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Abstract
The problem of regular separability asks, given two languages K and L, whether there exists a regular
language S that includes K and is disjoint from L. This problem becomes interesting when the input
languages K and L are drawn from language classes beyond the regular languages. For such classes,
a mild and useful assumption is that they are full trios, i.e. closed under rational transductions.

All the results on regular separability for full trios obtained so far exhibited a noteworthy
correspondence with the intersection emptiness problem: In each case, regular separability is
decidable if and only if intersection emptiness is decidable. This raises the question whether for full
trios, regular separability can be reduced to intersection emptiness or vice-versa.

We present counterexamples showing that neither of the two problems can be reduced to the
other. More specifically, we describe full trios C1, D1, C2, D2 such that (i) intersection emptiness
is decidable for C1 and D1, but regular separability is undecidable for C1 and D1 and (ii) regular
separability is decidable for C2 and D2, but intersection emptiness is undecidable for C2 and D2.
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1 Introduction

The intersection emptiness problem for language classes C and D asks for two given languages
K from C and L from D, whether K ∩ L = ∅. If C and D are language classes associated
with classes of infinite-state systems, then intersection emptiness corresponds to verifying
safety properties in concurrent systems where one system of C communicates with a system
of D via messages or shared memory [6]. The question of separability is to decide whether
two given languages are not only disjoint, but whether there exists a finite, easily verifiable,
certificate for disjointness (and thus for safety). Specifically, the S separability problem for a
fixed class S of separators and language classes C and D asks, for given languages K from C
and L from D, whether there exists a language S ∈ S with K ⊆ S and S ∩ L = ∅.

There is extensive literature dealing with the separability problem, with a range of
different separators considered. One line of work concerns separability of regular languages by
separators from a variety 1 of regular languages. Here, the investigation began with a more
general problem, computing pointlikes (equivalently, the covering problem) [2, 20, 38], but

1 By which we mean the algebraic notion.
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later also concentrated on separability (e.g. [32, 33, 34, 35, 36, 37]). Moreover, separability
has been studied for regular tree languages, where separators are either piecewise testable tree
languages [21] or languages of deterministic tree-walking automata [5]. For non-regular input
languages, separability has been investigated with piecewise testable languages (PTL) [11]
and generalizations thereof [42] as separators. Separability of subsets of trace monoids [7]
and commutative monoids [9] by recognizable subsets has been studied as well.

A natural choice for the separators is the class of regular languages. On the one hand, they
have relatively high separation power and on the other hand, it is usually verifiable whether a
given regular language is in fact a separator. For instance, they generalize piecewise testable
languages but are less powerful than context-free languages (CFL). Since the intersection
problem for CFL is undecidable, it is not easy to check if a given candidate CFL is a separator.

This has motivated a recent research effort to understand for which language classes C,D
regular separability is decidable [29, 9, 8]. An early result was that regular separability is
undecidable for CFL (by this we mean that both input languages are context-free) [39, 25].
This was recently strengthened to undecidability already for visibly pushdown languages [28]
and one-counter languages [29]. On the positive side, it was shown that regular separability
is decidable for several subclasses of vector addition systems (VASS): for one-dimensional
VASS [29], for commutative VASS languages [9], and for Parikh automata (equivalently,
Z-VASS) [8]. Moreover, it is decidable for languages of well-structured transition systems [10].
Furthermore, decidability still holds in many of these cases if one of the inputs is a general
VASS language [12]. However, if both inputs are VASS languages, decidability of regular
separability remains a challenging open problem.

Of course, if one of the input languages is regular, checking regular separability degenerates
into checking intersection with a regular language. Thus, the problem becomes interesting
when both input languages are non-regular. Many language classes beyond the regular
languages constitute full trios, meaning that they are closed under rational transductions.
This is typically the case for classes that originate from non-deterministic infinite-state
systems [16] and from various types of grammars [16, 13].

In the case of full trios, the available results exhibit a striking correspondence between
regular separability and the intersection problem: Wherever decidability of regular separa-
bility has been clarified for a full trio, it is decidable if and only if intersection is decidable.
Of the abovementioned languages classes, the context-free languages [3], languages of (one-
dimensional) VASS [22], one-counter automata [3], Parikh automata [27], and well-structured
transition systems [18] each constitute a full trio (visibly pushdown languages and commuta-
tive VASS languages do not form full trios). In fact, in the case of well-structured transition
systems, it even turned out that two languages are regular-separable if and only if they are
disjoint [10]. Moreover, deciding regular separability usually involves non-trivial refinements
of the methods for deciding intersection. Without the restriction of being a full trio, there
is an example of a language class where the intersection problem is decidable, but regular
separability is not: the visibly pushdown languages for a fixed alphabet partition [28].

In light of these observations, there was a growing interest in whether there is a deeper
connection between regular separability and intersection emptiness in the case of full trios. In
other words: Is regular separability just intersection emptiness in disguise? It is conceivable
that for full trios, regular separability and intersection emptiness are mutually reducible.
An equivalence in this spirit already exists for separability by PTL: For full trios C and D,
separability by PTL for C and D is decidable if and only if the simultaneous unboundedness
problem is decidable for C and for D [11]. These two problems, in turn, are equivalent to
computing downward closures [41]. A further analogous equivalence is that full trios are
closed under intersection if and only if they are closed under the shuffle operator [19].
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Contribution. We show that regular separability and intersection emptiness are independent
problems for full trios: Each problem can be decidable while the other is undecidable.
Specifically, we present full trios C1, D1, C2, D2, so that (i) for C1 and D1, regular separability
is undecidable, but intersection emptiness is decidable and (ii) for C2 and D2, regular
separability is decidable, but intersection emptiness is undecidable. Some of these classes
have been studied before (such as the higher-order pushdown languages), but some have
not (to the best of our knowledge). However, they are all natural in the sense that they
are defined in terms of machine models and have decidable emptiness and membership
problems. We introduce two new classes defined by counter systems that accept based on
certain numerical predicates. These predicates are specified either using reset vector addition
systems or higher-order pushdown automata.

