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Abstract
The generative capacity of combinatory categorial grammars as acceptors of tree languages is
investigated. It is demonstrated that the such obtained tree languages can also be generated by
simple monadic context-free tree grammars. However, the subclass of pure combinatory categorial
grammars cannot even accept all regular tree languages. Additionally, the tree languages accepted
by combinatory categorial grammars with limited rule degrees are characterized: If only application
rules are allowed, then they can accept only a proper subset of the regular tree languages, whereas
they can accept exactly the regular tree languages once first degree composition rules are permitted.
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1 Introduction

Categorial grammars [5] were introduced alongside the phrase-structure grammars (regular,
context-free, context-sensitive grammars, etc.) of the Chomsky hierarchy [6] inspired by
classical notions from proof theory [1, 3]. Combinatory Categorial Grammar (CCG) [23, 24] is
an extension following the approach of combinatory logic [22, 7]. CCG received considerable
attention in theoretical computer science culminating in the proofs of its mild context-
sensitivity, which in particular, requires efficient parsing [27], as well as its equivalence to
several other established grammar formalisms [28]. It has since become a widely applied
formalism in computational linguistics [18, 17].

The basis for CCG is provided by a lexicon and a rule system. The lexicon assigns
syntactic categories to the symbols of the input and the rule system describes how adjoining
categories can be combined to eventually obtain a (binary) derivation tree. The mentioned
equivalence result due to Vijay-Shanker and Weir [28] shows that CCG, Tree-Adjoining
Grammar (TAG) [12] as well as linear indexed grammars [11] are equivalent in expressive
power, which establishes that they generate the same string languages. However, the used
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44:2 Tree-Generative Capacity of CCG

construction depends on the ability to restrict the combination rules and to include entries
for the empty word in the lexicon. Modern variants of CCG disfavor rule restrictions and the
obtained pure CCG are strictly less expressive than TAG [14] unless unbounded generalized
composition rules are permitted, in which case they are strictly more expressive than TAG [26].
Indeed, CCG with unbounded composition rules, rule restrictions as well as ε-entries in the
lexicon are Turing-complete [15].

The mentioned studies examine the string (or weak) generative capacity of CCG, but
already [26] asks for the tree (or strong) generative capacity or, more specifically, the expres-
siveness of the tree languages of CCG derivation trees [10]. Koller and Kuhlmann [13] show
that CCG and TAG generate incomparable classes of dependency trees. In this contribution,
we answer the original question and characterize the tree languages accepted by CCGs, and
relate them to the standard notions of regular [9, 10] and context-free tree languages [19, 20].
A tree language F is accepted by a CCG G if F is obtained as a relabeling of the derivation
tree language of G. Our work therefore is similar in spirit to that of Tiede [25], who studied
the strong generative capacity of Lambek-style categorial grammars [16].

In the variant of CCG we investigate, the rule system is finite and includes only application
and composition operators (i.e. rules based on the B-combinator of combinatory logic [8]).
In general, we allow rule restrictions that further constrain the categories the rules can be
applied to. Notice that our results concern only binary trees since the derivation trees of
CCGs are binary. Our main result is that the tree languages accepted by CCGs can also be
generated by simple monadic context-free tree grammars (Theorem 20). For CCG without
rule restrictions this inclusion is proper since not even all regular tree languages [10] are
accepted by these CCGs (Theorem 22). In addition, we show that CCGs without composition
operations, which are weakly equivalent to (ε-free) context-free grammars, generate a strict
subclass of the regular tree languages that does not even include all local tree languages
(Theorem 9). Finally, if we limit the permitted composition operators to first degree, then
exactly the regular tree languages are accepted (Theorem 14).

2 Preliminaries

We denote the set of nonnegative integers by N and let [k] = {i ∈ N | 1 ≤ i ≤ k} for every
k ∈ N. The power-set (i.e. set of all subsets) of a set A is P(A) = {A′ | A′ ⊆ A}, and
P+(A) = P(A) \ {∅} contains all nonempty subsets. As usual, an alphabet is a finite set of
symbols. The monoid (Σ∗, ·, ε) consists of all strings (i.e. sequences) over a set Σ together
with concatenation · and the empty string ε. We often write concatenation by juxtaposition.
The length of a string w ∈ Σ∗ (i.e. the number of components in the sequence) is denoted
by |w|. Any set L ⊆ Σ∗ is a language, and the languages form a monoid (P(Σ∗), ·, {ε}) with
concatenation lifted to languages by L · L′ = {w · w′ | w ∈ L, w′ ∈ L′}. Every mapping
f : Σ → ∆∗ [respectively, f : Σ → P(∆∗)] extends uniquely to a monoid homomorphism
f ′ : Σ∗ → ∆∗ [respectively, f ′ : Σ∗ → P(∆∗)]. We will not distinguish the mapping f and its
induced homomorphism f ′, but rather use f for both.

Given two sets A and A′, a relation from A to A′ is a subset ρ ⊆ A×A′. The inverse of ρ
is ρ−1 = {(a′, a) | (a, a′) ∈ ρ}, and for every B ⊆ A, we let ρ(B) = {a′ | ∃b ∈ B : (b, a′) ∈ ρ}.
The relation ρ ⊆ A×A′ can also be understood as a mapping ρ̂ : A→ P(A′) with ρ̂(a) = ρ({a})
for all a ∈ A. We will not distinguish these two representations.

