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Abstract
The reachability problem is to determine if there exists a path from one vertex to another in a
graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a
two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or
vertical neighbor only.

Asano et al. presented the first simultaneous time space bound for reachability in grid graphs by
presenting an algorithm that solves the problem in polynomial time and O(n1/2+ε) space. In 2018,
the space bound was improved to Õ(n1/3) by Ashida and Nakagawa.

In this paper, we show that reachability in an n vertex grid graph can be decided by an algorithm
using O(n1/4+ε) space and polynomial time simultaneously.
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1 Introduction

The problem of graph reachability is to decide whether there is a path from one vertex to
another in a given graph. This problem has several applications in the field of algorithms and
computational complexity theory. Reachability in directed and undirected graphs capture
the complexity of nondeterministic and deterministic logarithmic space respectively [12]. It
is often used as a subroutine in various network related problems. Hence designing better
algorithms for this problem is of utmost importance to computer scientists.

Standard graph traversal algorithms such as DFS and BFS give a linear time algorithm
for this problem, but they require linear space as well. Savitch’s divide and conquer based
algorithm can solve reachability in O(log2 n) space, but as a tradeoff, it requires nO(logn)

time [13]. Hence it is natural to ask whether we can get the best of both worlds and design
an algorithm for graph reachability that runs in polynomial time and uses polylogarithmic
space. Wigderson asked a relaxed version of this question in his survey - whether graph
reachability can be solved by an algorithm that runs simultaneously in polynomial time and
uses O(n1−ε) space [15]. In this paper, we address this problem for a certain restricted class
of directed graphs.
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Barnes et al showed that reachability in general graphs can be decided simultaneously in
n/2Θ(

√
logn) space and polynomial time [6]. Although this algorithm gives a sublinear space

bound, it still does not give a positive answer to Wigderson’s question.
However, for certain topologically restricted graph classes, we know of better space bounds

simultaneously with polynomial time. Planar graphs are graphs that can be drawn on the
plane such that no two edges of the graph cross each other at an intermediate point. Imai
et al. showed that reachability in planar graph can be solved in O(n1/2+ε) space for any
ε > 0 [9] . Later this space bound was improved to Õ(n1/2) [4]. For graphs of higher genus,
Chakraborty et al. gave an Õ(n2/3g1/3) space algorithm which additionally requires an
embedding of the graph on a surface of genus g, as input [7]. They also gave an Õ(n2/3)
space algorithm for H minor-free graphs which requires tree decomposition of the graph
as an input and O(n1/2+ε) space algorithm for K3,3-free and K5-free graphs. For layered
planar graphs, Chakraborty and Tewari showed that for every ε > 0 there is an O(nε) space
algorithm [8]. Stolee and Vinodchandran presented a polynomial time algorithm that, for
any ε > 0 solves reachability in a directed acyclic graph with O(nε) sources and embedded
on the surface of genus O(nε) using O(nε) space [14]. For unique-path graphs, Kannan et al.
presented a O(nε) space and polynomial time algorithm [10].

Grid graphs are a subclass of planar graphs whose vertices are present at the integer
lattice points of an m×m grid and edges can only occur between a vertex and its immediate
vertical or horizontal neighbor. It was known that reachability in planar graphs can be
reduced to reachability in grid graphs in logarithmic space [1]. The reduction, however,
causes atleast a quadratic blow-up in size with respect to the input graph. In this paper, we
study the simultaneous time-space complexity of reachability in grid graphs.

Asano and Doerr presented a polynomial time algorithm that uses O(n1/2+ε) space for
solving reachability in grid graphs [3]. Ashida and Nakagawa presented an algorithm with
improved space complexity of Õ(n1/3) [5]. The latter algorithm proceeded by first dividing
the input grid graph into subgrids. It then used a gadget to transform each subgrid into a
planar graph, making the whole of the resultant graph planar. Finally, it used the planar
reachability algorithm of Imai et al. [9] as a subroutine to get the desired space bound.

In this paper, we present a O(n1/4+ε) space and polynomial time algorithm for grid graph
reachability, thereby significantly improving the space bound of Ashida and Nakagawa.

I Theorem 1 (Main Theorem). For every ε > 0, there exists a polynomial time algorithm
that can solve reachability in an n vertex grid graph, using O(n1/4+ε) space.

To solve the problem we divide the given grid graph into subgrids and replace paths in each
grid with a single edge between the boundary vertices to get an auxiliary graph. This reduces
the size of the graph and preserves reachability. Instead of trying to convert the auxiliary
graph into planar graph while preserving reachability (which was the approach of Ashida and
Nakagawa [5]), we use a divide and conquer strategy to directly solve reachability problem
in the auxiliary graph. We define and use a new type of graph separator of the auxiliary
graph, that we call as pseudoseparator and use it to divide the auxiliary graph into small
components and then combine the solution in a space-efficient manner.

