
Degrees of Ambiguity of Büchi Tree Automata
Alexander Rabinovich
Tel Aviv University, Israel
https://www.cs.tau.ac.il/~rabinoa/
rabinoa@tauex.tau.ac.il

Doron Tiferet1

Tel Aviv University, Israel
sdoron5.t2@gmail.com

Abstract
An automaton is unambiguous if for every input it has at most one accepting computation. An
automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely
(respectively, countably) many accepting computations. An automaton is boundedly ambiguous if
there is k ∈ N, such that for every input it has at most k accepting computations. We consider
nondeterministic Büchi automata (NBA) over infinite trees and prove that it is decidable in
polynomial time, whether an automaton is unambiguous, boundedly ambiguous, finitely ambiguous,
or countably ambiguous.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases automata on infinite trees, ambiguous automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.50

Funding Supported in part by Len Blavatnik and the Blavatnik Family foundation.

1 Introduction

Degrees of Ambiguity

The relationship between deterministic and nondeterministic machines plays a central role
in computer science. An important topic is a comparison of expressiveness, succinctness
and complexity of deterministic and nondeterministic models. Various restricted forms of
nondeterminism were suggested and investigated (see [4, 5] for recent surveys).

Probably, the oldest restricted form of nondeterminism is unambiguity. An automaton is
unambiguous if for every input there is at most one accepting run. For automata over finite
words there is a rich and well-developed theory on the relationship between deterministic,
unambiguous and nondeterministic automata [5]. All three models have the same expressive
power. Unambiguous automata are exponentially more succinct than deterministic ones, and
nondeterministic automata are exponentially more succinct than unambiguous ones [6, 7].

Many other notions of ambiguity were suggested and investigated. A recent paper [5]
surveys works on the degree of ambiguity and on various nondeterminism measures for finite
automata on words.

An automaton is k-ambiguous if on every input it has at most k accepting runs; it is
boundedly ambiguous if it is k-ambiguous for some k; it is finitely ambiguous if on every input
it has finitely many accepting runs.

It is clear that an unambiguous automaton is k-ambiguous for every k > 0, and a
k-ambiguous automaton is finitely ambiguous. The reverse implications fail. For ε-free
automata over words (and over finite trees), on every input there are at most finitely many

1 corresponding author

© Alexander Rabinovich and Doron Tiferet;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1460-2358
https://www.cs.tau.ac.il/~rabinoa/
mailto:rabinoa@tauex.tau.ac.il
mailto:sdoron5.t2@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Degrees of Ambiguity of Büchi Tree Automata

accepting runs. Hence, every ε-free automaton on finite words and on finite trees is finitely
ambiguous. However, over ω-words there are nondeterministic automata with uncountably
many accepting runs. Over ω-words and over infinite trees, finitely ambiguous automata are
a proper subclass of the class of countably ambiguous automata, which is a proper subclass
of nondeterministic automata. Our main result is:

I Theorem 1. There are polynomial time algorithms that decide whether a Büchi automaton
over trees is unambiguous, boundedly ambiguous, finitely ambiguous, or countably ambiguous.

Over infinite trees, Büchi tree automata are less expressive than Monadic Second-Order
Logic or parity automata. In Sect. 8 we will show that the problem whether a parity tree
automaton is ambiguous is co-NP complete.

Related Works

Weber and Seidl [14] investigated several classes of ambiguous automata on words and
obtained polynomial time algorithms for deciding the membership in each of these classes.
Their algorithms were derived from structural characterizations of the classes.

In particular, they proved that the following Bounded Ambiguity Criterion (BA) charac-
terizes whether there is a bound k such that a nondeterministic automaton on words has at
most k accepting runs on each word.
Forbidden Pattern for Bounded Ambiguity: There are distinct useful2 states p, q ∈ Q such

that for some word u, there are runs on u from p to p, from p to q and from q to q.

Weber and Seidl [14] proved that an NFA is not boundedly ambiguous iff it contains the
forbidden pattern for bounded ambiguity. This pattern is testable in polynomial time; hence,
it can be decided in polynomial time whether the degree of ambiguity of a NFA is bounded.

Seidl [12] provided a structural characterization of bounded ambiguity for automata on
finite trees and derived a polynomial algorithm to decide whether such an automaton is
boundedly ambiguous.

Löding and Pirogov [8] and Rabinovich [10] provided structural characterizations and
polynomial algorithms for bounded, finite and countable ambiguity of Büchi automata
on ω-words. These characterizations and algorithms can be adopted for other acceptance
conditions: parity, Rabin, Muller, etc.

Our proof of Theorem 1 will first provide structural characterizations of bounded, finite
and countable ambiguity of automata on infinite trees, and then derive polynomial algorithms.

As far as we know, the degrees of ambiguity for automata over infinite trees have not been
investigated. The decidability whether an automaton on infinite trees is finitely ambiguous
or countably ambiguous can be obtained from the results of Bárány et al. in [2], where an
extension of monadic second-order logic of order with the cardinality quantifiers “there exist
uncountably many sets,” “there are countably many sets,” “there are finitely many sets”
(MSO(∃<ℵ0 ,∃>ℵ0)) was investigated. It was proved that, over the class of finitely branching
trees, MSO(∃<ℵ0 ,∃>ℵ0) is (effectively) equally expressive to plain monadic second-order
logic of order (MSO). It is a routine exercise for a given automaton on infinite trees to write
sentences in MSO(∃<ℵ0 ,∃>ℵ0) that express “the automaton has finitely many accepting runs,”
“the automaton has countably many accepting runs,” and “the automaton has uncountably
many accepting runs.” By combining these with Rabin’s theorem on decidability of MSO
over infinite trees we obtain that it is decidable whether an automaton is finitely or countably
ambiguous. Unfortunately, the complexity of the algorithm extracted from this proof is (at
least) triple exponential. Our proofs are inspired by techniques used in [2].

2 A state is useful if it is on an accepting run.

A. Rabinovich and D. Tiferet 50:3

Organization of the paper. The next section contains standard definitions and notations
about tree automata. The main results are stated in Sect. 3 and are proved in Sects. 4–7.
The last section presents the conclusion and further results. Missing proofs will appear in
the full paper.