2 Preliminaries

We use Σ (sometimes Γ) to denote a finite set of letters and Σ∗ to denote the set of finite
strings (aka words) over the alphabet Σ. To distinguish between expressions over natural
numbers and expressions involving words, we use typewriter font to denote letters, e.g. a, 0,
1, etc. For example, 0n is the word consisting of an n-fold repetition of the letter 0, whereas
0n is the number zero. The empty string is denoted ε. If S ⊆ N we write aS for the set
{an | n ∈ S} ⊆ a∗ and 2S for the set {2n | n ∈ S} ⊆ N.

We define the map ν : {0, 1}∗ → N which takes every word to the number which it denotes
in binary representation: We define ν(ε) = 0 and ν(w1) = 2 · ν(w) + 1 and ν(w0) = 2 · ν(w)
for w ∈ {0, 1}∗. For example, ν(110) = 6. Often we are only concerned with words of the
form {0} ∪ 1{0, 1}∗. For subsets L ⊆ {0, 1}∗, we define ν(L) = {ν(w) | w ∈ L}.

Languages are denoted by L,L′,K etc. and the language of a machine M is denoted by
L(M). Classes of languages are denoted by C, D, etc.

I Definition 2.1. An asynchronous transducer T is a tuple T = (Q,Γ,Σ, E, q0, F ) with a
set of finite states Q, finite output alphabet Γ, finite input alphabet Σ, a finite set of edges
E ⊆ Q×Γ∗×Σ∗×Q, initial state q0 ∈ Q and set of final states F ⊆ Q. We write p v|u−−→ q if
(p, v, u, q) ∈ E and the machine reads u in state p, outputs v and moves to state q. We also
write p w|w′−−−→

∗
q if there are states q0, q1, . . . , qn and words u1, u2, . . . , un, v1, v2, . . . , vn such

that p = q0, q = qn, w′ = u1u2 · · ·un, w = v1v2 · · · vn and qi
vi|ui−−−→ qi+1 for all 0 ≤ i ≤ n.

The transduction T ⊆ Γ∗ × Σ∗ generated by the transducer T is the set of tuples
(v, u) ∈ Γ∗ × Σ∗ such that q0

v|u−−→
∗

qf for some qf ∈ F . Given a language L ⊆ Σ∗, we define
TL := {v ∈ Γ∗ | ∃u ∈ L (v, u) ∈ T}. A transduction T ⊆ Γ∗×Σ∗ is rational if it is generated
by some asynchronous transducer.

A language is a subset of Γ∗ for some alphabet Γ. A language class is a collection
of languages, together with some way to finitely represent these languages, for example
using machine models or grammars. We call a language class a full trio if it is effectively
closed under rational transductions. This means, given a representation of L in C and an
asynchronous transducer for T ⊆ Γ∗×Σ∗, the language TL belongs to C and one can compute
a representation of TL in C.

The following equivalent definition of full trios is well known (see Berstel [3]):

I Lemma 2.2. A language class is closed under rational transductions if and only if it
is effectively closed under (i) homomorphic image, (ii) inverse homomorphic image, and
(iii) intersection with regular languages.

FSTTCS 2019
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We are interested in decision problems where the representation of a language L (or
possibly multiple languages) is the input. In particular, we study the following problems.

I Problem 2.3 (Intersection Emptiness). For languages classes C1 and C2, the intersection
emptiness problem, briefly IE(C1, C2), is defined as follows:
Input: Languages L1 from C1 and L2 from C2.
Question: Is L1 ∩ L2 empty?

I Problem 2.4 (Regular Separability). For languages classes C1 and C2, the regular separability
problem, briefly RS(C1, C2), is defined as follows:
Input: Languages L1 from C1 and L2 from C2.
Question: Is there a regular language R such that L1 ⊆ R and L2 ∩R = ∅?
We will write L|K to denote that L and K are regular-separable.

I Problem 2.5 (Emptiness). The emptiness problem for a language class C, briefly Empty(C),
is defined as:
Input: A language L from C.
Question: Is L = ∅, i.e. is L empty?

I Problem 2.6 (Infinity). The infinity problem for a language class C, briefly Inf(C), is defined
as:
Input: A language L from C.
Question: Does L contain infinitely many words?

3 Incrementing automata

The counterexamples we construct are defined using special kinds of automata that can
only increment a counter, which we will define formally below. The acceptance condition
requires that the counter value satisfies a specific numerical predicate, in addition to reaching
a final state. By a predicate class, we mean a class P of predicates over natural numbers
(i.e. subsets P ⊆ N) such that there is a way to finitely describe the members of P. As an
example, if C is a language class, then a subset S ⊆ N is a pseudo-C predicate if S = ν(L)
for some L ∈ C and L ⊆ {0, 1}∗. Now the class of all pseudo-C predicates constitutes a
predicate class, because a pseudo-C predicate can be described using the finite description of
a language in C. The class of all pseudo-C predicates is denoted pseudoC.