In Section 2 we state the definitions and notations that we use in this paper. In Section 3
we define the auxiliary graph and state various properties of it that we use later. In Section
4 we discuss the concept of a pseudoseparator. We give its formal definition and show how a
pseudoseparator can be computed efficiently. In Section 5 we give the algorithm to solve
reachability in an auxiliary graph and prove its correctness. Finally in Section 6 we use the
algorithm of Section 5 to give an algorithm to decide reachability in grid graphs and thus
prove Theorem 1.
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2 Preliminaries

Let [n] denote the set {0, 1, 2, . . . , n}. We denote the vertex set of a graph G by V (G)
and its edge set by E(G). For a subset U of V (G), we denote the subgraph of G induced
by the vertices of U as G[U ]. For a graph G, we denote cc(G) as the set of all connected
components in the underlying undirected graph of G, where the undirected version is obtained
by removing orientations on all edges of G. Henceforth, whenever we talk about connected
components, we will mean the connected components of the underlying undirected graph.

In a drawing of a graph on a plane, each vertex is mapped to a point on the plane, and
each edge is mapped to a simple arc whose endpoints coincide with the mappings of the end
vertices of the edge. Moreover, the interior points of an arc corresponding to an edge does
not intersect with any other vertex points. A graph is said to be planar if it can be drawn on
the plane such that no two edges of the graph intersect except possibly at the endpoints. We
will not be concerned with details about the representation of planar graphs. We note that
the work of [2], and subsequently [12], implies a deterministic logarithmic space algorithm
that decides whether or not a given graph is planar, and if it is, outputs a planar embedding.
Hence when dealing with planar graphs, we will assume without loss of generality that a
planar embedding is provided as well.

A m×m grid graph is a directed graph whose vertices are [m]× [m] = {0, 1, . . . ,m} ×
{0, 1, . . . ,m} so that if ((i1, j1), (i2, j2)) is an edge then |i1 − i2|+ |j1 − j2| = 1. It follows
from definition that grid graphs are a subset of planar graphs.

3 Auxiliary Graph

Let G be an m×m grid graph. We divide G into m2α subgrids such that each subgrid is a
m1−α ×m1−α grid. Formally, for 1 ≤ i, j ≤ mα, the (i, j)-th subgrid of G, denoted as G[i, j]
is the subgraph of G induced by the set of vertices, V (G[i, j]) = {(i′, j′) | (i− 1) ·m1−α ≤
i′ ≤ i ·m1−α and (j − 1) ·m1−α ≤ j′ ≤ j ·m1−α}.

For 0 < α < 1 and 1 ≤ i, j ≤ mα, we define Auxα(G)[i, j] as follows. The vertex set of
Auxα(G)[i, j] is V (Auxα(G)[i, j]) = {(i′, j′) | i′ = k ·m1−α or j = l ·m1−α, such that k ∈
{i − 1, i} and l ∈ {j − 1, j}}. For two vertices u, v in Auxα(G)[i, j], (u, v) is an edge in
Auxα(G)[i, j] if there is a path from u to v in the subgrid G[i, j]. In a drawing of Auxα(G)[i, j],
we use a straight line to represent the edge if u and v do not lie on a single side of Auxα(G)[i, j],
and an arc present inside the grid to represent it otherwise.

Now for 0 < α < 1, we define the α-auxiliary graph, Auxα(G) as follows. The vertex set
of Auxα(G), V (Auxα(G)) = {(i, j) | i = k ·m1−α or j = l ·m1−α, such that 0 ≤ k, l ≤ mα}.
The edges of Auxα(G) are the edges of Auxα(G)[i, j] taken over all pairs (i, j). Note that
Auxα(G) might have parallel edges, since an edge on a side of a block might be present in the
adjacent block as well. In such cases we preserve both the edges, however in their different
blocks of Auxα(G) in the drawing of Auxα(G) on the plane. Figure 1 contains an example
of a grid graph partitioned into subgrids and its corresponding auxiliary graph. Since each
block Auxα(G)[i, j] contains 4m1−α vertices, the total number of vertices in Auxα(G) would
be at most 4m1+α.

Our algorithm for reachability first constructs Auxα(G) by solving each of them1−α×m1−α

grids recursively. It then uses a polynomial time subroutine to decide reachability in Auxα(G).
Note that we do not store the graph Auxα(G) explicitly, since that would require too much
space. Rather we solve a subgrid recursively whenever the subroutine queries for an edge in
that subgrid of Auxα(G).
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Figure 1 A grid graph G divided into subgrids and its corresponding auxiliary graph Auxα(G).

Our strategy is to develop a polynomial time algorithm which solves reachability in
Auxα(G) using Õ(m̃1/2+β/2) space where m̃ is the number of vertices in Auxα(G). As
discussed earlier, m̃ can be at most 4m1+α. Hence, the main algorithm would require
Õ(m1/2+β/2+α/2+αβ/2) space. For a fixed constant ε > 0, we can pick α > 0 and β > 0 such
that the space complexity becomes O(m1/2+ε).

3.1 Properties of the Auxiliary Graph
In the following definition, we give an ordered labeling of the vertices on some block of the
auxiliary graph. The labeling is defined with respect to some vertex present in the block.

I Definition 2. Let G be a m×m grid graph, l = Auxα(G)[i, j] be a block of Auxα(G) and
v = (x, y) be a vertex in Auxα(G)[i, j]. Let t = m1−α. We define the counter-clockwise
adjacent vertex of v with respect to the block l, cl(v) as follows:

cl(v) =


(x+ 1, y) if x < (i+ 1)t and y = jt

(x, y + 1) if x = (i+ 1)t and y < (j + 1)t
(x− 1, y) if x > it and y = (j + 1)t
(x, y − 1) if x = it and y > jt

Similarly we also define the r-th counter-clockwise adjacent neighbour of v with respect to the
block l inductively as follows. For r = 0, crl (v) = v and otherwise we have cr+1

l (v) = cl(crl (v)).