2 Preliminaries

We recall here standard terminology and notations about trees and automata [13, 9].

Trees. A tree order ≤ on a set t is a partial order with a unique minimal element (the
root of t) such that for every u ∈ t, the set {v | v ≤ u} is finite and linearly ordered by ≤.
We use standard terminology and notations: u is an ancestor of v if u ≤ v, u is a child of
v, u is a leaf, u and v are incomparable - denoted by u ⊥ v - if neither u ≤ v nor v ≤ u; a
subset A of t is an antichain, if its elements are incomparable with each other.

If ≤ is a tree order over t and u ∈ t, we denote by t≥u the restriction of ≤ to the set
{v | v ≥ u}; t≥u is called the subtree of t rooted at u. A binary tree is a tree order with a
partition of children into two sets - left/right child such that every non-leaf node has exactly
one left child and one right child. The full binary tree is a binary tree without leaves.

There is a natural order isomorphism between the full binary trees and the set of strings
{l, r}∗ with prefix order; it maps ε to the root, l to the left child of root, etc. We will often
refer to a node in the full binary tree by the corresponding string over {l, r}.

If Σ is an alphabet, then a Σ-labeled tree is a tree t and a function σt from elements of
t to Σ. We often use “Σ-tree” for “Σ-labeled tree”; Σ-labeled full binary trees are defined
similarly. We often use “tree” or variables t, t′, T for “full binary tree” for “labeled tree” or
for “full binary labeled tree.” It will be clear from the context or unimportant what kind of
tree is used. In particular, t≥u is naturally defined over all such kinds of trees.

Grafting. If t, t1 are trees and u ∈ t, then the grafting of t1 at u in t, denoted by t ◦u t1, is a
tree which is obtained from t when t≥u is replaced by t1. Formally, this is defined by taking
an isomorphic copy t′1 of t1 with the domain disjoint from the domain of t and defining a
tree order ≤′ on t \ t≥u ∪ t′1, by v1 ≤′ v2 if v1 is an ancestor of v2 in t or in t′1, or if v1 ∈ t
and v2 ∈ t′1. More generally, if t is a tree, A is an antichain in t and t1 is a tree, then the
grafting of t1 at A in t is a tree which is obtained from t by replacing every subtree t≥a by t1
for a ∈ A. Even more generally, if t is a tree, A is an antichain in t and f assigns a tree ta to
every a ∈ A, then grafting f at A in t is a tree obtained from t, by replacing every subtree
t≥a by ta for a ∈ A.

Automata. We use standard notations and terminology about Büchi automata on (infinite)
full binary Σ-labeled trees and on ω-strings. A Büchi automaton A has an alphabet Σ, a
finite set of states QA, initial states QI ⊆ QA, a transition relation δA, and a set of final
states F ⊆ QA. For a Büchi automaton on ω-string, δA ⊆ QA × Σ×QA; for a Büchi tree
automaton, δA ⊆ QA × Σ×QA ×QA.

Given a Büchi automaton A = (Q,Σ, QI , δ, F) and a state q ∈ Q, Aq is defined as
Aq = (Q,Σ, {q}, δ, F), by replacing the set of initial states of A by {q}.

The notion of a computation/run, accepting computation of A on an ω-string/tree is
defined as usual. We use letter f for a final state of automata, and we use the letters φ, φ′
for computations. We denote by ACC(A, t) the set of accepting computations of A on t. We
denote by L(A) := {t | ACC(A, t) is not empty} the language of A.

FSTTCS 2019

50:4 Degrees of Ambiguity of Büchi Tree Automata

A state q of A is useful if there is a tree, an accepting computation φ on t and a node u
such that φ(u) = q. There is a polynomial algorithm that for A and q checks whether q is
useful. There is a polynomial algorithm which for every A computes an automaton B with
all states useful and L(A) = L(B). We will always assume that all states are useful.

Degree of Ambiguity. We denote by |X|, the cardinality of a set X. da(A) is defined
as sup{|ACC(A, t)| | t ∈ L(A)}. We say that A is unambiguous if da(A) = 1, boundedly
ambiguous if there is k ∈ N such that da(A) ≤ k, finitely ambiguous if |ACC(A, t)| is finite
for every t, countably ambiguous if ACC(A, t) is countable for every t.

I Example 2. Consider Büchi tree automata {Ai}3
i=1 over the unary alphabet.

1. A1 has a single state q; it is initial and final. ∆1 = (q, q, q). A1 is deterministic.
2. The set of states of A2 is Q2 := {q, q1}, both are initial and final, and ∆2 := Q×Q×Q.
A2 is uncountably ambiguous.

3. The set of states of A3 is Q3 := {q, f}, f is the final state, q is initial, and ∆3 =
{q} ×Q×Q ∪ {(f, f, f)}). A3 is countably ambiguous.

4. Over the unary alphabet there is only one full binary tree; therefore, every finitely
ambiguous automata is boundedly ambiguous.

A computation of A on a Σ-tree t can be considered as a QA-labeling of t. The grafting of
computations φ ◦v φ′ is defined as for the corresponding QA-trees. We often use implicitly
the following simple Lemma.

I Lemma 3 (Grafting). Let A be an automaton, t, t1 trees, v ∈ t and φ ∈ ACC(A, t), and
φ1 ∈ ACC(Aq, t1). If φ(v) = q, then φ ◦v φ1 is an accepting computation of A on t ◦v t1.

A similar lemma holds for general grafting. As an immediate consequence, we obtain the
following lemma:

I Lemma 4. da(A) ≥ da(Aq) for every useful state q of A.

We suspect that the following lemma is folklore. For lack of reference, we provide a proof in
the full version of the paper.

I Lemma 5. It is computable in polynomial time whether a Büchi tree automaton is unam-
biguous.

The next definition and theorem are taken from [8, 10]. They provide a forbidden pattern
characterization of degrees of ambiguity of automata on ω-words.

I Definition 6 (Forbidden pattern for ω-word automata). Let B be a Büchi automaton on
ω-words such that all its states are useful.
B contains a forbidden pattern for bounded ambiguity if there are distinct states p, q
such that for a (finite) word u, there are runs of Bp on u from p to p and from p to q
and there is a run of Bq on u from q to q.
B contains a forbidden pattern for countable ambiguity if there is a final state f and
there are two distinct runs of Bf on the same word u from f to f .
B contains a forbidden pattern for finite ambiguity if it contains the forbidden pattern for
countable ambiguity or there is a final state f , and q 6= f , and a word u such that there
are runs of Bq on u from q to q and on u from q to f and a run of Bf on u from f to f .