I Definition 3.1. Let P be a predicate class. An incrementing automaton over P is a
five-tuple M = (Q,Σ, E, q0, F ) where Q is a finite set of states, Σ is its input alphabet,
E ⊆ Q× Σ∗ × {0, 1} ×Q a finite set of edges, q0 ∈ Q an initial state and F is a finite set of
acceptance pairs (q, P ) where q ∈ Q is a state and P belongs to P .

A configuration of M is a pair (q, n) ∈ Q × N. For two configurations (q, n), (q′, n′),
we write (q, n) w−→ (q′, n′) if there are configurations (q1, n1), . . . , (q`, n`) with q1 = q and
q` = q′ and edges (qi, wi,mi, qi+1) with ni+1 = ni +mi for 1 ≤ i < ` and w = w1 · · ·w`. The
language accepted byM is

L(M) = {w ∈ Σ∗ | (q0, 0) w−→ (q,m) for some (q, P ) in F with m ∈ P}.

The collection of all languages accepted by incrementing automata over P is denoted I(P).

It turns out that even with no further assumptions on the predicate class P , the language
class I(P) has some nice closure properties.
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I Lemma 3.2. Let P be a predicate class. The languages of incrementing automata over P
are precisely the finite unions of languages of the form TaP where P ∈ P and T ⊆ Σ∗×{a}∗
is a rational transduction. In particular, the class of languages accepted by incrementing
automata over P is a full trio.

Proof. For every accepting pair (q, P ) ofM, we construct a transducer Tq,P , which has the
same set of states asM, accepting state set {q} and for each edge (q′, w,m, q′′) ofM the
transducer reads a if m = 1 or ε if m = 0 and outputs w. Then L(M) is the finite union of
all Tq,P (aP ).

Conversely, since the languages accepted by incrementing automata over P are clearly
closed under union, it suffices to show that TaP is accepted by an incrementing automaton
over P. We may assume that T is given by a transducer in which every edge is of the form
(q, w, am, q′) with m ∈ {0, 1}. Let M have the same state set as T and turn every edge
(q, w, am, q′) into an edge (q, w,m, q′) forM. Finally, for every final state q of T , we giveM
an accepting pair (q, P ). Then clearly L(M) = TaP .

This implies that the class of incrementing automata over P is a full trio: If L ⊆ Σ∗ is
accepted by a incrementing automata over P, then we can write L = T1aP1 ∪ · · · ∪ T`aP`
with T1, . . . , T` ⊆ Σ∗ × a∗. If T ⊆ Γ∗ ×Σ∗ is a rational transduction, then TL = (TT1)aP1 ∪
· · · ∪ (TT`)aP` and since TTi is again a rational transduction for 1 ≤ i ≤ `, the lanuage TL
is accepted by some incrementing automaton over P. J

It is obvious that the class I(P) does not always have a decidable emptiness problem:
Emptiness is decidable for I(P) if and only if it is decidable whether a given predicate from P
intersects a given arithmetic progression, i.e. given P andm,n ∈ N, whether (m+nN)∩P 6= ∅.
For all the predicate classes P we consider, emptiness for I(P) will always be decidable.

4 Decidable Intersection and Undecidable Regular Separability

In this section, we present a language class C so that the intersection emptiness problem
IE(C, C) is decidable for C, but the regular separability problem RS(C, C) is undecidable for C.
The definition of C is based on reset vector addition systems.

Reset Vector Addition Systems. A reset vector addition system (reset VASS) is a tuple
V = (Q,Σ, n, E, q0, F ), where Q is a finite set of states, Σ is its finite input alphabet, n ∈ N
is its number of counters, E ⊆ Q × Σ∗ × {1, . . . , n} × {0, 1,−1, r} × Q is a finite set of
edges, q0 ∈ Q is its initial state, and F ⊆ Q is its set of final states. A configuration of V
is a tuple (q,m1, . . . ,mn) where q ∈ Q and m1, . . . ,mn ∈ N. We write (q,m1, . . . ,mn) w−→
(q′,m′1, . . . ,m′n) if there is an edge (q, w, k, x, q′) such that for every j 6= k, we have m′j = mj

and
if x ∈ {−1, 0, 1}, then m′k = mk + x,
if x = r, then m′k = 0.

If there are configurations c1, . . . , c` and words w1, . . . , w`−1 with ci
wi−→ ci+1 for 1 ≤ i < `,

and w = w1 · · ·w`, then we also write c1
w−→ c`. The language accepted by V is defined as

L(V) = {w ∈ Σ∗ | (q0, 0, . . . , 0) w−→ (q,m1, . . . ,mn) for some q ∈ F and m1, . . . ,mn ∈ N}.

The class of languages accepted by reset VASS is denoted R.
Our language class will be I(pseudoR), i.e. incrementing automata with access to predi-

cates of the form ν(L) where L ⊆ {0, 1}∗ is the language of a reset VASS.

FSTTCS 2019
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I Theorem 4.1. RS(I(pseudoR), I(pseudoR)) is undecidable and
IE(I(pseudoR), I(pseudoR)) is decidable.

Note that I(pseudoR) is a full trio (Lemma 3.2) and since intersection is decidable, in
particular its emptiness problem is decidable: For L ⊆ Σ∗, one has L ∩ Σ∗ = ∅ if and only if
L = ∅. Moreover, note that we could not have chosen R as our example class: Since reset
VASS are well-structured transition systems, regular separability is decidable for them [10].

Before we begin with the proof of Theorem 4.1, let us mention that instead of R, we could
have chosen any language class D, for which (i) D is closed under rational transductions,
(ii) D is closed under intersection, (iii) Empty(D) is decidable and (iv) Inf(D) is undecidable.
For example, we could have also used lossy channel systems instead of reset VASS.

