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Abstract
We study the safety verification (reachability problem) for concurrent programs with uninterpreted
functions/relations. By extending the notion of coherence, recently identified for sequential programs,
to concurrent programs, we show that reachability in coherent concurrent programs under various
scheduling restrictions is decidable by a reduction to multistack pushdown automata, and establish
precise complexity bounds for them. We also prove that the coherence restriction for these various
scheduling restrictions is itself a decidable property.
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1 Introduction

Verification against assertion violations for sequential programs that have only Boolean
variables and have recursive function calls is decidable, as the problem is equivalent to
pushdown automata reachability/emptiness. However, generalizations of this result to other
settings is hard. First, there are hardly any positive results for verifying recursive programs
that work over infinite domains. Second, concurrent recursive program verification is typically
undecidable (two stacks suffice to encode the executions of Turing machines) if the interaction
of the threads is not restricted in any way.

A recent paper by Mathur et al. introduces a decidable class of sequential programs where
the data domain is infinite [27]. The first ingredient for decidability is that the programs
compute terms over functions and compare them over relations that are both assumed to be
uninterpreted. The theory of uninterpreted functions is an important theory. Theoretically,
it was the one studied by Gödel for his completeness theorems [15], and practically, the
decidability of validity of its quantifier-free fragment is exploited by SMT solvers and is often
used (typically in combination with other theories) to solve feasibility of loop-free program
snippets, in bounded model-checking, and to validate verification conditions [10]. The second
ingredient for decidability is a technical restriction called coherence. Coherent programs
have two properties – the memoizing property (which intuitively says that computed terms
once dropped cannot be recomputed) and the early assume property (which intuitively says
that equality assumptions in program executions happen early, well before their superterms
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46:2 Reachability in Concurrent Uninterpreted Programs

are computed and dropped). The work by [27] shows that for coherent programs, one can
build a streaming congruence closure algorithm with finite memory, and by modeling this
algorithm as an automaton, verify programs.

From a practical point of view, uninterpreted abstractions have been considered [18], and
a recent paper shows that verifying programs using an uninterpreted abstraction can be
effective [12]. Also, extensions of the decidable verification result for uninterpreted programs
has found applications in verifying memory-safety for heap-manipulating programs, where
heaps are naturally modeled using infinite domains [28].

In this paper, we consider the problem of verifying concurrent uninterpreted programs,
with both recursion and shared memory.

Note that concurrent recursive programs even over Boolean domains have an undecidability
verification (reachability) problem. Programs with uninterpreted functions/relations are
much more complex than programs with Boolean domains – it is easy to see that we can
simulate a program with Boolean domains by using a program with no functions or relations,
with two special immutable variables for T and F , and only using equality relations in the
program. Moreover, this will always yield a coherent program. Consequently, concurrent
recursive coherent uninterpreted programs clearly have an undecidable reachability problem.

There has been a rich literature of work that has identified restrictions of concurrent
recursive Boolean programs for which reachability is decidable (see [2, 9, 19, 21, 24, 25, 30]).
Verification of such programs can be modeled as reachability/emptiness problem in multistack
pushdown systems and several underapproximations based on restricting the scheduling of
threads has yielded decidability. These include bounded context-switching [30], bounded
scope executions [24], (k, d)-budgeted executions [2], k-phase executions [20], k-path-tree
executions [23], etc. Some generalizations of the above decidability results that show
decidability when manipulating multiple stacks in a way that the accesses correspond to
bounded tree-width manipulations are also known [13, 26], and some of these restrictions
have been applied for finding errors in predicate abstracted programs as well [17, 31, 21].
There has also been a lot of work on studying register automata (both sequential and
concurrent) on data words where registers can read data from infinite domains but use only
equality/disequality checks (note that uninterpreted functions/relations that must satisfy
the congruence axioms are not allowed) [6, 7, 14, 8, 29]; see also work extending to programs
where variables range over natural numbers, with equality, but with no functions [1].

The goal of this paper is to establish decidability results for concurrent recursive programs
working over infinite uninterpreted data domains with certain scheduling restrictions that
were shown to yield decidable reachability in the setting of Boolean programs. Our main
results are that coherent concurrent program safety verification (for a notion of coherence
for concurrent programs we define) is decidable for bounded context-switching, bounded
scope executions, (k, d)-budgeted executions, k-phase executions, ordered executions, and
k-path-tree executions.

There are two primary technical challenges to establish our results. First, we need to
define an appropriate extension of coherence for concurrent programs. We propose such a
natural extension. We model a concurrent program as working on a data-domain that is
shared amongst all processes; we think this is an important design decision as the alternative
choice of having local universes is both unnatural (domains of programs in the real world are
often common, like integers or other forms of data structures) and prohibits communication of
unbounded data between processes. The notion of coherence (memoizing and early assumes)
is defined based on the frontier of computation, which includes all variables that could
ever come into scope. This includes the unbounded copies of local variables stored in each
program’s stack as well as the shared variables.
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The second challenge is to build a multistack automaton that accurately captures the
feasibility of coherent runs of the concurrent recursive program. In the automata constructed
in [27] for sequential programs, the automata do not store actual elements of the universe
in the stack or state, of course, as the universe is infinite. Rather, the automata store
relationships between variables – more precisely the equalities between variables in the
initial model defined by the equality assumptions occurring in the program’s execution, the
disequality constraints implied by it, and certain local function maps between variables. Let
us call this the EDF information – information on equalities, disequalities, and function maps
between variables. The automaton constructed by [27] effects a streaming congruence closure
algorithm that has finite memory by keeping track of the EDF information on variables
currently in scope after any execution.