A. Rabinovich and D. Tiferet 50:5

I Theorem 7. Let B be a Büchi automaton on ω-words.
1. B has uncountably many accepting runs on some ω-word if and only if B contains the

forbidden pattern for countable ambiguity.
2. B has infinitely many accepting runs on some ω-word if and only if B contains the

forbidden pattern for finite ambiguity.
3. B is not boundedly ambiguous iff it contains the forbidden pattern for bounded ambiguity.

3 Main Result

In this section we first introduce branch ambiguity and ambiguous transition patterns and
then state our main results.

3.1 Branch Ambiguity
IDefinition 8 (Projection of a computation on a branch). Let φ ∈ ACC(A, t) and π := v0v1 . . .

be a branch of t. φ(π) := φ(v0)φ(v1) · · · ∈ QωA is the projection of φ on π. We define
ACC(A, t, π) := {φ(π) | φ ∈ ACC(A, t)}.

I Definition 9 (Branch ambiguity). A is at most n branch-ambiguous if |ACC(A, t, π)| ≤ n
for every t and branch π. A is bounded branch ambiguous if it is at most n branch ambiguous
for some n. A is finitely (countably) branch ambiguous if |ACC(A, t, π)| is finite (respectively,
countable) for every t and π.

Let A be a Büchi tree automaton. We define a Büchi ω-automaton AB which has the same
ambiguity as branch ambiguity of A:

I Definition 10 (Branch automaton). For a Büchi tree automaton A = (Q,Σ, QI , δ, F), the
corresponding branch automaton AB is an ω-word automaton (Q,ΣB , QI , δB , F), where
1. ΣB := Σ× Σd × Σcons with

a. Σd := {l, r} directions alphabet (left/right).
b. Σcons := {S ⊆ Q | ∩

q∈S
L(Aq) 6= ∅} sets of states, which we consider “consistent.”

2. (q, a, q′) ∈ δB iff a = (σ, l, S) and ∃p ∈ S : (q, σ, (q′, p)) ∈ δ or a = (σ, r, S) and
∃p ∈ S : (q, σ, (p, q′)) ∈ δ.

I Lemma 11. The branch ambiguity of a tree automaton A is bounded (respectively, fi-
nite, countable) iff the ambiguity of the corresponding branch ω-automaton AB is bounded
(respectively, finite, countable).

I Proposition 12 (Computability of branch ambiguity). It is computable in polynomial time
whether the branch ambiguity of A is bounded, finite, or countable.

3.2 Ambiguous Transition Pattern
I Definition 13 (Ambiguous transition pattern). Let A = (Q,Σ, QI , δ, F) be a Büchi auto-
maton with corresponding branch automaton AB = (Q,ΣB , QI , δB , F). A has a q-ambigu-
ous transition pattern if q ∈ Q and there are p1, p2 ∈ Q and y1 ∈ Σ∗B, y2 ∈ Σ+

B with runs
of AB from q to p1 on y1 and from p2 to q on y2 such that at least one of the following holds:
1. There are two transitions (p1, (a, d, {q1}), p2), (p1, (a, d, {q2}), p2) ∈ δB with q1 6= q2 and

L(Aq1) ∩ L(Aq2) 6= ∅, or
2. There is a transition (p1, (a, d, {q1}), p2) ∈ δB with da(Aq1) > 1.

FSTTCS 2019

50:6 Degrees of Ambiguity of Büchi Tree Automata

A is said to have an ambiguous transition pattern if there exists q ∈ Q such that A has
a q-ambiguous transition pattern.

Lemma 14 provides sufficient conditions for an ambiguous transition pattern.

I Lemma 14 (q-ambiguous transition pattern). Let A be a Büchi tree automaton and v⊥w.
If one of the following conditions holds, then A has a q-ambiguous transition pattern.
1. There is φ ∈ ACC(Aq, t) such that q = φ(v) and φ(w) = p, where Ap is ambiguous.
2. There are φ, φ′ ∈ ACC(Aq, t) such that q = φ(v) and ∀v′(v′ ≤ v)→ (φ(v′) = φ′(v′), and

φ(w) 6= φ′(w).

I Lemma 15. If A has an ambiguous transition pattern then its ambiguity degree is not
bounded. If A has an f -ambiguous transition pattern (for a final state f), then its ambiguity
degree is not countable.

I Lemma 16. It is computable in polynomial time whether A has an ambiguous transition
pattern and whether A has an f -ambiguous transition pattern for a final state f .

3.3 Characterizations of Degrees of Ambiguity
The next two propositions characterize bounded and finite ambiguity.

I Proposition 17 (Bounded ambiguity). The following are equivalent:
1. Büchi tree automaton A is not boundedly ambiguous.
2. At least one of the following conditions holds:

a. A is not bounded branch ambiguous.
b. A has an ambiguous transition pattern.

When “Büchi tree automaton A” is replaced by “an automaton A on finite trees” in
Proposition 17 we obtain an instance of a theorem proved by Seidl in [12]. A proof of
Proposition 17 is a simple variation of the proof in [12]. It will be sketched in the full paper.

I Proposition 18 (Finite ambiguity). The following are equivalent:
1. Büchi tree automaton A is not finitely ambiguous.
2. At least one of the following conditions holds:

a. A is not finite branch ambiguous.
b. A has an f -ambiguous transition pattern for a final state f .

In order to characterize countable ambiguity, we first introduce branching patterns.

I Definition 19 (A branching pattern for A over (Q, f)). Let A be a Büchi tree automaton,
f a final state of A and Q ⊆ QA \ {f}, where QA are the states of A. A branching pattern
M for A over (Q, f) is a function τM : Q→ Q×Q and a tuple (q1, q2) ∈ Q×Q.