We now recall some results regarding R from literature.

I Lemma 4.2. Emptiness is decidable for R.

The lemma follows from the fact that reset VASS are well-structured transition systems [14],
for which the coverability problem is decidable [1, 17] and the fact that a reset VASS has a
non-empty language if and only if a particular configuration is coverable.

The following can be shown using standard product constructions, please see the full
version [40].

I Lemma 4.3. R is closed under rational transductions, union, and intersection.

We now show that regular separability is undecidable for I(pseudoR). We do this using
a reduction from the infinity problem for R, whose undecidability is an easy consequence of
the undecidability of boundedness of reset VASS.

The boundedness problem for reset VASS is defined below and was shown to be undecid-
able by Dufourd, Finkel, and Schnoebelen [14] (and a simple and more general proof was
given by Mayr [30]). A configuration (q, x1, . . . , xn) is reachable if there is a w ∈ Σ∗ with
(q0, 0, . . . , 0) w−→ (q, x1, . . . , xn). A reset VASS V is called bounded if there is a B ∈ N such
that for every reachable (q, x1, . . . , xn), we have x1 + · · ·+ xn ≤ B. Hence, the boundedness
problem is the following.
Input: A reset VASS V.
Question: Is V bounded?

I Lemma 4.4. The infinity problem for R is undecidable.

Proof. From an input reset VASS V = (Q,Σ, n, E, q0, F ), we construct a reset VASS V ′ over
the alphabet Σ′ = {a} as follows. In every edge of V, we replace the input word by the
empty word ε. Moreover, we add a fresh state s, which is the only final state of V ′. Then, we
add an edge (q, ε, 1, 0, s) for every state q of V . Finally, we add a loop (s, a, i,−1, s) for every
i ∈ {1, . . . , n}. This means V ′ simulates a computation of V (but disregarding the input)
and can spontaneously jump into the state s, from where it can decrement counters. Each
time it decrements a counter in s, it reads an a from the input. Thus, clearly, L(V ′) ⊆ a∗.
Moreover, we have am ∈ L(V ′) if and only if there is a reachable configuration (q, x1, . . . , xn)
of V with x1 + · · ·+ xn ≥ m. Thus, L(V ′) is finite if and only if V is bounded. J

Note that infinity is already undecidable for languages that are subsets of 10∗. This is
because given L from R, a rational transduction yields L′ = {10|w| | w ∈ L} and L′ is infinite
if and only if L is.

Our reduction from the infinity problem works because the input languages have a
particular shape, for which regular separability has a simple characterization.
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I Lemma 4.5. Let S0, S1 ⊆ N and N \ 2N ⊆ S1. Then aS0 and aS1 are regular-separable if
and only if S0 is finite and disjoint from S1.

Proof. If S0 is finite and disjoint from S1, then clearly aS0 is a regular separator. For
the “only if” direction, consider any infinite regular language R ⊆ a∗. It has to include
an arithmetic progession, meaning that there exist m,n ∈ N with am+nN ⊆ R. Hence, for
sufficiently large `, the language {ax | 2` < x < 2`+1} ⊆ S1 must intersect with R. In other
words, no infinite R can be a regular separator of aS0 and aS1 i.e. S0 must be finite (and
disjoint from S1). J

I Lemma 4.6. Regular separability is undecidable for I(pseudoR).

Proof. We reduce the infinity problem for R (which is undecidable by Lemma 4.4) to regular
separability in I(pseudoR). Suppose we are given L from R. Since R is effectively closed
under rational transductions, we also have K = {10|w| | w ∈ L} in R. Note that K is infinite
if and only if L is infinite. Then ν(K) ⊆ 2N and K1 := aν(K) belongs to I(pseudoR). Let
K2 = aN\2N = aν(1{0,1}∗1{0,1}∗), which also belongs to I(pseudoR), because 1{0, 1}∗1{0, 1}∗
is regular and thus a member of R.

By Lemma 4.4, K1 and K2 are regular-separable if and only if K1 is finite and disjoint
from K2. Since K1 ∩K2 = ∅ by construction, we have regular separability if and only if K1
is finite, which happens if and only if K is finite. J

For Theorem 4.1, it remains to show that intersection is decidable for I(pseudoR). We
do this by expressing intersection non-emptiness in the logic Σ+

1 (N,+,≤, 1, pseudoR), which
is the positive Σ1 fragment of Presburger arithmetic extended with pseudo-R predicates.
Moreover, we show that this logic has a decidable truth problem.

We begin with some notions from first-order logic (please see [15] for syntax and semantics
of first-order logic). First-order formulae will be denoted by φ(x̄), ψ(y) etc. where x̄ is a
tuple of (possibly superset of the) free variables and y is a single free variable. For a formula
φ(x̄), we denote by Jφ(x̄)K the set of its solutions (in our case, the domain is N).

