v)) or some clause has four dissimilar clauses as neighbours
(which is divided into two subcases (vi) and (vii) below for ease of analysis).

The subcases here are in order of priority. So (i) has higher priority than (ii) and (ii) has
higher priority than (iii) and so on.

(i) If there is a clause which cannot be satisfied (for example the clauses (0, 0, 0) or (1, 1, x)
or (1, x,¬x)) whatever the assignment of values to the variables consistent with s1, s2
in either φ1 or φ2 respectively, then MHD(φ1, φ2, s1, s2, V, P ) = 0.

(ii) If a variable x ∈ V is determined in both φ1, φ2 (i.e., s1(x) and s2(x) are defined), or
variable x does not appear in any of the clauses, then do the simplification: update
pmain to pmain × (

∑
i,j px,i,j), where i, j range over value assignments to x in φ1, φ2

which are consistent with (s1(x), s2(x)) (if defined) respectively. That is, answer
returned in this case is MHD(φ1[x = s1(x)], φ2[x = s2(x)], s1, s2, V − {x}, P [pmain =
pmain × (

∑
i,j px,i,j)), where the summation is over i, j consistent with s1(x), s2(x), if

defined.
(iii) If there is a clause which contains only one variable. Then, either the value of the

variable is determined (for example when the clause is of the form (x,¬x,¬x) or (x),
for some literal x, which is satisfiable only via x = 1), or the clause is unsatisfiable
(for example when it is of the form (x, x) or (x, x, x) – in which case we have that
MHD(φ1, φ2, s1, s2, V, P ) = 0) or it does not matter what the value of the variable is
for the clause to be satisfied (for example, when the clause is (x,¬x)). Thus, we can
drop the clause and note down the value of the variable in the corresponding si if it is
determined (if this is in conflict with the variable having been earlier determined in si,
then MHD(φ1, φ2, . . .) = 0). Note that x may be determined in only one of φ1, φ2, thus
we do not update the x appearing in any of the remaining clauses of φ1, φ2 to maintain
that the clauses of φ1, φ2 are similar.
If there is a clause which contains literals involving exactly two variables, x and y, then
x and y can be linked, either as x = y or x = ¬y, as we must have exactly one literal in
the clause which is true for any satisfying assignment. Thus, we can replace all usage of
y by x (or ¬x) in both φ1, φ2, drop the variable y from V and correspondingly, update,
for i, j ∈ {0, 1}, px,i,j to px,i,j × py,i′,j′ , based on the linking of values i for x in φ1 (j
for x in φ2 respectively) to value i′ for y in φ1 (j′ for y in φ2 respectively). Here, in case
value of y is determined in s1, s2, then the value of x is correspondingly determined –
and in case it is in conflict with an earlier determination then MHD(φ1, φ2, . . .) is 0.
So for below assume no clause has literals involving at most two variables.

(iv) Two clauses share two of the three variables in the literals:
Suppose the clauses in φ1 are (x, y, w) and (x′, y′, z), where x, x′ (similarly, y, y′) are
literals over same variable.
If x = x′, y = y′, then we have w = z;
If x = ¬x′, y = ¬y′, then we must have w = z = 0;
If x = x′, y = ¬y′, then we must have x = 0 and w = ¬z; (case of x = ¬x′ and y = y′

is symmetrical).
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17:8 A Fast Algorithm for Max Hamming Distance X3SAT

In all the four cases, we have that w is linked to z and thus, z can be replaced using w
in both φ1, φ2, with corresponding update of pw,i,j by pw,i,j × pz,i′,j′ , where i′, j′ are
obtained from i, j based on the linking in φ1, φ2 respectively. Here, in case value of z is
determined in s1, s2, then the value of w is correspondingly determined – and in case it
is in conflict with an earlier determination then MHD(φ1, φ2, . . .) is 0.

(v) A variable x appears in at least four dissimilar clauses.
By Cases 1(iii) and 1(iv), these four clauses use, beside x, variables (y1, z1), (y2, z2),
(y3, z3), (y4, z4) respectively, which are all different from each other. We branch based
on x having values (for (φ1, φ2)): (0, 0), (0, 1), (1, 0) and (1, 1). Then, in each of the four
clauses involving x, we link the remaining yi and zi. Formulas φ1, φ2 and s1, s2, V, P are
correspondingly updated (that is, x is dropped from V , pmain is updated to pmain×px,i,j
based on the branch (i, j), and the linking of the variables is done as in Case 1.(iii)).
Note that for each branch, we thus remove the variable x, and one of the other variables
in each of the four clauses. Thus we can remove a total of 5 variables for each subproblem
based on the branching for x.