I Definition 20 (Realizable branching pattern). Let t be a full binary tree and u ⊥ v two
nodes of t. A branching pattern M for A over (Q, f) is realized in t at u, v by computations
φ1, φ2, {φq | q ∈ Q} if the following holds:
1. φ1, φ2 ∈ ACC(Af , t) and φ1(u) = f = φ2(v), φ1(v) = q1 and φ2(u) = q2.
2. For each q ∈ Q: φq ∈ ACC(Aq, t) and τM (q) = (φq(v), φq(u)) and φq visits an accepting

state on both paths from the root of t to u and from the root of t to v.
In Sects. 5 and 7 we prove the next two propositions. Their proof is more complicated than
the proofs of Propositions 17 and 18.

A. Rabinovich and D. Tiferet 50:7

I Proposition 21 (Countable ambiguity). The following are equivalent:
1. Büchi tree automaton A is not countably ambiguous.
2. At least one of the following conditions holds:

a. A is not countable branch ambiguous.
b. A has an f -ambiguous transition pattern for a final state f .
c. A branching pattern for A is realizable.

I Proposition 22. It is computable in polynomial time whether there is a realizable branching
pattern for a Büchi tree automaton A.

I Theorem 23 (Main). It is computable in polynomial time whether a Büchi tree automaton
is unambiguous, bounded ambiguous, finitely ambiguous, or countably ambiguous.

Proof. For unambiguity – by Lemma 5. For bounded ambiguity by Proposition 17, Lemma
16 and Proposition 12. For finite ambiguity by Proposition 18, Lemma 16 and Proposition
12. For countable ambiguity by Propositions 21, 12, 22 and Lemma 16. J

Road map of the proofs. Sect. 4 and Sect. 5 deal with structural characterizations of
finite and countable ambiguity and prove Propositions 18 and 21. Sects 6 and 7 deal with
computability of degrees of ambiguity. Proposition 12 and Lemma 16 are proved in Sect. 6,
and Proposition 22 is proved in Sect. 7. The proofs of Lemmas 11, 14 and 15 are given in
the full version of the paper.

4 Finite Ambiguity

In this section we prove Proposition 18 - a structural characterization of finite ambiguity.
(2)⇒ (1) follows from Lemma 11 and Lemma 15. Below we prove the (1) ⇒ (2) direction.

Let t be a tree such that ACC(A, t) is not finite. We define a branch π := v0 . . . vi . . . in
t and an ω-sequence of states q0 . . . qi . . . such that for every i:
1. From qi there are infinitely many accepting computations of Aqi

on the subtree t≥vi
.

2. There is an accepting computation φi on t such that φi(vj) = qj for every j ≤ i.
Define v0 as the root of t and q0 as an initial state from which there are infinitely many
accepting computations.

Assume that vi and qi were defined. Since there are infinitely many accepting computations
from state qi on the subtree t≥vi

, infinitely many of them take the same first transition from
qi to 〈ql, qr〉 and either there are infinitely many accepting computations from state ql on
the subtree rooted at the left child of vi, or from state qr on the subtree rooted at the right
child of vi. Define vi+1 and qi+1 according to these cases.

If |ACC(A, t, π)| is infinite, then by the definition of branch ambiguity we have that
A is not finite branch ambiguous, and 2(a) holds. Otherwise, there exist φ1, . . . , φk ∈
ACC(A, t) such that ACC(A, t, π) = {φi(π) | 1 ≤ i ≤ k}. Choose n such that for all
1 ≤ i < j ≤ k : φi(v0 . . . vn) 6= φj(v0 . . . vn). One of these computations, say φ1, holds that
∀i ≤ n : φ1(vi) = qi. Hence, ∀i : φ1(vi) = qi.

Let f be an accepting state which occurs infinitely often in φ1(π). Choose N > n such
that φ1(vN) = qN = f . By selection of qN , there are infinitely many accepting computations
of Af on t≥vN

. Take two different accepting computations φ′, φ′′ ∈ ACC(Af , t≥vN
). By

selection of φ1, ∀i ≥ N : φ1(vi) = φ′(vi) = φ′′(vi) = qi. Therefore, φ′ and φ′′ differ at some
node w /∈ π, and there exist i > N such that φ1(vi) = f = φ′(vi) = φ′′(vi) and vi ⊥ w.
Applying Lemma 14(2) on φ′, φ′′ and vi ⊥ w, we obtain that Af has an f -ambiguous
transition pattern, and 2(b) holds.

FSTTCS 2019

50:8 Degrees of Ambiguity of Büchi Tree Automata

5 Countable Ambiguity

In this section we prove Proposition 21 – a structural characterization of countable ambiguity.

5.1 Direction (2) ⇒ (1) of Proposition 21

2(a)⇒(1) follows by definition of branch ambiguity, and 2(b)⇒(1) follows by Lemma 15.
Below 2(c)⇒(1) is proved.

I Definition 24 (Corresponding automaton AM for pattern M). Let M be a branching pattern
for A over (Q, f) (see Definition 19). We define a Büchi tree automaton AM over the unary
alphabet with the set of states Q ∪ {f}; all states are final, the initial state is f , and the
transition relation is ∆M := {(q, q′, q′′) | q ∈ Q and (q′, q′′) = τM (q)} ∪ {(f, q1, f), (f, f, q2)}.

The following simple lemma states the properties of accepting computations of AM . It will
be useful in showing that if a branching pattern for A is realized, then A is not countably
ambiguous.

I Lemma 25 (Accepting computations of AM).
1. Let φ be an accepting computation of AM . Then the set of nodes {v | φ(v) = f} is a

branch.
2. For every branch π there is an accepting computation φ of AM such that ∀v ∈ π(φ(v) = f).
3. The set of accepting computations of AM is uncountable.

I Lemma 26. Let A = (QA,Σ, QI , δ, F) be a Büchi tree automaton such that a branching
pattern for A is realizable. Then A is not countably ambiguous.

Proof. Assume that a branching pattern M over (Q, f) is realized in t at u ⊥ v by φ1, φ2,
{φq | q ∈ Q}. We construct a sequence of trees: t1 := t, and ∀i ≥ 1 : ti+1 := ti ◦Ai

t, where
Ai = {u, v}i. We graft t at every node in Ai of ti. This operation is well defined as Ai is an
antichain (∀a1 6= a2 ∈ Ai : a1 ⊥ a2, since u ⊥ v).