Our decision procedure for Σ+
1 (N,+,≤, 1, pseudoR) is essentially the same as the procedure

to decide the first-order theory of automatic structures [4], except that instead of regular
languages, we use R. For w̄ = (w1, w2, . . . , wk) ∈ (Σ∗)k, the convolution w1 ⊗ w2 ⊗ . . .⊗ wk
is a word over the alphabet (Σ ∪ {�})k where � is a padding symbol not present in Σ. If
wi = wi1wi2 . . . wimi and m = max{m1,m2, . . . ,mk} then

w1 ⊗ w2 ⊗ . . .⊗ wk :=


w′11
w′21
...

w′k1

 . . .

w′1m
w′2m
...

w′km

 ∈ ((Σ ∪ {�})k)∗

where w′i1 · · ·w′im = �m−miwi for 1 ≤ i ≤ k. We say that a k-ary (arithmetic) relation R ⊆
Nk is a pseudo-R relation if the set of words LR = {w1⊗w2⊗· · ·⊗wk | (ν(w1), . . . , ν(wk)) ∈
R} belongs to R. In our decision procedure for Σ+

1 (N,+,≤, 1, pseudoR), we will show
inductively that every formula defines a pseudo-R relation.
I Remark 4.7. Note that our definition of the convolution deviates from the usual one that
pads words on the right [4, 26]. This is because we want pseudo-R predicates to be pseudo-R
relations. By our definition of ν, this means the least significant bit will always be on the
right. Since we also want the ternay addition relation {(x, y, z) ∈ N3 | x + y = z} to be a
pseudo-R relation, we need to align the words in the convolution at the least significant bit
and thus pad on the left.

FSTTCS 2019
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Formally, we consider the theory Σ+
1 (N,+,≤, 1, pseudoR) where (N,+,≤, 1, pseudoR) is

the structure with domain N of natural numbers, the constant symbol 1 and the binary
symbols + and ≤ taking their canonical interpretations and pseudoR is a set of predicate
symbols, one for each pseudo-R predicate. By Σ+

1 we mean the fragment of first order
formulae obtained by using only the boolean operations ∧,∨ and existential quantification.

I Definition 4.8. Let Σ+
1 (N,+,≤, 1, pseudoR) be the set of first order logic formulae given

by the following grammar:

φ(x̄, ȳ, z̄) :=S(x) | t1 ≤ t2 | φ1(x̄, ȳ) ∧ φ2(x̄, z̄) | φ1(x̄, ȳ) ∨ φ2(x̄, z̄) | ∃y φ′(y, x̄)

where S is from pseudoR and t1, t2 are terms obtained from using variables, 1 and +.

I Lemma 4.9. The truth problem for Σ+
1 (N,+,≤, 1, pseudoR) is decidable.

Proof. It is clear that by introducing new existentially quantified variables, one can transform
each formula from Σ+

1 (N,+,≤, 1, pseudoR) into an equivalent formula that is generated by
the simpler grammar

φ(x̄, ȳ, z̄) :=S(x) | x+ y = z | x = 1 |
φ1(x̄, ȳ) ∧ φ2(x̄, z̄) | φ1(x̄, ȳ) ∨ φ2(x̄, z̄) | ∃y φ′(y, x̄)

We want to show that given any input sentence ψ from Σ+
1 (N,+,≤, 1, pseudoR), we can

decide if it is true or not. If the sentence has no variables, then it is trivial to decide.
Otherwise, ψ = ∃x̄ φ(x̄) for some formula φ(x̄). We claim that the solution set R = Jφ(x̄)K is
a pseudo-R relation and a reset VASS for LR can be effectively computed. Assuming the
claim, the truth of ψ reduces to the emptiness of Jφ(x̄)K or equivalently the emptiness of LR,
which is decidable by Lemma 4.2.

We prove the claim by structural induction on the defining formula φ(x̄), please see the
full version [40] for details. J

I Remark 4.10. The truth problem for Π+
1 (N,+,≤, 1, pseudoR) is undecidable by reduction

from the infinity problem for R. Given L ⊆ 10∗, let RL = ν(L) ⊆ N be the predicate
corresponding to L. Now the downward closure D := {x ∈ N | ∃y : x ≤ y ∧ RL(y)} is
definable in Σ+

1 (N,+,≤, 1, pseudoR) and therefore K := ν(D) belongs to R by the proof of
Lemma 4.9. Then the Π+

1 -sentence ∀x : RK(x) is true if and only if L is infinite.
Having established that Σ+

1 (N,+,≤, 1, pseudoR) is decidable, we are ready to show that
intersection emptiness is decidable for I(pseudoR).

I Lemma 4.11. The intersection problem is decidable for I(pseudoR).

Proof. Given L1, L2 ∈ I(pseudoR), by Lemma 3.2, we know that both L1 and L2 are finite
unions of languages of the form TaS , where S is a pseudo-R predicate. Therefore, it suffices
to decide the emptiness of intersections of the form T1aS1 ∩ T2aS2 where S1 and S2 are
pseudo-R predicates. Note that T1aS1 ∩ T2aS2 = ∅ iff T−1

2 T1aS1 ∩ aS2 = ∅. Since T−1
2 T1

is again a rational transduction, it suffices to check emptiness of languages of the form
TaS1 ∩ aS2 where T ⊆ a∗ × a∗ is a rational transduction. Notice that we can construct an
automaton A over the alphabet Σ′ = {b, c} with the same states as the transducerMT for
T and where for any transition p am|an−−−−→ q ofMT we have a transition p bmcn−−−→ q in A. It
is clear that (ax, ay) ∈ T iff there exists a word w ∈ L(A) such that w contains exactly x
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occurrences of b and y occurrences of c. Now it follows from Parikh’s theorem [31] that the
set {(x, y) ∈ N× N | (ax, ay) ∈ T} is semilinear, meaning that there are numbers n0, . . . , nk
and m0, . . . ,mk such that (ax, ay) ∈ T if and only if

∃z1∃z2 . . . ∃zk (x = n0 +
k∑
i=i

zini) ∧ (y = m0 +
k∑
i=i

zimi).