Note that for a block l and vertices v and w in it, we write v as cpl (w) where p is smallest
non-negative integer for which cpl (w) = v. Next we formalize what it means to say that two
edges of the auxiliary graph cross each other.

I Definition 3. Let G be a grid graph and l be a block of Auxα(G). For two distinct edges e
and f in the block, such that e = (v, cpl (v)) and f = (cql (v), crl (v)). We say that edges e and f
cross each other if min(q, r) < p < max(q, r).

Note the definition of cross given above is symmetric. That is, if edges e and f cross each
other then f and e must cross each other as well. For an edge f = (cql (v), crl (v)), we define
←−
f = (crl (v), cql (v)) and call it the reverse of f . We also note that if e and f cross each other,
then e and

←−
f also cross each other.

In Lemma 4 we state an equivalent condition of crossing of two edges, and in Lemmas 6
and 7 we state certain properties of the auxiliary graph that we use later.
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I Lemma 4. Let G be a grid graph and l be a block of Auxα(G). Let w be an arbitrary vertex
in the block l and e = (cpl (w), cql (w)) and f = (crl (w), csl (w)) be two distinct edges in l. Then
e and f cross each other if and only if either of the following two conditions hold:

min(p, q) < min(r, s) < max(p, q) < max(r, s)
min(r, s) < min(p, q) < max(r, s) < max(p, q)

Proof. We prove that if min(p, q) < min(r, s) < max(p, q) < max(r, s) then e and f cross
each other. We let p < r < q < s. Other cases can be proved by reversing appropriate
edges. We thus have integers r1 = r − p, q1 = q − p and s1 = s − p. Clearly, r1 <

q1 < s1. Let v = cpl (w). Thus we have e = (v, cql (w)) = (v, cq1
l (cpl (w))) = (v, cq1

l (v)) and
f = (crl (w), csl (w)) = (cr1

l (cpl (w)), cs1
l (cpl (w))) = (cr1

l (v), cs1
l (v)) The proof for the second

condition is similar.
Now, we prove that if e = (cpl (w), cql (w)) and f = (crl (w), csl (w)) cross each other then

either of the given two condition holds. We assume that p is the smallest integer among p, q,
r and s. Other cases can be proved similarly. Now, let v = cpl (w). We thus have integers
q1 = q − p, r1 = r− p and s1 = s− p such that e = (v, cq1

l (v)) and f = (cr1
l (v), cs1

l (v)). Since
e and f cross each other, we have min(r1, s1) < q1 < max(r1, s1). Thus min(r1 + p, s1 + p) <
q1+p < max(r1+p, s1+p). It follows that min(r, s) < q < max(r, s). Since we assumed p to be
smallest integer among p, q, r and s; we have min(p, q) < min(r, s) < max(p, q) < max(r, s),
thus proving the lemma. J

We see that we can draw an auxiliary graph on a plane such that the arcs corresponding to
two of its edges intersect if and only if the corresponding edges cross each other. Henceforth,
we will work with such a drawing.

I Definition 5. Let G be a grid graph and l be a block of Auxα(G). For a vertex v and edges
f , g such that f = (cql (v), crl (v)) and g = (csl (v), ctl(v)), we say that f is closer to v than g if
min(q, r) < min(s, t).

We say f is closest to v if there exists no other edge f ′ which is closer to v than f .

I Lemma 6. Let G be a grid graph and e1 = (u1, v1) and e2 = (u2, v2) be two edges in
Auxα(G). If e1 and e2 cross each other, then Auxα(G) also contains the edges (u1, v2) and
(u2, v1).

Proof. Let e1 = (v, cpl (v)) and e2 = (cql (v), crl (v)) be two edges that cross each other in
Auxα(G). Let l be the block of Auxα(G) to which e1 and e2 belong. Consider the subgrid of
G which is solved to construct the block l. Since the edge e1 exists in block l, there exists a
path P from v to cpl (v) in the underlying subgrid. This path P divides the subgrid into two
parts such that the vertices cql (v) and crl (v) belong to different parts of the subgrid. Thus,
a path between cql (v) and crl (v) necessarly take a vertex of path P . Hence, there is a path
from v to crl (v) and a path from cpl (v) to crl (v). Thus the lemma follows. J

I Lemma 7. Let G be a grid graph and e1 = (u1, v1) and e2 = (u2, v2) be two edges in
Auxα(G). If e1 and e2 cross a certain edge f = (x, y), and e1 is closer to x than e2, then
the edge (u1, v2) is also present in Auxα(G).

Proof. Let e = (v, cpl (v)), f = (cql (v), crl (v)) and g = (csl (v), ctl(v)). If cql (v) = csl (v) then the
lemma trivially follows. Otherwise, we have two cases to consider:
Case 1 (f crosses g): In this case, we will have (cql (v), ctl(v)) present in Auxα(G) by Lemma 6.
Case 2 (f does not cross g): In this case, we have min(q, r) < min(s, t) < p < max(s, t) <

max(q, r). Since f crosses e, we have the edge (cql (v), cpl (v)) in Auxα(G) by Lemma 6.
This edge will cross g. Hence (cql (v), ctl(v)) is present in Auxα(G). J
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4 Pseudoseparator in a Grid Graph

Imai et al. used a separator construction to solve the reachability problem in planar graphs [9].
A separator is a set of vertices whose removal disconnects the graph into small components.
An essential property of a separator is that, for any two vertices, a path between the vertices
must contain a separator vertex if the vertices lie in two different components with respect
to the separator.

