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Abstract
We introduce the well structured problem as the question of whether a model (here a counter machine)
is well structured (here for the usual ordering on integers). We show that it is undecidable for most
of the (Presburger-defined) counter machines except for Affine VASS of dimension one. However,
the strong well structured problem is decidable for all Presburger counter machines. While Affine
VASS of dimension one are not, in general, well structured, we give an algorithm that computes
the set of predecessors of a configuration; as a consequence this allows to decide the well structured
problem for 1-Affine VASS.
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1 Introduction

Context. Well Structured Transition Systems (WSTS) [9, 8] are a well-known model to
solve termination, boundedness, control-state reachability and coverability problems. It is
well known that Petri nets and Vector Addition Systems with States (VASS) are WSTS and
that Minsky machines are not WSTS. But the characterization of counter machines which
are well structured (resp. with strong monotony) is surprisingly unknown. Moreover, given a
counter machine, can we decide whether it is well structured (resp. with strong monotony)?
These questions are relevant since a positive answer could allow to verify particular instances
of undecidable models like Minsky machines and counter machines. In this paper, we consider
Presburger counter machines (PCM) where each transition between two control-states is
labelled by a Presburger formula which describes how each counter is modified by the firing of
the transition. The PCM model includes Petri nets, Minsky machines and most of the counter
machine models studied in the literature, for example counter machines where transitions
between control-states are given by affine functions having Presburger domains [3, 11].

Affine VASS. In an Affine VASS (AVASS), transitions between control-states are labelled
by affine functions whose matrices have elements in Z (and not in N as usual). AVASS
extends VASS (where transitions are translations) and positive affine VASS (introduced as
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self-modified nets in [21] and studied as affine well structured nets in [13]. [4] extends the
Rackoff technique to AVASS where all matrices are larger than the identity matrix: for this
subclass, coverability and boundedness are shown in EXPSPACE. The variation of VASS
which may go below 0, called Z-VASS, is studied in [15] and for their extension, Z-Affine
VASS, reachability is shown NP-complete for VASS with resets, PSPACE-complete for VASS
with transfers and undecidable in general [2, 1]; let us remark that all Z-Affine VASS have
positive matrices.

Moreover AVASS allow the simulation of the zero-test so they are at least as expressive as
Minsky machines. But for dimension one, AVASS are more expressive than Minsky machines:
in fact, Post∗ is computable as a Presburger formula for 1-counter Minsky machines but this
is not the case for 1-AVASS which can generate the set of all the powers of 2 (this set is not
the solution of any Presburger formula).

The computation of the set Pre∗ of all predecessors of a configuration is effective for 2-
VASS (extended with one zero-test and resets) [12] as a Presburger formula and for pushdown
automata [5] as a regular language. But the computation of Pre∗ fails for 3-VASS and for
Pushdown VAS since Pre∗ is neither semilinear nor regular [19].

Our contributions. We introduce two new problems related to well structured systems and
Presburger counter machines. The so-called well structured problem: (1) given a PCM, is
it a WSTS? and the strong well structured problem: (2) given a PCM, is it a WSTS with
strong monotony?

We prove that the well structured problem is undecidable for PCM even if restricted
to dimension one (1-PCM) with just Presburger functions (i.e. piecewise affine functions);
undecidability is also verified for Affine VASS in dimension two (2-Affine VASS). The
undecidability proofs use the fact that Minsky machines can be simulated by both 1-PCM
and 2-Affine VASS. However, we prove the decidability of the well structured problem for
1-Affine VASS (which subsumes 1-Minsky machines). Since the strong monotony can be
expressed as a Presburger formula, the strong well structured problem is decidable for all
PCMs. These results are summarised below:

Well Structured Problem Strong Well Structured Problem
PCM U D
Functional 1-PCM U [Theorem 14] D
2-AVASS U D
2-Minsky machines U [Theorem 15] D
1-AVASS D [Theorem 26] D

We give an algorithm that computes Pre∗ of a 1-AVASS and this extends a similar known
result for 1-Minsky machines and 1-VASS (and for pushdown automata [5]). The computation
of Pre∗ allows us to give a simple proof that reachability and coverability are decidable for
1-AVASS (in fact reachability is known to be PSPACE-complete for polynomial one-register
machines [10] which contains 1-AVASS). Moreover, the computation of Pre∗ allows to decide
the well structured problem for 1-AVASS. These results are summarised below:

Reachability Coverability
1-PCM (functional ) U U [Corollary 19]
1-AVASS D [Corollary 24] D
d-totally positive AVASS D [Theorem 29] D
d-positive AVASS (d ≥ 2) U [Theorem 28] D [WSTS]
2-AVASS U U [Corollary 18]
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Outline. We introduce in Section 2 two models, well structured transition systems (WSTS)
and Presburger counter machines (PCM); we show that the property for an ordering to be
well is undecidable. Section 3 analyses the decidability of the well structured problems for
many classes of PCM and Affine VASS. Section 4 studies the decidability of reachability and
coverability for the classes studied in Section 3.