In particular, there is a formula φT (x, y) in Σ+
1 (N,+,≤, 1, pseudoR) such that (ax, ay) ∈ T if

and only if φT (x, y) is satisfied. We can now write a formula φ2(x) in Σ+
1 (N,+,≤, 1, pseudoR)

such that φ2(x) is satisfied if and only if ax ∈ TaS2 :

φ2(x) := ∃y
(
φT (x, y) ∧ S2(y)

)
In the same way, the formula φ1(x) := S1(x) defines aS1 . Now set φ = ∃x

(
φ1(x) ∧ φ2(x)

)
.

Then φ is true if and only if TaS2 ∩ aS1 6= ∅. Decidability of IE(I(pseudoR), I(pseudoR))
follows from Lemma 4.9. J

5 Decidable Regular Separability and Undecidable Intersection

In this section, we present language classes C and D so that IE(C,D) is undecidable, but
RS(C,D) is decidable. These classes are constructed using higher-order pushdown automata,
which we define first.

We follow the definition of [23]. Higher-order pushdown automata are a generalization of
pushdown automata where instead of manipulating a stack, one can manipulate a stack of
stacks (order-2), a stack of stacks of stacks (order-3), etc. Therefore, we begin by defining
these higher-order stacks. While for ordinary (i.e. order-1) pushdown automata, stacks are
words over the stack alphabet Γ, order-(k + 1) stacks are sequences of order-k stacks. Let Γ
be an alphabet and k ∈ N. The set of order-k stacks SΓ

k is inductively defined as follows:

SΓ
0 = Γ, SΓ

k+1 = {[s1 · · · sm]k+1 | m ≥ 1, s1, . . . , sm ∈ SΓ
k }.

For a word v ∈ Γ+, the stack [· · · [[v]1]2 · · · ]k is also denoted JvKk. The function top yields the
topmost symbol from Γ. This means, we have top([s1 · · · sm]1) = sm and top([s1 · · · sm]k) =
top(sm) for k > 1.

Higher-order pushdown automata operate on higher-order stacks by way of instructions.
For the stack alphabet Γ and for order-k stacks, we have the instruction set IΓ

k = {pushi, popi |
1 ≤ i ≤ k} ∪ {rewγ | γ ∈ Γ}. These instructions act on SΓ

k as follows:

[s1 · · · sm]1 · rewγ = [s1 · · · sm−1γ]1
[s1 · · · sm]k · rewγ = [s1 · · · sm−1(sm · rewγ)]k if k > 1
[s1 · · · sm]i · pushi = [s1 · · · smsm]i
[s1 · · · sm]k · pushi = [s1 · · · sm (sm · pushi)]k if k > i

[s1 · · · sm]i · popi = [s1 · · · sm−1]i if m ≥ 2
[s1 · · · sm]k · popi = [s1 · · · sm−1 (sm · popi)]k if k > i

and in all other cases, the result is undefined. For a word w ∈ (IΓ
k )∗ and a stack s ∈ SΓ

k , the
stack s · w is defined inductively by s · ε = s and s · (wx) = (s · w) · x for x ∈ IΓ

k .
An (order-k) higher-order pushdown automaton (short HOPA) is a tuple

A = (Q,Σ,Γ,⊥, E, q0, F ), where Q is a finite set of states, Σ is its input alphabet, Γ is its
stack alphabet, ⊥ ∈ Γ is its stack bottom symbol, E is a finite subset of Q×Σ∗×Γ× (IΓ

k )∗×Q

FSTTCS 2019



51:10 Regular Separability and Intersection Emptiness Are Independent Problems

whose elements are called edges, q0 ∈ Q is its initial state, and F ⊆ Q is its set of final
states. A configuration is a pair (q, s) ∈ Q× SΓ

k . When drawing a higher-order pushdown
automaton, an edge (q, u, γ, v, q′) is represented by an arc q u|γ|v−−−→ q′. An arc q u|v−−→ q′ means
that for each γ ∈ Γ, there is an edge (q, u, γ, v, q′).

For configurations (q, s), (q′, s′) and a word u ∈ Σ∗, we write (q, s) u−→A (q′, s′) if there
are edges (q1, u1, γ1, v1, q2), (q2, u2, γ2, v2, q3), . . . , (qn−1, un−1, γn−1, vn−1, qn) in E and stacks
s1, . . . , sn ∈ SΓ

k with top(si) = γi and si ·vi = si+1 for 1 ≤ i ≤ n−1 such that (q, s) = (q1, s1)
and (q′, s′) = (qn, sn) and u = u1 · · ·un. The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | (q0, J⊥Kk) w−→A (q, s) for some q ∈ F and s ∈ SΓ
k }.

The languages accepted by order-k pushdown automata are called order-k pushdown languages.
By H, we denote the class of languages accepted by an order-k pushdown automaton for
some k ∈ N. In our example of classes with decidable regular separability and undecidable
intersection, one of the two classes is H. The other class will again be defined using
incrementing automata.

I Definition 5.1. Let C be a language class. A predicate P ⊆ N is a power-C predicate if
P = N \ 2N ∪ {2ν(w) | w ∈ L} for some language L from C. The class of power-C predicates
is denoted powerC.

Our example of classes with decidable regular separability but undecidable intersection is
H on the one hand and I(powerH) on the other hand. It is well-known that H is a full trio
(see, e.g., [16]). Moreover, I(powerH) is a full trio according to Lemma 3.2.

I Theorem 5.2. RS(H, I(powerH)) is decidable, whereas IE(H, I(powerH)) is undecidable.