Grid graphs are subclasses of planar and are known to have good separators. However,
for a grid graph G, the graph Auxα(G) might not have a small separator. Here we show
that Auxα(G) has a different kind of separator, which we call as a PseudoSeparator (see
Definition 8). PseudoSeparator allows us to decide reachability in Auxα(G), by using a divide
and conquer strategy and obtain the claimed time and space bounds.

For a graph H = (V1, E1) given along with its drawing, and a subgraph C = (V2, E2)
of H, define the graph H � C = (V3, E3) as V3 = V1 \ V2 and E3 = E1 \ {e ∈ E1 | ∃f ∈
E2, e crosses f}. We note that the graph H we will be working with throughout the article
will be a subgraph of an auxiliary graph. Hence it will always come with a drawing.

I Definition 8. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G)
with h vertices. Let f : N → N be a function. A subgraph C of H is said to be an f(h)-
PseudoSeparator of Auxα(G) if the size of every connected component in cc(H � C) is at
most f(h). The size of C is the total number of vertices and edges of C summed together.

For a vertex-induced subgraph H of Auxα(G), an f(h)-PseudoSeparator is a subgraph
C of H that has the property that, if we remove the vertices as well as all the edges that
cross one of the edges of the PseudoSeparator, the graph gets disconnected into small pieces.
Moreover for every edge e in H, if there exists distinct sets U1 and U2 in cc(H �C) such that
one of the endpoints of e is in U1 and the other is in U2, then there exists an edge f in C
such that e crosses f . Hence any path which connects two vertices in different components,
must either contain a vertex of C or must contain an edge that crosses an edge of C. We
divide the graph using this PseudoSeparator and give an algorithm which recursively solves
each subgraph and then combines their solution efficiently.

4.1 Constructing a Pseudoseparator
We briefly comment on how to construct a PseudoSeparator of a vertex induced subgraph
H of Auxα(G). First, we pick a maximal subset of edges from H so that no two edges cross
(see Defintion 9). Then we triangulate the resulting graph. This can be done in logspace.
Next, we use Imai et al.’s algorithm to find a separator of the triangulated graph. Call the
triangulated graph as Ĥ and the separator vertices as S. The vertex set of PseudoSeparator
of H will contain all the vertices of S and four additional vertices for each edge of Ĥ[S] that
is not present in H. The edge set of PseudoSeparator of H will contain all the edges of H
which are also in Ĥ[S] and four additional edges for each edge of Ĥ[S] that is not present in
H.

I Definition 9. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). We
define planar(H) as a subgraph of H. The vertex set of planar(H) is same as that of H.
For an edge e ∈ H, let l be the block to which e belongs and let w be the lowest indexed
vertex in that block. Then e = (cil(w), cjl (w)) is in planar(H) if there exists no other edge
f = (cxl (w), cyl (w)) in H such that min(x, y) < min(i, j) < max(x, y) < max(i, j).

In Lemma 10 we show that the graph planar(H) is indeed planar and prove a simple yet
crucial property of this graph, that would help us to construct the PseudoSeparator.
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I Lemma 10. Let G be a grid-graph and H be a vertex induced subgraph of Auxα(G). No two
edges of planar(H) cross each other. Moreover, for any edge e in H that is not in planar(H),
there exists another edge in planar(H) that crosses e.

Proof. Let l be a block of Auxα(G) and w be the smallest index vertex of l. Let e =
(cpl (w), cql (w)) and f = (crl (w), csl (w)) be two edges of H that cross. We have, by lemma
4, that either min(p, q) < min(r, s) < max(p, q) < max(r, s) or min(r, s) < min(p, q) <
max(r, s) < max(p, q). Hence, by our construction of planar(H), atmost one of e and f

belongs to it. Thus no two edges of planar(H) can cross.
For the second part, we will prove by contradiction. Let us assume that there exists

edges in H which is not in planar(H) and also not crossed by an edge in planar(H). We
pick edge e = (cpl (w), cql (w)) from them such that min(p, q) of that edge is minimum. Since
this edge is not present in planar(H), we have by definition, an edge f = (crl (w), csl (w))
such that min(r, s) < min(p, q) < max(r, s) < max(p, q). We pick the edge f for which
min(r, s) is minimum. Now, since this edge f is not present in planar(H), we have another
edge g = (cil(w), cjl (w)) in planar(H) such that min(i, j) < min(r, s) < max(i, j) < max(r, s).
We pick g such that min(i, j) is minimum and break ties by picking one whose max(i, j) is
maximum. Now, we have the following cases:
Case 1 (i < r < j < s): In this case, the edge cil(w), csl (w) will be present in H. Since

i < p < s < q, and i < min(r, s), this will contradict the way in which edge f was chosen.
Case 2 (i < s < j < r): In this case, the edge (crl (w), cjl (w)) will be present in H. This

edge will cross e and hence not be present in planar(H). Thus, we have an edge g′ =
(ci′l (w), cj