(vi) Though technically we need this case only when some clause has four dissimilar
neighbours (see case (vii) and Proposition 4), the simplification can be done in other
cases also.
There exists (I, J), I ∪ J ⊆ V , such that |I| ≤ 10, |J | ≤ 3 and (I, J) is semiisolated in
φ1 (and thus in φ2 too) and one of the following cases hold.
1. j = 1 and i ≥ 1: Suppose J = {x}. In this case, we can simplify the formulas

φ1, φ2 to remove variables from I as follows:
Let W = {value vectors (β1, β2) with domain I ∪{x} : βi is consistent with si and
all clauses involving variables I ∪ {x} in φi are satisfied using βi}.
Let Wi,j = {(β1, β2) ∈W : β1(x) = i ∧ β2(x) = j}.
Let px,i,j = px,i,j × (

∑
(β1,β2)∈Wi,j

∏
v∈I pv,β1(v),β2(v)).

Let V = V − I.
Remove from φ1 and φ2 all clauses containing variables found in I. If x occurs in
any clause after the modification, then answer returned is MHD(φ1, φ2, s1, s2, V, P ),
where the parameters are modified as above.
IF x does not occur in any clause after above modification, then, let pmain =
pmain×

∑
i,j px,i,j , where summation is over values (i, j) for x which are consistent

with (s1(x), s2(x)) if defined. V = V − I − {x} and the answer returned is
MHD(φ1, φ2, s1, s2, V, P ), where the parameters are modified as above.
Here note that j = 0 case can be similarly handled.

2. J = {w, x} and i ≥ 3, where x appears in some clause C involving a variable not
in I ∪ J .
In this case, we will branch on x and then using the technique of (vi).1 remove
variables from I and then also link the two variables different from x in C. That
is, for each (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, that is consistent with (s1(x), s2(x))
subproblem (φ1,i,j , φ2,i,j , s1,i,j , s2,i,j , Vi,j , Pi,j) is formed as follows:
(a) Set values of x in φ1 and φ2 as i and j respectively, updating correspondingly

pmain to pmain × px,i,j and drop x from the variables V .
(b) Eliminate I from the subproblem by using the method in (vi).1 (as w is the

only element of corresponding J in the subproblem).
(c) Link the two variables in the clause C which are different from x.
The answer returned by MHD is the sum of the answers of each of the four
subproblems.
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Note that in each of the four (or less) subproblems, besides x and members of
I, one linked variable in C is removed. Thus, in total at least 5 variables get
eliminated in each subproblem.

3. j = 3 and i ≥ 4 and there is a clause which contains at least two variables v, w from
J and another variable from I (say the clause is (v′, w′, e′)), where v′, w′ are literals
involving v, w); furthermore v, w appear in clauses involving variables not from I:
In this case we will branch on the variables v, w, e (consistent with assignments in
s1, s2 to these variables if any), and simplify each of the subproblems in a way
similar to (vi).2 above. Note that exactly one of (v′, w′, e′) is 1: giving 9 branches
based on the three choice for each of φ1 and φ2. The answer returned by MHD is
the sum of the answers of each of the (upto) nine subproblems.
Note that apart from the 4 elements of I and v, w, for the clauses using variables
not from I, we have two clauses involving v and w. The other variables in each of
these clauses can be linked up. Thus, in total for each of the subproblems at least
8 variables are eliminated.

(vii) There exists a clause with at least 4 dissimilar neighbours and none of the above
cases apply.
Proposition 4 below argues that there is a clause (x, y, z) (in φ1 and thus in φ2) with
at least four neighbours so that further clauses according to one of the following five
situations exist (up to renaming of variables):
1. (x′, a, b), (x′′, c, d), (y′, a′, c′), (y′′, e, ·);
2. (x′, a, b), (x′′, c, d), (y′, e, ·), (y′′, f, ·);
3. (x′, a, b), (x′′, c, d), (y′, a′, c′), (z′, e, ·);
4. (x′, a, b), (x′′, c, d), (y′, e, ·), (z′, f, ·);
5. (x′, a, b), (x′′, c, d), (y′, a′, e), (z′, c′, e′).