For each y ∈ {l, r}∗ we define ky := max{i | y ∈ {u, v}i · z, z ∈ {l, r}∗}. Notice that by
the construction, if σt1+ky

(y) = a then ∀i > ky : σti(y) = a. Define tω as σtω (y) := t1+ky
(y).

We now proceed to show that the set of accepting computations of Af on tω is not
countable, by defining an injective map from the set of accepting computations of AM (on
the tree over the unary alphabet) to the set of accepting computations of Af on tω.

I Notations 27. Let h be a homomorphism h : {l, r}∗ → {l, r}∗, where h(l) = v and
h(r) = u. Since u⊥v, it follows that h is a bijection from {l, r}∗ onto {u, v}∗.

For each accepting computation φ of AM we assign an accepting computation φ̂ of Af on
tω. If w ∈ {u, v}∗ then φ̂(w) := φ(h−1(w)) (hence, the map is injective). Otherwise, let
w = y · z where y ∈ {u, v}kw and z ∈ {l, r}+. If φ(h−1(y)) = q 6= f then φ̂(w) := φq(z). Else,
if φ(h−1(y · u)) = f then φ̂(w) := φ1(z); otherwise, φ̂(w) := φ2(z) (recall that φ1, φ2, φq are
computations on t that realize M).

It is routine to verify that φ̂ is an accepting computation of Af on tω. By Lemma 25,
AM has uncountably many accepting computations and we defined an injective map from
these computations to accepting computations of Af . Hence, Af is not countably ambiguous.
Therefore, by Lemma 4, A is not countably ambiguous. J

A. Rabinovich and D. Tiferet 50:9

5.2 Direction (1) ⇒ (2) of Proposition 21
I Definition 28 (q-path and q-computation). Given a Büchi tree automaton A = (Q,Σ, QI , δ,
F), a state q ∈ Q and a tree t ∈ L(A), we define the following:

A q-path (of an accepting computation φ) is an ω-path π := v0 . . . vi . . . of t such that
v0 is the root, φ(v0) = q and there exist infinitely many nodes vi such that φ(vi) = q.
A q-computation is an accepting computation φ such that φ has a q-path in t.

The next lemma reduces the question whether the cardinality of accepting computations is
uncountable to the question whether the cardinality of f -computations is uncountable.

I Lemma 29. A Büchi tree automaton A = (Q,Σ, QI , δ, F) has uncountably many accepting
computations on t iff there is a state f ∈ F , a node u ∈ t and an accepting computation
φ0 ∈ ACC(A, t) such that φ0(u) = f and Af has uncountably many f -computations on t≥u.

Proof. ⇐ direction is trivial.
⇒: Assume that the set Φ := ACC(A, t) of accepting computations of A on t is

uncountable. For each computation φ ∈ Φ define a tree t′φ by pruning the tree t as follows:
for every node v ∈ t, if φ(v) ∈ F and φ has an φ(v)-path on t≥v, prune the descendants of v.
Hence, t′φ is a subtree of t over the set of nodes Vφ := {v | ∀u < v : φ(u) ∈ F → φ has no
φ(u)-paths on t≥u}. If u is a leaf of t′φ, then φ(u) ∈ F and φ has an φ(u)-path on t≥u.

Observe that t′φ is finite. Otherwise, by the König Lemma, it would have an infinite
branch π = v0 . . . vi . . . such that φ(v0) . . . φ(vi) . . . has finitely many occurrences of states
from F which contradicts that φ is an accepting run on t.

Therefore, to each computation φ ∈ Φ corresponds a finite tree t′φ. The set of all
possible finite trees is countable, and since there are uncountably many computations in
Φ, we conclude that there is a finite tree t0 and an uncountable set Φt0 ⊆ Φ such that
∀φ ∈ Φt0 : t0 = t′φ. Since there are finitely many assignments of states to the nodes of t0,
we conclude that there is a computation φ0 and an uncountable set Φ′ ⊆ Φt0 such that
∀v ∈ t0∀φ ∈ Φ′ : φ(v) = φ0(v). For each leaf u ∈ t0 define Φu as the set of restrictions Φ′ on
t≥u. Notice that the cardinality of Φ′ is bounded by the product of the cardinalities of Φu.
Hence, there is u such that Φu is uncountable. Each computation φ ∈ Φu has originated from
a computation with an φ0(u)-path on t≥u, and therefore Φu is the set of f -computations of
Af on t≥u for f = φ0(u). J

We are going to prove that if A is not countably ambiguous and has at most countable
branch ambiguity and no f -ambiguous transition pattern, then it has a branching pattern.
The main technical lemma uses the following definition.

I Definition 30. Let T be a subset of nodes of a tree t. We consider T as a substructure
of t with the ancestor relation. In particular, u is a T -leaf if u < v for no v ∈ T ; u is a
T -successor of v if u, v ∈ T , u > v and no T -node is between u and v; T is a full binary
subset-tree of t, if T has a minimal node and every node of T has two T -successors.

I Lemma 31 (Main). Assume f is a final state and there are uncountably many f-
computations of A on t, and conditions 2(a) and 2(b) of Proposition 21 do not hold. Then,
there is a full binary subset-tree X of t such that for every u ∈ X there is an f -computation
φu on t such that if v ∈ X and v ≤ u then φu(v) = f .

The lemma is proved in the full paper, where X is constructed level by level. However,
in order to carry out such a construction we need a much stronger inductive assertion.
In particular, our construction implies that for every u ∈ X, Af has uncountably many
f -computations on t≥u. The next lemma is easily derived from the König Lemma.

FSTTCS 2019

50:10 Degrees of Ambiguity of Büchi Tree Automata

I Lemma 32. If T is a full binary subset-tree of t, then there is a full binary subset-tree
T ′ ⊆ T such that if v1, v2 are the T ′-successors of u, and Aq accepts t≥u, then Aq has an
accepting computation on t≥u which passes through F on the paths of t≥u from u to v1 and
from u to v2.

I Lemma 33. Let (T,≤) be the full binary tree and lab be a labeling of its nodes by a finite
alphabet. Then, there are v1, v2 > u such that v1 ⊥ v2 and lab(v1) = lab(u) = lab(v2).