′

l (w)) in planar(H) such that min(i′, j′) < j < max(i′, j′) < r. We will thus have
two subcases.
Case 2a (i < min(i′, j′)): Here, we will have i < min(i′, j′) < j < max(i′, j′). Hence

this edge will cross g giving a contradiction to the first part of this lemma.
Case 2b (min(i′, j′) ≤ i): Here, this edge should have been chosen instead of g contra-

dicting our choice of g.
The analysis of two remaining cases where j < s < i < r and j < r < i < s are similar to
Cases 1 and 2 respectively. J

We next describe how to compute the triangulated planar graph Ĥ. Given H as an
input, we first find planar(H) using Lemma 10. We then triangulate planar(H) by first adding
edges in the boundary of each block as follows: let l be a block and v be a vertex in l. Let
p be the smallest positive integer such that the vertex cpl (v) is present in H. If the edge
(v, cpl (v)) is not present in planar(H), we add this in Ĥ. This procedure does not result in a
non-planar graph since no edge of planar(H) goes from one block to another. Every edge of l
is now inside the boundary cycle. Finally, we triangulate the rest of the graph and add the
triangulation edges to Ĥ. Note that this process can be done in logspace.

We will be using the following lemma which was proven by Imai et al.

I Lemma 11 ([9]). For every β > 0, there exists a polynomial time and Õ(h1/2+β/2) space
algorithm that takes a h-vertex planar graph P as input and outputs a set of vertices S,
such that |S| is O(h1/2+β/2) and removal of S disconnects the graph into components of size
O(h1−β).

For a subgraph H of Auxα(G), we construct the graph psep(H) in the following way.
(i) Construct Ĥ from H.
(ii) Find a set S of vertices in Ĥ which divides it into components of size O(n1−β) by

applying Lemma 11.
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(iii) Add each vertex of S to the set V (psep(H)) and each edge of Ĥ(S) which is also in H
to E(psep(H)).

(iv) Let e = (v, w) be a triangulation edge present in block l of Ĥ whose both endpoints are
in S. Let p and q be integers such that w = cpl (v) and v = cql (w). We add the following
set of at most four vertices and four edges to psep(H).
1. Let p1 < p be the largest integer such that an edge e1 with endpoints v and cp1

l (v)
exists.

2. Let p2 > p be the smallest integer such that an edge e2 with endpoints v and cp2
l (v)

exists.
3. Let q1 < q be the largest integer such that an edge e3 with endpoints cq1

l (w) and w
exists.

4. Let q2 > q be the smallest integer such that an edge e4 with endpoints cq2
l (w) and

w exists.
Note that the above edges could be directed either way. We add the vertices cp1

l (v),
cp2
l (v), cq1

l (w) and cq2
l (w) to V (psep(H)). For i = 1, 2, 3, 4, we add the edges ei to

E(psep(H)). We call these four edges as shadows of e.
In Lemma 12 we show that the set psep(H) is a PseudoSeparator of H.

I Lemma 12. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). The
graph psep(H) is a h1−β-PseudoSeparator of H.

To prove Lemma 12, we first show a property of triangulated graphs that we use in our
construction of PseudoSeparator. It is known that a simple cycle in a planar embedding of a
planar graph divides the plane into two parts. We call these two parts the two sides of the
cycle.

I Lemma 13. Let G be a triangulated planar graph and S be a subset of its vertices. For
every pair of vertex u, v which belong to different components of G \ S, there exists a cycle in
G[S], such that u and v belong to different sides of this cycle.

Proof. To prove the lemma, we first need some terminology. We call a set of faces an
edge-connected region if it can be constructed in the following way:

A set of a single face is an edge-connected region.
If a set F is an edge-connected region and f is a face that shares an edge with one of the
faces of F , then F ∪ {f} is an edge-connected region.

We can orient the edges of an undirected planar simple cycle to make it a directed
cycle. This can help us identify the two sides of the cycle as interior (left-side) and exterior
(right-side).

Let C be a component of G \ S and S′ be the set of vertices of S which are adjacent
to at least one of the vertices of C in G. Let F be the set of triangle faces of G to which
at least one vertex of C belongs. We first observe that for any face f of F , the vertices of
f will either belong to C or S′. We see that F is a region of edge-connected faces. Miller
proved that we could write the boundary of the region of edge-connected faces as a set of
vertex-disjoint simple cycles with disjoint exteriors [11]. These cycles will contain only the
vertices of S′. Hence the lemma follows. J

Proof of Lemma 12. Let C = psep(H). Let S be the set of vertices obtained from Ĥ by
using Lemma 11. We claim that if any two vertices u and v belong to different connected
components of Ĥ \ S, then it belongs to diffent components of cc(H � C). We prove this by
contradiction. Let us assume that it is not true. Then there is an edge from e in H and two
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v

(a) The s− t path takes a vertex of the separator.

u′ v′
u v

e

(b) The s− t path crosses an edge of the separator.