We build binary trees over the set Σ2 of binary internal symbols, the alphabet Σ1 of
unary internal symbols, and the alphabet Σ0 of leaf symbols.1 Formally, the set TΣ2,Σ1(Σ0)
of binary (Σ2,Σ1)-trees indexed by Σ0 is the smallest set T such that (i) a ∈ T for all a ∈ Σ0,

1 We explicitly allow an infinite set of internal binary symbols.



M. Kuhlmann, A. Maletti, and L. K. Schiffer 44:3

(ii) n(t) ∈ T for all n ∈ Σ1 and t ∈ T , and (iii) c(t1, t2) ∈ T for all c ∈ Σ2 and t1, t2 ∈ T . We
use graphical representations of trees to increase the readability. Every subset F ⊆ TΣ2,Σ1(Σ0)
is a tree language. The mapping pos : TΣ2,Σ1(Σ0)→ P+({1, 2}∗) assigning positions to a tree
is defined by (i) pos(a) = {ε} for all a ∈ Σ0, (ii) pos(n(t)) = {ε} ∪ {1 ·w | w ∈ pos(t)} for all
n ∈ Σ1 and t ∈ TΣ2,Σ1(Σ0), and (iii) for all c ∈ Σ2 and t1, t2 ∈ TΣ2,Σ1(Σ0),

pos
(
c(t1, t2)

)
=
{
ε
}
∪
{

1 · w | w ∈ pos(t1)
}
∪
{

2 · w | w ∈ pos(t2)
}
.

We let leaves(t) = {w ∈ pos(t) | w · 1 /∈ pos(t)} be the set of leaf positions in t, and
ht(t) = maxw∈leaves(t) |w| be the height of the tree t. The subtree of t at position w ∈ pos(t)
is denoted by t|w, and the label of t at position w is denoted by t(w). Moreover, t[t′]w denotes
the tree obtained from t by replacing the subtree at position w by the tree t′ ∈ TΣ2,Σ1(Σ0).
Given ∆ ⊆ Σ2 ∪ Σ1 ∪ Σ0, let pos∆(t) = {w ∈ pos(t) | t(w) ∈ ∆}. We simply write posδ(t)
instead of pos{δ}(t).

We reserve the use of the symbol �. The set CΣ2,Σ1(Σ0) of contexts contains all trees
of TΣ2,Σ1(Σ0 ∪ {�}), in which the special symbol � occurs exactly once. Let C ∈ CΣ2,Σ1(Σ0).
Since pos�(C) contains one element, we often identify it with its only element. To save space,
we write tC for C[t]w, where w = pos�(C).2

A relabeling is a mapping ρ : (Σ2 ∪Σ1 ∪Σ0)→ P+(∆) for some alphabet ∆.3 It induces a
mapping ρ̂ : TΣ2,Σ1(Σ0)→ P+(T∆,∆(∆)) for every t ∈ TΣ2,Σ1(Σ0) by

ρ̂(t) =
{
u ∈ T∆,∆(∆) | pos(u) = pos(t), ∀w ∈ pos(u) : u(w) ∈ ρ

(
t(w)

)}
.

In the following, we again do not distinguish between the relabeling ρ and its induced
mapping ρ̂ on trees. A simple (monadic) context-free tree grammar [19, 20] (sCFTG) is a
system G = (N,Σ, I, P ) such that (i) N = N1 ∪N0, where N1 and N0 are alphabets of unary
and nullary nonterminals, respectively, (ii) Σ = Σ2 ∪ Σ0, where Σ2 and Σ0 are alphabets of
internal and leaf terminal symbols, respectively, such that N ∩Σ = ∅, (iii) I ⊆ N0 are nullary
start nonterminals, and (iv) P is a finite set of productions such that

P ⊆
(
N0 × TΣ2,N1(Σ0 ∪N0)

)
∪
(
N1 × CΣ2,N1(Σ0 ∪N0)

)
.

The grammar is called monadic, because there are only nullary and unary nonterminals;
simple means that the rules are linear and nondeleting, so all subtrees of a nonterminal on
the left side of a rule have to appear exactly once on the right side. If N1 = ∅, then G is
a regular tree grammar (RTG). We write productions (n, r) as n→ r. Next, we define the
rewrite semantics [2] for the sCFTG G. For arbitrary ξ, ζ ∈ TΣ2,N1(Σ0 ∪N0) and positions
w ∈ pos(ξ) we let ξ ⇒G,w ζ if there exists a production n→ r ∈ P such that

ξ|w = n and ζ = ξ[r]w with n ∈ N0, or
ξ|w = n(ξ′) and ζ = ξ[ξ′r]w with n ∈ N1 and ξ′ ∈ TΣ2,N1(Σ0 ∪N0).

We write ξ ⇒G ζ if there exists w ∈ pos(ξ) such that ξ ⇒G,w ζ. The tree language F(G)
generated by G is F(G) = {t ∈ TΣ2,∅(Σ0) | ∃n0 ∈ I : n0 ⇒+

G t}, where ⇒+
G is the transitive

closure of ⇒G. The tree languages generated by sCFTGs are context-free,4 and a tree
language F is regular if and only if there exists an RTG G such that F = F(G). A detailed
introduction to trees and tree languages can be found in [10].

