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Abstract
In this paper, we investigate properties of cutting plane based refutations for a class of integer
programs called Horn constraint systems (HCS). Briefly, a system of linear inequalities A · x ≥ b is
called a Horn constraint system, if each entry in A belongs to the set {0, 1,−1} and furthermore
there is at most one positive entry per row. Our focus is on deriving refutations i.e., proofs of
unsatisfiability of such programs using cutting planes as a proof system. We also look at several
properties of these refutations. Horn constraint systems can be considered as a more general form of
propositional Horn formulas, i.e., CNF formulas with at most one positive literal per clause. Cutting
plane calculus (CP) is a well-known calculus for deciding the unsatisfiability of propositional CNF
formulas and integer programs. Usually, CP consists of a pair of inference rules. These are called
the addition rule (ADD) and the division rule (DIV). In this paper, we show that cutting plane
calculus is still complete for Horn constraints when every intermediate constraint is required to be
Horn. We also investigate the lengths of cutting plane proofs for Horn constraint systems.
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1 Introduction

This paper is concerned with the length of tree-like and Dag-like cutting plane refutations
of Horn constraint systems (HCSs). HCSs are a type of polyhedral constraint system in
which, each constraint is of the form a · x ≥ b, coefficients are limited to the set {0, 1,−1},
and each constraint has at most one variable with positive coefficient. HCSs find important
applications in several problem domains [6].

A refutation of a system of constraints is a certificate that proves the infeasibility of that
system. Associated with the concept of certificates is the concept of certifying algorithms.
A certifying algorithm is any algorithm that, instead of simply returning yes or no to a
feasibility query, provides a proof (certificate) that the returned response is correct [23].
Certifying algorithms for many combinatorial optimization problems have been studied in the
literature. This is especially true for certifying algorithms that utilize properties of graphical
structures [10,17,21].
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43:2 New Results on Cutting Plane Proofs for Horn Constraint Systems

Certifying algorithms rely on the presence of short certificates, both positive and negative.
In case of Horn constraint systems, a satisfying assignment serves as a positive certificate
and it is clearly succinct. In this paper, we focus on negative certificates or refutations of
Horn constraint systems; in particular, we focus on cutting plane based refutations. Our
primary interest is the length of the refutations. This helps identify what restrictions can
be placed on cutting plane refutations of HCSs, while still guaranteeing the existence of
short refutations. In particular, we focus on the length of both tree-like refutations and
Dag-like refutations. We also investigate how the length of refutations changes when different
inference rules are used. In this paper, we use two well-known inference rules known as
the ADD rule and DIV rule [5] (see Section 2). Additionally we study the complexity of
finding read-once refutations of Horn constraint systems when we allow for constraints to be
multiplied by bounded coefficients.

The principal contributions of this paper are as follows:
1. Cutting plane tree-like refutations using only the ADD rule do not p-simulate cutting plane

tree-like refutations using both the ADD rule and DIV rule for HCSs (see Theorem 9).
2. There exist HCSs for which Tree-like refutations using the ADD and DIV rules must be

exponential in the size of the input HCS (see Theorem 10).
3. Dag-like refutations using the ADD and DIV rules are polynomial in the size of the input

HCS (see Theorem 11).
4. Finding read-once refutations of HCSs is NP-hard even when we allow for constraints

to be multiplied by coefficients bounded by a fixed constant (see Theorem 17).

Additionally, we derive interesting corollaries from the above results.
The rest of this paper is organized as follows: In Section 2, we introduce the problems

being studied. Section 3 provides motivation for studying this problem and describe the
related work in the literature. Our results for tree-like refutations are presented in Section 4.
In Section 5, we give our results for Dag-like refutations. We examine read-once refutations
with restricted multiplication in Section 6. We conclude in Section 7 by summarizing our
contributions, and outlining avenues for future research.

2 Statement of Problems

In this section, we define the problems under consideration.

I Definition 1. A system of constraints A · x ≥ b is said to be a Horn Constraint system
(HCS) or a Horn polyhedron if

1. The entries in A belong to the set {0, 1,−1}.
2. Each row of A contains at most one positive entry.
3. x is a real valued vector.
4. b is an integral vector.

In a constraint a · x ≥ b1, b1 is called the defining constant and in the constraint system
A · x ≥ b, b is referred to as the defining constant vector. The assumption that b is integral
is necessary to maintain the soundness of the proof systems discussed in this paper.

We are interested in certificates of infeasibility; in particular, we are interested in cutting
plane based refutations. In linear programs (systems of linear inequalities), we use the
following rule:
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ADD :
∑n

i=1 ai · xi ≥ b1
∑n

i=1 a′i · xi ≥ b2∑n
i=1(ai + a′i) · xi ≥ b1 + b2

(1)

We refer to Rule (1) as the ADD rule. This rule plays the same role as resolution in
clausal formulas. It is easy to see that Rule (1) is sound in that any assignment satisfying
the hypotheses must satisfy the consequent. Furthermore, the rule is complete in that if
the original system is linear infeasible, then repeated application of Rule (1) will result in a
contradiction of the form: 0 ≥ b, b > 0. The completeness of the ADD rule was established
by Farkas [11], in a lemma that is famously known as Farkas’ Lemma for systems of linear
inequalities [27].