Figure 2

distinct sets U1 and U2 of Ĥ \ S such that one of the end point of e is in U1 and the other is
in U2. This edge e does not cross any of the edge of psep(H). Without loss of generality,
let e = (v, cpl (v)), where v ∈ U1 and cpl (v) is not in U1. (we pick the edge e such that p is
minimum) Due to Lemma 13, it follows that there exists a triangulation edge f such that
f = ((cql (v)), crl (v)) and that e crosses f . We orient the triangulation edge so that q < p < r.
Now, since e is not present in planar(H), by Lemma 10 there exists at least one edge that
crosses it and is present in planar(H). Let g = (csl (v), ctl(v)) be one such edge such that t− s
is maximum. We thus have the following cases:
Case 1 (s < q < p < r < t): In this case, since g crosses e, by Lemma 6, we have that the

edge e′ = (csl (v), cpl (v)) is also present in H. e′ also crosses f . Since p− s < p, existence
of e′ contradicts our choice of e.

Case 2 (q < t < p < s < r): In this case, since g crosses e, by Lemma 6, we have that the
edge e′ = (v, ctl(v)) is also present in H. e′ also crosses f . Since t < p, existence of e′
contradicts our choice of e.

Case 3 (q < s < p < t < r): In this case, since g crosses e, by Lemma 6, we have that
the edge e′ = (v, ctl(v)) is present in H. e′ also crosses f and hence e′ was not present
in planar(H). Thus there will exists an edge in planar(H) which crosses e′ by Lemma
10. Let g′ = (cs′

l (v), ct′l (v)) be the edge in planar(H) that crosses e′ such that t′ − s′ is
maximum. We see that t′ < q and s′ > r, for otherwise, existence of g′ will contradict
the way g is chosen. Now, since the edges g and g′ both cross e and g′ is closer to v than
g, by Lemma 7, the edge e′′ = (cs′

l (v), ctl(v)) will also be present in H. e′′ will cross f .
Now, any edge present in planar(H) that crosses e′′ will contradict our choice of g or g′.

Case 4 (t < q < p < r < s): In this case, the edge e′ = (csl (v), cpl (v)) will also be present
in H. e′ will cross f and hence will not be present in planar(H). Any edge present in
planar(H) that also crosses e′ will contradict the way g is chosen.

In other cases, if g is picked such that one of its vertices is common with f , then e will
cross a shadow edge of f giving a contradiction. If g is picked such that g cross f , then it
contradicts the fact that both of them are present in Ĥ. J

Summarizing Lemmas 11 and 12 we have Theorem 14.

I Theorem 14. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G) with
h vertices. For any constant β > 0, there exists an Õ(h1/2+β/2) space and polynomial time
algorithm that takes H as input and outputs an h1−β-PseudoSeparator of size O(h1/2+β/2).

5 Algorithm to Solve Reachability in Auxiliary Graph

In this section, we discuss the grid graph reachability algorithm. Let G be a grid graph having
ñ vertices. By induction we assume that we have access to a vertex induced subgraph H of
Auxα(G), containing h vertices. Below we describe a recursive procedure AuxReach(H,x, y)
that outputs true if there is a path from x to y in H and outputs false otherwise.
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5.1 Description of the Algorithm AuxReach
First we construct a h1−β-PseudoSeparator C of H, using Theorem 14. We also ensure
that x and y are part of C (if not then we add them). Let I1, I2, . . . , Il be the connected
components of H � C.

We maintain an array called visited of size |C| to mark vertices or edges of the
PseudoSeparator C. Each cell of visited corresponds to a distinct vertex or edge of C.
For a vertex v in C, we set visited[v] := 1 if there is a path from x to v in H, else it is set to
0. For an edge e = (u, v) in C, we set visited[e] := u′ if (i) there is an edge f = (u′, v′) that
crosses e, (ii) there is a path from x to u′ in H and (iii) f is the closest such edge to u. Else
visited[e] is set to NULL. Initially, for all vertex v ∈ C, visited[v] := 0 and for all edges e ∈ C,
visited[e] := NULL. We say that a vertex v is marked if either visited[v] := 1 or visited[e] := v

for some edge e.
First set visited[x] := 1. We then perform an outer loop with h iteration and in each

iteration update certain entries of the array visited as follows. For every vertex v ∈ C, the
algorithm sets visited[v] := 1 if there is a path from a marked vertex to v such that the
internal vertices of that path all belong to only one component Ii. Similarly, for each edge
e = (u, v) of C, the algorithm sets visited[e] := u′ if (i) there exists an edge f = (u′, v′) which
crosses e, (ii) there is a path from a marked vertex to u′ such that the internal vertices
of that path all belong to only one component Ii and, (iii) f is the closest such edge to u.
Finally we output true if visited[y] = 1 else output false. We use the procedure AuxReach
recursively to check if there is a path between two vertices in a single connected component
of H � C. A formal description of AuxReach is given in Algorithm 1.

5.2 Proof of Correctness of AuxReach
Let P be a path from x to y in H. Suppose P passes through the components Iσ1 , Iσ2 , . . . , IσL

in this order. The length of this sequence can be at most |H|. As the path leaves the
component Iσj

and goes into Iσj+1 , it can do in the following two ways only:
i. The path exits Iσj

through a vertex w of PseudoSeparator as shown in Figure 2a. In
this case, Algorithm 1 would mark the vertex w.

ii. The path exits Iσj
through an edge (u, v) whose other endpoint is in Iσj+1 . By Lemma 7,

this edge will cross an edge e = (x′, y′) of the PseudoSeparator. In this case, Algorithm
1 would mark the vertex u′, such that there is an edge (u′, v′) that crosses e as well and
(u′, v′) is closer than (u, v) to x′ and there is a path in Iσj from a marked vertex to u′.
By Lemma 7, the edge (u′, v) would be present in H as well.