Due to space constraints, some proofs are deferred to an extended version of this paper
freely available online under the same title.

2 Counter machines and WSTS

A relation ≤ on a set E is a quasi ordering if it is reflexive and transitive; it is an ordering if
moreover ≤ is antisymetric. A quasi ordering ≤ on E is a well quasi ordering (wqo) if for all
infinite sequences of elements of E, (ei)i∈N, there exists two indices i < j such that ei ≤ ej .
For an ordered set (E,≤) and a subset X ⊆ E, the upward closure of X denoted by ↑X is
defined as follows: ↑X = {x | ∃y ∈ X such that y ≤ x}. X is said to be upward closed if
X = ↑X.

2.1 Arithmetic counter machines
A d-dim arithmetic counter machine (short, d-arithmetic counter machine or an arithmetic
counter machine) is a tuple M = (Q,Φ,→) where Q is a finite set of control-states, Φ
is a set of logical formulae with 2d free variables x1, ..., xd, x

′
1, ..., x

′
d and →⊆ Q × Φ × Q

is the transition relation between control-states. We can also without loss of generality
assume that → covers Φ, i.e. Φ does not have unnecessary formulae. A configuration of
M refers to an element of Q × Nd. The operational semantics of a d-arithmetic counter
machine M is a transition system SM = (Q × Nd,→) where →⊆ (Q × Nd) × (Q × Nd) is
the transition relation between configurations. For a transition (q, φ, q′) in M , we have a
transition (q;x1, ..., xd)→ (q′;x′1, ..., x′d) in SM iff φ(x1, ..., xd, x

′
1, ..., x

′
d) holds. Note that we

are slightly abusing notation by using the same → for both M and SM . We may omit Φ
from the definition of a counter machine if it is clear from context.

A d-dim arithmetic counter machineM with initial configuration c0 is defined by the tuple
M = (Q,Φ,→, c0) where (Q,Φ,→) is a d-arithmetic counter machine and c0 ∈ Q×Nd is the
initial configuration. An arithmetic counter machine is effective if the transition relation is
decidable (there is a decidable procedure to determine if there is a transition x→ y between
any two configurations x, y) and this is the case when it is given by an algorithm, a recursive
relation, or decidable first order formulae (for instance Presburger formulae). An arithmetic
counter machine is said to be functional if each formula in Φ that labels a transition in M
defines a partial function.

Most usual counter machines can be expressed with Presburger formulae. It is well known
that Presburger arithmetic with congruence relations without quantifiers is equivalent in
expressive power to standard Presburger arithmetic [14].

I Definition 1. A Presburger counter machine (PCM) is an arithmetic counter machine
M = (Q,Φ,→) such that Φ is a set of Presburger formulae with congruence relations without
quantifiers.

I Proposition 2 ([6]). The property for a d-dim PCM to be functional is decidable in NP.

FSTTCS 2019
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q1 q2

x′ = x− 13

x′ = 19− x

x′ = x− 3

x′ = x

Figure 1 The counter machine M1.

Minsky machines with d counters are d-PCM M = (Q,Φ,→) where Φ consists of either
translations with upwards closed guards, or formulae of the form ∧di=1(xi = x′i) ∧ xk = 0 for
varying k (zero-tests). Vector Addition Systems with States (VASS) are Minsky machines
without zero-tests. An Affine VASS with d counters (d-AVASS) is a d-PCM where each
transition is labelled by a formula equivalent to an affine function of the form f(x) = Ax+ b

where A ∈Md(Z) is a d× d matrix over Z and b ∈ Zd. The domain of such a function would
be the (Presburger) set of all x ∈ Nd such that Ax+ b ∈ Nd. For convenience, we will denote
d-AVASS transitions by a pair (A, b) ∈ Md(Z) × Zd. Note that AVASS is an extension of
VASS where transitions are not labelled by vectors but by affine functions (Ai, bi). Let us
define positive and totally-positive AVASS. A positive AVASS S is an AVASS such that every
matrix Ai of S is positive. This model has been studied for instance in [13]. A totally-positive
AVASS S is a positive AVASS such that every vector bi of S is positive. For totally positive
AVASS, an instance of the boundedness problem has been shown decidable in [13]. Note that
we say something is positive if it is greater than or equal to 0, not strictly greater than 0.

I Example 3. The machine M1 in Figure 1 is a 1-AVASS but it is not a 1-VASS because
there is a negative transition from q1 to q1.

I Proposition 4 ([6]). Checking whether a given PCM is a VASS, AVASS, positive AVASS
or a totally positive AVASS is decidable.

2.2 Well structured transition systems
A transition system is a tuple S = (X,→) where X is a (potentially infinite) set of con-
figurations and →⊆ X × X is the transition relation between configurations. We denote
by ∗−→ the reflexive and transitive closure of −→. For a subset S ⊆ X, we denote by
Pre(S) := {t | t→ s for some s ∈ S}, and Pre∗(S) := {t | t ∗−→ s for some s ∈ S}. Similarly
for Post(S) and Post∗(S).