In concurrent programs, the EDF information is significantly harder to keep track of
because it includes relationships between not just the local variables of one process or
relationships between local variables and shared variables, but also between local variables of
different processes. For example, when a call returns in a local thread, it has to recover all
EDF information between new local variables in scope and local variables of other threads.

The above complications mean that we cannot simply abstract each local thread into its
EDF information and then take their concurrent evolution. In fact, our results do not extend
to parameterized concurrent systems (where there are an unbounded number of processes),
even for the cases where Boolean program verification under certain scheduling restrictions
are known to be decidable (e.g., bounded rounds is known to be decidable [21]).

Our multistack automaton construction instead maintains a complex invariant – an element
in the stack for a process p contains several kinds of information: the EDF information on
local variables of p and shared variables at the time the push (function call) happened, EDF
relationship of local variables in p to local variables in p just below the stack (the caller’s
variables), and most importantly, EDF information between local variables across processes
at the time this information was pushed onto the stack. Maintaining this complex invariant
at every stage is involved, and gives us the reduction from reachability of concurrent coherent
programs to multistack automata reachability.

The reduction to multistack automata reachability is rewarding as we can exploit the fact
that reachability of the latter under various scheduling restrictions have been well studied for
establishing decidability. Utilizing these results, we show that concurrent coherent program
reachability is decidable for the following restrictions: bounded context-switching, bounded
scope executions (k, d)-budgeted executions, k-phase executions, ordered executions, and
k-path-tree executions. We also show that our decidability results have optimal complexity.
In fact we can show that the complexity of verification of coherent concurrent programs is
precisely the same as that for Boolean programs under similar scheduling restrictions.

There is another natural related question that arises: Given a concurrent program with a
scheduling restriction as above, how can the user determine whether it is coherent? We show
that checking whether a concurrent program is coherent under these scheduling restrictions
is also decidable and decidable in the same time complexity as the reachability algorithm.

2 Concurrent Uninterpreted Programs

In this section, we introduce the notion of concurrent programs over data domains with
uninterpreted functions and relations. We start by recalling some definitions about first order
data structures, then we recall the definition of uninterpreted sequential programs and then
we extend it to concurrent programs.
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46:4 Reachability in Concurrent Uninterpreted Programs

A first order signature is (C,F ,R) where C is a set of constants, F is a set of function
symbols, and R is a set of relation symbols. Relations and functions have an implicitly
assigned arity in N>0. A signature is algebraic if R is empty and in this case we denote
it simply as the pair (C,F). A data model for (C,F ,R) is M = (U, {JcK | c ∈ C}, {JfK |
f ∈ F}, {JRK | R ∈ R}) consisting of a universe, and an interpretation on the universe for
constants, functions and relations (a data model for an algebraic signature will not have
an interpretation for the relations). The set of terms is defined inductively as follows: each
constant from C is a term and for any m-ary function f and terms t1, . . . , tm, f(t1, . . . , tm) is
also a term. An immediate superterm of t is f(t1, . . . , tm) where t ∈ {t1, . . . , tm}. A superterm
of t is either an immediate superterm of t or an immediate superterm of a superterm of t.
The interpretation of a term t inM is denoted as JtKM.

In the following, for an integer n > 0, we denote with [n] the set {1, . . . , n}.

2.1 Uninterpreted sequential programs
We consider simple sequential programs over uninterpreted functions and relations, and with
possibly recursive calls to methods. We fix a finite set of variables V which includes both
local and global variables used by the programs to store information during a computation.
Values are manipulated by using function and relation symbols from a first order signature
(C,F ,R). We also fix a finite set of method names M . A program is essentially formed
of a list of method definitions, one for each method name in M and such that there is a
main method, i.e., the method from which the execution starts, that we denote m0. We
allow methods to return tuples of values, thus for every method m ∈M , we fix a tuple of
distinct output variables om. Also for the ease of presentation and without loss of generality,
we assume that all methods have the same list of parameters which coincides with a fixed
permutation of all the local variables. In the following, we denote such list as lvars. Each
method body contains assignments, sequencing, conditionals, loops and method calls.

The precise syntax is given by the following grammar:

〈pgm〉 ::= m⇒ om〈 stmt〉 | 〈pgm〉 〈pgm〉
〈stmt〉 ::= 〈stmt〉; 〈stmt〉 | skip | x := y | x := f(z) | assume(〈cond〉)

| w := m(lvars) | if (〈cond〉) then 〈stmt〉 else 〈stmt〉 | while (〈cond〉) 〈stmt〉
〈cond〉 ::= x = y | x = c | c = d | R(z) | 〈cond〉 ∨ 〈cond〉 | ¬〈cond〉

In the above, m ∈ M is a method name, c, d ∈ C are constants, f ∈ F is a function
name, R ∈ R is a relation name, x, y ∈ V are variables, w is a tuple of variables from V ,
and z is a tuple of constants from C and variables from V . Moreover, we allow for standard
operators: ‘:=’ is the assignment operator, ‘;’ is the program sequencing operator, skip is
the “do nothing” statement, if-then-else is the usual conditional statement and while is
the usual loop statement. Method calls are handled as usual with a call stack. Namely, a
configuration of the program consists of a stack which stores the history of positions at which
calls were made, along with valuations for local variables, and the top of the stack contains
the local and global valuations, and a pointer to the current statement being executed. Note
that we do not make use of an explicit return statement: a call to module m is returned
when there are no more statements of m to execute (the values that need to be returned are
assigned to the output variables om before the call ends).