2 This order tC is beneficial for arguments C (see Section 3).
3 We require that each input symbol can be relabeled.
4 Note that this is not an equivalence. There are context-free tree languages that are not generated by

any sCFTG.
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Figure 1 Derivations using the RTG G1 (left) and the sCFTG G2 (right) of Examples 1 and 2,
respectively.

I Example 1. The regular tree grammar G1 = (N,Σ, I, P ) with N = N0 = I = {s},
Σ2 = {σ}, Σ0 = {α, β}, and P = {s → σ(α, σ(s, β)), s → σ(α, β)} generates the leaf
language {αnβn | n ≥ 1}. Note that because it is an RTG, all nonterminals are nullary and
thus leaves, which is similar to the property of right-linearity that can be encountered in
CFGs.

Two important facts concerning the regular tree languages are that they properly include
the derivation tree languages of CFGs and that their leaf languages are exactly the context-free
languages.

I Example 2. The sCFTG G2 = (N,Σ, I, P ) with N = N0 = I = {s}, N2 = {n}, Σ2 = {σ},
Σ0 = {α, β, γ} and

P =
{
s→ σ(α, σ(β, γ)), s→ σ(α, σ(n(β), γ)),
n→ σ(α, σ(n(σ(�, β)), γ)), n→ σ(α, σ(σ(�, β), γ))}

generates the leaf language {αnβnγn | n ≥ 1}. Since G2 is simple, the placeholder �, which
indicates the new position of the subtree under the unary nonterminal symbol n, appears
exactly once on the right side of the respective rules.

3 Combinatory Categorial Grammars

Combinatory categorial grammars (CCGs) extend the classical categorial grammars of
Ajdukiewicz and Bar-Hillel [4] by rules inspired by combinatory logic [8]. Here, as in
most of the formal work on CCGs, we restrict our attention to the rules of composition,
which are based on the B-combinator.

Let A be an alphabet, and let C(A) = TS,∅(A), where S = {/, /} is the set of slashes.
The elements of C(A) are called categories (over A), of which the elements of A ⊆ C(A) are
atomic. We write categories using infix notation, omitting unnecessary parentheses based
on the convention that slashes are left-associative. Thus every category takes the form
c = a|1c1 · · · |kck where a ∈ A, |i ∈ S, and ci ∈ C(A), for all i ∈ [k]. The atomic category a
is called the target of c and the slash–argument pairs |ici are called the arguments of c.
If ci ∈ A for all i ∈ [k], we call c a first-order category. The set of all first-order categories
over A is denoted by Cf (A). The number k is called the arity of c. Note that, from the
tree perspective, the sequence of arguments is a context α = �|1c1 · · · |kck. The number k
is the length of α; we write it as |α|. We let A(A) ⊆ CS,∅(A) be the set of all argument
contexts (over A). Finally, for every k ∈ N, we let C(A, k) = { c ∈ C(A) | arity(c) ≤ k } and
A(A, k) = {α ∈ A(A) | |α| ≤ k }.
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Intuitively, a category c/c′ can be combined with a category c′ to its right to become c;
similarly, a category c /c′ can be combined with c′ to its left. Formally, given an alphabet A
and k ∈ N, a rule of degree k over A takes one of two possible forms [28]:

ax/c, c|1c1 · · · |kck → ax|1c1 · · · |kck (forward rule)
c|1c1 · · · |kck, ax /c→ ax|1c1 · · · |kck (backward rule)

where a ∈ A, c ∈ C(A) ∪ {y}, and |i ∈ S and ci ∈ C(A) ∪ {yi} for every i ∈ [k]. The
category ax|c with | ∈ {/, /} is called the primary input category and the other cate-
gory c|1c1 · · · |kck is the secondary input category of the rule. The categories c, c1, . . . , ck can
thus be either concrete categories from C(A) or a category variable {y, y1, . . . , yk} that will
match each category from C(A). Similarly, the argument context variable x will match each
argument context of A(A). We let R(A) be the set of all rules over A, and for every k ∈ N
let R(A, k) be the finite set of all generic (i.e. always using variables instead of concrete
categories) rules over A with degree at most k. Rules of degree 0 are called application rules,
whereas rules of higher degree are called composition rules. A rule system is a pair Π = (A,R)
consisting of an alphabet A and a finite set R ⊆ R(A) of rules over A. A ground instance
of a rule r is obtained by substituting concrete categories for the variables {y, y1, . . . } and
a concrete argument context for the variable x in r. The set of all ground instances of Π
induces a relation →Π ⊆ C(A)2 × C(A), which extends to a relation ⇒Π ⊆ C(A)∗ × C(A)∗ by
⇒Π = { (ϕ c c′ ψ, ϕ c′′ ψ) | ϕ,ψ ∈ C(A)∗; c, c′ →Π c′′ }.