An ordered transition system S = (X,→,≤) is a transition system (X,→) with a quasi-
ordering ≤ on X. Given two configurations x, y ∈ X, x is said to cover y if there exists
a configuration y′ ≥ y such that x ∗−→ y′. An ordered transition system S = (X,→,≤) is
monotone, if for all configurations s, t, s′ ∈ X such that s→ t, s′ ≥ s implies that s′ covers t.
S is strongly monotone if for all configurations s, t, s′ ∈ X such that s → t, s′ ≥ s implies
that there exists t′ ≥ t such that s′ → t′.

I Definition 5 ([8]). A well structured transition system (WSTS) is an ordered transition
system S = (X,→,≤) such that (X,≤) is a wqo and S is monotone.

The coverability problem is to determine, given two configurations s and t, whether there
exists a configuration t′ such that s ∗−→ t′ ≥ t (s covers t). This problem is one often studied
alongside well-structuredness.
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Let us consider the usual wqo ≤ on Q× Nd associated with a d-counter machine M =
(Q,→): (q1;x1, x2, ..., xd) ≤ (q2; y1, ..., yd) ⇐⇒ (q1 = q2) ∧ (∧di=1xi ≤ yi).

We say that an arithmetic counter machine M = (Q,Φ,→) is well structured (or is a
WSTS) iff its associated transition system SM is a WSTS under the usual ordering. Since the
usual ordering on (Q× Nd,≤) is a wqo, let us remark that the associated ordered transition
system SM = (Q× Nd,→,≤) is a WSTS iff SM is monotone.

Given a counter machine M = (Q,→), the control-state reachability problem is that given
a configuration (q;n1, ..., nd), and a control-state q′ whether there exist values of counters
(m1, ...,md) such that (q;n1, ..., nd)

∗−→ (q′;m1, ...,md). In this case, we often say that q′ is
reachable from (q;n1, ..., nd).

We introduce two new problems related to WSTS and Presburger counter machines.
The well structured problem: given a PCM, is it a WSTS?
The strong well structured problem: given a PCM, is it a WSTS with strong monotony?

I Example 6. The machine M1 (Figure 1) is not strongly monotone since we have:
(q1, 0) x′=19−x−−−−−−→ (q1, 19). However, we see that Post∗(q1, 10) = {(q1, 9), (q1, 10)}. There-
fore we can deduce that (q1, 10) cannot cover (q1, 19). Hence M1 is not well structured. We
give, in Section 4, an algorithm for deciding whether a 1-AVASS is well structured.

It is shown in [8] that almost every transition system can be turned into a WSTS for
the termination ordering which is not, in general, decidable. So the problem is not only to
decide whether a system is a WSTS in general; we have to choose a decidable ordering. We
show that deciding whether arbitrary (non-effective) transition systems are well-structured
for the usual (decidable) ordering on natural numbers is undecidable.

I Proposition 7. The well structured problem for 1-arithmetic counter machines is undecid-
able.

We now show that restricting to effective transition systems does not allow us to decide
the property of being a WSTS.

I Corollary 8. The well structured problem (for the usual ordering on N) for effective
transition systems whose set of configurations is included in N is undecidable.

Proof. There exists a reduction from the Halting Problem as follows:
Given a Turing machine M , we define a transition system SM = (N,→M ) as follows:

If (m = 0) ∨ (M does not halt in m steps), then, for all n, there is a transition m →M n.
Hence this transition relation →M is decidable. Now, if M does not halt, then there is a
transition m →M n for all m,n ∈ N. This satisfies monotony, hence in this case, SM is a
WSTS. However, if M halts in exactly m steps, then there is no transition from m+ 1 but
there is, in any case, a transition from 0 to n for all n. Hence in this case, SM is not a WSTS.
Therefore, SM is a WSTS iff T does not halt. J

2.3 Testing whether an ordering is well
In the previous results, the usual well ordering on natural numbers is not necessarily the
unique decidable ordering when considering the well structured problem for counter machines.
Let ≤ be a decidable quasi ordering relation on Nd. If we are interested in whether a counter
machine with this ordering is WSTS, it raises the natural question of whether we can decide if
≤ is a wqo. Unfortunately, but unsurprisingly, we first show that this property is undecidable
in dimension one (d = 1).

FSTTCS 2019
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I Proposition 9. The property for a decidable ordering on N to be a well ordering is
undecidable.

Let us study the case of Presburger-definable orderings in N. Among many equivalent
characterizations of wqo, we know that a quasi ordering is well iff it satisfies well-foundedness
and the finite anti-chain property. Both of these properties can be expressed using monadic
second order variables. But, it is shown in [17] that Presburger Arithmetic with a single
monadic variable becomes undecidable. Hence, this cannot directly be used to check if a
Presburger-definable ordering is a wqo. However, we still have the following result:

I Proposition 10. The property for a Presburger relation on N to be a well quasi ordering
is decidable.