For the ease of presentation, in the rest of the paper we will assume that the programs
have only conditionals of the form ‘x = y’ and ‘x 6= y’, constants will not appear in any of
the program expressions and the signature is algebraic, i.e., R is empty. Note that this is
without loss of generality. In fact, any relation R can be captured by a function fR with the
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same arity and a Boolean variable bR. A Boolean combination of conditions can be modeled
using the if-then-else construct. Constants can be removed by using instead variables that
are not modified in the program.

Fix a set of functions F . An execution of a sequential program over a set of variables V and
set of methods M is a sequence over the alphabet Π = {“x := y”, “x := f(z)”, “assume(x =
y)”, “assume(x 6= y)”, “call m”, “w := return” | x, y, z, w are in V,m ∈M}. In particular,
for a program P , denoting bd(m) the body of a method m ∈M , the set of complete executions
of P is generated by the following context-free grammar:

Xε → ε

Xskip; st → Xst

Xx:=y; st → “x := y” · Xst

Xx:=f(z); st → “x := f(z)” · Xst

Xassume(c); st → “assume(c)” · Xst

Xif(c) then st1 else st2 ; st → “assume(c)” · Xst1 ; st | “assume(¬c)” ·Xst2 ; st

Xwhile(c) {st1} ; st → “assume(c)” · Xst1 ; while(c) {st1} ; st | “assume(¬c)” · Xst

Xw:=m(lvars) ; st → “call m” ·Xbd(m) · “w := return” · Xst

where Xst denotes the nonterminal symbol corresponding to a statement st and Xbd(m0) ; ε is
the start symbol (recall m0 is the main method). An execution is any prefix of a complete
execution. Note that not all the executions are feasible.

2.2 Concurrent uninterpreted programs
A concurrent uninterpreted program is a finite set of recursive uninterpreted programs running
in parallel and sharing a finite set of variables S. The syntax of concurrent programs is
defined by extending the syntax of the sequential programs with the following rule:

〈conc-pgm〉 ::= 〈pgm〉 | 〈pgm〉 || 〈conc-pgm〉

where each sequential program uses its own set of local and global variables along with the set
of the shared variables (for a sequential program the shared variables are as global variables,
the only difference is that they can be read and written also by the other sequential threads).

For the rest of the paper, we fix a concurrent uninterpreted program P that is formed
by the sequential programs P1, . . . , Pn (where n > 0). We refer to programs P1, . . . , Pn as
the component programs of P. We denote with Vi the set of local and global variables of
each Pi and assume that the sets S, V1, . . . , Vn are pairwise disjoint. Further, we denote
Vars = S ∪

⋃n
i=1 Vi the set of all variables used in P. Any (complete) execution of P is

obtained as an interleaving ρ1, . . . , ρn where ρi is a (complete) execution of Pi for i ∈ [n].
To distinguish among the different sequential programs in a concurrent execution, we

assume pairwise disjoint alphabets and for each program Pi, we will denote the corresponding
alphabet Πi and any symbol of the form “a” as 〈a〉i, that is, we let Πi = {〈x := y〉i, 〈x :=
f(z)〉i, 〈assume(x = y)〉i, 〈assume(x 6= y)〉i, 〈call m〉i, 〈w := return〉i | x, y, z, w are in Vi ∪
S,m ∈M}. Thus, the overall alphabet for P is Π =

⋃
i∈[n] Πi.

At the beginning of any execution each variable x is set according to an initial inter-
pretation of the data model that we denote with init(x). Then, the variables are updated
according to the intended semantics of the statements.

For any ρ′ such that ρ · ρ′ · ρ′′ is an execution of P and i ∈ [n], we say that ρ′ is i-matched
if all the calls of program Pi (i.e., of the form 〈call m〉i) that occur in ρ′ are matched within
ρ′. The map Comp captures the term associated with program variables at the end of any
execution. Denoting with ρ any execution of P, Comp is inductively defined as follows:

FSTTCS 2019



46:6 Reachability in Concurrent Uninterpreted Programs

comp(ε, x) = init(x) x ∈ Vars
Comp(ρ.〈x := y〉i, x) = Comp(ρ, y)

Comp(ρ.〈x := y〉i, x′) = Comp(ρ, x′) x′ ∈ Vars and x′ 6= x

Comp(ρ · 〈x := f(z)〉i, x) = f(Comp(ρ, z1), . . . , Comp(ρ, zr)) where z = (z1, . . . , zr)
Comp(ρ · 〈x := f(z)〉i, x′) = Comp(ρ, x′) x 6= x′

Comp(ρ · 〈assume(x = y)〉i, x′) = Comp(ρ, x′) x′ ∈ Vars
Comp(ρ · 〈assume(x 6= y)〉i, x′) = Comp(ρ, x′) x′ ∈ Vars

Comp(ρ · 〈call m〉i · ρ′

·〈(w1, . . . wr := return〉i, wj)
= Comp(ρ · 〈call m〉i · ρ′, om[j]) ρ′ is i-matched

Comp(ρ · 〈call m〉i · ρ′

·〈(w1, . . . wr := return〉i, x)
= Comp(ρ, x)

ρ′ is i-matched,
x 6∈ {w1, . . . wr}

We denote with ≤ the prefix relation among executions, i.e., for executions ρ, ρ′, with
ρ′ ≤ ρ we mean that ρ′ is a prefix of ρ. The set of all the terms computed by an execution ρ
is Terms(ρ) =

⋃
ρ′≤ρ,x∈Vars Comp(ρ′, x).