Thus after the j-th iteration, AuxReach would traverse the fragment of the path in the
component Iσj

and either mark its endpoint or a vertex which is closer to the edge e of C
which the path crosses. Finally, t would be marked after L iterations if and only if there is
a path from s to t in H. We give a formal proof of correctness in Lemma 15. For a path
P = (u1, u2, . . . ut), we define tail(P ) := u1 and head(P ) := ut.

I Lemma 15. Let G be a grid graph and H be a vertex induced subgraph of Auxα(G). Then
for any two vertices x, y in H, there is a path from x to y in H if and only if AuxReach(H,x, y)
returns true.

Proof. Firstly observe that a vertex is marked only if there is a path from some other marked
vertex to that vertex in H. Hence if there is no path from x to y then y is never marked by
AuxReach and hence AuxReach returns false.

Now let P be a path from x to y in H. We divide the path into subpaths P1, P2, . . . , Pl,
such that for each i, all vertices of Pi belong to U ∪ V (C) for some connected component U
in cc(H �C) and either (i) head(Pi) = tail(Pi+1), or (ii) ei = (head(Pi), tail(Pi+1)) is an edge
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Algorithm 1 AuxReach(H, s, t).

Input: A vertex induced subgraph H of Auxα(G) and two vertices x and y in H (let
G be an m×m grid graph and h = |V (H)|)

Output: true if there is a path from x to y in H and false otherwise
1 if h ≤ m1/8 then Use DFS to solve the problem; /* m is a global variable

where G is an m×m grid graph */
2 else
3 Compute a h1−β-PseudoSeparator C of H using Theorem 14;
4 C ← C ∪ {x, y};
5 foreach edge e in C do visited[e]← NULL;
6 foreach vertex v in C do visited[v]← 0;
7 visited[x]← 1;
8 for i = 1 to |H| do
9 foreach edge e = (u, v) ∈ C do

10 if ((∃ marked vertex w) · (∃U ∈ cc(H � C)) · (∃f = (u′, v′) such that f
crosses e and f is closest to u) · (AuxReach(H[U ∪ {w, u′}], w, u′) = true))
then

11 visited[e]← u′

12 end
13 end
14 foreach vertex v ∈ C do
15 if ((∃ marked vertex w) · (∃U ∈

cc(H � C)) · (AuxReach(H[U ∪ {w, v}], w, v) = true)) then
16 visited[v]← 1
17 end
18 end
19 end
20 if visited[y] = 1 then return true;
21 else return false;
22 end

that crosses some edge fi ∈ C. By Definition 8, we have that if condition (i) is true then
head(Pi) is a vertex in C, and if condition (ii) is true then head(Pi) and tail(Pi+1) belong to
two different components of cc(H � C) and ei is the edge between them.

We claim that after i-th iteration of loop in Line 8 of Algorithm 1, either of the following
two statements hold:
(I) head(Pi) is a vertex in C and visited[head(Pi)] = 1.
(II) There exists an edge fi = (ui, vi) of C such that the edge ei = (head(Pi), tail(Pi+1))

crosses fi and there is an edge gi = (u′i, v′i) which crosses fi as well, such that gi is
closer to ui than ei and visited[fi] = u′i.

We prove the claim by induction. The base case holds since x is marked at the beginning.
We assume that the claim is true after the (i− 1)-th iteration. We have that Pi belongs to
U ∪ V (C) for some connected component U in cc(H � C).
Case 1 (head(Pi−1) = tail(Pi) = w(say)): By induction hypothesis w was marked after

the (i − 1)-th iteration. If head(Pi) is a vertex in C then it will be marked after the
i-th iteration in Line 15. On the other hand if ei = (head(Pi), tail(Pi+1)) is an edge that
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crosses some edge fi = (ui, vi) ∈ C then in the i-th iteration in Line 10, the algorithm
marks a vertex u′i such that, gi = (u′i, v′i) is the closest edge to ui that crosses fi and
there is a path from w to u′i.

Case 2 (ei−1 = (head(Pi−1), tail(Pi)) is an edge that crosses some edge fi−1 =
(ui−1, vi−1) ∈ C): By induction hypothesis, there is an edge gi−1 = (u′i−1, v

′
i−1) which

crosses fi−1 as well, such that gi−1 is closer to ui−1 than ei−1 and visited[fi−1] = u′i−1.
By Lemma 7 there is an edge in H between u′i−1 and tail(Pi) as well. Now if head(Pi) is
a vertex in C then it will be marked after the i-th iteration in Line 15 by querying the
graph H[U ∪{u′i−1, head(Pi)}]. On the other hand if ei = (head(Pi), tail(Pi+1)) is an edge
that crosses some edge fi = (ui, vi) ∈ C then in the i-th iteration in Line 10, AuxReach
queries the graph H[U ∪ {u′i−1, u

′
i}] and marks a vertex u′i such that, gi = (u′i, v′i) is the

closest edge to ui that crosses fi and there is a path from u′i−1 to u′i. J

Our subroutine would solve reachability in a subgraph H (having size h) of Auxα(G).
We do not explicitly store a component of cc(H � C), since it might be too large. Instead,
we identify a component with the lowest indexed vertex present in it and use Reingold’s
algorithm on H � C to determine if a vertex is present in that component. We require
Õ(h1/2+β/2) space to compute a h1−β-PseudoSeparator by Theorem 14. We can potentially
mark all the vertices of the PseudoSeparator and for each edge of PseudoSeparator we mark
at most one additional vertex. Since the size of PseudoSeparator is at most O(h1/2+β/2), we
require Õ(h1/2+β/2) space. The algorithm recurses on a graph with h1−β vertices. Hence
the depth of the recursion is at most 3/(log(1− β)−1), which is a constant.