I Example 3. Consider the rule r = Dx/D, D/E /C → Dx/E /C, where {C,D,E} are
atoms and x is an argument context variable. A possible ground instance of this rule
is D/C/E/D, D/E /C → D/C/E/E /C, where x was replaced by the argument context
�/C/E. The primary input category c1 = D/C/E/D has target D and arguments /C, /E,
and /D. As c1 takes three atomic categories as arguments, it is a first-order category and
arity(c1) = 3. The rule degree is determined by the number of arguments replacing the last
argument of the primary input category, so r has degree k = 2. Note that D/C/E/D is short
for ((D/C)/E)/D, which is different from (D/C)/(E/D). The rules r′ = Dx/(E/D), E/
D /C → Dx /C and r′′ = Dx/(E/D), E/D /(C/C)→ Dx /(C/C) both have first degree.

IDefinition 4 ([28]). A combinatory categorial grammar (CCG) is a tuple G = (Σ, A,R, I, L)
consisting of an alphabet Σ of input symbols, a rule system (A,R), a set I ⊆ A of initial
categories, and a finite relation L ⊆ Σ × C(A) called lexicon. It is a k-CCG [resp. pure
k-CCG], for k ∈ N, if each r ∈ R has degree at most k [resp. if R = R(A, k)].

I Example 5. The classical categorial grammars of Ajdukiewicz and Bar-Hillel [4],
which are also called AB-grammars, are 0-CCGs. However, the term 0-CCG is more general
since as opposed to AB-grammars, they allow rule restrictions (i.e. they are not necessarily
pure). As a concrete example, let G3 = (Σ, A,R(A, 0), I, L) be the CCG given by the input
alphabet Σ = {c, d}, the atomic categories A = {C,D}, the set of initial categories I = {C},
and the lexicon L with L(c) = {C/D, C/D/C} and L(d) = {D}. Clearly, it is a 0-CCG. For
a slightly more involved example containing rule restrictions, see Example 15.

I Definition 6. A combinatory categorial grammar G = (Σ, A,R, I, L) accepts the category
sequences C(G) ⊆ C(A)∗ and the string language L(G) ⊆ Σ∗, where

C(G) = {ϕ ∈ C(A)∗ | ∃a0 ∈ I : ϕ⇒∗(A,R) a0} and L(G) = L−1(C(G)) .

A tree t ∈ TC(A),∅(L(Σ)) is a derivation tree of G if t(w · 1), t(w · 2)→(A,R) t(w) for every
w ∈ pos(t) \ leaves(t). The set of all such trees is denoted by D(G).

FSTTCS 2019
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Figure 2 Derivations using the AB-grammar G3 (left) and the CCG G4 (right) of Examples
5 and 15, respectively.

The grammar of Example 5 accepts L(G3) = {cidi | i ≥ 1}, which is context-free but
not regular. A derivation tree for the string ccdd is shown in Figure 2. We draw derivation
trees according to the standard conventions for CCGs, so the root is drawn at the bottom.
The dotted lines visualize the input symbol–category mapping implemented by the lexicon.
Overall, G3 accepts the category sequences C(G3) = {(C/D/C)i−1 · (C/D) ·Di | i ≥ 1}.

The language accepted by a CCG is obtained by relabeling the leaf categories of the
derivation trees using the lexicon. For the accepted tree language we similarly allow a
relabeling to avoid the restriction to the particular symbols of C(A).

I Definition 7. Let G = (Σ, A,R, I, L) be a CCG and ρ : C(A) → P+(∆) be a relabeling.
They accept the tree language Fρ(G) = {ρ(d) ∈ T∆,∅(∆) | d ∈ D(G), d(ε) ∈ I}. A tree lan-
guage F ⊆ T∆,∅(∆) is acceptable by the CCG G if there exists a relabeling ρ′ : C(A)→ P+(∆)
such that F = Fρ′(G).

Because L(Σ) is finite, there exists k ∈ N such that L(Σ) ⊆ C(A, k). The least such inte-
ger k is called the arity of L and denoted by arity(L); i.e. arity(L) = max{arity(c) | c ∈ L(Σ)}.
If L = ∅, then we let arity(L) = 0.

4 0-CCGs

Let G = (Σ, A,R, I, L) be a 0-CCG. An important property of 0-CCGs is that each category
that occurs in a derivation tree has arity at most arity(L). Thus, derivation trees are built
over a finite set of symbols.

I Theorem 8 (see [4] and [25, Proposition 3.25]). The string languages accepted by 0-CCGs
are exactly the ε-free context-free languages. Moreover, for each 0-CCG G the derivation tree
language D(G) and the accepted tree languages are regular.

To characterize the tree languages accepted by 0-CCGs, we need to introduce an additional
structural property of the derivation tree language D(G) and the acceptable tree languages.
Roughly speaking, the min-height mht(t) of a tree t is the minimal length of a path from
the root to a leaf. Recall that the height coincides with the maximal length of those
paths. For all alphabets Σ2 and Σ0, let mht: TΣ2,∅(Σ0)→ N be such that mht(a) = 0 and
mht(c(t1, t2)) = 1 + min(mht(t1),mht(t2)) for all a ∈ Σ0, c ∈ Σ2, and t1, t2 ∈ TΣ2,∅(Σ0). A
tree t ∈ TΣ2,∅(Σ0) is universally mht-bounded by h ∈ N if mht(t|w) ≤ h for every w ∈ pos(t).
Finally, a tree language F ⊆ TΣ2,∅(Σ0) is universally mht-bounded by h if every t ∈ F is
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Figure 3 Decomposition into spinal runs and the corresponding derivation tree of the 0-CCG.

universally mht-bounded by h, and it is universally mht-bounded if there exists h ∈ N such
that it is universally mht-bounded by h. Note that “universally mht-bounded” is a purely
structural property of a tree as it only depends on the shape of the tree and is completely
agnostic about the node labels. It is thus preserved by the application of a relabeling.
Consequently, ρ(F) is universally mht-bounded by h if and only if F is universally mht-
bounded by h for every tree language F ⊆ TΣ2,∅(Σ0) and relabeling ρ : (Σ2 ∪ Σ0)→ P+(∆).