3 The well structured problem for PCM

In the sequel, whenever we talk about PCM being WSTS, we will consider the usual ordering
on Q×Nd defined in subsection 2.2. We introduce a general technique to prove undecidability
of checking whether a counter machine of some class is a WSTS. Let S0 be the class of
machines we are interested in. We will show reduction from reachability in Minsky machines.

I Lemma 11. Suppose we have a procedure which takes a 2 counter Minsky machine with
initial state M = (Q,→, q0) and a control-state q1 as input and generates a machine N of
class S0 which satisfies the following two requirements:

All control-states in M are reachable implies N is a WSTS. (1)
N is a WSTS implies q1 is reachable in M from (q0; 0, 0). (2)

Then, the well structured problem for S0 is undecidable.

Proof. Suppose that the well structured problem for S0 is decidable. We will use the
above procedure to get an algorithm for Minsky machine reachability. Fix (M, q1), where
M = (Q,→M , q0). We want to check if q1 is reachable from (q0; 0, 0).

Let |Q| = n. Consider all 2n−2 subsets Q′ ⊆ Q satisfying that {q0, q1} ⊆ Q′. For each
such Q′, let →Q′ denote the restriction of →M to the set Q′ ×Q′. Hence, we can associate a
Minsky machine M ′ = (Q′,→Q′ , q0) to each such subset Q′. We call M ′ a sub-machine of
M corresponding to Q′.

Now, for each sub-machine M ′, we consider the machine N ′ of class S0, generated by the
given procedure from (M ′, q1). If there exists M ′ such that N ′ is a WSTS, then we have
that q1 is reachable in M ′ (by condition (2)), hence in M .

On the other hand, if q1 was reachable in M , then let Qreach ⊆ Q be the set of all
control-states of M which are reachable from (q0; 0, 0). Let its corresponding sub-machine
be M ′. Since all control-states of M ′ are reachable (by choice of Qreach), therefore the
corresponding N ′ will be a WSTS (by condition (1)).

Hence, q1 is reachable in M from (q0; 0, 0) iff there exists a subset Q′ ⊆ Q satisfying that
{q0, q1} ⊆ Q′ such that the corresponding sub-machine M ′ is a WSTS. Since there are only
2n−2 such subsets, we can check all of them to decide whether q1 is reachable in M .

Hence, we have given an algorithm to check reachability in Minsky machine. Therefore,
the well structured problem for S0 is undecidable. J

We will use Lemma 11 to prove that the well structured problem for functional 1-dim
PCMs is undecidable. To apply Lemma 11, we need to give an algorithm which takes a
Minsky machine M = (Q,→M , q0) and a control-state q1, and generates a functional 1-dim
PCM N1 satisfying conditions (1) and (2).
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Construction of a functional 1-dim PCM N1

Let (M, q0) be given. The procedure to generate a 1-dim PCM N1 is as follows:
Let vp(n) denote the largest power of p dividing n. For M = (Q,→M , q0), we define

the 1-PCM N1 = (Q,→N , (q0, 1)) with the same set Q of control-states. We will represent
the values of the two counters (m,n) by the one-counter values 2m3nc for any c such that
v2(c) = v3(c) = 0. Conversely, a configuration (q, n) of N1 will correspond to (q; v2(n), v3(n))
of M . Note that, we are allowing multiplication by constants c in N1 as long as v2(n) and
v3(n) remain unchanged.

Increment/decrement of counters corresponds to multiplication/division by 2 and 3 which
is Presburger expressible. Similarly, zero-test corresponds to checking divisibility by 2 and
3 which is again Presburger-expressible. So first, for each transition in →M , we add the
corresponding transition to →N .

Now, to get the suitable properties of conditions (1) and (2), we will add two more types
of transitions to →N . For each control-state q, we add a transition (q, x′1 = 6x1 + 1, q0)
to →N . We shall call it a “reset-transition” because v2(6x1 + 1) = v3(6x1 + 1) = 0, so
this transition corresponds to a counter-reset in M from anywhere regardless of our present
configuration. Note that such a transition would not change the reachability set in M . This
“reset-transition” is crucial in forcing well-structuredness in N . Also, we add a transition
(q0, (x1 = 0 ∧ x′1 = 0), q1) to →N to ensure condition (2). Since the configuration (q0, 0)
cannot be reached from the initial configuration (q0, 1) during any run of N1, this will also
not affect the reachability set of N1. Note that, all of our transitions are functional, hence
N1 is a functional 1-dim PCM.

Now, we show that the construction of N1 satisfies conditions (1) and (2).

I Lemma 12. The functional 1-dim PCM N1 satisfies condition (1).

Proof. Suppose that all control-states of M are reachable from (q0; 0, 0). Then we claim
that N1 will be a WSTS. Suppose there is a transition (q, n) →N (q′,m) and (q, n′) is
a configuration with (q, n′) ≥ (q, n). Hence we want to show existence of some path
(q, n′) ∗−→N (q′,m′) ≥ (q′,m).