where primed versions of the literals use the same variable as unprimed version (though
they maybe negated) and a, b, c, d, e, f, x, y, z are literals involving distinct variables.
Here · stand for literals involving variables different from x, y, z, where it does not
matter what these variables are, as long as they do not create a situation as in cases
1.(i) to 1.(vi).
Suppose the clause corresponding to (x, y, z) in φ2 is (x′′′, y′′′, z′′′). Then we branch
based on (x, x′′′) = (0, 0) or (x, y, z;x′′′, y′′′, z′′′) ∈ { (1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0),
(1, 0, 0; 0, 0, 1), (0, 1, 0; 1, 0, 0), (0, 0, 1; 1, 0, 0)}. That is either both of x, x′′′ are 0, or at
least one of them is 1 (as before, the branches are only used if the values are consistent
with s1, s2). The branch based on x being 0 in φ1 and x′′′ being 0 in φ2 allows us to
remove x and three variables from linking y with z, a with b and c with d (a total
of four variables). The branch based on the remaining 5 cases allows us to remove
x, y, z and four other variables by linking the variables other than x, y, z in each of
the neighbouring clause in the five possibilities 1–5 mentioned above (a total of seven
variables for each of these subproblems).

I Proposition 4. If cases 1.(i) to 1.(vi) above do not apply and if there is a clause with
at least four dissimilar neighbours then there is also a clause with neighbours as outlined
in (vii).

Proof. Below primed versions of variables denote a literal involving the same variable –
though it may be negated version. Given a clause (x, y, z) with at least four dissimilar
neighbours, without loss of generality assume that x, y, z are not negated in this clause
(otherwise, we can just interchange them with their negated versions). We let x denote a
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variable which is in at least two further dissimilar clauses. In the light of Cases 1.(iii), 1.(iv)
not applying, these clauses have new variables a, b, c, d, say (x′, a, b) and (x′′, c, d) (again
without loss of generality, a, b, c, d are not negated). In light of Case 1.(v) not applying,
variable x is used in no further clause.

If two new variables e, f , different from a, b, c, d, x, y, z appear in some clauses involving
x, y, z then there are two clauses of the form (A) (y′, e, ·) and (y′/z′, f, ·), or (B) (y′, e, f)
and (y′/z′, a′, c′) (note that in case (B), both a, b (similarly, both c, d) cannot appear in the
clause as case 1.(iv) did not apply). Thus, 1.(vii).2 or 1.(vii).4 (in case (A)) or 1.(vii).1 or
1.(vii).3 (in case (B)) apply.

Now, assume that at most one other variable e, appears in any clause involving x, y, z
besides a, b, c, d. Without loss of generality suppose the third neighbour of (x, y, z) was
(y′, a′, ·), where · involves variable c or e (it cannot involve b or z as Case 1.(iv) did not
apply). Now, if a or b appears in a further outside clause involving a variable other than
x, y, z, a, b, c, d, e, then (x′, a, b) has neighbours (x, y, z), (x′′, c, d), (a′, y′, c′/e′), (a′′/b′, f, ·)
and thus 1.(vii).1, 1.(vii).2, 1.(vii).3 or 1.(vii).4 apply (with interchanging of names of y
with a and z with b). If none of a or b appears in a further outside clause involving a
variable other than x, y, z, a, b, c, d, e, then one of the cases of 1.(vi) applies with I ∪ J being
{x, y, z, a, b, c, d} or {x, y, z, a, b, c, d, e} (based on whether e appears with any of x, y, z or
not in some clause), and J ⊆ {c, d, e} of the variables which appear in clauses not involving
{x, y, z, a, b, c, d, e}. Here note that in case J = {c, d, e}, then the side condition of 1.(vi).3 is
satisfied using clause (c, d, x′′). J

3.2 Case 2
This case applies when all clauses have exactly three variables, no two clauses have exactly
two variables in common, no variable appears in more than three dissimilar clauses and
dissimilar clauses have at most three dissimilar neighbours.

As our operations on similar clauses leaves them similar, for ease of proof writing, we will
consider similar clauses in any of the formulas as “one” clause when counting below.

Suppose there are m dissimilar clauses involving n variables. First note that for this
case, m ≤ 2n/3. To see this, suppose we distribute the weight 1 of each variable equally
among the dissimilar clauses it belongs to. Then, each clause may get weight (1/3, 1/2, 1) or
(1/2, 1/2, 1/2) (or more) based on whether the variables in the clause appear in (2, 1, 0) or
(1, 1, 1) other clauses in the worst case. Thus, weight on each clause is at least 3/2, and thus
there are at most 2n/3 dissimilar clauses.