Let us reconsider the 0-CCG G3 of Example 5. The set D(G3) is universally mht-bounded
by 1 (see Figure 2). It turns out that exactly the universally mht-bounded regular tree
languages are acceptable by 0-CCGs. We already observed that the tree languages acceptable
by 0-CCGs are regular, but for the converse we have to exploit the universal mht-bound.
We utilize those short paths to a leaf to decompose the tree into spines, which are short
paths in the tree that lead from a node to a leaf and are never longer than the universal
min-height. The primary categories for the applications are placed along those spines and
each spine terminates in an atomic category that can be combined with the category from
another spine. The idea of the construction is illustrated in Figure 3. This close relation and
the good closure properties of regular tree languages allow us to derive a number of closure
results for the tree languages acceptable by 0-CCGs (see Table 1).

I Theorem 9. Let F ⊆ TΣ2,∅(Σ0) be a tree language. Then F is acceptable by some 0-CCG
if and only if it is regular and universally mht-bounded.

We have seen that, while basic categorial grammars and context-free grammars are weakly
equivalent, they are not strongly equivalent when considered as tree-generating devices. More
specifically, the class of derivation tree languages of basic categorial grammars are a proper
subclass of the class of local tree languages (i.e. derivation tree languages of context-free
grammars). This result is similar to a result by Schabes et al. [21] showing that context-free
grammars are not closed under strong lexicalization, meaning that there are context-free
grammars such that no lexicalized grammar5 generates the same derivation tree language.

5 A CFG is called lexicalized if every production contains a terminal symbol.
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Table 1 Closure properties of the tree languages acceptable by 0-CCGs and 1-CCGs.

regular tree languages tree languages
closure \ class = tree languages acceptable by 1-CCGs acceptable by 0-CCGs

union 3 3

intersection 3 3

complement 3 7

relabeling 3 3

α-concatenation [10] 3 3

α-iteration [10] 3 7

5 1-CCGs

In this section, we will consider 1-CCGs, which allow rules of degree at most 1. Thus, the
secondary input categories appearing in their derivation tree languages have at most one
additional argument after the category consumed by the composition. We will show that the
1-CCGs accept exactly the regular tree languages by showing inclusion in both directions.

I Lemma 10. For each 1-CCG G the derivations D(G) and the accepted tree language are
regular.

The following lemma establishes a normal form for regular tree grammars that is easily
achieved using standard techniques. For every m ∈ N, let Zm = {i ∈ N | 0 ≤ i < m}.

I Lemma 11. For each RTG G there exists an equivalent RTG G′ = (Zm,Σ, I ′, P ′) in
normal form, in which every nonterminal n ∈ Zm generates a uniquely defined terminal
symbol σn; i.e. for all n ∈ Zm there exists σn ∈ Σ such that t(ε) = σn for all t ∈ TΣ
with n⇒+

G′ t.

Given an RTG G = (Zm,Σ, I, P ) in the normal form of Lemma 11, we are allowed to
regard only the nonterminals of G when constructing an equivalent 1-CCG. Our goal is to find
a 1-CCG G′ = (Σ′, A,R, I ′, L) and a projection π : C(A)→ Zm such that F(G) = Fπ′◦π(G′).
Because π maps from categories to nonterminals, but F(G) is labeled by terminal symbols,
we need the projection π′ : Zm → Σ to map from nonterminals to terminals. This function is
well-defined due to the constraint on G, that each nonterminal generates a single terminal.

Given a production n→ σ(n1, n2) ∈ P and a projection π : C(A)→ Zm, we need categories
c1 ∈ π−1(n1) and c2 ∈ π−1(n2) for each category c ∈ π−1(n) such that c1, c2 → c is a valid
ground instance of a rule in R. This ensures that each category can be derived by the
composition of two categories mapped to matching nonterminals. We only regard first-order
categories with at most one argument due to the restriction on 1-CCGs. Starting from
any nonterminal, the productions P allow the derivation of at most all ordered pairs of
nonterminals. The number of ordered pairs Z2

m increases quadratically in m, whereas the
number of different composition input pairs resulting in a fixed category increases only
linearly in |A|. The category matrix depicted in Figure 4 illustrates that a first-order category
with one argument is the result of the forward compositions of |A| different category pairs.
In addition to composition rules, application rules are neccessary to obtain an atomic initial
category. Based on these observations, we construct a 1-CCG G′ with m2 atoms in the
following way.
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I Definition 12. Given an RTG G = (Zm,Σ, I, P ) in the normal form of Lemma 11, we
construct the 1-CCG G′ = ({x},Z2

m, R, π
−1(I) ∩ Z2

m, L) with

R =
{
a/b, b→ a | π(a)→ σ

(
π(a/b), π(b)