Case 1: The transition (q, n)→N (q′,m) is a “reset-transition”. Hence q′ = q0 andm = 6n+1.
In this case, note that since n′ ≥ n, the transition (q, n′) →N (q0, 6n′ + 1) ≥ (q0,m)
satisfies the requirement.

Case 2: The transition (q, n) →N (q′,m) is not a “reset-transition”. In this case, m ≤ 3n
because the above transition corresponds, in M to an increment/decrement in c1 or
c2 or a zero-test. In each case, we can check that m ≤ 3n. Let there be a path
(q0; 0, 0) ∗−→M (q′;n1, n2) inM for some n1, n2. Such a path exists because all control-states
in M are reachable. Hence, we take the “reset-transition” (q, n′)→N (q0, 6n′ + 1) and
follow the corresponding path (q0, 6n′ + 1) ∗−→N (q′, 2n13n2(6n′ + 1)) ≥ (q′, 3n) ≥ (q′,m).
Hence we have again shown monotony to prove that N1 is a WSTS.

Hence we have shown that if all control-states ofM are reachable, thenN1 is monotone. J

I Lemma 13. The functional 1-dim PCM N1 satisfies condition (2).

Proof. Since there is a transition (q0, 0)→N (q1, 0), we deduce that if N1 is a WSTS, then
(q0, 1) ∗−→N (q1, n) for some n by monotony because (q0, 0) ≤ (q0, 1). Also note that since
N1 simulates M , hence reachability of q1 in N1 implies that q1 is reachable from (q0; 0, 0)
in M . J

FSTTCS 2019
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Since we have provided a construction of functional 1-dim PCM N1 satisfying conditions
(1) and (2), from Lemma 11 we have that:

I Theorem 14. The well structured problem for functional 1-dim PCMs is undecidable.

Similarly, we can use Lemma 11 to show this result for 2 counter Minsky machines. This
construction can be found in the extended version of this paper.

I Theorem 15. The well structured problem for 2-dim Minsky machines is undecidable.

Now, we make the observation that we can perform zero-tests using affine functions.
The basic idea is that a transition x′ = −x is only satisfied by a counter whose value
is 0. Increments/decrements can already be implemented in 2-AVASS since translations
are affine functions. A zero test on the first counter can be done by having a transition

labelled by
([
−1 0
0 1

]
,

[
0
0

])
, and similarly for second counter. Since we can implement

both increment/decrements and zero-tests with 2-AVASS, we can simulate 2-counter Minsky
machines with 2-AVASS. Note that we can extend this result to d-AVASS simulating d-counter
Minsky machines.

As a direct consequence of this and Theorem 15, we have that:

I Corollary 16. The well structured problem for 2-AVASS is undecidable.

However, if we consider strong monotony instead of monotony, the above undecidability
results can be turned into a decidability result. Strong monotony can be expressed in
Presburger arithmetic as follows:

∧
φ∈Φ

(∀x1...∀xd∀x′1...∀x′d∀y1...∀yd((
d∧
i=1

xi ≤ yi) ∧ φ(x1, ..., xd, x
′
1, ..., x

′
d)

=⇒ (∃y′1...∃y′d(
d∧
i=1

x′i ≤ y′i) ∧ φ(y1, ..., yd, y
′
1, ..., y

′
d))))

Since Presburger arithmetic is decidable, the strong well structured problem for d-PCM
is decidable.

I Remark 17. The validity of the formula of strong monotony can also be decided for extended
PCM defined in decidable extensions of Presburger Arithmetic.

4 Decidability results for 1-AVASS

Now, let us look at some reachability and coverability results for the various models of AVASS.
First, we can simulate 2-counter Minsky machines with 2-AVASS. Since coverability and
reachability are undecidable for 2-counter Minsky machines, we directly have the following
result:

I Corollary 18. Control-state reachability, hence coverability is undecidable for 2-AVASS.

Similarly, we showed in Construction of functional 1-PCM N1 that we can also simulate
2-counter Minsky machines with functional 1-PCM. Hence, we also have the following:

I Corollary 19. Control-state reachability, hence coverability is undecidable for functional
1-PCM.
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Now, let us examine the case of 1-AVASS. For 1-AVASS, reachability and consequently
coverability is decidable from work done in [10]. We show that checking whether it is a
WSTS is also decidable. Moreover, we give a simpler proof of decidability of reachability and
coverability.

Given M = (Q,→) a 1-AVASS and a final configuration (qf , nf ) that we want to check
reachability for, we present Algorithm 1 which computes Pre∗(qf , nf ) as a Presburger formula.
A transition (q, x′ = ax+ b, q′) is positive if a ≥ 0. Let a cycle/path in M be called positive
if all transitions are positive. A cycle (q1, ..., qk, q1) is called a simple cycle if q1, ..., qk are all
pairwise distinct.