The semantics of uninterpreted programs is defined with respect to a data model that
gives a meaning to the elements in the signature, and thus to the computed terms. An
execution ρ is said to be feasible with respect to a data model if the assumptions it makes
are true in that model. To formalize the notion of feasible executions we first define the sets
of the equality assumes and the disequality assumes of an execution.

For any execution ρ, the set of equality assumes of ρ, denoted α(ρ), is a subset of
Terms(ρ)× Terms(ρ) inductively defined as: α(ε) = ∅; and if σ is 〈assume(x = y)〉i, i∈ [n],
then α(ρ · σ) = α(ρ)∪ {(Comp(ρ, x), Comp(ρ, y))}, otherwise α(ρ · σ) = α(ρ). Similarly, the set
of disequality assumes β(ρ) can be defined as: β(ε) = ∅; and if σ is 〈assume(x 6= y)〉i, i∈ [n],
then β(ρ · σ) = β(ρ) ∪ {(Comp(ρ, x), Comp(ρ, y))}, otherwise β(ρ · σ) = β(ρ).

An execution ρ is feasible in a data-model M if JtKM = Jt′KM for every (t, t′) ∈ α(ρ),
and JtKM 6= Jt′KM for every (t, t′) ∈ β(ρ).

We recall that an equivalence relation ∼=⊆ Terms × Terms is said to be a congruence
if whenever t1 ∼= t′1, t2 ∼= t′2, . . . tm ∼= t′m and f is an m-ary function then f(t1, . . . tm) ∼=
f(t′1, . . . t′m). Given a binary relation A ⊆ Terms × Terms, the congruence closure of A,
denoted ∼=A, is the smallest congruence containing A. We can then show:

I Proposition 1. An execution ρ is feasible in some data model if and only if ∼=α(ρ) ∩β(ρ) = ∅.

3 Verification of concurrent uninterpreted programs

The basic verification problem is reachability that consists of checking whether a given set
of target states is reachable in a program execution. For uninterpreted programs, there
is an additional request: the execution must be feasible in some data model. The target
set is often captured by a program counter (corresponding to an assertion) and a Boolean
combination of equalities over program variables. As also observed in [27], by simple program
transformations, the reachability problem for uninterpreted programs can always be reduced
to checking the existence of a feasible complete execution (the assertion condition is translated
into a block containing assume and if statements). In such a translation the size of the
resulting program is linear in the sizes of the starting program and the assertion conditions.
Thus we consider the following reachability problem for concurrent uninterpreted programs:

I Definition 2 (Reachability). Given a concurrent uninterpreted program P, the reachability
problem asks whether there exists a feasible complete execution of P.
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We observe that this decision problem is already undecidable for sequential uninterpreted
programs even in absence of recursive method calls, and becomes EXPTIME-complete if the
search is restricted to coherent computations [27]. Unfortunately, in the case of concurrent
uninterpreted programs, assuming coherence does not suffice to gain decidability. In fact,
reachability is undecidable even for concurrent programs with variables ranging over finite
domains and with only two component programs. Consequently, we further restrict the
executions by adopting some limitations studied in the literature that bound the interaction
among the component programs.

In the rest of this section, we define first the notion of coherence, then the above mentioned
restrictions for concurrent uninterpreted programs, and then the general bounded reachability
problem. Finally, we conclude with a high level description of our approach to decide it.

Coherence. For terms t1, t2 ∈ Terms and congruence ∼= on Terms, we say that t2 is a
superterm of t1 modulo ∼= if there are terms t′1, t′2 ∈ Terms such that t′1 ∼= t1, t′2 ∼= t2 and t′2
is a superterm of t′1. For the ease of presentation in the informal descriptions we will identify
equivalent terms, and thus we will refer to a term meaning any of its equivalent terms. For
example, if we say that a term t is recomputed in an execution, we actually mean that the
computed term t is equivalent to a term that was computed earlier in the execution. Also,
we call a superterm modulo an equivalence ∼= simply a superterm.

The notion of coherent execution introduced in [27] for sequential programs naturally
extends to concurrent programs by using the Comp map defined above. Informally, an
execution is coherent if it is memoizing and has early assumes. The memoizing property says
that if a term t is recomputed there must be a variable that currently evaluates to t. The
early assume property instead imposes constraints on when 〈assume(x = y)〉i steps are taken
within the execution: it requires that such assume statements appear before the execution
reassigns all the variables storing any computed term t that is a superterm of the terms
stored in x or y (i.e., before it “drops” all of such superterms).

Formally, we say that a (complete) execution ρ over variables Vars is coherent if it satisfies
the following two properties:
1. (Memoizing) Let π′ = π · 〈x := f(z)〉i be a prefix of ρ and let t = Comp(π′, x). If there is

a term t′ ∈ Terms(π) such that t′ ∼=α(π) t, then there must exist some y ∈ V such that
Comp(π, y) ∼=α(π) t.

2. (Early Assumes) Let π′ = π · 〈assume(x=y)〉 be a prefix of ρ and let tx = Comp(π, x) and
ty = Comp(π, y). If there is a term t′ ∈ Terms(π) such that t′ is either a superterm of tx or
of ty modulo ∼=α(π), then there must exist a variable z ∈ V such that Comp(π, z) ∼=α(π) t

′.
A coherent program is a program whose executions are all coherent.

In the literature, there is a notion of freshness [32, 8] that may remind people of the
notion of memoizing above; however, these are not similar, as the memoizing restriction
is on freshness of the computed terms and not on the underlying semantics of the data
values computed (two terms may be different but still correspond to the same element in a
particular data model).