)
∈ P, σ ∈ Σ2, a, b ∈ Z2

m

}
∪
{
a/b, b/c→ a/c | π(a/c)→ σ

(
π(a/b), π(b/c)

)
∈ P, σ ∈ Σ2, a, b, c ∈ Z2

m

}
L = {(x, a) | a ∈ C(A, 1) ∩ Cf (A), π(a)→ α ∈ P, α ∈ Σ0, a ∈ Z2

m}

where the mapping π : (Z2
m ∪ {n/n′ | n, n′ ∈ Z2

m}) → Zm is given by π
(
(i, j)

)
= i and

π
(
(i, j)/(i′, j′)

)
= i+ j′ mod m for all i, i′, j, j′ ∈ Zm.

I Lemma 13. For each RTG G there exists a 1-CCG G′ accepting the tree language F(G).

Proof. We have to establish that the 1-CCG G′ = ({x},Z2
m, R, π

−1(I), L) of Definition 12
accepts the tree language F(G) of RTG G = (Zm,Σ, I, P ) using the relabeling π′ ◦ π. The
category c = (i, j)/(i′, j′) is the result of the forward composition of (i, j)/(k, l) and (k, l)/
(i′, j′), where i, i′, j, j′, k, l ∈ Zm. Figure 4 illustrates the projection π by means of a projection
matrix, which is a category matrix with categories replaced according to the projection.
Row and column labels follow lexicographic order. When we slice it evenly into blocks of
size m ×m, we can observe that the entries in the rows cycle through the nonterminals,
whereas in a single column, each block has only a single nonterminal in all m entries. This
is because the value of j′ changes in every entry, whereas the value of i changes only every
m entries. Nonetheless, a complete column of the whole projection matrix contains all
m nonterminals. Relabeling in this manner ensures that all pairs of nonterminals are covered
by arbitrary pairs of row and column. These are determined by the result category.

Given a category (i, j)/(i′, j′) and an ordered pair (g, h) of nonterminals, we need to
verify that there exist k, l ∈ Zm with π((i, j)/(k, l)) = g and π((k, l)/(i′, j′)) = h. Since
g = (i+l) mod m and h = (k+j′) mod m, we obtain l = (g−i) mod m and k = (h−j′) mod m.
Furthermore, given an arbitrary atom (i, j) and nonterminals g, h ∈ Zm, we want to find a
category (i, j)/(k, l) and an atom (k, l) such that π((i, j)/(k, l)) = g and π((k, l)) = h. From
the definition of the projection, π((k, l)) = k, so we have k = h and l = (g − i) mod m.

We relabel F(G′) using π′ ◦ π as described above. Due to the fact that the categories
occurring in derivation trees of G′ cannot have higher order or arity greater than 1, they
never leave the domain of π. As a result, we were able to construct a 1-CCG accepting
the tree language F(G). Thus, for each regular tree language, we can construct a 1-CCG
accepting it. J

I Theorem 14. The tree languages accepted by 1-CCGs are exactly the regular tree languages.

6 Inclusion in the Context-Free Tree Languages

In this section, we want to relate the derivation tree languages of CCGs to the context-free
tree languages. However, this is complicated by the presence of potentially infinitely many
categories. Let us illustrate the problem first.

I Example 15. Let G4 = (Σ, A,R, {D}, L) be the 3-CCG given by the alphabet Σ = {c, d, e},
the atomic categories A = {C,D,E}, the lexicon L with L(c) = {C}, L(d) = {D/E /C,
D/E/D /C}, L(e) = {E}, and the rule set R consisting of the rules

Dx/D, D/E/D /C → Dx/E/D /C Dx/E, E → Dx

Dx/D, D/E /C → Dx/E /C C, Dx /C → Dx
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a0 a1 a2 a3

a0 a0/a0 a0/a1 a0/a2 a0/a3

a1 a1/a0 a1/a1 a1/a2 a1/a3

a2 a2/a0 a2/a1 a2/a2 a2/a3

a3 a3/a0 a3/a1 a3/a2 a3/a3

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

(0, 0) 0 1 2 0 1 2 0 1 2

(0, 1) 0 1 2 0 1 2 0 1 2

(0, 2) 0 1 2 0 1 2 0 1 2

(1, 0) 1 2 0 1 2 0 1 2 0

(1, 1) 1 2 0 1 2 0 1 2 0

(1, 2) 1 2 0 1 2 0 1 2 0

(2, 0) 2 0 1 2 0 1 2 0 1

(2, 1) 2 0 1 2 0 1 2 0 1

(2, 2) 2 0 1 2 0 1 2 0 1

Figure 4 The category matrix (left) contains all first-order categories of arity 1 with only forward
slashes in a CCG with four atoms. Each category is the result of the forward composition of a category
taken from the same row and one from the same column, respectively. The i-th entry of each row can
be combined with the i-th entry of each column. Thus, each category is the result of four different
forward compositions. The projection matrix (right) shows a 1-CCG with nine atomic categories after
relabeling using projection π : C(A)→ Z3, obtained from an RTG with three nonterminals by applying
Definition 12. Suppose we want to find two categories projected to nonterminals (g, h) = (0, 2) whose
composition yields (i, j)/(i′, j′) = (0, 1)/(0, 1). These are categories (0, 1)/(1, 0) and (1, 0)/(0, 1)
since (k, l) = ((h− j′) mod 3, (g − i) mod 3) = ((2− 1) mod 3, (0− 0) mod 3) = (1, 0).