Let us denote by Preq the set Pre∗(qf , nf ) ∩ ({q} × N). For a transition t = (q, x′ =
ax+ b, q′) and a given subset of X ⊆ N, let Pret(X) denote {n : an+ b ∈ X}. For a simple
cycle c rooted at q with an effective guard and transition, extend the above notation Preci(X)
for i repetitions of the cycle. Then, let Prec∗(X) := ∪i∈NPrec

i(X). We will conveniently
replace X by a formula which denotes a subset of N.

Algorithm 1 Algorithm for computing P re∗(qf , nf ) in 1-AVASS.

1: procedure computePre*
2: for all q ∈ Q do
3: φq ≡ ⊥
4: φqf

≡ (n = nf )
5: for all q ∈ Q do
6: for all simple cycles c rooted at q do
7: c.transition = simplifyTransition(c)
8: c.guard = computeGuard(c)
9: notFinished = True

10: while notFinished do
11: notFinished = False
12: for all q ∈ Q do
13: φ′ = φq
14: for all transitions t = (q, x′ = ax+ b, q′) ∈→ do
15: ExploreTransition(t)
16: for all simple cycles c containing q do
17: ExploreCycle(c)
18: if φ′ 6= φq then . Check equality as Presburger formulae
19: notFinished = True

The algorithm will keep a variable φq for each control-state q ∈ Q which will store a
Presburger formula (with one free variable n) denoting the currently discovered subset of
Preq. Let this be denoted by JφqK, i.e. JφqK := {n : φq(n)}. For uniformity, we can assume
that φq is a disjunction of formulae of form range ∧mod where range ≡ (r ≤ n ≤ s) (s
possibly ∞) and mod ≡ (n =dq

d).
We initially simplify each simple cycle into a meta-transition which is the composition of

all individual transitions in the cycle. We will also compute the guard of a cycle. Since each
positive transition has an upward closed guard and each negative transition has a downward
closed guard, the guard of a cycle will be of the form r ≤ n ≤ s for some r, s ∈ N (s possibly
∞). Hence, we will only consider a cycle in terms of its guard and its meta-transition.

FSTTCS 2019



41:10 The Well Structured Problem for Presburger Counter Machines

We use two main procedures in computePre*:
1. ExploreTransition: Given a transition t = (q, x′ = ax+ b, q′), it computes Pret(φq′)

and appends it to φq.
2. ExploreCycle: Given a simple cycle c rooted at q, it computes Prec∗(φq) and appends

it to φq.

I Lemma 20. For any transition t, and any simple cycle c, given φq, Pret(φq) and Prec
∗(φq)

are both Presburger expressible and effectively computable.

With this lemma the algorithm is well-defined. Now let us prove the termination and the
correctness of the algorithm.

I Proposition 21. Algorithm computePre* terminates.

Proof. For each q, we will show that Preq can be obtained in finitely many iterations of the
algorithm. Let q ∈ Q be arbitrary.

Case 1: Preq is finite:
Each value will be discovered in finitely many iterations, hence Preq will be obtained in
finitely many iterations.

Case 2: Preq is infinite:
Since we are talking about reaching (qf , nf ), we note that the only transitions which can
decrease arbitrarily large values are transitions of the form x′ = b or x′ = x− a, a > 0.
Hence, since Preq has arbitrarily large values, and each run has to reach nf (i.e. has to
be decreased), we can see that there must either be a transition x′ = b, or a positive cycle
with meta-transition x′ = x− a, reachable from q through a positive path.
Case 2.i: There is a transition x′ = b:

In this case, there exists N such that for all n ≥ N , the same path suffices. In this
case, once the aforementioned path is discovered, {n : n ≥ N} becomes a subset of
JφqK ⊆ Preq, which leaves finitely many values in Preq \ JφqK, which can again be
discovered by finitely many additional runs.

Case 2.ii: There are positive cycles with meta-transition x′ = x− a:
The idea is that we will cover Preq when we compute Prec∗ for such a cycle c. This is
because for such a cycle, all that matters is the value of the counter modulo a. Since
there are only finitely many distinct values modulo a, these will again be discovered
in finitely many runs. Hence, each cycle will be discovered in finitely many runs.
Therefore since there are finitely many simple cycles, the corresponding values of Preq
will also be discovered in finitely many runs.

Hence, for all q, in finitely many runs we will get Preq = JφqK. At such a point, the
algorithm has to stop, hence termination is guaranteed. J

I Theorem 22 (Correctness). Given a 1-AVASS M = (Q,→) and a configuration (q, n), the
algorithm computePre* computes Pre∗(q, n) as a Presburger formula.