Proof. Choose a node u such that the cardinality of Σ≥u := {lab(w) | u ≤ w} is minimal.
Then for every w′ ≥ u and every σ ∈ Σ≥w there is v′ ≥ w′ with lab(v′) = σ. J

The next Lemma, together with Lemma 29, shows that if a tree automaton is uncountably
ambiguous and 2(a) and 2(b) of Proposition 21 do not hold, then 2(c) holds. This implies
the (1)⇒ (2) direction of Proposition 21.

I Lemma 34. Let A be a Büchi tree automaton and f be a final state of A. Assume that
there are uncountably many f-computations of Af on t and conditions 2(a) and 2(b) of
Proposition 21 do not hold. Then, there exist three nodes u, v1, v2 ∈ t such that a branching
pattern for Af is realized at v1, v2 in t≥u.

Proof. Let X be the full binary subset-tree of t, guaranteed by Lemma 31. By applying
Lemma 32 on X, we obtain a full binary subset-tree T ⊆ X. Define a labeling of T by
lab(v) = {φ(v)|φ ∈ ACC(Af , t)} for each v ∈ T . This is a labeling by a finite alphabet.
Therefore, by Lemma 33, we have nodes v1, v2 > u such that v1 ⊥ v2 and lab(u) = lab(v1) =
lab(v2) = Q′. We are going to define computations that realize a branching pattern over
(Q′ \ {f}, f) at v1, v2 in t≥u.

For i = 1, 2, set φi to be the restriction of φvi
to t≥u, where φvi

is as in Main Lemma.
This gives immediately that φi ∈ ACC(Af , t≥u) and φ1(v1) = φ2(v2) = f . Since Af is
ambiguous, by Lemma 14(1) and the assumption that A has no f -ambiguous transition
pattern, we obtain φ1(v2) 6= f 6= φ2(v1).

By Lemma 32, for each q ∈ Q′ \ {f} there is φq ∈ ACC(Aq, t≥u) which visits F on the
paths (in t≥u) from u to the children of u in T . Hence, it visits F on the paths from u to v1
and from u to v2. Next, observe that φq(v1), φq(v2) ∈ Q′ by the definition of labeling. We
are going to show that φq(v1) 6= f and φq(v2) 6= f . This will show that φ1, φ2 and φq for
q ∈ Q′ \ {f} realize a branching pattern, and thus finish the proof.

Aiming for a contradiction, assume φq(v1) = f . There is φ′ ∈ ACC(Af , t) such that
φ′(u) = q. Let φ′q be a grafting of φq on φ′ at u. It reaches v1 in state f . Consider the
branch automaton computation from the root of t to v1 which correspond to φ′q and φv1 .
These are different computations (since they differ at u) from f to f . Hence, AB contains the
forbidden pattern for countable ambiguity (see Def. 6), and by Theorem 7 we have that AB
is not countably ambiguous. Therefore, A is not countable branch ambiguous - contradiction
to the assumptions of the lemma. The proof of φq(v2) 6= f is similar. J

6 Computability of branch ambiguity and the ambiguous transition
pattern

Here we describe algorithms to test the degree of ambiguity of branch automata and to test
if an automaton has an ambiguous transition pattern. The following Lemma easily follows
from Definition 10 of the branch automaton.

A. Rabinovich and D. Tiferet 50:11

I Lemma 35. Let AB be the branch automaton of A. Assume that ri ∈ Ql+1 for i = 1, . . . , k
are runs of AB on u = (σ1, d1, S1) . . . (σl, dl, Sl) ∈ Σ∗B. Then for i = 1, . . . , l there are S′i ⊆ Si
such that |S′i| ≤ k and ri for i = 1, . . . , k are runs of AB on u = (σ1, d1, S

′
1) . . . (σl, dl, S′l).

A letter (σ, d, S) ∈ ΣB is called a k-state letters if S has at most k states. If A has n states,
then the alphabet ΣB of the branch automaton AB might be of size 2|Σ| × 2n, yet the
number of k-state letter is bounded by 2|Σ| ×

∑k
i=1
(
n
i

)
≤ 2|Σ|nk. To test whether a k-state

letter (σ, d, S) is in ΣB, we can check whether the intersection of the tree languages L(Aq)
for q ∈ S is non-empty. This can be done in O(nk) time (checking non-emptiness of the
intersection Büchi language). We denote by A(k)

B the restriction of the branch automaton
AB to the k state letters. It is computable in O(|A|k) time from A.

Now, we are ready to prove Lemma 16 and Proposition 12.

Proof of Lemma 16. For each p1 and p2, items 1 and 2 of Definition 13 can be tested in
polynomial time. There is a q-ambiguous pattern, if there is a run of A(1)

B from q to p1 and
from p2 to q for a pair p1 and p2 which passed the test. This is reduced to the reachability
problem. J

Proof Sketch of Proposition 12. The degree of ambiguity of ω-word Büchi automata is
characterized by the forbidden patterns in Theorem 7. Each of these patterns involves
conditions on at most three runs on the same word and can be tested for an automaton B in
polynomial time. Hence, by Lemma 35, AB has these patterns iff A(3)

B has them, and can
be tested in time p(|A(3)

B |) for a polynomial p. Since A(3)
B is computable in polynomial time

from A, we obtain a polynomial time algorithm. J

7 Computability of a branching pattern

Here we prove Proposition 22. In Sect. 7.1 we show that if A has a branching pattern, then
it has a branching pattern over (Q, f), where Q has at most two states. Sect. 7.2 presents a
polynomial time algorithm to verify if A has a branching pattern with at most two states.

7.1 Reduction to small branching patterns
In Sect. 5.1 we assigned to each branching pattern M a tree automaton AM over the unary
alphabet. This automaton is almost deterministic, in the sense that from every state q 6= f

it has a unique transition and it does not enter f . Hence, AM has a unique accepting
computation from every q 6= f . From f it has two transitions. A transition function defined
next will help to describe properties of accepting computations of AM .