where x ∈ A(A). From a few sample derivation trees (see Figure 2) we can convince ourselves
that G4 accepts the string language L(G4) = { cidiei | i ≥ 1 }, which shows that 3-CCGs can
accept non-context-free string languages. In addition, the derivation trees D(G4) contain
infinitely many categories as labels.

Since the classical tree language theory only handles finitely many labels, we switch to
a different representation and consider rule trees. To simplify the notation, we introduce
the following shorthands. We let T = TR,∅

(
L(Σ)

)
be the set of all potential rule trees (see

Definition 16), and for all alphabets N1 and N0 we let SF(N1, N0) = TR,N1

(
L(Σ) ∪N0

)
be

the forms of a sCFTG with unary nonterminals N1 and nullary nonterminals N0.

I Definition 16. Let G = (Σ, A,R, I, L) be a CCG. A tree t ∈ T is a rule tree of G if
catG(t) ∈ I, where catG : T→ C(A) is the partial function that is inductively defined by

catG(c) = c for all c ∈ L(Σ),
catG

(
(ax/c, cγ → axγ)(t1, t2)

)
= aαγ for all trees t1, t2 ∈ T such that catG(t1) = aα/c

and catG(t2) = cγ, and
catG

(
(cγ, ax /c→ axγ)(t1, t2)

)
= aαγ for all trees t1, t2 ∈ T such that catG(t1) = cγ and

catG(t2) = aα /c.
The set of all rule trees of G is denoted by R(G).

The rule trees provide a natural encoding of the (successful) derivation trees of a CCG
using only finitely many labels. More precisely, there is an (obvious) bijection between the
derivation trees D(G) and the domain of the function catG.

In the following, let G = (Σ, A,R, I, L) be a CCG. Our goal is to construct an sCFTG
that generates exactly the rule tree language R(G). To this end, we first need to limit the
arity of the categories. Let k ∈ N be the maximal arity of a category in

I ∪ L(Σ) ∪ {cγ | ax/c, cγ → axγ ∈ R} ∪ {cγ | cγ, ax /c→ axγ ∈ R} ,

i.e. the maximal arity of the categories that occur in the lexicon, as initial category, or
as the secondary premise of a rule of R. Roughly speaking, the constructed sCFTG will
use the categories C(A, k) as nullary nonterminals and tuples 〈a, |c, γ〉 consisting of an
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(ax/a, a→ ax)

(c/a, ax\c→ ax/a)

(a, cx\a→ cx)

a c/a\a

(ax/b, b/c\c→ ax/c\c)

a/b/b b/c\c

a

(ax/a, a→ ax)

(c/a, ax\c→ ax/a)

〈c/a〉 (ax/b, b/c\c→ ax/c\c)

a/b/b 〈b/c\c〉

〈a〉

〈a, /a, �〉

〈a, \c, /a〉

〈a, /b, /c\c〉

〈a/b/b〉

Figure 5 Rule tree t (without lexical entries), spinal(t), and its encoding enc(t).

atomic category a ∈ A, a single argument |c with | ∈ S and c ∈ C(A, k), and an argument
tree γ ∈ A(A, k) as unary nonterminals. Recall that we write substitutions α[t] as tα
for α ∈ A(A) and t ∈ C(A) ∪ A(A).

I Definition 17. We construct the sCFTG G′ = (N1 ∪N0, R ∪ L(Σ), I ′, P ) with
N1 = {〈a, |c, γ〉 | a ∈ A, | ∈ S, c ∈ C(A, k), γ ∈ A(A, k)} and N0 = {〈c〉 | c ∈ C(A, k)},
I ′ = {〈a0〉 | a0 ∈ I}, and
the following set P of productions

P =
{
〈c〉 → c | c ∈ L(Σ)

}
∪ (1){

〈a, /c, γ〉 → s
(
�, 〈cγ〉

)
| s =

(
ax/c, cγ → axγ

)
∈ R

}
∪ (2){

〈a, /c, γ〉 → s
(
〈cγ〉,�

)
| s =

(
cγ, ax /c→ axγ

)
∈ R} ∪ (3){

〈aαγ〉 → 〈a, |c, γ〉
(
〈aα|c〉

)
| a ∈ A, α, γ ∈ A(A), | ∈ S, c ∈ C(A, k),
|α| < k, |αγ| ≤ k

}
∪ (4){

〈a, |c, γ〉 → 〈a, |′c′,�〉
(
〈a, |c, γ|′c′〉(�)

)
| a ∈ A, |, |′ ∈ S, c, c′ ∈ C(A, k), γ ∈ A(A, k − 1)

}
(5)

We still have to establish that G′ indeed generates exactly R(G). This will be achieved
by showing both inclusions in the next chain of lemmas.