Proof. We will show that Algorithm 1 upon termination will always have JφqK = Preq.
That JφqK ⊆ Preq should be clear. Suppose the algorithm terminates with JφqK ( Preq

for some q ∈ Q. For some value n ∈ Preq \ JφqK, consider a path which covers (q2, n2), say
the path is (q, n)→ (p1, n1)→ ...→ (pm, nm)→ (q2, n

′). In such a path, consider the largest
i, such that ni /∈ Jφpi

K. Now, in the last iteration of the algorithm, since ni+1 ∈ Jφpi+1K (by
choice of i), hence, we will explore the edge to include ni ∈ JφpiK. Hence, the algorithm would
not have terminated. Contradiction. Hence, when the algorithm terminates, JφqK = Preq. J
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I Example 23. Let us consider machine M1 in Figure 1. Suppose we want to compute
Pre∗(q1, 19). We begin with φq1 ≡ (n = 19), φq2 ≡ ⊥. If we apply ExploreTransition to
the transition (q2, (x′ = x), q1), we will get φq2 ≡ (n = 19). If we now apply ExploreCycle
to the cycle (q2, x

′ = x− 3, q2), we will get φq2 ≡ (n ≥ 19∧ n =3 1). Continuing like this, we
end up with φq1 ≡ (n ∈ {0, 3, 6, 19}∨(n ≥ 13∧n =3 1)∨(n ≥ 32∧n =3 2)∨(n ≥ 45∧n =3 0))
and φq2 ≡ (n ≥ 0 ∧ n =3 0) ∨ (n ≥ 19 ∧ n =3 1) ∨ (n ≥ 32 ∧ n =3 2). This is Pre∗(q1, 19).

I Corollary 24 ([10]). Reachability (hence coverability and control-state reachability) for
1-AVASS is decidable.

I Remark 25. Algorithm 1 also works if we extend the model of 1-AVASS with Presburger
guards at each transition. Hence, reachability, coverability and the well-structured problem
are all decidable for this model as well.

It could be useful to determine whether an 1-AVASS is a WSTS (with strict monotony)
because if it is the case, it will allow to decide other problems like the boundedness problem
that is not immediately a consequence of the computability of Pre∗(↑(q, n)). Since we can
compute Pre∗(q, n), we can also compute Pre∗(↑(q, n)) by the same technique as in Corollary
24 This can be used to determine whether a given 1-AVASS is a WSTS as follows.

I Theorem 26. The well structured problem is decidable for 1-AVASS.

Proof. First we show that M is a WSTS, iff for all negative transitions (q1, (x′ = ax+ b), q2),
the set {q1}×N is a subset of Pre∗(↑(q2, b)). For any negative transition (q1, (x′ = ax+b), q2),
we have (q1, 0)→ (q2, b). If M is a WSTS, by monotony, for any n ≥ 0, there exists a path
(q1, n) ∗−→ (q2, b

′) ≥ (q2, b) because (q1, n) ≥ (q1, 0). This implies that {q1} × N is a subset of
Pre∗(↑(q2, b)).

In the other direction, let there be a transition (q1, n)→ (q2, an+ b) and (q1, n
′) ≥ (q1, n).

If the transition is positive, i.e. a ≥ 0, then we directly have the transition (q1, n
′) →

(q2, an
′+b) ≥ (q2, an+b). If the transition is negative, then we have that (q2, an+b) ≤ (q2, b).

Since (q1, n
′) ∈ Pre∗(↑(q2, b)) (by hypothesis, since it is a negative transition), hence we

have that (q1, n
′) ∗−→ (q2, b

′) ≥ (q2, b) ≥ (q2, an+ b). Hence, M is monotone. Therefore, M is
a WSTS iff for all negative transitions (q1, (x′ = ax+ b), q2), the set {q1} × N is a subset of
Pre∗(↑(q2, b)).

Now, since Pre∗(↑(q, n)) is computable, we can check that for each negative transition
(q1, (x′ = ax+ b), q2), the set {q1} ×N is a subset of Pre∗(↑(q2, n)) to determine whether M
is a WSTS or not. J

I Example 27. Let us consider machine M1 in Figure 1 and its negative transition (q1, x
′ =

19 − x, q1). We observe that the set Pre∗(↑(q1, 19)) = {q1, q2} × {n : n ≥ 19} does not
contain {q1} × N, hence machine M1 is not a WSTS. However, in this example (Figure 1), if
we replace the transition (q1, (x′ = x − 13), q2) by (q1, (x′ = x + 1), q2), we will get a new
machine M2 which is still not a 1-VASS, but it is a WSTS.

Let us focus our attention to positive AVASS now. We know that for positive 1-AVASS
reachability is decidable from Corollary 24. We show that reachability is undecidable for
positive 2-AVASS by reduction from Post’s Correspondence Problem (PCP) [16]. Our result
completes the view about decidability of reachability for VASS extensions in small dimensions.
As a matter of fact, reachability is undecidable for VASS with two resets in dimension 3
(to adapt the proof in [7]), hence for positive 3-AVASS but it is decidable for VASS with
two resets in dimension 2 [12]. If we replace resets by affine functions, reachability becomes
undecidable in dimension two.
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q0 q1 q2

(
~I,

[
−1
−1

])
(~I,~0)

(
~0,
[
1
1

])
([

2|a1| 0
0 2|b1|

]
,

[
(a1)2
(b1)2

])([
2|a2| 0

0 2|b2|

]
,

[
(a2)2
(b2)2

])

([
2|a3| 0

0 2|b3|

]
,

[
(a3)2
(b3)2

]) ([
2|ak| 0

0 2|bk|

]
,

[
(ak)2
(bk)2

])...