I Proposition 5. For some εm which goes to 0 as m goes to ∞, the following holds.
Suppose in φ1 (and thus φ2) there are n variables and m dissimilar clauses each having

three literals involving three distinct variables, such that each clause has at most three
dissimilar neighbours and each variable appears in at most three dissimilar clauses, and no
two dissimilar clauses have two common variables.

Then, we can select k ≤ m(1/6 + εm) variables, such that branching on all possible values
for all of these variables, and then doing simplification based on repeated use of Case 1.(i) to
1.(iv) gives two groups of clauses, each having three literals, where the two groups have no
common variables, and
(a) each clause in each group has at most three dissimilar neighbours,
(b) each variable appears in at most three dissimilar clauses,
(c) no pair of dissimilar clauses have two common variables,
(d) the number of dissimilar clauses in each group is at most (m− k + 2)/2.
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Proof. To prove the proposition, consider each dissimilar clause as a vertex, with edge
connecting two dissimilar clauses if they have a common variable. Using the bisection width
result [5, 6, 1], one can partition the dissimilar clauses into two groups (differing by at most
one in cardinality) such that there exist at most k ≤ (1/6 + εm)×m edges between the two
groups, that is there are at most (1/6 + εm)×m common variables between the two groups
of clauses. One can assume without loss of generality that at most one clause has three
neighbours on the other side. This holds as if there are two dissimilar clauses, say one in
each half, which have all their neighbours on the other side, then we can switch these two
clauses to the other side and decrease the size of the cut. On the other hand, if both these
clauses (say A and B) belong to the same side, then we can switch A to the other side, and
switch the side of one of B’s neighbours – this also decreases the size of the cut.

To see that the properties mentioned ((a), (b) and (c)) are preserved, suppose in a clause
(x, y, z), we branch on x and thus link y with z; here we assume without loss of generality
that x, y, z are all positive literals. Note that as (x, y, z) has at most three neighbours, one
of which contains x, there can be at most two other neighbours of the clause (x, y, z) which
contain y or z.

First suppose y (respectively z) does not appear in any other clause. Without loss of
generality assume that y gets dropped and replaced by z or ¬z based on the linking. Then
dropping the clause (x, y, z) and replacing y by z does not increase the number of dissimilar
clauses that z appears in, nor does it increase the number of neighbours of these clauses as
there is no change in variable name in any clause which is not dropped.

Next suppose both y and z appear in exactly one other dissimilar clause, say (y′, a, b)
and (z′, c, d), where y′ and z′ are literals involving y and z respectively. In that case, linking
y and z (and replacing z by y), makes these two clauses neighbours (if not already so) –
which is compensated by the dropping of the neighbour (x, y, z); the number of clauses in
which y appears remains two. In case these two clauses were already neighbours (say a = c

or ¬c), then due to application of Case 1.(iv), b and d get linked, clauses (y, a, b) and (z, c, d)
thus become similar (resulting in decrease in the neighbour by one for these clauses) and the
above analysis can then be recursively applied for linking b with d.

Now considering the edges (and corresponding common variable for the edge) in the
cut, and branching on all these variables (while being consistent with s1 and s2) and then
doing simplification as in Cases 1(i) to 1(iv), we have that each partition is left with at most
(m+ 1− (k− 1))/2 dissimilar clauses. This holds as, by our assumption above, except maybe
for one clause, all dissimilar clauses have at most two neighbours on the other side. Thus, by
linking the remaining variables for each of the clauses involved in the cut, we can remove
(k − 1)/2 dissimilar clauses on each side using Case 1(iii). J

Thus, one can recursively apply the above modifications in Case 2 to each of the two groups
of clauses, one after other, until all the variables have been assigned the values or linked to
other variables (where the leaf cases occur when the number of dissimilar clauses is small
enough to use brute force assigning values to all of the variables).

Now we count how many variables need to be branched for Case 2 in total if one starts with
m clauses involving n variables. The worst case happens when k = (1/6+ εm)m and the total
number of variables which need to be branched on is m(1 + 5/12 + 52/(122) + . . .) ∗ (1/6 + ε),
where one can take ε as small as desired for corresponding large enough m. Thus the number
of variables branching would be m(2/7 + 12ε/7) ≤ n(4/21 + 24ε/21). As branching on each
variable gives at most 4 children, the number of leaves (and thus complexity of the algorithm
based on Case 2) is bounded by 44n/21+o(n).
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3.3 Overall Complexity of the Algorithm
Note that modifications in each of the above cases takes polynomial time in the original
formula φ.