Farkas’ lemma along with the fact that linear programs must have basic feasible solutions
establishes that the linear programming problem is in the complexity class NP ∩ coNP.
Farkas’ lemma is one of several lemmata that consider pairs of linear systems in which exactly
one element of the pair is feasible. These lemmas are collectively referred to as “Theorems of
the Alternative” [25].

I Definition 2. A linear refutation is a sequence of applications of the ADD rule that results
in a contradiction of the form 0 ≥ b, b ≥ 1.

In general, applying the ADD rule to an infeasible system A · x ≥ b, could result in a
contradiction of the form 0 ≥ b, b > 0. However, in case of Horn systems (with integral
defining constants), we must have b ≥ 1 (see [6]).

When studying integer feasibility, we typically use an additional rule. This is referred to
as the DIV rule and is described as follows:

DIV :
∑n

i=1 aij · xi ≥ bj d ∈ Z+ : aij

d ∈ Z, i = 1 . . . n∑n
i=1

aij

d · xi ≥
⌈

bj

d

⌉ (2)

Rule (2) corresponds to dividing a constraint by a common divisor d of the left-hand
coefficients and then rounding the right-hand side. Since each aij

d is an integer this inference
preserves integer solutions but does necessarily preserve linear solutions. However, for systems
of Horn constraints the DIV rule preserves linear feasibility, since in Horn polyhedra, linear
feasibility implies integer feasibility [6].

I Definition 3. An integer refutation is a sequence of applications of the ADD and DIV
rules that results in a contradiction of the form 0 ≥ b, b ≥ 1.

Note that for systems of Horn constraints, an integer refutation still proves linear
infeasibility.

We now formally define the types of refutations discussed in this paper.

I Definition 4. A Dag-like refutation is a refutation in which each constraint, can be used
any number of times. This applies to constraints present in the original system and those
derived as a result of previous applications of the inference rules.

I Definition 5. A tree-like refutation is a refutation in which each derived constraint, can
be used at most once. However, if a derived constraint needs to be reused, then it can be
re-derived.

I Definition 6. A read-once refutation is a refutation in which each constraint can be used
at most once. This applies to constraints present in the original system and those derived as
a result of previous applications of the inference rules.
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43:4 New Results on Cutting Plane Proofs for Horn Constraint Systems

For both tree-like and Dag-like refutations, we are interested in the length of the refutation.
We measure the length of a refutation in terms of the number of inferences.

I Definition 7. The length of a refutation is the number of inferences (either the ADD rule
or the DIV rule) in the refutation.

We use |S| to denote the length of proof S. Using this definition of length, we can now
define the concept of p-simulation.

I Definition 8. Let S and S′ be two proof systems. S p-simulates S′ over a set of formulas
F , if there exists a polynomial p(n) such that for every formula f in F , there exists a proof
Sf of f under proof system S such that |Sf | ≤ p(|S′f |) where S′f is the shortest proof of f

under proof system S′.

This paper examines both tree-like refutations and Dag-like refutations using only the
ADD rule as well as these types of refutations using both the ADD and DIV rules.

3 Motivation and Related Work

Horn constraint systems generalize difference constraint systems. Recall that a difference
constraint is a relationship of the form: xi− xj ≥ bij . A conjunction of difference constraints
is called a Difference constraint system (DCS). It is well-known that a DCS is feasible if and
only if it has an integral solution (as long as the vector of defining constants is integral).
This is because the constraint matrix A of a DCS is Totally unimodular (TU) [27]. If A is
TU and b is integral, then all the extreme points of the polyhedron A · x ≥ b are integral.
Horn constraint matrices are not TU ; however, it is known that if A · x ≥ b is feasible, then
it has a minimal element, which is integral [32]. Horn constraint systems have been used as
domains in abstract interpretation [2, 9]. Horn systems also find applications in declarative
programming [16, 22]. The applications of Horn constraints to program verification has
been discussed extensively in [3, 20]. Recently, Horn clauses have been utilized to solve the
satisfiability problem for general CNF systems through MAXSAT resolution [4].

This paper is concerned with negative certificates. Assume that we are given a linear
constraint system P : A · x ≥ b (not necessarily Horn). Any satisfying assignment to the
system serves as a positive certificate which asserts the feasibility of P. In order to certify
the infeasibility of a linear system, we typically resort to Farkas’ lemma [11]. As per Farkas’
lemma, it suffices to provide a non-negative m-vector y, such that y ·A = 0, y · b < 0. This
vector y is called the Farkas witness of the infeasibility of P.

It is important to note that the absence of a Farkas witness guarantees linear feasibility
but not integer feasibility. For establishing integer infeasibility, additional inference rules are
required. One such inference system is the cutting plane calculus introduced by Gomory [12].
Gomory proposed cutting planes mainly as an algorithmic approach to solve integer programs
and was less concerned with proofs and proof lengths. One of the first papers to use cutting
planes as a propositional proof system is [8]. The connection between resolution and cutting
planes is explored in [14]. In [13], it is shown that there exist tautologies (the pigeonhole
principle) for which the number of resolution steps must be exponential in the size of the
input. Exponential lower bounds for cutting plane proofs are detailed in [5] and [26]. It is
unlikely that succinct certificates of infeasibility exist for integer programming, since this
would mean that integer programming lies in the complexity class NP ∩ coNP.