I Lemma 18. F(G′) ⊆ R(G).

For the converse, we decompose and encode rule trees R(G) in a more compact manner.
First, we translate a rule tree into its primary spine form. For all a ∈ A, c ∈ C(A, k),
γ ∈ A(A, k), and t1, t2 ∈ T we let

spinal
(
c
)

= c

spinal
(
(ax/c, cγ → axγ)(t1, t2)

)
= (ax/c, cγ → axγ)

(
spinal(t1), 〈c〉

)
spinal

(
(cγ, ax /c→ axγ)(t1, t2)

)
= (cγ, ax /c→ axγ)

(
〈c〉, spinal(t2)

)
.

Clearly, spinal : T→ TR,∅(L(Σ) ∪N0). An example is shown in Figure 5. Additionally, we
encode rule trees using only the nonterminals of G′ [i.e. a tree of T∅,N1(N0)]. To this end,
we define a mapping enc: T → T∅,N1(N0). For all a ∈ A, c ∈ C(A, k), γ ∈ A(A, k), and
t1, t2 ∈ T we let

enc(c) = 〈c〉
enc
(
(ax/c, cγ → axγ)(t1, t2)

)
= 〈a, /c, γ〉

(
enc(t1)

)
enc
(
(cγ, ax /c→ axγ)(t1, t2)

)
= 〈a, /c, γ〉

(
enc(t2)

)
.

This encoding is also demonstrated in Figure 5.
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〈a/b/c〉 ⇒G′

〈a, /b, /c〉

〈a/b/b〉
⇒G′

〈a, \c, �〉

〈a, /b, /c\c〉

〈a/b/b〉

⇒G′

〈a, /a, �〉

〈a, \c, /a〉

〈a, /b, /c\c〉

〈a/b/b〉

Figure 6 Derivation of the encoding.

I Lemma 19. 〈catG(t)〉 ⇒∗G′ enc(t) ⇒∗G′ spinal(t) for every t ∈ T with catG(t) ∈ C(A, k),
and hence R(G) ⊆ F(G′).

I Theorem 20. The rule trees R(G) of a CCG G can be generated by an sCFTG.

7 Proper Inclusion for Pure CCGs

In this section, we show that there exist CFG derivation tree languages that cannot be
accepted by any pure CCG. A CCG (Σ, A,R, I, L) is pure if R = R(A, k) for some k ∈ N.
In particular, this shows that the inclusion demonstrated in Section 6 is proper for pure
CCGs. We start with our counterexample CFG. To make the text more readable, we assume
henceforth that all computations with nonterminals are performed modulo 3.

I Example 21. Let us consider the CFG Gex = (N,Γ, 〈0, 0〉, P ) with the nonterminals
N = {〈i, j〉 | 0 ≤ i, j ≤ 2}, the terminals Γ = {α}, and the set P of productions contains
exactly 〈i, j〉 → 〈i + 1, j〉 〈i, j + 1〉 and 〈i, j〉 → α for every 〈i, j〉 ∈ N . Clearly, the tree
language D(Gex) is not universally mht-bounded.

Theorem 9 already shows that the tree language D(Gex) cannot be accepted by any
0-CCG. Similarly, it is impossible to accept D(Gex) with a pure CCG. This follows from
the transformation schemes of [14] that change the order of consecutive application and
non-application operations, resulting in derivation trees with reordered subtrees and therefore
with the wrong shape after relabeling. Due to the absence of rule restrictions in pure CCGs,
the applicability of these transformations cannot be prevented.

I Theorem 22. The tree language D(Gex) cannot be accepted any pure CCG.

8 Conclusion

We have shown that the tree languages accepted by CCGs with limited composition depth
and rule restrictions are a subset of the tree languages generated by simple monadic context-
free tree grammars. This inclusion is proper for pure CCGs (i.e. without rule restrictions).
In addition, the tree languages accepted by 0-CCGs are a proper subset of regular tree
languages, whereas those accepted by 1-CCGs are exactly the regular tree languages. While
the step from 0-CCGs to 1-CCGs does not increase the weak generative capacity, the strong
generative capacity increases. We also observe that there is no difference in expressivity for
0-CCGs between the pure and non-pure variants, while for higher rule degrees, pure CCGs
are strictly weaker. The first statement follows from the fact that we are able to construct
an equivalent pure 0-CCG for each mht-bounded regular tree language.
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The construction used in the classical proof of weak equivalence between CCG and
TAG [28] demonstrated that there is no difference in weak generative capacity between
2-CCGs and k-CCGs with k > 2 and that the inclusion of higher-order categories in the
lexicon does not change weak generative capacity. However, as stated in the Introduction, this
construction utilizes ε-entries, which are problematic from a computational point of view [15].
Future work should explore the relationship between TAG and CCG, and in particular
the effects of higher rule degrees k (up to unlimited composition depth) and higher-order
categories, in the absence of ε-entries. Another interesting direction is strong generative
capacity: If for a given sCFTG a strongly equivalent CCG could be constructed (the inverse
direction of what we showed in Theorem 20), this would characterize the tree-generative
capacity of CCG exactly. Furthermore, the effect of the inclusion of additional rules on the
expressivity should be studied.
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