Visualize the running of the above algorithm as a search tree, where the root of the
tree is labeled as the starting problem MHD(φ, φ, V = X, s1 = ∅, s2 = ∅, P ), with P having
pmain = 1, px,i,j = qx,i,j .

At any node, if a simplification case applies, then the node has only one child with the
corresponding updated parameters. If a braching case applies, then the node has children
corresponding to the parameters in the branching.

As the work done at each node is polynomial in the length of φ, the overall time complexity
of the algorithm is poly(n, |φ|)× (number of leaves in the above search tree).

We thus analyze the number of possible leaves the search tree would generate.
Suppose T (r) denotes the number of leaves rooted at a node MHD(. . . , V, . . .), where V

has r variables.
Case 1.(i) to Case 1.(iv) and Case 1.(vi).1 do not involve any branching.
If Case 1.(v) is applied to a MHD problem involving r variables, then it creates at most

four subproblems, each having at most r− 5 variables. Thus, the number of leaves generated
in this case is bounded by 4T (r − 5). Note that T (r) = O(αr), for α ≥ α0 = 1.3196 satisfies
the constraints of this equation.

If Case 1.(vi).2 is applied to a MHD problem involving r variables, then it creates at most
4 subproblems each involving at most r − 5 variables. Thus, the number of leaves generated
in this case is bounded by 4T (r − 5). Note that T (r) = O(αr), for α ≥ α0 = 1.3196 satisfies
the constraints of this equation.

If Case 1.(vi).3 is applied to a MHD problem involving r variables, then it creates at most
9 subproblems each involving at most r − 8 variables. Thus, the number of leaves generated
in this case is bounded by 9T (r − 8). Note that any T (r) = O(αr), for α ≥ α0 = 1.3162
satisfies the constraints of this equation.

If Case 1.(vii) is applied to a MHD problem involving r variables, then it creates at most
6 subproblems, one involving at most r − 4 variables and the other involving at most r − 7
variables. Thus, the number of leaves generated in this case is bounded by T (r−4)+5T (r−7).
Note that any T (r) = O(αr), for α ≥ α0 = 1.3298 satisfies the constraints of this equation.

If Case 2 is applied to a MHD problem of r variables, then it creates a search tree which
contains at most O(44r/21+o(r)) leaves. Note that any T (r) = O(αr), for α ≥ α0 = 1.3023
satisfies the constraints of this equation.

Thus, the formula T (r) = O(1.3298r) bounds the number of leaves generated in each of
the cases above, for large enough r. Thus, we have the theorem:

I Theorem 6. Given a X3SAT formula φ, one can find in time O(poly(n, |φ|)× 1.3298n)
the maximum hamming distance between any two satisfying assignments for φ.

4 Conclusion and Future Work

In this paper, we considered a branching algorithm to compute the Max Hamming Distance
X3SAT in O(1.3298n) time. Our novelty lies in the preservation of structure at both sides of
the formula while we branch.

Our method is faster than the naïve invocation of the Max 2-CSP algorithm (see the
discussion in the second-last section of the technical report version of this paper at [8],
https://arxiv.org/abs/1910.01293). Even if one assumes that every clause has only

https://arxiv.org/abs/1910.01293
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three neighbours (as in Case 2, but now from the start), the usage of the Max 2-CSP
algorithm results in a run-time of 92/15×n+o(n) which is contained in O(1.3404n). Without
this assumption, the naïve invocation of the Max 2-CSP algorithm is much worse. Also other
invocations of known methods do not give good timebounds.

Our time bound of O(1.3298n) is achieved by using simple analysis to analyse our
branching rules. Our algorithm uses only polynomial space during its computations. This
can be seen from the fact that the recursive calls at the branchings are independent and can
be sequentialised; each calling instance therefore needs only to store the local data; thus each
node of the call tree uses only h(n) space for some polynomial h. The depth of the tree is
at most n as each branching reduces the variables by 1; thus the overall space is at most
h(n)× n space.

Furthermore, as we determine the number of pairs of solutions with Hamming distance k
for k = 0, 1, . . . , n, where n is the number of variables, one might ask whether this comes
with every good algorithm for free or whether there are faster algorithms in the case that
one computes merely the maximum Hamming distance of two solutions.
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