I Definition 36 (Transition function of branching pattern). Let M be a branching pattern for
A over (Q, f) with τM : Q → Q × Q and a tuple (q1, q2) ∈ Q × Q. Its transition function
δM : ({f} ∪Q)× {l, r} → Q is defined as follows:

δM (f, d) :=
{
q1 if d = l

q2 if d = r
;For p 6= f,with τM (p) = (q′, q′′) : δM (p, d) :=

{
q′ if d = l

q′′ if d = r

I Lemma 37.
1. Let q 6= f and φq be a (unique) accepting computation of AM (on the tree over unary

alphabet) from q. Then φq(w) = δM (q, w) for every w ∈ {l, r}∗.
2. Let s := d1 . . . dk ∈ {l, r}+, and let φs be an accepting computation of AM from f such

that φs(d1 . . . di) = f for every i ≤ k. Then for every w ∈ {l, r}∗: (a) if di = l then
φs(d1 . . . di−1rw) = δM (f, lw) and (b) if di = r then φs(d1 . . . di−1lw) = δM (f, rw).

FSTTCS 2019

50:12 Degrees of Ambiguity of Büchi Tree Automata

I Lemma 38. Assume a branching pattern M for A over (Q, f) is realized. Let lM (q) :=
δM (q, l) and rM (q) := δM (q, r) for all q ∈ Q. Then:
1. If lM maps Q to Q0 (Q, then a branching pattern for A over (Q0, f) is realized. Dually,

if rM maps Q to Q1 (Q then a branching pattern for A over (Q1, f) is realized.
2. If lM and rM are bijections, then there is Q′ such that |Q′| ≤ 2 and a branching pattern

for A over (Q′, f) is realized.
3. A branching pattern for A over (Q′, f) is realized with |Q′| ≤ 2.

Proof. We will assume the branching pattern M for A over (Q, f) is realized in a tree t at
nodes u, v by computations φ1, φ2, {φq | q ∈ Q}.

(1) Assume lM maps Q to Q0 (Q. Let t′ := (t ◦u t) ◦v t. Define the following
computations on t′: φ′1 := (φ1 ◦u φ2) ◦v φq1 , φ′2 := (φ2 ◦u φq2) ◦v φ2, and for each q ∈ Q0 with
fM (q) = (p1, p2) we set φ′q := (φq ◦u φp2) ◦v φp1 . Let u′ := uv and v′ = vv be two nodes of
t′. By Lemma 3 we have that φ′1, φ′2 ∈ ACC(Af , t) and ∀q ∈ Q0 : φ′q ∈ ACC(Aq, t′). Notice
that φ′1(u′) = φ′1(uv) = φ2(v) = f , φ′2(v′) = φ′2(vv) = φ2(v) = f , and from the construction
it follows that φ′1(v′), φ′2(u′), φ′q(u′), φ′q(v′) ∈ {φq(v) | q ∈ Q} = {δM (q, l) | q ∈ Q} ⊆ Q0.
Since φq visits F on both paths from the root to u and from the root to v, so does φ′q on
the path from the root to u′ = uv and from the root to v′ = vv. It follows that a branching
pattern for A over (Q0, f) is realized in t′ at u′, v′ by computations φ′1, φ′2 and {φ′q | q ∈ Q0}.
The proof of the dual case is symmetric.

(2) The set of bijections on a finite set is a finite group under the composition and the
identity map is its identity element. If k is the cardinality of a finite group, then ck is
equal to the identity for every element c. Let k > 0 be such that both lkM and rkM are the
identity map.

Define tu1 := t, tv1 := t and ∀i > 1 let tui+1 := t ◦u tui and tvi+1 := t ◦v tvi . Finally, construct
a tree t′ := (t ◦u tuk−1) ◦v tvk−1.

Let p1 := δM (f, lk) and p2 := δM (f, rk). We will show that a branching pattern for A
over ({p1, p2}, f) is realized in t′ at uk, vk.

The following are obtained using Lemma 3 and definition of δM :

i αi := φ1 ◦u (φ1 ◦u (· · · ◦u φ1) . . .)︸ ︷︷ ︸
i times

is an accepting computation of Af on tui . It assigns f

to node ui.
ii βi := φ2 ◦v (φ2 ◦v (· · · ◦v φ2) . . .)︸ ︷︷ ︸

i times

is an accepting computation of Af on tvi . It assigns f

to node vi.
iii Let q0 ∈ Q and qi := δM (q0, r

i). Then φr
i

q0
:= φq0 ◦u (φq1 ◦u (· · · ◦u φqi−1) . . .) is an

accepting computation of Aq0 on tui , which holds φri

q0
(uj) = qj for j ≤ i.

iv Let q′0 ∈ Q and q′i := δM (q′0, li). Then φl
i

q′0
:= φq′0 ◦v (φq′1 ◦v (· · · ◦v φq′

i−1
) . . .) is an

accepting computation of Aq′0 on tvi , which holds φliq′0(vj) = q′j for j ≤ i.

Let q′ := φ1(v) and q′′ := φ2(u). From i and iv, it follows that φ′1 := (φ1 ◦uαk−1)◦v φl
k−1

q′

is an accepting computation of Af on t′, such that φ′1(uk) = f , φ′1(vk) = δM (f, lk) and φ′1
visits F on the path from the root to vk (as it coincides with φ1 on the path from the root
to v, which visits F).

Using similar arguments from ii and iii, we obtain that φ′2 := (φ2 ◦u φr
k−1

q′′) ◦v βk−1 is an
accepting computation of Af on t′, such that φ′2(vk) = f , φ′2(uk) = δM (f, rk) and φ′2 visits
F on the path from the root to uk.

A. Rabinovich and D. Tiferet 50:13

In addition, from iii and iv is follows that for all p ∈ Q with τM (p) = (p′, p′′), the
computation φ′p := (φp ◦u φr

k−1

p′′) ◦v φl
k−1

p′ is an accepting computation of Ap on t′, such
that φ′p(uk) = δM (p, rk) and φ′p(vk) = δM (p, lk). By selection of k we have δM (p, lk) =
δM (p, rk) = p and therefore we obtain that φ′p(uk) = p = φ′p(vk).

Take p1 := δM (f, lk) = φ′1(vk) and p2 := δM (f, rk) = φ′2(uk). We have φ′p1
(uk) =

φ′p1
(vk) = p1 and φ′p2

(uk) = φ′p2
(vk) = p2, and therefore we obtain that a branching pattern

for A over ({p1, p2}, f) is realized in t′ at uk, vk by computations φ′1, φ′2, φ′p1
and φ′p2

, as
requested.