In this paper, we focus on deriving bounds on the lengths of cutting plane proofs in
restricted cutting plane systems. It is to be noted that placing restrictions on the type or
number of inferences that can be applied could cause the proof system to become incomplete.
There are several reasons to consider restricted proof systems, viz.
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1. Restricted proofs tend to be “short” (polynomial in the size of the input). For instance,
read-once refutations are at most linear in the size of the input. Read-once and literal-once
refutations have been discussed extensively for boolean formulas in [15] and [31]. This
is in stark contrast to general resolution. In general resolution a refutation could have
exponentially many steps [13].

2. In certain cases, the presence of restricted proofs can be determined in polynomial time.
For instance, we have shown that the problem of read-once refutations is in P for difference
constraints [29] and Unit Two Variable Per Inequality (UTPVI) constraints [30].

In recent work, we showed that the problem of finding read-once refutations under the
ADD and DIV rules in Horn constraint systems is NP-hard [19]. In this paper, we extend
these results by studying the lengths of tree-like and Dag-like refutations under the ADD
and DIV rules. We also examine read-once refutations when we allow for limited use of
multiplication.

4 Tree-like Refutations

In this section, we examine the length of tree-like refutations for HCSs.
First, we compare tree-like proofs using only the ADD rule to tree-like proofs using both

the ADD and DIV rules.

I Theorem 9. Tree-like proofs using only the ADD rule do not p-simulate tree-like proofs
using both the ADD rule and DIV rule for HCSs.

Proof. Consider the following HCS:

−x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
(3)

We will show that any tree-like refutation of System 3 that uses only the ADD rule has at
least (2n − 1) inferences. This will be done by induction on the number of variables. Let Hn

be System 3.
If n = 1, then H1 consists of the constraints −x1 ≥ 1 and x1 ≥ 0. This system has the

following refutations using only the ADD rule:
1. Apply the ADD rule to −x1 ≥ 1 and x1 ≥ 0 to get 0 ≥ 1.
This is a contradiction. Thus, System H1 has a refutation with 1 = 21 − 1 inference. Note
that this is the shortest refutation of System H1, thus any refutation of this system must
use at least 1 inference as desired.

Now assume that when n = k any refutation System Hk uses at least (2k − 1) inferences.
Let us look at System Hk+1. Without the constraint xk+1 ≥ 0, System Hk+1 can be satisfied
by setting x = (0, 0, 0, . . . , 0,−1). Thus, any refutation of System Hk+1 must use xk+1 ≥ 0.

Let Rk+1 be a refutation of Hk+1. Since the addition of constraints is associative we can
assume without loss of generality that Rk+1 consists of the following:
1. A derivation of a constraint of the form −c · xk+1 ≥ 1 for some constant c from System

Hk+1 \ {xk+1 ≥ 0}.
2. An additional c applications of the ADD rule (using the constraint xk+1 ≥ 0) to derive

the the constraint 0 ≥ 1.

Note that System Hk+1 \ {xk+1 ≥ 0} can be constructed from System Hk by adding
−xk+1 to every constraint. This means that any tree-like derivation of −c · xk+1 ≥ 1 for
some constant c from System Hk+1 \ {xk+1 ≥ 0} corresponds to a refutation of System Hk.

FSTTCS 2019
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Thus, by the inductive hypothesis, this derivation must use at least (2k − 1) inferences. Since
every constraint in Hk+1 \ {xk+1 ≥ 0} has a −xk+1 term, we must have that c ≥ 2k in the
resultant constraint.

Thus, to derive the constraint 0 ≥ 1 an additional c ≥ 2k inferences of the form “ADD
−c ·xk+1 ≥ 1 and xk+1 ≥ 0 to get −(c− 1) ·xk+1 ≥ 1” are needed. Since we desire a tree-like
refutation, we cannot shorten this refutation by reusing already derived constraints. Thus,
any refutation of System Hk+1 needs to use a total of 2k + 2k − 1 = 2k+1 − 1 inferences.

However, System 3 has the following tree-like refutation using both the ADD and DIV
rules:
1. Apply the ADD rule to −x1 − x2 − x3 − . . .− xn ≥ 1 and x1 − x2 − x3 − . . .− xn ≥ 0 to

get
−2 · x2 − 2 · x3 − . . .− 2 · xn ≥ 1.

2. Apply the DIV rule with d = 2 to−2·x2−2·x3−. . .−2·xn ≥ 1 to get−x2−x3−. . .−xn ≥ 1.
3. Apply the ADD rule to −x2 − x3 − . . . − xn ≥ 1 and x2 − x3 − . . . − xn ≥ 0 to get
−2 · x3 − . . .− 2 · xn ≥ 1.

4. Apply the DIV rule with d = 2 to −2 · x3 − . . .− 2 · xn ≥ 1 to get −x3 − . . .− xn ≥ 1.

5.
...

6. Apply the ADD rule to −xn ≥ 1 and xn ≥ 0 to get 0 ≥ 1.

This refutation has only (2 · n− 1) inferences. Thus, the tree-like refutation of System 3
that uses only the ADD rule is exponentially longer than the tree-like refutation using both
the ADD and DIV rules. J

Despite the fact that the DIV rule can result in much shorter tree-like refutations for
systems of Horn constraints, there are still systems of Horn constraints with exponentially
long refutations.