Since the graph H is given implicitly in our algorithm, there is an additional polynomial
overhead involved in obtaining its vertices and edges. However, the total time complexity
would remain a polynomial in the number of vertices since the recursion depth is constant.

I Lemma 16. Let G be an m×m grid graph and H be a vertex induced subgraph of Auxα(G)
with h vertices. For every β > 0, AuxReach runs in Õ(h̃1/2+β/2) space and polynomial time.

Proof. Since the size of a component U in cc(H �C) might be too large, we will not explicitly
store it. Instead we identify a component by the lowest index vertex present in it and use
Reingold’s algorithm on H � C to determine if a vertex is present in U . Let S(m,h) and
T (m,h) denote the space and time complexity functions respectively of AuxReach, where G
is an m×m grid graph and h is the number of vertices in the graph H. As noted earlier the
depth of the recursion is at most d := 3/(log(1− β)−1).

Consider S(m,h) for any h > m1/8. By Theorem 14, we require Õ(h1/2+β/2) space to
execute Line 3. We can potentially mark all the vertex of C and for each edge e of C we
store at most one additional vertex in visited[e]. Since the size of C is at most O(h1/2+β/2),
we require Õ(h1/2+β/2) space to store C. By induction, a call to AuxReach in line 10 and 15
requires S(m,h1−β) space which can be subsequently reused. Hence the space complexity
satisfies the following recurrence. Then,

S(m,h) =
{
S(m,h1−β) + Õ(h1/2+β/2) h > m1/8

Õ(h) otherwise.

Solving we get S(m,h) = Õ(h1/2+β/2 +m1/4).
Next we measure the time complexity of AuxReach. Consider the case when h > m1/8.

The total number of steps in AuxReach is some polynomial in h, say p. Moreover AuxReach
makes q calls to AuxReach, where q is some other polynomial in h. Hence q(h) ≤ p(h). Then,

T (m,h) =
{
q · T (h1−β) + p h > m1/8

O(h) otherwise.

Solving the above recurrence we get T (m,h) = O(p · qd +m1/4) = O(p2d +m1/4). J
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6 Solving Grid Graph

Let G be an m×m grid graph. As mentioned in the introduction, our objective is to run
Algorithm 1 on the graph Auxα(G). By definition of Auxα(G), for every pair of vertices x, y
in Auxα(G), there is a path from x to y in Auxα(G) if and only if there is a path from x to
y in G. Hence it is sufficient to work with the graph Auxα(G). However, we do not have
explicit access to the edges of Auxα(G). Note that we can obtain the edges of Auxα(G) by
solving the corresponding subgrid of G to which that edge belongs. If the subgrid is small
enough, then we use a standard linear space traversal algorithm. Otherwise, we use our
algorithm recursively on the subgrid. Algorithm 2 outlines this method.

Algorithm 2 GridReach(Ĝ, ŝ, t̂, m).

Input: A grid graph Ĝ and two vertices ŝ, t̂ of Ĝ and a positive integer m
Output: true if there is a path from s to t in G and false otherwise
if Ĝ is smaller than m1/8 ×m1/8 grid then

Use Depth-First Search to solve the problem;
end
else

Use ImplicitAuxReach(Auxα(G), ŝ, t̂) to solve the problem;
/* ImplicitAuxReach executes the same way as AuxReach except for the

case when it queries an edge (u, v) in a block B of Auxα(G). In
this case, the query is answered by calling GridReach(B, u, v,m)
where B is the subgrid in which edge (u, v) might belong. */

end

Consider an m̂ × m̂ grid graph Ĝ. Let S(m̂) be the space complexity and T (m̂) be
the time complexity of executing GridReach on Ĝ. Note that the size of Auxα(Ĝ) is at
most m̂1+α. For m̂ > m1/8, the space required to solve the grid-graph would be S(m̂) =
S(m̂1−α) + Õ((m̂1+α)1/2+β/2). This is because, a query whether (u, v) ∈ Ĝ would invoke a
recursion which would require S(m̂1−α) space and the main computation of ImplicitAuxReach
could be done using Õ((m̂1+α)1/2+β/2) space. Hence we get the following recurrence for
space complexity.

S(m̂) =
{
S(m̂1−α) + Õ((m̂1+α)1/2+β/2) m̂ > m1/8

Õ(m̂1/4) otherwise

Similar to the analysis of AuxReach, for appropriate polynomials p and q, the time complexity
would satisfy the following recurrence:

T (m̂) =
{
q(m̂) · T (m̂1−α) + p(m̂) m̂ > m1/8

O(m̂) otherwise.

Solving we get S(m) = Õ(m1/2+β/2+α/2+αβ/2) and T (m) = poly(m). For any constant ε > 0,
we can chose α and β such that S(m) = O(m1/2+ε).
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