(3) Let M over (Q, f) be a realizable branching pattern for A such that the cardinality
of Q is minimal. If either lM or rM is not a bijection, then by item 1, there is a realizable
pattern over (Q0, f), where |Q0| < |Q|. Hence, both lM and rM are bijections. Therefore, by
item 2 and minimality of |Q|, we obtain |Q| ≤ 2. J

7.2 Small branching patterns are in P
For every t over Σ and u1, u2 ∈ t, define t′ := t(u1, u2) over Σ′ := Σ × Σu1 × Σu2 with
Σui

:= {0, 1}, such that the projection of t′ on Σ is t and the projection of t′ on Σui
is a tree

tui
with σtui

(w) = 1 iff w = ui for i = 1, 2.
It is easy to construct Büchi automata over Σ′ with the following properties in O(|A|)

time.
An automaton Anodes which accepts t′ iff t′ = t(u1, u2) and u1 ⊥ u2.
An automaton Aq,q1,q2 which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Aq, t) with φ(u1) = q1, φ(u2) = q2 and φ visits an accepting state on both
paths from the root to u1 and from the root to u2.
An automaton ALf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = f and φ(u2) = q.
An automaton ARf,q which accepts t′ iff t′ = t(u1, u2) and there exists a computation
φ ∈ ACC(Af , t) such that φ(u1) = q and φ(u2) = f .

By Lemma 38, A has a realizable branching pattern iff there exists a realizable branching
pattern over (Q, f), τM : Q → Q, (q1, q2) ∈ Q×Q with |Q| ≤ 2. For each such branching
pattern we define:

LM := L(Anodes) ∩ ∩
(p,p1,p2)|p∈Q,τM (p)=(p1,p2)

L(Ap,p1,p2) ∩ L(ALf,q1
) ∩ L(ARf,q2

)

By construction of the automata we have that the branching pattern M is realizable iff
LM 6= ∅. This could be verified in polynomial time in |QA|, as this is an intersection of at
most five Büchi tree languages. Since the number of such patterns is polynomial in |QA| we
obtain a polynomial time algorithm.

8 Conclusion and Further Results

We proved that the degree of ambiguity of Büchi automata on infinite trees is in PTIME.
The Büchi acceptance conditions on trees are less expressive than parity, Rabin, Street and
Muller conditions. Unfortunately, we have

I Proposition 39.
The problems of deciding whether a parity tree automaton is not unambiguous/boundedly
ambiguous/finitely ambiguous are co-NP complete
The problem of deciding weather a parity tree automaton is not countably ambiguous is
co-NP hard.

FSTTCS 2019

50:14 Degrees of Ambiguity of Büchi Tree Automata

It is still unknown if the problem of deciding weather a parity tree automaton is not countably
ambiguous is in co-NP, although we believe it is indeed the case.

The degree of ambiguity of a regular language is defined in a natural way. E.g., a language
is k-ambiguous if it is accepted by a k-ambiguous automaton and no k − 1-ambiguous
automaton accepts it. Over finite words and finite trees every regular language is accepted
by a deterministic automaton. Over ω-words every regular language is accepted by an
unambiguous automaton [1]. Over infinite tree there are ambiguous languages [3]. We can
show that over infinite trees there is a hierarchy of degrees of ambiguity [11]:

I Proposition 40. There are k-ambiguous languages for every k ∈ N. There are finitely,
countably and uncountable ambiguous languages.

We plan to investigate whether the degree of ambiguity of infinite tree language is decidable.

References
1 André Arnold. Rational omega-Languages are Non-Ambiguous. Theor. Comput. Sci., 26:221–

223, September 1983. doi:10.1016/0304-3975(83)90086-5.
2 Vince Bárány, Łukasz Kaiser, and Alex Rabinovich. Expressing cardinality quantifiers in

monadic second-order logic over trees. Fundamenta Informaticae, 100(1-4):1–17, 2010.
3 Arnaud Carayol, Christof Löding, Damian Niwinski, and Igor Walukiewicz. Choice functions

and well-orderings over the infinite binary tree. Open Mathematics, 8(4):662–682, 2010.
4 Thomas Colcombet. Unambiguity in automata theory. In International Workshop on Descrip-

tional Complexity of Formal Systems, pages 3–18. Springer, 2015.
5 Yo-Sub Han, Arto Salomaa, and Kai Salomaa. Ambiguity, nondeterminism and state complexity

of finite automata. Acta Cybernetica, 23(1):141–157, 2017.
6 Ernst Leiss. Succinct representation of regular languages by Boolean automata. Theoretical

computer science, 13(3):323–330, 1981.
7 Hing Leung. Descriptional complexity of NFA of different ambiguity. International Journal of

Foundations of Computer Science, 16(05):975–984, 2005.
8 Christof Löding and Anton Pirogov. On Finitely Ambiguous Büchi Automata. In Developments

in Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan, September
10-14, 2018, Proceedings, pages 503–515, 2018. doi:10.1007/978-3-319-98654-8_41.

9 Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games,
volume 141. Academic Press, 2004.

10 Alexander Rabinovich. Complementation of Finitely Ambiguous Büchi Automata. In Interna-
tional Conference on Developments in Language Theory, pages 541–552. Springer, 2018.

11 Alexander Rabinovich and Doron Tiferet. Degree of Ambiguity for Tree Automata and Tree
Languages, forthcoming.

12 Helmut Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

13 Wolfgang Thomas. Automata on infinite objects. In Formal Models and Semantics, pages
133–191. Elsevier, 1990.

14 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325–349, 1991.

https://doi.org/10.1016/0304-3975(83)90086-5
https://doi.org/10.1007/978-3-319-98654-8_41

	Introduction
	Preliminaries
	Main Result
	Branch Ambiguity
	Ambiguous Transition Pattern
	Characterizations of Degrees of Ambiguity

	Finite Ambiguity
	Countable Ambiguity
	Direction (2) ==> (1) of Proposition 21
	 Direction (1) ==> (2) of Proposition 21

	Computability of branch ambiguity and the ambiguous transition pattern
	Computability of a branching pattern
	Reduction to small branching patterns
	Small branching patterns are in P

	Conclusion and Further Results