I Theorem 10. For every positive integer n, there exists an HCS with n variables for which
every tree-like cutting plane proof using both the ADD and DIV rules is exponential in the
size of the system.

Proof. We show this by introducing the variable x0 to System (3). Specifically, we examine
the following system of Horn constraints.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − xi ≥ 0

(4)

We will examine how the minimum length of a tree-like proof using both the ADD rule
and DIV rule depends on the choice of xi in the constraint −x0 − xi ≥ 0.

By construction, the constraint x0 − x1 − x2 − x3 − . . .− xn ≥ 1 is the only constraint in
System (4) with the term x0. Thus, any constraint derived from x0−x1−x2−x3−. . .−xn ≥ 1
must have the term x0 until x0 is canceled from the constraint. This means that, the DIV rule
cannot be applied (with d > 1) to any constraint derived from x0−x1−x2−x3− . . .−xn ≥ 1
until x0 is eliminated. There are two ways to eliminate x0 from this constraint:

Type 1. Derive the constraint −x0 ≥ 0 from the remaining constraints and then eliminate
x0. In this case, the only constraint with −x0 is the constraint −x0 − xi ≥ 0. Thus,
we must derive the constraint xi ≥ 0. To do this we need to eliminate xi+1 . . . xn

from xi − xi+1 − . . .− xn ≥ 0 using the constraints where those variables have positive
coefficients.
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Type 2. Eliminate it by using the constraint −x0 − xi ≥ 0 and then eliminate the extra
copy of xi. Note that in this case the DIV rule cannot be applied until this extra copy is
eliminated. To do this without deriving the constraint xi ≥ 0 (since this would make it
the equivalent of a Type 1 refutation), we need to cancel the variables x1 . . . xi−1.

We will refer to these as Type 1 and Type 2 tree-like refutations. We will show that any
tree-like refutation of system (4) requires min(2 · n + 2n−i, 2 · (n− i) + 2i + 1) inferences.

First consider the case where xi = xn in System (4). This results in the following HCS.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − xn ≥ 0

In this case, System (4) has the following Type 1 tree-like refutation.
1. Apply the ADD rule to xn ≥ 0 and −x0 − xn ≥ 0 to get −x0 ≥ 0.
2. Apply the ADD rule to −x0 ≥ 0 and x0 − x1 − x2 − x3 − . . .− xn ≥ 1 to get −x1 − x2 −

x3 − . . .− xn ≥ 1.

We have now derived System (3) with n variables. From Theorem 9, System (3) has a
tree-like refutation of length (2 · n − 1). Thus, if xi = xn, System (4) has a refutation of
length (2 · n + 1) as desired.

However, consider the case where xi = x1 in System 4. This results in the following HCS.

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − x1 ≥ 0

In this case, System (4) has the following Type 2 tree-like refutation.
1. Apply the ADD rule to −x0 − x1 ≥ 0 and x0 − x1 − x2 − x3 . . . xn ≥ 1 to get −2 · x1 −

x2 − x3 . . .− xn ≥ 1.
2. Apply the ADD rule to x1 − x2 − x3 − . . .− xn ≥ 0 and −2 · x1 − x2 − x3 . . .− xn ≥ 1 to

get −x1 − 2 · x2 − 2 · x3 − . . .− 2 · xn ≥ 1.
3. Apply the ADD rule to x1−x2−x3− . . .−xn ≥ 0 and −x1− 2 ·x2− 2 ·x3 . . .− 2 ·xn ≥ 1

to get −3 · x2 − 3 · x3 − . . .− 3 · xn ≥ 1.
4. Apply the DIV rule with d = 3 to−3·x2−3·x3−. . .−3·xn ≥ 1 to get−x2−x3−. . .−xn ≥ 1.

This results in System (3) with (n − 1) variables. This means that completing the
refutation will take an additional (2 · n− 3) inferences. Thus, in this case, System (4) has a
refutation of length (2 · n + 1) as desired.

Now we consider System (4). As stated previously, any tree-like refutation must be Type
1 or Type 2. Thus, we need to calculate the minimum number of inferences used by each
type of refutation.

First we find the minimum length of a Type 1 tree-like refutation. In the general case for
System (4), this refutation has the following form:
1. Apply the ADD rule to

xi − xi+1 − . . .− xn ≥ 0 and xi+1 − xi+2 . . .− xn ≥ 0

to get

xi − 2 · xi+2 − . . .− 2 · xn ≥ 0.
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2. Apply the ADD rule to xi − 2 · xi+2 − . . .− 2 · xn ≥ 0 and 2 copies of
xi+2 − xi+3 . . .− xn ≥ 0 to get

xi − 4 · xi+3 − . . .− 4 · xn ≥ 0.

3. For each r = 3 . . . (n− i− 1), apply the ADD rule to

xi − 2r−1 · xi+r − . . .− 2r−1 · xn ≥ 0

and 2r−1 copies of x+r − xi+r+1 . . .− xn ≥ 0 to get

xi − 2r · xi+r+1 − . . .− 2r · xn ≥ 0.