Note that decidable regular separability implies that I(powerH) has a decidable emptiness
problem: For L ⊆ Σ∗, one has Σ∗|L if and only if L = ∅. Moreover, note that we could not
have chosen H as our counterexample, because regular separability is undecidable for H
(already for context-free languages) [39, 25].

For showing Theorem 5.2, we rely on two ingredients. The first is that infinity is
decidable for higher-order pushdown languages. This is a direct consequence of a result of
Hague, Kochems and Ong [23], showing that the more general simultaneous unboundedness
problem [41] and diagonal problem [11] are decidable for higher-order pushdown automata.

I Lemma 5.3 ([23]). Inf(H) is decidable.

The other ingredient is that turning binary representations into unary ones can be
achieved in higher-order pushdown automata.

I Lemma 5.4. If L ⊆ {0, 1}∗ is an order-k pushdown language, then L′ = {10ν(w) | w ∈ L}
is an order-(k + 2) pushdown language.

Proof. Let A be an order-k HOPA accepting L ⊆ {0, 1}∗. We construct an order-(k + 2)
HOPA A′ for L′. We may clearly assume that A has only one final state qf . The following
diagram describes A′:

q′0 q0 qf p q′f
1|pushk+2rew#pushk+1rew⊥ ε|popk+1

ε|0|popk+1pushk+2

0|1|popk+1pushk+2

ε|#|popk+2

ε|⊥′|ε
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The HOPA A′ starts in the configuration (q′0, J⊥′Kk+2) and in moving to q0, it reads 1 and
goes to (q0, [J⊥′Kk+1[J#KkJ⊥Kk]k+1]k+2). In the part in the dashed rectangle, A′ simulates
A. However, instead of reading an input symbol a ∈ {0, 1}, A stores that symbol on the
stack. In order not to interfere with the simulation of A, this is done by copying the order-k
stack used by A and storing a in the copy below. This is achieved as follows. For every edge
p
a|γ|v−−−→ q with v ∈ (IΓ

k )∗, A′ instead has an edge

p q
ε|γ|push1rewapushk+1pop1v

This pushes the input symbol a on the (topmost order-k) stack, makes a copy of the topmost
order-k stack, removes the a from this fresh copy, and then excutes v. Edges p ε|γ|v−−−→ (i.e.
ones that read ε from the input) are kept.

When A′ arrives in qf , it has a stack [J⊥′Kk+1[J#Kks1 · · · sms]k+1]k+2, where s is the
order-k stack reached in the computation of A, and s1, . . . , sm store the input word w ∈ Σ∗
read by A, meaning top(s1) · · · top(sm) = w. When moving to p, A′ removes s so as to obtain
[J⊥′Kk+1[J#Kks1 · · · sm]k+1]k+2 as a stack.

In p, A′ reads the input word 0ν(w) as follows. While in p, the stack always has the form

t = [J⊥′Kk+1t1 · · · t`]k+2, (1)

where each ti is an order-(k+ 1) stack of the form [J#Kks1 · · · sm]k+1 for some order-k stacks
s1, . . . , sm ∈ SΓ

k . To formulate an invariant that holds in state p, we define a function µ on
the stacks as in (1). First, if ti = [J#Kks1 · · · sm]k+1, then let µ(ti) = ν(top(s1) · · · top(sm)).
Next, let µ(t) = µ(t1) + · · ·+ µ(t`). It is not hard to see that the loops on p preserve the
following invariant: If 0r is the input word read from configuration (p, t) to (p, t′), then

µ(t) = r + µ(t′). To see this, consider a one step transition (p, t)
ε|0|popk+1pushk+2−−−−−−−−−−−→ (p, t′). If

t = [J⊥′Kk+1t1 · · · t`]k+2 = [J⊥′Kk+1t1 · · · t`−1[J#Kks1 · · · sm]k+1]k+2

then

t′ = [J⊥′Kk+1t1 · · · t`−1[J#Kks1 · · · sm−1]k+1[J#Kks1 · · · sm−1]k+1]k+2.

If w = top(s1) . . . top(sm) then w = w′0 where w′ = top(s1) · · · top(sm−1) since we popped
sm off the stack. Moreover,

µ(t′) =
`−1∑
i=1

µ(ti) + 2ν(w′) =
`−1∑
i=1

µ(ti) + ν(w) = µ(t)

Similarly we see that if the transition taken is 0|1|popk+1pushk+2 then we get µ(t) = µ(t′)+1.
By induction on the length of the run, we get µ(t) = r + µ(t′) when 0r is read.

Now observe that when A′ first arrives in p with stack t, then by construction we have
` = 1 and µ(t) = µ(t1) = ν(w). Moreover, when A′ moves on to q′f with a stack as in (1),
then ` = 0 and thus µ(t) = 0. Thus, the invariant implies that if A′ reads 0r while in p, then
r = ν(w). This means, A′ has read 10ν(w) in total.

Finally, from a stack t as in (1), A′ reaches q′f in finitely many steps, please see the full
version [40] for details. J

I Lemma 5.5. The problem IE(H, I(powerH)) is undecidable.
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Proof. We reduce intersection emptiness for context-free languages, which is well-known
to be undecidable [24], to IE(H, I(powerH)). Let K1,K2 ⊆ {0, 1}∗ be context-free. Since
K1∩K2 6= ∅ if and only if 1K1∩1K2 6= ∅ and 1Ki is context-free for i = 0, 1, we may assume
that K1,K2 ⊆ 1{0, 1}∗. This implies K1 ∩K2 6= ∅ if and only if ν(K1) ∩ ν(K2) 6= ∅.