Bounding the interaction among the component programs. Denote with Π =
⋃
i∈[n] Πi

the alphabet over variables V and functions F . Also, for any ρ′ such that ρ · ρ′ · ρ′′ is an
execution of P and i ∈ [n], we say that ρ′ is i-matched if all the calls of program Pi (i.e.,
of the form 〈call m〉i) that occur in ρ′ are matched within ρ′. For integers k, d > 0, we
consider the bounding conditions that restrict the search respectively to the following sets of
executions:

FSTTCS 2019



46:8 Reachability in Concurrent Uninterpreted Programs

a k-context execution ρ is the concatenation of k contexts, i.e., ρ = ρ1 . . . ρk where
ρi ∈ Π∗ji

, for i ∈ [k] and ji ∈ [n], is a context of Pji
(bounded context-switching, con for

short) [30];
a k-scoped execution ρ is such that for each pair of matching call and return from any Πi,
the portion of ρ delimited by them does not contain more than k contexts of Pi, i.e., for
any decomposition ρ = ρ′.σc.ρ

′′.σr.ρ
′′′ where for some i ∈ [n], σc is of the form 〈call m〉i,

σr is of the form 〈w := return〉i, and ρ′′ is i-matched, ρ′′ does not contain more than k
contexts of Pi (scope-bounded matching relations, sco for short) [24];
a (k, d)-budget execution ρ is such that for each component program Pi and for each ρ′′
such that ρ = ρ′.ρ′′.ρ′′′ where the call stack of Pi contains more than d calls, there are at
most k contexts of Pi in ρ′′ (budget-bounded context-switching, bud for short) [2]1;
a k-phase execution is the concatenation of k phases where a phase of component program
Pi is a sequence from Π where all the return symbols are from alphabet Πi, i.e., are of
the form 〈w := return〉i (bounded number of phases, pha for short) [20];
an ordered execution ρ is such that for each j ∈ [n] and for each return σr from Πj ,
all the calls from Πi, with i < j, that occur in ρ before σr are matched, i.e., for each
decomposition ρ = ρ′.σr.ρ

′′, ρ′ is i-matched for all i < j (ordered matching relations, ord
for short) [11];
a k-path-tree execution ρ is such that it can be encoded into a stack tree2 whose nodes
can be discovered in the order given by ρ by a walk that starts from the root and visits
each node at most k times (bounded path-trees, pat for short) [23].

Bounded reachability. The bounded reachability problem asks to solve reachability by
restricting the search within a subset of the coherent program executions that satisfy a given
bounding condition. Formally:

I Definition 3 (Bounded Reachability). Given a concurrent uninterpreted program P and
a bounding condition B over the executions of P, the B-bounded reachability problem asks
whether there exists a feasible and coherent complete execution of P that satisfies B.

In the following, we will refer to a B-bounded reachability problem as B-reach.

Decision algorithm. We reduce the bounded reachability problem to a reachability problem
in multistack visibly pushdown automata (Mvpa). In particular, we construct an Mvpa
AVars that captures exactly all the coherent and feasible executions over an alphabet Π, and
an Mvpa AP that captures all the executions of P . We then take the intersection of the two
Mvpa’s and check if it accepts an execution that fulfills the bounding condition. In Section
4, we construct AVars and prove its correctness, and in Section 5 we give AP and discuss the
correctness and complexity of the decision algorithm for the considered bounding conditions.

1 The original definition admits a different value of k and d for each component program however the
computational complexity of the reachability problem is the same.

2 A stack tree is a binary tree obtained by labeling the root with the first symbol of ρ, and then the
successor in ρ labels the left child unless it is a matched return, and in this case it labels the right child
of the matching call.
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4 MVPA capturing coherent and feasible executions

In this section, we construct an Mvpa AVars that accepts all the coherent and feasible
executions of a concurrent uninterpreted program over the variables Vars and functions F .

The crux of the construction is to represent and maintain the equality/disequality/func-
tional (EDF) relationship between variables along a concurrent execution. Concurrency
poses new challenges on how to maintain this EDF information. Besides the terms that
are currently stored in the program variables, we need to account for those in the local
variables of unreturned calls (still in a call stack) for each of the component programs.
In concurrent programs, a term can flow from a local variable into a shared variable and
then to a local variable of another component program thus potentially establishing direct
equality/inequality/superterm relations among the terms stored in two local variables of two
different component programs. Moreover, as the execution proceeds, these terms can go deep
down into their respective call stacks while no other currently used variable stores them (nor
terms that are equivalent to them), and still on returning, these relations need to be restored.

We organize this complex (and unbounded) piece of information into stack and shared
states. Stack states are kept into the stacks of the corresponding component programs while
shared states are maintained in the control state of the Mvpa, and both of them store the
relations among the content of all variables. To link the shared state with all the stack states
at the top of the stacks and a stack state to the next stack state below into the stack, we
use shadow variables, i.e., additional variables that are used in our relations as placeholders
for actual program variables. For each component program we add a shadow variable for
each program variable. The stack state of a component program is then augmented with
its shadow variables, and the shared state is augmented with the overall set of shadow
variables (we need to link this state to all the stacks). When a method call of component
Pi is issued, we push into stack i the stack state of Pi that can be derived from the current
shared state, and then update the shared state by setting the shadow variables of Pi equal
to the corresponding program variables. Shadow variables stay unchanged in all the other
cases, and thus we maintain the invariant that a shadow variable of Pi has the value of the
corresponding program variable at the time the current method of Pi was called (the initial
value in the case of the main method). This way, in each stack, a stack state l is linked to the
state l′ below it by having each shadow variable of l to evaluate equal to the corresponding
program variable in l′, thus forming a chain across the stack values. The same holds for the
shared state and the stack states at the top of all the stacks.