4. Apply the ADD rule to xi − 2n−i−1 · xn and 2n−i−1 copies of xn ≥ 0 to get xi ≥ 0.
5. Apply the ADD rule to xi ≥ 0 and −x0 − xi ≥ 0 to get −x0 ≥ 0.
6. Apply the ADD rule to −x0 ≥ 0 and x0 − x1 − x2 − x3 − . . .− xn ≥ 1 to get

−x1 − x2 − x3 − . . .− xn ≥ 1.

This takes a minimum of (2n−i + 1) inferences. We have now derived System (3) with n

variables. From Theorem 9, System (3) has a tree-like refutation of length (2 · n− 1). Thus,
the minimum length of a Type 1 tree-like refutation of System (4) is (2 · n + 2n−i) as desired.

Now we find the minimum length of a Type 2 tree-like refutation. In the general case for
System (4), this refutation has the following form:
1. Apply the ADD rule to

−x0 − xi ≥ 0 and x0 − x1 − x2 − x3 . . .− xn ≥ 1

to get

−x1 − x2 − . . .− 2 · xi − . . .− xn ≥ 1

2. Apply the ADD rule to

x1 − x2 − x3 − . . .− xn ≥ 0 and − x1 − x2 − . . .− 2 · xi − . . .− xn ≥ 1

to get

−2 · x2 − 2 · x3 − . . .− 3 · xi − . . .− 2 · xn ≥ 1.

3. Apply the ADD rule to −2 · x2 − 2 · x3 − . . . − 3 · xi − . . . − 2 · xn ≥ 1 and 2 copies of
x2 − x3 − . . .− xn ≥ 0 to get

−4 · x3 − 4 · x4 − . . .− 5 · xi − . . .− 4 · xn ≥ 1.

4. For each r = 3 . . . i− 1, apply the ADD rule to

−2r−1 · xr − 2r−1 · xr+1 − . . .− (2r−1 + 1) · xi − . . .− 2r−1 · xn ≥ 1

and 2r−1 copies of xr − xr+1 − . . .− xn ≥ 0 to get

−2r · xr+1 − 2r · xr+2 − . . .− (2r + 1) · xi − . . .− 2r · xn ≥ 1.

5. Apply the ADD rule to −(2i−1 + 1) · xi − 2i−1 · xi+1 − . . .− 2i−1 · xn ≥ 1 and (2i−1 + 1)
copies of xi − xi+1 . . .− xn ≥ 0 to get

−(2i + 1) · xi+1 − (2i + 1) · xi+2 − . . .− (2i + 1) · xn ≥ 1.
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6. Apply the DIV rule with d = (2i + 1) to

−(2i + 1) · xi+1 − (2i + 1) · xi+2 − . . .− (2i + 1) · xn ≥ 1

to get

−xi+1 − xi+2 − . . .− xn ≥ 1.

This takes a minimum of (2i + 2) inferences. We have now derived System (3) with (n− i)
variables. This means that completing the refutation will take an additional (2 · n− i− 1)
inferences. Thus, the minimum length of a Type 2 tree-like refutation of System (4) is
(2 · (n− i) + 2i + 1) as desired.

Thus, when xi = x n
2
any tree-like refutation of System 4 must have a length of at least

(n + 2 n
2 + 1).

x0 − x1 − x2 − x3 − . . .− xn ≥ 1 x3 − . . .− xn ≥ 0

x1 − x2 − x3 − . . .− xn ≥ 0
...

x2 − x3 − . . .− xn ≥ 0 xn ≥ 0
−x0 − x n

2
≥ 0

Thus, any tree-like refutation of this system that uses both the ADD rule and the DIV
rule must be exponential in the size of the system. J

5 Dag-like Refutations

In this section, we examine the lengths of Dag-like refutations of systems of Horn constraints.
Unlike tree-like refutations, Dag-like refutations of HCSs are guaranteed to be polynomially

sized.

I Theorem 11. Dag-like cutting plane proofs of Horn constraint systems are polynomial in
the size of the constraint system even when restricted to using only the ADD rule.

Proof. Let H be an unsatisfiable system of Horn constraints with m constraints over n

variables. If H has no positive absolute constraints (constraints of the form xi ≥ c), then
let D ⊆ H be the set of difference constraints in H. If x is a assignment to the variables in
H that satisfies every constraint in D, then for some positive constant M , (x−M · 1) is a
satisfying assignment to H. Thus, D must be unsatisfiable. It is easy in this case H has a
refutation of length at most m since D is an infeasible system of difference constraints.

If H has a positive absolute constraint xi ≥ c, then we can construct the system H′
by removing the constraint xi ≥ c and summing it with every constraint with the literal
−xi. This process is repeated, until a feasible system is derived or an infeasible system of
difference constraints is constructed.

Note that if an infeasible system of difference constraints is constructed, then the system
has a read-once refutation using only the ADD rule. This is a linearly sized proof of
infeasibility. To obtain this system, we eliminated at most (n− 1) constraints of the form
xi ≥ c. Each of these eliminations took at most m applications of the ADD rule. Since the
refutation of the resultant DCS is read-once, it cannot use more than m inferences. Thus,
any refutation discovered by this process has length at most m · n. J

Note that the refutation generated this way has the following properties:
1. Every intermediate constraint is a Horn constraint.
2. Only the ADD rule is used.
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Thus, we have the following corollaries:

I Corollary 12. Every infeasible system of Horn constraints has a refutation where every
intermediate constraint is Horn.