Figure 2 Construction for undecidability of reachability for positive 2-AVASS by reduction from
PCP.

Reichert gives in [20] a reduction from the Post correspondence problem to reachability
in a subclass of 2-AVASS and we may remark that his proof is still valid for positive 2-
AVASS. Blondin, Haase and Mazowiecki made some similar observations [1] for subclasses of
3− Z-AVASS, with positive matrices. Our proof is essentially the same as [20].

I Theorem 28. Reachability is undecidable for positive 2-AVASS.

Proof. Suppose we are given an instance of PCP, i.e. we are given a1, ..., ak, b1, ..., bk ∈ {0, 1}∗
for some k ∈ N. We want to check if there exists some sequence of numbers n1, ..., n` ∈
{1, ..., k} such that an1 ...an`

= bn1 ...bn`
(concatenated as strings).

We will construct the positive 2-AVASS as demonstrated in Figure 2, where |ai| refers
to the length of the string, and (ai)2 refers to the number encoded by the string ai if read
in binary (most significant digit to the left). The idea is that we use the two counters to
store the value of (an1 ...an`

)2 and (bn1 ...bn`
)2 for any n1, ..., n`. But we first increment each

counter to keep track of leading zeroes. Now, the configuration (q2; 0, 0) is reachable from
(q0; 0, 0) in the positive 2-AVASS described in Figure 2 iff the given PCP has an affirmative
answer. Hence, checking reachability in positive d-AVASS is undecidable for d ≥ 2. J

Also, we note that positive-AVASS are well-structured with strong monotony. Hence
coverability is decidable [13]. If we look at totally-positive AVASS, we can see that coverability
is already decidable by the same argument. However, reachability is also decidable.

I Theorem 29. Reachability is decidable in totally-positive AVASS for any dimension.

Proof. Let M = (Q,→) be a totally-positive d-AVASS. Given (q0;n1, ..., nd), suppose we
want to check reachability of (qf ;m1, ...,md). Let N = max{m1, ...,md}. Let fN : N →
{1, ..., N, ω} be the function which is identity on {1, ..., N} and maps {N+1, ...} to ω. Extend
this function to the set Nd component-wise. Since M is totally-positive, we can restrict our
search space from Q × Nd to Q × {0, ..., N, ω}d by applying fN to each configuration and
using the following arithmetic rules: 0.ω = 0, and for all k ≥ 1, k.ω = ω and ω + k = ω.

We claim that if (qf ;m1, ...,md) is reachable, then it is reachable in this restricted
search-space. This follows from the fact that given any element (n1, ..., nd) of Nd, and a
totally positive transition t = (A, b), we will have that t(fN (n1, ..., nd)) = fN (t(n1, ..., nd))
(t acts on fN (n1, ..., nd) to give an element in {0, ..., N, ω}d). This is because a totally
positive transition cannot decrease a value other than by multiplying it by 0, hence any
value greater than N will continue to be greater than N . Also note that, by choice of N ,
fN (m1, ...,md) = (m1, ...,md).

Once we have this, we can make an induction on the length of the path to see that if
(qf ;m1, ...,md) is reachable, it is reachable in the restricted search-space Q× {0, ..., N}d.

Since Q× {0, ..., N, ω}d is finite, this shows decidability of reachability. J



A. Finkel and E. Gupta 41:13

Coverability undecidable
Coverability decidable
Reachability decidable

Pre* computable

WSTS

Totally positive d-AVASS 1-AVASS

1-Minsky machines

VASS

Positive d-AVASS

2-Minsky machines
d-AVASS (d ≥ 2)

Figure 3 Showing reachability and coverability results for various AVASS models.

5 Conclusion and perspective

We introduced two variants of the well structured problem for PCM and we solve it for
many classes of PCMs. Moreover, we answer the decidability questions for reachability and
coverability for classes of PCMs and AVASSs (we summarise the results of Section 4 in
Figure 3).

Many open problems can be attacked like the complexity of reachability for 1-AVASS
(reachability is NP for 1-VASS and PSPACE for polynomial VASS), the size of Pre∗ of a
1-AVASS (and its relation with the theory of flattable VASS [18]), and the decidability of
the property for a Presburger relation on Nd to be a well-quasi ordering for d ≥ 2.

We also open the way to study the decidability of the well structured problems (for
various orderings) for many other models like pushdown counter machines, FIFO automata,
Petri nets extensions. For instance, we wish to solve the well structured problems for FIFO
automata. We know that lossy FIFO automata are well structured (for the subword ordering)
but what is the class of perfect FIFO automata which is well structured (for the prefix
ordering)?
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