We recall that a multistack visibly pushdown automaton (Mvpa) consists of a finite control
along with one or more pushdown stores (stacks) that are driven by the input. We refer the
reader to [3, 24] for the details.

In the rest of the section, we first formalize the introduced notions, then we give some
details on the construction of the Mvpa and argue its correctness.

Shadow variables. Fix i ∈ [n]. For each component program Pi, we consider a shadow
variable for each shared variable and for each variable of all the component programs Pj
with j ∈ [n]. We denote the first set as S′i and the second set as V ′i,j . Further, we denote
Vars′i = S′i ∪

⋃
j∈[n] V

′
i,j (the overall set of shadow variables for Pi), Vars′ =

⋃
i∈[n] Vars′i

(the set of all the shadow variables), V = Vars ∪ Vars′ (the overall set of variables), and
Vi = Vars ∪ Vars′i (the set of the program variables along with the shadow variables of Pi).

We extend the notation Comp to capture the described semantics of the shadow variables as
follows. For i ∈ [n], denoting with x′ ∈ Vars′i the shadow variable corresponding to x ∈ Vars,
we set: Comp(ε, x′) = Comp(ε, x), Comp(ρ.〈call m〉i, x′) = Comp(ρ, x) (i.e., x′ stores the value
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of x on calling a method), Comp(ρ.〈call m〉i.ρ′.〈w := return〉i, x′) = Comp(ρ, x′) where ρ′ is i-
matched (i.e., after the call the previous value of x′ is restored) and Comp(ρ.σ, x′) = Comp(ρ, x′)
for all σ 6∈ {〈call m〉i, 〈w := return〉i | m is a method}.

States and invariants. For an equivalence relation ∼ over a set V , we denote with V/∼
the quotient set, i.e., {[v]∼ | v ∈ V }.

Given a set of variables V and a set of functions F , let (E,D,P,B) be a tuple such that:
E ⊆ V × V is an equivalence relation over V ;
D ⊆ V/E × V/E is a symmetric relation;
P is a partial interpretation of the functions from F over the equivalence classes of E
(for an r-ary function f , P (f) is a partial map from (V/E)r to V/E);
B is such that for an r-ary function f , B(f) is map from (V/E)r to {⊥,>}.

A shared state (resp. stack state of Pi for i ∈ [n]) is a tuple of the form (E,D,P,B) as above
where V = V (resp. V = Vi).

In our construction, along any execution, we aim to maintain a shared state (E,D,P,B)
such that E tracks the occurred equivalences, D tracks the occurred inequalities, P captures
the superterm relation among the currently stored terms, and B signals that some superterms
of the currently stored terms have been already computed. Formally, we wish to maintain
the following:

Invariants. For an execution ρ, variables x, y, x1, . . . , xr ∈ Vars and function f ∈ F ,
I1. (x, y) ∈ E if and only if Comp(ρ, x) ∼=α(ρ) Comp(ρ, y);
I2. ([x]E , [y]E) ∈ D if and only if there are t0, t1 ∈ Terms(ρ) s.t. (t0, t1) ∈ β(ρ), and for

i ∈ {0, 1}, ti ∼=α(ρ) Comp(ρ, x) and t1−i ∼=α(ρ) Comp(ρ, y);
I3. P (f)([x1]E , . . . , [xr]E) = [x]E if and only if t ∼=α(ρ) f(t1, . . . , tr) with t = Comp(ρ, x) and

ti = Comp(ρ, xi) for i ∈ [r];
I4. B(f)([x1]E , . . . , [xr]E) = > if and only if there is a prefix ρ′ of ρ s.t. t ∼=α(ρ) f(t1, . . . , tr)

with t = Comp(ρ′, z) for some z ∈ Vars and ti = Comp(ρ, xi) for i ∈ [r].

4.1 The Mvpa AVars

AVars uses n stacks, one for each component program Pi. The symbols of stack i are the
stack states. The control states are q̄fs, q̄mem, q̄ea and the shared states. Intuitively, q̄fs,
q̄mem, and q̄ea are entered when respectively the feasibility, memoizing and early assume
property is violated by the input execution. The set of initial states is a singleton containing
only the shared state (E0, ∅, P0, B0) where E0 = {(x, x) | x ∈ V}, and for each f ∈ F , P0(f)
is undefined and B0(f) is the constant map assigning ⊥. Let Q̄fs be the set containing q̄fs
and all the shared states (E,D,P,B) such that D is not irreflexive. All the control states
are accepting except for q̄mem, q̄ea and all the states from Q̄fs. The transition relation is
defined below.

As we go along with the description of the transitions, we also convey a proof by induction
of the fulfillment of the invariants I1–I4 at the control states of the form (E,D,P,B) assuming
that the concurrent execution that leads to such states is coherent. Indeed, in our proof we
show a stronger property. In fact, we show that invariants I1–I4 hold with respect to V (not
only Vars) and additionally:
I5. for i ∈ [n] and any execution of the form ρ = ρ′.〈call m〉i.ρ′′ where ρ′′ is i-matched, the

stack state at the top of the stack for program Pi after reading ρ fulfills I1–I4 on ρ′.
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The induction is on the length of the input execution. The base case, i.e., when the
execution is empty, is a direct consequence of I1–I5 holding at the initial state of AVars.

Transitions from non-accepting states. The only transitions going out of the states q̄fs,
q̄mem, and q̄ea are transitions to themselves (sink rejecting states). From all states of the
form (E,D,P,B) such that D is not irreflexive, it is only possible to reach q̄fs.