Proof. This follows immediately from the fact that in the refutation generated by Theorem
11, every intermediate constraint is Horn. J

I Corollary 13. If a Dag-like refutation of length n exists for an unsatisfiable Horn constraint
system H, then there exists a polynomial p such that there exists Dag-like refutation of length
p(n), even when all intermediate constraints are Horn.

Proof. Let D be a Dag-like refutation of H of length n. Let HD ⊆ H be the set of constraints
in H used by D. Thus, HD is an infeasible HCS. By Theorem 11, HD has a polynomially
sized Dag-like refutation D′ of length n′ where every intermediate constraint is Horn. Thus,
there exists a polynomial p such that n′ ≤ p(|HD|) ≤ p(n) since |HD| ≤ n. J

I Corollary 14. Dag-like refutations using only the ADD rule p-simulate Dag-like refutations
using both the ADD rule and DIV rule for HCSs.

Proof. Let H be an arbitrary HCS. Let D be the shortest Dag-like refutation of H that uses
both the ADD rule and the DIV rule, and let n be the length of D. Let HD ⊆ H be the set
of constraints in H used by D. Thus, HD is an infeasible HCS. By Theorem 11, HD has a
polynomially sized Dag-like refutation D′ of length n′ using only the ADD rule. Thus, there
exists a polynomial p such that n′ ≤ p(|HD|) ≤ p(n) since |HD| ≤ n. J

6 Restricted Read-once Refutations

In this section, we examine the complexity of finding read-once refutations of HCSs when we
allow for the multiplication of constraints by bounded coefficients. To accomplish this, we
introduce an inference rule known as the MUL rule. This rule is described as follows:

MUL :
∑n

i=1 aij · xi ≥ bj cj ∈ Z+∑n
i=1 cj · aij · xi ≥ cj · bj

(5)

Rule (5) corresponds to multiplying a constraint by a positive integer multiplier. Note
that, with unrestricted use of the ADD and MUL rules, any infeasible system of Horn
constraints has a read-once refutation. This refutation is constructed as follows:

1. Let H be an infeasible HCS, and let T be a tree-like refutation of H that uses only the
ADD rule.

2. For each constraint lj ∈ H, let cj be the number of times lj is used in T . If cj > 0, apply
the MUL rule, with multiplier cj to lj .

3. Use the ADD rule to sum together all the constraints generated with the MUL rule.

Thus, we examine the problem of finding read-once refutations in HCSs when we only
allow for restricted use of the MUL rule.

I Definition 15. An r-restricted read-once refutation using the ADD and MUL rules of an
HCS H, is a read-once refutation of H such that:

1. The MUL rule is only applied with with multiplier c ≤ r.
2. The MUL rule is only applied to constraints in H.
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First we show that, for any fixed constant r, the problem of finding an r-restricted
read-once refutation using the ADD and MUL rules is NP-hard. To accomplish this, we
utilize a reduction from the set packing problem.

I Definition 16. The set packing problem is the following: Given a set S, m subsets
S1, . . . , Sm of S, and an integer k, does {S1, . . . , Sm} contain k mutually disjoint sets.

This problem is known to be NP-complete [18].

I Theorem 17. Let r be any positive integer. Finding r-restricted read-once refutations
using the ADD and MUL rules is NP-hard for HCSs.

Proof. Consider an instance of the set packing problem and let h be the integer such that
2h ≤ r < 2h+1. We construct the system of Horn constraints H as follows:

1. For each xi ∈ S:
a. Create the variables xi and wi.
b. For each g = 1 . . . h, create the variables yi,(2·g−1) and yi,(2·g). Also create the

constraints yi,(2·g−1) − yi,(2·g+1) − yi,(2·g+2) ≥ 0 and yi,(2·g) − yi,(2·g+1) − yi,(2·g+2) ≥ 0.
c. Create the constraints xi − yi,1 − yi,2 ≥ 0, yi,(2·h−1) − wi ≥ 0, yi,(2·h) − wi ≥ 0, and

wi ≥ 0.
2. For j = 1 . . . k, create the variable vj .
3. For each subset Sl, l = 1 . . . m, and each j = 1 . . . k create the constraints vj−

∑
xi∈Sl

xi ≥
0.

4. Finally create the constraint −v1 − . . .− vk ≥ 1.

We will show that H has an r-restricted read-once refutation using the ADD and MUL
rules if and only if the sets S1, . . ., Sm have a packing of size k. First we assume that H has
a r-restricted read-once refutation R using the ADD and MUL rules.

Consider the constraint xi − yi,1 − yi,2 ≥ 0. Assume that R applies the MUL rule to this
constraint with multiplier ci. This results in the constraint ci · xi − ci · yi,1 − ci · yi,2 ≥ 0 To
eliminate the variables yi,1 and yi,2, R must also do the following:

1. Apply the MUL rule with multiplier ci to each the constraints yi,1 − yi,3 − yi,4 ≥
0 and yi,2 − yi,3 − yi,4 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 2 · ci · yi,3 − 2 · ci · yi,4 ≥ 0.

2. Apply the MUL rule with multiplier 2 · ci to each the constraints yi,3 − yi,5 − yi,6 ≥
0 and yi,4 − yi,5 − yi,6 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 4 · ci · yi,5 − 4 · ci · yi,6 ≥ 0.