Let P2 = N \ 2N ∪ 2ν(K2). Then P2 ⊆ N is a power-H predicate, because H includes the
context-free languages. Thus, the language L2 = {10n | n ∈ P2} belongs to I(powerH) and

L2 = {10n | n ∈ N \ 2N} ∪ {102ν(w)
| w ∈ K2}.

Moreover, let L1 := {102ν(w) | w ∈ K1}. Since L1 = {10ν(10ν(w)) | w ∈ K1} and K1 is an
order-1 pushdown language, applying Lemma 5.4 twice yields that L1 is an order-5 pushdown
language and thus belongs to H. Now clearly L1 ∩ L2 6= ∅ if and only if ν(K1) ∩ ν(K2) 6= ∅,
which is equivalent to K1 ∩K2 = ∅. J

For showing decidability of regular separability, we use the following well-known fact
(please see the full version [40] for a proof).

I Lemma 5.6. Let L =
⋃m
i=1 Li and K =

⋃n
i=1Ki. Then K|L if and only if Li|Kj for all

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

The last ingredient for our decision procedure is the following simple but powerful observation
from [12] (for the convenience of the reader, a proof can be found in [40]).

I Lemma 5.7. Let K ⊆ Γ∗, L ⊆ Σ∗ and T ⊆ Σ∗ × Γ∗ be a rational transduction. Then
L|TK if and only if T−1L|K.

The following now completes the proof of Theorem 5.2.

I Lemma 5.8. The problem RS(H, I(powerH)) is decidable.

Proof. Suppose we are given L1 ⊆ Σ∗ from H and L2 ⊆ Σ∗ from I(powerH). Then we can
write L2 =

⋃n
i=1 Tia

Pi , where for 1 ≤ i ≤ n, Ti ⊆ Σ∗ × a∗ is a rational transduction and
Pi ⊆ N is a power-H predicate. Since L1|L2 if and only if L1|TiaPi for every i (Lemma 5.6),
we may assume L2 = TaP for T ⊆ Σ∗ × a∗ rational and P ⊆ N a power-H predicate.
According to Lemma 5.7, L1|TaP if and only if T−1L1|aP . Since T−1 is also a rational
transduction and H is a full trio, we may assume that L1 is in H with L1 ⊆ a∗ and L2 = aP .

By Lemma 4.5, we know that L1|aP if and only if L1 is finite and disjoint from aP . We
can decide this as follows. First, using Lemma 5.3 we check whether L1 is finite. If it is not,
then we know that L1|L2 is not the case.

If L1 is finite, then we can compute a list of all words in L1: We start with F0 = ∅ and
then successively compute finite sets Fi ⊆ L1. For each i ∈ N, we check whether L1 ⊆ Fi,
which is decidable because L1 ∩ (a∗ \ Fi) is in H and emptiness is decidable for H. If
L1 6⊆ Fi, then we enumerate words in a∗ until we find am with am ∈ L1 (membership in L1
is decidable) and am /∈ Fi. Then, we set Fi+1 = Fi ∪ {am}. Since L1 is finite, this procedure
must terminate with Fi = L1. Now we have L1|aP if and only if Fi ∩ aP = ∅. The latter can
be checked because powerH predicates are decidable. J



R. S. Thinniyam and G. Zetzsche 51:13

6 Conclusion

We have presented a language class C1 for which intersection emptiness is decidable but
regular separability is undecidable in Section 4. Similarly, in Section 5 we constructed C2,D2
for which intersection emptiness is undecidable but regular separability is decidable. All
three language classes enjoy pleasant language theoretic properties in that they are full trios
and have a decidable emptiness problem.

Let us provide some intuition on why these examples work. The underlying observation
is that intersection emptiness of two sets is insensitive to the shape of their members: If
f : X → Y is any injective map and S disjoint from the image of f , then for A,B ⊆ X, we
have A ∩ B = ∅ if and only if (f(A) ∪ S) ∩ f(B) = ∅. Regular separability, on the other
hand, is affected by such distortions: For example, if K,L ⊆ 1{0, 1}∗ are infinite, then
aN\2N ∪ a2ν(K) and a2ν(L) are never regular-separable, even if K and L are. Hence, roughly
speaking, the examples work by distorting languages (using encodings as numbers) so that
intersection emptiness is preserved, but regular separability reflects infinity of the input
languages. We apply this idea to language classes where intersection is decidable, but infinity
is not (Theorem 4.1) or the other way around (Theorem 5.2). All this suggests that regular
separability and intersection emptiness are fundamentally different problems.

Moreover, our results imply that any simple combinatorial decision problem that charac-
terizes regular separability has to be incomparable with intersection emptiness. Consider
for example the infinite intersection problem as a candidate. It asks whether two given
languages have an infinite intersection. Note that if L and K are languages from C and D,
respectively, then L ∩K 6= ∅ if and only if L#∗ and K#∗ (where # is a symbol not present
in L or K) have infinite intersection. Moreover, if C and D are full trios, then they effectively
contain L#∗ and K#∗, respectively. This implies a counterexample with decidable regular
separability and undecidable infinite intersection.

While the example from Section 4 is symmetric (meaning: the two language classes are
the same) and natural, the example in Section 5 is admittedly somewhat contrived: While
pseudo-C predicates rely on the common conversion of binary into unary representations,
power-C predicates are a bit artificial. It would be interesting if there were a simpler
symmetric example with decidable regular separability and undecidable intersection.
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