Internal transitions from accepting states. We describe the internal transitions from a
control state q of the form (E,D,P,B) such that D is irreflexive. We start by analyz-
ing two cases that can take to states that are not of the form (E′, D′, P ′, B′). On the
input symbol 〈x := f(x1, . . . , xr)〉i, AVars enters q̄mem if B(f)([x1]E , . . . , [xr]E) = > and
P (f)([x1]E , . . . , [xr]E) is undefined (i.e., when we are trying to recompute a term that is
not stored in any variables at this point of the execution and thus the memoizing property
breaks). On the input symbol 〈assume(x = y)〉i, AVars enters q̄ea if there is a superterm t of
either the term stored in x or the one stored in y that is stored in z and there is a function
f ∈ F s.t. B(f)([x1]E , . . . , [xr]E) = > but P (f)([x1]E , . . . , [xr]E) is undefined where z is
one of x1, . . . , xr (i.e., we get evidence that no term equivalent to a previously computed
superterm of those stored in either x or y is currently stored, and thus the early assume
property breaks).

In the remaining cases, the internal transitions take to a state of the form (E′, D′, P ′, B′)
such that on input σ and with i ∈ [n]: if σ = 〈assume(x = y)〉i, we merge the equivalence
classes of x and y and propagate equality on the stored superterms (by P ), then update
D, P and B according to the equivalence classes of E′; if σ = 〈assume(x 6= y)〉i, we just
add ([x]E , [y]E) and ([y]E , [x]E) to the set of inequalities D; if σ = 〈x := f(x1, . . . , xr)〉i, we
essentially move x to the equivalence class P (f)([x1]E , . . . , [xr]E) if defined and start a new
one otherwise, remove the pairs of D involving x if x was the only variable of its class, and
update P and B according to E′; the case σ = 〈x := y〉i is simpler than the previous one, we
just need to remove the pairs of D involving x if x was the only variable of its class, merge
the equivalence classes of x and y, and modify P and B accordingly. It is simple to see that
the invariants I1–I5 are preserved.

Push and pop transitions. The only push and pop transitions are from control states of the
form (E,D,P,B). As for the internal transitions, (E,D,P,B) is updated with the purpose
of preserving the wished invariants. Additionally, on a call symbol of the form 〈call m〉i,
the shadow variables of component program Pi are set to the terms currently stored in the
corresponding program variables (by enforcing equality with these variables) and the current
stack state (i.e., the restriction of the current control state to the variables Vi) is pushed
onto stack i. On a return symbol of the form 〈w := return〉i, the stack state at the top of
stack i is popped and merged with the current control state such that the resulting state
relates: the terms at the beginning of the resumed method call (referred by the variables
from Vars′i in the popped state) to the rest of the terms of the current state (referred by the
variables other than Vars′i in the current control state). Below, we give the details only for
the return transitions.

Let σ = 〈w := return〉i be the input symbol, q = (E,D,P,B) be the current control state,
m be the returned method and q` = (E`, D`, P`, B`) be the top symbol of stack i. From q, by
reading σ and popping q`, AVars moves to a control state q′ = (E′, D′, P ′, B′) that is obtained
as follows. We start by renaming in q` each variable x to x. Denote Vars = {x | x ∈ Vars}
and Vars′i = {x′ | x′ ∈ Vars′i} (recall that q` is over the set of variables Vi). Then, we define
q′′ as the component-wise union of q and q` (i.e., we retain the equivalences, inequalities and
map definitions from these states). Note that q′′ is over the variables from V ∪ Vars ∪ Vars′i.
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Now, we update q′′ by assuming the equations x′ = x for x ∈ Vars where x′ ∈ Vars′i and
x ∈ Vars are the variables corresponding to x in the respective sets. In the resulting state
we then drop all the variables from Vars′i ∪ Vars and rename back each variable x′ ∈ Vars′i
to the corresponding variable x′ ∈ Vars′i. The resulting state qmrg is thus over the variables
from V. Finally, we get q′ by updating this state according to the assignments w := om.

To argue the induction step in this case, let ρ = ρ′.〈call m〉i.ρ′′ where ρ′′ is i-matched.
From the induction hypothesis, q` fulfills I1–I4 restricted to Vi on ρ′ (I5) and q fulfills I1–I4
on ρ. Thus, by effect of the equations x′ = x that we assumed to get qmrg from q′′, we
relate the valuation of each variable at the end of ρ′ to: its valuation at the end of ρ for
the variables listed in w (i.e., before assigning the terms returned by method m), and its
valuation at the end of ρ.〈w := return〉i for the remaining ones. Therefore, the state qmrg
fulfills I1–I4 on ρ.〈wm := return〉i except for assuming the valuation Comp(ρ, w) for w in w.
Finally, since q′ is obtained from qmrg through the assignments w := om, we get that q′ fulfills
I1–I4 on ρ.〈wm := return〉i. Further, after the transition is taken, the stack state at the top
of the stack must clearly fulfill I5. In fact, since on reading a call of Pi we push onto the
corresponding stack the restriction of the control state to Vi, by the inductive hypothesis we
get that I1–I4 clearly holds up to that point of the computation.

Correctness. From the above arguments, the following lemma holds:

I Lemma 4. Let ρ be a coherent concurrent execution over variables Vars and functions F .
If AVars reaches a control state of the form (E,D,P,B) after reading ρ, then (E,D,P,B)
satisfies the invariants I1–I4.