3. Apply the MUL rule with multiplier 4 · ci to each the constraints yi,5 − yi,7 − yi,8 ≥
0 and yi,6 − yi,7 − yi,8 ≥ 0. Then apply the ADD rule to generate the constraint
ci · xi − 8 · ci · yi,7 − 8 · ci · yi,8 ≥ 0.

4. Apply the MUL rule with multiplier 2h−1 ·ci to each the constraints yi,(2·h−1)−wi ≥ 0 and
yi,(2·h)−wi ≥ 0. Then apply the ADD rule to generate the constraint ci ·xi−2h ·ci ·wi ≥ 0.

5. Apply the MUL rule with multiplier 2h · ci to the constraint wi ≥ 0. Then apply the
ADD rule to generate the constraint ci · xi ≥ 0.

Since R is an r-restricted read-once refutation, we have that 2h · ci ≤ r < 2 · 2h. Thus,
ci = 1.

By construction, xi − yi,1 − yi,2 ≥ 0 is the only constraint in H where xi has positive
coefficient. Thus, for each xi, R can only use one constraint where xi has negative coefficient.
Otherwise, R will be unable to cancel every instance of −xi.

FSTTCS 2019



43:12 New Results on Cutting Plane Proofs for Horn Constraint Systems

Note that, by construction, the only constraint in H with positive defining constant is
−v1 − . . . − vk ≥ 1. Thus, this constraint must by used in R. For each vi, R must use a
constraint corresponding to one of the sets S1, . . ., Sm. Recall, that xi can be used by at
most one of these constraints, thus the sets chosen for each vj must be mutually disjoint and
no set can be chosen multiple times. This can only happen if the sets S1, . . ., Sm have a
packing of size k.

Now assume that the sets S1, . . ., Sm have a packing of size k. Assume without loss of
generality that this packing is the sets S1, . . ., Sk. H has the following r-restricted read-once
refutation using the ADD and MUL rules.
1. Start with the constraint −v1 − . . .− vk ≥ 1.
2. For each vj , apply the ADD rule to the constraint vj −

∑
xi∈Sj

xi ≥ 0 and the result of
the previous application of the ADD rule.

3. Let L be the constraint derived through this process. Since the sets S1, . . ., Sk are
mutually disjoint, every variable xi in L has coefficient −1.

4. For each xi in L, derive the constraint xi ≥ 0, using the method detailed previously.
Then use the constraint xi ≥ 0 to eliminate −xi from L. J

Note that the construction used in Theorem 17 assumes that r is a fixed constant. Let
n be the number of variables in the HCS H constructed in the proof of Theorem 17. By
construction, we have that n = k + (2 · log2 r + 2) · |S|. We can assume without loss of
generality that k ≤ |S| (we cannot pack more than k non-empty subsets of S into S). Thus,
n ≤ |S| · (2 · log2 r + 3). Let c be an arbitrary positive integer. If we choose r = 2

|S|c−1−3
2 ,

then |S|c−1 = 2 · (log2 r) + 3 and nc−1 ≤ (2 · (log2 r) + 3)c. This means that log2 r is in
O(n1− 1

c ). This leads to the following corollary of Theorem 17.

I Corollary 18. Let c be an arbitrary positive integer. Finding r-restricted read-once refuta-
tions using the ADD and MUL rules is NP-hard for HCSs, even when r is O

(
2(n1− 1

c )
)
.

7 Conclusion

In this paper, we studied refutability in Horn constraint systems under various cutting plane
based proof systems. Horn constraint systems generalize difference constraint systems and
find applications in a number of domains, especially program verification. We looked at
both tree-like and Dag-like refutations. Both these proof systems are complete for Horn
constraint systems (assuming that the defining constants are integers). For both types of
refutations we looked at refutations using only the ADD rule as well as refutations using
both the ADD and DIV rules. We showed there exist HCSs with exponentially sized tree-like
refutations even when both the ADD and DIV rules are allowed. We also showed that every
HCS has a polynomially sized Dag-like refutation even when restricted to only the ADD
rule. It follows that cutting plane Dag-like refutations using only the ADD rule p-simulate
cutting plane Dag-like refutations using the ADD rule and DIV rule for HCSs. Additionally,
we established that if a cutting plane refutation of length n exists for an unsatisfiable Horn
constraint system, then there exists a cutting plane proof of length p(n), even when all
intermediate constraints are Horn. We also showed that, when we allow for constraints to
be multiplied by bounded coefficients, the problem of finding a read-once refutation of an
HCS is NP-complete. Our results are important because they are the first step towards
the design of efficient procedures in constraint solvers [7, 24,28].
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From our perspective, the following problems are worth pursuing:
1. Can we find the shortest tree-like or Dag-like proofs of an unsatisfiable Horn constraint

system, if only the ADD rule is permitted?
2. Can we find the shortest tree-like or Dag-like proofs of an unsatisfiable Horn constraint

system, if both the ADD and the DIV rules are permitted?

It is worth noting that in the case of Horn clauses the problem of finding the shortest
resolution proof is NP-hard [1]. Even worse, the problem is hard to linearly approximate [1].
However, these negative results do not directly apply to tree-like (or Dag-like) proofs in Horn
constraint systems.

References
1 M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum Propositional Proof Length

is NP-Hard to Linearly Approximate. In Mathematical Foundations of Computer Science
(MFCS), pages 176–184. Springer-Verlag, 1998. Lecture Notes in Computer Science.

2 Alexey Bakhirkin and David Monniaux. Combining Forward and Backward Abstract Inter-
pretation of Horn Clauses. In Static Analysis - 24th International Symposium, SAS 2017, New
York, NY, USA, August 30 - September 1, 2017, Proceedings, pages 23–45, 2017.

3 Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn Clause
Solvers for Program Verification. In Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday, pages 24–51, 2015.

4 Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Joao Marques-Silva, and Antonio Morgado.
MaxSAT Resolution With the Dual Rail Encoding. In AAAI Conference on Artificial In-
telligence, 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/
16782/16235.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower Bounds for Cutting Planes Proofs
with Small Coefficients. J. Symb. Log., 62(3):708–728, 1997.

6 R. Chandrasekaran and K. Subramani. A combinatorial algorithm for Horn programs. Discrete
Optimization, 10:85–101, 2013.

7 Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Computing Small Unsatisfiable
Cores in Satisfiability Modulo Theories. J. Artif. Intell. Res. (JAIR), 40:701–728, 2011.

8 W. Cook, C. R. Coullard, and Gy. Turan. On the complexity of Cutting-Plane Proofs. Discrete
Applied Mathematics, 18:25–38, 1987.

9 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL, pages
238–252, 1977.

10 Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael Seel, Elmar
Schömer, Ralph Schulte, and Dennis Weber. Certifying and repairing solutions to large LPs
how good are LP-solvers? In SODA, pages 255–256, 2003.

11 Gyula Farkas. Über die Theorie der Einfachen Ungleichungen. Journal für die Reine und
Angewandte Mathematik, 124(124):1–27, 1902.

12 R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64:275–278, 1958.

13 A. Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

14 John N. Hooker. Generalized Resolution and Cutting Planes. Annals of Operations Research,
12(1-4):217–239, 1988.

15 K. Iwama and E. Miyano. Intractability of Read-Once Resolution. In Proceedings of the
10th Annual Conference on Structure in Complexity Theory (SCTC ’95), pages 29–36, Los
Alamitos, CA, USA, June 1995. IEEE Computer Society Press.

FSTTCS 2019

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16782/16235
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16782/16235


43:14 New Results on Cutting Plane Proofs for Horn Constraint Systems

16 Joxan Jaffar and Michael Maher. Constraint Logic Programming: A Survey. The Journal of
Logic Programming, s 19–20:503–581, October 1994. doi:10.1016/0743-1066(94)90033-7.

17 Haim Kaplan and Yahav Nussbaum. Certifying algorithms for recognizing proper circular-arc
graphs and unit circular-arc graphs. Discrete Applied Mathematics, 157(15):3216–3230, 2009.

18 Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972.
Plenum Press.

19 Hans Kleine Büning, Piotr J. Wojciechowski, and K. Subramani. On the application of
restricted cutting plane systems to Horn constraint systems. In The 12th International
Symposium on Frontiers of Combining Systems, London, United Kingdom„ September 4-6,
2019, Proceedings, pages 149–164, 2019.

20 Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, and Kenneth L. McMillan. Compositional
Verification of Procedural Programs using Horn Clauses over Integers and Arrays. In Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015., pages 89–96, 2015.

21 Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy Spinrad. Certifying algorithms
for recognizing interval graphs and permutation graphs. In SODA, pages 158–167, 2003.

22 Kung-Kiu Lau and Mario Ornaghi. Specifying Compositional Units for Correct Program
Development in Computational Logic. In Program Development in Computational Logic: A
Decade of Research Advances in Logic-Based Program Development, pages 1–29. Springer,
2004.

23 R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Computer
Science Review, 5(2):119–161, 2011.

24 Microsoft Research. Z3: An efficient SMT solver. URL: http://research.microsoft.com/
projects/z3/.

25 G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. JohnWiley&Sons,
New York, 1999.

26 Pavel Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Compu-
tations. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

27 A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York,
1987.

28 SRI International. Yices: An SMT solver. URL: http://yices.csl.sri.com/.
29 K. Subramani. Optimal Length Resolution Refutations of Difference Constraint Systems.

Journal of Automated Reasoning (JAR), 43(2):121–137, 2009.
30 K. Subramani and Piotr Wojciechowki. A Polynomial Time Algorithm for Read-Once Certific-

ation of Linear Infeasibility in UTVPI Constraints. Algorithmica, 81(7):2765–2794, 2019.
31 Stefan Szeider. NP-completeness of refutability by literal-once resolution. In Automated

Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001,
Proceedings, pages 168–181, 2001.

32 A.F. Veinott and G.B. Dantzig. Integral Extreme points. SIAM Review, 10:371–372, 1968.

https://doi.org/10.1016/0743-1066(94)90033-7
http://research.microsoft.com/projects/z3/
http://research.microsoft.com/projects/z3/
https://doi.org/10.2307/2275583
http://yices.csl.sri.com/

	Introduction
	Statement of Problems
	Motivation and Related Work
	Tree-like Refutations
	Dag-like Refutations
	Restricted Read-once Refutations
	Conclusion