By building on the results from [27] and the above lemma, we get:

I Lemma 5. Let ρ be a coherent concurrent execution over variables Vars and functions
f ∈ F . For σ ∈ Π, the following holds:
1. ρ is infeasible iff AVars enters a state in Q̄fs on input ρ;
2. ρ.σ is not memoizing iff AVars enters q̄mem on input ρ.σ;
3. ρ.σ does not satisfy the early-assumes property iff AVars enters q̄ea on input ρ.σ.

Since the only non-accepting states of AVars are q̄mem , q̄ea and all the states from Q̄fs, by
inductively applying the above lemma we get:

I Theorem 6. A concurrent computation ρ is accepted by AVars if and only if ρ is coherent
and feasible.

By assuming that the signature has constant size, the number of different tuples of the
form (E,D,P,B) over the set of variables V is O(2|V|O(1)) where |V| = O(n |Vars|), and thus,
also the size of AVars is V is O(2|V|O(1)).

5 Checking bounded reachability and coherence

Fix a concurrent uninterpreted program P with component programs P1, . . . , Pn.

Reduction to Mvpa reachability. By standard constructions, it is possible to construct an
Mvpa AP of size exponential in the number of components n that accepts all and only the
complete executions of P.

Since the stack operations are visible in the input alphabet, the intersection of two Mvpas
is still an Mvpa that can be obtained by the cross product of the starting Mvpas [3, 24].
Denoting AP,Vars the Mvpa capturing the intersection of AP and AVars, the size of AP,Vars

is 2|V|O(1) (note that |V| ≥ n). Thus, by Theorem 6, we have:
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I Theorem 7. AP,Vars has size 2|V|O(1) and accepts all and only the coherent and feasible
executions of P.

Decidable bounded reachability problems. By restricting the executions with the bounding
conditions given in Section 3, we obtain versions of Mvpa’s that have a decidable reachability
problem. This along with Theorem 7 gives the decidability of the bounded reachability
problem for concurrent uninterpreted programs under all the considered bounding conditions.
Concerning to the computational complexity, we have the following upper-bounds (we denote
with A an n-stack Mvpa):

from [30], the Mvpa reachability problem within k context-switches can be solved in time
O(k3|A|5(n|Q|)k) where Q denotes the set of control states of A, thus by Theorem 7 we
get that con-reach can be decided in time exponential in the size of V and k;
from [24] we have that the Mvpa reachability problem restricted to k-scoped executions
can be decided in O(2n|Q|2kn+1) time, and thus by Theorem 7 we get that sco-reach
can be decided in time exponential in the size of V and k;
from [2], we have that the Mvpa reachability problem restricted to (k, d)-budget executions
can be decided in time exponential in (|A|+ d+ k); by encoding the stacks up to depth
d into the control state, we can give a decision algorithm in the style of that given for
the scope-bounded restriction that takes O(2n(|Q|+ |Γ|nd)2kn+1) time, which gives for
bud-reach an upper-bound that is exponential in size of V, d and k;
from [23], we have that the Mvpa reachability problem restricted to k-path-tree executions
can be decided in time 2O(k(n+log |A|)), thus by Theorem 7 we get that pat-reach can be
decided in time exponential in the size of V and k;
from [20], we have that the Mvpa reachability problem restricted to k-phase executions
can be decided in time 2|A|2O(k) , thus by Theorem 7 we get that pha-reach can be
decided in time double exponential in the size of V and k;
from [4], we have that the Mvpa reachability problem restricted to ordered executions can
be decided in time |A|2O(n) , thus by Theorem 7 we get that ord-reach can be decided
in time exponential in the size of V and double exponential in n.

Since the reachability problem for sequential uninterpreted programs is EXPTIME-hard
[27] and each instance of this problem is also an instance of con-reach, sco-reach, bud-
reach and pat-reach, we have that all these problems are EXPTIME-complete. Moreover,
since the reachability of Mvpa restricted to ordered executions and bounded phase executions
can be reduced to the respective problems for Boolean programs, and both these problems are
2EXPTIME-hard [4, 20], we have that pha-reach and ord-reach are 2EXPTIME-complete.
Thus, we get the following theorem:

I Theorem 8. The problems con-reach, sco-reach, bud-reach and pat-reach are
EXPTIME-complete, and the problems pha-reach and ord-reach are 2EXPTIME-com-
plete.

Deciding coherence. Define Anotco as the Mvpa obtained from AVars by removing the state
q̄fs and the transitions involving it, and making q̄mem and q̄ea its only accepting states. From
Lemma 5, we get that Anotco accepts a concurrent execution ρ if and only if ρ is incoherent.
Thus, to determine whether a program P is coherent we can just check Anotco ∩ AP = ∅.
Therefore, by the results on the considered bounding conditions introduced above, we get:

I Theorem 9. Deciding coherence is EXPTIME-complete under con, sco, bud and pat
restrictions and 2EXPTIME-complete under pha and ord restrictions.
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6 Conclusions

In this paper, we have shown the decidability of the reachability problem for concurrent
uninterpreted programs under a number of restrictions that have been considered in the
literature for the analysis of finite-domain concurrent programs. Our results do not extend
directly to parametric uninterpreted programs, i.e., concurrent uninterpreted programs with
executions formed of unboundedly many component programs (see [5, 21, 16, 22]). In
fact, we crucially use in our reduction to Mvpa to distinguish among the local variables
of each component program. Also, known results on sequentializations (see [19, 25, 31]),
i.e., code-to-code translations into non-deterministic sequential programs which (under
certain assumptions) behave equivalently, do not seem to to work for uninterpreted programs
as coherence suddenly breaks when rearranging the order of the statements. Both these
directions deserve future investigation.
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